WO2021221081A1 - 量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置 - Google Patents

量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置 Download PDF

Info

Publication number
WO2021221081A1
WO2021221081A1 PCT/JP2021/016874 JP2021016874W WO2021221081A1 WO 2021221081 A1 WO2021221081 A1 WO 2021221081A1 JP 2021016874 W JP2021016874 W JP 2021016874W WO 2021221081 A1 WO2021221081 A1 WO 2021221081A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wavelength conversion
base film
quantum dot
polymerizable composition
Prior art date
Application number
PCT/JP2021/016874
Other languages
English (en)
French (fr)
Inventor
翔 筑紫
達也 大場
浩史 遠山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022518102A priority Critical patent/JP7351001B2/ja
Publication of WO2021221081A1 publication Critical patent/WO2021221081A1/ja
Priority to US18/050,368 priority patent/US20230088475A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • C08K2003/3036Sulfides of zinc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to a quantum dot-containing polymerizable composition, a cured product, a wavelength conversion member, a backlight unit, and a liquid crystal display device.
  • a liquid crystal display device is usually composed of at least a backlight unit and a liquid crystal cell.
  • quantum dots also called quantum dots, QDs, quantum dots, etc.
  • QDs quantum dots
  • quantum dots etc.
  • the backlight unit can include at least a member containing quantum dots and a light source.
  • a member is generally called a wavelength conversion member.
  • quantum dots when light is incident on a wavelength conversion member from a light source, quantum dots are excited by the incident light to emit fluorescence.
  • red light, green light, and blue light are emitted as light emitted from the fluorescence and / or light source emitted by the quantum dots and passed through the wavelength conversion member. It can be emitted from the wavelength conversion member.
  • This makes it possible to embody white light. Since the fluorescence emitted by the quantum dots has a small half-value width, the obtained white light has high brightness and excellent color reproducibility.
  • the color reproduction range has increased from 72% to 100% of the current TV standards (FHD (Full High Definition), NTSC (National Television System Committee)). It is expanding.
  • the member containing such quantum dots can emit light with even higher brightness.
  • the member can have a layer (generally referred to as a "wavelength conversion layer") containing a cured product obtained by curing a polymerizable composition containing quantum dots. It is desired that the polymerizable composition used for producing such a cured product has little change in viscosity with time, that is, has excellent liquid stability.
  • one aspect of the present invention is to provide a quantum dot-containing polymerizable composition that can contribute to the improvement of the brightness of the wavelength conversion member containing the quantum dots and has excellent liquid stability. ..
  • One aspect of the present invention is Quantum dots and With polyfunctional thiols With polyfunctional (meth) acrylate, Phenolic compounds and Polymerizable composition, including Regarding.
  • the number of hydroxy groups contained in one molecule of the phenolic compound can be in the range of 1 to 3.
  • the number of hydroxy groups contained in one molecule of the phenolic compound can be 2 or 3.
  • the number of hydroxy groups contained in one molecule of the phenolic compound can be three.
  • the polymerizable composition can contain pyrogallol as the phenolic compound.
  • the content of pyrogallol with respect to the total amount of the composition can be 0.001% by mass or more and 0.500% by mass or less.
  • the content of pyrogallol with respect to the total amount of the composition can be 0.005% by mass or more and 0.300% by mass or less.
  • the content of pyrogallol with respect to the total amount of the composition can be 0.010% by mass or more and 0.100% by mass or less.
  • One aspect of the present invention relates to a cured product obtained by curing the above-mentioned polymerizable composition.
  • One aspect of the present invention relates to a wavelength conversion member containing the cured product.
  • One aspect of the present invention relates to a backlight unit including the wavelength conversion member and a light source.
  • One aspect of the present invention relates to a liquid crystal display device including the backlight unit and a liquid crystal cell.
  • a polymerizable composition containing quantum dots which can enable the production of a wavelength conversion member capable of emitting light with high brightness and has excellent liquid stability.
  • a sex composition can be provided.
  • a cured product obtained by curing such a polymerizable composition, a wavelength conversion member containing the cured product, a backlight unit including the wavelength conversion member, and a liquid crystal display device including the backlight unit. can be provided.
  • FIG. 3 It is a perspective view which shows an example of a wavelength conversion member conceptually. It is a top view of the wavelength conversion member of FIG. 3 is a cross-sectional view taken along the line III-III of FIGS. 1 and 2. It is sectional drawing for demonstrating an example of the shape of the resin layer of a wavelength conversion member. It is a partially enlarged view of FIG. It is sectional drawing which conceptually shows another example of a wavelength conversion member. It is sectional drawing which conceptually shows another example of a wavelength conversion member. It is sectional drawing which conceptually shows another example of a wavelength conversion member. It is a top view which shows an example of the pattern of the quantum dot containing part. It is a top view which shows another example of the pattern of the quantum dot containing part.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the "half width" of a peak means the width of the peak at a peak height of 1/2.
  • light having a emission center wavelength in a wavelength band of 400 nm or more and less than 500 nm is called blue light
  • light having an emission center wavelength in a wavelength band of 500 nm or more and less than 600 nm is called green light, and is 600 nm or more and 680 nm or less.
  • Light having a emission center wavelength in the wavelength band in the range of is called red light.
  • Polymerizable composition One aspect of the present invention relates to a polymerizable composition containing quantum dots, a polyfunctional thiol, a polyfunctional (meth) acrylate, and a phenolic compound.
  • (meth) acrylate refers to a compound containing at least one (meth) acryloyl group in one molecule
  • the term “(meth) acryloyl group” refers to acryloyl. It shall be used to indicate one or both of the group and the methacryloyl group.
  • the functional number for "(meth) acrylate” refers to the number of (meth) acryloyl groups contained in one molecule of (meth) acrylate.
  • “monofunctional” means that the number of (meth) acryloyl groups contained in one molecule is one
  • “polyfunctional” means that it is contained in one molecule (meth).
  • the number of acryloyl groups is two or more.
  • the (meth) acryloyl group can be included in the (meth) acrylate in the form of a (meth) acryloyloxy group.
  • the term "(meth) acryloyloxy group” shall be used to refer to one or both of the acryloyloxy group and the methacryloyloxy group.
  • the (meth) acrylate that can correspond to both the first (meth) acrylate and the second (meth) acrylate described later is the second (meth) acrylate. It shall be interpreted as.
  • the "polymerizable composition” is a composition containing at least one polymerizable compound, and has a property of being cured by being subjected to a polymerization treatment such as light irradiation or heating.
  • the "polymerizable compound” is a compound containing one or more polymerizable functional groups in one molecule.
  • the "polymerizable functional group” is a group that can participate in the polymerization reaction, and the "(meth) acryloyl group” is a polymerizable functional group.
  • the "polyfunctional thiol” is a compound having two or more thiol groups in one molecule.
  • the functional number for a thiol refers to the number of thiol groups contained in one molecule of thiol.
  • the wavelength conversion member containing the cured product obtained by curing the polymerizable composition according to one aspect of the present invention can emit light with high brightness, and the above-mentioned polymerizable composition is We have newly found that it has excellent liquid stability.
  • the present inventor infers the reason for this as follows. Coordinating a ligand on the surface of a quantum dot is said to contribute to improving brightness.
  • the compound having a thiol group can function as a ligand for the quantum dot by adsorbing the thiol group on the surface of the quantum dot.
  • the polyfunctional thiol is contained in the polymerizable compound together with the (meth) acrylate, a part of the thiol group contained in the polyfunctional thiol can undergo a cross-linking reaction with the (meth) acryloyl group of the (meth) acrylate. It is presumed that this can contribute to suppressing the decrease in brightness, that is, improving the durability.
  • the viscosity tends to increase with time as the thiol-ene reaction proceeds.
  • the phenolic compound can act as a polymerization inhibitor, so that the above-mentioned increase in viscosity can be suppressed, and a cured product obtained by curing the above-mentioned composition.
  • the wavelength conversion member containing the above can also emit light at high brightness (that is, the brightness can be further improved).
  • the improvement in brightness is only speculation, the present inventor thinks that the phenolic compound may be adsorbed on the surface of the quantum dots, which may contribute to the improvement in brightness. ing. However, this is merely speculation and does not limit the present invention.
  • a compound generally said to function as a polymerization inhibitor As examined by the present inventor, it was difficult to improve the liquid stability and / or the brightness by using a compound generally said to function as a polymerization inhibitor. ..
  • a polymerization inhibitor generally referred to as a stable radical (eg, 2,2,6,6-tetramethylpiperidin 1-oxyl used in the comparative examples described below)
  • the stable radical abstracts hydrogen from the thiol group.
  • a thiyl radical is generated, and it is considered that the reaction between the thiol group and the (meth) acryloyl group proceeds slowly, which is presumed to make it difficult to improve the liquid stability.
  • the present invention is not limited to the above inferences of the present inventor.
  • the polyfunctional thiol contained in the above-mentioned polymerizable composition is a bifunctional or higher functional thiol, preferably a trifunctional or higher functional thiol.
  • the polyfunctional thiol can be, for example, an 8-functional or lower, 7-functional or lower, 6-functional or lower, 5-functional or lower, or 4-functional or lower thiol.
  • the polyfunctional thiol is selected from the group consisting of bifunctional to hexafunctional polyfunctional thiols1 It is preferably a species or two or more, and more preferably one or more selected from the group consisting of bifunctional to tetrafunctional polyfunctional thiols, from trifunctional or tetrafunctional polyfunctional thiols. It is more preferably one kind or two or more kinds selected from the group, and even more preferably a trifunctional thiol.
  • polyfunctional thiol examples include ethylene bis (thioglycolate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), and 1,2-propylene glycol bis (3).
  • polyfunctional thiol a commercially available product can be used, and one synthesized by a known method can also be used.
  • a commercially available product for example, a commercially available polyfunctional thiol described in Examples described later such as SC Organic Chemistry Co., Ltd. trade name Multiol Y3 can be mentioned.
  • the molecular weight of the polyfunctional thiol contained in the above-mentioned polymerizable composition can be, for example, 200 or more, and is preferably 300 or more from the viewpoint of further improving the durability. From the viewpoint of further improving the brightness, the molecular weight of the polyfunctional thiol is preferably 1000 or less, and more preferably 500 or less. Regarding the molecular weight, the molecular weight of the second (meth) acrylate is preferably less than or equal to the molecular weight of the polyfunctional thiol, and more preferably less than the molecular weight of the polyfunctional thiol. This point will be further described later.
  • the molecular weight means the weight average molecular weight for a polymer (polymer also includes an oligomer).
  • the weight average molecular weight means the weight average molecular weight obtained by converting the measured value measured by gel permeation chromatography (GPC) into polystyrene.
  • GPC measurement conditions for example, the following conditions can be adopted.
  • GPC device HLC-8120 (manufactured by Tosoh) Column: TSK gel Multipore HXL-M (manufactured by Tosoh, 7.8 mm ID (Inner Diameter) x 30.0 cm)
  • the content of the polyfunctional thiol is 5 from the viewpoint of further improving the durability of the wavelength conversion member containing the cured product obtained by curing the above-mentioned polymerizable composition with respect to the total amount of the composition. It is preferably 0.0% by mass or more, more preferably 10.0% by mass or more, and further preferably 15.0% by mass or more. Further, from the viewpoint of further improving the durability, the content of the polyfunctional thiol is preferably 40.0% by mass or less, preferably 35.0% by mass or less, based on the total amount of the composition.
  • the above-mentioned polymerizable composition may contain only one type of polyfunctional thiol, or may contain two or more types. When two or more kinds of polyfunctional thiols are contained, the above-mentioned content means the total content of those two or more kinds of polyfunctional thiols. This point also applies to the various components of the present invention and the present specification.
  • the content of each component with respect to the total amount of the composition means, when the above-mentioned polymerizable composition contains a solvent, the total content of all the components excluding the solvent is 100.0% by mass.
  • the content of each component with respect to the total amount of the composition is the content calculated assuming that the total content of all the components contained in the composition is 100.0% by mass. I will say.
  • the polymerizable composition contains at least one polyfunctional (meth) acrylate as the (meth) acrylate.
  • the polyfunctional (meth) acrylate is referred to as a first (meth) acrylate.
  • the first (meth) acrylate (polyfunctional (meth) acrylate) is one or more of bifunctional or higher functional (meth) acrylates, and is bifunctional to 8-functional, bifunctional to 7-functional, or bifunctional. It can be one or more selected from the group consisting of ⁇ 6-functional, 2-functional to 5-functional or bifunctional to 4-functional polyfunctional (meth) acrylates.
  • bifunctional (meth) acrylate examples include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate.
  • trifunctional or higher functional (meth) acrylates include ECH (Epiculohydrin) -modified glycerol tri (meth) acrylate, EO (Ethylene Oxide) -modified glycerol tri (meth) acrylate, and PO (Propyrene Oxide) -modified glycerol tri (meth).
  • the molecular weight of the polyfunctional (meth) acrylate contained in the above-mentioned polymerizable composition as the first (meth) acrylate can be, for example, 200 or more. From the viewpoint of the viscosity of the polymerizable composition, the molecular weight of the polyfunctional (meth) acrylate is preferably 1000 or less, more preferably 500 or less.
  • the content of the first (meth) acrylate is preferably 10.0% by mass or more, based on the total amount of the composition, from the viewpoint of further improving durability. It is more preferably 0% by mass or more, and further preferably 30.0% by mass or more.
  • the above-mentioned polymerizable composition may contain only one kind of polyfunctional (meth) acrylate which is the first (meth) acrylate, or may contain two or more kinds.
  • the above-mentioned polymerizable composition contains a polyfunctional (meth) acrylate corresponding to the second (meth) acrylate described later and a non-corresponding polyfunctional (meth) acrylate, it corresponds to the second (meth) acrylate.
  • the content of the polyfunctional (meth) acrylate shall not be included in the content of the first (meth) acrylate described above.
  • the polymerizable composition contains, as the (meth) acrylate, one or more monofunctional or higher (meth) acrylates having a functional group selected from the group consisting of a carboxy group, a hydroxy group, a phosphoric acid group and an amino group. You can also.
  • Such (meth) acrylate is hereinafter referred to as "second (meth) acrylate”.
  • (Second (meth) acrylate) It is the present invention that the inclusion of the second (meth) acrylate in the above-mentioned polymerizable composition contributes to the improvement of the durability and the further improvement of the brightness of the wavelength conversion member containing the cured product obtained by curing the polymerizable composition. Is guessing. The details are as follows. Increasing the coverage of the ligand on the surface of the quantum dots is considered to lead to further improvement in brightness. In this regard, it is considered that the coverage of the ligand on the surface of the quantum dot can be increased by using the polyfunctional thiol together with the other ligand.
  • the second (meth) acrylate has one or more functional groups in one molecule selected from the group consisting of a carboxy group, a hydroxy group, a phosphoric acid group and an amino group.
