WO2021187086A1 - 積層圧電素子および電気音響変換器 - Google Patents

積層圧電素子および電気音響変換器 Download PDF

Info

Publication number
WO2021187086A1
WO2021187086A1 PCT/JP2021/007901 JP2021007901W WO2021187086A1 WO 2021187086 A1 WO2021187086 A1 WO 2021187086A1 JP 2021007901 W JP2021007901 W JP 2021007901W WO 2021187086 A1 WO2021187086 A1 WO 2021187086A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
layer
laminated
piezoelectric film
protruding portion
Prior art date
Application number
PCT/JP2021/007901
Other languages
English (en)
French (fr)
Inventor
輝男 芦川
平口 和男
裕介 香川
三好 哲
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022508187A priority Critical patent/JP7457790B2/ja
Priority to CN202180019823.7A priority patent/CN115244720A/zh
Priority to EP21771776.8A priority patent/EP4124066A4/en
Priority to KR1020227031142A priority patent/KR20220140576A/ko
Publication of WO2021187086A1 publication Critical patent/WO2021187086A1/ja
Priority to US17/946,825 priority patent/US20230019706A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/057Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by stacking bulk piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity

Definitions

  • the present invention relates to a laminated piezoelectric element and an electroacoustic transducer.
  • Piezoelectric elements are used for various purposes as so-called exciters that vibrate articles and make sounds when they are attached in contact with various articles. For example, by attaching an exciter to an image display panel, a screen, or the like and vibrating them, sound can be produced instead of a speaker.
  • the exciter when attaching an exciter to a flexible image display device, a retractable screen, etc., the exciter itself must be flexible (rollable) at least when not in use.
  • Patent Document 1 describes a polymer composite piezoelectric body in which piezoelectric particles are dispersed in a viscoelastic matrix made of a polymer material having viscoelasticity at room temperature, and is formed on one surface of the polymer composite piezoelectric body.
  • the upper thin film electrode having an area of less than or equal to the polymer composite piezoelectric material, the upper protective layer formed on the surface of the upper thin film electrode and having an area of more than or equal to the upper thin film electrode, and the opposite surface of the upper thin film electrode of the polymer composite piezoelectric body.
  • a piezoelectric laminate having a lower thin film electrode having an area of less than or equal to the polymer composite piezoelectric body, and a piezoelectric laminate having an area of more than or equal to the lower thin film electrode formed on the surface of the lower thin film electrode, and an upper portion.
  • a metal foil for drawing out the upper electrode, which is laminated on a part of the thin film electrode and at least a part is located outside the plane direction of the polymer composite piezoelectric material, and a part of the lower thin film electrode, which is laminated on a part, and at least a part is high.
  • an electroacoustic conversion film having a metal foil for drawing out a lower electrode located outside the plane direction of the molecular composite piezoelectric body.
  • the output of the laminated piezoelectric element depends on the direction of polarization of the piezoelectric layer of the piezoelectric film and the direction of the polarity of the electrode. It was found that the piezo may decrease or the piezo may not be deformed as a whole.
  • the electrode layer is formed very thin.
  • the electrode layer is provided in a state of being formed on a protective layer serving as a support. Therefore, the outermost layers on both main surfaces of the piezoelectric film serve as protective layers, and it is difficult to secure electrical contacts to the electrode layers.
  • An object of the present invention is to solve such a problem of the prior art, and to provide a laminated piezoelectric element capable of obtaining high piezoelectric characteristics and easily securing an electric contact to an electrode layer. There is.
  • the present invention has the following configuration.
  • a plurality of layers of piezoelectric films formed by laminating the first protective layer, the first electrode layer, the piezoelectric layer, the second electrode layer, and the second protective layer in this order are laminated.
  • Each piezoelectric layer is polarized in the thickness direction.
  • the first electrode is arranged on the upstream side in the polarization direction of the piezoelectric layer, and the second electrode is arranged on the downstream side.
  • the plurality of piezoelectric films have an adhesive portion to be adhered to the adjacent piezoelectric film, and at least the first electrode layer and the first protective layer, or the second electrode layer and the second electrode layer and the second electrode layer and the second electrode layer from the adhesive portion toward the outside in the plane direction. It has an adjacent piezoelectric film and a non-adhesive protrusion where the protective layer protrudes.
  • the protruding portion of each piezoelectric film has a first contact in which the first electrode layer of each piezoelectric film is electrically connected to each other, and a second contact in which the second electrode layer of each piezoelectric film is electrically connected to each other.
  • a laminated piezoelectric element in which at least one of the above is formed.
  • An electroacoustic converter comprising the laminated piezoelectric element according to any one of [1] to [13] and a diaphragm to which the laminated piezoelectric element is fixed.
  • the diaphragm has a quadrangular shape in which at least one set of two opposing sides is fixed, and when the distance between the fixed ends on the two facing sides is L, the laminated piezoelectric element is attached to the diaphragm.
  • FIG. 1 It is a figure which conceptually shows an example of the laminated piezoelectric element of this invention. It is a figure which conceptually shows an example of the piezoelectric film which comprises the laminated piezoelectric element shown in FIG. It is a conceptual diagram for demonstrating an example of the manufacturing method of a piezoelectric film. It is a conceptual diagram for demonstrating an example of the manufacturing method of a piezoelectric film. It is a conceptual diagram for demonstrating an example of the manufacturing method of a piezoelectric film. It is a conceptual diagram for demonstrating an example of the manufacturing method of a piezoelectric film. It is a conceptual diagram for demonstrating an example of the manufacturing method of a piezoelectric film. It is a conceptual diagram for demonstrating an example of the manufacturing method of a piezoelectric film.
  • FIG. 22 is a cross-sectional view taken along the line BB of FIG. It is a figure which conceptually shows another example of the laminated piezoelectric element of this invention. It is a partially enlarged view of FIG. 24. It is a partially enlarged view of FIG. 24.
  • FIG. 37 is a top view of FIG. 37. It is a side view of FIG. 37. It is a figure which shows the piezoelectric film which the laminated piezoelectric element of FIG. 37 has. It is a figure which shows the example which attached the conductive film to the laminated piezoelectric element of FIG. It is a figure which conceptually shows another example of the laminated piezoelectric element of this invention.
  • FIG. 43 It is a figure which conceptually shows another example of the laminated piezoelectric element of this invention. It is a side view of FIG. 43. It is a figure which conceptually shows another example of the electro-acoustic converter of this invention. It is a figure which conceptually shows another example of the electro-acoustic converter of this invention. It is a figure which conceptually shows another example of the electro-acoustic converter of this invention. It is a figure which conceptually shows another example of the electro-acoustic converter of this invention. It is a simulation result of the vibration of the diaphragm by the electroacoustic transducer shown in FIG. 45. It is a conceptual diagram for demonstrating FIG. 49.
  • FIG. 5 is an enlarged perspective view showing a part of the laminated piezoelectric element shown in FIG. 54. It is a figure which conceptually shows another example of the laminated piezoelectric element of this invention.
  • FIG. 5 is an enlarged perspective view showing a part of the laminated piezoelectric element shown in FIG. 56.
  • the description of the constituent elements described below may be based on a typical embodiment of the present invention, but the present invention is not limited to such an embodiment.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the laminated piezoelectric material of the present invention A plurality of layers of piezoelectric films formed by laminating a first protective layer, a first electrode layer, a piezoelectric layer, a second electrode layer, and a second protective layer in this order are laminated. Each piezoelectric layer is polarized in the thickness direction. In each piezoelectric film, the first electrode is arranged on the upstream side in the polarization direction of the piezoelectric layer, and the second electrode is arranged on the downstream side.
  • Each of the plurality of piezoelectric films has an adhesive portion to be adhered to the adjacent piezoelectric film, and at least the first electrode layer and the first protective layer, or the second electrode layer from the adhesive portion toward the outside in the plane direction.
  • each piezoelectric film has a protruding portion that is not adhered to an adjacent piezoelectric film on which the second protective layer protrudes.
  • the protruding portion of each piezoelectric film has a first contact in which the first electrode layer of each piezoelectric film is electrically connected to each other, and a second contact in which the second electrode layer of each piezoelectric film is electrically connected to each other. It is a laminated piezoelectric element in which at least one of the above is formed.
  • FIG. 1 conceptually shows an example of the laminated piezoelectric element of the present invention.
  • the laminated piezoelectric element 10 shown in FIG. 1 has a configuration in which three piezoelectric films 12a, 12b, and 12c are laminated, and adjacent piezoelectric films are attached by an adhesive layer (adhesion layer) 14. Each piezoelectric film is connected to a power source that applies a driving voltage that expands and contracts the piezoelectric film.
  • the laminated piezoelectric element 10 shown in FIG. 1 is formed by laminating three layers of piezoelectric films, but the present invention is not limited to this.
  • the number of laminated piezoelectric films may be two layers or four or more layers. The same applies to the laminated piezoelectric element described later in this respect.
  • FIG. 2 conceptually shows the piezoelectric film 12 by a cross-sectional view.
  • the piezoelectric films 12a, 12b and 12c have the same configuration except that the stacking order and the vertical direction are different. Therefore, in the following description, when it is not necessary to distinguish the piezoelectric films, the piezoelectric films are not distinguished. Collectively, it is also referred to as a piezoelectric film 12.
  • the piezoelectric film 12 includes a piezoelectric layer 20 which is a sheet-like material having piezoelectricity, a first electrode layer 24 laminated on one surface of the piezoelectric layer 20, and a first electrode layer. It has a first protective layer 28 laminated on 24, a second electrode layer 26 laminated on the other surface of the piezoelectric layer 20, and a second protective layer 30 laminated on the second electrode layer 26. .. That is, the piezoelectric film 12 has a structure in which the first protective layer 28, the first electrode layer 24, the piezoelectric layer 20, the second electrode layer 26, and the second protective layer 30 are laminated in this order.
  • the piezoelectric film 12 (piezoelectric layer 20) is polarized in the thickness direction.
  • the electrode layer and the protective layer on the upstream side in the polarization direction of the piezoelectric film 12 are the first electrode layer 24 and the first protective layer 28, and the electrode layer and the protective layer on the downstream side are the second electrode layer 26 and the second protective layer 30. do.
  • the piezoelectric layer 20 preferably disperses the piezoelectric particles 36 in a viscoelastic matrix 34 made of a polymer material having viscoelasticity at room temperature, as conceptually shown in FIG. It is made of a polymer composite piezoelectric body.
  • room temperature refers to a temperature range of about 0 to 50 ° C.
  • the polymer composite piezoelectric body (piezoelectric layer 20) preferably has the following requirements.
  • (I) Flexibility For example, when gripping in a state of being loosely bent like a document like a newspaper or a magazine for carrying, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric body is hard, a correspondingly large bending stress is generated, cracks are generated at the interface between the polymer matrix and the piezoelectric particle, and there is a possibility that it will eventually lead to fracture. Therefore, the polymer composite piezoelectric body is required to have appropriate softness. Further, if the strain energy can be diffused to the outside as heat, the stress can be relaxed. Therefore, it is required that the loss tangent of the polymer composite piezoelectric body is appropriately large.
  • the flexible polymer composite piezoelectric material used as an exciter is required to behave hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less. Further, the loss tangent of the polymer composite piezoelectric body is required to be appropriately large for vibrations of all frequencies of 20 kHz or less. Further, it is preferable that the spring constant can be easily adjusted by laminating according to the rigidity (hardness, stiffness, spring constant) of the mating material (diaphragm) to be attached, and at that time, the adhesive layer 14 is thinned. The thinner it is, the more energy efficient it can be.
  • polymer solids have a viscoelastic relaxation mechanism, and large-scale molecular motion causes a decrease in storage elastic modulus (Young's modulus) (relaxation) or a maximum loss elastic modulus (absorption) as the temperature rises or the frequency decreases. Observed as. Among them, the relaxation caused by the micro-Brownian motion of the molecular chain in the amorphous region is called main dispersion, and a very large relaxation phenomenon is observed. The temperature at which this main dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
  • Tg glass transition point
  • the polymer composite piezoelectric body (piezoelectric layer 20), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature, for vibration of 20 Hz to 20 kHz.
  • a polymer composite piezoelectric material that is hard and behaves softly against slow vibrations of several Hz or less is realized.
  • the polymer material having viscoelasticity at room temperature various known materials can be used.
  • a polymer material having a maximum value of tangent Tan ⁇ at a frequency of 1 Hz by a dynamic viscoelasticity test of 0.5 or more is used at room temperature, that is, at 0 to 50 ° C.
  • the polymer material having viscoelasticity at room temperature preferably has a storage elastic modulus (E') at a frequency of 1 Hz by dynamic viscoelasticity measurement of 100 MPa or more at 0 ° C. and 10 MPa or less at 50 ° C.
  • E' storage elastic modulus
  • the polymer material having viscoelasticity at room temperature is more preferably having a relative permittivity of 10 or more at 25 ° C.
  • a voltage is applied to the polymer composite piezoelectric body, a higher electric field is applied to the piezoelectric particles in the polymer matrix, so that a large amount of deformation can be expected.
  • the polymer material has a relative permittivity of 10 or less at 25 ° C.
  • polymer material having viscoelasticity at room temperature satisfying such conditions examples include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinyl polyisoprene block copolymer, and polyvinylmethyl. Examples thereof include ketones and polybutyl methacrylate. Further, as these polymer materials, commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be preferably used.
  • Hybler 5127 manufactured by Kuraray Co., Ltd.
  • the polymer material it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA.
  • these polymer materials may use only 1 type, and may use a plurality of types in combination (mixing).
  • a plurality of polymer materials may be used in combination, if necessary. That is, in addition to the viscoelastic material such as cyanoethylated PVA, other dielectric polymer materials may be added to the viscoelastic matrix 34 for the purpose of adjusting the dielectric properties and mechanical properties. ..
  • dielectric polymer material examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer.
  • fluoropolymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethyl cellulose, cyanoethyl hydroxysaccharose, cyanoethyl hydroxycellulose, cyanoethyl hydroxypurrane, cyanoethyl methacrylate, cyanoethyl acrylate, cyanoethyl.
  • Cyano groups such as hydroxyethyl cellulose, cyanoethyl amylose, cyanoethyl hydroxypropyl cellulose, cyanoethyl dihydroxypropyl cellulose, cyanoethyl hydroxypropyl amylose, cyanoethyl polyacrylamide, cyanoethyl polyacrylate, cyanoethyl pullulan, cyanoethyl polyhydroxymethylene, cyanoethyl glycidol pullulan, cyanoethyl saccharose and cyanoethyl sorbitol.
  • polymers having a cyanoethyl group synthetic rubbers such as nitrile rubber and chloroprene rubber, and the like are exemplified. Among them, a polymer material having a cyanoethyl group is preferably used. Further, in the viscoelastic matrix 34 of the piezoelectric layer 20, the dielectric polymer added in addition to the material having viscoelasticity at room temperature such as cyanoethylated PVA is not limited to one type, and a plurality of types are added. May be good.
  • the viscoelastic matrix 34 contains a thermoplastic resin such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene for the purpose of adjusting the glass transition point Tg.
  • a thermoplastic resin such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene
  • a phenol resin, a urea resin, a melamine resin, an alkyd resin, and a thermocurable resin such as mica may be added.
  • a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added.
  • the amount added when a material other than the polymer material having viscoelasticity such as cyanoethylated PVA is added is not particularly limited, but is a ratio to the viscoelastic matrix 34. It is preferably 30% by mass or less.
  • the characteristics of the polymer material to be added can be exhibited without impairing the viscoelastic relaxation mechanism in the viscoelastic matrix 34, so that the dielectric constant is increased, the heat resistance is improved, and the adhesion to the piezoelectric particles 36 and the electrode layer is increased. Preferred results can be obtained in terms of improvement and the like.
  • the piezoelectric particles 36 are made of ceramic particles having a perovskite-type or wurtzite-type crystal structure.
  • the ceramic particles constituting the piezoelectric particles 36 include lead zirconate titanate (PZT), lead lanthanate lanthanate titanate (PLZT), barium titanate (BaTIO 3 ), zinc oxide (ZnO), and the like.
  • PZT lead zirconate titanate
  • PLA 3 lead lanthanate lanthanate titanate
  • BaTIO 3 barium titanate
  • ZnO zinc oxide
  • Examples thereof include a solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3).
  • the particle size of the piezoelectric particles 36 is not limited, and may be appropriately selected depending on the size of the piezoelectric film 12 and the application of the laminated piezoelectric element 10.
  • the particle size of the piezoelectric particles 36 is preferably 1 to 10 ⁇ m. By setting the particle size of the piezoelectric particles 36 in this range, favorable results can be obtained in that the piezoelectric film 12 can achieve both high piezoelectric characteristics and flexibility.
  • the piezoelectric particles 36 in the piezoelectric layer 20 are uniformly and regularly dispersed in the viscoelastic matrix 34, but the present invention is not limited to this. That is, the piezoelectric particles 36 in the piezoelectric layer 20 may be irregularly dispersed in the viscoelastic matrix 34 as long as they are preferably uniformly dispersed.
  • the amount ratio of the viscoelastic matrix 34 to the piezoelectric particles 36 in the piezoelectric layer 20 is not limited, and the size and thickness of the piezoelectric film 12 in the plane direction and the use of the laminated piezoelectric element 10 , And the characteristics required for the piezoelectric film 12, etc., may be appropriately set.
  • the volume fraction of the piezoelectric particles 36 in the piezoelectric layer 20 is preferably 30 to 80%, more preferably 50% or more, and therefore more preferably 50 to 80%.
  • the above-mentioned piezoelectric film 12 is preferably a polymer composite piezoelectric layer in which the piezoelectric layer 20 is formed by dispersing piezoelectric particles in a viscoelastic matrix containing a polymer material having viscoelasticity at room temperature.
  • the present invention is not limited to this, and various known piezoelectric layers used in known piezoelectric elements can be used as the piezoelectric layer of the piezoelectric film.
  • a piezoelectric layer made of the above-mentioned dielectric polymer material of polyvinylidene fluoride (PVDF) and vinylidene fluoride-tetrafluoroethylene copolymer, and PZT, PLZT, barium titanate, zinc oxide, BFBT and the like. Examples thereof include a piezoelectric layer made of the above-mentioned piezoelectric material.
  • the thickness of the piezoelectric layer 20 is not particularly limited, and depends on the application of the laminated piezoelectric element 10, the number of laminated piezoelectric films in the laminated piezoelectric element 10, the characteristics required for the piezoelectric film 12, and the like. , It may be set as appropriate.
  • the thickness of the piezoelectric layer 20 is preferably 10 to 300 ⁇ m, more preferably 20 to 200 ⁇ m, and even more preferably 30 to 150 ⁇ m.
  • the piezoelectric film 12 of the illustrated example has a first electrode layer 24 on one surface of such a piezoelectric layer 20, a first protective layer 28 on the first electrode layer 24, and is a piezoelectric layer.
  • the other surface of the 20 has a second electrode layer 26 and a second protective layer 30 on the second electrode layer 26.
  • the second electrode layer 26 and the first electrode layer 24 form an electrode pair.
  • the piezoelectric film 12 may have, for example, an insulating layer or the like that covers a region such as a side surface where the piezoelectric layer 20 is exposed to prevent a short circuit or the like.
  • the piezoelectric film 12 sandwiches both sides of the piezoelectric layer 20 between electrode pairs, that is, the first electrode layer 24 and the second electrode layer 26, and this laminated body is sandwiched between the first protective layer 28 and the second protective layer 30. It has a structure that is sandwiched between.
  • the region held by the first electrode layer 24 and the second electrode layer 26 is expanded and contracted according to the applied voltage.
  • the first electrode layer 24 and the first protective layer 28, and the second electrode layer 26 and the second protective layer 30 are named according to the polarization direction of the piezoelectric layer 20. Is. Therefore, the first electrode layer 24 and the second electrode layer 26, and the first protective layer 28 and the second protective layer 30 have basically the same configuration.
  • the first protective layer 28 and the second protective layer 30 have a role of covering the second electrode layer 26 and the first electrode layer 24 and imparting appropriate rigidity and mechanical strength to the piezoelectric layer 20. Is responsible for. That is, in the piezoelectric film 12, the piezoelectric layer 20 composed of the viscoelastic matrix 34 and the piezoelectric particles 36 exhibits extremely excellent flexibility against slow bending deformation, but depending on the application. , Rigidity and mechanical strength may be insufficient.
  • the piezoelectric film 12 is provided with a first protective layer 28 and a second protective layer 30 to supplement the piezoelectric film 12.
  • the first protective layer 28 and the second protective layer 30 are not limited, and various sheet-like materials can be used.
  • various resin films are preferably exemplified.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PPS polyphenylene sulfide
  • PMMA polymethylmethacrylate
  • PEI Polyetherimide
  • PEI polyimide
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • a resin film made of a cyclic olefin resin or the like are preferably used.
  • the thickness of the first protective layer 28 and the second protective layer 30 there is no limitation on the thickness of the first protective layer 28 and the second protective layer 30. Further, the thicknesses of the first protective layer 28 and the second protective layer 30 are basically the same, but may be different. Here, if the rigidity of the first protective layer 28 and the second protective layer 30 is too high, not only the expansion and contraction of the piezoelectric layer 20 is restrained, but also the flexibility is impaired. Therefore, the thinner the first protective layer 28 and the second protective layer 30, the more advantageous it is, except when mechanical strength and good handleability as a sheet-like material are required.
  • the thickness of the first protective layer 28 and the second protective layer 30 is twice or less the thickness of the piezoelectric layer 20, it is possible to ensure both rigidity and appropriate flexibility. A favorable result can be obtained in terms of points.
  • the thickness of the first protective layer 28 and the second protective layer 30 is preferably 100 ⁇ m or less. 50 ⁇ m or less is more preferable, and 25 ⁇ m or less is further preferable.
  • a first electrode layer 24 is provided between the piezoelectric layer 20 and the first protective layer 28, and a second electrode layer 26 is provided between the piezoelectric layer 20 and the second protective layer 30. It is formed.
  • the first electrode layer 24 and the second electrode layer 26 are provided to apply a voltage to the piezoelectric layer 20 (piezoelectric film 12).
  • the materials for forming the first electrode layer 24 and the second electrode layer 26 are not limited, and various conductors can be used. Specifically, metals such as carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium and molybdenum, alloys thereof, laminates and composites of these metals and alloys, In addition, indium tin oxide and the like are exemplified. Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the first electrode layer 24 and the second electrode layer 26.
  • first electrode layer 24 and the second electrode layer 26 are formed by a vapor deposition method (vacuum film deposition method) such as vacuum deposition and sputtering, a film formation by plating, or the above materials.
  • a vapor deposition method vacuum film deposition method
  • Various known methods such as a method of attaching a foil are available.
  • thin films such as copper and aluminum formed by vacuum deposition are preferably used as the first electrode layer 24 and the second electrode layer 26 because the flexibility of the piezoelectric film 12 can be ensured.
  • NS a copper thin film produced by vacuum deposition is preferably used.
  • the thickness of the first electrode layer 24 and the second electrode layer 26 There is no limitation on the thickness of the first electrode layer 24 and the second electrode layer 26. Further, the thicknesses of the first electrode layer 24 and the second electrode layer 26 are basically the same, but may be different.
  • the rigidity of the first electrode layer 24 and the second electrode layer 26 is too high, not only the expansion and contraction of the piezoelectric layer 20 is restrained, but also the expansion and contraction of the piezoelectric layer 20 is restricted. Flexibility is also impaired. Therefore, the thinner the first electrode layer 24 and the second electrode layer 26 are, the more advantageous they are, as long as the electrical resistance does not become too high.
  • the product of the thickness of the first electrode layer 24 and the second electrode layer 26 and the Young's modulus is less than the product of the thickness of the first protective layer 28 and the second protective layer 30 and the Young's modulus.
  • the thickness of the first protective layer 28 and the second protective layer 30 is 25 ⁇ m
  • the thickness of the first electrode layer 24 and the second electrode layer 26 is preferably 1.2 ⁇ m or less, more preferably 0.3 ⁇ m or less. Above all, it is preferably 0.1 ⁇ m or less.
  • the piezoelectric film 12 includes a piezoelectric layer 20 in which piezoelectric particles 36 are dispersed in a viscoelastic matrix 34 containing a polymer material having viscoelasticity at room temperature, and a first electrode layer 24 and a second electrode. It has a structure in which the first protective layer 28 and the second protective layer 30 are sandwiched between the layers 26 and the laminated body.
  • the maximum value of the loss tangent (Tan ⁇ ) at a frequency of 1 Hz by dynamic viscoelasticity measurement exists at room temperature, and the maximum value of 0.1 or more exists at room temperature. More preferred.
  • the piezoelectric film 12 is subjected to a relatively slow and large bending deformation of several Hz or less from the outside, the strain energy can be effectively diffused to the outside as heat. It is possible to prevent cracks from occurring at the interface of.
  • the piezoelectric film 12 preferably has a storage elastic modulus (E') at a frequency of 1 Hz as measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0 ° C. and 1 to 10 GPa at 50 ° C.
  • E' storage elastic modulus
  • the piezoelectric film 12 can have a large frequency dispersion in the storage elastic modulus (E') at room temperature. That is, it can behave hard for vibrations of 20 Hz to 20 kHz and soft for vibrations of several Hz or less.
  • the product of the thickness and the storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity is 1.0 ⁇ 10 6 to 2.0 ⁇ 10 6 N / m at 0 ° C. , It is preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 N / m at 50 ° C.
  • the piezoelectric film 12 can be provided with appropriate rigidity and mechanical strength as long as the flexibility and acoustic characteristics are not impaired.
  • the piezoelectric film 12 preferably has a loss tangent (Tan ⁇ ) of 0.05 or more at 25 ° C. and a frequency of 1 kHz in the master curve obtained from the dynamic viscoelasticity measurement.
  • Ton ⁇ loss tangent
  • the frequency characteristics of the speaker using the piezoelectric film 12 become smooth, and the amount of change in sound quality when the minimum resonance frequency f 0 changes with the change in the curvature of the speaker can be reduced.
  • a sheet-like object 11a in which the first electrode layer 24 is formed on the first protective layer 28 is prepared.
  • the sheet-like material 11a may be produced by forming a copper thin film or the like as the first electrode layer 24 on the surface of the first protective layer 28 by vacuum deposition, sputtering, plating or the like.
  • the first protective layer 28 with a separator temporary support
  • PET or the like having a thickness of 25 to 100 ⁇ m can be used.
  • the separator may be removed after the second electrode layer 26 and the second protective layer 30 are thermocompression bonded, and before any member is laminated on the first protective layer 28.
  • a polymer material having viscoelasticity at room temperature such as cyanoethylated PVA is dissolved in an organic solvent, and piezoelectric particles 36 such as PZT particles are further added and stirred to prepare a dispersed coating material. ..
  • a polymer material having viscoelasticity at room temperature such as cyanoethylated PVA
  • the organic solvent is not limited, and various organic solvents such as dimethylformamide (DMF), methylethylketone, and cyclohexanone can be used.
  • the casting method of this paint is not particularly limited, and all known coating methods (coating devices) such as a slide coater and a doctor knife can be used.
  • the viscoelastic material is a material that can be heated and melted, such as cyanoethylated PVA, the viscoelastic material is heated and melted to prepare a molten product in which the piezoelectric particles 36 are added / dispersed, and then extruded.
  • the first electrode layer 24 is provided on the first protective layer 28 as shown in FIG. 4 by extruding the sheet-like material 11a shown in FIG. 3 into a sheet shape and cooling the sheet-like material 11a.
  • a laminated body 11b formed by forming a piezoelectric layer 20 on one electrode layer 24 may be produced.
  • a polymer piezoelectric material such as PVDF may be added to the viscoelastic matrix 34 in addition to the viscoelastic material such as cyanoethylated PVA.
  • the polymer piezoelectric materials to be added to the paint described above may be dissolved.
  • the polymer piezoelectric material to be added may be added to the above-mentioned heat-melted viscoelastic material and heat-melted.
  • a rod-like or wire-like shape that can be moved along the upper surface 20a with a gap g of, for example, 1 mm is formed on the upper surface 20a of the piezoelectric layer 20 of the laminated body 11b.
  • Corona electrode 40 is provided. Then, the corona electrode 40 and the first electrode layer 24 are connected to the DC power supply 42. Further, a heating means for heating and holding the laminated body 11b, for example, a hot plate is prepared.
  • the piezoelectric layer 20 is heated and held at a temperature of, for example, 100 ° C. by a heating means, and several kV, for example, 6 kV is generated between the DC power supply 42 and the first electrode layer 24 and the corona electrode 40. DC voltage is applied to cause corona discharge. Further, the corona electrode 40 is moved (scanned) along the upper surface 20a of the piezoelectric layer 20 while maintaining the interval g to perform the polarization treatment of the piezoelectric layer 20. As a result, the piezoelectric layer 20 is polarized in the thickness direction. By this polarization treatment, the first electrode layer 24 side is set to the upstream side in the polarization direction.
  • the corona electrode 40 may be moved by using a known rod-shaped object moving means.
  • the polarization process using corona discharge is also referred to as corona polling process.
  • the corona polling process there is no limitation on the method of moving the corona electrode 40. That is, the corona electrode 40 may be fixed, a moving mechanism for moving the laminated body 11b may be provided, and the laminated body 11b may be moved to perform the polarization treatment.
  • a known sheet-like object moving means may be used as for the movement of the laminated body 11b.
  • the polarization processing is not limited to the corona polling processing, and ordinary electric field polling in which a DC electric field is directly applied to the object to be polarized can also be used. However, when performing this normal electric field polling, it is necessary to form the second electrode layer 26 before the polarization treatment.
  • the sheet-like material 11c in which the second electrode layer 26 is formed on the second protective layer 30 is prepared.
  • the sheet-like material 11c may be produced by forming a copper thin film or the like as the second electrode layer 26 on the surface of the second protective layer 30 by vacuum vapor deposition, sputtering, plating or the like.
  • the second electrode layer 26 is directed toward the piezoelectric layer 20, and the sheet-like material 11c is laminated on the laminated body 11b that has completed the polarization treatment of the piezoelectric layer 20.
  • the laminated body of the laminated body 11b and the sheet-like material 11c is sandwiched between the second protective layer 30 and the first protective layer 28, and thermocompression bonding is performed by a heating press device or a heating roller or the like. Then, it is cut into a desired shape to produce a piezoelectric film 12 having a protruding portion 15.
  • the steps up to this point can be performed using a web-shaped sheet, that is, a wound sheet in a state where the sheets are connected for a long time, even if the sheet is not in the form of a sheet.
  • Both the laminate 11b and the sheet-like material 11c are in the form of a web, and can be thermocompression-bonded as described above. In that case, the piezoelectric film 12 is made into a web shape at this point.
  • a special glue layer may be provided when the laminated body 11b and the sheet-like material 11c are bonded together.
  • a glue layer may be provided on the surface of the second electrode layer 26 of the sheet-shaped 11c.
  • the most suitable glue layer is the same material as the viscoelastic matrix 34. It is also possible to apply the same material to the surface of the second electrode layer 26 and bond them together.
  • the laminated piezoelectric element 10 of the present invention has a structure in which such a piezoelectric film 12 is laminated and attached with an adhesive layer 14.
  • the polarization directions of the adjacent piezoelectric films 12 are opposite to each other.
  • the polarization directions of the adjacent piezoelectric films 12 are reversed from each other, three layers of piezoelectric films 12 are laminated, and the adjacent piezoelectric films 12 are attached by the adhesive layer 14.
  • the first layer piezoelectric film 12a in FIG. 1 has a downward polarization direction as shown by an arrow in the figure. Therefore, the first electrode layer 24 and the first protective layer 28 are arranged on the upper side in FIG. 1, and the second electrode 26 and the second protective layer 30 are arranged on the lower side in FIG. Further, the second layer piezoelectric film 12b arranged adjacent to the surface of the first layer piezoelectric film 12a on the second protective layer 30 side has an upward polarization direction as shown by an arrow in the figure. .. Therefore, the first electrode layer 24 and the first protective layer 28 are arranged on the lower side in FIG. 1, and the second electrode 26 and the second protective layer 30 are arranged on the upper side in FIG.
  • the third layer piezoelectric film 12c arranged adjacent to the surface of the second layer piezoelectric film 12b on the first protective layer 28 side has a downward polarization direction as shown by an arrow in the figure. .. Therefore, the first electrode layer 24 and the first protective layer 28 are arranged on the upper side in FIG. 1, and the second electrode 26 and the second protective layer 30 are arranged on the lower side in FIG.
  • each piezoelectric film is adhered to an adhesive portion to be adhered to the adjacent piezoelectric film and to the adjacent piezoelectric film protruding outward in the plane direction from the adhesive portion.
  • the first layer piezoelectric film 12a and the second layer piezoelectric film 12b have regions other than the left end portion in FIG. 1 bonded by the adhesive layer 14, and the region other than the left end portion in FIG. 1 is bonded by the adhesive layer 14. The edge area is not glued.
  • the region of each piezoelectric film that is adhered to the adjacent piezoelectric film is referred to as the adhesive portion 13, and the region that is not adhered is referred to as the protruding portion 15. It can be said that the protruding portion 15 is a region protruding outward from the adhesive portion 13 in the surface direction of the main surface of the piezoelectric film.
  • regions other than the left end portion in FIG. 1 are adhered by the adhesive layer 14, and the region of the left end portion in FIG. 1 is adhered. Is not glued.
  • An electrical contact is provided on the protruding portion 15 of each piezoelectric film.
  • a hole portion 28a penetrating the first protective layer 28 is formed, and a hole portion 30a penetrating the second protective layer 30 is formed.
  • the first electrode portion 24 is exposed by forming the hole portion 28a in the first protective layer 28. Further, the protruding portion 15 is not adhered to the adjacent piezoelectric film. Therefore, wiring or the like can be connected to the first electrode layer 24 in the hole 28a.
  • the hole portion 28a (the first electrode layer 24 in the hole portion 28a) is also referred to as a first contact point.
  • the second electrode portion 26 is exposed by forming the hole portion 30a in the second protective layer 30. Further, the protruding portion 15 is not adhered to the adjacent piezoelectric film. Therefore, wiring or the like can be connected to the second electrode layer 26 in the hole portion 30a.
  • the hole portion 30a (the second electrode layer 26 in the hole portion 30a) is also referred to as a second contact point.
  • the first layer piezoelectric film 12a is arranged so that the first electrode layer 24 side is on the upper side in FIG. 1, the first contact 28a and the lower side are on the upper surface of the protrusion 15.
  • the surface of the second contact 30a is provided.
  • the second-layer piezoelectric film 12b is arranged so that the first electrode layer 24 side is on the lower side in FIG. 1, the second contact 30a is on the upper surface of the protrusion 15 and the first is on the lower surface. It has a contact 28a.
  • the third-layer piezoelectric film 12c is arranged so that the first electrode layer 24 side is on the upper side in FIG.
  • the first contact 28a is on the upper surface of the protrusion 15 and the second contact 30a is on the lower surface.
  • the vertical direction in the above description corresponds to the vertical direction in FIG. 1, and the upper piezoelectric film in the drawing is the first layer piezoelectric film, and the first layer piezoelectric film side is the upper side. This point is the same in the following description.
  • the first contacts 28a provided on the protruding portions 15 of the piezoelectric films are connected to each other, and the second contacts 30a are connected to each other. ..
  • the first contact 28a is connected positively and the second contact 30a is connected negatively, but the first contact 28a is connected to the same polarity of the power supply, and the first contact 28a is connected to the same polarity.
  • the second contacts 30a are connected to each other with the same polarity of the other of the power supplies. For example, when connected to an AC power supply, all first contacts 28a are connected to one polarity of the AC power supply, and all second contacts 30a are connected to the other polarity of the AC power supply.
  • a power source for applying a driving voltage for expanding and contracting the piezoelectric film 12 is connected to the first electrode layer 24 and the second electrode layer 26 of each piezoelectric film 12 via the first contact 28a and the second contact 30a.
  • the power supply is not limited and may be a DC power supply or an AC power supply.
  • the drive voltage capable of appropriately driving each piezoelectric film may be appropriately set according to the thickness of the piezoelectric layer 20 of each piezoelectric film, the forming material, and the like.
  • the output of the laminated piezoelectric element decreases depending on the direction of polarization of the piezoelectric layer of the piezoelectric film and the direction of electrode polarity. In some cases, it did not deform as a whole.
  • one piezoelectric film is used in a certain phase when a voltage is applied. The film shrinks and the other piezoelectric film stretches. That is, the expansion and contraction behaviors of the two piezoelectric films are out of phase. Therefore, the expansion and contraction of the piezoelectric film cancel each other out, and the deformation of the laminated piezoelectric element as a whole is reduced.
  • the electrode layer is too thick, the deformation of the piezoelectric layer is hindered and the output is reduced, so that the electrode layer is formed very thin.
  • the electrode layer is provided in a state of being formed on the protective layer serving as a support in order to form the piezoelectric layer sandwiched between the thin electrode layers. Therefore, the outermost layers on both main surfaces of the piezoelectric film serve as protective layers, and there is a problem that it is difficult to secure electrical contacts to the electrode layers.
  • the first electrode 24 is arranged on the upstream side in the polarization direction of the piezoelectric layer 20, and the second electrode 26 is arranged on the downstream side.
  • the film has a protrusion 15 that is not adhered to an adjacent piezoelectric film, and the protrusion 15 of each piezoelectric film has a first contact 28a in which the first electrode layer 24 of each piezoelectric film is electrically connected to each other.
  • a second contact 30a is formed in which the second electrode layer 26 of each piezoelectric film is electrically connected to each other.
  • the protruding portion 15 that is not adhered to the adjacent piezoelectric film and providing the first contact 28a and the second contact 30a in the protruding portion 15, the first electrode layers 24 and the second electrode layers 26 are separated from each other. It can be easily connected.
  • each piezoelectric film by making the relationship between the polarization direction of each piezoelectric film and the polarity of the electrode layer the same for all piezoelectric films, it is possible to apply a voltage having the same phase to each piezoelectric film. That is, when a voltage is applied to the laminated piezoelectric element, the expansion and contraction behavior of all the piezoelectric films becomes in phase. Therefore, the expansion and contraction of each piezoelectric film can be strengthened, and the deformation (output) of the laminated piezoelectric element as a whole can be increased. That is, high piezoelectric characteristics can be obtained.
  • each piezoelectric film has a protective layer.
  • the following points can be mentioned as an advantage in forming an electric contact by providing a hole in the protective layer of the protrusion 15. If the polarization directions are opposite in adjacent layers, the contacts with the same electrical polarity will face each other. Therefore, since the parts other than the necessary contacts are insulated by the protective layer, there is an advantage that the protective layers come into contact with each other if the contact parts are shifted, and the insulation treatment becomes unnecessary. Further, when the polarization directions are the same in the adjacent layers, the electrode layers having different electric polarities face each other, but since there is a protective layer, the insulation treatment becomes unnecessary.
  • various known adhesive layers 14 can be used as long as the adjacent piezoelectric film 12 can be attached. Therefore, the adhesive layer 14 has fluidity when bonded, and then becomes a solid. Even a layer made of an adhesive is a soft solid gel-like (rubber-like) when bonded, and is subsequently gel-like. It may be a layer made of an adhesive that does not change the state of the above, or a layer made of a material having the characteristics of both an adhesive and an adhesive.
  • the laminated piezoelectric element 10 of the present invention vibrates the diaphragm 50 by expanding and contracting a plurality of laminated piezoelectric films, for example, as described later, to generate sound. Therefore, in the laminated piezoelectric element 10 of the present invention, it is preferable that the expansion and contraction of each piezoelectric film is directly transmitted. If a substance having a viscosity that alleviates vibration is present between the piezoelectric films, the efficiency of transmitting the expansion and contraction energy of the piezoelectric film is lowered, and the driving efficiency of the laminated piezoelectric element 10 is lowered.
  • the adhesive layer 14 is preferably an adhesive layer made of an adhesive, which can obtain a solid and hard adhesive layer 14 rather than an adhesive layer made of an adhesive.
  • an adhesive layer made of a thermoplastic type adhesive such as a polyester adhesive and a styrene-butadiene rubber (SBR) adhesive is preferably exemplified. Adhesion, unlike adhesion, is useful when seeking high adhesion temperatures. Further, the thermoplastic type adhesive has "relatively low temperature, short time, and strong adhesion" and is suitable.
  • the thickness of the adhesive layer 14 is not limited, and a thickness capable of exhibiting sufficient adhesive force (adhesive force, adhesive force) can be appropriately adjusted according to the material for forming the adhesive layer 14. , Just set it.
  • adhesive force adhesive force
  • the adhesive layer 14 is thick and has high rigidity, it may restrain the expansion and contraction of the piezoelectric film.
  • the adhesive layer 14 can be made thin. Considering this point, the adhesive layer 14 is preferably thinner than the piezoelectric layer 20. That is, in the laminated piezoelectric element 10 of the present invention, the adhesive layer 14 is preferably hard and thin. Specifically, the thickness of the adhesive layer 14 is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m, and even more preferably 0.1 to 10 ⁇ m after sticking.
  • the spring constant of the adhesive layer 14 is high, the expansion and contraction of the piezoelectric film 12 may be restricted. Therefore, the spring constant of the adhesive layer 14 is preferably equal to or less than the spring constant of the piezoelectric film 12.
  • the spring constant is "thickness x Young's modulus".
  • the product of the thickness of the adhesive layer 14 and the storage elastic modulus (E') at a frequency of 1 Hz by dynamic viscoelasticity measurement is 2.0 ⁇ 10 6 N / m or less at 0 ° C., 50 ° C. It is preferably 1.0 ⁇ 10 6 N / m or less.
  • the internal loss at a frequency of 1 Hz by the dynamic viscoelasticity measurement of the adhesive layer is 1.0 or less at 25 ° C. in the case of the adhesive layer 14 made of an adhesive, and in the case of the adhesive layer 14 made of an adhesive. It is preferably 0.1 or less at 25 ° C.
  • the laminated piezoelectric element 10 of the present invention is adhered to the diaphragm 50 by the adhesive layer 52 as an exciter for generating sound from the diaphragm 50, as conceptually shown in FIG. Used.
  • the diaphragm 50 and the laminated piezoelectric element 10 are in contact with each other and fixed via the bonding layer 52, and the laminated piezoelectric element 10 serves as an exciter for generating sound from the diaphragm 50.
  • FIG. 8 shows an example of the electroacoustic transducer of the present invention having the laminated piezoelectric element 10 of the present invention.
  • the piezoelectric layer 20 constituting the piezoelectric film in which a plurality of layers are laminated is formed by dispersing the piezoelectric particles 36 in the viscoelastic matrix 34. Further, the first electrode layer 24 and the second electrode layer 26 are provided so as to sandwich the piezoelectric layer 20 in the thickness direction.
  • the piezoelectric particles 36 expand and contract in the polarization direction according to the applied voltage.
  • the piezoelectric film shrinks in the thickness direction.
  • the piezoelectric film expands and contracts in the plane direction due to the pore ratio. This expansion and contraction is about 0.01 to 0.1%.
  • the thickness of the piezoelectric layer 20 is preferably about 10 to 300 ⁇ m. Therefore, the expansion and contraction in the thickness direction is very small, about 0.3 ⁇ m at the maximum.
  • the piezoelectric film that is, the piezoelectric layer 20
  • the piezoelectric film has a size much larger than the thickness in the plane direction. Therefore, for example, if the length of the piezoelectric film is 20 cm, the piezoelectric film expands and contracts by a maximum of about 0.2 mm when a voltage is applied.
  • the diaphragm 50 is attached to the laminated piezoelectric element 10 by the adhesive layer 52. Therefore, the expansion and contraction of the piezoelectric film causes the diaphragm 50 to bend, and as a result, the diaphragm 50 vibrates in the thickness direction.
  • the diaphragm 50 emits a sound due to the vibration in the thickness direction. That is, the diaphragm 50 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric film, and generates a sound corresponding to the driving voltage applied to the piezoelectric film.
  • a general piezoelectric film made of a polymer material such as PVDF the molecular chains are oriented with respect to the stretching direction by stretching in the uniaxial direction after the polarization treatment, and as a result, a large piezoelectric property is exhibited in the stretching direction. It is known to be obtained. Therefore, a general piezoelectric film has in-plane anisotropy in the piezoelectric characteristics, and has anisotropy in the amount of expansion and contraction in the plane direction when a voltage is applied.
  • a piezoelectric film having a polymer composite piezoelectric body in which piezoelectric particles are dispersed in a viscoelastic matrix can obtain large piezoelectric characteristics without stretching treatment after polarization treatment, so that the piezoelectric characteristics are in-plane. It has no anisotropy and expands and contracts isotropically in all directions in the plane direction. That is, the piezoelectric film expands and contracts isotropically and two-dimensionally.
  • the laminated piezoelectric element 10 in which such an isotropically two-dimensionally expanding and contracting piezoelectric film is laminated vibrates with a larger force than when a general piezoelectric film such as PVDF that expands and contracts greatly in only one direction is laminated.
  • the plate 50 can be vibrated, and a louder and more beautiful sound can be generated.
  • the laminated piezoelectric element of the present invention is obtained by laminating a plurality of such piezoelectric films. Therefore, even if the rigidity of each piezoelectric film is low and the elastic force is small, the rigidity is increased by laminating the piezoelectric films, and the elastic force of the laminated piezoelectric element 10 is increased. As a result, in the laminated piezoelectric element 10 of the present invention, even if the diaphragm 50 has a certain degree of rigidity, the diaphragm 50 is sufficiently bent with a large force to sufficiently bend the diaphragm 50 in the thickness direction. It can be vibrated to generate sound in the diaphragm 50.
  • the preferable thickness of the piezoelectric layer 20 is about 300 ⁇ m at the maximum, so that even if the voltage applied to each piezoelectric film is small, it is sufficient. , The piezoelectric film can be expanded and contracted.
  • the adhesive layer 52 for attaching the laminated piezoelectric element 10 and the diaphragm 50 is not limited, and various known pressure-sensitive adhesives and adhesives are used. Is available. As an example, the same as the above-mentioned adhesive layer 14 is exemplified.
  • the preferred sticking layer 52 (sticking agent) is also the same as the sticking layer 14.
  • the diaphragm 50 is not limited, and various articles can be used.
  • the vibrating plate 50 include plate materials such as resin plates and glass plates, advertising media such as signs, office equipment and furniture such as tables, whiteboards and projection screens, and organic electroluminescence (OLED (Organic)).
  • OLED Organic electroluminescence
  • Display devices such as displays and liquid crystal displays, vehicle members such as consoles, A-pillars, ceilings and bumpers, and building materials such as walls of houses are exemplified.
  • the diaphragm 50 to which the laminated piezoelectric element 10 of the present invention is attached preferably has flexibility, and more preferably windable.
  • a flexible panel-shaped display device such as a flexible display panel is particularly preferably exemplified. Further, it is more preferable that the display device can also be wound up.
  • the electroacoustic converter of the present invention responds to the winding curvature of the diaphragm 50 so that the laminated piezoelectric element 10 does not peel off from the diaphragm 50 when the diaphragm 50 is wound.
  • the laminated piezoelectric element 10 also bends together with the diaphragm 50. Since the piezoelectric film 12 has suitable flexibility, the laminated piezoelectric element 10 of the present invention also basically exhibits good flexibility. At this time, the winding curvature of the diaphragm 50 is basically a specific curvature, but the winding curvature of the diaphragm 50 may be variable.
  • the display device when the display device is a diaphragm 50, the laminated piezoelectric element 10 is attached to the back side of the display device, that is, the non-image display surface side of the display device. preferable.
  • the size of the sticking layer 52 in the plane direction is preferably the same size as or smaller than the size of the planar shape of the laminated piezoelectric element 10.
  • the display device when the display device is used as the diaphragm 50, the display device itself such as a flexible display panel may be used as the diaphragm 50, or a plate-shaped display device provided in the display device.
  • the plate-shaped member that engages with the member or the display device may be the diaphragm 50.
  • the electroacoustic converter of the present invention when used as a display device, the electroacoustic converter of the present invention may be incorporated in the display device, or the diaphragm 50 of the electroacoustic converter of the present invention may be used as a display device.
  • the plate-shaped member provided in the above may be vibrated, or the electroacoustic converter of the present invention may be incorporated in a casing or the like together with the display device.
  • the diaphragm 50 when the diaphragm 50 can be wound up, a drive current is applied to the laminated piezoelectric element 10 in a state where the diaphragm 50 is not wound up, and the diaphragm 50 is wound up. At that time, it is preferable that the laminated piezoelectric element 10 is not energized. Further, in the electroacoustic converter of the present invention, when the diaphragm 50 is electrically driven like a display device, the laminated piezoelectric element 10 and / or the diaphragm without winding the diaphragm 50.
  • the drive current When the drive current is applied to the 50 and the diaphragm 50 is wound, it is preferable not to energize the laminated piezoelectric element 10 and / or the diaphragm 50.
  • a method for switching between energization and de-energization various known methods can be used.
  • the electroacoustic transducer of the present invention is formed by attaching (fixing) the laminated piezoelectric element 10 to the diaphragm 50 by using the attachment layer 52.
  • the end portion (end side) of the diaphragm 50 may be fixed to a wall or the like, and / or the end portion may be fixed by a fixing means such as a beam.
  • the shape of the diaphragm 50 is not limited, but it is often a quadrangle.
  • a display device such as an organic electroluminescence display can be suitably used as the diaphragm 50.
  • the diaphragm 50 is usually rectangular.
  • the diaphragm 50 is a rectangle such as a rectangle or a square
  • the two opposite sides are fixed by the fixing means 80 as conceptually shown in FIG. 45.
  • the diaphragm 50 is often supported.
  • the distance between the two fixing means 80 for fixing the two opposite sides of the rectangular diaphragm 50 that is, the distance between the fixed ends of the diaphragm 50 is L.
  • the laminated piezoelectric element 10 is attached to the diaphragm 50 at a distance of 0.1 ⁇ L or more.
  • the fixing of the diaphragm 50 suppresses the expansion and contraction of the laminated piezoelectric element 10 described above, and the diaphragm 50 is vibrated more preferably to produce a sound having a higher sound pressure. It becomes possible to output.
  • the end portion of the laminated piezoelectric element 10 projects outward from the adhesive layer 52 in the plane direction, the end portion of the adhesive layer 52 is laminated piezoelectric. It is regarded as the end of the element 10. That is, at this time, the laminated piezoelectric element is attached so that the end portion of the adhesive layer 52 is separated from the fixed end of the diaphragm 50 by 0.1 ⁇ L or more. On the contrary, when the end portion of the laminated piezoelectric element 10 is located inside the adhesive layer 52 in the surface direction, the end portion of the laminated piezoelectric element 10 is separated from the fixed end of the diaphragm 50 by 0.1 ⁇ L or more. The laminated piezoelectric element may be attached so as to do so.
  • FIG. 49 shows a simulation result of the relationship between the distance from the fixed end of the diaphragm to the laminated piezoelectric element and the displacement of the diaphragm when laminated piezoelectric elements of various sizes are attached to the square diaphragm. show.
  • a stainless steel square plate having a size of 10 ⁇ 10 mm and a thickness of 0.3 mm was used, and the ends (end sides) of the two opposite sides were fixed.
  • a square piezoelectric film 12 shown in FIG. 2 was laminated in four layers, and each layer was attached by an attachment layer.
  • the laminated piezoelectric element was provided with a sticking layer on the entire surface, and the laminated piezoelectric element was stuck to the center of the diaphragm by matching the directions of the respective sides. Therefore, if the size of the laminated piezoelectric element is different, the distance from the fixed end of the diaphragm to the laminated piezoelectric element is different.
  • the area ratio of 100% is a case where the laminated piezoelectric element is attached to the entire surface from the fixed end to the fixed end of the diaphragm.
  • the area ratio of 60% is a case where the laminated piezoelectric element is attached to the diaphragm at a distance of 0.2 ⁇ L mm from the fixed end of the diaphragm, as shown in the upper part of FIG.
  • the area ratio of 20% is a case where the laminated piezoelectric element is attached to the diaphragm at a distance of 0.4 ⁇ L mm from the fixed end of the diaphragm, as shown in the lower part of FIG.
  • the broken line is the region where the laminated piezoelectric element does not exist in the diaphragm
  • the solid line is the region where the laminated piezoelectric element is attached to the diaphragm.
  • the area ratio is 100%, that is, when the laminated piezoelectric element is attached from the fixed end to the fixed end of the diaphragm, the displacement of the diaphragm, that is, the vibration is small.
  • the diaphragm can be vibrated sufficiently large by attaching the laminated piezoelectric element to the diaphragm at an area ratio of 80%, that is, 0.1 ⁇ L mm away from the fixed end of the diaphragm.
  • the diaphragm 50 when fixing the two opposite sides of the quadrangular diaphragm, the diaphragm is laminated on the diaphragm at a distance of 0.1 ⁇ L mm or more from the fixed end of the diaphragm. By attaching the element, it is possible to more preferably vibrate the diaphragm and output a sound having a higher sound pressure.
  • the fixing means 80 for fixing the side of the diaphragm 50 there is no limitation on the fixing means 80 for fixing the side of the diaphragm 50, and various known fixing means for fixing the side (end side) of the plate-shaped object (sheet-like object, film). Means are available.
  • a beam that can support the sides of a plate (including a cantilever), a fixing member used to support the sides of a projection screen, and a wound sheet such as a cartridge can be pulled out and
  • An example is a fixing mechanism for a sheet-like object provided at a sheet drawer port of a container that can be freely wound.
  • the fixing of the diaphragm 50 is not limited to the use of the fixing means 80.
  • the diaphragm 50 may be fixed by directly sticking the end portion (end face) of the diaphragm 50 to a wall, a plate-like object serving as a support, or the like using a sticking agent or the like. .. In this case, the end of the diaphragm becomes the fixed end of the diaphragm 50.
  • the electroacoustic transducer of the present invention is not limited to having one laminated piezoelectric element 10.
  • an electroacoustic converter when the sound is reproduced in stereo, that is, in two channels, as conceptually shown in FIG. 46, the distance between the fixed ends is separated in the L direction, and the two laminated piezoelectric elements 10 are separated. May be attached to the diaphragm 50.
  • the laminated piezoelectric element 10 is separated from the fixed end of the diaphragm 50 by 0.1 ⁇ L or more, where L is the distance between the two fixing means 80, that is, the distance between the fixed ends of the diaphragm 50. , It is preferable to attach it to the diaphragm 50.
  • all four sides of the rectangular (square) diaphragm 50 may be fixed, for example, like a picture frame.
  • the laminated piezoelectric element 10 corresponds to each of the fixing means 80a for fixing one opposite two sides and the fixing means 80b for fixing the other two opposing sides. It is preferable to determine the fixed position of.
  • the distance between the two fixing means 80a for fixing one of the opposing sides of the diaphragm 50 that is, between the fixed ends of the diaphragm 50 on the opposite sides. Let the distance be L1.
  • the distance between the two fixing means 80b for fixing the other opposite sides of the diaphragm 50 that is, the distance between the fixed ends of the diaphragm 50 on the opposite sides is defined as L2.
  • the diaphragm 50 is separated from the end of the fixing means 80a, that is, the fixed end by the fixing means 80a by 0.1 ⁇ L1 or more, and the end of the fixing means 80b, that is, the fixing. It is preferable to attach the laminated piezoelectric element 50 at a position separated from the fixed end by the means 80b by 0.1 ⁇ L2 or more.
  • the electroacoustic converter of the present invention even when all four sides of the rectangular diaphragm 50 are fixed, it is not limited to having only one laminated piezoelectric element 10.
  • audio may be reproduced in stereo and reproduced in 2.5 channels such as providing a center speaker.
  • two laminated piezoelectric elements 10 for stereo reproduction are provided in the vicinity of the ends in the direction of the distance L1 between the long fixed ends, and the center speaker is provided in the center.
  • the laminated piezoelectric element 10 for this purpose may be provided.
  • the laminated piezoelectric element 10 has a distance L1 between the fixed ends by the fixing means 80a for fixing one opposite side and a distance L2 between the fixed ends by the fixing means 80b for fixing the other opposite side.
  • three laminated piezoelectric elements 50 are attached at positions separated from the fixed end by the fixing means 80a by 0.1 ⁇ L1 or more and separated from the fixed end by the fixing means 80b by 0.1 ⁇ L2 or more. It is preferable to do so.
  • the laminated piezoelectric element 10 is attached to the diaphragm at a distance of 1 ⁇ L or more.
  • the distance from the fixed end of the diaphragm 50 to the laminated piezoelectric element 10 is more preferably 0.15 ⁇ L or more in terms of obtaining a higher sound pressure, that is, a displacement amount of the diaphragm 50, and 0. 2 ⁇ L or more is more preferable.
  • the laminated piezoelectric element 10 of a required size cannot be attached to the vibrating plate 50, and the required number of laminated piezoelectric elements 10 cannot be attached. Can not be attached to the vibrating plate 50, multi-channel reproduction such as stereo reproduction becomes difficult, and when the number of channels is increased, the distance between the laminated piezoelectric elements 10 is too close and cross talk may occur. There is sex. Considering this point, the distance from the fixed end of the diaphragm 50 to the laminated piezoelectric element 10 is preferably 0.4 ⁇ L or less, and more preferably 0.3 ⁇ L or less.
  • the effect of fixing the diaphragm 50 on the vibration of the diaphragm depends on the rigidity of the diaphragm 50, and the higher the rigidity of the diaphragm 50, the greater the influence. That is, the effect of separating the fixed position of the laminated piezoelectric element 10 from the fixed end of the diaphragm 50 can be obtained more when the rigidity of the diaphragm 50 is high. Considering this point, the two opposite sides of the rectangular diaphragm 50 are fixed, and the laminated piezoelectric element 10 is attached to the diaphragm 50 at a distance of 0.1 ⁇ L or more from the fixed end of the diaphragm 50.
  • the rigidity of the diaphragm 50 is high to some extent. Specifically, when the two opposing sides of the diaphragm 50 are fixed and the fixed position of the laminated piezoelectric element 10 is separated from the fixed end of the diaphragm 50 by 0.1 ⁇ L or more, the diaphragm 50
  • the spring constant is preferably 1 ⁇ 10 4 to 1 ⁇ 10 7 N / m, more preferably 1 ⁇ 10 5 to 1 ⁇ 10 6 N / m.
  • the spring constant of a plate-shaped object such as a diaphragm can be calculated by multiplying the Young's modulus of the forming material by the thickness of the plate-shaped object.
  • the shape of the diaphragm is not limited to rectangles and squares, and various quadrangles such as rhombuses, trapezoids, and parallelograms can be used.
  • the distance L between the fixed ends is set as in L1, L2, L3 ....
  • the laminated piezoelectric element 10 is separated from the fixed end by 0.1 ⁇ L1 or more, and when the distance between the fixed ends is L2, the laminated piezoelectric element 10 is separated.
  • the laminated piezoelectric element 10 is separated from the fixed end by 0.1 ⁇ L3 or more so as to be separated from the fixed end by 0.1 ⁇ L3 or more.
  • the attachment position of the laminated piezoelectric element 10 on the vibrating plate 50a may be determined.
  • the quadrangle of the diaphragm 50 is not limited to a perfect quadrangle. That is, in the present invention, the quadrangular diaphragm 50 may have a chamfered corner, a curved (R-shaped, round) corner, or an oval shape.