  • the number of such functional groups can be 1 to 3 in one molecule, preferably 1 or 2, and more preferably 1.
  • these two or more functional groups may be the same functional group or different functional groups.
  • the carboxy group may be contained in the form of -COOH or in the form of a salt.
  • the salt of the carboxy group is a salt represented by -COO- M +.
  • M + represents a cation such as an alkali metal ion.
  • the amino group may be either a primary amino group, a secondary amino group or a tertiary amino group. From the viewpoint of further improving the brightness, the functional group is preferably a carboxy group, a hydroxy group and a phosphoric acid group, and more preferably a carboxy group.
  • the second (meth) acrylate is a monofunctional or higher (meth) acrylate. From the viewpoint of further improving the brightness, the second (meth) acrylate is preferably a monofunctional, bifunctional or trifunctional (meth) acrylate, more preferably a monofunctional or bifunctional (meth) acrylate, and is monofunctional. (Meta) acrylate is more preferred.
  • the monofunctional (meth) acrylate can be represented by, for example, the formula: ALX. In the formula, A represents one of the above functional groups, L represents a divalent linking group, and X represents a (meth) acryloyl group or a (meth) acryloyloxy group.
  • the alkylene group include an alkylene group having a linear or branched structure having 1 to 3 carbon atoms (for example, a methylene group, an ethylene group, a propylene group, etc.).
  • cycloalkylene group examples include a cycloalkylene group having 5 to 8 carbon atoms (for example, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, etc.).
  • the alkylene group may or may not have a substituent, and is preferably an unsubstituted alkylene group. This point is the same for the cycloalkylene group.
  • Acrylic acid can be mentioned as an example of a monofunctional (meth) acrylate having a carboxy group.
  • the molecular weight of the (meth) acrylate contained as the second (meth) acrylate is preferably less than or equal to the molecular weight of the polyfunctional thiol contained in the above-mentioned polymerizable composition, and more preferably less than the molecular weight of the polyfunctional thiol. preferable.
  • the second (meth) acrylate having a molecular weight equal to or less than the molecular weight of the polyfunctional thiol easily approaches the vicinity of the quantum dot even if the quantum dot is coordinated with the polyfunctional thiol, and the polyfunctional thiol causes the quantum dot to approach the surface of the quantum dot. It is presumed that it is easy to be adsorbed on the uncovered part.
  • the present inventor believes that this can contribute to further improving the brightness by increasing the coverage of the ligand on the surface of the quantum dot.
  • the molecular weight of the (meth) acrylate contained as the second (meth) acrylate in the above-mentioned polymerizable composition can be, for example, 50 or more, and from the viewpoint of further improving the durability, it should be 70 or more. Is preferable, and more preferably 100 or more. From the viewpoint of further improving the brightness, the molecular weight of the (meth) acrylate contained as the second (meth) acrylate in the polymerizable composition is preferably 500 or less, and preferably 400 or less. It is more preferably 300 or less, further preferably 200 or less.
  • the second (meth) acrylate examples include carboxy group-containing (meth) acrylates such as acrylic acid, ⁇ -carboxyethyl acrylate, 2-acryloyloxyethyl-succinic acid, and 2-acryloyloxyethyl hexahydrophthalic acid.
  • carboxy group-containing (meth) acrylates such as acrylic acid, ⁇ -carboxyethyl acrylate, 2-acryloyloxyethyl-succinic acid, and 2-acryloyloxyethyl hexahydrophthalic acid.
  • examples thereof include a phosphate group-containing (meth) acrylate such as 2-acryloyloxyethyl acid phosphate, and a hydroxy group-containing (meth) acrylate such as 2-hydroxyethyl acrylate.
  • the content of the second (meth) acrylate is preferably 0.5% by mass or more, preferably 3.0% by mass or more, based on the total amount of the composition, from the viewpoint of further improving the brightness. It is more preferably mass% or more. Further, the content of the second (meth) acrylate is preferably 20.0% by mass or less with respect to the total amount of the composition from the viewpoint of further improving the durability.
  • the above-mentioned polymerizable composition may contain only one kind of (meth) acrylate which is a second (meth) acrylate, or may contain two or more kinds.
  • phenolic compound is used in the sense of including phenol and its derivative.
  • the phenolic compound can be represented by the following formula 1.
  • R 1 to R 5 independently represent a hydrogen atom or a substituent.
  • the substituent include a hydroxy group, an alkyl group, a carboxy group which may be substituted with an alkyl group, and the like.
  • the alkyl group include an alkyl group having a linear or branched structure having 1 to 6 carbon atoms.
  • Alkyl groups include those having no substituent and those having a substituent. When it has a substituent, the carbon number means the carbon number of the portion excluding the substituent.
  • the substituent capable of substituting the alkyl group include a hydroxy group and a carboxy group.
  • the alkyl group is preferably an unsubstituted alkyl group. The same applies to the alkyl group contained in the alkoxy group and the alkyl group capable of substituting the carboxy group.
  • the number of hydroxy groups contained in one molecule of the phenolic compound is preferably in the range of 1 to 3, more preferably 2 or 3, and even more preferably 3.
  • the substitution position of the hydroxy group is not limited, and the hydroxy group can be substituted at any position.
  • phenolic compounds include pyrogallol, methyl gallate, 4-tert-butylpyrocatechol, 2,6-di-tert-butyl-p-cresol, 4-methoxy-phenol, 2-tert. -Butyl-4,6-dimethylphenol, 4,4'-butylidenebis (6-tert-butyl-m-cresol), 2,6-di-tert-butylphenol, 2,2', 6,6'-tetra- Examples thereof include tert-butyl- [1,1'-biphenyl] -4,4'-diol, 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid and the like.
  • the polymerizable composition preferably contains pyrogallol as a phenolic compound from the viewpoint of further improving the brightness and / or the liquid stability.
  • the content of pyrogallol is 0.001% by mass or more with respect to the total amount of the composition from the viewpoint of further improving the brightness and / or the liquid stability. It is more preferably 0.003% by mass or more, and further preferably 0.005% by mass or more.
  • the content of pyrogallol in the above polymerizable composition is preferably 0.500% by mass or less based on the total amount of the composition. , 0.300% by mass or less, and further preferably 0.100% by mass or less.
  • the above-mentioned polymerizable composition may contain only one type of phenolic compound, or may contain two or more types of phenolic compounds. When two or more kinds are contained, the above description regarding the content of pyrogallol can be referred to for the content of each phenolic compound.
  • the polymerizable composition contains one or more quantum dots. Quantum dots can be excited by excitation light and emit fluorescence.
  • the above-mentioned polymerizable composition may contain only one type of quantum dots, or may contain two or more types of quantum dots having different emission characteristics.
  • Known quantum dots include quantum dots (A) having an emission center wavelength in a wavelength band of 600 nm or more and 680 nm or less, quantum dots (B) having an emission center wavelength in a wavelength band of 500 nm or more and less than 600 nm, and 400 nm.
  • quantum dots (C) having a emission center wavelength in a wavelength band of more than 500 nm.
  • the quantum dots (A) can be excited by the excitation light to emit red light, the quantum dots (B) can emit green light, and the quantum dots (C) can emit blue light.
  • red light emitted by the quantum dots (A) and light emitted by the quantum dots (B) are emitted.
  • White light can be embodied by the green light produced and the blue light that has passed through the wavelength conversion member. Further, the red light emitted by the quantum dots (A) and the quantum dots (B) generated by incident ultraviolet light as excitation light on the wavelength conversion member including the quantum dots (A), (B) and (C).
  • White light can be embodied by the green light emitted by the quantum dots (C) and the blue light emitted by the quantum dots (C).
  • quantum dots include core-shell type semiconductor nanoparticles.
  • semiconductor particles having a particle size of 100 nm or less can be called semiconductor nanoparticles.
  • the core include II-VI group semiconductor nanoparticles, III-V group semiconductor nanoparticles, and multidimensional semiconductor nanoparticles. Specific examples thereof include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, InP, InAs, InGaP and the like. However, it is not limited to these. CdSe, CdTe, InP and InGaP are preferable because they can emit visible light with high efficiency.
  • CdS, ZnS, ZnO, GaAs and / or a complex thereof can be used. However, it is not limited to these.
  • quantum dots for example, known techniques such as paragraphs 0060 to 0066 of JP2012-169271A and paragraphs 0070 to 0076 of WO2018 / 186300 can be referred to.
  • the quantum dots commercially available products can be used, and those produced by a known method can also be used.
  • the emission characteristics of quantum dots can usually be adjusted by the composition and / or size of the particles.
  • the content of quantum dots can be in the range of, for example, 0.1 to 10.0% by mass with respect to the total amount of the composition.
  • the polymerizable composition may optionally contain one or more monofunctional (meth) acrylates in addition to the above components, for example, as a diluent or the like.
  • a monofunctional (meth) acrylate does not include the monofunctional (meth) acrylate having the above-mentioned functional group of the second (meth) acrylate.
  • Examples of the monofunctional (meth) acrylate that can be optionally contained include isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and lauryl (meth) acrylate.
  • the content of the monofunctional (meth) acrylate may be 0% by mass or more or more than 0% by mass with respect to the total amount of the composition of the polymerizable composition.
  • the content of the polymerizable composition contains the monofunctional (meth) acrylate, the content thereof is 50. From the viewpoint of further improving the durability with respect to the total amount of the composition of the polymerizable composition. It is preferably 0% by mass or less.
  • the polymerizable composition may optionally contain one or more additives in addition to the above components.
  • the additive include a polymerization initiator, a polymer, a viscosity modifier, a silane coupling agent, a surfactant, an antioxidant, an oxygen getter agent, an inorganic particle, a light scattering particle and the like.
  • specific examples of additives for example, paragraphs 0108 to 0137, paragraphs 0162, 0163 and paragraphs 0165 to 0169 of WO2018 / 186300 can be referred to.
  • the above-mentioned polymerizable composition may not contain a solvent, and may contain one or more kinds of solvents as required.
  • the type and amount of solvent added are not limited. For example, one kind or two or more kinds of organic solvents can be used as a solvent.
  • the above-mentioned polymerizable composition can be prepared by mixing the above-mentioned various components at the same time or sequentially in any order.
  • One aspect of the present invention relates to a cured product obtained by curing the above-mentioned polymerizable composition.
  • one aspect of the present invention relates to a wavelength conversion member containing the cured product.
  • the degree of curing of the above cured product is not limited.
  • the cured product may be a cured product in which the polymerization reaction of the polymerizable composition is partially advanced (generally referred to as a partially cured product, a semi-cured product, etc.), and the polymerization reaction is saturated or almost saturated. It may be a cured product (generally referred to as a completely cured product or the like).
  • the wavelength conversion member can have a wavelength conversion layer which is a cured product obtained by curing the polymerizable composition into a film.
  • a wavelength conversion layer which is a cured product obtained by curing the polymerizable composition into a film.
  • the wavelength conversion member can have a wavelength conversion layer having a resin layer having a plurality of discretely arranged recesses, and the resin layer is cured by curing the polymerizable composition.
  • the wavelength conversion member of the above-described embodiment will be described in more detail. In the following, it may be described with reference to the drawings. However, the form shown in the drawings is an example, and the present invention is not limited to such an example.
  • ⁇ Wavelength conversion member> 1 is a perspective view of an example of a wavelength conversion member
  • FIG. 2 is a plan view of the wavelength conversion member shown in FIG. 1
  • FIG. 3 is a sectional view taken along line III-III of FIGS. 1 and 2, respectively.
  • the plan view of the wavelength conversion member is a view of the wavelength conversion member from a direction orthogonal to the main surface (maximum surface), and in the present specification, unless otherwise specified, the plan view is a wavelength conversion member. Is a view seen from the second base film side.
  • the wavelength conversion member 10 includes a first base film 12, a second base film 14, and a wavelength conversion layer 16.
  • the second base film 14 is shown by a broken line in FIG. 1, and the second base film 14 is omitted in FIG.
  • the first base film 12 has, for example, a support film 12a and a barrier layer 12b.
  • the second base film 14 also has a support film 14a and a barrier layer 14b.
  • the wavelength conversion layer 16 includes a resin layer 18 (see FIG. 4) having recesses 18a discretely formed in the surface direction (main surface direction) of the wavelength conversion member 10 and a resin layer. It has a cured product (hereinafter, also referred to as “quantum dot-containing portion”) 20 formed by curing the above-mentioned polymerizable composition in the recess 18a of 18.
  • the quantum dot-containing portion 20 has a quantum dot 24 and a matrix 26 formed by a polymerization reaction of a polymerizable compound. That is, the wavelength conversion layer 16 is provided with a plurality of quantum dot-containing parts 20 including the quantum dots 24, which are separated from each other in the plane direction. Specifically, the quantum dot-containing portions, which are regions including the quantum dots 24, are separated from each other in the plane direction by the wall forming the recess 18a of the resin layer 18, and are arranged discretely in the plane direction.
  • the plurality of quantum dot-containing portions 20 are arranged in isolation in the plane direction of the first base film 12 without contacting each other.
  • the plane direction of the film is a two-dimensional direction along the film plane (main surface of the film).
  • the quantum dot-containing portion is columnar and is surrounded by the resin layer 18 in the plane direction of the first base film 12, and the resin layer 18 causes the first base film 12 to be surrounded by the resin layer 18. It is difficult for oxygen to enter the individual quantum dot-containing parts from the plane direction.
  • the resin layer 18 preferably has at least a wall portion forming the recess 18a, and more preferably all regions of the resin layer 18 are impermeable to oxygen.
  • the wavelength conversion layer 10 can prevent the quantum dots 24 of the quantum dot-containing portion 20 from deteriorating.
  • "having an impermeability to oxygen” means that oxygen permeability is 10cc / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability of the resin layer 18 having impermeableness to oxygen is preferably 1 cc / (m 2 ⁇ day ⁇ atm) or less, and more preferably 1 ⁇ 10 -1 cc / (m 2 ⁇ day ⁇ atm). ) It is as follows.
  • the SI unit of oxygen permeability is [fm / (s ⁇ Pa)].
  • the oxygen permeability is a value measured using an oxygen gas permeability measuring device (OX-TRAN 2/20 manufactured by MOCON) under the conditions of a measurement temperature of 23 ° C. and a relative humidity of 90%. be.
  • gas barrier property means having impermeable to gas (gas)
  • water vapor barrier property means impermeable to water vapor. Means to have.
  • a layer having impermeableness to both oxygen and water vapor is referred to as a "barrier layer”.
  • the quantum dot-containing portions 20 are arranged discretely in the two-dimensional direction. Therefore, assuming that the wavelength conversion member 10 is a part of a long film, the wavelength conversion member 10 can be cut at any place as shown by the alternate long and short dash line.