  • the fixing of the two opposing sides in the square diaphragm is not limited to the entire area of the side, and one of the sides depends on the rigidity of the diaphragm and the size of the diaphragm.
  • the area of the part may be fixed. In this case, it is preferable to fix a region of 50% or more of one side, more preferably a region of 70% or more of one side, and further fixing a region of 90% or more of one side. It is preferable to fix the entire area of one side, and it is particularly preferable to fix the entire area. Further, as described above, when the corners of the quadrangle are chamfered or curved, the area not chamfered may be the entire area of one side, or chamfered. It may be the entire area of one side including the area where the above is performed.
  • the shape of the diaphragm is not limited to a quadrangle, and diaphragms having various shapes such as a circle, an ellipse, and a polygon other than a quadrangle can be used.
  • diaphragms having various shapes such as a circle, an ellipse, and a polygon other than a quadrangle can be used.
  • the preferable effect that a high sound pressure or the like can be obtained by attaching the laminated piezoelectric element 10 to the diaphragm at a certain distance from the fixed end of the diaphragm is a preferable effect.
  • various diaphragms other than the square shape regardless of the shape of the diaphragm.
  • the diaphragm has a polygonal shape having opposite sides such as a hexagon and an octagon
  • fixing is performed on the two opposing sides, and the fixed ends are fixed as in the case of the quadrangular diaphragm 50.
  • the circular diaphragm 50b as conceptually shown in FIG. 52, it is conceivable to provide a circular (annular) fixing means 80c so as to surround the entire circumference of the diaphragm 50b.
  • the inner diameter ⁇ of the fixing means 80c is set as the distance L between the fixed ends, and the position is 0.1 ⁇ L or more away from the fixed end of the diaphragm 50.
  • the laminated piezoelectric element 10 may be attached.
  • the circular diaphragm 50b as shown in FIG.
  • the diaphragm is an arc-shaped fixing means such as the fixing means 80d and the fixing means 80e which are overlapped with the annular fixing means 80c and shown by a hatch in FIG. It is also conceivable to fix 50b.
  • the laminated piezoelectric element 10 is attached at a position separated by 0.1 ⁇ L or more from the fixed end of the diaphragm 50b, where the inner diameter ⁇ of the arc of the fixing means is the distance L between the fixed ends. Just do it.
  • the diaphragm is a polygon with no opposite sides, such as a triangle or a pentagon. In this case, it is conceivable to fix one side of the polygon and the opposing vertices. For example, as conceptually shown in FIG. 53, when the diaphragm 50c is a triangle, it is conceivable to fix one side of the triangle with the fixing means 80 and fix the apex facing the one side with the fixing means 80f. Be done.
  • the perpendicular line P is lowered from the apex fixed by the fixing means 80f to the opposite side to be fixed, and the distance of the perpendicular line from the apex to the side to be fixed is defined as the distance L between the fixed ends, and the diaphragm 50c.
  • the laminated piezoelectric element 10 may be attached at a position separated from the fixed end (one of which is the apex) by 0.1 ⁇ L or more.
  • the polarization directions of the adjacent piezoelectric films are opposite to each other. That is, the piezoelectric films are laminated so that the polarization directions are alternated.
  • the present invention is not limited to this.
  • the polarization directions of the adjacent piezoelectric films may coincide with each other.
  • the first layer piezoelectric film 12d in FIG. 9 has a downward polarization direction as shown by an arrow in the figure. Therefore, the first electrode layer 24 and the first protective layer 28 are arranged on the upper side in FIG. 9, and the second electrode 26 and the second protective layer 30 are arranged on the lower side in FIG. Further, the second layer piezoelectric film 12e arranged adjacent to the surface of the first layer piezoelectric film 12d on the second protective layer 30 side has a downward polarization direction as shown by an arrow in the figure. .. Therefore, the first electrode layer 24 and the first protective layer 28 are arranged on the upper side in FIG. 9, and the second electrode 26 and the second protective layer 30 are arranged on the lower side in FIG.
  • the third layer piezoelectric film 12f arranged adjacent to the surface of the second layer piezoelectric film 12e on the second protective layer 30 side has a downward polarization direction as shown by an arrow in the figure. .. Therefore, the first electrode layer 24 and the first protective layer 28 are arranged on the upper side in FIG. 9, and the second electrode 26 and the second protective layer 30 are arranged on the lower side in FIG.
  • the first piezoelectric film 12d is arranged so that the first electrode layer 24 side is on the upper side in FIG. 9, the first protective layer 28 is formed on the upper surface of the protrusion 15.
  • a hole serving as the first contact 28a is provided, and a hole serving as the second contact 30a is provided on the second protective layer 30 on the lower surface.
  • the second-layer piezoelectric film 12e is arranged so that the first electrode layer 24 side is on the upper side in FIG. 9, the first contact 28a is formed on the first protective layer 28 on the upper surface of the protruding portion 15.
  • a hole is provided, and a hole serving as a second contact 30a is provided in the second protective layer 30 on the lower surface.
  • the third-layer piezoelectric film 12f is arranged so that the first electrode layer 24 side is on the upper side in FIG. 9, the hole serving as the first contact 28a in the first protective layer 28 on the upper surface of the protruding portion 15. A portion is provided, and a hole portion serving as a second contact 30a is provided in the second protective layer 30 on the lower surface.
  • the first contacts 28a provided on the protruding portions 15 of the piezoelectric films are connected to each other, and the second contacts 30a are connected to each other.
  • the second electrode layers 26 face each other on one surface and the other.
  • the first electrode layers 24 face each other on the surface. Therefore, even if the electrode layers of adjacent piezoelectric films come into contact with each other, there is no risk of short-circuiting, which is preferable.
  • the adhesive layer 14 in order to expand and contract the laminated piezoelectric element 10 with good energy efficiency, it is preferable to make the adhesive layer 14 thin so that the adhesive layer 14 does not interfere with the expansion and contraction of the piezoelectric layer 20.
  • the laminated piezoelectric elements 10 in which the polarization directions of the piezoelectric layers 20 of the adjacent piezoelectric films are opposite to each other do not cause a short circuit even if the electrode layers of the adjacent piezoelectric films come into contact with each other.
  • the adhesive layer 14 can be made extremely thin. Therefore, the laminated piezoelectric element 10 can be expanded and contracted with higher energy efficiency.
  • the absolute amount of expansion and contraction of the piezoelectric layer 20 in the thickness direction is very small, and the expansion and contraction of the piezoelectric film is substantially only in the plane direction. Therefore, even if the polarization directions of the laminated piezoelectric films are opposite, all the piezoelectric films expand and contract in the same direction as long as the polarities of the voltages applied to the first electrode layer 24 and the second electrode layer 26 are correct.
  • the polarization direction of the piezoelectric film may be detected by a d33 meter or the like.
  • the polarization direction of the piezoelectric layer 20 may be known from the processing conditions of the corona polling process described above.
  • the adhesive layer to which the laminated piezoelectric element 10 and the diaphragm 50 are attached is not limited, and various known adhesives and adhesives can be used. .. As an example, the same as the above-mentioned adhesive layer 14 is exemplified.
  • the diaphragm 50 is not limited, and various articles can be used.
  • the vibrating plate 50 include plate materials such as resin plates and glass plates, advertising / announcement media such as signs, office equipment and furniture such as tables, whiteboards and projection screens, and organic electroluminescence (OLED (OLED).
  • OLED organic electroluminescence
  • Display devices such as displays and liquid crystal displays, vehicle members such as consoles, A-pillars, ceilings and bumpers, and building materials such as walls of houses are exemplified.
  • the laminated piezoelectric element 10 of the illustrated example preferably, a long (large area) piezoelectric film is produced, and the long piezoelectric film is cut into individual piezoelectric films. Therefore, in this case, the plurality of piezoelectric films constituting the laminated piezoelectric element 10 are all the same.
  • the present invention is not limited to this. That is, various configurations can be used for the laminated piezoelectric element of the present invention, for example, a configuration in which piezoelectric films having different layer configurations are laminated, and a configuration in which piezoelectric films having different thicknesses of the piezoelectric layer 20 are laminated. ..
  • FIG. 10 is a diagram conceptually showing an example of the laminated piezoelectric element of the present invention.
  • FIG. 11 is an exploded view of FIG.
  • FIG. 12 is a diagram showing a plurality of piezoelectric films included in the laminated piezoelectric element of FIG.
  • the examples shown in FIGS. 10 and 11 have a configuration in which five piezoelectric films are laminated.
  • the piezoelectric films are laminated so that the polarization directions alternate.
  • FIGS. 11 and 12 the surface of the piezoelectric film on the second protective layer side is shown with hatching. That is, in FIG. 11, the first layer piezoelectric film 12g in FIG.
  • the third-layer piezoelectric film 12i is laminated with the first protective layer 28 side facing up
  • the fourth-layer piezoelectric film 12j is laminated with the second protective layer 30 side facing up
  • the fifth layer of the piezoelectric film 12k is laminated with the first protective layer 28 side facing upward.
  • each piezoelectric film has a rectangular adhesive portion 13 and two projecting portions 15 projecting from the long side side of the adhesive portion 13 toward the outside in the surface direction.
  • the two projecting portions 15 are provided so as to project from the opposite long sides of the adhesive portion 13.
  • the size of the adhesive portion 13 of each piezoelectric film is substantially the same.
  • the first layer of the piezoelectric film 12g has a protruding portion 15 formed on one end side on the long side.
  • the protruding portion 15 is formed at a position deviated from the position of the protruding portion 15 of the first layer piezoelectric film 12g toward the other end side.
  • the protruding portion 15 is formed at a position deviated from the position of the protruding portion 15 of the second layer piezoelectric film 12h toward the other end side.
  • the protruding portion 15 is formed at a position deviated from the position of the protruding portion 15 of the third layer piezoelectric film 12i toward the other end side.
  • the protruding portion 15 is formed at a position deviated from the position of the protruding portion 15 of the fourth layer piezoelectric film 12j toward the other end side.
  • the protruding portions of the piezoelectric films have substantially the same size and shape. Further, the protruding portion of each piezoelectric film is formed at a position deviated by one protruding portion from the position of the protruding portion of the adjacent piezoelectric film.
  • a hole 28a penetrating the first protective layer 28 is provided in the protrusion 15 on one long side of each piezoelectric film, and the first electrode layer 24 is exposed in the hole 28a. ..
  • the protruding portion 15 on the other long side of each piezoelectric film is provided with a hole portion 30a penetrating the second protective layer 30, and the second electrode layer 26 is exposed in the hole portion 30a. .. That is, the first contact 28a is formed on the protruding portion 15 on one long side of each piezoelectric film, and the second contact 30a is formed on the protruding portion 15 on the other long side.
  • the protruding portions 15 of the piezoelectric films do not overlap each other in the surface direction. Be placed. Further, a first contact 28a is formed on each of the protruding portions 15 on the long side side (long side side on the right side in FIG. 11) of each piezoelectric film. As described above, since the piezoelectric films of the first, third, and fifth layers and the piezoelectric films of the second and fourth layers are laminated in opposite directions, the first contact 28a is formed on the surfaces opposite to each other.
  • a conductive film 60a is attached to the five protrusions 15 on which the first contact points 28a are formed from the front surface to the back surface. As a result, the first contact 28a of each piezoelectric film is easily electrically connected.
  • a second contact 30a is formed on each of the protruding portions 15 on the other long side side (the long side side on the left side in FIG. 11) of each piezoelectric film.
  • the second contact 30a is formed on the surfaces opposite to each other.
  • a conductive film 60b is attached to the five protrusions 15 on which the second contact points 30a are formed from the front surface to the back surface. As a result, the second contact 30a of each piezoelectric film is easily electrically connected.
  • the shapes of the hole 28a formed in the first protective layer 28 of the protrusion 15 and the hole 30a formed in the second protective layer 30 are not particularly limited as long as they can be reliably connected to the electrode layer. It can have various shapes such as a circular shape, an elliptical shape, a rectangular shape, a polygonal shape, and an indefinite shape.
  • the sizes of the hole 28a and the hole 30a are not particularly limited as long as they can be reliably connected to the electrode layer.
  • the diameter equivalent to a circle is preferably 0.5 mm to 10 mm, more preferably 1 mm to 5 mm.
  • the formation positions of the hole portion (first contact) 28a and the hole portion (second contact) 30a are not particularly limited, but each piezoelectric film can be easily connected to each other. It is preferable that the holes (first contact) 28a and the holes (second contact) 30a of the film are formed on the same side of the adhesive portion 13, respectively.
  • conductive films 60a and 60b sheet-like materials formed of a conductive metal material such as a copper foil film may be used. Further, the conductive film and the first contact 28a and the second contact 30a may be connected via a conductive paint such as silver paste.
  • each piezoelectric film has two protrusions, the first contact 28a is formed on one of the two protrusions 15, and the second contact 30a is formed on the other.
  • the configuration is not limited to this.
  • Each piezoelectric film may have one protruding portion, and the first contact 28a and the second contact 30a may be formed on the one protruding portion 15. Further, in this case, the first contact 28a and the second contact 30a may be formed at overlapping positions in the plane direction, but as shown in FIGS. 13 and 14, different positions may be formed. It is preferably formed in.
  • FIG. 13 is a perspective view conceptually showing another example of the laminated piezoelectric element of the present invention.
  • FIG. 14 is an enlarged exploded view of a part of FIG.
  • the laminated piezoelectric element shown in FIGS. 13 and 14 has a configuration in which five piezoelectric films (12l to 12p) are laminated.
  • the piezoelectric films are laminated so that the polarization directions alternate. That is, in FIG. 14, the first layer piezoelectric film 12l in FIG. 14 is laminated with the first protective layer 28 side facing upward, and the second layer piezoelectric film 12m is on the second protective layer 30 side.
  • the third-layer piezoelectric film 12n is laminated with the first protective layer 28 side facing up, and the fourth-layer piezoelectric film 12o is laminated with the second protective layer 30 side facing up.
  • the fifth layer of the piezoelectric film 12p is laminated with the first protective layer 28 side facing upward.
  • each piezoelectric film has a rectangular adhesive portion and one projecting portion 15 projecting from the long side side of the adhesive portion toward the outside in the plane direction.
  • One protruding portion 15 is provided so as to project from one long side of the bonded portion in a direction away from the bonded portion.
  • the size of the adhesive portion of each piezoelectric film is substantially the same.
  • the first-layer piezoelectric film 12l has a protruding portion 15 formed on one end side on the long side.
  • the protruding portion 15 is formed at a position deviated from the position of the protruding portion 15 of the first layer piezoelectric film 12l toward the other end side.
  • the protruding portion 15 is formed at a position deviated from the position of the protruding portion 15 of the second layer piezoelectric film 12m toward the other end side.
  • the protruding portion 15 is formed at a position deviated from the position of the protruding portion 15 of the third layer piezoelectric film 12n toward the other end side.
  • the protruding portion 15 is formed at a position deviated from the position of the protruding portion 15 of the fourth layer piezoelectric film 12o toward the other end side.
  • the protruding portions of the piezoelectric films have substantially the same size and shape. Further, the protruding portion of each piezoelectric film is formed at a position deviated by one protruding portion from the position of the protruding portion of the adjacent piezoelectric film.
  • a hole 28a penetrating the first protective layer 28 is provided on the root side (adhesive portion side) of the protruding portion 15 of each piezoelectric film, and the hole 28a is provided in the hole 28a. 1
  • the electrode layer 24 is exposed.
  • a hole 30a penetrating the second protective layer 30 is provided on the tip end side of the protruding portion 15 of each piezoelectric film, and the second electrode layer 26 is exposed in the hole 30a. That is, the first contact 28a and the second contact 30a are formed on the front surface and the back surface of the protruding portion 15 of each piezoelectric film, respectively.
  • the protruding portions 15 of the respective piezoelectric films are arranged so as not to overlap each other in the surface direction, as shown in FIG. Will be done.
  • the first contact 28a is formed on the root side of the protruding portion 15 of each piezoelectric film.
  • the first contact 28a is formed on the surfaces opposite to each other in the laminated state. Has been done.
  • a second contact 30a is formed on the tip end side of the protruding portion 15 of each piezoelectric film.
  • the second contact 30a is formed on the surfaces opposite to each other in the laminated state. Has been done.
  • a conductive film 60a is attached from the front surface to the back surface at the position of the first contact 28a on the root side of these five protrusions 15. As a result, the first contact 28a of each piezoelectric film is easily electrically connected.
  • the conductive film 60b is attached from the front surface to the back surface at the position of the second contact 30a on the tip end side of the five protrusions 15. As a result, the second contact 30a of each piezoelectric film is easily electrically connected. At that time, the conductive film connecting the first contact 28a and the conductive film connecting the second contact 30a are arranged so as not to be connected.
  • the piezoelectric films are laminated so that the polarization directions of the piezoelectric layers are alternated.
  • the first contact 28a formed on the protruding portion 15 of the piezoelectric film is on one of the same surfaces. It is formed so as to face the side, and the second contact 30a is formed so as to face the same surface side of the other.
  • FIG. 15 is a perspective view conceptually showing another example of the laminated piezoelectric element of the present invention.
  • the laminated piezoelectric element shown in FIG. 15 has a configuration in which five piezoelectric films are laminated.
  • the piezoelectric films are laminated so that the polarization directions are the same.
  • each piezoelectric film has a rectangular adhesive portion and one projecting portion 15 projecting from the long side side of the adhesive portion toward the outside in the surface direction.
  • One protruding portion 15 is provided so as to project from one long side of the bonded portion in a direction away from the bonded portion.
  • the size of the adhesive portion of each piezoelectric film is substantially the same.
  • each piezoelectric film shown in FIG. 15 is the same as that of the piezoelectric films shown in FIGS. 13 and 14 except that the orientations of the second and fourth layers are different. That is, each piezoelectric film has a protruding portion 15 formed on one end side on the long side.
  • the protruding portion 15 of each piezoelectric film is formed at a position deviated by one protruding portion from the position of the protruding portion 15 of the adjacent piezoelectric film in the length direction of the end side of the adhesive portion where the protruding portion 15 is formed. ing.
  • a hole 28a penetrating the first protective layer 28 is provided on the root side (adhesive part side) of the protruding portion 15 of each piezoelectric film, and the first electrode is provided in the hole 28a. Layer 24 is exposed.
  • a hole 30a penetrating the second protective layer 30 is provided on the tip end side of the protruding portion 15 of each piezoelectric film, and the second electrode layer 26 is exposed in the hole 30a. That is, the first contact 28a and the second contact 30a are formed on the front surface and the back surface of the protruding portion 15 of each piezoelectric film, respectively.
  • the protruding portions 15 of the respective piezoelectric films are arranged so as not to overlap each other in the surface direction, as shown in FIG. Will be done.
  • the first contact 28a is formed on the root side of the protruding portion 15 of each piezoelectric film.
  • a second contact 30a is formed on the tip end side of the protruding portion 15 of each piezoelectric film. As described above, since all the piezoelectric films are laminated in the same direction, in the laminated state, all the second contacts 30a are formed on the surfaces in the same direction.
  • a conductive film is attached to the surface of these five protrusions 15 on the root side where the first contact 28a is formed. As a result, the first contact 28a of each piezoelectric film is easily electrically connected. Similarly, another conductive film is attached to the surface on which the second contact 30a on the tip end side of the five protrusions 15 is formed. As a result, the second contact 30a of each piezoelectric film is easily electrically connected. At that time, the conductive film connecting the first contact 28a and the conductive film connecting the second contact 30a are arranged so as not to be connected.
  • all the protruding portions 15 of the piezoelectric films are arranged at positions where they do not overlap each other in the plane direction, but the present invention is not limited to this.
  • FIG. 16 is a perspective view conceptually showing another example of the laminated piezoelectric element of the present invention.
  • FIG. 17 is an enlarged view of the right side portion of the laminated piezoelectric element shown in FIG.
  • FIG. 18 is a view of FIG. 17 as viewed from the back side.
  • FIG. 19 is an enlarged view of the left side portion of the laminated piezoelectric element shown in FIG.
  • FIG. 20 is a view of FIG. 19 as viewed from the back side.
  • the laminated piezoelectric element shown in FIGS. 16 to 20 has a configuration in which five piezoelectric films are laminated.
  • the piezoelectric films are laminated so that the polarization directions alternate.
  • each piezoelectric film has a rectangular adhesive portion and two projecting portions 15 projecting from the long side side of the adhesive portion toward the outside in the surface direction.
  • the two protrusions 15 are formed on one end side and the other end side of the long side of the adhesive portion, respectively.
  • the size of the adhesive portion of each piezoelectric film is substantially the same.
  • the first contact point is formed on the protrusion 15 formed on the right end face side in FIG. 16, and the protrusion 15 formed on the left end face side in FIG. 16 has a first contact.
  • a second contact is formed.
  • the protrusions 15 formed on the right end surface side in FIG. 16 have the second and third layers, and the fourth and fifth layers at the same positions in the plane direction. It is formed.
  • the first contact formed on the protruding portion 15 of the second layer faces the third layer side
  • the first contact formed on the protruding portion of the third layer faces the second layer side. That is, the first contact point of the second layer and the first contact point of the third layer face each other.
  • the first contact formed on the protrusion 15 of the fourth layer faces the fifth layer side
  • the first contact formed on the protrusion of the fifth layer faces the fourth layer side. ing. That is, the first contact point of the fourth layer and the first contact point of the fifth layer face each other.
  • the first contact formed on the protrusion 15 of the first layer faces the opposite side to the second layer.
  • the first contacts formed on the protrusions 15 in this way are connected to each other by the conductive film 60a.
  • the conductive film 60a covers the first contact point of the protrusion of the first layer, is sandwiched between the second layer and the third layer, and further. It is arranged so as to be sandwiched between the 4th layer and the 5th layer. As a result, the first contacts of the first to fifth layers are connected.
  • the protrusions 15 formed on the left end surface side in FIG. 16 have the same surface directions for the second and third layers, and the fourth and fifth layers. It is formed at the position.
  • the second contact formed on the protrusion 15 of the second layer faces the opposite side to the third layer, and the second contact formed on the protrusion of the third layer is opposite to the second layer. I'm facing the side. That is, a second contact is formed on both sides of the portion where the protruding portions of the second layer and the third layer are laminated.
  • the second contact formed on the protrusion 15 of the fourth layer faces the opposite side to the fifth layer
  • the second contact formed on the protrusion of the fifth layer is the fourth layer. It faces the opposite side. That is, second contacts are formed on both sides of the portion where the protrusions of the fourth layer and the fifth layer are laminated.
  • the second contact formed on the protrusion 15 of the first layer faces the second layer side.
  • the second contacts formed on the protrusions 15 in this way are connected to each other by the conductive film 60b.
  • the conductive film 60b is attached from the front surface side to the back surface side of each protruding portion. As a result, the second contacts of the first to fifth layers are connected.
  • the protrusions of the piezoelectric films are arranged at positions where they do not overlap each other in the plane direction, but the present invention is not limited to this.
  • the projecting portions of the piezoelectric films may project from the same position of the adhesive portion in the surface direction, and the lengths in the projecting directions may be different from each other.
  • FIG. 21 is a perspective view conceptually showing another example of the laminated piezoelectric element of the present invention.
  • FIG. 21 is an exploded view.
  • the laminated piezoelectric element shown in FIG. 21 has a configuration in which five piezoelectric films (12q to 12u) are laminated.
  • the piezoelectric films are laminated so that the polarization directions alternate. That is, in FIG. 21, the first-layer piezoelectric film 12q in FIG. 21 is laminated with the first protective layer 28 side facing upward, and the second-layer piezoelectric film 12r is on the second protective layer 30 side.
  • the third-layer piezoelectric film 12s is laminated with the first protective layer 28 side facing up, and the fourth-layer piezoelectric film 12t is laminated with the second protective layer 30 side facing up.
  • the fifth-layer piezoelectric film 12u is laminated with the first protective layer 28 side facing upward.
  • each piezoelectric film has a rectangular adhesive portion and two projecting portions 15 projecting outward from the short side of the adhesive portion in the plane direction.
  • the two protrusions 15 are provided at one end and the other end of the short side.
  • the size of the adhesive portion of each piezoelectric film is substantially the same.
  • the protruding portion formed at the left end portion in FIG. 21 will be described.
  • the first-layer piezoelectric film 12q has a protruding portion 15 formed at the left end of the short side.
  • the second-layer piezoelectric film 12r is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the first-layer piezoelectric film 12q.
  • the protruding portion 15 of the second layer is longer in the protruding direction than the protruding portion 15 of the first layer.
  • the third-layer piezoelectric film 12s is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the second-layer piezoelectric film 12r.
  • the protrusion 15 of the third layer has the same length as the protrusion 15 of the second layer.
  • the fourth-layer piezoelectric film 12t is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the third-layer piezoelectric film 12s.
  • the protrusion 15 of the fourth layer is longer in the protrusion direction than the protrusion 15 of the third layer.
  • the fifth-layer piezoelectric film 12u is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the fourth-layer piezoelectric film 12t.
  • the protrusion 15 of the fifth layer has the same length as the protrusion 15 of the fourth layer.
  • a hole 28a penetrating the first protective layer 28 is provided in the protrusion 15 on the left side in FIG. 21, and the first electrode layer 24 is exposed in the hole 28a. That is, the first contact point 28a is formed on each protruding portion 15.
  • the first, third, and fifth layers of the piezoelectric film and the second, fourth, and fourth layers of the piezoelectric film are laminated in opposite directions. Therefore, as shown in FIG. 21, the first contact point of the second layer and the first contact point of the third layer face each other. Similarly, the first contact point of the fourth layer and the first contact point of the fifth layer face each other.
  • the first contacts formed on the protrusions 15 in this way are connected to each other by a conductive film (not shown).
  • a conductive film that covers the first contact point of the protruding portion of the first layer, a conductive film sandwiched between the protruding portions 15 of the second layer and the third layer, and the fourth and fifth layers.
  • the first-layer piezoelectric film 12q has a protruding portion 15 formed at the right end of the short side.
  • the second-layer piezoelectric film 12r is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the first-layer piezoelectric film 12q.
  • the protrusion 15 of the second layer has the same length as the protrusion 15 of the first layer.
  • the third-layer piezoelectric film 12s is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the second-layer piezoelectric film 12r.
  • the protrusion 15 of the third layer is longer in the protrusion direction than the protrusion 15 of the second layer.
  • the fourth-layer piezoelectric film 12t is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the third-layer piezoelectric film 12s.
  • the protrusion 15 of the fourth layer has the same length as the protrusion 15 of the third layer.
  • the fifth-layer piezoelectric film 12u is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the fourth-layer piezoelectric film 12t.
  • the protrusion 15 of the fifth layer has a longer length in the protrusion direction than the protrusion 15 of the fourth layer.
  • the protruding portion 15 on the right side in FIG. 21 is provided with a hole portion 30a penetrating the second protective layer 30, and the second electrode layer 26 is exposed in the hole portion 30a. That is, a second contact 30a is formed on each protruding portion 15.
  • the first, third, and fifth layers of the piezoelectric film and the second, fourth, and fourth layers of the piezoelectric film are laminated in opposite directions. Therefore, as shown in FIG. 21, the second contact point of the first layer and the second contact point of the second layer face each other. Similarly, the second contact point of the third layer and the second contact point of the fourth layer face each other.
  • the second contacts formed on the protrusions 15 in this way are connected to each other by a conductive film (not shown). Specifically, the conductive film sandwiched between the first layer and the second layer, the conductive film sandwiched between the third layer and the fourth layer, and the protruding portion of the fifth layer. By arranging the conductive film covering the second contact and connecting the three conductive films, the second contacts of the first to fifth layers are connected. The arrangement of the conductive film is the same as in the examples of FIGS. 24 to 26 described later.
  • the piezoelectric films are laminated so that the polarization directions alternate, and the protruding portion of each piezoelectric film protrudes from the same position of the bonded portion in the plane direction. Therefore, when the lengths in the protruding directions are different from each other, the contacts of the adjacent piezoelectric films are faced to each other and connected to each other, but the present invention is not limited to this.
  • One protruding portion of the adjacent piezoelectric film may be bent in the protruding direction.
  • FIG. 22 is a partially enlarged perspective view conceptually showing another example of the laminated piezoelectric element of the present invention.
  • FIG. 23 is a cross-sectional view taken along the line BB of FIG.
  • the laminated piezoelectric element shown in FIG. 22 has a configuration in which five piezoelectric films (12q, 12v, 12s, 12w, 12u) are laminated.
  • the piezoelectric films are laminated so that the polarization directions alternate. That is, in FIG. 22, the first-layer piezoelectric film 12q in FIG. 22 is laminated with the first protective layer 28 side facing upward, and the second-layer piezoelectric film 12v is on the second protective layer 30 side.
  • the third-layer piezoelectric film 12s is laminated with the first protective layer 28 side facing up, and the fourth-layer piezoelectric film 12w is laminated with the second protective layer 30 side facing up.
  • the fifth-layer piezoelectric film 12u is laminated with the first protective layer 28 side facing upward.
  • the piezoelectric films of the first, third, and fifth layers have the same configuration as the piezoelectric films of the first, third, and fifth layers of the laminated piezoelectric element shown in FIG. Has a configuration.
  • each piezoelectric film has a rectangular adhesive portion and two projecting portions 15 projecting from the short side side of the adhesive portion toward the outside in the surface direction.
  • the two protrusions 15 are provided at one end and the other end of the short side.
  • the size of the adhesive portion of each piezoelectric film is substantially the same.
  • the protruding portion formed at the left end portion will be described with reference to FIG. 23.
  • the first-layer piezoelectric film 12q has a protruding portion 15 formed at the left end of the short side.
  • the second-layer piezoelectric film 12v is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the first-layer piezoelectric film 12q.
  • the protruding portion 15 of the second layer is folded back in the protruding direction. Therefore, the surface of the protruding portion on the first protective layer side of the second layer faces the side of the piezoelectric film 12q of the first layer.
  • the first contact 28a of the second layer is arranged so as to face the piezoelectric film 12q of the first layer.
  • the folded portion of the protruding portion 15 of the second layer is arranged at a position that does not overlap with the protruding portion 15 of the first layer.
  • the third-layer piezoelectric film 12s is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the second-layer piezoelectric film 12r.
  • the protrusion 15 of the third layer is longer than the length of the protrusion 15 of the second layer in the folded state.
  • the fourth-layer piezoelectric film 12w is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the third-layer piezoelectric film 12s.
  • the protruding portion 15 of the fourth layer is folded back in the protruding direction. Therefore, the surface of the protruding portion on the first protective layer side of the fourth layer faces the side of the piezoelectric film 12q of the first layer. That is, the first contact 28a of the fourth layer is arranged so as to face the piezoelectric film 12q of the first layer.
  • the folded portion of the protruding portion 15 of the fourth layer is arranged at a position that does not overlap with the protruding portion 15 of the third layer.
  • the fifth-layer piezoelectric film 12u is formed with a protruding portion 15 projecting from the same position as the protruding portion 15 of the fourth-layer piezoelectric film 12t.
  • the protrusion 15 of the fifth layer is longer than the length of the protrusion 15 of the fourth layer in the folded state.
  • the adjacent piezoelectric films that is, the protruding portions 15 of the piezoelectric films having one polarization direction, are bent in the protruding direction.
  • the first contact 28a of each piezoelectric film can be arranged on the same surface side. This makes it easier to attach a conductive film or the like to connect the first contact 28a of each piezoelectric film.
  • the second contact point of each piezoelectric film can be arranged on the same surface side with basically the same configuration as described above.
  • the protruding portion 15 formed at the right end portion is provided with a second contact, and the protruding portions 15 of the first, third, and fifth layers of the piezoelectric film are folded back in the protruding direction. Therefore, the second contact 30a of each piezoelectric film can be arranged on the same surface side.
  • the piezoelectric films are laminated so that the polarization directions alternate, but the present invention is not limited to this, and the piezoelectric films have the same polarization direction.
  • the protruding portions of the piezoelectric films may protrude from the same position of the bonding portion in the plane direction, and the lengths in the protruding directions may be different from each other. In this case, the lengths of all the overlapping protrusions are different, and each first contact (or second contact) is formed on the surface of the protrusions facing the same side.
  • the protruding portion of each piezoelectric film protrudes from the same position of the adhesive portion in the surface direction, and the lengths in the protruding direction are different from each other, but the present invention is not limited to this.
  • the projecting portions of the piezoelectric films may project from the same position of the adhesive portion in the surface direction and have the same length in the projecting direction.
  • FIG. 24 is a perspective view conceptually showing another example of the laminated piezoelectric element of the present invention.
  • FIG. 25 is an enlarged view of a portion of the protrusion on the left side of FIG. 24.
  • FIG. 26 is an enlarged view of a portion of the protrusion on the right side of FIG. 24.
  • the laminated piezoelectric element shown in FIG. 24 has a configuration in which five piezoelectric films are laminated. The piezoelectric films are laminated so that the polarization directions alternate.
  • each piezoelectric film has a rectangular adhesive portion and two projecting portions 15 projecting outward from the short side of the adhesive portion in the plane direction.
  • the two protrusions 15 are provided at one end and the other end of the short side.
  • the size of the adhesive portion of each piezoelectric film is substantially the same.
  • a hole 28a penetrating the first protective layer 28 is provided in the protrusion 15 on the left side in FIG. 24, and the first electrode layer 24 is exposed in the hole 28a. That is, the first contact point 28a is formed on each protruding portion 15.
  • the first, third, and fifth layers of the piezoelectric film and the second, fourth, and fourth layers of the piezoelectric film are laminated in opposite directions. Therefore, the first contact point of the second layer and the first contact point of the third layer face each other. Similarly, the first contact point of the fourth layer and the first contact point of the fifth layer face each other.
  • Three conductive films are arranged on these protrusions 15. Specifically, the conductive film 61a covering the first contact point of the first-layer protruding portion 15, the conductive film 61b sandwiched between the second-layer and third-layer protruding portions 15, and the fourth layer.
  • the conductive film 61c sandwiched between the and the fifth layer of the projecting portion 15 is arranged so that the conductive film 61a and the conductive film 61b are brought into contact with each other, and the conductive film 61b and the conductive film 61c are brought into contact with each other. To contact. As a result, the first contacts of the first to fifth layers are connected.
  • the protruding portion 15 on the right side in FIG. 24 is provided with a hole portion 30a penetrating the second protective layer 30, and the second electrode layer 26 is exposed in the hole portion 30a. That is, a second contact 30a is formed on each protruding portion 15.
  • the first, third, and fifth layers of the piezoelectric film and the second, fourth, and fourth layers of the piezoelectric film are laminated in opposite directions. Therefore, the second contact point of the first layer and the second contact point of the second layer face each other. Similarly, the second contact point of the third layer and the second contact point of the fourth layer face each other.
  • Three conductive films are arranged on these protrusions 15. Specifically, the conductive film 61d sandwiched between the protruding portions 15 of the first layer and the second layer, and the conductive film 61e sandwiched between the protruding portions 15 of the third layer and the fourth layer.
  • the conductive film 61f covering the second contact of the fifth layer of the protruding portion 15 is arranged so that the conductive film 61d and the conductive film 61e are brought into contact with each other, and the conductive film 61e and the conductive film 61f are brought into contact with each other. To make contact with. As a result, the second contacts of the first to fifth layers are connected.
  • the protruding portion of each piezoelectric film is formed on a part of the width direction of the end side of the adhesive portion on which the protruding portion is formed, that is, the protruding portion.
  • the width in the direction orthogonal to the protruding direction of the above is shorter than the width of the end edge of the adhesive portion on which the protruding portion is formed, but the width is not limited to this.
  • the width of the protruding portion of each piezoelectric film in the direction orthogonal to the protruding direction may be the same as the width of the end edge of the adhesive portion on which the protruding portion is formed.
  • FIG. 27 is a partially enlarged perspective view conceptually showing another example of the laminated piezoelectric element of the present invention.
  • the laminated piezoelectric element shown in FIG. 27 has a configuration in which five piezoelectric films are laminated.
  • the piezoelectric films are laminated so that the polarization directions alternate.
  • each piezoelectric film has a rectangular adhesive portion and one projecting portion 15 projecting outward from the short side of the adhesive portion in the plane direction.
  • the protrusion 15 has the same width as the width of the short side.
  • a hole 28a (first contact 28a) penetrating the first protective layer 28 is formed at the left end of the protrusion 15.
  • the first, third, and fifth layers of the piezoelectric film and the second, fourth, and fourth layers of the piezoelectric film are laminated in opposite directions. Therefore, the first contact point of the second layer and the first contact point of the third layer face each other. Similarly, the first contact point of the fourth layer and the first contact point of the fifth layer face each other.
  • Three conductive films (61a, 61b, 61c) are arranged at the positions of these first contacts 28a.
  • the arrangement of the three conductive films (61a, 61b, 61c) is the same as in FIG. 25. That is, the conductive film 61a covering the first contact 28a of the first layer piezoelectric film, the conductive film 61b sandwiched between the second layer and the third layer and connected to each first contact 28a, and 4 It has a conductive film 61c sandwiched between the first layer and the fifth layer and connected to each first contact 28a, and by bringing three conductive films (61a, 61b, 61c) into contact with each other, 1 The first contacts of the first to fifth layers are connected.
  • a hole portion 30a (second contact point 30a) penetrating the second protective layer 30 is formed at the right end portion of the protruding portion 15.
  • the first, third, and fifth layers of the piezoelectric film and the second, fourth, and fourth layers of the piezoelectric film are laminated in opposite directions. Therefore, the second contact point of the first layer and the second contact point of the second layer face each other. Similarly, the second contact point of the third layer and the second contact point of the fourth layer face each other.
  • Three conductive films (61d, 61e, 61f) are arranged at the positions of these second contacts 30a.
  • the arrangement of the three conductive films (61d, 61e, 61f) is the same as in FIG. 26. That is, the conductive film 61d sandwiched between the first layer and the second layer and connected to each second contact 30a, and sandwiched between the third layer and the fourth layer and connected to each second contact 30a.
  • the conductive film 61e to be formed and the conductive film 61f covering the second contact 30a of the fifth layer piezoelectric film are provided, and the three conductive films (61d, 61e, 61f) are brought into contact with each other.
  • the second contacts of the first to fifth layers are connected.
  • the corner portion of the connecting portion between the protruding portion and the adhesive portion is formed.
  • R structure is provided. R is preferably 0.3 mm or more, more preferably 0.5 mm or more. Since each electric film is thin, the protrusions that are not laminated hang down from the root. This can be suppressed by providing an R structure at the corner of the connecting portion between the protruding portion and the adhesive portion.
  • this R structure indicates that at the intersection of the straight line forming the protruding portion and the straight line forming the adhesive portion, there is a portion where the shape of the ridge line of the protruding portion changes within the above radius regulation, and it is not necessarily R.
  • the structure does not have to be a circle. That is, the connecting portion between the protruding portion and the adhesive portion may have a region in which the protruding portion gradually widens from the tip end side toward the root portion. More specifically, the ridgeline of the protrusion and the ridgeline of the adhesive portion are applied to the coordinates.
  • a tangent R0.5 on the coordinate axis made by extending the straight line of the part separated by 5 mm or more from the connection part between the protruding part and the adhesive part, and define the tangent R0.5 and the area A surrounded by the coordinate axes.
  • the area B surrounded by the ridgeline and the coordinate axes of the wide area formed in the actual protrusion is larger than the area A.
  • the width of the protruding portion in the direction orthogonal to the protruding direction is preferably narrower on the tip side than on the adhesive portion side (root side), and is separated from the adhesive portion. It is preferable that the amount gradually narrows as the amount increases. Further, as a specific shape of the protruding portion, it is preferable that the protruding portion has a trapezoidal shape when viewed from a direction perpendicular to the main surface of the bonded portion (hereinafter, also referred to as “in a plan view”). This point will be described with reference to FIGS. 54 to 57.
  • FIG. 54 is a conceptual diagram showing an example of a laminated piezoelectric element having a rectangular protruding portion.
  • FIG. 55 is an enlarged view showing a part of the laminated piezoelectric element of FIG. 54.
  • FIG. 56 is a conceptual diagram showing an example of a laminated piezoelectric element having a trapezoidal protruding portion.
  • FIG. 57 is an enlarged view showing a part of the laminated piezoelectric element of FIG. 56.
  • each of the five piezoelectric films 12 has a protruding portion 15 on the side that becomes the same side when laminated.
  • the protrusions 15 of the piezoelectric films 12 are formed at positions shifted in the direction along the side on which the protrusions 15 are formed so as not to overlap when viewed from a direction perpendicular to the main surface.
  • the protruding portion 15 of the laminated piezoelectric element shown in FIG. 54 has the same width in the direction orthogonal to the protruding direction on the adhesive portion side (root side) and the tip side. That is, the shape of the protruding portion in a plan view is rectangular.
  • each protrusion 15 is formed at a close position. That is, it is preferable that the distance between the protruding portions 15 in the plane direction is narrow.
  • the piezoelectric film 12, that is, the protruding portion 15 is very thin, the protruding portion 15 is easily bent. Therefore, when the shape of the protrusions is rectangular, if the distance between the protrusions 15 is narrow, the side surfaces of the protrusions 15 are likely to come into contact with each other when the protrusions 15 are bent, and one of the protrusions 15 is likely to come into contact with each other.
  • the first electrode layer of the above and the second electrode layer of the other protruding portion 15 may come into contact with each other to cause a short circuit.
  • the excessive cutting portion 15a may interfere with the adjacent piezoelectric film 12 to cause a short circuit.
  • the laminated piezoelectric element shown in FIG. 56 has a protruding portion 15 on the side side which is the same side when the five piezoelectric films 12 are laminated.
  • the protrusions 15 of the piezoelectric films 12 are formed at positions shifted in the direction along the side on which the protrusions 15 are formed so as not to overlap when viewed from a direction perpendicular to the main surface.
  • the width of the protruding portion 15 of the laminated piezoelectric element shown in FIG. 56 in the direction orthogonal to the protruding direction is narrower on the tip side than on the bonding portion side (root side).
  • the shape of the protruding portion in the plan view is trapezoidal.
  • the width of the protruding portion 15 is narrow on the tip side, it becomes difficult for the side surfaces of the protruding portion 15 to come into contact with each other even when the protruding portion 15 is bent. Therefore, it is possible to prevent a short circuit from occurring even if the distance between the protruding portions 15 is narrowed. Further, since the width of the root portion of the protruding portion 15 is large, it is possible to suppress an increase in the current density of the current flowing through the protruding portion 15, and it is possible to suppress heat generation.
  • the shape of the protruding portion 15 is trapezoidal, as shown in FIG. 57, excessive cutting is unlikely to occur when the piezoelectric film is cut to form the protruding portion 15. Therefore, even if pressure is applied when laminating the piezoelectric films, it is possible to prevent the excessively cut portion from interfering with the adjacent piezoelectric film 12 and causing a short circuit.
  • the shape of the protruding portion is trapezoidal, but the shape is not limited to this, and the width on the tip side may be narrower than the width on the root side.
  • the side of the protruding portion in contact with the adhesive portion may be curved.
  • the width of the protruding portion may be gradually narrowed from the root side to the tip side (stepped shape).
  • each piezoelectric film has a single-layered single-wafer shape, but the present invention is not limited to this. At least one of the plurality of piezoelectric films may have a bellows shape that is folded back at least once.
  • FIG. 28 An example of a bellows-shaped piezoelectric film is shown in FIG.
  • the piezoelectric film shown in FIG. 28 is obtained by laminating a plurality of layers of a piezoelectric film by folding the piezoelectric film a plurality of times. Further, as a preferred embodiment, each layer of the piezoelectric film laminated by folding back is attached by an adhesive layer. By folding back and laminating one piece of piezoelectric film polarized in the thickness direction, the polarization direction of the piezoelectric film adjacent (facing) in the laminating direction becomes opposite.
  • the electrode may be pulled out from the piezoelectric film at one place. Therefore, by making the laminated piezoelectric element a lattice having a bellows-shaped piezoelectric film, the number of parts is reduced, the configuration is simplified, the reliability as a piezoelectric element (module) is improved, and the cost is further increased. It can be downed.
  • the number of times of folding is set to an even number, and an odd number of layers are laminated so that the first protective layer 28 is on one surface.
  • the second protective layer 30 becomes the surface. Therefore, the electrode can be easily pulled out by forming the first contact 28a on the surface of the first protective layer 28 side and forming the second contact 30a on the surface of the second protective layer 30 side.
  • FIGS. 29 to 36 Examples of laminated piezoelectric elements including one or more such bellows-shaped piezoelectric films are shown in FIGS. 29 to 36.
  • Each of the laminated piezoelectric elements shown in FIGS. 29 to 32 has a structure in which a bellows-shaped piezoelectric film 12L and a single-wafer-shaped piezoelectric film 12 are laminated.
  • the bellows-shaped piezoelectric film 12L has a protruding portion 15 that is not adhered to the single-wafer-shaped piezoelectric film 12, and a first contact and a second contact (not shown) are formed in the protruding portion 15.
  • a conductive film 62a is connected to the first contact. Further, a conductive film 62b is connected to the second contact.
  • the single-wafer-shaped piezoelectric film 12 has a protruding portion 15 that is not adhered to the bellows-shaped piezoelectric film 12L, and a first contact and a second contact (not shown) are formed in the protruding portion 15.
  • a conductive film 62c is connected to the first contact.
  • a conductive film 62d is connected to the second contact.
  • the polarization direction of the single-wafer-shaped piezoelectric film 12 and the polarization direction of the bellows-shaped piezoelectric film 12L in the layer in contact with the single-wafer-shaped piezoelectric film 12 are the same. Further, the protruding portion 15 of the single-wafer-shaped piezoelectric film 12 and the protruding portion 15 of the bellows-shaped piezoelectric film 12L are formed at different positions in the surface direction.
  • the polarization direction of the single-wafer-shaped piezoelectric film 12 is opposite to the polarization direction of the bellows-shaped piezoelectric film 12L in the layer in contact with the single-wafer-shaped piezoelectric film 12. Further, the protruding portion 15 of the single-wafer-shaped piezoelectric film 12 and the protruding portion 15 of the bellows-shaped piezoelectric film 12L are formed at different positions in the surface direction.
  • the polarization direction of the single-wafer-shaped piezoelectric film 12 and the polarization direction of the bellows-shaped piezoelectric film 12L in the layer in contact with the single-wafer-shaped piezoelectric film 12 are the same. Further, the protruding portion 15 of the single-wafer-shaped piezoelectric film 12 and the protruding portion 15 of the bellows-shaped piezoelectric film 12L are formed at the same positions in the surface direction.
  • the polarization direction of the single-wafer-shaped piezoelectric film 12 is opposite to the polarization direction of the bellows-shaped piezoelectric film 12L in the layer in contact with the single-wafer-shaped piezoelectric film 12. Further, the protruding portion 15 of the single-wafer-shaped piezoelectric film 12 and the protruding portion 15 of the bellows-shaped piezoelectric film 12L are formed at the same positions in the surface direction.
  • Each of the laminated piezoelectric elements shown in FIGS. 33 to 36 has a configuration in which two bellows-shaped piezoelectric films are laminated.
  • the bellows-shaped piezoelectric film 12La has a protruding portion 15 that is not adhered to the bellows-shaped piezoelectric film 12Lb, and a first contact and a second contact (not shown) are formed in the protruding portion 15.
  • a conductive film 62a is connected to the first contact. Further, a conductive film 62b is connected to the second contact.
  • the bellows-shaped piezoelectric film 12Lb has a protruding portion 15 that is not adhered to the bellows-shaped piezoelectric film 12La, and a first contact and a second contact (not shown) are formed in the protruding portion 15.
  • a conductive film 62e is connected to the first contact.
  • a conductive film 62f is connected to the second contact.
  • the polarization direction of the bellows-shaped piezoelectric film 12La in the layer in contact with the bellows-shaped piezoelectric film 12Lb and the polarization direction of the bellows-shaped piezoelectric film 12Lb in the layer in contact with the bellows-shaped piezoelectric film 12La. are opposite to each other.
  • the protruding portions 15 of the two bellows-shaped piezoelectric films are formed at the same positions in the surface direction.
  • the protruding portion 15 of the bellows-shaped piezoelectric film 12La is formed on a layer on the side not in contact with the bellows-shaped piezoelectric film 12Lb.
  • the protruding portion 15 of the bellows-shaped piezoelectric film 12Lb is formed on the layer on the side in contact with the bellows-shaped piezoelectric film 12La.
  • the polarization direction of the bellows-shaped piezoelectric film 12La in the layer in contact with the bellows-shaped piezoelectric film 12Lb and the polarization direction of the bellows-shaped piezoelectric film 12Lb in the layer in contact with the bellows-shaped piezoelectric film 12La. are opposite to each other.
  • the protruding portions 15 of the two bellows-shaped piezoelectric films are formed at the same positions in the surface direction.
  • the protruding portion 15 of the bellows-shaped piezoelectric film 12La is formed on a layer on the side not in contact with the bellows-shaped piezoelectric film 12Lb.
  • the protruding portion 15 of the bellows-shaped piezoelectric film 12Lb is formed in a layer on the side not in contact with the bellows-shaped piezoelectric film 12La.
  • the polarization direction of the bellows-shaped piezoelectric film 12La in the layer in contact with the bellows-shaped piezoelectric film 12Lb and the polarization direction of the bellows-shaped piezoelectric film 12Lb in the layer in contact with the bellows-shaped piezoelectric film 12La. are opposite to each other.
  • the protruding portions 15 of the two bellows-shaped piezoelectric films are formed at different positions in the surface direction.
  • the protruding portion 15 of the bellows-shaped piezoelectric film 12La is formed on a layer on the side not in contact with the bellows-shaped piezoelectric film 12Lb.
  • the protruding portion 15 of the bellows-shaped piezoelectric film 12Lb is formed on the layer on the side in contact with the bellows-shaped piezoelectric film 12La.
  • the polarization direction of the bellows-shaped piezoelectric film 12La in the layer in contact with the bellows-shaped piezoelectric film 12Lb and the polarization direction of the bellows-shaped piezoelectric film 12Lb in the layer in contact with the bellows-shaped piezoelectric film 12La. are opposite to each other.
  • the protruding portions 15 of the two bellows-shaped piezoelectric films are formed at different positions in the surface direction.
  • the protruding portion 15 of the bellows-shaped piezoelectric film 12La is formed on a layer on the side not in contact with the bellows-shaped piezoelectric film 12Lb.
  • the protruding portion 15 of the bellows-shaped piezoelectric film 12Lb is formed in a layer on the side not in contact with the bellows-shaped piezoelectric film 12La.
  • the layer structure of each piezoelectric film, the formation position of the protruding portion, and the like can be various.
  • the protruding portion 15 has a configuration in which the first protective layer 28, the first electrode layer 24, the piezoelectric layer 20, the second electrode layer 26, and the second protective layer 30 are laminated. That is, the protruding portion 15 has the same layer structure as that of the piezoelectric film 12, but is not limited thereto.
  • the protruding portion may have a structure in which at least the first electrode layer 24 and the first protective layer 28, or the second electrode layer 26 and the second protective layer 30 are laminated.
  • FIG. 37 is a diagram conceptually showing another example of the laminated piezoelectric element of the present invention.
  • FIG. 38 is a top view of FIG. 38.
  • FIG. 39 is a side view of FIG. 38.
  • FIG. 40 is a diagram showing each of a plurality of piezoelectric films included in the laminated piezoelectric element of FIG. 37.
  • FIGS. 37 to 39 have a configuration in which three piezoelectric films are laminated.
  • the piezoelectric films are laminated so that the polarization directions are the same.
  • the first-layer piezoelectric film 72a in FIG. 37 is laminated with the first protective layer 28 side facing upward
  • the second-layer piezoelectric film 72b is the first protective layer 28.
  • the third layer of the piezoelectric film 72c is laminated with the side facing up
  • the first protective layer 28 is laminated with the side facing up.
  • each piezoelectric film has a rectangular adhesive portion 73 and two protrusions 75a and 75b protruding outward in the surface direction from the long side side of the adhesive portion 73.
  • the protruding portion 75a has a structure in which the first protective layer 28 and the first electrode layer 24 are laminated.
  • the projecting portion 75a is provided so as to project outward from one long side of the adhesive portion 73.
  • the protruding portion 75b has a structure in which the second protective layer 30 and the second electrode layer 26 are laminated.
  • the projecting portion 75b is provided so as to project outward from the other long side of the adhesive portion 73.
  • the size of the adhesive portion 13 of each piezoelectric film is substantially the same.
  • each piezoelectric film has a long side on which a protruding portion 75a composed of a first protective layer 28 and a first electrode layer 24 is arranged, and a protruding portion 75b composed of a second protective layer 30 and a second electrode layer 26.
  • the long sides to be formed are laminated so as to coincide with each other in the plane direction.
  • the first layer piezoelectric film 72a is formed with a protrusion 75a on one end side of one long side of the adhesive portion 73, and is formed on one end side of the other long side.
  • a protruding portion 75b is formed.
  • the protrusions 75a and 75b are formed at positions deviated from the positions of the protrusions of the first-layer piezoelectric film 72a toward the other end, respectively.
  • the third-layer piezoelectric film 72c is formed with protrusions 75a and 75b at positions deviated from the positions of the protrusions of the second-layer piezoelectric film 72b toward the other end, respectively.
  • FIG. 40 the first layer piezoelectric film 72a is formed with a protrusion 75a on one end side of one long side of the adhesive portion 73, and is formed on one end side of the other long side.
  • a protruding portion 75b is formed.
  • the protrusions 75a and 75b are formed at positions deviated from the positions
  • the protruding portions of the piezoelectric films have substantially the same size and shape. Further, the protruding portion of each piezoelectric film is formed at a position deviated by one protruding portion from the position of the protruding portion of the adjacent piezoelectric film.
  • the first electrode layer 24 is exposed on the surface on the middle side in the drawing. Further, the second electrode layer 26 is exposed at the protruding portion 75b on the other long side of each piezoelectric film. That is, the exposed first electrode layer 24 of the protruding portion 75a formed on one long side of each piezoelectric film serves as the first contact point, and the exposed second electrode layer 26 of the protruding portion 75b formed on the other long side serves as the first contact point. Is the second contact point.
  • first contact point is formed on each of the protruding portions 75a on the long side of one of the piezoelectric films.
  • the conductive film 63a is attached to the surface of these protruding portions 75a on the side of the first contact point (first electrode layer 24). As a result, the first contact of each piezoelectric film is easily electrically connected.
  • a second contact (second electrode layer 26) is formed on each of the protruding portions 75b on the other long side of each piezoelectric film.
  • the conductive film 63b is attached to the surface of these protruding portions 75b on the side of the second contact point (second electrode layer 26). As a result, the second contact of each piezoelectric film is easily electrically connected.
  • the protruding portion has a structure in which at least the first electrode layer 24 and the first protective layer 28, or the second electrode layer 26 and the second protective layer 30 are laminated, the adjacent piezoelectric films are formed.
  • the first electrode layers 24 and the second electrode layers 26 can be easily connected to each other. ..
  • the protruding portions of the piezoelectric films are arranged so as not to overlap in the plane direction, but the present invention is not limited to this, and as shown in FIG. 42, adjacent piezoelectric films are provided.
  • the protrusions of the film may be arranged so as to partially overlap in the plane direction.
  • the piezoelectric films are laminated so as to have the same polarization direction, but the present invention is not limited to this, and each piezoelectric film has alternating polarization directions. It may be laminated on.
  • the protruding portions 75a of the adjacent piezoelectric films or the protruding portions 75b may be formed at the same position in the plane direction.
  • the protruding portion has a structure in which at least the first electrode layer 24 and the first protective layer 28, or the second electrode layer 26 and the second protective layer 30 are laminated
  • the above-mentioned FIG. 21 shows.
  • the protruding portions 75a and / or the protruding portions 75b of the piezoelectric film may each protrude from the same position of the adhesive portion in the surface direction, and the lengths in the protruding directions may be different from each other.
  • the protruding portion 75a and / or the protruding portions 75b of the piezoelectric films project from the same position of the bonded portion in the plane direction, respectively.
  • the protruding portion may be bent in the protruding direction so that the first contact or the second contact of each piezoelectric film is arranged on the same surface side.
  • the protruding portion 75a and / or the protruding portion 75b of each piezoelectric film protrudes from the same position of the adhesive portion in the surface direction, and the length in the protruding direction is the same. It may be configured to be connected by using a plurality of conductive films.
  • At least one piezoelectric film is a bellows-shaped piezoelectric film
  • the bellows-shaped piezoelectric film is a protruding portion 75a composed of a first protective layer 28 and a first electrode layer 24, and a second protective layer 30 and a first. It may be configured to have a protruding portion 75b composed of two electrode layers 26.
  • the protruding portion may have a structure in which the first protective layer 28, the first electrode layer 24, the piezoelectric layer 20, the second electrode layer 26, and the second protective layer 30 are laminated. The same is true.
  • the present invention is not limited to the above-mentioned examples, and various improvements and changes are made without departing from the gist of the present invention. Of course, it is also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