  • the quantum dot-containing portion other than the formed quantum dot-containing portion is surrounded by the resin layer 18 and can be kept sealed in the plane direction. Further, the quantum dot-containing portion that has been cut and exposed to the outside air may lose its function as a region containing the original quantum dots 24.
  • the quantum dot-containing portion at the cut position that is, the quantum dot-containing portion at the end in the plane direction
  • a member such as a frame that constitutes a display device (display) or the like
  • the quantum dots are formed. Since the action as a contained region is not required, it does not affect the performance of the wavelength conversion member.
  • the deactivated quantum dots can be a resin layer that protects the quantum dot-containing portion that is not exposed to the outside air from the outside air.
  • the first base film 12 is laminated on the main surface on the bottom side of the recess 18a of the resin layer 18 of the wavelength conversion layer 16. That is, the first base film 12 is laminated on the main surface of the resin layer 18 on the closed surface (closed end) side of the recess 18a. In the illustrated example, the first base film 12 is laminated with the barrier layer 12b facing the resin layer 18 side.
  • the second base film 14 is laminated on the main surface of the resin layer 18 constituting the wavelength conversion layer 16 on the opposite side of the first base film 12. That is, the second base film 14 is laminated on the main surface of the resin layer 18 on the open surface (open end) side of the recess 18a. In the illustrated example, the second base film 14 is laminated with the barrier layer 14b facing the resin layer 18 side.
  • the wavelength conversion layer may have through holes instead of recesses, and the through holes may be filled with quantum dot-containing portions with the base film as the bottom surface.
  • one of the two base films sandwiching the resin layer that is, the wavelength conversion layer, is regarded as the first base film and the other is regarded as the second base film, and further penetrates.
  • the end portion of the wall portion of the resin layer 18 is described later. As such, it may be separated from the second base film.
  • the wall portion forming the recess 18a of the resin layer 18 is separated from the second base film 14 at the end on the second base film 14 side. It is preferable to do so. Further, in the wavelength conversion member 10, quantum dots are also formed between the end of the resin layer 18 on the second base film 14 side of the wall portion separated from the second base film 14 and the second base film 14. It is preferable that the content portion is present.
  • a wavelength conversion member having a structure in which a wavelength conversion layer provided by dividing a quantum dot-containing portion into a plurality of regions is sealed with two base films a wall portion for dividing the quantum dot-containing portion into a plurality of regions.
  • the second base film 14 side of the wavelength conversion member 10, that is, the opening side of the recess 18a of the resin layer 18 is “upper”, and the first base film 12 side, that is, the bottom of the recess 18a of the resin layer 18.
  • the side is also called “bottom”.
  • the wall portion forming the recess 18a of the resin layer 18 is specifically a portion between the recess 18a and the recess 18a of the resin layer 18 and an outer periphery in the surface direction of the resin layer 18 in the surface direction of the base film. It is the part to be formed. That is, the wall portion forming the recess 18a of the resin layer 18 is, in other words, the region between the quantum dot-containing portion and the quantum dot-containing portion in the plane direction of the wavelength conversion layer 16 and the outermost quantum in the plane direction. The resin layer 18 in the region outside the dot-containing portion.
  • the quantum dot-containing portion (quantum dot-containing portion in the recess 18a) is cylindrical, and the wall portion forming the recess 18a of the resin layer 18 has a rectangular cross-sectional shape.
  • the present invention is not limited to this, and the cross-sectional shape of the wall portion can be various shapes.
  • the wall portion forming the recess 18a of the resin layer 18 may have a trapezoidal cross-sectional shape as conceptually shown on the left side of FIG. 4, or as conceptually shown on the right side of the same. It may have a cross-sectional shape such that the corners on the upper bottom side of the trapezoid are chamfered into a curved surface.
  • the cross-sectional shape of the wall portion of the resin layer 18 is preferably a shape that gradually expands from the upper end to the lower side, at least in part, preferably from the upper end to the lower end.
  • “from the upper end to the lower side” means from the end on the second base film 14 side toward the first base film 12 side.
  • a shape in which the corners of the upper surface on the second base film side are chamfered is preferable.
  • Such a shape is advantageous in terms of ease of manufacturing a mold for forming the resin layer 18, ease of removal of the mold when forming the resin layer 18, prevention of damage to the resin layer 18 to be formed, and the like. be.
  • the upper end of the wavelength conversion layer 10 is separated from the second base film 14 in the wall portion forming the recess 18a of the resin layer 18. Further, the quantum dot-containing portion is provided not only in the recess 18a of the resin layer 18 but also between the upper end of the wall portion separated from the second base film 14 and the second base film 14.
  • the wavelength conversion member 10 of the illustrated example as shown in FIG. 3, all the wall portions are separated from the second base film 14 at the upper ends, and quantum dots are formed between the wall portion and the second base film 14. A content portion is provided.
  • a coating liquid (resin layer forming composition) serving as a resin layer is applied to a mold having irregularities corresponding to the recesses and walls of the resin layer.
  • the first base film and the resin layer are laminated by laminating the first base film so as to cover the coating liquid filled in the mold, curing the coating liquid to be the resin layer, and removing the mold. To form a laminate with.
  • the recesses of the resin layer are filled with the above-mentioned polymerizable composition containing quantum dots, and the second base film is laminated on the resin layer so as to seal the polymerizable composition filled in the resin layer.
  • the above-mentioned polymerizable composition is cured to prepare a wavelength conversion member in which a wavelength conversion layer having a resin layer and a quantum dot-containing portion is sandwiched between a first base film and a second base film.
  • the first base film and the resin layer can be laminated with sufficient adhesion because the resin layer is laminated in the state of the coating liquid and then the coating liquid is cured. Further, since the resin layer and the quantum dot-containing portion are also cured after the above-mentioned polymerizable composition is filled in the recesses, they can be laminated with sufficient adhesion.
  • the wavelength conversion layer and the second base film the region corresponding to the recess of the resin layer in which the polymerizable composition containing the quantum dots is filled is filled with the fluorescent material in the state of a coating liquid and cured. Therefore, good adhesion can be obtained.
  • the upper end of the wall portion is separated from the second base film 14 and is separated from not only the recess 18a but also the second base film 14. Since the quantum dot-containing portion is also present between the upper end and the second base film 14, the adhesion between the wavelength conversion layer 16 and the second base film 14 can be increased.
  • the upper end of the wall portion separated from the second base film 14 and the second base film 14 is separated from the second base film 14. It includes not only the region directly above but also the region between the recess 18a (the upper end portion thereof) adjacent to the wall portion whose upper end is separated from the second base film 14 in the plane direction and the second base film 14.
  • the wall portions of the resin layer 18 separated from the second base film 14 are all wall portions whose upper ends are separated from the second base film 14, and the quantum dots are in between.
  • the configuration in which the content portion is provided is not limited. The greater the number of walls of the resin layer 18 separated from the second base film 14, the higher the adhesion between the wavelength conversion layer 16 and the second base film 14.
  • the upper end of the wall portion of the portion corresponding to the area of 30% or more of the area of the display portion of the display device in which the wavelength conversion member 10 is used is the second unit. It is preferable that the material film 14 is separated from the material film 14, and that the upper end of the wall portion is separated from the second base film 14 and the quantum dot-containing portion and the second base film 14 come into contact with each other on the entire surface. More preferred.
  • the gap g between the upper end of the wall portion and the second base film 14 is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 4 ⁇ m, and even more preferably 0.1 to 4 ⁇ m.
  • the adhesion between the wavelength conversion layer 16 and the second base film 14 can be sufficiently increased. Further, since the quantum dot-containing portion can permeate oxygen more than the resin layer 18, if the gap g between the upper end of the wall portion and the second base film 14 is too large, the upper end of the wall portion and the second base film 14 There is a possibility that oxygen permeates through the gap between the quantum dots and the quantum dots 24 and the quantum dots 24 are deteriorated. On the other hand, by setting the gap g between the upper end of the wall portion and the second base film 14 to 10 ⁇ m or less, the permeation of oxygen in the gap between the upper end of the wall portion and the second base film 14 is sufficiently suppressed. Therefore, deterioration of the quantum dots 24 due to oxygen can be prevented.
  • the gap g between the upper end of the wall portion and the second base film 14 is formed by cutting, for example, the wall portion of the wavelength conversion member 10 with a microtome or the like to form a cross section, and the section thereof is scanned with a scanning electron microscope (SEM). It may be obtained by observing with an Electron Microscope) or the like.
  • the "wall portion of the wavelength conversion member 10" is "a portion of the wavelength conversion member 10 that is not the recess 18a".
  • the gap g can be determined as the arithmetic mean of the measured values at 10 randomly selected locations.
  • the depth h of the recess 18a of the resin layer 18 and the distance t between the adjacent quantum dot-containing parts are not particularly limited.
  • the thickness of the quantum dot-containing portion from the bottom of the recess 18a to the second base film 14 can be set to 1 to 100 ⁇ m. Is preferable.
  • the interval t of the adjacent quantum dot-containing parts is preferably 5 to 300 ⁇ m.
  • the thickness (which can also be called height) of the quantum dot-containing portion is preferably 1 ⁇ m or more from the viewpoint of easy reach to the target chromaticity.
  • the thickness of the quantum dot-containing portion from the bottom of the recess 18a to the second base film 14 is preferably 1 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, and even more preferably 10 to 50 ⁇ m.
  • the depth h of the recess 18a formed in the resin layer 18 and the thickness of the quantum dot-containing portion from the bottom of the recess 18a to the second base film 14 are determined by using a microscope or the like to form the recess 18a of the wavelength conversion member.
  • a cross section may be obtained by observing the cross section with a confocal laser microscope or the like in a state where the wavelength conversion layer 16 is irradiated with excitation light to emit quantum dots after cutting to form a cross section.
  • the arithmetic mean of the measured values of 10 randomly selected quantum dot-containing parts can be adopted.
  • the distance t between the adjacent quantum dot-containing parts that is, the thickness of the wall portion of the resin layer 18 between the adjacent quantum dot-containing parts (between the adjacent recesses 18a) makes the resin layer 18 invisible. Therefore, it is preferable to make the wall short (thin the wall).
  • the distance t between adjacent quantum dot-containing parts is preferably a value of a certain value or more. From these viewpoints, the distance t between the adjacent quantum dot-containing parts is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and even more preferably 15 to 100 ⁇ m.
  • the distance t between the adjacent quantum dot-containing parts is the shortest distance between the adjacent quantum dot-containing parts.
  • the wavelength conversion layer 16 is irradiated with excitation light to emit quantum dots, and the surfaces are observed from one surface of the wavelength conversion member 10 using a confocal laser microscope or the like and adjacent to each other. It can be obtained by measuring the thickness of the wall portion of the resin layer 18 between the quantum dot-containing portions. Further, as the interval t between the adjacent quantum dot-containing parts, the arithmetic mean of the intervals of 20 randomly selected locations can be adopted.
  • the shape, size, arrangement pattern, etc. of the quantum dot-containing part are not particularly limited and may be appropriately designed. In the design, it is possible to consider the geometrical constraints for arranging the quantum dot-containing parts apart from each other in the plan view, the allowable value of the width of the non-emission region generated at the time of cutting, and the like. Further, for example, when the printing method is used as one of the methods for forming the quantum dot-containing portion as described later, it is preferable that the individual occupied area is a certain size or more from the viewpoint of printability. The occupied area at this time is the occupied area in a plan view.
  • the shortest distance between the adjacent quantum dot-containing portions that is, the thickness of the wall portion is large, from the viewpoint of improving the mechanical strength of the wavelength conversion member.
  • the shape, size, and arrangement pattern of the quantum dot-containing portion may be designed in consideration of these points.
  • the ratio of the volume Vp of the quantum dot-containing portion to the volume Vb of the resin layer 18 can be any ratio. In one form, for the ratio "Vp / (Vp + Vb)", 0.1 ⁇ Vp / (Vp + Vb) ⁇ 0.9 is preferable, 0.2 ⁇ Vp / (Vp + Vb) ⁇ 0.85 is more preferable, and 0.3. ⁇ Vp / (Vp + Vb) ⁇ 0.8 is more preferable.
  • the volume Vp of the quantum dot-containing portion and the volume Vb of the resin layer 18 are defined as being multiplied by the respective areas and thicknesses when observed from a direction orthogonal to the main surface of the wavelength conversion member 10.
  • a quantum dot-containing portion between the upper end of the wall portion forming the recess 18a and the second base film 14 and between the recess 18a (the upper end thereof) and the second base film 14. May include, in addition to the quantum dot-containing portion, a material having impermeable to oxygen.
  • FIG. 6 conceptually shows an example thereof with a cross-sectional view of the wavelength conversion member. Since the wavelength conversion member shown in FIG. 6 includes the same member as the wavelength conversion member 10, the same members are designated by the same reference numerals, and the description will be given mainly for different parts. The same applies to other drawings in this regard.
  • the mixed layer 28 contains quantum dots and a material having impermeableness to oxygen.
  • the “material having impermeable property to oxygen” is also referred to as “oxygen impermeable material”.
  • the oxygen-impermeable material when forming a film having a thickness of 50 ⁇ m at the material, the oxygen permeability of this film is 200cc / (m 2 ⁇ day ⁇ atm )
  • the oxygen permeability of this film is 200cc / (m 2 ⁇ day ⁇ atm )
  • the following materials are shown.
  • Oxygen-impermeable material, when forming a film having a thickness of 50 ⁇ m in the material more preferably an oxygen permeability of this film is a material which is a 20cc / (m 2 ⁇ day ⁇ atm) or less, 2 cc It is more preferable that the material is / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen-impermeable material include various materials exemplified later as the material for forming the resin layer 18.
  • the mixed layer 28 preferably contains a material containing the same components as the material for forming the resin layer 18 as an oxygen impermeable material.
  • the mixed layer 28 is not limited to the configuration formed between the upper end of the wall portion and the second base film 14 and above the recess 18a.
  • the mixed layer 28 may not be formed in the recess 18a, for example, but may be formed only between the upper end of the wall portion forming the recess 18a and the second base film 14, or the wall forming the recess 18a.
  • the upper portion may be the mixed layer 28 and the lower portion may be the quantum dot-containing portion.
  • the content of the oxygen permeable material in the mixed layer 28 is not particularly limited. The higher the content of the oxygen opaque material in the mixed layer 28, the more it is possible to prevent the quantum dots 24 from being deteriorated by oxygen. On the other hand, when the content of the oxygen opaque material in the mixed layer 28 is high, the content of the quantum dots 24 is relatively low, so that the optical characteristics of the mixed layer 28, in other words, the optical characteristics of the wavelength conversion member 10A It gets lower. Considering these points, the content of the oxygen permeable material in the mixed layer 28 is preferably, for example, 40 to 90% by mass, more preferably 50 to 80% by mass.
  • the thickness of the mixed layer 28 is not particularly limited.