高い圧電特性が得られ、また、電極層への電気接点を容易に確保する積層圧電素子および電気音響変換器を提供する。第1保護層、第1電極層、圧電体層、第2電極層および第2保護層の順に積層してなる圧電フィルムを、複数層、積層してなり、各圧電体層は厚さ方向に分極されたものであり、各圧電フィルムにおいて、圧電体層の分極方向の上流側に第1電極が配置され、下流側に第2電極が配置され、複数の圧電フィルムはそれぞれ隣接する圧電フィルムと接着される接着部と、接着部から面方向の外側に向かって少なくとも第1電極層および第1保護層、または、第2電極層および第2保護層が突出する、隣接する圧電フィルムと接着されていない突出部とを有し、各圧電フィルムの突出部には、各圧電フィルムの第1電極層が互いに電気的に接続される第1接点および各圧電フィルムの第2電極層が互いに電気的に接続される第2接点の少なくとも一方が形成されている。

Description

積層圧電素子および電気音響変換器
 本発明は、積層圧電素子および電気音響変換器に関する。
 圧電素子は、各種の物品に接触して取り付けることで、物品を振動させて音を出す、いわゆるエキサイター(励起子)として、各種の用途に利用されている。例えば、画像表示パネル、スクリーン等にエキサイターを取り付けて、これらを振動させることで、スピーカーの代わりに音を出すことができる。
 ところで、フレキシブルな画像表示装置、巻取り可能なスクリーン等にエキサイターを取り付ける場合には、エキサイター自身も少なくとも非使用時にはフレキシブル(ローラブル)である必要がある。
 フレキシブルな圧電素子として、圧電体層を電極層および保護層で挟持した圧電フィルムが提案されている。
 例えば、特許文献1には、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体、高分子複合圧電体の一方の面に形成された、面積が高分子複合圧電体以下である上部薄膜電極、上部薄膜電極の表面に形成される、面積が上部薄膜電極以上である上部保護層、高分子複合圧電体の上部薄膜電極の逆面に形成される、面積が高分子複合圧電体以下である下部薄膜電極、および、下部薄膜電極の表面に形成される、面積が下部薄膜電極以上である下部保護層を有する圧電積層体と、上部薄膜電極の一部に積層されて、少なくとも一部が高分子複合圧電体の面方向外部に位置する上部電極引出し用金属箔と、下部薄膜電極の一部に積層されて、少なくとも一部が高分子複合圧電体の面方向外部に位置する下部電極引出し用金属箔と、を有する電気音響変換フィルムが記載されている。
 このような圧電フィルムはフィルム状であり、バネ定数が限られてしまうため、エキサイターとして用いる場合には、出力不足となってしまう。そこで、圧電フィルムを積層することで、バネ定数を上げて出力を高くすることが考えられる。
特開2014-209724号公報
 しかしながら、上述のような圧電体層を電極層及び保護層で挟持した圧電フィルムを積層する場合には、圧電フィルムの圧電体層の分極の方向および電極の極性の向きによって、積層圧電素子の出力が低下したり、全体として変形しない場合があることがわかった。
 また、上述のような圧電フィルムは、電極層が厚すぎると、圧電体層の変形が阻害されて出力が低下する。そのため、電極層は非常に薄く形成される。薄い電極層で圧電体層を挟持した構成とするために、上述のような圧電フィルムを作製する際には、電極層は支持体となる保護層上に形成された状態で提供される。そのため、圧電フィルムの両主面の最外層は保護層となり、電極層への電気接点を確保することが難しい。
 本発明の課題は、このような従来技術の問題点を解決することにあり、高い圧電特性が得られ、また、電極層への電気接点を容易に確保することができる積層圧電素子を提供することにある。
 このような課題を解決するために、本発明は、以下の構成を有する。
 [1] 第1保護層、第1電極層、圧電体層、第2電極層および第2保護層の順に積層してなる圧電フィルムを、複数層、積層してなり、
 各圧電体層は、厚さ方向に分極されたものであり、
 各圧電フィルムにおいて、圧電体層の分極方向の上流側に第1電極が配置され、下流側に第2電極が配置され、
 複数の圧電フィルムはそれぞれ、隣接する圧電フィルムと接着される接着部と、接着部から面方向の外側に向かって、少なくとも第1電極層および第1保護層、または、第2電極層および第2保護層が突出する、隣接する圧電フィルムと接着されていない突出部とを有し、
 各圧電フィルムの突出部には、各圧電フィルムの第1電極層が互いに電気的に接続される第1接点、および、各圧電フィルムの第2電極層が互いに電気的に接続される第2接点の少なくとも一方が形成されている積層圧電素子。
 [2] 突出部は、第1保護層、第1電極層、圧電体層、第2電極層および第2保護層を積層した構成を有する[1]に記載の積層圧電素子。
 [3] 各圧電フィルムの突出部は、面方向において、少なくとも一部が互いに重複しないように配置されている[1]または[2]に記載の積層圧電素子。
 [4] 各圧電フィルムの突出部は、面方向において、接着部の同じ位置から突出しており、突出方向の長さが互いに異なる[1]または[2]に記載の積層圧電素子。
 [5] 各圧電フィルムの突出部は、突出方向と直交する方向の幅が、接着部の幅と同じである[1]または[2]に記載の積層圧電素子。
 [6] 複数の圧電フィルムの少なくとも1つは、少なくとも1回折り返した蛇腹形状である[1]~[5]のいずれかに記載の積層圧電素子。
 [7] 圧電フィルムの突出部と接着部との接続部の角部は0.5mm以上のR構造が設けられている[1]~[6]のいずれかに記載の積層圧電素子。
 [8] 隣接する圧電フィルムの、第1電極側同士、または、第2電極側同士が対面するように配置されている[1]~[7]のいずれかに記載の積層圧電素子。
 [9] 隣接する圧電フィルムの一方の突出部を、突出方向に折り曲げた[8]に記載の積層圧電素子。
 [10] 各圧電フィルムの突出部には、第1電極層同士、あるいは第2電極層同士を接続する導電性フィルムが貼着されており、
 各圧電フィルムの突出部が、接着部の一方の主面側に折り曲げられている[1]~[9]のいずれかに記載の積層圧電素子。
 [11] 突出部の突出方向と直交する方向の幅は、接着部側よりも先端側が狭い[1]~[10]のいずれかに記載の積層圧電素子。
 [12] 突出部の幅は、接着部から離間するにしたがって漸次狭くなる[11]に記載の積層圧電素子。
 [13] 突出部は、接着部の主面に垂直な方向から見た際に台形状である[12]に記載の積層圧電素子。
 [14] [1]~[13]のいずれかに記載の積層圧電素子と、積層圧電素子が固定される振動板とを有する電気音響変換器。
 [15] 振動板と積層圧電素子とが、貼着剤によって貼着されている[14]に記載の電気音響変換器。
 [16] 振動板が、少なくとも1組の対向する2辺が固定された四角形状であり、対向する2辺における固定端間の距離をLとした際に、振動板への積層圧電素子の貼着を、『0.1×L』以上、固定端から離間する位置に行う[15]に記載の電気音響変換器。
 [17] 振動板が長方形または正方形である[16]に記載の電気音響変換器。
 [18] 振動板のバネ定数が1×104~1×107N/mである[16]または[17]に記載の電気音響変換器。
 このような本発明によれば、高い圧電特性が得られ、また、電極層への電気接点を容易に確保することができる積層圧電素子を提供できる。
本発明の積層圧電素子の一例を概念的に示す図である。 図1に示す積層圧電素子を構成する圧電フィルムの一例を概念的に示す図である。 圧電フィルムの作製方法の一例を説明するための概念図である。 圧電フィルムの作製方法の一例を説明するための概念図である。 圧電フィルムの作製方法の一例を説明するための概念図である。 圧電フィルムの作製方法の一例を説明するための概念図である。 圧電フィルムの作製方法の一例を説明するための概念図である。 本発明の積層圧電素子を用いる電気音響変換器の一例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 図10の分解図である。 図10の積層圧電素子が有する圧電フィルムを示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 図14の分解図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 図16の部分拡大図である。 図16の部分拡大図である。 図16の部分拡大図である。 図16の部分拡大図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 図22のB-B線断面図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 図24の部分拡大図である。 図24の部分拡大図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 蛇腹形状の圧電フィルムの例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 図37の上面図である。 図37の側面図である。 図37の積層圧電素子が有する圧電フィルムを示す図である。 図37の積層圧電素子に導電性フィルムを貼着した例を示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 図43の側面図である。 本発明の電気音響変換器の別の例を概念的に示す図である。 本発明の電気音響変換器の別の例を概念的に示す図である。 本発明の電気音響変換器の別の例を概念的に示す図である。 本発明の電気音響変換器の別の例を概念的に示す図である。 図45に示す電気音響変換器による振動板の振動のシミュレーション結果である。 図49を説明するための概念図である。 本発明の電気音響変換器の別の例を説明するための概念図である。 本発明の電気音響変換器の別の例を説明するための概念図である。 本発明の電気音響変換器の別の例を説明するための概念図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 図54に示す積層圧電素子の一部を拡大して示す斜視図である。 本発明の積層圧電素子の別の例を概念的に示す図である。 図56に示す積層圧電素子の一部を拡大して示す斜視図である。
 以下、本発明の積層圧電素子について、添付の図面に示される好適実施態様を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明の積層圧電体は、
 第1保護層、第1電極層、圧電体層、第2電極層および第2保護層の順に積層してなる圧電フィルムを、複数層、積層してなり、
 各圧電体層は、厚さ方向に分極されたものであり、
 各圧電フィルムにおいて、圧電体層の分極方向の上流側に第1電極が配置され、下流側に第2電極が配置され、
 複数の圧電フィルムはそれぞれ、隣接する圧電フィルムと接着される接着部と、接着部から面方向の外側に向かって、少なくとも前記第1電極層および前記第1保護層、または、前記第2電極層および前記第2保護層が突出する、隣接する圧電フィルムと接着されていない突出部とを有し、
 各圧電フィルムの突出部には、各圧電フィルムの第1電極層が互いに電気的に接続される第1接点、および、各圧電フィルムの第2電極層が互いに電気的に接続される第2接点の少なくとも一方が形成されている積層圧電素子である。
 図1に、本発明の積層圧電素子の一例を概念的に示す。
 図1に示す積層圧電素子10は、圧電フィルム12a、12b、12cを、3枚、積層して、隣接する圧電フィルムを、接着層(貼着層)14で貼着した構成を有する。各圧電フィルムには、圧電フィルムを伸縮させる駆動電圧を印加する電源に接続される。
 なお、図1に示す積層圧電素子10は、圧電フィルムを、3層、積層したものであるが、本発明は、これに制限はされない。すなわち、本発明の積層圧電素子は、圧電フィルムを、複数層、積層したものであれば、圧電フィルムの積層数は、2層でもよく、あるいは、4層以上であってもよい。この点に関しては、後述する積層圧電素子も、同様である。
 図2に、圧電フィルム12を断面図によって概念的に示す。なお、図1において、圧電フィルム12a、12bおよび12cは、積層順および上下方向の向きが異なる以外は同様の構成を有するので、以下の説明では、圧電フィルムを区別する必要がない場合には、まとめて圧電フィルム12ともいう。
 図2に示すように、圧電フィルム12は、圧電性を有するシート状物である圧電体層20と、圧電体層20の一方の面に積層される第1電極層24と、第1電極層24上に積層される第1保護層28と、圧電体層20の他方の面に積層される第2電極層26と、第2電極層26上に積層される第2保護層30とを有する。すなわち、圧電フィルム12は、第1保護層28、第1電極層24、圧電体層20、第2電極層26および第2保護層30の順に積層した構成を有する。後述するが、圧電フィルム12(圧電体層20)は、厚さ方向に分極されている。圧電フィルム12の分極方向の上流側の電極層および保護層を第1電極層24および第1保護層28とし、下流側の電極層および保護層を第2電極層26および第2保護層30とする。
 圧電フィルム12において、圧電体層20は、好ましい態様として、図2に概念的に示すように、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス34中に、圧電体粒子36を分散してなる高分子複合圧電体からなるものである。なお、本明細書において、「常温」とは、0~50℃程度の温度域を指す。
 ここで、高分子複合圧電体(圧電体層20)は、次の用件を具備したものであるのが好ましい。
 (i) 可撓性
 例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
 以上をまとめると、エキサイターとして用いるフレキシブルな高分子複合圧電体は、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。
 さらに、貼り付ける相手材(振動板)の剛性(硬さ、コシ、バネ定数)に合わせて、積層することで、簡便にバネ定数を調節できるのが好ましく、その際、接着層14は薄ければ薄いほど、エネルギー効率を高めることができる。
 一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下とともに大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。
 高分子複合圧電体(圧電体層20)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移点が常温、すなわち、0~50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
 常温で粘弾性を有する高分子材料としては、公知の各種のものが利用可能である。好ましくは、常温、すなわち0~50℃において、動的粘弾性試験による周波数1Hzにおける損失正接Tanδの極大値が、0.5以上有る高分子材料を用いる。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックスと圧電体粒子との界面の応力集中が緩和され、高い可撓性が期待できる。
 また、常温で粘弾性を有する高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下、であるのが好ましい。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz~20kHzの音響振動に対しては硬く振る舞うことができる。
 また、常温で粘弾性を有する高分子材料は、比誘電率が25℃において10以上有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、高分子マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。
 しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
 このような条件を満たす常温で粘弾性を有する高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン-ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が例示される。また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。なかでも、高分子材料としては,シアノエチル基を有する材料を用いることが好ましく、シアノエチル化PVAを用いるのが特に好ましい。
 なお、これらの高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。
 このような常温で粘弾性を有する高分子材料を用いる粘弾性マトリックス34は、必要に応じて、複数の高分子材料を併用してもよい。
 すなわち、粘弾性マトリックス34には、誘電特性や機械特性の調節等を目的として、シアノエチル化PVA等の粘弾性材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
 添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、ポリフッ化ビニリデン-トリフルオロエチレン共重合体およびポリフッ化ビニリデン-テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン-酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロースおよびシアノエチルソルビトール等のシアノ基またはシアノエチル基を有するポリマー、ならびに、ニトリルゴムやクロロプレンゴム等の合成ゴム等が例示される。
 中でも、シアノエチル基を有する高分子材料は、好適に利用される。
 また、圧電体層20の粘弾性マトリックス34において、シアノエチル化PVA等の常温で粘弾性を有する材料に加えて添加される誘電性ポリマーは、1種に限定はされず、複数種を添加してもよい。
 また、粘弾性マトリックス34には、誘電性ポリマー以外にも、ガラス転移点Tgを調節する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテン、および、イソブチレン等の熱可塑性樹脂、ならびに、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、および、マイカ等の熱硬化性樹脂を添加しても良い。
 さらに、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、および、石油樹脂等の粘着付与剤を添加しても良い。
 圧電体層20の粘弾性マトリックス34において、シアノエチル化PVA等の粘弾性を有する高分子材料以外の材料を添加する際の添加量には、特に限定は無いが、粘弾性マトリックス34に占める割合で30質量%以下とするのが好ましい。
 これにより、粘弾性マトリックス34における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子36および電極層との密着性向上等の点で好ましい結果を得ることができる。
 圧電体粒子36は、ペロブスカイト型またはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
 圧電体粒子36を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
 このような圧電体粒子36の粒径には制限はなく、圧電フィルム12のサイズ、および、積層圧電素子10の用途等に応じて、適宜、選択すれば良い。圧電体粒子36の粒径は、1~10μmが好ましい。
 圧電体粒子36の粒径をこの範囲とすることにより、圧電フィルム12が高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
 なお、図2においては、圧電体層20中の圧電体粒子36は、粘弾性マトリックス34中に、均一かつ規則性を持って分散されているが、本発明は、これに制限はされない。
 すなわち、圧電体層20中の圧電体粒子36は、好ましくは均一に分散されていれば、粘弾性マトリックス34中に不規則に分散されていてもよい。
 圧電フィルム12において、圧電体層20中における粘弾性マトリックス34と圧電体粒子36との量比には、制限はなく、圧電フィルム12の面方向の大きさおよび厚さ、積層圧電素子10の用途、ならびに、圧電フィルム12に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層20中における圧電体粒子36の体積分率は、30~80%が好ましく、50%以上がより好ましく、従って、50~80%とするのが、さらに好ましい。
 粘弾性マトリックス34と圧電体粒子36との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
 以上の圧電フィルム12は、好ましい態様として、圧電体層20が、常温で粘弾性を有する高分子材料を含む粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体層である。しかしながら、本発明は、これに制限はされず、圧電フィルムの圧電体層としては、公知の圧電素子に用いられる、公知の各種の圧電体層が利用可能である。
 一例として、ポリフッ化ビニリデン(PVDF)およびフッ化ビニリデン-テトラフルオロエチレン共重合体の上述した誘電性高分子材料からなる圧電体層、ならびに、PZT、PLZT、チタン酸バリウム、酸化亜鉛およびBFBT等の上述した圧電体からなる圧電体層等が例示される。
 圧電フィルム12において、圧電体層20の厚さには、特に限定はなく、積層圧電素子10の用途、積層圧電素子10における圧電フィルムの積層数、圧電フィルム12に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層20が厚いほど、いわゆるシート状物のコシの強さなどの剛性等の点では有利であるが、同じ量だけ圧電フィルム12を伸縮させるために必要な電圧(電位差)は大きくなる。
 圧電体層20の厚さは、10~300μmが好ましく、20~200μmがより好ましく、30~150μmがさらに好ましい。
 圧電体層20の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
 図2に示すように、図示例の圧電フィルム12は、このような圧電体層20の一面に、第1電極層24を有し、その上に第1保護層28を有し、圧電体層20の他方の面に、第2電極層26を有し、その上に第2保護層30を有してなる構成を有する。ここで、第2電極層26と第1電極層24とが電極対を形成する。
 なお、圧電フィルム12は、これらの層に加えて、例えば、側面などの圧電体層20が露出する領域を覆って、ショート等を防止する絶縁層等を有していてもよい。
 すなわち、圧電フィルム12は、圧電体層20の両面を電極対、すなわち、第1電極層24および第2電極層26で挟持し、この積層体を、第1保護層28および第2保護層30で挟持してなる構成を有する。
 このように、圧電フィルム12において、第1電極層24および第2電極層26で挾持された領域は、印加された電圧に応じて伸縮される。
 なお、前述のとおり、第1電極層24および第1保護層28、ならびに、第2電極層26および第2保護層30は、圧電体層20の分極方向に応じて名称を付しているものである。従って、第1電極層24と第2電極層26、ならびに、第1保護層28と第2保護層30とは基本的に同様の構成を有する。
 圧電フィルム12において、第1保護層28および第2保護層30は、第2電極層26および第1電極層24を被覆すると共に、圧電体層20に適度な剛性と機械的強度を付与する役目を担っている。すなわち、圧電フィルム12において、粘弾性マトリックス34と圧電体粒子36とからなる圧電体層20は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。圧電フィルム12は、それを補うために第1保護層28および第2保護層30が設けられる。
 第1保護層28および第2保護層30には、制限はなく、各種のシート状物が利用可能であり、一例として、各種の樹脂フィルムが好適に例示される。
 中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂等からなる樹脂フィルムが、好適に利用される。
 第1保護層28および第2保護層30の厚さにも、制限はない。また、第1保護層28および第2保護層30の厚さは、基本的に同じであるが、異なってもよい。
 ここで、第1保護層28および第2保護層30の剛性が高過ぎると、圧電体層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、第1保護層28および第2保護層30は、薄いほど有利である。
 圧電フィルム12においては、第1保護層28および第2保護層30の厚さが、圧電体層20の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
 例えば、圧電体層20の厚さが50μmで第1保護層28および第2保護層30がPETからなる場合、第1保護層28および第2保護層30の厚さは、100μm以下が好ましく、50μm以下がより好ましく、25μm以下がさらに好ましい。
 圧電フィルム12において、圧電体層20と第1保護層28との間には第1電極層24が、圧電体層20と第2保護層30との間には第2電極層26が、それぞれ形成される。 第1電極層24および第2電極層26は、圧電体層20(圧電フィルム12)に電圧を印加するために設けられる。
 本発明において、第1電極層24および第2電極層26の形成材料には制限はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、チタン、クロムおよびモリブデン等の金属、これらの合金、これらの金属および合金の積層体および複合体、ならびに、酸化インジウムスズ等が例示される。中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズは、第1電極層24および第2電極層26として好適に例示される。
 また、第1電極層24および第2電極層26の形成方法にも制限はなく、真空蒸着およびスパッタリング等の気相堆積法(真空成膜法)やめっきによる成膜や、上記材料で形成された箔を貼着する方法等、公知の方法が、各種、利用可能である。
 中でも特に、圧電フィルム12の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅およびアルミニウム等の薄膜は、第1電極層24および第2電極層26として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。
 第1電極層24および第2電極層26の厚さには、制限はない。また、第1電極層24および第2電極層26の厚さは、基本的に同じであるが、異なってもよい。
 ここで、前述の第1保護層28および第2保護層30と同様に、第1電極層24および第2電極層26の剛性が高過ぎると、圧電体層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、第1電極層24および第2電極層26は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
 圧電フィルム12においては、第1電極層24および第2電極層26の厚さと、ヤング率との積が、第1保護層28および第2保護層30の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。
 例えば、第1保護層28および第2保護層30がPET(ヤング率:約6.2GPa)で、第1電極層24および第2電極層26が銅(ヤング率:約130GPa)からなる組み合わせの場合、第1保護層28および第2保護層30の厚さが25μmだとすると、第1電極層24および第2電極層26の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下とするのが好ましい。
 上述したように、圧電フィルム12は、常温で粘弾性を有する高分子材料を含む粘弾性マトリックス34に圧電体粒子36を分散してなる圧電体層20を、第1電極層24および第2電極層26で挟持し、さらに、この積層体を、第1保護層28および第2保護層30を挟持してなる構成を有する。
 このような圧電フィルム12は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)の極大値が常温に存在するのが好ましく、0.1以上となる極大値が常温に存在するのがより好ましい。
 これにより、圧電フィルム12が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
 圧電フィルム12は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10~30GPa、50℃において1~10GPaであるのが好ましい。
 これにより、常温で圧電フィルム12が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
 また、圧電フィルム12は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において1.0×106~2.0×106N/m、50℃において1.0×105~1.0×106N/mであるのが好ましい。
 これにより、圧電フィルム12が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
 さらに、圧電フィルム12は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接(Tanδ)が、0.05以上であるのが好ましい。
 これにより、圧電フィルム12を用いたスピーカの周波数特性が平滑になり、スピーカの曲率の変化に伴い最低共振周波数fが変化した際の音質の変化量も小さくできる。
 以下、図3~図7を参照して、圧電フィルム12の製造方法の一例を説明する。
 まず、図3に示すように、第1保護層28の上に第1電極層24が形成されたシート状物11aを準備する。このシート状物11aは、第1保護層28の表面に、真空蒸着、スパッタリング、および、めっき等によって、第1電極層24として銅薄膜等を形成して作製すればよい。
 第1保護層28が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの第1保護層28を用いても良い。なお、セパレータとしては、厚さ25~100μmのPET等を用いることができる。セパレータは、第2電極層26および第2保護層30を熱圧着した後、第1保護層28に何らかの部材を積層する前に、取り除けばよい。
 一方で、有機溶媒に、シアノエチル化PVA等の常温で粘弾性を有する高分子材料を溶解し、さらに、PZT粒子等の圧電体粒子36を添加し、攪拌して分散してなる塗料を調製する。以下の説明では、シアノエチル化PVA等の常温で粘弾性を有する高分子材料を、『粘弾性材料』とも言う。
 有機溶媒には制限はなく、ジメチルホルムアミド(DMF)、メチルエチルケトン、シクロヘキサノン等の各種の有機溶媒が利用可能である。
 シート状物11aを準備し、かつ、塗料を調製したら、この塗料をシート状物11aにキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図4に示すように、第1保護層28の上に第1電極層24を有し、第1電極層24の上に圧電体層20を形成してなる積層体11bを作製する。
 この塗料のキャスティング方法には、特に、限定はなく、スライドコータおよびドクターナイフ等の公知の塗布方法(塗布装置)が、全て、利用可能である。
 なお、粘弾性材料がシアノエチル化PVAのように加熱溶融可能な物であれば、粘弾性材料を加熱溶融して、これに圧電体粒子36を添加/分散してなる溶融物を作製し、押し出し成形等によって、図3に示すシート状物11aの上にシート状に押し出し、冷却することにより、図4に示すような、第1保護層28の上に第1電極層24を有し、第1電極層24の上に圧電体層20を形成してなる積層体11bを作製してもよい。
 上述したように、圧電フィルム12において、粘弾性マトリックス34には、シアノエチル化PVA等の粘弾性材料以外にも、PVDF等の高分子圧電材料を添加しても良い。
 粘弾性マトリックス34に、これらの高分子圧電材料を添加する際には、上述した塗料に添加する高分子圧電材料を溶解すればよい。または、上述した加熱溶融した粘弾性材料に、添加する高分子圧電材料を添加して加熱溶融すればよい。
 第1保護層28の上に第1電極層24を有し、第1電極層24の上に圧電体層20を形成してなる積層体11bを作製したら、圧電体層20の分極処理(ポーリング)を行う。
 圧電体層20の分極処理の方法には、制限はなく、公知の方法が利用可能である。好ましい分極処理の方法として、図5および図6に示す方法が例示される。
 この方法では、図5および図6に示すように、積層体11bの圧電体層20の上面20aの上に、間隔gを例えば1mm開けて、この上面20aに沿って移動可能な棒状あるいはワイヤー状のコロナ電極40を設ける。そして、このコロナ電極40と第1電極層24とを直流電源42に接続する。
 さらに、積層体11bを加熱保持する加熱手段、例えば、ホットプレートを用意する。
 その上で、圧電体層20を、加熱手段によって、例えば、温度100℃に加熱保持した状態で、直流電源42から第1電極層24とコロナ電極40との間に、数kV、例えば、6kVの直流電圧を印加してコロナ放電を生じさせる。さらに、間隔gを維持した状態で、圧電体層20の上面20aに沿って、コロナ電極40を移動(走査)して、圧電体層20の分極処理を行う。
 これにより、圧電体層20は厚さ方向に分極される。この分極処理による、第1電極層24側が分極方向の上流側とする。
 このようなコロナ放電を利用する分極処理において、コロナ電極40の移動は、公知の棒状物の移動手段を用いればよい。以下の説明では、便宜的に、コロナ放電を利用する分極処理をコロナポーリング処理とも言う。
 また、コロナポーリング処理では、コロナ電極40を移動する方法にも、制限ない。すなわち、コロナ電極40を固定し、積層体11bを移動させる移動機構を設け、この積層体11bを移動させて分極処理をしてもよい。この積層体11bの移動も、公知のシート状物の移動手段を用いればよい。
 また、分極処理は、コロナポーリング処理に制限はされず、分極処理を行う対象に、直接、直流電界を印加する、通常の電界ポーリングも利用可能である。ただし、この通常の電界ポーリングを行う場合には、分極処理の前に、第2電極層26を形成する必要が有る。
 このようにして積層体11bの圧電体層20の分極処理を行う一方で、第2保護層30の上に第2電極層26が形成されたシート状物11cを、準備する。このシート状物11cは、第2保護層30の表面に、真空蒸着、スパッタリング、めっき等によって第2電極層26として銅薄膜等を形成して、作製すればよい。
 次いで、図7に示すように、第2電極層26を圧電体層20に向けて、シート状物11cを、圧電体層20の分極処理を終了した積層体11bに積層する。
 さらに、この積層体11bとシート状物11cとの積層体を、第2保護層30と第1保護層28とで挟持するようにして、加熱プレス装置や加熱ローラ対等で熱圧着する。その後、所望の形状に裁断されて、突出部15を有する圧電フィルム12が作製される。
 なお、ここまでの工程は、シート状でなくとも、ウェブ状、つまりシートが長くつながった状態で巻き取られたもの用いて行うことも可能である。積層体11bとシート状物11cとがともに、ウェブ状で、上述のように熱圧着することも可能である。その場合、圧電フィルム12はこの時点ではウェブ状に作製される。
 さらには、積層体11bとシート状物11cとを貼り合わせる際に、特殊な糊層を設けてもよい。たとえば、シート状11cの第2電極層26の面に糊層をもうけてもよい。最も好適な糊層は粘弾性マトリックス34と同じ素材である。同じ素材を第2電極層26の面に塗り、貼り合わせることも可能である。
 前述のとおり、本発明の積層圧電素子10は、このような圧電フィルム12を積層して、接着層14で貼着した構成を有する。ここで、図1に示す例では、圧電体層20に付した矢印で示すように、隣接する圧電フィルム12における分極方向が互いに逆である。図1に示す例では、積層圧電素子10は、隣接する圧電フィルム12の分極方向を互いに逆にして、3層の圧電フィルム12を積層し、隣接する圧電フィルム12を接着層14で貼着した構成を有する。
 具体的には、図1に示す例では、図1中上側の1層目の圧電フィルム12aは、図中矢印で示すように、分極方向が下向きになっている。従って、図1中上側に第1電極層24および第1保護層28が配置され、図1中下側に第2電極26および第2保護層30が配置されている。また、1層目の圧電フィルム12aの第2保護層30側の面に隣接して配置される2層目の圧電フィルム12bは、図中矢印で示すように、分極方向が上向きになっている。従って、図1中下側に第1電極層24および第1保護層28が配置され、図1中上側に第2電極26および第2保護層30が配置されている。また、2層目の圧電フィルム12bの第1保護層28側の面に隣接して配置される3層目の圧電フィルム12cは、図中矢印で示すように、分極方向が下向きになっている。従って、図1中上側に第1電極層24および第1保護層28が配置され、図1中下側に第2電極26および第2保護層30が配置されている。
 ここで、本発明の積層圧電素子10において、各圧電フィルムは、隣接する圧電フィルムと接着される接着部と、接着部から面方向の外側に向かって突出する、隣接する圧電フィルムと接着されていない突出部とを有する。
 図1に示す例では、1層目の圧電フィルム12aと2層目の圧電フィルム12bとは、図1中左側の端部以外の領域が接着層14によって接着されており、図1中左側の端部の領域は接着されていない。以下の説明では、各圧電フィルムの、隣接する圧電フィルムと接着された領域を接着部13とし、接着されていない領域を突出部15とする。突出部15は、接着部13から、圧電フィルムの主面の面方向の外側に突出した領域であると言える。
 同様に、2層目の圧電フィルム12bと3層目の圧電フィルム12cとは、図1中左側の端部以外の領域が接着層14によって接着されており、図1中左側の端部の領域は接着されていない。
 各圧電フィルムの突出部15には、電気接点が設けられる。図1に示す例では、各圧電フィルムの突出部15において、第1保護層28を貫通する孔部28aが形成されており、また、第2保護層30を貫通する孔部30aが形成されている。第1保護層28に孔部28aが形成されることによって第1電極部24が表出する。また、突出部15は隣接する圧電フィルムと接着されていない。従って、この孔部28a内の第1電極層24に配線等を接続可能となる。以下、孔部28a(孔部28a内の第1電極層24)を第1接点ともいう。同様に、第2保護層30に孔部30aが形成されることによって第2電極部26が表出する。また、突出部15は隣接する圧電フィルムと接着されていない。従って、この孔部30a内の第2電極層26に配線等を接続可能となる。以下、孔部30a(孔部30a内の第2電極層26)を第2接点ともいう。
 図1に示す例では、1層目の圧電フィルム12aは第1電極層24側が図1中上側となるように配置されているため、突出部15の上側の面に第1接点28a、下側の面に第2接点30aを有する。2層目の圧電フィルム12bは、第1電極層24側が図1中下側となるように配置されているため、突出部15の上側の面に第2接点30a、下側の面に第1接点28aを有する。3層目の圧電フィルム12cは第1電極層24側が図1中上側となるように配置されているため、突出部15の上側の面に第1接点28a、下側の面に第2接点30aを有する。なお、上述の説明における上下方向は、図1における上下方向に対応するものであり、図中上側の圧電フィルムを1層目の圧電フィルムとし、1層目の圧電フィルム側を上側とする。この点は以下の説明においても同様である。
 図1に示すように、本発明の積層圧電素子10においては、各圧電フィルムの突出部15に設けられた第1接点28a同士が互いに接続され、また、第2接点30a同士が互いに接続される。なお、図1に示す例では、第1接点28aがプラスに接続され、第2接点30aがマイナスに接続されるものとして図示したが、第1接点28aが電源の同じ極性に接続され、また、第2接点30a同士が電源の他方の同じ極性に接続されることを表すものである。例えば、交流電源に接続される場合には、全ての第1接点28aが交流電源の一方の極性に接続され、全ての第2接点30aが交流電源の他方の極性に接続される。
 第1接点28aおよび第2接点30aを介して、各圧電フィルム12の第1電極層24および第2電極層26には、圧電フィルム12を伸縮させる駆動電圧を印加する電源が接続される。
 電源には、制限はなく、直流電源でも交流電源でもよい。また、駆動電圧も、各圧電フィルムの圧電体層20の厚さおよび形成材料等に応じて、各圧電フィルムを適正に駆動できる駆動電圧を、適宜、設定すればよい。
 前述のとおり、圧電体層を電極層及び保護層で挟持した圧電フィルムを積層した場合には、圧電フィルムの圧電体層の分極の方向および電極の極性の向きによって、積層圧電素子の出力が低下したり、全体として変形しない場合があった。具体的には、例えば、2つの圧電フィルムが分極方向が逆になるように積層された場合に、同じ側の電極層同士を接続すると、電圧を印加した際に、ある位相において、一方の圧電フィルムは収縮し、他方の圧電フィルムは伸長する。すなわち、2つの圧電フィルムの伸縮の挙動が逆位相になってしまう。そのため、圧電フィルムの伸縮が打ち消し合い、積層圧電素子全体としての変形が少なくなってしまう。
 また、このような圧電フィルムは、電極層が厚すぎると、圧電体層の変形が阻害されて出力が低下するため、電極層は非常に薄く形成される。薄い電極層で圧電体層を挟持した構成とするために、上述のとおり、圧電フィルムを作製する際には、電極層は支持体となる保護層上に形成された状態で提供される。そのため、圧電フィルムの両主面の最外層は保護層となり、電極層への電気接点を確保することが難しいという問題があった。
 例えば、各圧電フィルムから電極層のみを引き出すことが考えられるが、前述のとおり、圧電フィルムにおいて、電極層は非常に薄いため、電極層のみを圧電フィルムから引き出すことは難しい。
 これに対して、本発明の積層圧電素子は、各圧電フィルムにおいて、圧電体層20の分極方向の上流側に第1電極24が配置され、下流側に第2電極26が配置され、各圧電フィルムは、隣接する圧電フィルムと接着されていない突出部15を有し、各圧電フィルムの突出部15には、各圧電フィルムの第1電極層24が互いに電気的に接続される第1接点28a、および、各圧電フィルムの第2電極層26が互いに電気的に接続される第2接点30aが形成されている。
 隣接する圧電フィルムと接着されていない突出部15を設けて、突出部15に第1接点28aおよび第2接点30aを設けることで、第1電極層24同士、および、第2電極層26同士を容易に接続することができる。
 また、各圧電フィルムの分極方向と、電極層の極性の関係をすべての圧電フィルムで同じとすることで、各圧電フィルムに同位相の電圧を印加することができる。すなわち、積層圧電素子に電圧を印加した際に、すべての圧電フィルムの伸縮の挙動が同位相になる。そのため、各圧電フィルムの伸縮を強め合うことができ、積層圧電素子全体としての変形(出力)を大きくすることができる。すなわち、高い圧電特性が得られる。
 また、本発明において、各圧電フィルムは、保護層を有している。例えば、突出部15の保護層に孔部を設けて電気接点を形成した方が有利な点として以下の点が挙げられる。分極方向が隣り合う層で反対向きになる場合には、同じ電気極性の接点が対向することになる。そのため、必要な接点以外の部分が保護層により絶縁されていることで、接点部分のみずらせば保護層同士が接触することになり、絶縁処理が不要になるというメリットがある。また、分極方向が隣り合う層で同じ向きになる場合には、異なる電気極性の電極層が対向することになるが保護層があるため、絶縁処理が不要になる。
 本発明において、接着層14は、隣接する圧電フィルム12を貼着可能であれば、公知のものが、各種、利用可能である。
 従って、接着層14は、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。
 ここで、本発明の積層圧電素子10は、積層した複数枚の圧電フィルムを伸縮させることで、例えば、後述するように振動板50を振動させて、音を発生させる。従って、本発明の積層圧電素子10は、各圧電フィルムの伸縮が、直接的に伝達されるのが好ましい。圧電フィルムの間に、振動を緩和するような粘性を有する物質が存在すると、圧電フィルムの伸縮のエネルギの伝達効率が低くなってしまい、積層圧電素子10の駆動効率が低下してしまう。
 この点を考慮すると、接着層14は、粘着剤からなる粘着剤層よりも、固体で硬い接着層14が得られる、接着剤からなる接着剤層であるのが好ましい。より好ましい接着層14としては、具体的には、ポリエステル系接着剤およびスチレン・ブタジエンゴム(SBR)系接着剤等の熱可塑タイプの接着剤からなる貼着層が好適に例示される。
 接着は、粘着とは異なり、高い接着温度を求める際に有用である。また、熱可塑タイプの接着剤は『比較的低温、短時間、および、強接着』を兼ね備えており、好適である。
 本発明の積層圧電素子10において、接着層14の厚さには制限はなく、接着層14の形成材料に応じて、十分な貼着力(接着力、粘着力)を発現できる厚さを、適宜、設定すればよい。
 ここで、本発明の積層圧電素子10は、接着層14が薄い方が、圧電体層20の伸縮エネルギ(振動エネルギ)の伝達効果を高くして、エネルギ効率を高くできる。また、接着層14が厚く剛性が高いと、圧電フィルムの伸縮を拘束する可能性もある。さらに、後述するが、本発明の積層圧電素子10は、隣接する圧電フィルム12同士がショートする恐れが無いので、接着層14を薄くできる。
 この点を考慮すると、接着層14は、圧電体層20よりも薄いのが好ましい。すなわち、本発明の積層圧電素子10において、接着層14は、硬く、薄いのが好ましい。
 具体的には、接着層14の厚さは、貼着後の厚さで0.1~50μmが好ましく、0.1~30μmがより好ましく、0.1~10μmがさらに好ましい。
 本発明の積層圧電素子10においては、接着層14のバネ定数が高いと、圧電フィルム12の伸縮を拘束する可能性がある。従って、接着層14のバネ定数は圧電フィルム12のバネ定数と同等か、それ以下であるのが好ましい。なお、バネ定数は、『厚さ×ヤング率』である。
 具体的には、接着層14の厚さと、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において2.0×106N/m以下、50℃において1.0×106N/m以下であるのが好ましい。
 また、貼着層の動的粘弾性測定による周波数1Hzでの内部損失が、粘着剤からなる接着層14の場合には25℃において1.0以下、接着剤からなる接着層14の場合には25℃において0.1以下であるのが好ましい。
 このような本発明の積層圧電素子10は、一例として、図8に概念的に示すように、接着層52によって振動板50に接着されて、振動板50から音を発生するための、エキサイターとして用いられる。言い換えれば、振動板50と積層圧電素子10とは、貼着層52を介して、互いに接触して固定されており、積層圧電素子10は、振動板50から音を発生するための、エキサイターとして作用する。すなわち、図8には、本発明の積層圧電素子10を有する本発明の電気音響変換器の一例が示される。
 上述したように、本発明の積層圧電素子10において、複数層が積層される圧電フィルムを構成する圧電体層20は、粘弾性マトリックス34に圧電体粒子36を分散してなるものである。また、圧電体層20を厚さ方向で挟むように、第1電極層24および第2電極層26が設けられる。
 このような圧電体層20を有する圧電フィルムの第1電極層24および第2電極層26に電圧を印加すると、印加した電圧に応じて圧電体粒子36が分極方向に伸縮する。その結果、圧電フィルム(圧電体層20)が厚さ方向に収縮する。同時に、ポアゾン比の関係で、圧電フィルムは、面方向にも伸縮する。
 この伸縮は、0.01~0.1%程度である。
 上述したように、圧電体層20の厚さは、好ましくは10~300μm程度である。従って、厚さ方向の伸縮は、最大でも0.3μm程度と非常に小さい。
 これに対して、圧電フィルムすなわち圧電体層20は、面方向には、厚さよりもはるかに大きなサイズを有する。従って、例えば、圧電フィルムの長さが20cmであれば、電圧の印加によって、最大で0.2mm程度、圧電フィルムは伸縮する。
 上述したように、振動板50は、接着層52によって積層圧電素子10に貼着されている。従って、圧電フィルムの伸縮によって、振動板50は撓み、その結果、振動板50は、厚さ方向に振動する。
 この厚さ方向の振動によって、振動板50は、音を発する。すなわち、振動板50は、圧電フィルムに印加した電圧(駆動電圧)の大きさに応じて振動して、圧電フィルムに印加した駆動電圧に応じた音を発生する。
 ここで、PVDF等の高分子材料からなる一般的な圧電フィルムは、分極処理後に一軸方向に延伸処理することで、延伸方向に対して分子鎖が配向し、結果として延伸方向に大きな圧電特性が得られることが知られている。そのため、一般的な圧電フィルムは、圧電特性に面内異方性を有し、電圧を印加された場合の面方向の伸縮量に異方性がある。
 これに対して、粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体を有する圧電フィルムは分極処理後に延伸処理をせずとも大きな圧電特性が得られるため、圧電特性に面内異方性がなく、面方向では全方向に等方的に伸縮する。すなわち、圧電フィルムは、等方的に二次元的に伸縮する。このような等方的に二次元的に伸縮する圧電フィルムを積層した積層圧電素子10は、一方向にしか大きく伸縮しないPVDF等の一般的な圧電フィルムを積層した場合に比べ、大きな力で振動板50を振動することができ、より大きく、かつ、美しい音を発生できる。
 上述したように、本発明の積層圧電素子は、このような圧電フィルムを、複数枚、積層したものである。
 そのため、1枚毎の圧電フィルムの剛性が低く、伸縮力は小さくても、圧電フィルムを積層することにより、剛性が高くなり、積層圧電素子10としての伸縮力は大きくなる。その結果、本発明の積層圧電素子10は、振動板50がある程度の剛性を有するものであっても、大きな力で振動板50を十分に撓ませて、厚さ方向に振動板50を十分に振動させて、振動板50に音を発生させることができる。
 また、圧電体層20が厚い方が、圧電フィルムの伸縮力は大きくなるが、その分、同じ量、伸縮させるのに必要な駆動電圧は大きくなる。ここで、上述したように、本発明の積層圧電素子10において、好ましい圧電体層20の厚さは、最大でも300μm程度であるので、個々の圧電フィルムに印加する電圧が小さくても、十分に、圧電フィルムを伸縮させることが可能である。
 本発明の積層圧電素子を用いる本発明の電気音響変換器において、積層圧電素子10と振動板50とを貼着する貼着層52には、制限はなく、公知の各種の粘着剤および接着剤が利用可能である。
 一例として、上述した貼着層14と同様のものが例示される。好ましい貼着層52(貼着剤)も、貼着層14と同様である。
 本発明の積層圧電素子を用いる本発明の電気音響変換器において、振動板50にも、制限はなく、各種の物品が利用可能である。
 振動板50としては、一例として、樹脂製の板およびガラス板等の板材、看板などの広告告知媒体、テーブル、ホワイトボードおよび投映用スクリーン等のオフィス機器および家具、有機エレクトロルミネセンス(OLED(Organic Light Emitting Diode)ディスプレイおよび液晶ディスプレイ等の表示デバイス、コンソール、Aピラー、天井およびバンパー等自動車などの車両の部材、ならびに、住宅の壁などの建材等が例示される。
 本発明の電気音響変換器において、本発明の積層圧電素子10を貼着する振動板50は、可撓性を有するのが好ましく、巻き取り可能であるのがより好ましい。
 可撓性を有する振動板50としては、フレキシブルディスプレイパネルなどの可撓性を有するパネル状の表示デバイスが、特に好適に例示される。また、表示デバイスも、巻き取り可能であるのが、より好ましい。
 ここで、本発明の電気音響変換器は、振動板50が巻き取られた際に、積層圧電素子10が振動板50から剥離することが無いように、振動板50の巻き取りの曲率に応じて、積層圧電素子10も振動板50と共に曲がるものであるのが好ましい。なお、圧電フィルム12は、好適な可撓性を有するので、本発明の積層圧電素子10も、基本的に、良好な可撓性を発現する。
 この際において、振動板50の巻き取りの曲率は、基本的に特定の曲率であるが、振動板50の巻き取りの曲率は、可変であってもよい。
 本発明の電気音響変換器において、表示デバイスを振動板50とする際には、積層圧電素子10は、表示デバイスの背面側、すなわち、表示デバイスの非画像表示面側に貼着されるのが好ましい。
 この際において、貼着層52の面方向のサイズは、積層圧電素子10の平面形状のサイズと同サイズ、あるいは、それ以下のサイズであるのが好ましい。
 なお、本発明の電気音響変換器において、振動板50として表示デバイスを利用する際には、フレキシブルディスプレイパネル等の表示デバイス自体を振動板50としてもよく、あるいは、表示デバイスに設けられる板状の部材または表示デバイスに係合する板状の部材を振動板50としてもよい。
 また、本発明の電気音響変換器を表示デバイスに利用する際には、本発明の電気音響変換器を表示デバイスに組み込んでもよく、あるいは、本発明の電気音響変換器の振動板50で表示デバイスに設けられる板状の部材を振動させてもよく、あるいは、本発明の電気音響変換器を表示デバイスと共にケーシング等に組み込んでもよい。
 本発明の電気音響変換器において、振動板50が巻き取り可能である場合には、振動板50を巻き取ってない状態で積層圧電素子10に駆動電流が通電され、振動板50が巻き取られた際には、積層圧電素子10は通電しないようにするのが好ましい。
 また、本発明の電気音響変換器において、振動板50が、表示デバイスのように電気駆動するものである場合には、振動板50を巻き取ってない状態で積層圧電素子10および/または振動板50に駆動電流が通電され、振動板50が巻き取られた際には、積層圧電素子10および/または振動板50には通電しないようにするのが好ましい。
 これらの通電および非通電を切替える方法は、公知の方法が、各種、利用可能である。
 上述のように、本発明の電気音響変換器は、貼着層52を用いて、振動板50に、積層圧電素子10を貼着(固定)してなるものである。
 このような本発明の電気音響変換器は、振動板50の端部(端辺)を壁等に固定し、および/または、端部を梁等の固定手段によって固定する場合がある。
 また、本発明の電気音響変換器において、振動板50の形状には制限はないが、四角形である場合が多い。例えば、上述のように、本発明の電気音響変換器においては、振動板50として、有機エレクトロルミネセンスディスプレイ等の表示デバイスも好適に利用可能である。表示デバイスを振動板とする場合には、通常、振動板50は長方形である。
 振動板50が長方形および正方形などの四角形である場合には、振動板50を安定して固定するために、図45に概念的に示すように、対向する2辺を固定手段80によって固定して、振動板50を支持する場合も多い。
 ここで、図45に概念的に示すように、四角形の振動板50の対向する2辺を固定する2つの固定手段80の距離、すなわち、振動板50の固定端間の距離をLとする。
 本発明の電気音響変換器においては、四角形の振動板50の対向する2辺を固定する場合には、固定手段80の振動板内方側の端部、すなわち、振動板50の固定端から、0.1×L以上離間して、積層圧電素子10を振動板50に貼着するのが好ましい。
 すなわち、四角形の振動板50の対向する2辺を固定する場合には、振動板50の固定端と、積層圧電素子10との間に、若干の間隙を有するのが好ましい。
 このような構成を有することにより、振動板50の固定が、上述した積層圧電素子10の伸縮を阻害することを抑制し、より好適に振動板50を振動して、より音圧の高い音を出力することが可能になる。
 なお、この際において、図8に示されるように、積層圧電素子10の端部が、面方向において接着層52の外方に突出している場合には、接着層52の端部を、積層圧電素子10の端部と見なす。すなわち、この際には、接着層52の端部が、振動板50の固定端から0.1×L以上離間するように、積層圧電素子を貼着する。
 逆に、積層圧電素子10の端部が、面方向に接着層52の内部に位置する場合には、積層圧電素子10の端部が、振動板50の固定端から0.1×L以上離間するように、積層圧電素子を貼着すればよい。
 図49に、四角形の振動板に、種々の大きさの積層圧電素子を貼着した際における、振動板の固定端から積層圧電素子までの距離と、振動板の変位との関係のシミュレーション結果を示す。
 振動板は、大きさが10×10mm、厚さが0.3mmのステンレス製の正方形の板材を用い、対向する2辺の端部(端辺)を固定した。
 積層圧電素子は、正方形の図2に示す圧電フィルム12を、4層、積層して、各層を貼着層によって貼着した物を用いた。
 積層圧電素子は、全面に貼着層を設けて、各辺の方向を一致して振動板の中心に貼着した。従って、積層圧電素子の大きさが異なると、振動板の固定端から積層圧電素子までの距離が異なる。
 図49における面積比とは、図50に概念的に示すように、振動板の固定端間の距離Lを100%とした場合における、一次元的な面積比である。すなわち、面積比100%とは、振動板の固定端から固定端まで、全面に積層圧電素子を貼着した場合である。また、面積比60%とは、図50の上段に示すように、振動板の固定端から0.2×Lmm、離間して、振動板に積層圧電素子を貼着した場合である。さらに、面積比20%とは、図50の下段に示すように、振動板の固定端から0.4×Lmm、離間して、振動板に積層圧電素子を貼着した場合である。
 図49において、破線は、振動板において積層圧電素子が存在しない領域であり、実線は、振動板において積層圧電素子が貼着された領域である。
 図49に示されるように、面積比100%、すなわち、振動板の固定端から固定端まで積層圧電素子を貼着した場合には、振動板の変位すなわち振動は、小さい。
 これに対して、面積比80%、すなわち、振動板の固定端から0.1×Lmm、離して、振動板に積層圧電素子を貼着することにより、十分に大きく振動板を振動させることができ、すなわち、高い音圧を得られる。
 また、本例では、面積比を60%とした場合、すなわち、振動板の固定端から0.2×Lmm、離して、振動板に積層圧電素子を貼着した場合に、より大きく振動板50が変位しており、すなわち、より高い音圧が得られている。
 以上のように、本発明の電気音響変換器において、四角形の振動板の対向する2辺を固定する際に、振動板の固定端から0.1×Lmm以上、離して、振動板に積層圧電素子を貼着することにより、より好適に振動板を振動して、より音圧の高い音を出力することができる。
 本発明の電気音響変換器において、振動板50の辺を固定する固定手段80には、制限はなく、板状物(シート状物、フィルム)の辺(端辺)を固定する、公知の各種の手段が利用可能である。一例として、板状物の辺を支持可能な梁(片持ち梁を含む)、投影用スクリーンの辺の支持に用いられる固定部材、および、例えばパトローネのような巻回したシート状物を引出しおよび巻取り自在に収容する容器のシート引出し口に設けられるシート状物の固定機構等が例示される。
 また、振動板50の固定は、固定手段80を用いるのに制限はされない。例えば、貼着剤等を用いて、壁および支持体となる板状物等に、振動板50の端部(端面)を、直接、貼着することで、振動板50を固定してもよい。この場合には、振動板の端部が、振動板50の固定端となる。
 本発明の電気音響変換器は、積層圧電素子10を1つ有するのに制限はされない。
 例えば、電気音響変換器において、音声をステレオ再生すなわち2チャンネルで再生する場合には、図46に概念的に示すように、固定端間の距離L方向に離間して、2つの積層圧電素子10を振動板50に貼着してもよい。この場合でも、積層圧電素子10は、2つの固定手段80の距離、すなわち、振動板50の固定端間の距離をLとして、振動板50の固定端から、0.1×L以上離間して、振動板50に貼着するのが好ましい。
 また、本発明の電気音響変換器においては、例えば額縁のように、長方形(正方形)の振動板50の4辺を全て固定してもよい。
 この場合にも、同様に、1つの対向する2辺を固定する固定手段80a、および、他方の対向する2辺を固定する固定手段80bの、それぞれに対応して、同様に、積層圧電素子10の固定位置を決定するのが好ましい。
 この際には、図47に概念的に示すように、振動板50の一方の対向する辺を固定する2つの固定手段80aの距離、すなわち、この対向する辺における振動板50の固定端間の距離をL1とする。また、振動板50の他方の対向する辺を固定する固定する2つの固定手段80bの距離、すなわち、この対向する辺における振動板50の固定端間の距離をL2とする。
 その上で、図47に示すように、振動板50において、固定手段80aの端部すなわち固定手段80aによる固定端から0.1×L1以上、離間し、かつ、固定手段80bの端部すなわち固定手段80bによる固定端から0.1×L2以上、離間する位置に、積層圧電素子50を貼着するのが好ましい。
 本発明の電気音響変換器においては、長方形の振動板50の4辺を全て固定する場合でも、積層圧電素子10を1つのみ有するのに制限はされない。
 例えば、電気音響変換器において、音声をステレオ再生し、かつ、センタースピーカを設けるような、2.5チャンネルで再生する場合も有る。この際には、図48に概念的に示すように、長い固定端間である距離L1の方向に対して、端部近傍に2つのステレオ再生用の積層圧電素子10を設け、中央にセンタースピーカ用の積層圧電素子10を設けてもよい。
 この場合でも、積層圧電素子10は、一方の対向する辺を固定する固定手段80aによる固定端間の距離L1と、他方の対向する辺を固定する固定手段80bによる固定端間の距離L2とに応じて、固定手段80aによる固定端から0.1×L1以上、離間し、かつ、固定手段80bによる固定端から0.1×L2以上、離間する位置に、3つの積層圧電素子50を貼着するのが好ましい。
 上述のように、本発明の電気音響変換器においては、四角形の振動板50の対向する辺を固定する固定手段の端部、すなわち、四角形の振動板50の対向する辺の固定端から、0.1×L以上、離間して、積層圧電素子10を振動板に貼着するのが好ましい。
 ここで、より高い音圧すなわち振動板50の変位量を得られる等の点で、振動板50の固定端から積層圧電素子10までの距離は、0.15×L以上がより好ましく、0.2×L以上がさらに好ましい。
 一方で、積層圧電素子10の位置が、振動板50の固定端から離間しすぎると、必要な大きさの積層圧電素子10を振動板50に貼着できなくなる、必要な数の積層圧電素子10を振動板50に貼着できなくなる、ステレオ再生などの多チャンネル再生が困難になる、多チャンネル化した場合に積層圧電素子10同士の距離が近すぎてクロストークが発生する等の不都合を生じる可能性がある。
 この点を考慮すると、振動板50の固定端から積層圧電素子10までの距離は、0.4×L以下が好ましく、0.3×L以下がより好ましい。
 振動板50を固定することによる、振動板の振動への影響は、振動板50の剛性によって異なり、振動板50の剛性が高いほど、影響は大きい。すなわち、積層圧電素子10の固定位置を、振動板50の固定端から離間することの効果は、振動板50の剛性が高い場合に、より大きく得ることができる。
 この点を考慮すると、四角形の振動板50の対向する2辺を固定し、かつ、振動板50の固定端から0.1×L以上、離間して積層圧電素子10を振動板50に貼着する場合には、振動板50の剛性が、ある程度、高いのが好ましい。
 具体的には、振動板50の対向する2辺を固定し、積層圧電素子10の固定位置を、振動板50の固定端から0.1×L以上、離間する場合には、振動板50のバネ定数は、1×104~1×107N/mが好ましく、1×105~1×106N/mがより好ましい。なお、振動板のような板状物のバネ定数は、形成材料のヤング率に、板状物の厚さを乗じることで算出できる。
 本発明において、振動板の形状は、長方形および正方形に制限はされず、ひし形、台形、および、平行四辺形などの、様々な形状の四角形が利用可能である。
 この場合には、図51に振動板50aを例示して概念的に示すように、固定手段80によって固定される対向する2辺間において、他方の対向する辺の離間方向の様々な位置で、L1、L2、L3…のように、固定端間の距離Lを設定する。
 その上で、固定端間の距離がL1の位置では、積層圧電素子10が固定端から0.1×L1以上離間するように、固定端間の距離がL2の位置では、積層圧電素子10が固定端から0.1×L2以上離間するように、固定端間の距離がL3となる位置では、積層圧電素子10が固定端から0.1×L3以上離間するように……となるように、振動板50aにおける積層圧電素子10の貼着位置を決定すればよい。
 なお、本発明の電気音響変換器において、振動板50の四角形、特に長方形および正方形は、完全な四角形に制限はされない。
 すなわち、本発明において、四角形の振動板50は、角部を面取りした形状でもよく、角部を曲線状(R状、ラウンド状)にした形状でもよく、オーバル形状でもよい。
 また、発明の電気音響変換器において、四角形の振動板における対抗する2辺の固定は、辺の全域に制限はされず、振動板の剛性および振動板の大きさ等に応じて、辺の一部の領域を固定するものでもよい。
 この際においては、1辺の50%以上の領域を固定するのが好ましく、1辺の70%以上の領域を固定するのがより好ましく、1辺の90%以上の領域を固定するのがさらに好ましく、1辺の全域を固定するのが特に好ましい。
 また、上述のように、四角形の角部が面取りされている場合、および、曲線状にされている場合には、面取り等を行われていない領域を1辺の全域としてもよく、あるいは、面取り等を行われている領域を含めて1辺の全域としてもよい。
 本発明の電気音響変換器において、振動板の形状は、四角形に制限はされず、円形、楕円形、および、四角形以外の多角形等、様々な形状の振動板が利用可能である。
 ここで、振動板を固定した場合には、振動板の固定端から、ある程度離間して、振動板に積層圧電素子10を貼着することにより、高い音圧等が得られるという好ましい効果は、振動板の形状によらず、四角形以外の各種の振動板でも同様である。
 例えば、振動板が六角形および八角形等のように、対向する辺を有する多角形状である場合には、対向する2辺で固定を行い、四角形の振動板50の場合と同様に固定端間の距離Lを設定して、固定端から0.1×L以上離間して、振動板50に積層圧電素子10を貼着するのが好ましい。
 また、図52に概念的に示すような円形の振動板50bの場合には、振動板50bの全周を囲むように円形(円環状)の固定手段80cを設けることが考えられる。この場合には、固定手段80cの内側が固定端となるので、固定手段80cの内径φを固定端間の距離Lとして、振動板50の固定端から0.1×L以上離間する位置に、積層圧電素子10を貼着すればよい。
 また、図52に示すような円形の振動板50bでは、図52に円環状の固定手段80cに重ねてハッチで示す固定手段80dおよび固定手段80eのように、円弧状の固定手段で、振動板50bの固定を行うことも考えられる。この際にも、同様に、固定手段の円弧の内径φを固定端間の距離Lとして、振動板50bの固定端から0.1×L以上離間する位置に、積層圧電素子10を貼着すればよい。
 振動板が三角形および五角形のように、対向する辺を有さない多角形の場合も有る。この場合には、多角形の1辺と、対向する頂点とを固定することが考えられる。
 例えば、図53に概念的に示すように、振動板50cが三角形である場合には、三角形の一辺を固定手段80で固定し、この一辺と対向する頂点を固定手段80fで固定することが考えられる。
 この場合には、固定手段80fで固定する頂点から、固定される対向する辺まで垂線Pを下ろし、頂点から固定される辺までの垂線の距離を、固定端間の距離Lとして、振動板50cの固定端(一方は頂点)から0.1×L以上離間する位置に、積層圧電素子10を貼着すればよい。
 なお、このようなエキサイタとして作用する圧電素子の振動板への貼着位置に関しては、エキサイタとして作用する圧電素子が1枚の圧電フィルムで構成される場合、および、エキサイタとして作用する圧電素子が、カットシート状の圧電フィルムを積層して、好ましくは隣接する圧電フィルムを貼着した積層圧電素子である場合も、同様である。
 ここで、図1に示す例では、隣接する圧電フィルムの分極方向が、互いに逆である。すなわち、圧電フィルムの分極方向が交互になるように積層されている。しかしながら、本発明はこれに限定はされない。図9に示す例のように、隣接する圧電フィルムの分極方向が、互いに一致していてもよい。
 図9に示す例では、図9中上側の1層目の圧電フィルム12dは、図中矢印で示すように、分極方向が下向きになっている。従って、図9中上側に第1電極層24および第1保護層28が配置され、図9中下側に第2電極26および第2保護層30が配置されている。また、1層目の圧電フィルム12dの第2保護層30側の面に隣接して配置される2層目の圧電フィルム12eは、図中矢印で示すように、分極方向が下向きになっている。従って、図9中上側に第1電極層24および第1保護層28が配置され、図9中下側に第2電極26および第2保護層30が配置されている。また、2層目の圧電フィルム12eの第2保護層30側の面に隣接して配置される3層目の圧電フィルム12fは、図中矢印で示すように、分極方向が下向きになっている。従って、図9中上側に第1電極層24および第1保護層28が配置され、図9中下側に第2電極26および第2保護層30が配置されている。
 図9に示す例では、1層目の圧電フィルム12dは第1電極層24側が図9中上側となるように配置されているため、突出部15の上側の面において、第1保護層28に第1接点28aとなる孔部が設けられており、下側の面において、第2保護層30に第2接点30aとなる孔部が設けられている。2層目の圧電フィルム12eは、第1電極層24側が図9中上側となるように配置されているため、突出部15の上側の面において、第1保護層28に第1接点28aとなる孔部が設けられており、下側の面において、第2保護層30に第2接点30aとなる孔部が設けられている。3層目の圧電フィルム12fは第1電極層24側が図9中上側となるように配置されているため、突出部15の上側の面において、第1保護層28に第1接点28aとなる孔部が設けられており、下側の面において、第2保護層30に第2接点30aとなる孔部が設けられている。
 図9に示すように、各圧電フィルムの突出部15に設けられた第1接点28a同士が互いに接続され、また、第2接点30a同士が互いに接続される。
 なお、隣接する圧電フィルムの圧電体層20の分極方向が、互いに逆である積層圧電素子10においては、隣接する圧電フィルム12では、一方の面で第2電極層26同士が対面し、他方の面で第1電極層24同士が対面する。そのため、隣接する圧電フィルムの電極層同士が接触しても、ショート(短絡)する恐れがない点で好ましい。
 また、上述したように、積層圧電素子10を良好なエネルギ効率で伸縮するためには、接着層14が圧電体層20の伸縮を妨害しないように、接着層14を薄くするのが好ましい。これに対して、隣接する圧電フィルムの圧電体層20の分極方向が、互いに逆である積層圧電素子10は、隣接する圧電フィルムの電極層同士が接触しても、ショートする恐れがないため、接着層14を極めて薄くできる。そのため、より高いエネルギ効率で積層圧電素子10を伸縮させることができる。
 なお、上述したように、圧電フィルムにおいては、厚さ方向の圧電体層20の伸縮の絶対量は非常に小さく、圧電フィルムの伸縮は、実質的に、面方向のみとなる。
 従って、積層される圧電フィルムの分極方向が逆であっても、第1電極層24および第2電極層26に印加する電圧の極性さえ正しければ、全ての圧電フィルムは同じ方向に伸縮する。
 なお、本発明の積層圧電素子10において、圧電フィルムの分極方向は、d33メーター等で検出すれば良い。
 または、上述した際のコロナポーリング処理の処理条件から、圧電体層20の分極方向を知見してもよい。
 本発明の積層圧電素子を用いる電気音響変換器において、積層圧電素子10と振動板50とを貼着する接着層には、制限はなく、公知の各種の粘着剤および接着剤が利用可能である。一例として、上述した接着層14と同様のものが例示される。
 本発明の積層圧電素子を用いる電気音響変換器において、振動板50にも、制限はなく、各種の物品が利用可能である。
 振動板50としては、一例として、樹脂製の板およびガラス板等の板材、看板などの広告・告知媒体、テーブル、ホワイトボードおよび投映用スクリーン等のオフィス機器および家具、有機エレクトロルミネセンス(OLED(Organic Light Emitting Diode)ディスプレイおよび液晶ディスプレイ等の表示デバイス、コンソール、Aピラー、天井およびバンパー等自動車などの車両の部材、ならびに、住宅の壁などの建材等が例示される。
 図示例の積層圧電素子10においては、好ましくは、長尺(大面積)の圧電フィルムを作製し、長尺な圧電フィルムを切断して、個々の圧電フィルムとする。従って、この場合は、積層圧電素子10を構成する複数枚の圧電フィルムは、全て同じものである。
 しかしながら、本発明は、これに制限はされない。すなわち、本発明の積層圧電素子は、例えば、異なる層構成の圧電フィルムを積層した構成、および、圧電体層20の厚さが異なる圧電フィルムを積層した構成等、各種の構成が利用可能である。
 次に、圧電フィルムの突出部の構成、および、接点同士の接続方法の例について、具体的に説明する。
 図10は、本発明の積層圧電素子の一例を概念的に示す図である。図11は、図10の分解図である。図12は、図10の積層圧電素子が有する複数の圧電フィルムを示す図である。
 図10および図11に示す例は、圧電フィルムを5枚積層された構成を有する。各圧電フィルムは、分極方向が交互になるように積層されている。図11および図12においては、圧電フィルムの第2保護層側の面にハッチングを付して示す。すなわち、図11においては、図11中上側の1層目の圧電フィルム12gは、第1保護層28側を上に向けて積層され、2層目の圧電フィルム12hは、第2保護層30側を上に向けて積層され、3層目の圧電フィルム12iは、第1保護層28側を上に向けて積層され、4層目の圧電フィルム12jは、第2保護層30側を上に向けて積層され、5層目の圧電フィルム12kは、第1保護層28側を上に向けて積層されている。
 図11および図12に示すように、各圧電フィルムは、長方形状の接着部13と、接着部13の長辺側から面方向の外側に向かって突出する2つの突出部15を有する。2つの突出部15は、接着部13の対向する長辺からそれぞれ突出するように設けられている。図示例において、各圧電フィルムの接着部13の大きさは略同じである。
 図12に示すように、1層目の圧電フィルム12gには、長辺側の一方の端部側に突出部15が形成されている。2層目の圧電フィルム12hには、1層目の圧電フィルム12gの突出部15の位置から他方の端部側にズレた位置に突出部15が形成されている。3層目の圧電フィルム12iには、2層目の圧電フィルム12hの突出部15の位置から他方の端部側にズレた位置に突出部15が形成されている。4層目の圧電フィルム12jには、3層目の圧電フィルム12iの突出部15の位置から他方の端部側にズレた位置に突出部15が形成されている。5層目の圧電フィルム12kには、4層目の圧電フィルム12jの突出部15の位置から他方の端部側にズレた位置に突出部15が形成されている。
 図12に示す例では、各圧電フィルムの突出部は、略同じ大きさ形状である。また、各圧電フィルムの突出部は、隣接する圧電フィルムの突出部の位置から、突出部1つ分ズレた位置に形成されている。
 また、各圧電フィルムの一方の長辺側の突出部15には、第1保護層28を貫通する孔部28aが設けられており、孔部28a内で第1電極層24が表出している。また、各圧電フィルムの他方の長辺側の突出部15には、第2保護層30を貫通する孔部30aが設けられており、孔部30a内で第2電極層26が表出している。すなわち、各圧電フィルムの一方の長辺側の突出部15に第1接点28aが形成され、他方の長辺側の突出部15に第2接点30aが形成されている。
 このような5つの圧電フィルムが接着部13の面方向の位置を一致させて積層されると、図11に示すように、各圧電フィルムの突出部15は、面方向において、互いに重複しないように配置される。
 また、各圧電フィルムの一方の長辺側(図11中右側の長辺側)の突出部15にはいずれも、第1接点28aが形成されている。前述のとおり、1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層されるため、第1接点28aは互いに逆側の面に形成されている。
 これらの第1接点28aが形成された5つの突出部15には、表面から裏面にかけて導電性フィルム60aが貼着される。これによって、各圧電フィルムの第1接点28aが容易に電気的に接続される。
 同様に、各圧電フィルムの他方の長辺側(図11中左側の長辺側)の突出部15にはいずれも、第2接点30aが形成されている。前述のとおり、1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層されるため、第2接点30aは互いに逆側の面に形成されている。
 これらの第2接点30aが形成された5つの突出部15には、表面から裏面にかけて導電性フィルム60bが貼着される。これによって、各圧電フィルムの第2接点30aが容易に電気的に接続される。
 突出部15の第1保護層28に形成される孔部28a、および、第2保護層30に形成される孔部30aの形状は、電極層に確実に接続することができれば特に限定はなく、円形状、楕円形状、矩形状、多角形状、不定形状等の種々の形状とすることができる。
 また、孔部28aおよび孔部30aの大きさも、電極層に確実に接続することができれば特に限定はない。円相当直径で、0.5mm~10mmが好ましく、1mm~5mmがより好ましい。
 また、孔部(第1接点)28a、および、孔部(第2接点)30aの形成位置にも特に限定はないが、各圧電フィルムの接点同士を容易に接続可能とする観点から、各圧電フィルムの孔部(第1接点)28a、および、孔部(第2接点)30aはそれぞれ、接着部13の同じ辺側に形成されるのが好ましい。
 導電性フィルム60aおよび60bとしては、例えば銅箔膜など、導電性を有する金属材料で形成されるシート状物を用いればよい。また、導電性フィルムと第1接点28a、第2接点30aとを銀ペースト等の導電性塗料を介して接続してもよい。
 ここで、図10~図12に示す例では、各圧電フィルムは、2つの突出部を有し、2つの突出部15の一方に第1接点28aが形成され、他方に第2接点30aが形成される構成としたがこれに限定はされない。各圧電フィルムは、1つの突出部を有し、1つの突出部15に第1接点28aおよび第2接点30aが形成される構成としてもよい。また、この場合には、面方向における、第1接点28aと、第2接点30aとは重複する位置に形成される構成であってもよいが、図13および図14に示すように、異なる位置に形成されることが好ましい。
 図13は、本発明の積層圧電素子の他の一例を概念的に示す斜視図である。図14は、図13の一部を拡大した分解図である。
 図13および図14に示す積層圧電素子は、5枚の圧電フィルム(12l~12p)が積層された構成を有する。各圧電フィルムは、分極方向が交互になるように積層されている。すなわち、図14においては、図14中上側の1層目の圧電フィルム12lは、第1保護層28側を上に向けて積層され、2層目の圧電フィルム12mは、第2保護層30側を上に向けて積層され、3層目の圧電フィルム12nは、第1保護層28側を上に向けて積層され、4層目の圧電フィルム12oは、第2保護層30側を上に向けて積層され、5層目の圧電フィルム12pは、第1保護層28側を上に向けて積層されている。
 図13および図14に示すように、各圧電フィルムは、長方形状の接着部と、接着部の長辺側から面方向の外側に向かって突出する1つの突出部15を有する。1つの突出部15は、接着部の一方の長辺から接着部から離間する方向に突出するように設けられている。図示例において、各圧電フィルムの接着部の大きさは略同じである。
 図14に示すように、1層目の圧電フィルム12lには、一方の長辺側の端部側に突出部15が形成されている。2層目の圧電フィルム12mには、1層目の圧電フィルム12lの突出部15の位置から他方の端部側にズレた位置に突出部15が形成されている。3層目の圧電フィルム12nには、2層目の圧電フィルム12mの突出部15の位置から他方の端部側にズレた位置に突出部15が形成されている。4層目の圧電フィルム12oには、3層目の圧電フィルム12nの突出部15の位置から他方の端部側にズレた位置に突出部15が形成されている。5層目の圧電フィルム12pには、4層目の圧電フィルム12oの突出部15の位置から他方の端部側にズレた位置に突出部15が形成されている。
 図14に示す例では、各圧電フィルムの突出部は、略同じ大きさ形状である。また、各圧電フィルムの突出部は、隣接する圧電フィルムの突出部の位置から、突出部1つ分ズレた位置に形成されている。
 また、図14に示すように、各圧電フィルムの突出部15の根元側(接着部側)には、第1保護層28を貫通する孔部28aが設けられており、孔部28a内で第1電極層24が表出している。また、各圧電フィルムの突出部15の先端側には、第2保護層30を貫通する孔部30aが設けられており、孔部30a内で第2電極層26が表出している。すなわち、各圧電フィルムの突出部15に表面および裏面にそれぞれ、第1接点28aおよび第2接点30aが形成されている。
 このような5つの圧電フィルムが接着部の面方向の位置を一致させて積層されると、図14に示すように、各圧電フィルムの突出部15は、面方向において、互いに重複しないように配置される。
 また、各圧電フィルムの突出部15の根元側にはいずれも、第1接点28aが形成されている。前述のとおり、1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層されるため、積層状態では、第1接点28aは互いに逆側の面に形成されている。同様に、各圧電フィルムの突出部15の先端側にはいずれも、第2接点30aが形成されている。前述のとおり、1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層されるため、積層状態では、第2接点30aは互いに逆側の面に形成されている。
 これらの5つの突出部15の根元側の第1接点28aの位置には、表面から裏面にかけて導電性フィルム60aが貼着される。これによって、各圧電フィルムの第1接点28aが容易に電気的に接続される。同様に、5つの突出部15の先端側の第2接点30aの位置には、表面から裏面にかけて導電性フィルム60bが貼着される。これによって、各圧電フィルムの第2接点30aが容易に電気的に接続される。その際、第1接点28aを接続する導電性フィルムと第2接点30aを接続する導電性フィルムとは接続しないように配置される。
 ここで、図10~図12に示す例では、各圧電フィルムは、圧電体層の分極方向が交互になるように積層されている。これに対して、各圧電フィルムが、圧電体層の分極方向が同じ方向になるように積層されている場合には、圧電フィルムの突出部15に形成される第1接点28aが一方の同じ面側を向くように形成され、また、第2接点30aが他方の同じ面側を向くように形成される。
 例えば、図15は、本発明の積層圧電素子の他の一例を概念的に示す斜視図である。
 図15に示す積層圧電素子は、5枚の圧電フィルムが積層された構成を有する。各圧電フィルムは、分極方向が同じ向きになるように積層されている。