  • the content of the quantum dots 24 is usually lower than that of the quantum dot-containing portion. Therefore, considering the optical characteristics of the wavelength conversion member 10A, it is preferable that the thickness (vertical size) of the mixed layer 28 is thin.
  • the mixed layer 28 is thick. Considering these points, for example, when it is important to prevent the quantum dots 24 from deteriorating, the entire area between the upper end of the wall portion forming the recess 18a and the second base film 14 should be a mixed layer. Is preferable.
  • the wavelength conversion layer includes oxygen contained in the mixed layer 28 between the mixed layer 28 and the second base film 14 in addition to the mixed layer 28.
  • a layer 30 containing no quantum dots 24 (hereinafter, referred to as “impermeable layer”) 30 containing the same oxygen opaque material as the opaque material may be provided.
  • the thickness of the opaque layer 30 in the wavelength conversion member 10B is not particularly limited.
  • the opaque layer 30 can be a layer that does not contain the quantum dots 24 and is formed only of the oxygen opaque material. Therefore, as with the mixed layer 28, a thicker one is advantageous for preventing the quantum dots 24 from being deteriorated by oxygen.
  • the wavelength conversion member is thin from the viewpoint of optical characteristics.
  • the thickness of the opaque layer 30 may be appropriately set in consideration of these points.
  • the mixed layer 28 and the impermeable layer 30 can be formed by various methods. As described above, in the wavelength conversion layer 10, after the resin layer 18 is formed on the surface of the first base film 12, the recess 18a of the resin layer 18 is filled with the above-mentioned polymerizable composition containing quantum dots. After that, the second base film 14 is laminated on the resin layer 18 so as to seal the polymerizable composition filled in the resin layer 18, and the polymerizable composition to be the quantum dot-containing portion is cured. Can be manufactured. As an example, in this production method, before laminating the second base film 14, a coating liquid containing an oxygen impermeable material is applied to the surface of the second base film 14 on the resin layer 18 side. back.
  • the coating liquid containing the oxygen-impermeable material is directed toward the resin layer 18, and the second base film 14 is laminated on the resin layer 18.
  • the above-mentioned polymerizable composition which is cured to become a quantum dot-containing portion and the coating liquid containing the oxygen-impermeable material are mixed between the upper end of the wall portion and the second base film 14.
  • oxygen impermeable in addition to the quantum dots is added between the upper end of the wall portion and the second base film 14.
  • a mixed layer 28 containing a permeable material can be formed.
  • the coating thickness of the coating liquid containing the oxygen impermeable material to be applied to the second base film 14 only the mixed layer 28 is formed, or the mixed layer 28 and the impermeable layer 30 are formed. It is possible to set whether to form both. Specifically, by increasing the coating thickness of the coating liquid containing the oxygen impermeable material, the impermeable layer 30 can be formed in addition to the mixed layer 28, and the thicker the coating thickness of this coating liquid, the more impervious it is. The transparent layer 30 becomes thicker. This point will be described in detail later.
  • the wavelength conversion layer 10 (10A, 10B) has a configuration in which the wavelength conversion layer 16 having such a resin layer 18 and a quantum dot-containing portion is sandwiched between the first base film 12 and the second base film 14. be able to. Further, the wavelength conversion layer 10 may have a mixed layer 28 and / or an opaque layer 30 in addition to the resin layer 18 and the quantum dot-containing portion. It is preferable that both the first base film 12 and the second base film 14 are films that are impermeable to oxygen.
  • the first base film 12 has a structure in which the barrier layer 12b is laminated on the support film 12a, and the barrier layer 12b is directed toward the wavelength conversion layer 16 to form the wavelength conversion layer 16. Stacked.
  • the second base film 14 also has a structure in which the barrier layer 14b is laminated on the support film 14a, and the barrier layer 14b is laminated on the wavelength conversion layer 16 toward the wavelength conversion layer 16.
  • first base film 12 As the barrier layer 12b of the first base film 12, various known barrier layers can be used as long as they have oxygen impermeable properties. Similarly, as the barrier layer 14b of the second base film 14, various known barrier layers can be used as long as they have oxygen impermeable properties. Since the first base film 12 and the second base film 14 can have the same configuration except that the lamination positions are different, the first base film 12 and the second base film 14 will be described in the following description unless it is necessary to distinguish between them.
  • the base film 12 is a typical example.
  • barrier layer 12b of the first base film 12 various known barrier layers can be used. It is preferable to have at least one inorganic layer, and an organic-inorganic laminated type barrier layer having one or more combinations of the inorganic layer and an organic layer serving as a base layer of the inorganic layer is more preferable.
  • the barrier layer 12b of the first base film (and the barrier layer 14b of the second base film 14) is the support film 12a (and the barrier layer 14b of the second base film 14) as shown in the partially enlarged view A of FIG.
  • Three layers of a base organic layer 34 formed on the surface of the support film 14a), an inorganic layer 36 formed on the base organic layer 34, and a protective organic layer 38 formed on the inorganic layer 36 are provided. It has a laminated structure.
  • the surface of the support film 12a that is, the base organic layer 34 under the inorganic layer 36 is a base layer (undercoat layer) for properly forming the inorganic layer 36.
  • the portion that mainly exhibits the barrier property is the inorganic layer 36. Therefore, by forming the base organic layer 34 and forming the inorganic layer 36 on the underlying organic layer 34, the formation surface of the inorganic layer 36 can be made appropriate and the inorganic layer 36 without defects can be formed, and the barrier property is high. Can be obtained.
  • the barrier layer 12b in the illustrated example has only one combination of the base organic layer 34 and the inorganic layer 36, but the barrier layer has a plurality of combinations of the base organic layer 34 and the inorganic layer 36. You may have a set. The more combinations of the underlying organic layer 34 and the inorganic layer 36, the higher the barrier property can be obtained.
  • the protective organic layer 38 formed on the surface of the inorganic layer 36 is a protective layer (overcoat layer) that mainly protects the inorganic layer 36 that exhibits barrier properties.
  • a protective layer overcoat layer
  • the quantum dot-containing portion (recess 18a) is columnar and circular in a plan view.
  • the shape of the quantum dot-containing portion is not particularly limited.
  • the quantum dot-containing portion may be a quadrangle in a plan view, or a hexagon (honeycomb structure) in a plan view as shown in FIG. 9, and the quantum dot-containing portion may be a polygonal prism. It may be a regular polygonal prism.
  • the bottom surface of the cylinder or polygonal prism is arranged parallel to the base film surface. However, the bottom surface does not necessarily have to be arranged parallel to the base film surface. Further, the shape of each quantum dot-containing portion may be irregular.
  • the outside of the quantum dots 24e located at the outermost side of the region where the quantum dots 24 are arranged close to each other is regarded as the contour m of the quantum dot-containing portion (the boundary between the quantum dot-containing portion and the resin layer 18) m.
  • the position of the quantum dot can be specified by irradiating the wavelength conversion layer with the excitation light to emit the quantum dot and observing it with, for example, a confocal laser microscope, whereby the contour m of the quantum dot-containing portion can be determined. Can be identified.
  • the quantum dot-containing parts are periodically arranged in a pattern.
  • the desired performance may be aperiodic as long as the desired performance is not impaired.
  • the quantum dot-containing portion is uniformly distributed over the entire wavelength conversion layer 16 because the in-plane distribution of luminance becomes uniform.
  • the quantum dots 24 in the quantum dot-containing portion may be one type or a plurality of types. Further, the quantum dots 24 in one quantum dot-containing portion are regarded as one type, and among a plurality of quantum dot-containing portions, a region containing the first quantum dots and a second quantum dot different from the first quantum dots are used. The including region may be arranged periodically or aperiodically. There may be three or more types of quantum dots. The details of the quantum dots are as described above.
  • the quantum dots in the quantum dot-containing portion at the cut end portion can be deteriorated.
  • the quantum dots in the portion other than the cut end are surrounded and sealed by the resin in the direction along the film surface, deterioration of performance due to the intrusion of oxygen from the direction along the film surface is suppressed. can.
  • the wavelength conversion layer 16 is laminated on one film surface of the first base film 12, and further, the wavelength conversion layer 16 is placed on the wavelength conversion layer 16.
  • the two base films 14 are laminated, and the wavelength conversion layer 16 is sandwiched between the two base films.
  • the resin layer 18 can be formed, for example, by preparing a composition for forming a resin layer containing a polymerizable compound similar to the polymerizable compound forming the matrix 26, applying the composition, and curing the composition.
  • the resin layer 18 is preferably impermeable to oxygen.
  • the resin layer 18 preferably satisfy the oxygen permeability 10cc / (m 2 ⁇ day ⁇ atm) or less in the shortest distance between the quantum dot-containing portion adjacent across the wall to form a recess 18a.
  • the oxygen permeability of the resin layer 18 at the shortest distance between adjacent quantum dot-containing parts is preferably 10 cc / (m 2 ⁇ day ⁇ atm) or less, preferably 1 cc / (m 2 ⁇ day ⁇ atm) or less. It is more preferably 1 ⁇ 10 -1 cc / (m 2 ⁇ day ⁇ atm) or less.
  • the desired shortest distance between the quantum dot-containing parts that is, the distance t between the desired quantum dot-containing parts (recesses 18a) differs.
  • the shortest distance between the adjacent quantum dot-containing parts of the resin layer 18 means the shortest distance in the film plane between the adjacent quantum dot-containing parts when observed from the main surface of the wavelength conversion member.
  • the elastic modulus of the resin layer 18 is preferably 0.5 to 10 GPa, more preferably 1 to 7 GPa, and even more preferably 3 to 6 GPa. It is preferable to set the elastic modulus of the resin layer within the above range in order to prevent defects in forming the resin layer while maintaining desirable oxygen permeability.
  • the elastic modulus of the resin layer is measured by a method exemplified by JIS (Japanese Industrial Standards) K 7161 or the like.
  • the first base film 12 (and the second base film 14) can have a structure in which the barrier layer 12b is laminated on the support film 12a. Further, the barrier layer 12b (and the barrier layer 14b) can have a base organic layer 34, an inorganic layer 36, and a protective organic layer 38. Such a first base film 12 is laminated on the wavelength conversion layer 16 with the barrier layer 12b facing the wavelength conversion layer 16. In this configuration, the strength of the wavelength conversion member 10 can be improved by the support film 12a, and the film can be easily formed.
  • the first base film (and the second base film) is not limited to the configuration having such a support film 12a and a barrier layer 12b, and is not suitable for necessary oxygen.
  • Various film-like materials can be used as long as the transparency can be ensured.
  • the first base film may be composed only of a support film having sufficient barrier properties.
  • a first base film in which only one inorganic layer is formed on the surface of the support film can also be used.
  • the first base film 12 preferably has a total light transmittance of 80% or more in the visible light region, and more preferably 85% or more.
  • the visible light region is a wavelength region of 380 to 780 nm, and the total light transmittance indicates an arithmetic average of the light transmittance over the visible light region.
  • the first base film 12 preferably has an oxygen permeability of 1 cc / (m 2 , day, atm) or less.
  • the oxygen permeability of the first base film 12 is more preferably 0.1 cc / (m 2 ⁇ day ⁇ atm) or less , still more preferably 0.01 cc / (m 2 ⁇ day ⁇ atm) or less, and even more preferably. is 0.001cc / (m 2 ⁇ day ⁇ atm) or less.
  • the first base film 12 preferably has a water vapor barrier property that blocks water (water vapor) in addition to a gas barrier property that blocks oxygen.
  • the moisture permeability (water vapor transmission rate) of the first base film 12 is preferably 0.10 g / (m 2 ⁇ day ⁇ atm) or less, and more preferably 0.01 g / (m 2 ⁇ day ⁇ atm) or less.
  • a strip-shaped support film having flexibility that is transparent to visible light is preferable.
  • transparent to visible light means that the light transmittance in the visible light region is 80% or more, preferably 85% or more.
  • the light transmittance used as a measure of transparency is determined by measuring the total light transmittance and the amount of scattered light using the method described in JIS K 7105, that is, an integrating sphere type light transmittance measuring device, and diffuse transmission from the total light transmittance. It can be calculated by subtracting the rate.
  • paragraphs 0046 to 0052 of JP-A-2007-290369 and paragraphs 0040-0055 of JP-A-2005-096108 can be referred to.
  • the support film 12a examples include a polyethylene terephthalate (PET) film, a film made of a polymer having a cyclic olefin structure, a polystyrene film, and the like.
  • PET polyethylene terephthalate
  • a film made of a polymer having a cyclic olefin structure a polystyrene film, and the like.
  • the thickness of the support film 12a is preferably 10 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, and even more preferably 30 to 300 ⁇ m from the viewpoint of improving the impact resistance of the wavelength conversion member.
  • the thickness of the support film 12a is preferably 40 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the first base film 12 (and the second base film 14) has a barrier layer 12b on one surface of the support film 12a.
  • the barrier layer 12b various known barrier layers can be used. It is preferable to have at least one inorganic layer, and an organic-inorganic laminated type barrier layer having one or more combinations of an inorganic layer and an organic layer as a base of the inorganic layer is more preferable.
  • the barrier layer 12b of the first base film is the base organic layer 34 formed on the surface of the support film 12a and the base organic as shown in the partially enlarged view A of FIG.
  • the inorganic layer 36 is a layer containing an inorganic material as a main component, and is preferably a layer in which the inorganic material accounts for 50% by mass or more, further 80% by mass or more, particularly 90% by mass or more, and only from the inorganic material. It is more preferable that the layer is formed.
  • the inorganic layer 36 is preferably a layer having a gas barrier property that blocks oxygen.
  • the oxygen permeability of the inorganic layer is preferably 1cc / (m 2 ⁇ day ⁇ atm) or less.
  • the inorganic layer also preferably has a water vapor barrier property that blocks water vapor.
  • the thickness of the inorganic layer 36 is preferably 1 to 500 nm, more preferably 5 to 300 nm, and even more preferably 10 to 150 nm. This is because when the thickness of the inorganic layer 36 is within the above range, reflection in the inorganic layer 36 can be suppressed while achieving good barrier properties, and a laminated film having a higher light transmittance can be provided. ..
  • the organic layer (underlying organic layer 34 and protected organic layer 38) is a layer containing an organic material as a main component, preferably 50% by mass or more of the organic material, further 80% by mass or more, and particularly 90% by mass or more. It shall refer to the layer that occupies.
  • the organic layer preferably comprises a cardopolymer. This is because the adhesion between the organic layer and the adjacent layer, particularly the adhesion with the inorganic layer, is strengthened, and further excellent gas barrier property can be realized.
  • the cardopolymer reference can be made to paragraphs 805 to 095 of Japanese Patent Application Laid-Open No. 2005-096108.
  • the thickness of the organic layer is preferably 0.05 to 10 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the thickness of the organic layer is preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the thickness of the organic layer is preferably 0.05 to 5 ⁇ m, more preferably 0.05 to 1 ⁇ m.