 図15に示すように、各圧電フィルムは、長方形状の接着部と、接着部の長辺側から面方向の外側に向かって突出する1つの突出部15を有する。1つの突出部15は、接着部の一方の長辺から接着部から離間する方向に突出するように設けられている。図示例において、各圧電フィルムの接着部の大きさは略同じである。
 図15に示す各圧電フィルムの構成は2層目および4層目の積層の向きが異なる以外は図13および図14に示す圧電フィルムと同様である。すなわち、各圧電フィルムには、一方の長辺側の端部側に突出部15が形成されている。各圧電フィルムの突出部15は、隣接する圧電フィルムの突出部15の位置から、突出部15が形成される接着部の端辺の長さ方向に、突出部1つ分ズレた位置に形成されている。
 図15に示すように、各圧電フィルムの突出部15の根元側(接着部側)には、第1保護層28を貫通する孔部28aが設けられており、孔部28a内で第1電極層24が表出している。また、各圧電フィルムの突出部15の先端側には、第2保護層30を貫通する孔部30aが設けられており、孔部30a内で第2電極層26が表出している。すなわち、各圧電フィルムの突出部15に表面および裏面にそれぞれ、第1接点28aおよび第2接点30aが形成されている。
 このような5つの圧電フィルムが接着部の面方向の位置を一致させて積層されると、図15に示すように、各圧電フィルムの突出部15は、面方向において、互いに重複しないように配置される。
 また、各圧電フィルムの突出部15の根元側にはいずれも、第1接点28aが形成されている。前述のとおり、全ての圧電フィルムは同じ向きで積層されるため、積層状態では、全ての第1接点28aは同じ向きの面に形成されている。同様に、各圧電フィルムの突出部15の先端側にはいずれも、第2接点30aが形成されている。前述のとおり、全ての圧電フィルムは同じ向きで積層されるため、積層状態では、全ての第2接点30aは同じ向きの面に形成されている。
 これらの5つの突出部15の根元側の第1接点28aが形成されている側の面には、導電性フィルムが貼着される。これによって、各圧電フィルムの第1接点28aが容易に電気的に接続される。同様に、5つの突出部15の先端側の第2接点30aが形成されている面には、他の導電性フィルムが貼着される。これによって、各圧電フィルムの第2接点30aが容易に電気的に接続される。その際、第1接点28aを接続する導電性フィルムと第2接点30aを接続する導電性フィルムとは接続しないように配置される。
 また、図10~12に示す例では、各圧電フィルムの突出部15のすべてが、面方向において互いに重複しない位置に配置される構成としたがこれに限定はされない。
 図16は、本発明の積層圧電素子の他の一例を概念的に示す斜視図である。図17は、図16に示す積層圧電素子の右側の部分を拡大した図である。図18は、図17を裏側から見た図である。図19は、図16に示す積層圧電素子の左側の部分を拡大した図である。図20は、図19を裏側から見た図である。
 図16~図20に示す積層圧電素子は、5枚の圧電フィルムが積層された構成を有する。各圧電フィルムは、分極方向が交互になるように積層されている。
 図16に示すように、各圧電フィルムは、長方形状の接着部と、接着部の長辺側から面方向の外側に向かって突出する2つの突出部15を有する。2つの突出部15は、接着部の長辺の一方の端部側および他方の端部側にそれぞれ形成されている。図示例において、各圧電フィルムの接着部の大きさは略同じである。
 図16に示す例では、図16中右側の端面側に形成される突出部15には、第1接点が形成されており、図16中左側の端面側に形成される突出部15には、第2接点が形成されている。
 図17および図18に示すように、図16中右側の端面側に形成される突出部15は、2層目と3層目、ならびに、4層目と5層目が面方向の同じ位置に形成されている。
 2層目の突出部15に形成される第1接点は3層目側を向いており、また、3層目の突出部に形成される第1接点は、2層目側を向いている。すなわち、2層目の第1接点と3層目の第1接点とは対面している。
 同様に、4層目の突出部15に形成される第1接点は5層目側を向いており、また、5層目の突出部に形成される第1接点は、4層目側を向いている。すなわち、4層目の第1接点と5層目の第1接点とは対面している。
 また、1層目の突出部15に形成される第1接点は、2層目とは反対側を向いている。
 このように各突出部15に形成された第1接点は、導電性フィルム60aによって互いに接続される。具体的には、図17および図18に示すように、導電性フィルム60aは、1層目の突出部の第1接点を覆い、2層目と3層目との間に挟持され、さらに、4層目と5層目との間に挟持されるように配置される。これにより、1層目~5層目の第1接点が接続される。
 一方、図19および図20に示すように、図16中左側の端面側に形成される突出部15は、2層目と3層目、ならびに、4層目と5層目が面方向の同じ位置に形成されている。
 2層目の突出部15に形成される第2接点は3層目とは反対側を向いており、また、3層目の突出部に形成される第2接点は、2層目とは反対側を向いている。すなわち、2層目と3層目の突出部が積層された部分には両面に第2接点が形成されている。
 同様に、4層目の突出部15に形成される第2接点は5層目とは反対側を向いており、また、5層目の突出部に形成される第2接点は、4層目とは反対側を向いている。すなわち、4層目と5層目の突出部が積層された部分には両面に第2接点が形成されている。
 また、1層目の突出部15に形成される第2接点は、2層目側を向いている。
 このように各突出部15に形成された第2接点は、導電性フィルム60bによって互いに接続される。具体的には、図19および図20に示すように、導電性フィルム60bは、各突出部の表面側から裏面側にかけて貼着される。これにより、1層目~5層目の第2接点が接続される。
 ここで、図10~12に示す例では、各圧電フィルムの突出部が面方向において互いに重複しない位置に配置される構成としたがこれに限定はされない。各圧電フィルムの突出部が、面方向において、接着部の同じ位置から突出して、突出方向の長さが互いに異なる構成であってもよい。
 図21は、本発明の積層圧電素子の他の一例を概念的に示す斜視図である。図21は、分解図である。
 図21に示す積層圧電素子は、5枚の圧電フィルム(12q~12u)が積層された構成を有する。各圧電フィルムは、分極方向が交互になるように積層されている。すなわち、図21においては、図21中上側の1層目の圧電フィルム12qは、第1保護層28側を上に向けて積層され、2層目の圧電フィルム12rは、第2保護層30側を上に向けて積層され、3層目の圧電フィルム12sは、第1保護層28側を上に向けて積層され、4層目の圧電フィルム12tは、第2保護層30側を上に向けて積層され、5層目の圧電フィルム12uは、第1保護層28側を上に向けて積層されている。
 図21に示すように、各圧電フィルムは、長方形状の接着部と、接着部の短辺から面方向の外側に向かって突出する2つの突出部15を有する。2つの突出部15は、短辺の一方の端部および他方の端部に設けられている。図示例において、各圧電フィルムの接着部の大きさは略同じである。
 まず、図21中、左側の端部に形成される突出部について説明する。図21に示すように、1層目の圧電フィルム12qには、短辺の左側の端部に突出部15が形成されている。2層目の圧電フィルム12rには、1層目の圧電フィルム12qの突出部15の位置と同じ位置から突出する突出部15が形成されている。2層目の突出部15は1層目の突出部15よりも突出方向の長さが長い。3層目の圧電フィルム12sには、2層目の圧電フィルム12rの突出部15の位置と同じ位置から突出する突出部15が形成されている。3層目の突出部15は2層目の突出部15と同じ長さである。4層目の圧電フィルム12tには、3層目の圧電フィルム12sの突出部15の位置と同じ位置から突出する突出部15が形成されている。4層目の突出部15は、3層目の突出部15よりも突出方向の長さが長い。5層目の圧電フィルム12uには、4層目の圧電フィルム12tの突出部15の位置と同じ位置から突出する突出部15が形成されている。5層目の突出部15は4層目の突出部15と同じ長さである。
 これら図21中左側の突出部15には、第1保護層28を貫通する孔部28aが設けられており、孔部28a内で第1電極層24が表出している。すなわち、各突出部15には、第1接点28aが形成されている。
 前述のとおり、1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層される。そのため、図21に示すように、2層目の第1接点と3層目の第1接点とは対面している。同様に、4層目の第1接点と5層目の第1接点とは対面している。
 このように各突出部15に形成された第1接点は、導電性フィルム(図示せず)によって互いに接続される。具体的には、1層目の突出部の第1接点を覆う導電性フィルムと、2層目と3層目の突出部15の間に挟持される導電性フィルムと、4層目と5層目の突出部15の間に挟持される導電性フィルムとを配置して3つの導電性フィルムを接続することで、1層目~5層目の第1接点が接続される。導電性フィルムの配置については、後述する図24~図26の例と同様である。
 次に、図21中、右側の端部に形成される突出部について説明する。図21に示すように、1層目の圧電フィルム12qには、短辺の右側の端部に突出部15が形成されている。2層目の圧電フィルム12rには、1層目の圧電フィルム12qの突出部15の位置と同じ位置から突出する突出部15が形成されている。2層目の突出部15は1層目の突出部15と同じ長さである。3層目の圧電フィルム12sには、2層目の圧電フィルム12rの突出部15の位置と同じ位置から突出する突出部15が形成されている。3層目の突出部15は2層目の突出部15よりも突出方向の長さが長い。4層目の圧電フィルム12tには、3層目の圧電フィルム12sの突出部15の位置と同じ位置から突出する突出部15が形成されている。4層目の突出部15は、3層目の突出部15と同じ長さである。5層目の圧電フィルム12uには、4層目の圧電フィルム12tの突出部15の位置と同じ位置から突出する突出部15が形成されている。5層目の突出部15は4層目の突出部15よりも突出方向の長さが長い。
 これら図21中右側の突出部15には、第2保護層30を貫通する孔部30aが設けられており、孔部30a内で第2電極層26が表出している。すなわち、各突出部15には、第2接点30aが形成されている。
 前述のとおり、1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層される。そのため、図21に示すように、1層目の第2接点と2層目の第2接点とは対面している。同様に、3層目の第2接点と4層目の第2接点とは対面している。
 このように各突出部15に形成された第2接点は、導電性フィルム(図示せず)によって互いに接続される。具体的には、1層目と2層目との間に挟持される導電性フィルムと、3層目と4層目との間に挟持される導電性フィルムと、5層目の突出部の第2接点を覆う導電性フィルムと、を配置して3つの導電性フィルムを接続することで、1層目~5層目の第2接点が接続される。導電性フィルムの配置については、後述する図24~図26の例と同様である。
 このように、隣接する導電性フィルムの第1接点同士、あるいは、第2接点同士を対面させてこの間に導電性フィルムを配置する構成とすることで、実質的な引出し電極の数(導電性フィルムの数)を少なくすることができる。
 ここで、図21に示す例では、各圧電フィルムが、分極方向が交互になるように積層された構成で、かつ、各圧電フィルムの突出部が、面方向において、接着部の同じ位置から突出して、突出方向の長さが互いに異なる構成の場合に、隣接する圧電フィルムの接点同士を対面させて互いに接続する構成としたがこれに限定はされない。隣接する圧電フィルムの一方の突出部を突出方向に折り曲げた構成としてもよい。
 図22は、本発明の積層圧電素子の他の一例を概念的に示す部分拡大斜視図である。図23は、図22のB-B線断面図である。
 図22に示す積層圧電素子は、5枚の圧電フィルム(12q、12v、12s、12w、12u)が積層された構成を有する。各圧電フィルムは、分極方向が交互になるように積層されている。すなわち、図22においては、図22中上側の1層目の圧電フィルム12qは、第1保護層28側を上に向けて積層され、2層目の圧電フィルム12vは、第2保護層30側を上に向けて積層され、3層目の圧電フィルム12sは、第1保護層28側を上に向けて積層され、4層目の圧電フィルム12wは、第2保護層30側を上に向けて積層され、5層目の圧電フィルム12uは、第1保護層28側を上に向けて積層されている。なお、図22に示す積層圧電素子の圧電フィルムのうち、1、3、5層目の圧電フィルムは、図21に示す積層圧電素子の1、3、5層目の圧電フィルムの構成と同様の構成を有する。
 図22に示すように、各圧電フィルムは、長方形状の接着部と、接着部の短辺側から面方向の外側に向かって突出する2つの突出部15を有する。2つの突出部15は、短辺の一方の端部および他方の端部に設けられている。図示例において、各圧電フィルムの接着部の大きさは略同じである。
 図22中、左側の端部に形成される突出部について図23を用いて説明する。図22に示すように、1層目の圧電フィルム12qには、短辺の左側の端部に突出部15が形成されている。2層目の圧電フィルム12vには、1層目の圧電フィルム12qの突出部15の位置と同じ位置から突出する突出部15が形成されている。ここで、図23に示すように、2層目の突出部15は、突出方向に折り返されている。そのため、2層目の突出部の第1保護層側の面が1層目の圧電フィルム12q側に向く。すなわち、2層目の第1接点28aは、1層目の圧電フィルム12q側向きに配置される。2層目の突出部15の折り返した部位は、1層目の突出部15とは、重複しない位置に配置される。3層目の圧電フィルム12sには、2層目の圧電フィルム12rの突出部15の位置と同じ位置から突出する突出部15が形成されている。3層目の突出部15は2層目の突出部15の折り返した状態での長さよりも長い。4層目の圧電フィルム12wには、3層目の圧電フィルム12sの突出部15の位置と同じ位置から突出する突出部15が形成されている。ここで、図23に示すように、4層目の突出部15は、突出方向に折り返されている。そのため、4層目の突出部の第1保護層側の面が1層目の圧電フィルム12q側に向く。すなわち、4層目の第1接点28aは、1層目の圧電フィルム12q側向きに配置される。4層目の突出部15の折り返した部位は、3層目の突出部15とは、重複しない位置に配置される。5層目の圧電フィルム12uには、4層目の圧電フィルム12tの突出部15の位置と同じ位置から突出する突出部15が形成されている。5層目の突出部15は4層目の突出部15の折り返した状態での長さよりも長い。
 このように、各圧電フィルムが、分極方向が交互になるように積層された構成において、隣接する圧電フィルム、すなわち、分極方向が一方の方向となる圧電フィルムの突出部15を突出方向に折り曲げた構成とすることで、各圧電フィルムの第1接点28aを同じ面側に配置することができる。これにより、導電性フィルム等を貼着して各圧電フィルムの第1接点28aを接続することがより容易になる。
 図22中、右側の端部に形成される突出部についても基本的に上記と同様の構成によって各圧電フィルムの第2接点を同じ面側に配置することができる。図22に示す例では、右側の端部に形成される突出部15には、第2接点が設けられており、1、3、5層目の圧電フィルムの突出部15を突出方向に折り返すことで、各圧電フィルムの第2接点30aを同じ面側に配置することができる。
 なお、図21および図22に示す例では、各圧電フィルムが、分極方向が交互になるように積層されている構成としたがこれに限定はされず、各圧電フィルムが、分極方向が同じになるように積層される構成とした場合にも、各圧電フィルムの突出部が、面方向において、接着部の同じ位置から突出して、突出方向の長さが互いに異なる構成としてもよい。この場合には、重複する全ての突出部の長さが異なり、突出部の同じ側を向く面に各第1接点(あるいは第2接点)が形成される。
 ここで、図21に示す例では、各圧電フィルムの突出部が、面方向において、接着部の同じ位置から突出して、突出方向の長さが互いに異なる構成としたがこれに限定はされない。各圧電フィルムの突出部が、面方向において、接着部の同じ位置から突出して、突出方向の長さが同じである構成であってもよい。
 図24は、本発明の積層圧電素子の他の一例を概念的に示す斜視図である。図25は、図24の左側の突出部の部分を拡大した拡大図である。図26は、図24の右側の突出部の部分を拡大した拡大図である。
 図24に示す積層圧電素子は、5枚の圧電フィルムが積層された構成を有する。各圧電フィルムは、分極方向が交互になるように積層されている。
 図24に示すように、各圧電フィルムは、長方形状の接着部と、接着部の短辺から面方向の外側に向かって突出する2つの突出部15を有する。2つの突出部15は、短辺の一方の端部および他方の端部に設けられている。図示例において、各圧電フィルムの接着部の大きさは略同じである。
 まず、図24中、左側の端部に形成される突出部について図25を用いて説明する。
 これら図24中左側の突出部15には、第1保護層28を貫通する孔部28aが設けられており、孔部28a内で第1電極層24が表出している。すなわち、各突出部15には、第1接点28aが形成されている。
 1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層される。そのため、2層目の第1接点と3層目の第1接点とは対面している。同様に、4層目の第1接点と5層目の第1接点とは対面している。
 これらの突出部15には、3つの導電性フィルムが配置されている。具体的には、1層目の突出部15の第1接点を覆う導電性フィルム61aと、2層目と3層目の突出部15の間に挟持される導電性フィルム61bと、4層目と5層目の突出部15の間に挟持される導電性フィルム61cとを配置して導電性フィルム61aと導電性フィルム61bとを接触させて、かつ、導電性フィルム61bと導電性フィルム61cとを接触させる。これにより、1層目~5層目の第1接点が接続される。
 同様に、図24中、右側の端部に形成される突出部について、図26を用いて説明する。
 図24中右側の突出部15には、第2保護層30を貫通する孔部30aが設けられており、孔部30a内で第2電極層26が表出している。すなわち、各突出部15には、第2接点30aが形成されている。
 1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層される。そのため、1層目の第2接点と2層目の第2接点とは対面している。同様に、3層目の第2接点と4層目の第2接点とは対面している。
 これらの突出部15には、3つの導電性フィルムが配置されている。具体的には、1層目と2層目の突出部15の間に挟持される導電性フィルム61dと、3層目と4層目の突出部15の間に挟持される導電性フィルム61eと、5層目の突出部15の第2接点を覆う導電性フィルム61fと、を配置して導電性フィルム61dと導電性フィルム61eとを接触させて、かつ、導電性フィルム61eと導電性フィルム61fとを接触させる。これにより、1層目~5層目の第2接点が接続される。
 また、上述した各例においてはいずれも、各圧電フィルムの突出部は、この突出部が形成される接着部の端辺の幅方向の一部に形成されるものとしたが、すなわち、突出部の突出方向と直交する方向の幅は、突出部が形成される接着部の端辺の幅よりも短い構成としたが、これに限定はされない。各圧電フィルムの突出部は、突出方向と直交する方向の幅が、この突出部が形成される接着部の端辺の幅と同じであってもよい。
 図27は、本発明の積層圧電素子の他の一例を概念的に示す部分拡大斜視図である。
 図27に示す積層圧電素子は、5枚の圧電フィルムが積層された構成を有する。各圧電フィルムは、分極方向が交互になるように積層されている。
 図27に示す積層圧電素子において、各圧電フィルムは、長方形状の接着部と、接着部の短辺から面方向の外側に向かって突出する1つの突出部15を有する。突出部15は、短辺の幅と同じ幅を有する。
 この突出部15の左側端部には、第1保護層28を貫通する孔部28a(第1接点28a)が形成されている。
 1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層される。そのため、2層目の第1接点と3層目の第1接点とは対面している。同様に、4層目の第1接点と5層目の第1接点とは対面している。
 これらの第1接点28aの位置には、3つの導電性フィルム(61a、61b、61c)が配置されている。3つの導電性フィルム(61a、61b、61c)の配置は、図25と同様である。すなわち、1層目の圧電フィルムの第1接点28aを覆う導電性フィルム61aと、2層目と3層目との間に挟持され各第1接点28aと接続される導電性フィルム61bと、4層目と5層目との間に挟持され各第1接点28aと接続される導電性フィルム61cと、を有し、3つの導電性フィルム(61a、61b、61c)を接触させることで、1層目~5層目の第1接点が接続される。
 また、突出部15の右側端部には、第2保護層30を貫通する孔部30a(第2接点30a)が形成されている。
 1、3、5層目の圧電フィルムと、2,4層目の圧電フィルムとは逆向きで積層される。そのため、1層目の第2接点と2層目の第2接点とは対面している。同様に、3層目の第2接点と4層目の第2接点とは対面している。
 これらの第2接点30aの位置には、3つの導電性フィルム(61d、61e、61f)が配置されている。3つの導電性フィルム(61d、61e、61f)の配置は、図26と同様である。すなわち、1層目と2層目との間に挟持され各第2接点30aと接続される導電性フィルム61dと、3層目と4層目との間に挟持され各第2接点30aと接続される導電性フィルム61eと、5層目の圧電フィルムの第2接点30aを覆う導電性フィルム61fと、を有し、3つの導電性フィルム(61d、61e、61f)を接触させることで、1層目~5層目の第2接点が接続される。
 なお、突出部の突出方向と直交する方向の幅が、突出部が形成される接着部の端辺の幅よりも短い構成の場合には、突出部と接着部との接続部の角部はR構造が設けられていることが好ましい。Rは、0.3mm以上が好ましく、0.5mm以上がより好ましい。各ある電フィルムは、厚さが薄いため、積層されない突出部は、根元から垂れてしまう。突出部と接着部との接続部の角部にR構造を設けることでこれを抑制することができる。
 また、このR構造は、突出部をなす直線と接着部をなす直線との交点において、上記の半径規定内において、突出部の稜線の形状が変わる部分があることを示すものであり、必ずしもR構造が円でなくてもよい。すなわち、突出部と接着部との接続部において、突出部が先端側から根元部に向かって漸次、幅が広くなる領域を有するものであってもよい。更に詳しく言うと、突出部の稜線と接着部の稜線を座標に当てはめる。突出部と接着部との接続部から5mm以上離間した部分の直線を延長した線で作られた座標軸に正接なR0.5を描き、正接なR0.5と座標軸で囲まれたエリアAを規定し、実際の突出部に形成される幅が広くなる領域の稜線と座標軸とで囲まれたエリアBが、エリアAよりも大きいことが好ましい。
 ここで、突出部の、突出方向と直交する方向の幅(以下、単に「突出部の幅」ともいう)は、接着部側(根元側)よりも先端側が狭いことが好ましく、接着部から離間するにしたがって漸次狭くなることが好ましい。また、突出部の具体的な形状としては、接着部の主面に垂直な方向から見た際に(以下、「平面視において」ともいう)台形状であることが好ましい。
 この点について図54~図57を用いて説明する。
 図54は、突出部が長方形状の積層圧電素子の一例を示す概念図である。図55は、図54の積層圧電素子の一部を拡大して示す図である。図56は、突出部が台形状の積層圧電素子の一例を示す概念図である。図57は、図56の積層圧電素子の一部を拡大して示す図である。
 図54に示す積層圧電素子においては、5枚の圧電フィルム12がそれぞれ、積層した際に同じ側となる辺側に突出部15を有している。各圧電フィルム12の突出部15は、主面に垂直な方向から見た際に重複しないように、突出部15が形成される辺に沿う方向においてズレた位置にそれぞれ形成されている。また、図54に示す積層圧電素子の突出部15は、突出方向と直交する方向の幅が接着部側(根元側)と先端側とで同じである。すなわち、平面視における突出部の形状は長方形状である。
 前述のとおり、各突出部15には電気的な接点が形成されて、各接点が電気的に接続される。そのため、各突出部15は、近い位置に形成されることが好ましい。すなわち、面方向における突出部15同士の間隔は狭い方が好ましい。しかしながら、圧電フィルム12、すなわち、突出部15は非常に薄いため、突出部15は、撓みやすい。そのため、突出部の形状は長方形状の場合に、突出部15同士の間隔が狭いと、突出部15が撓んだ場合などに、突出部15の側面同士が接触しやすく、一方の突出部15の第1電極層と他方の突出部15の第2電極層が接触して短絡が発生してしまうおそれがある。
 このような突出部15同士の接触を防止するために、突出部15の幅を小さくして、突出部15間の間隔を大きくすることが考えられるが、突出部15の幅を小さくすると、突出部15を流れる電流の電流密度が高くなり発熱しやすくなるため好ましくない。
 また、突出部15の形状が長方形状の場合には、図55に示すように、突出部15を形成するために圧電フィルムを裁断した際に切込み過ぎが発生しやすい。このような圧電フィルムを積層する際に圧力を加えると、切込み過ぎた箇所15aが隣接する圧電フィルム12と干渉して、短絡が発生してしまうおそれがある。
 一方、図56に示す積層圧電素子は、5枚の圧電フィルム12がそれぞれ、積層した際に同じ側となる辺側に突出部15を有している。各圧電フィルム12の突出部15は、主面に垂直な方向から見た際に重複しないように、突出部15が形成される辺に沿う方向においてズレた位置にそれぞれ形成されている。また、図56に示す積層圧電素子の突出部15は、突出方向と直交する方向の幅が接着部側(根元側)よりも先端側が狭い。図示例においては、平面視における突出部の形状は台形状である。
 このように、突出部15の幅が先端側が狭い形状であると、突出部15が撓んだ場合なども、突出部15の側面同士が接触しにくくなる。そのため、突出部15同士の間隔を狭くしても短絡が発生してしまうことを防止できる。また、突出部15の根元部の幅は大きいため、突出部15を流れる電流の電流密度が高くなることを抑制でき、発熱を抑制することができる。
 また、突出部15の形状が台形状の場合には、図57に示すように、突出部15を形成するために圧電フィルムを裁断した際に切込み過ぎが発生しにくい。そのため、圧電フィルムを積層する際に圧力を加えても、切込み過ぎた箇所が隣接する圧電フィルム12と干渉して、短絡が発生してしまうことを防止できる。
 なお、図56に示す例では、突出部の形状は台形状としたが、これに限定はされず、先端側の幅が根元側の幅よりも狭くなっていればよい。例えば、突出部の、接着部と接する辺が曲線状であってもよい。また、突出部の幅が、根元側から先端側に向かって段階的に狭くなる形状(階段状)であってもよい。
 ここで、上述した各例では、各圧電フィルムは、1層の枚葉状としたが、これに限定はされない。複数の圧電フィルムの少なくとも1つは、少なくとも1回折り返した蛇腹形状であってもよい。
 蛇腹形状の圧電フィルムの例を図28に示す。
 図28に示す圧電フィルムは、圧電フィルムを、複数回、折り返すことにより、圧電フィルムを複数層、積層したものである。また、好ましい態様として、折り返しによって積層された圧電フィルムは、各層を接着層によって貼着している。
 厚さ方向に分極された1枚の圧電フィルムを、折り返して積層することで、積層方向に隣接(対面)する圧電フィルムの分極方向は、逆方向になる。
 この構成によれば、駆動電圧を印加するための電源が1個で済み、さらに、圧電フィルムからの電極の引き出しも、1か所でよい。
 そのため、積層圧電素子が、蛇腹形状の圧電フィルムを有する格子とすることで、部品点数を低減し、かつ、構成を簡略化して、圧電素子(モジュール)としての信頼性を向上し、さらに、コストダウンを図ることができる。
 図28に示す圧電フィルムのように、圧電フィルムを折り返した圧電フィルムでは、折り返しの回数を偶数回とし、奇数層積層される構成とすることで、一方の表面では第1保護層28が表面になり、他方の表面では第2保護層30が表面になる。そのため、第1保護層28側の表面に第1接点28aを形成し、第2保護層30側の表面に第2接点30aを形成することで、容易に電極を引き出すことができる。
 このような蛇腹形状の圧電フィルムを1枚以上含む積層圧電素子の例を図29~図36に示す。
 図29~図32に示す積層圧電素子はいずれも、蛇腹形状の圧電フィルム12Lと枚葉状の圧電フィルム12とを積層した構成を有する。蛇腹形状の圧電フィルム12Lは、枚葉状の圧電フィルム12に接着されていない突出部15を有し、この突出部15に第1接点および第2接点(図示せず)が形成される。第1接点には、導電性フィルム62aが接続されている。また、第2接点には、導電性フィルム62bが接続されている。
 枚葉状の圧電フィルム12は、蛇腹形状の圧電フィルム12Lに接着されていない突出部15を有し、この突出部15に第1接点および第2接点(図示せず)が形成される。第1接点には、導電性フィルム62cが接続されている。また、第2接点には、導電性フィルム62dが接続されている。
 図29に示す例では、枚葉状の圧電フィルム12の分極方向と、蛇腹形状の圧電フィルム12Lの、枚葉状の圧電フィルム12に接する層における分極方向とは一致している。また、枚葉状の圧電フィルム12の突出部15と、蛇腹形状の圧電フィルム12Lの突出部15とは面方向の異なる位置に形成されている。
 図30に示す例では、枚葉状の圧電フィルム12の分極方向と、蛇腹形状の圧電フィルム12Lの、枚葉状の圧電フィルム12に接する層における分極方向とは逆である。また、枚葉状の圧電フィルム12の突出部15と、蛇腹形状の圧電フィルム12Lの突出部15とは面方向の異なる位置に形成されている。
 図31に示す例では、枚葉状の圧電フィルム12の分極方向と、蛇腹形状の圧電フィルム12Lの、枚葉状の圧電フィルム12に接する層における分極方向とは一致している。また、枚葉状の圧電フィルム12の突出部15と、蛇腹形状の圧電フィルム12Lの突出部15とは面方向の同じ位置に形成されている。
 図32に示す例では、枚葉状の圧電フィルム12の分極方向と、蛇腹形状の圧電フィルム12Lの、枚葉状の圧電フィルム12に接する層における分極方向とは逆である。また、枚葉状の圧電フィルム12の突出部15と、蛇腹形状の圧電フィルム12Lの突出部15とは面方向の同じ位置に形成されている。
 図33~図36に示す積層圧電素子はいずれも、蛇腹形状の圧電フィルムを2枚積層した構成を有する。蛇腹形状の圧電フィルム12Laは、蛇腹形状の圧電フィルム12Lbに接着されていない突出部15を有し、この突出部15に第1接点および第2接点(図示せず)が形成される。第1接点には、導電性フィルム62aが接続されている。また、第2接点には、導電性フィルム62bが接続されている。
 蛇腹形状の圧電フィルム12Lbは、蛇腹形状の圧電フィルム12Laに接着されていない突出部15を有し、この突出部15に第1接点および第2接点(図示せず)が形成される。第1接点には、導電性フィルム62eが接続されている。また、第2接点には、導電性フィルム62fが接続されている。
 図33に示す例では、蛇腹形状の圧電フィルム12Laの、蛇腹形状の圧電フィルム12Lbに接する層における分極方向と、蛇腹形状の圧電フィルム12Lbの、蛇腹形状の圧電フィルム12Laに接する層における分極方向とは互いに逆である。また、2つの蛇腹形状の圧電フィルムの突出部15は面方向の同じ位置に形成されている。また、蛇腹形状の圧電フィルム12Laの突出部15は、蛇腹形状の圧電フィルム12Lbと接しない側の層に形成されている。一方、蛇腹形状の圧電フィルム12Lbの突出部15は、蛇腹形状の圧電フィルム12Laと接する側の層に形成されている。
 図34に示す例では、蛇腹形状の圧電フィルム12Laの、蛇腹形状の圧電フィルム12Lbに接する層における分極方向と、蛇腹形状の圧電フィルム12Lbの、蛇腹形状の圧電フィルム12Laに接する層における分極方向とは互いに逆である。また、2つの蛇腹形状の圧電フィルムの突出部15は面方向の同じ位置に形成されている。また、蛇腹形状の圧電フィルム12Laの突出部15は、蛇腹形状の圧電フィルム12Lbと接しない側の層に形成されている。また、蛇腹形状の圧電フィルム12Lbの突出部15は、蛇腹形状の圧電フィルム12Laと接しない側の層に形成されている。
 図35に示す例では、蛇腹形状の圧電フィルム12Laの、蛇腹形状の圧電フィルム12Lbに接する層における分極方向と、蛇腹形状の圧電フィルム12Lbの、蛇腹形状の圧電フィルム12Laに接する層における分極方向とは互いに逆である。また、2つの蛇腹形状の圧電フィルムの突出部15は面方向の異なる位置に形成されている。また、蛇腹形状の圧電フィルム12Laの突出部15は、蛇腹形状の圧電フィルム12Lbと接しない側の層に形成されている。一方、蛇腹形状の圧電フィルム12Lbの突出部15は、蛇腹形状の圧電フィルム12Laと接する側の層に形成されている。
 図36に示す例では、蛇腹形状の圧電フィルム12Laの、蛇腹形状の圧電フィルム12Lbに接する層における分極方向と、蛇腹形状の圧電フィルム12Lbの、蛇腹形状の圧電フィルム12Laに接する層における分極方向とは互いに逆である。また、2つの蛇腹形状の圧電フィルムの突出部15は面方向の異なる位置に形成されている。また、蛇腹形状の圧電フィルム12Laの突出部15は、蛇腹形状の圧電フィルム12Lbと接しない側の層に形成されている。また、蛇腹形状の圧電フィルム12Lbの突出部15は、蛇腹形状の圧電フィルム12Laと接しない側の層に形成されている。
 このように、複数の圧電フィルムの少なくとも1つが、少なくとも1回折り返した蛇腹形状である場合にも、各圧電フィルムの層構成および突出部の形成位置等は種々の構成とすることができる。
 ここで、図1等に示す例では、突出部15は、第1保護層28、第1電極層24、圧電体層20、第2電極層26および第2保護層30を積層した構成を有するもの、すなわち、突出部15は圧電フィルム12の層構成と同じ層構成を有するものとしたがこれに限定はされない。突出部は、少なくとも第1電極層24および第1保護層28、または、第2電極層26および第2保護層30が積層した構成を有するものであってもよい。
 図37は、本発明の積層圧電素子の他の一例を概念的に示す図である。図38は、図38の上面図である。図39は、図38の側面図である。図40は、図37の積層圧電素子が有する複数の圧電フィルムをそれぞれ示す図である。
 図37~図39に示す例は、圧電フィルムを3枚積層された構成を有する。各圧電フィルムは、分極方向が同じになるように積層されている。図37~図39においては、図37中上側の1層目の圧電フィルム72aは、第1保護層28側を上に向けて積層され、2層目の圧電フィルム72bは、第1保護層28側を上に向けて積層され、3層目の圧電フィルム72cは、第1保護層28側を上に向けて積層されている。
 図37に示すように、各圧電フィルムは、長方形状の接着部73と、接着部73の長辺側から面方向の外側に向かって突出する2つの突出部75aおよび75bを有する。突出部75aは、第1保護層28および第1電極層24が積層された構成を有する。突出部75aは、接着部73の一方の長辺から、外側に向かって突出するように設けられている。突出部75bは、第2保護層30および第2電極層26が積層された構成を有する。突出部75bは、接着部73の他方の長辺から、外側に向かって突出するように設けられている。
 図示例において、各圧電フィルムの接着部13の大きさは略同じである。
 また、各圧電フィルムは、第1保護層28および第1電極層24からなる突出部75aが配置される長辺、および、第2保護層30および第2電極層26からなる突出部75bが配置される長辺をそれぞれ面方向に一致させて積層されている。
 図40に示すように、1層目の圧電フィルム72aには、接着部73の一方の長辺の一方の端部側に突出部75aが形成され、他方の長辺の一方の端部側に突出部75bが形成されている。2層目の圧電フィルム72bには、1層目の圧電フィルム72aの突出部それぞれの位置から他方の端部側にズレた位置に、突出部75aおよび75bがそれぞれ形成されている。3層目の圧電フィルム72cには、2層目の圧電フィルム72bの突出部それぞれの位置から他方の端部側にズレた位置に、突出部75aおよび75bがそれぞれ形成されている。
 図40に示す例では、各圧電フィルムの突出部は、略同じ大きさ形状である。また、各圧電フィルムの突出部は、隣接する圧電フィルムの突出部の位置から、突出部1つ分ズレた位置に形成されている。
 図40に示すように、各圧電フィルムの一方の長辺側の突出部75aでは、図中側の面に第1電極層24が露出している。また、各圧電フィルムの他方の長辺側の突出部75bでは、第2電極層26が露出している。すなわち、各圧電フィルムの一方の長辺に形成される突出部75aの露出する第1電極層24が第1接点となり、他方の長辺に形成される突出部75bの露出する第2電極層26が第2接点となる。
 このような3つの圧電フィルムが接着部73の面方向の位置を一致させて積層されると、図37に示すように、各圧電フィルムの突出部75aおよび75bは、面方向において、互いに重複しないように配置される。
 また、各圧電フィルムの一方の長辺側の突出部75aにはいずれも、第1接点(第1電極層24)が形成されている。
 図41に示すように、これらの突出部75aの第1接点(第1電極層24)側の面には、導電性フィルム63aが貼着される。これによって、各圧電フィルムの第1接点が容易に電気的に接続される。
 同様に、各圧電フィルムの他方の長辺側の突出部75bにはいずれも、第2接点(第2電極層26)が形成されている。
 図41に示すように、これらの突出部75bの第2接点(第2電極層26)側の面には、導電性フィルム63bが貼着される。これによって、各圧電フィルムの第2接点が容易に電気的に接続される。
 このように、突出部が、少なくとも第1電極層24および第1保護層28、または、第2電極層26および第2保護層30が積層した構成を有するものとした場合でも、隣接する圧電フィルムと接着されていない突出部を設けて、突出部に第1接点または第2接点を設けることで、第1電極層24同士、および、第2電極層26同士をそれぞれ容易に接続することができる。
 ここで、図38に示す例では、各圧電フィルムの突出部は、面方向に重複しないように配置される構成としたが、これに限定はされず、図42に示すように、隣接する圧電フィルムの突出部が、面方向に一部重複するように配置される構成としてもよい。
 また、図37に示す例では、各圧電フィルムは、分極方向が同じになるように積層されている構成としたが、これに限定はされず、各圧電フィルムは、分極方向が交互になるように積層されていてもよい。この場合、図16に示す例と同様に、隣接する圧電フィルムの突出部75a同士、または、突出部75b同士が面方向に同じ位置に形成されていてもよい。
 また、突出部が、少なくとも第1電極層24および第1保護層28、または、第2電極層26および第2保護層30が積層した構成を有するものである場合にも、上述した図21に示した例と同様に、圧電フィルムの突出部75aおよび/または突出部75bがそれぞれ、面方向において、接着部の同じ位置から突出しており、突出方向の長さが互いに異なる構成としてもよい。
 また、各圧電フィルムが、分極方向が交互になるように積層されており、圧電フィルムの突出部75aおよび/または突出部75bがそれぞれ、面方向において、接着部の同じ位置から突出している場合に、図23の例と同様に、突出部を、突出方向に折り曲げて各圧電フィルムの第1接点または第2接点を同じ面側に配置するものとしてもよい。
 また、図24に示す例と同様に、各圧電フィルムの突出部75aおよび/または突出部75bがそれぞれ、面方向において、接着部の同じ位置から突出して、突出方向の長さが同じであり、複数の導電性フィルムを用いて接続する構成であってもよい。
 また、少なくとも1つの圧電フィルムが蛇腹形状の圧電フィルムであって、蛇腹形状の圧電フィルムが、第1保護層28および第1電極層24からなる突出部75a、および、第2保護層30および第2電極層26からなる突出部75bを有する構成としてもよい。
 また、各圧電フィルムの第1接点、および第2接点をそれぞれ導電性フィルムで接続した構成において、図43および図44に示すように、突出部を接着部の一方の主面側に折り曲げてもよい。突出部を折り曲げることで、スペースを節約することができる。なお、図44において、電極層の図示は省略している。
 この点は、上述した、突出部が、第1保護層28、第1電極層24、圧電体層20、第2電極層26および第2保護層30を積層した構成を有するものである場合も同様である。
 図40に示すように、圧電フィルムにおいて、電極層および保護層のみが面方向に突出する突出部を形成する方法としては、特開2014-209724号の段落[0082]~[0084]に記載の方法等を用いることができる。
 以上、本発明の積層圧電素子および電気音響変換器について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 各種の部材に当接して音を発生させるエキサイター等として、好適に利用可能である。
 10、70、70b 積層圧電素子
 11a、11c シート状物
 11b 積層体
 12,12a~12w,12L,12La,12Lb、72a~72c 圧電フィルム
 13、73 接着部
 14,52 接着層
 15、75a、75b 突出部
 20 圧電体層
 24 第1電極層
 26 第2電極層
 28 第1保護層
 28a 孔部(第1接点)
 30 第2保護層
 30a 孔部(第2接点)
 34 粘弾性マトリックス
 36 圧電体粒子
 40 コロナ電極
 42 直流電源
 50、50a~50c 振動板
 60a~60b、61a~61f、62a~62f、63a、63b 導電性フィルム
 80、80a~80f 固定手段