  • the organic layer may be laminated between the support film and the inorganic layer as a base layer of the inorganic layer, or may be laminated between the inorganic layer and the wavelength conversion layer as a protective layer of the inorganic layer. You may. When having two or more inorganic layers, the organic layers may be laminated between the inorganic layers.
  • the first base film 12 (and the second base film 14) may be provided with an unevenness-imparting layer that imparts an unevenness structure to the surface opposite to the surface on the wavelength conversion layer 16 side. It is preferable that the first base film 12 has the unevenness-imparting layer because the blocking property and / or slipperiness of the base film can be improved.
  • the unevenness-imparting layer is preferably a layer containing particles. Examples of the particles include inorganic particles such as silica, alumina and metal oxides, and organic particles such as crosslinked polymer particles. Further, the unevenness-imparting layer is preferably provided on the surface opposite to the wavelength conversion layer of the base film, and may be provided on both sides.
  • the wavelength conversion layer 10 can have a light scattering function in order to efficiently extract the fluorescence of quantum dots to the outside.
  • the light scattering function may be provided inside the wavelength conversion layer 16, or a layer having a light scattering function may be separately provided as the light scattering layer.
  • the light scattering layer may be provided on the surface of the first base film 12 and / or the second base film 14 on the wavelength conversion layer 16 side, or the first base film 12 and / or the second base material. It may be provided on the surface of the film 14 opposite to the wavelength conversion layer 16.
  • the unevenness-imparting layer it is preferable that the unevenness-imparting layer is a layer that can also be used as a light scattering layer.
  • the mixed layer 28 contains the quantum dots 24 contained in the quantum dot containing portion 20.
  • the opaque layer 30 can be a layer made of an oxygen opaque material that does not contain the quantum dots 24.
  • the oxygen impermeable material various materials that can be used as the material for forming the resin layer 18 can be used. Among them, the mixed layer 28 and the impermeable layer 30 preferably contain the same polymerizable compound as the polymerizable compound used for forming the resin layer 18 as an oxygen impermeable material.
  • the resin layer forming composition L1 for forming the resin layer 18 is prepared by mixing various components such as a polymerization initiator, inorganic particles, and light scattering particles, if necessary, in addition to the polymerizable compound.
  • the above-mentioned polymerizable composition L2 containing quantum dots is prepared.
  • a mold M having a concave-convex pattern corresponding to the recess 18a and the wall portion of the resin layer 18 for forming the resin layer 18, and the first base film 12 and the second base film 14 are formed.
  • the prepared mold M is filled with the prepared resin layer forming composition L1 and the third stage of FIG.
  • the first base film 12 is laminated on the mold M so as to cover the entire surface of the resin layer forming composition L1.
  • the resin layer forming composition L1 is cured by irradiation with ultraviolet rays or the like to form the resin layer 18, and the mold M is removed from the resin layer 18 as shown in the fourth stage of FIG.
  • a laminated body is formed in which the resin layer 18 with the bottom of the recess 18a facing the first base film 12 is laminated on one surface of the first base film 12.
  • the above-mentioned polymerizable composition (quantum dot-containing polymerizable composition) L2 containing quantum dots is recessed. 18a is filled.
  • the quantum dot-containing polymerizable composition L2 is formed so that the quantum dot-containing polymerizable composition L2 rises above the upper end of the wall portion of the resin layer 18. , Fill the recess 18a.
  • the second base film 14 is laminated so as to cover and seal the entire surface of the quantum dot-containing polymerizable composition L2.
  • the gap between the upper end of the wall portion of the resin layer 18 and the second base film 14 can be adjusted.
  • the gap between the upper end of the wall portion of the resin layer 18 and the second base film 14 can be adjusted by adjusting the pressure of the laminator.
  • the quantum dot-containing polymerizable composition L2 is cured by light irradiation to form a quantum dot-containing portion, and as shown in the third stage of FIG. 12, the quantum dot-containing portion and the resin layer 18 are provided.
  • a wavelength conversion member 10 is produced in which the wavelength conversion layer 16 is sandwiched between the first base film 12 and the second base film 14.
  • the second stage shown in the second stage of FIG. Prior to laminating the base film 14, a coating liquid L3 containing an oxygen-impermeable material is applied to one surface of the second base film 14, as conceptually shown in FIG. After that, the coated surface of the coating liquid L3 is directed toward the quantum dot-containing polymerizable composition L2, and as shown in the second stage of FIG. 12, the entire surface of the quantum dot-containing polymerizable composition L2 is covered and sealed. , The second base film 14 is laminated.
  • the quantum dot-containing polymerizable composition L2 and the coating liquid L3 containing the oxygen-impermeable material are mixed.
  • a wavelength conversion member having the mixed layer 28 or the opaque layer 30 together with the quantum dot-containing portion is manufactured. can.
  • the coating thickness of the coating liquid L3 containing the oxygen-impermeable material to the second base film 14 only the mixed layer 28 is formed, or the mixed layer 28 is formed. And whether to form both the opaque layer 30 can be set.
  • both the mixed layer 28 and the impermeable layer 30 can be formed by increasing the coating thickness of the coating liquid L3 containing the impermeable material, and the thicker the coating thickness of the coating liquid L3, the more the impermeable layer 30 Becomes thicker.
  • the method for forming the recess 18a of the resin layer 18 is not limited to the method shown in FIG. 11, and various known methods for forming a sheet-like material having irregularities can be used.
  • the resin layer forming composition L1 is first applied to the first base film 12, then the mold M is pressed against the resin layer forming composition L1, and then the resin layer forming composition L1 is cured. After laminating the first base film 12 and the mold M, the resin layer forming composition L1 is filled between the first base film 12 and the mold M, and then the resin layer is formed. Examples thereof include a method of curing the composition L1 for use.
  • a method of forming a flat resin layer and then etching to form a resin layer 18 having a recess 18a a printing method such as an inkjet method and a dispenser method, and a resin layer 18 having a recess 18a are used.
  • a method of forming the above is also available.
  • Backlight unit One aspect of the present invention relates to a backlight unit including the wavelength conversion member and a light source.
  • FIG. 14 is a schematic view showing a schematic configuration of the backlight unit.
  • the backlight unit 50 a surface consisting of a light guide plate 52B that emits the guided primary light emitted from the light source 52A and the light source 52A for emitting a primary light (blue light L B)
  • a light source 52C a wavelength conversion member 54 arranged on the planar light source 52C, a reflector 56A arranged to face the wavelength conversion member 54 with the planar light source 52C interposed therebetween, and a retroreflective member 56B are provided.
  • the reflector 56A, the light guide plate 52B, the wavelength conversion member 54, and the retroreflective member 56B are shown separately, but in reality, they may be formed in close contact with each other.
  • Wavelength conversion member 54 at least a portion of the surface light source 52C primary light L B emitted from the excitation light and emit fluorescence, secondary light comprising this fluorescence (green light L G, the red light L R) and emits the primary light L B having passed through the wavelength conversion member 54.
  • the wavelength converting member 54, the blue light L irradiating the green light L wavelength conversion layer 16 including the quantum dots that emit quantum dots and the red light L R for emitting G is first base film 12 and the by the B
  • the wavelength conversion member 10 is formed by being sandwiched between the two base film 14.
  • L B emitted from the wavelength conversion member 54, L G and L R is incident on the retroreflective member 56B, the light incident reveals that between the reflecting plate 56A and retroreflective member 56B The reflection can be repeated and passed through the wavelength conversion member 54 many times.
  • the wavelength conversion member 54 a sufficient amount of excitation light (the blue light L B) are absorbed by the quantum dots 24 in the wavelength conversion layer 16, a sufficient amount of fluorescence (L G, L R) emits light , White light L W is embodied and emitted from the retroreflective member 56B.
  • a backlight unit 50 that is a multi-wavelength light source.
  • blue light having an emission center wavelength in the wavelength band of 430 to 480 nm and having a peak emission intensity with a half-value width of 100 nm or less
  • blue light having an emission center wavelength in the wavelength band of 500 to 600 nm and having a half-value width of 100 nm or less.
  • green light having an emission intensity peak of 100 nm or less
  • red light having an emission center wavelength in the wavelength band of 600 to 680 nm and having an emission intensity peak having a half width of 100 nm or less.
  • the wavelength band of the blue light emitted by the backlight unit 50 is more preferably 440 to 460 nm.
  • the wavelength band of the green light emitted by the backlight unit 50 is preferably 520 to 560 nm, more preferably 520 to 545 nm.
  • the wavelength band of red light emitted by the backlight unit 50 is more preferably 610 to 640 nm.
  • the half-value width of each emission intensity of blue light, green light, and red light emitted by the backlight unit 50 is preferably 80 nm or less, more preferably 50 nm or less, and more preferably 40 nm. It is more preferably 30 nm or less, and particularly preferably 30 nm or less. Among these, it is particularly preferable that the half width of each emission intensity of blue light is 25 nm or less.
  • the light source 52A can be, for example, a blue light emitting diode that emits blue light having a emission center wavelength in a wavelength band of 430 to 480 nm.
  • an ultraviolet light emitting diode that emits ultraviolet light may be used.
  • a laser light source or the like can be used in addition to the light emitting diode.
  • the wavelength conversion layer 16 of the wavelength conversion member 54 emits quantum dots that emit blue light, quantum dots that emit green light, and red light when irradiated with ultraviolet light. It may include quantum dots.
  • the planar light source 52C may be a planar light source including a light source 52A and a light guide plate 52B that guides and emits primary light emitted from the light source 52A, or the light source 52A may be a planar light source.
  • a planar light source that is arranged side by side in a plane parallel to the wavelength conversion member 54 and has a diffuser plate instead of the light guide plate 52B may be used.
  • the former planar light source is generally called the edge light method, and the latter planar light source is generally called the direct type.
  • a planar light source is used as the light source has been described as an example. However, as the light source, a light source other than the planar light source can also be used.
  • FIG. 14 describes an edge light system in which a light guide plate, a reflector, and the like are constituent members.
  • the configuration of the backlight unit may be a direct type system.
  • the light guide plate a known one can be used.
  • the reflector 56A is not particularly limited, and a known one can be used, and Patent No. 3416302, Patent No. 3363565, Patent No. 4091978, Patent No. 34486626 and the like can be referred to.
  • the retroreflective member 56B may be composed of a known diffusion plate and diffusion sheet, a prism sheet (for example, BEF series manufactured by Sumitomo 3M Ltd.), a light guide, and the like.
  • a prism sheet for example, BEF series manufactured by Sumitomo 3M Ltd.
  • a light guide for example, a prism sheet (for example, BEF series manufactured by Sumitomo 3M Ltd.), a light guide, and the like.
  • Japanese Patent No. 3416302 Japanese Patent No. 3363565
  • Japanese Patent No. 4091978 Japanese Patent No. 34486626, and the like.
  • Liquid crystal display One aspect of the present invention relates to a liquid crystal display device including the backlight unit and a liquid crystal cell.
  • FIG. 15 is a schematic view showing a schematic configuration of a liquid crystal display device.
  • the liquid crystal display device 60 includes a backlight unit 50 and a liquid crystal cell unit 62 arranged to face each other on the retroreflective member side of the backlight unit.
  • the liquid crystal cell unit 62 has a configuration in which the liquid crystal cell 64 is sandwiched between the polarizing plate 68 and the polarizing plate 70, and the polarizing plates 68 and 70 have both mains of the polarizers 72 and 74, respectively.
  • the surface is protected by polarizing plate protective films 76 and 78, 82 and 84.
  • the liquid crystal cells 64, polarizing plates 68, 70 and their components constituting the liquid crystal display device 60 are not particularly limited, and products manufactured by known methods, commercially available products, and the like can be used. Of course, it is also possible to provide a known intermediate layer such as an adhesive layer between the layers.
  • the drive mode of the liquid crystal cell 64 is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), imprint switching (IPS), optical compensate bend cell ().
  • Various modes such as OCB) can be used.
  • the liquid crystal cell is preferably in any of VA mode, OCB mode, IPS mode and TN mode. However, it is not limited to these.
  • the configuration shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2008-262161 can be mentioned as an example.
  • the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
  • the liquid crystal display device 60 can further have an accompanying functional layer such as an optical compensation member and an adhesive layer that perform optical compensation, if necessary.
  • the liquid crystal display device 60 includes (or replaces) a color filter base material, a thin layer transistor base material, a lens film, a diffusion sheet, a hard coat layer, an antireflection layer, a low reflection layer, an antiglare layer, and the like. Surface layers such as a forward scattering layer, a primer layer, an antistatic layer, and an undercoat layer may be arranged.
  • the polarizing plate 68 on the backlight unit 50 side may have a retardation film as the polarizing plate protective film 78 on the liquid crystal cell 64 side.
  • a retardation film a known cellulose acylate film or the like can be used.
  • Example 1 ⁇ Manufacturing of wavelength conversion member> (Making a barrier film)
  • a barrier film in which an inorganic layer and an organic layer were formed on a support film made of polyethylene terephthalate (PET) was produced as follows.
  • TMPTA Trimethylolpropane triacrylate
  • ESACURE KTO46 photopolymerization initiator manufactured by Lamberti
  • the coating liquid was cured by irradiating with ultraviolet rays (integrated irradiation amount of about 600 mJ / cm 2) in a nitrogen atmosphere, and wound up.
  • the thickness of the organic layer formed on the support film was 1 ⁇ m.
  • a silicon nitride film was formed as an inorganic layer on the surface of the underlying organic layer by using a CVD (Chemical Vapor Deposition) apparatus for forming a film by roll-to-roll.
  • CVD Chemical Vapor Deposition
  • the raw material gas silane gas (flow rate 160 sccm (Standard Cubic Center per Minute)), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used.
  • a power source a high frequency power source having a frequency of 13.56 MHz was used.
  • the film forming pressure was 40 Pa (Pascal), and the ultimate film thickness was 50 nm.
  • a protective organic layer was laminated on the surface of the inorganic layer.
  • the thickness of the protective organic layer formed on the support film was 0.1 ⁇ m.
  • a barrier film with a protective organic layer was produced as the first base film and the second base film.
  • the oxygen permeability of this barrier film was measured using OX-TRAN 2/20 manufactured by MOCON under the conditions of a measurement temperature of 23 ° C. and a relative humidity of 90%, the oxygen permeability was 4.0 ⁇ 10 -3 cc /. It was (m 2 ⁇ day ⁇ atm) or less.
  • Urethane (meth) acrylate (U-4HA manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 42 parts by mass Tricyclodecanedimethanol diacrylate (A-DCP manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 42 parts by mass Flat plate alumina (Inorganic layered compound: Kinsei) Seraph 05070 (manufactured by Matic): 15 parts by mass Photopolymerization initiator (Irgacure TPO manufactured by BASF): 1 part by mass
  • the concave portion (convex portion of the mold) of the resin layer has a regular hexagonal shape with a side of 125 ⁇ m and has a honeycomb pattern.