Claims (18)

  1.  第1保護層、第1電極層、圧電体層、第2電極層および第2保護層の順に積層してなる圧電フィルムを、複数層、積層してなり、
     各前記圧電体層は、厚さ方向に分極されたものであり、
     各前記圧電フィルムにおいて、前記圧電体層の分極方向の上流側に前記第1電極が配置され、下流側に前記第2電極が配置され、
     複数の前記圧電フィルムはそれぞれ、隣接する前記圧電フィルムと接着される接着部と、前記接着部から面方向の外側に向かって、少なくとも前記第1電極層および前記第1保護層、または、前記第2電極層および前記第2保護層が突出する、隣接する前記圧電フィルムと接着されていない突出部とを有し、
     各前記圧電フィルムの前記突出部には、各前記圧電フィルムの前記第1電極層が互いに電気的に接続される第1接点、および、各前記圧電フィルムの前記第2電極層が互いに電気的に接続される第2接点の少なくとも一方が形成されている積層圧電素子。
  2.  前記突出部は、前記第1保護層、前記第1電極層、前記圧電体層、前記第2電極層および前記第2保護層を積層した構成を有する請求項1に記載の積層圧電素子。
  3.  各前記圧電フィルムの前記突出部は、面方向において、少なくとも一部が互いに重複しないように配置されている請求項1または2に記載の積層圧電素子。
  4.  各前記圧電フィルムの前記突出部は、面方向において、前記接着部の同じ位置から突出しており、突出方向の長さが互いに異なる請求項1または2に記載の積層圧電素子。
  5.  各前記圧電フィルムの前記突出部は、突出方向と直交する方向の幅が、前記接着部の幅と同じである請求項1または2に記載の積層圧電素子。
  6.  複数の前記圧電フィルムの少なくとも1つは、少なくとも1回折り返した蛇腹形状である請求項1~5のいずれか一項に記載の積層圧電素子。
  7.  前記圧電フィルムの前記突出部と前記接着部との接続部の角部は0.5mm以上のR構造が設けられている請求項1~6のいずれか一項に記載の積層圧電素子。
  8.  隣接する前記圧電フィルムの、前記第1電極側同士、または、前記第2電極側同士が対面するように配置されている請求項1~7のいずれか一項に記載の積層圧電素子。
  9.  隣接する前記圧電フィルムの一方の前記突出部を、突出方向に折り曲げた請求項8に記載の積層圧電素子。
  10.  各前記圧電フィルムの前記突出部には、前記第1電極層同士、あるいは前記第2電極層同士を接続する導電性フィルムが貼着されており、
     各前記圧電フィルムの前記突出部が、前記接着部の一方の主面側に折り曲げられている請求項1~9のいずれか一項に記載の積層圧電素子。
  11.  前記突出部の突出方向と直交する方向の幅は、前記接着部側よりも先端側が狭い請求項1~10のいずれか一項に記載の積層圧電素子。
  12.  前記突出部の幅は、前記接着部から離間するにしたがって漸次狭くなる請求項11に記載の積層圧電素子。
  13.  前記突出部は、前記接着部の主面に垂直な方向から見た際に台形状である請求項12に記載の積層圧電素子。
  14.  請求項1~13のいずれか一項に記載の積層圧電素子と、前記積層圧電素子が固定される振動板とを有する電気音響変換器。
  15.  前記振動板と前記積層圧電素子とが、貼着剤によって貼着されている請求項14に記載の電気音響変換器。
  16.  前記振動板が、少なくとも1組の対向する2辺が固定された四角形状であり、前記対向する2辺における固定端間の距離をLとした際に、前記振動板への前記積層圧電素子の貼着を、『0.1×L』以上、前記固定端から離間する位置に行う請求項15に記載の電気音響変換器。
  17.  前記振動板が長方形または正方形である請求項16に記載の電気音響変換器。
  18.  前記振動板のバネ定数が1×104~1×107N/mである請求項16または17に記載の電気音響変換器。
     
PCT/JP2021/007901 2020-03-19 2021-03-02 積層圧電素子および電気音響変換器 WO2021187086A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022508187A JP7457790B2 (ja) 2020-03-19 2021-03-02 積層圧電素子および電気音響変換器
CN202180019823.7A CN115244720A (zh) 2020-03-19 2021-03-02 层叠压电元件及电声换能器
EP21771776.8A EP4124066A4 (en) 2020-03-19 2021-03-02 LAMINATED PIEZOELECTRIC ELEMENT AND ELECTROACOUSTIC TRANSDUCER
KR1020227031142A KR20220140576A (ko) 2020-03-19 2021-03-02 적층 압전 소자 및 전기 음향 변환기
US17/946,825 US20230019706A1 (en) 2020-03-19 2022-09-16 Laminated piezoelectric element and electroacoustic transducer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-049274 2020-03-19
JP2020049274 2020-03-19
JP2020-212292 2020-12-22
JP2020212292 2020-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/946,825 Continuation US20230019706A1 (en) 2020-03-19 2022-09-16 Laminated piezoelectric element and electroacoustic transducer

Publications (1)

Publication Number Publication Date
WO2021187086A1 true WO2021187086A1 (ja) 2021-09-23

Family

ID=77770852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007901 WO2021187086A1 (ja) 2020-03-19 2021-03-02 積層圧電素子および電気音響変換器

Country Status (7)

Country Link
US (1) US20230019706A1 (ja)
EP (1) EP4124066A4 (ja)
JP (1) JP7457790B2 (ja)
KR (1) KR20220140576A (ja)
CN (1) CN115244720A (ja)
TW (1) TW202137783A (ja)
WO (1) WO2021187086A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181699A1 (ja) * 2022-03-24 2023-09-28 富士フイルム株式会社 電気音響変換器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199800A1 (ja) * 2020-03-30 2021-10-07 富士フイルム株式会社 積層圧電素子
CN117729500B (zh) * 2024-02-08 2024-04-30 成都纤声科技有限公司 一种声学压电结构、声学传感器和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177867A (ja) * 2009-01-28 2010-08-12 Kyocera Corp 圧電スピーカ
JP2014209724A (ja) 2013-03-29 2014-11-06 富士フイルム株式会社 電気音響変換フィルム
WO2016039138A1 (ja) * 2014-09-12 2016-03-17 株式会社村田製作所 伸縮フィルム積層体、電子機器
WO2017018313A1 (ja) * 2015-07-27 2017-02-02 富士フイルム株式会社 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
WO2019078053A1 (ja) * 2017-10-18 2019-04-25 パナソニックIpマネジメント株式会社 圧電デバイス及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197183A (ja) * 1988-03-29 1990-08-03 Pennwalt Corp 積層圧電構造及びその形成方法
US5367500A (en) * 1992-09-30 1994-11-22 The United States Of America As Represented By The Secretary Of The Navy Transducer structure
JP2001230462A (ja) * 2000-02-17 2001-08-24 Minolta Co Ltd 圧電変換素子
JP2009094259A (ja) * 2007-10-09 2009-04-30 Denso Corp 積層型圧電素子とその製造方法
EP3041059B1 (en) * 2014-12-31 2019-09-11 LG Display Co., Ltd. Multilayer actuator and display device comprising the same
JP6683029B2 (ja) 2016-06-20 2020-04-15 コニカミノルタ株式会社 圧電素子、超音波探触子および超音波撮像装置
CN113140669B (zh) * 2020-01-19 2024-05-24 北京小米移动软件有限公司 压电组件及制作方法、屏幕部件和移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177867A (ja) * 2009-01-28 2010-08-12 Kyocera Corp 圧電スピーカ
JP2014209724A (ja) 2013-03-29 2014-11-06 富士フイルム株式会社 電気音響変換フィルム
WO2016039138A1 (ja) * 2014-09-12 2016-03-17 株式会社村田製作所 伸縮フィルム積層体、電子機器
WO2017018313A1 (ja) * 2015-07-27 2017-02-02 富士フイルム株式会社 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
WO2019078053A1 (ja) * 2017-10-18 2019-04-25 パナソニックIpマネジメント株式会社 圧電デバイス及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4124066A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181699A1 (ja) * 2022-03-24 2023-09-28 富士フイルム株式会社 電気音響変換器

Also Published As

Publication number Publication date
EP4124066A4 (en) 2023-09-06
JP7457790B2 (ja) 2024-03-28
KR20220140576A (ko) 2022-10-18
JPWO2021187086A1 (ja) 2021-09-23
TW202137783A (zh) 2021-10-01
CN115244720A (zh) 2022-10-25
EP4124066A1 (en) 2023-01-25
US20230019706A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP7506773B2 (ja) 積層圧電素子および電気音響変換器
WO2021187086A1 (ja) 積層圧電素子および電気音響変換器
JP7137690B2 (ja) 圧電フィルム、積層圧電素子および電気音響変換器
WO2021225071A1 (ja) 圧電素子および圧電スピーカー
JP7470765B2 (ja) 電気音響変換器
JP7265625B2 (ja) 電気音響変換フィルムおよび電気音響変換器
WO2021199800A1 (ja) 積層圧電素子
WO2021075308A1 (ja) 圧電フィルムおよび圧電フィルムの製造方法
WO2021100428A1 (ja) 電気音響変換器
US20230026623A1 (en) Laminated piezoelectric element and electroacoustic transducer
JP7137689B2 (ja) 圧電フィルム、積層圧電素子および電気音響変換器
WO2023047958A1 (ja) 積層圧電素子および電気音響変換器
WO2023048022A1 (ja) 圧電素子および圧電スピーカー
WO2023053931A1 (ja) 圧電素子および圧電スピーカー
JP7333410B2 (ja) 積層圧電素子
WO2023021944A1 (ja) 圧電素子および圧電スピーカー
WO2024009774A1 (ja) 画像表示装置
WO2023157532A1 (ja) 圧電素子および電気音響変換器
TW202218441A (zh) 能夠捲取之電聲轉換器及能夠捲取之圖像顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227031142

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2022508187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021771776

Country of ref document: EP

Effective date: 20221019