  • the depth h of the concave portion (height of the convex portion of the mold) is 40 ⁇ m, and the distance between the concave portions (distance between the convex portions of the mold (distance t between the quantum dot-containing parts, that is, the thickness of the wall portion)) is 50 ⁇ m. (See Fig. 5).
  • the concave portion of the mold M to be the wall portion has a curved surface having a radius of curvature of 10 ⁇ m at the bottom corner.
  • the resin layer forming composition prepared above was filled so as to completely fill the recesses of the mold.
  • the first base film (barrier film) was laminated on the mold so as to completely cover the resin layer forming composition, and the resin layer forming composition was pressure-welded with a laminator at a pressure of 0.5 MPa. Was photocured.
  • the photocuring of the resin layer forming composition was carried out by irradiating the composition for forming a resin layer with ultraviolet rays at 500 mJ / cm 2 from the first base film side using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 200 W / cm. Then, the mold was removed to prepare a laminated body in which a resin layer was laminated on the first base film (see FIG. 11).
  • a film having a thickness of 50 ⁇ m was formed under exactly the same conditions. That is, this film corresponds to a wall portion having a thickness of 50 ⁇ m in the resin layer.
  • Oxygen permeability of this film results of measurement as before, the oxygen permeability was 8cc / (m 2 ⁇ day ⁇ atm). Further, as a result of measuring the elastic modulus of the resin layer after curing in accordance with JIS K 7161, the elastic modulus was 4.2 GPa.
  • Quantum Dot-Containing Polymerizable Composition A quantum dot-containing polymerizable composition was prepared by putting the following components into a tank and mixing them. In the preparation, the toluene dispersion of quantum dots 1 (maximum emission: 520 nm) and the toluene dispersion of quantum dots 2 (maximum emission: 630 nm) were mixed, and the total content of quantum dots in the polymerizable composition was 2.0%. It was mixed and used in an amount of Quantum dots 1 and 2 are the following semiconductor nanoparticles having a core-shell structure (core: InP / shell: ZnS). Quantum dot 1: NN-labs INP530-10 Quantum dot 2: NN-labs INP620-10
  • Toluene dispersion of quantum dots 2.0% as quantum dots
  • Component A Tricyclodecanedimethanol diacrylate (NK ester A-DCP manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)): Refer to Table 1
  • Component B Isobornyl acrylate (IBXA manufactured by Osaka Organic Chemical Industry Co., Ltd.)): Refer to Table 1 component C (trimethylolpropane tris (3-mercaptopropionate) (TMMP manufactured by SC Organic Chemistry Co., Ltd.)): 18.5%
  • Component D ⁇ -carboxyethyl acrylate ( ⁇ -CEA manufactured by Daicel Ornex): 4.63%
  • Component E Type: See Table 1): See Table 1 Light-scattering particles (Advanced Alumina AA-1.5 manufactured by Sumitomo Chemical Co., Ltd.): 7.5% Photopolymerization initiator (BASF Irgacure TPO): 0.107%
  • the component A is the first (meth) acrylate (polyfunctional (meth) acrylate), the component B is the monofunctional (meth) acrylate, the component C is the polyfunctional thiol, and the component D is the second (meth) acrylate.
  • the component E used in Example 1 and Examples described later is a phenolic compound.
  • Wavelength Converting Member The recess of the resin layer was filled with the quantum dot-containing polymerizable composition so as to completely fill the recess of the resin layer of the laminate of the first base film and the resin layer prepared earlier.
  • the second base film (barrier film) was laminated on the resin layer so as to completely cover the quantum dot-containing polymerizable composition, and the quantum dot-containing polymerizable composition was pressure-welded with a laminator at a pressure of 0.3 MPa.
  • a wavelength conversion member was produced (see FIG. 12).
  • the photocuring of the quantum dot-containing polymerizable composition was carried out by irradiating a 200 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) with ultraviolet rays at 500 mJ / cm 2 from the first base film side.
  • the produced wavelength conversion member was cut with a microtome, and the cross section of the section was observed with an SEM. As a result, this wavelength conversion member had a gap of 0.5 ⁇ m between the upper end of the wall portion of the resin layer and the second base film. Further, the excitation light having a wavelength of 405 nm was irradiated, and the distribution of the luminescent particles in the above cross section was observed with a confocal laser scanning microscope (TCS SP5 manufactured by Leica) using an objective lens having a magnification of 50 times.
  • TCS SP5 confocal laser scanning microscope
  • the wavelength conversion member has a thickness of 0 including quantum dots similar to the quantum dot-containing portion formed in the recess of the resin layer between the upper end of the wall portion of the resin layer and the second base film. It was confirmed that a layer of .5 ⁇ m (a layer containing quantum dots) was formed.
  • Examples 2 to 8, Comparative Examples 1 to 3 A wavelength conversion member was produced in the same manner as in Example 1 except that the types and / or contents of various components of the quantum dot-containing polymerizable composition were changed as shown in Table 1.
  • the luminance (relative luminance) was determined as a relative value with respect to the luminance of Comparative Example 1, respectively. Based on the relative brightness obtained in this way, the brightness was evaluated according to the following evaluation criteria. If the evaluation result is A, B or C, it can be said that the wavelength conversion member is capable of emitting light with high brightness.
  • D Relative brightness ⁇ 100%
  • Each wavelength conversion member of Examples and Comparative Examples was once taken out from the liquid crystal display device after the above-mentioned luminance evaluation.
  • the taken-out wavelength conversion member was irradiated with light having a wavelength of 445 nm toward the surface on the second base film side in an environment having an atmospheric temperature of 50 ° C. for 1000 hours.
  • the brightness was measured in the same manner as described above, and the brightness was obtained as a relative value with respect to the brightness of Comparative Example 1 before the light irradiation.
  • luminance after durability (unit:%) (relative brightness after light irradiation / relative brightness before light irradiation) x 100" was calculated. Based on the calculated value, the durability was evaluated according to the following evaluation criteria. If the evaluation result is A or B, it can be said that the decrease in brightness is small and the durability is excellent, and if it is A, it can be said that the durability is superior.
  • B 94% ⁇ brightness after durability ⁇ 96%
  • the wavelength conversion member of the example is capable of emitting light with high brightness, and the quantum dot-containing polymerizable composition used for producing the wavelength conversion member is excellent in liquid stability. You can check.
  • One aspect of the present invention is useful in the technical field of liquid crystal display devices.
  • Wavelength conversion member 12 1st base film 12a, 14a Support film 12b, 14b Barrier layer 14 2nd base film 16 Wavelength conversion layer 18 Resin layer 18a Recess 20 Quantum dot containing part 24, 24e Quantum dot 26 Matrix 28 Mixed layer 30 Impermeable layer 34 Underlying organic layer 36 Inorganic layer 38 Protective organic layer 50 Backlight unit 52A Light source 52B Light guide plate 52C Planar light source 54 Wavelength conversion member 56A Reflective plate 56B Retroreflective member 60 Liquid crystal display device 62 Liquid crystal Cell unit 64 Liquid crystal cell 68, 70 Polarizer 72, 74 Polarizer 76, 78, 82, 84 Polarizer protective film L1 Resin layer forming composition L2 Quantum dot-containing polymerizable composition L3 Oxygen impermeable material is contained. Coating liquid M mold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

量子ドットと多官能チオールと多官能(メタ)アクリレートとフェノール系化合物とを含む重合性組成物が提供される。

Description

量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置
 本発明は、量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置に関する。
 液晶表示装置(以下、LCD(Liquid Crystal Display)とも記載する。)等のフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として、年々その用途が広がっている。液晶表示装置は、通常、少なくともバックライトユニットと液晶セルとから構成される。
 フラットパネルディスプレイについては、近年、発光材料として、量子ドット(Quantum Dot、QD、量子点等とも呼ばれる。)が注目を集めている(特許文献1の段落0002等参照)。
特許第5801886号明細書
 バックライトユニットは、少なくとも量子ドットを含む部材と光源とを含むことができる。かかる部材は、一般に波長変換部材と呼ばれる。例えば、光源から波長変換部材に光が入射すると、量子ドットが、入射した光によって励起されて蛍光を発光する。ここで異なる発光特性を有する量子ドットを用いることにより、量子ドットが発光する蛍光および/または光源から出射して波長変換部材を通過した光として、赤色光、緑色光および青色光の各輝線光を波長変換部材から出射させることができる。これにより、白色光を具現化することが可能となる。量子ドットにより発光される蛍光は半値幅が小さいため、得られる白色光は高輝度であり、しかも色再現性に優れる。このような量子ドットを用いた3波長光源化技術の進行により、色再現域は、現行のTV規格(FHD(Full High Definition)、NTSC(National Television System Committee))比72%から100%へと拡大している。
 かかる量子ドットを含む部材には、より一層高い輝度での発光が可能になることが望まれる。
 上記部材は、量子ドットを含む重合性組成物を硬化した硬化物を含む層(一般に「波長変換層」と呼ばれる。)を有することができる。かかる硬化物を作製するために使用される重合性組成物には、経時的な粘度変化が少ないこと、即ち液安定性に優れることが望まれる。
 以上に鑑み、本発明の一態様は、量子ドットを含む波長変換部材の輝度の向上に寄与することができ、かつ液安定性に優れる量子ドット含有重合性組成物を提供することを目的とする。
 本発明の一態様は、
 量子ドットと、
 多官能チオールと、
 多官能(メタ)アクリレートと、
 フェノール系化合物と、
 を含む重合性組成物、
 に関する。
 一形態では、上記フェノール系化合物の1分子中に含まれるヒドロキシ基の数は、1~3の範囲であることができる。
 一形態では、上記フェノール系化合物の1分子中に含まれるヒドロキシ基の数は、2または3であることができる。
 一形態では、上記フェノール系化合物の1分子中に含まれるヒドロキシ基の数は3であることができる。
 一形態では、上記重合性組成物は、上記フェノール系化合物として、ピロガロールを含むことができる。
 一形態では、上記重合性組成物において、組成物全量に対するピロガロールの含有率は、0.001質量%以上0.500質量%以下であることができる。
 一形態では、上記重合性組成物において、組成物全量に対するピロガロールの含有率は、0.005質量%以上0.300質量%以下であることができる。
 一形態では、上記重合性組成物において、組成物全量に対するピロガロールの含有率は、0.010質量%以上0.100質量%以下であることができる。
 本発明の一態様は、上記重合性組成物を硬化した硬化物に関する。
 本発明の一態様は、上記硬化物を含む波長変換部材に関する。
 本発明の一態様は、上記波長変換部材と、光源と、を含むバックライトユニットに関する。
 本発明の一態様は、上記バックライトユニットと、液晶セルと、を含む液晶表示装置に関する。
 本発明の一態様によれば、量子ドットを含有する重合性組成物であって、高輝度で発光することができる波長変換部材の作製を可能にすることができ、かつ液安定性に優れる重合性組成物を提供することができる。また、本発明の一態様によれば、かかる重合性組成物を硬化した硬化物、この硬化物を含む波長変換部材、この波長変換部材を含むバックライトユニットおよびこのバックライトユニットを含む液晶表示装置を提供することができる。
波長変換部材の一例を概念的に示す斜視図である。 図1の波長変換部材の平面図である。 図1および図2のIII-III線断面図である。 波長変換部材の樹脂層の形状の一例を説明するための断面図である。 図3の部分拡大図である。 波長変換部材の別の例を概念的に示す断面図である。 波長変換部材の別の例を概念的に示す断面図である。 量子ドット含有部のパターンの一例を示す平面図である。 量子ドット含有部のパターンの別の例を示す平面図である。 量子ドット含有部の輪郭の特定方法を説明するための概念図である。 波長変換部材の製造方法の一例を説明するための概念図である。 波長変換部材の製造方法の一例を説明するための概念図である。 波長変換部材の製造方法の別の例を説明するための概念図である。 バックライトユニットの一例の構成を概念的に示す図である。 液晶表示装置の一例の構成を概念的に示す図である。
 以下の説明は、本発明の代表的な実施形態に基づいてなされることがある。但し、本発明はそのような実施形態に限定されるものではない。尚、本発明および本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
  本発明および本明細書中、ピークの「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。また、400nm以上500nm未満の範囲の波長帯域に発光中心波長を有する光を青色光と呼び、500nm以上600nm未満の範囲の波長帯域に発光中心波長を有する光を緑色光と呼び、600nm以上680nm以下の範囲の波長帯域に発光中心波長を有する光を赤色光と呼ぶ。
[重合性組成物]
 本発明の一態様は、量子ドットと、多官能チオールと、多官能(メタ)アクリレートと、フェノール系化合物と、を含む重合性組成物に関する。
 本発明および本明細書において、「(メタ)アクリレート」とは、(メタ)アクリロイル基を1分子中に1つ以上含む化合物を言うものとし、「(メタ)アクリロイル基」との語は、アクリロイル基とメタクリロイル基の一方または両方を示すために用いられるものとする。「(メタ)アクリレート」についての官能数は、(メタ)アクリレート1分子中に含まれる(メタ)アクリロイル基の数を言う。(メタ)アクリレートについて、「単官能」とは、1分子中に含まれる(メタ)アクリロイル基の数が1つであることを言い、「多官能」とは、1分子中に含まれる(メタ)アクリロイル基の数が2つ以上であることを言うものとする。また、(メタ)アクリロイル基は、(メタ)アクリロイルオキシ基の形態で(メタ)アクリレートに含まれ得る。「(メタ)アクリロイルオキシ基」との語は、アクリロイルオキシ基とメタクリロイルオキシ基の一方または両方を示すために用いるものとする。
 本発明および本明細書において、(メタ)アクリレートに関して、後述の第1の(メタ)アクリレートにも第2の(メタ)アクリレートにも該当し得る(メタ)アクリレートは、第2の(メタ)アクリレートと解釈するものとする。
 本発明および本明細書において、「重合性組成物」とは、重合性化合物を少なくとも1種含む組成物であり、光照射、加熱等の重合処理が施されることにより硬化する性質を有する。また、「重合性化合物」とは、1分子中に1つ以上の重合性官能基を含む化合物である。「重合性官能基」とは、重合反応に関与し得る基であり、「(メタ)アクリロイル基」は重合性官能基である。
 本発明および本明細書において、「多官能チオール」とは、1分子中に2つ以上のチオール基を有する化合物である。チオールについての官能数は、チオール1分子中に含まれるチオール基の数をいう。
 本発明者は鋭意検討を重ねた結果、本発明の一態様にかかる重合性組成物を硬化した硬化物を含む波長変換部材が、高輝度で発光することができ、しかも上記重合性組成物は液安定性に優れることを新たに見出した。この理由を、本発明者は以下のように推察している。
 量子ドットの表面に配位子を配位させることは、輝度向上に寄与すると言われている。この点に関して、チオール基を有する化合物は、チオール基が量子ドットの表面に吸着することにより、量子ドットに対する配位子として機能することができると考えられる。また、多官能チオールは、(メタ)アクリレートとともに重合性化合物に含まれることにより、多官能チオールに含まれるチオール基の一部が(メタ)アクリレートの(メタ)アクリロイル基と架橋反応することができ、このことが輝度低下の抑制、即ち耐久性向上に寄与し得ると推察される。
 しかしながら、チオール基を含有する化合物と(メタ)アクリロイル基を含む化合物を共に含む組成物については、チオール―エン反応が進行することによって経時的な粘度上昇が発生し易い傾向がある。これに対し、かかる組成物にフェノール系化合物を添加することによって、フェノール系化合物が重合禁止剤として作用し得ることで上記の粘度上昇を抑制することができ、しかも上記組成物を硬化した硬化物を含む波長変換部材は高輝度での発光も可能であること(即ち輝度の更なる向上が可能であること)が、本発明者の検討の結果、新たに判明した。輝度向上に関しては、あくまでも推察に過ぎないものの、フェノール系化合物が量子ドットの表面に吸着している可能性があり、このことが輝度向上に寄与している可能性があると本発明者は考えている。但し推察に過ぎず、本発明を限定するものではない。これに対し、本発明者が検討したところ、一般に重合禁止剤として機能すると言われている化合物の使用では、液安定性の向上が困難であるか、および/または、輝度向上は困難であった。一例として、一般に安定ラジカル(例えば、後述の比較例で使用されている2,2,6,6-テトラメチルピペリジン 1-オキシル)と言われる重合禁止剤では、安定ラジカルがチオール基から水素を引き抜くことでチイルラジカルを生じるため、チオール基と(メタ)アクリロイル基との反応が緩やかに進行してしまうと考えられ、このことが液安定性の向上を困難にすると推察される。
 但し、本発明は、上記をはじめとする本発明者の推察に限定されるものではない。
 以下、上記重合性組成物について、更に詳細に説明する。
<多官能チオール>
 上記重合性組成物に含まれる多官能チオールは、2官能以上のチオールであって、3官能以上のチオールであることが好ましい。上記多官能チオールは、例えば、8官能以下、7官能以下、6官能以下、5官能以下または4官能以下のチオールであることができる。上記重合性組成物を硬化した硬化物を含む波長変換部材の耐久性の更なる向上の観点からは、上記多官能チオールは、2官能~6官能の多官能チオールからなる群から選択される1種または2種以上であることが好ましく、2官能~4官能の多官能チオールからなる群から選択される1種または2種以上であることがより好ましく、3官能または4官能の多官能チオールからなる群から選択される1種または2種以上であることが更に好ましく、3官能チオールであることが一層好ましい。
 多官能チオールの具体例としては、エチレンビス(チオグリコラート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,8-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート、ジペンタエリスリトール ヘキサキス(3-メルカプトプロピオネート)等が挙げられる。多官能チオールとしては、市販品を使用することができ、公知の方法で合成されたものを使用することもできる。市販品の一例としては、例えば、SC有機化学社製商品名Multhiol Y3等の後述の実施例に記載の市販の多官能チオールを挙げることができる。
 上記重合性組成物に含まれる多官能チオールの分子量は、例えば200以上であることができ、耐久性の更なる向上の観点からは300以上であることが好まししい。また、輝度の更なる向上の観点からは、多官能チオールの分子量は、1000以下であることが好ましく、500以下であることがより好ましい。分子量について、第2の(メタ)アクリレートの分子量は、多官能チオールの分子量以下であることが好ましく、多官能チオールの分子量を下回ることがより好ましい。この点については、更に後述する。
 本発明および本明細書において、分子量とは、ポリマー(ポリマーにはオリゴマーも包含されるものとする。)については、重量平均分子量を言うものとする。重量平均分子量とは、ゲル浸透クロマトグラフィー(GPC)により測定された測定値をポリスチレン換算して求められる重量平均分子量をいうものとする。GPCの測定条件としては、例えば以下の条件を採用することができる。
 GPC装置:HLC-8120(東ソー社製)
 カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
 上記重合性組成物において、多官能チオールの含有率は、組成物全量に対して、上記重合性組成物を硬化した硬化物を含む波長変換部材の耐久性の更なる向上の観点からは、5.0質量%以上であることが好ましく、10.0質量%以上であることがより好ましく、15.0質量%以上であることが更に好ましい。また、上記の耐久性の更なる向上の観点から、多官能チオールの含有率は、組成物全量に対して、40.0質量%以下であることが好ましく、35.0質量%以下であることがより好ましく、30.0質量%以下であることが更に好ましく、25.0質量%以上であることが一層好ましく、20.0質量%以下であることがより一層好ましい。上記重合性組成物は、多官能チオールを1種のみ含んでもよく、2種以上を含んでもよい。2種以上の多官能チオールが含まれる場合、上記含有率とは、それら2種以上の多官能チオールの合計含有率をいうものとする。この点は、本発明および本明細書における各種成分についても同様である。また、本発明および本明細書において、組成物全量に対する各成分の含有率とは、上記重合性組成物が溶媒を含む場合には、溶媒を除く全成分の合計含有率を100.0質量%として算出される含有率を言うものとする。上記重合性組成物が溶媒を含まない場合には、組成物全量に対する各成分の含有率とは、組成物に含まれる全成分の合計含有率を100.0質量%として算出される含有率を言うものとする。
<(メタ)アクリレート>
 上記重合性組成物は、(メタ)アクリレートとして、少なくとも1種以上の多官能(メタ)アクリレートを含む。以下において、多官能(メタ)アクリレートを、第1の(メタ)アクリレートと呼ぶ。
(第1の(メタ)アクリレート)
 第1の(メタ)アクリレート(多官能(メタ)アクリレート)は、2官能以上の(メタ)アクリレートの1種または2種以上であって、2官能~8官能、2官能~7官能、2官能~6官能、2官能~5官能または2官能~4官能の多官能(メタ)アクリレートからなる群から選ばれる1種または2種以上であることができる。
 2官能(メタ)アクリレートの具体例としては、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等を挙げることができる。
 3官能以上の(メタ)アクリレートの具体例としては、ECH(Epichlorohydrin)変性グリセロールトリ(メタ)アクリレート、EO(Ethylene Oxide)変性グリセロールトリ(メタ)アクリレート、PO(Propylene Oxide)変性グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート等を挙げることができる。
 上記重合性組成物に第1の(メタ)アクリレートとして含まれる多官能(メタ)アクリレートの分子量は、例えば200以上であることができる。上記重合性組成物の粘度の観点からは、上記多官能(メタ)アクリレートの分子量は、1000以下であることが好ましく、500以下であることがより好ましい。
 上記重合性組成物において、第1の(メタ)アクリレートの含有率は、組成物全量に対して、耐久性の更なる向上の観点から、10.0質量%以上であることが好ましく、20.0質量%以上であることがより好ましく、30.0質量%以上であることが更に好ましい。上記重合性組成物は、第1の(メタ)アクリレートである多官能(メタ)アクリレートを1種のみ含んでもよく、2種以上を含んでもよい。上記重合性組成物が、後述の第2の(メタ)アクリレートに該当する多官能(メタ)アクリレートと非該当の多官能(メタ)アクリレートとを含む場合、第2の(メタ)アクリレートに該当する多官能(メタ)アクリレートの含有率は、上記の第1の(メタ)アクリレートの含有率には含まれないものとする。
 上記重合性組成物は、(メタ)アクリレートとして、カルボキシ基、ヒドロキシ基、リン酸基およびアミノ基からなる群から選ばれる官能基を有する単官能以上の(メタ)アクリレートの1種以上を含むこともできる。かかる(メタ)アクリレートを、以下において、「第2の(メタ)アクリレート」と呼ぶ。
(第2の(メタ)アクリレート)
 上記重合性組成物に第2の(メタ)アクリレートを含有させることは、この重合性組成物を硬化した硬化物を含む波長変換部材の耐久性向上と輝度の更なる向上とに寄与すると本発明者は推察している。詳しくは、以下の通りである。
 量子ドットの表面において配位子の被覆率を高めることは、輝度の更なる向上につながると考えられる。この点に関して、多官能チオールとともに他の配位子を併用することによって、量子ドットの表面における配位子の被覆率を高めることができると考えられる。但し、併用する他の配位子として、チオール基より配位性の高い官能基を有する化合物を使用してしまうと、量子ドットの表面において配位子交換が生じることで多官能チオールの一部が他の配位子に置き換わり、輝度向上が可能になるとしても耐久性は低下し得る。これに対し、上記の第2の(メタ)アクリレートが有する官能基は、いずれもチオール基より配位性が低いと考えられる。そのため、量子ドットの表面に配位する際、多官能チオールに置き換わることがないか、または置き換わる頻度が低いと推察される。そのため、多官能チオールよりもたらされ得る耐久性向上と、他の配位子を使用することでの輝度の更なる向上と、を共に達成することが可能になると本発明者は考えている。
 第2の(メタ)アクリレートは、カルボキシ基、ヒドロキシ基、リン酸基およびアミノ基からなる群から選ばれる官能基を1分子中に1つ以上有する。かかる官能基の数は、1分子中、1~3であることができ、1または2であることが好ましく、1であることがより好ましい。第2の(メタ)アクリレートが上記官能基を1分子中に2つ以上含む場合、これら2つ以上の官能基は同じ官能基であっても異なる官能基であってもよい。カルボキシ基は、-COOHの形態で含まれていてもよく、塩の形態で含まれていてもよい。カルボキシ基の塩とは、-COOで表される塩である。リン酸基は、-P=O(OH)で表される1価の官能基であり、-P=O(OH)の形態で含まれていてもよく、塩の形態で含まれていてもよい。リン酸基の塩とは、-P=O(Oで表される塩である。上記において、Mはアルカリ金属イオン等のカチオンを表す。アミノ基は、1級アミノ基、2級アミノ基または3級アミノ基のいずれでもよい。輝度の更なる向上の観点からは、上記官能基としては、カルボキシ基、ヒドロキシ基およびリン酸基が好ましく、カルボキシ基がより好ましい。
 第2の(メタ)アクリレートは、単官能以上の(メタ)アクリレートである。輝度の更なる向上の観点からは、第2の(メタ)アクリレートとしては、単官能、2官能または3官能(メタ)アクリレートが好ましく、単官能または2官能(メタ)アクリレートがより好ましく、単官能(メタ)アクリレートが更に好ましい。単官能(メタ)アクリレートは、例えば、式:A-L-Xで表すことができる。式中、Aは上記官能基のいずれかを表し、Lは2価の連結基を表し、Xは(メタ)アクリロイル基または(メタ)アクリロイルオキシ基を表す。Lで表される2価の連結基は、例えば、アルキレン基、シクロアルキレン基、エステル基(-O-C(=O)-)からなる群から選ばれる2価の基の1つまたは2つもしくは3つ以上の組み合わせであることができる。アルキレン基としては、炭素数1~3の直鎖または分岐構造を有するアルキレン基(例えば、メチレン基、エチレン基、プロピレン基等)を挙げることができる。シクロアルキレン基としては、炭素数5~8のシクロアルキレン基(例えば、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基等)を挙げることができる。アルキレン基は、置換基を有してもよく有さなくてもよく、無置換アルキレン基であることが好ましい。この点は、シクロアルキレン基についても同様である。尚、カルボキシ基を有する単官能(メタ)アクリレートの一例としては、アクリル酸を挙げることができる。アクリル酸は、CH=CHCOOHで表されるカルボン酸であり、カルボニル基(-C(=O)-)は、カルボキシ基の一部でもあり、アクリロイル基の一部でもある。
 また、第2の(メタ)アクリレートとして含まれる(メタ)アクリレートの分子量は、上記重合性組成物に含まれる多官能チオールの分子量以下であることが好ましく、多官能チオールの分子量を下回ることがより好ましい。分子量が多官能チオールの分子量以下である第2の(メタ)アクリレートは、量子ドットが多官能チオールに配位されているとしても量子ドット近傍に近づき易く、量子ドットの表面において、多官能チオールによって被覆されていない部分に吸着し易いと推察される。このことは、量子ドットの表面における配位子の被覆率を高めて輝度をより一層向上させることに寄与し得ると本発明者は考えている。「分子量比(単位:%)=(第2の(メタ)アクリレートの分子量/多官能チオールの分子量)×100」として算出される分子量比は、100%以下であることが好ましく、80%以下であることがより好ましく、50%以下であることが更に好ましい。
 上記重合性組成物に第2の(メタ)アクリレートとして含まれる(メタ)アクリレートの分子量は、例えば、50以上であることができ、耐久性の更なる向上の観点からは、70以上であることが好ましく、100以上であることがより好ましい。また、輝度の更なる向上の観点からは、上記重合性組成物に第2の(メタ)アクリレートとして含まれる(メタ)アクリレートの分子量は、500以下であることが好ましく、400以下であることがより好ましく、300以下であることが更に好ましく、200以下であることが一層好ましい。
 第2の(メタ)アクリレートの具体例としては、アクリル酸、β-カルボキシエチルアクリレート、2-アクリロイルオキシエチル-コハク酸、2-アクリロイルオキシエチルヘキサヒドロフタル酸等のカルボキシ基含有(メタ)アクリレート、2-アクリロイルオキシエチルアシッドフォスフェート等のリン酸基含有(メタ)アクリレート、2-ヒドロキシエチルアクリレート等のヒドロキシ基含有(メタ)アクリレート等を挙げることができる。
 上記重合性組成物において、第2の(メタ)アクリレートの含有率は、組成物全量に対して、輝度の更なる向上の観点から、0.5質量%以上であることが好ましく、3.0質量%以上であることがより好ましい。また、第2の(メタ)アクリレートの含有率は、耐久性の更なる向上の観点から、組成物全量に対して、20.0質量%以下であることが好ましい。上記重合性組成物は、第2の(メタ)アクリレートである(メタ)アクリレートを1種のみ含んでもよく、2種以上を含んでもよい。
<フェノール系化合物>
 本発明および本明細書において、「フェノール系化合物」とは、フェノールとその誘導体とを包含する意味で用いられる。フェノール系化合物は、下記式1で表すことができる。
Figure JPOXMLDOC01-appb-C000001
 式1中、R~Rは、それぞれ独立に、水素原子または置換基を表す。置換基としては、ヒドロキシ基、アルキル基、アルキル基によって置換されていてもよいカルボキシ基等を挙げることができる。
 アルキル基としては、例えば、炭素数1~6の直鎖または分岐構造を有するアルキル基を挙げることができる。アルキル基には、無置換のものと置換基を有するものとが包含される。置換基を有する場合、炭素数とは、置換基を除く部分の炭素数をいうものとする。アルキル基を置換し得る置換基としては、例えば、ヒドロキシ基、カルボキシ基等を挙げることができる。一形態では、アルキル基は、無置換アルキル基が好ましい。
 以上については、アルコキシ基に含まれるアルキル基およびカルボキシ基を置換し得るアルキル基についても同様である。
 フェノール系化合物の1分子中に含まれるヒドロキシ基の数は、好ましくは1~3の範囲であり、より好ましくは2または3であり、3であることが更に好ましい。複数のヒドロキシ基を有するフェノール系化合物について、ヒドロキシ基の置換位置は限定されるものではなく、ヒドロキシ基は任意の位置に置換し得る。
 フェノール系化合物の具体例としては、ピロガロール、没食子酸メチル(methyl gallate)、4-tert-ブチルピロカテコール、2,6-ジ-tert-ブチル-p-クレゾール、4-メトキシ-フェノール、2-tert-ブチル-4,6-ジメチルフェノール、4,4’-ブチリデンビス(6-tert-ブチル-m-クレゾール)、2,6-ジ-tert-ブチルフェノール、2,2’,6,6’-テトラ-tert-ブチル-[1,1’-ビフェニル]-4,4’-ジオール、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸等を挙げることができる。
 一形態では、上記重合性組成物は、輝度の更なる向上および/または液安定性の更なる向上の観点から、フェノール系化合物としてピロガロールを含むことが好ましい。上記重合性組成物において、ピロガロールの含有率は、組成物全量に対して、輝度の更なる向上および/または液安定性の更なる向上の観点からは、0.001質量%以上であることが好ましく、0.003質量%以上であることがより好ましく、0.005質量%以上であることが更に好ましい。輝度低下の更なる抑制、即ち耐久性の更なる向上の観点からは、上記重合性組成物において、ピロガロールの含有率は、組成物全量に対して、0.500質量%以下であることが好ましく、0.300質量%以下であることがより好ましく、0.100質量%以下であることが更に好ましい。
 上記重合性組成物は、フェノール系化合物を1種のみ含んでもよく、2種以上含んでもよい。2種以上含まれる場合、各フェノール系化合物の含有率については、ピロガロールの含有率に関する上記の記載を参照できる。
<量子ドット>
 上記重合性組成物は、量子ドットを1種以上含む。量子ドットは、励起光により励起され蛍光を発光することができる。
 上記重合性組成物は、量子ドットを1種のみ含んでもよく、発光特性の異なる2種以上の量子ドットを含んでもよい。公知の量子ドットとしては、600nm以上680nm以下の範囲の波長帯域に発光中心波長を有する量子ドット(A)、500nm以上600nm未満の範囲の波長帯域に発光中心波長を有する量子ドット(B)、400nm以上500nm未満の波長帯域に発光中心波長を有する量子ドット(C)がある。量子ドット(A)は、励起光により励起され赤色光を発光することができ、量子ドット(B)は緑色光を、量子ドット(C)は青色光を発光することができる。例えば、量子ドット(A)と量子ドット(B)とを含む波長変換部材へ励起光として青色光を入射させると、量子ドット(A)により発光される赤色光と、量子ドット(B)により発光される緑色光と、波長変換部材を通過した青色光と、により、白色光を具現化することができる。また、量子ドット(A)、(B)および(C)を含む波長変換部材へ励起光として紫外光を入射させることにより、量子ドット(A)により発光される赤色光と、量子ドット(B)により発光される緑色光と、量子ドット(C)により発光される青色光と、により白色光を具現化することができる。
 量子ドットとしては、例えば、コア-シェル型の半導体ナノ粒子を挙げることができる。一般に、粒子サイズが100nm以下(例えば数nm~数十nm)の半導体粒子は、半導体ナノ粒子と呼ばれ得る。コアとしては、II-VI族半導体ナノ粒子、III-V族半導体ナノ粒子、および多元系半導体ナノ粒子等を挙げることができる。具体的には、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、InP、InAs、InGaP等が挙げられる。但し、これらに限定されるものではない。CdSe、CdTe、InPおよびInGaPは、高効率で可視光を発光することができるため好ましい。シェルとしては、CdS、ZnS、ZnO、GaAsおよび/またはこれらの複合体を用いることができる。但し、これらに限定されるものではない。量子ドットについては、例えば、特開2012-169271号公報の段落0060~0066、WO2018/186300の段落0070~0076等の公知技術を参照できる。量子ドットとしては、市販品を使用することができ、公知の方法で作製されたものを使用することもできる。量子ドットの発光特性は、通常、粒子の組成および/またはサイズによって調整することができる。
 上記重合性組成物において、量子ドットの含有率は、組成物全量に対して、例えば0.1~10.0質量%の範囲であることができる。
<任意成分>
(単官能(メタ)アクリレート)
 上記重合性組成物は、例えば希釈剤等として、上記成分に加えて、単官能(メタ)アクリレートの1種以上を任意に含むことができる。かかる単官能(メタ)アクリレートには、第2の(メタ)アクリレートが有する先に記載した官能基を有する単官能(メタ)アクリレートは包含されないものとする。任意に含まれ得る単官能(メタ)アクリレートとしては、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ラウリル(メタ)アクリレート等が挙げられる。
 上記単官能(メタ)アクリレートの含有率は、上記重合性組成物の組成物全量に対して、0質量%であってもよく、0質量%以上または0質量%超であってもよい。上記重合性組成物の組成物に上記単官能(メタ)アクリレートが含まれる場合、その含有率は、上記重合性組成物の組成物全量に対して、耐久性の更なる向上の観点から50.0質量%以下であることが好ましい。
(添加剤)
 上記重合性組成物は、上記成分に加えて1種以上の添加剤を任意に含むことができる。添加剤の具体例としては、重合開始剤、ポリマー、粘度調整剤、シランカップリング剤、界面活性剤、酸化防止剤、酸素ゲッター剤、無機粒子、光散乱粒子等を挙げることができる。添加剤の具体例等の詳細については、例えばWO2018/186300の段落0108~0137、段落0162、0163および段落0165~0169を参照できる。また、上記重合性組成物は、溶媒を含まなくてもよく、必要に応じて1種以上の溶媒を含んでもよい。溶媒の種類および添加量は、限定されない。例えば、溶媒として1種または2種以上の有機溶媒を使用することができる。
 上記重合性組成物は、上記の各種成分を、同時に、または任意の順序で順次、混合して調製することができる。
[硬化物、波長変換部材]
 本発明の一態様は、上記重合性組成物を硬化した硬化物に関する。
 また、本発明の一態様は、上記硬化物を含む波長変換部材に関する。
 上記硬化物の硬化の程度は限定されるものではない。上記硬化物は、上記重合性組成物の重合反応が部分的に進行した硬化物(一般に、部分硬化物、半硬化物等と呼ばれる。)であってもよく、重合反応が飽和またはほぼ飽和した硬化物(一般に、完全硬化物等と呼ばれる。)であってもよい。
 一形態では、上記波長変換部材は、上記重合性組成物をフィルム状に硬化した硬化物である波長変換層を有することができる。かかる波長変換層を有する波長変換部材の製造方法については、例えば、WO2018/016589の段落0127~0155、図2および図3を参照できる。
 また、一形態では、上記波長変換部材は、離散的に配置された複数の凹部を有する樹脂層を有する波長変換層を有することができ、上記樹脂層に、上記重合性組成物を硬化した硬化物を含むことができる。以下、上記形態の波長変換部材について、更に詳細に説明する。以下では図面を参照して説明することがある。但し、図面に示された形態は例示であって、本発明はかかる例示に限定されるものではない。
<波長変換部材>
 図1に、波長変換部材の一例の斜視図を、図2に、図1に示す波長変換部材の平面図を、図3に、図1および図2のIII-III線断面図を、それぞれ示す。波長変換部材の平面図とは、波長変換部材を、主面(最大面)と直交する方向から見た図であり、本明細書においては、特に注釈がない限り、平面図は、波長変換部材を第2基材フィルム側から見た図である。
 図1~図3に示すように、波長変換部材10は、第1基材フィルム12と、第2基材フィルム14と、波長変換層16とを有する。波長変換部材10の構成を明確に示すために、図1では、第2基材フィルム14を破線で示し、図2では、第2基材フィルム14は省略する。
 図3に示すように、第1基材フィルム12は、一例として、支持フィルム12aとバリア層12bとを有する。第2基材フィルム14も、同様に、支持フィルム14aとバリア層14bとを有する。
 また、図3に示すように、波長変換層16は、波長変換部材10の面方向(主面方向)に離散的に形成された凹部18aを有する樹脂層18(図4参照)と、樹脂層18の凹部18aにおいて上記重合性組成物を硬化して形成された硬化物(以下、「量子ドット含有部」とも呼ぶ。)20とを有する。量子ドット含有部20は、量子ドット24と、重合性化合物の重合反応によって形成されたマトリックス26とを有する。即ち、波長変換層16には、面方向に離間して、量子ドット24を含む量子ドット含有部20が、複数設けられている。詳しくは、量子ドット24を含む領域である量子ドット含有部が、樹脂層18の凹部18aを形成する壁によって互いに面方向に離間されて、面方向に離散的に配置されている。
 本発明および本明細書において、「離散的に配置された」とは、より具体的には、図1および図2に示すように、第1基材フィルム12の主面に垂直な方向から観察(平面視)した際、第1基材フィルム12の面方向において、複数の量子ドット含有部20が互いに接触しないで孤立して配置されていることを意味する。フィルムの面方向とは、換言すると、フィルム面(フィルムの主面)に沿った二次元方向である。図1に示す例においては、量子ドット含有部は円柱状であり、第1基材フィルム12の面方向において、樹脂層18に囲まれており、樹脂層18によって、第1基材フィルム12の面方向から個々の量子ドット含有部へ酸素が侵入し難くなっている。
 樹脂層18は、好ましくは少なくとも凹部18aを形成する壁部が、より好ましくは樹脂層18の全ての領域が、酸素に対する不透過性を有する。波長変換層10は、これにより、量子ドット含有部20の量子ドット24の劣化を防止できる。本発明および本明細書において「酸素に対する不透過性を有する」とは、酸素透過度が10cc/(m・day・atm)以下であることを意味する。酸素に対する不透過性を有する樹脂層18の酸素透過度は1cc/(m・day・atm)以下であることが好ましく、より好ましくは、1×10-1cc/(m・day・atm)以下である。尚、酸素透過度のSI単位は、[fm/(s・Pa)]である。「fm」は、フェムトメートルであり。1fm=1×10-15mである。単位「cc/(m・day・atm)」は、換算式「1fm/(s・Pa)=8.752cc/(m・day・atm)」によって、SI単位に換算できる。
また、本発明において、酸素透過度は、測定温度23℃かつ相対湿度90%の条件下で、酸素ガス透過率測定装置(MOCON社製OX-TRAN 2/20)を用いて測定される値である。また、本発明および本明細書において「不透過性を有する」と「バリア性を有する」とは同義である。例えば、本発明および本明細書において、「ガスバリア性」とは、ガス(気体)に対して不透過性を有することを意味し、「水蒸気バリア性」とは、水蒸気に対して不透過性を有することを意味する。また、酸素および水蒸気の両方に対して不透過性を有する層を、「バリア層」と称する。
 波長変換層10では、量子ドット含有部20が二次元方向に離散的に配置されている。従って、波長変換部材10を長尺なフィルムの一部と仮定したとき、波長変換部材10は、図2に一点鎖線で示すように、どの箇所で直線的に裁断されたとしても、裁断箇所となった量子ドット含有部以外の量子ドット含有部は、樹脂層18に囲まれて、面方向に封止された状態を保つことができる。また、裁断されて外気に暴露された量子ドット含有部は、本来の量子ドット24を含有する領域としての機能を失い得る。しかしながら、裁断された位置の量子ドット含有部、即ち、面方向の端部の量子ドット含有部は、通常、表示装置(ディスプレイ)等を構成する枠体等の部材に覆われるため、量子ドットを含有する領域としての作用は要求されないので、波長変換部材の性能には影響を及ぼさない。更に、失活した量子ドットは、外気に暴露されていない量子ドット含有部を外気から守る樹脂層となり得る。
 波長変換層10において、第1基材フィルム12は、波長変換層16の樹脂層18の凹部18aの底側の主面に積層される。即ち、第1基材フィルム12は、樹脂層18の凹部18aの閉塞面(閉塞端)側の主面に積層される。図示した例においては、第1基材フィルム12は、バリア層12bを樹脂層18側に向けて積層される。
 他方、第2基材フィルム14は、波長変換層16を構成する樹脂層18の第1基材フィルム12とは逆側の主面に積層される。即ち、第2基材フィルム14は、樹脂層18の凹部18aの開放面(開放端)側の主面に積層される。図示した例においては、第2基材フィルム14は、バリア層14bを樹脂層18側に向けて積層されている。
 波長変換層は、樹脂層の形成方法によっては、樹脂層が、凹部に代えて貫通孔を有し、基材フィルムを底面として、貫通孔に量子ドット含有部が充填される場合もあり得る。この場合には、樹脂層、即ち波長変換層を挟持する2枚の基材フィルムの中の一方の基材フィルムを第1基材フィルム、他方を第2基材のフィルムと見なし、更に、貫通孔を樹脂層の凹部、第1基材フィルムを樹脂層の凹部の底と見なして、第2基材フィルムと見なした基材フィルム側において、樹脂層18の壁部の端部が、後述するように、第2基材フィルムと離間するようにすればよい。
 ここで、波長変換層10においては、図3に示されるように、樹脂層18の凹部18aを形成する壁部は、第2基材フィルム14側の端部が第2基材フィルム14と離間していることが好ましい。更に、波長変換部材10では、樹脂層18の第2基材フィルム14と離間する壁部の第2基材フィルム14側の端部と、第2基材フィルム14との間にも、量子ドット含有部が存在することが好ましい。量子ドット含有部を複数の領域に分割して設けた波長変換層を、2枚の基材フィルムで封止した構成を有する波長変換部材において、量子ドット含有部を複数の領域に分割する壁部と基材フィルムとの間に間隙を設け、この間隙にも量子ドットを存在させることによって、波長変換層と基材フィルムとの密着力を高めることができる。
 以下の説明では、波長変換部材10における第2基材フィルム14側、即ち樹脂層18の凹部18aの開口側を「上」、第1基材フィルム12側、即ち樹脂層18の凹部18aの底側を「下」とも言う。
 樹脂層18の凹部18aを形成する壁部とは、具体的には、基材フィルムの面方向において、樹脂層18の凹部18aと凹部18aとの間の部分および樹脂層18の面方向外周を形成する部分である。即ち、樹脂層18の凹部18aを形成する壁部とは、換言すると、波長変換層16の面方向における、量子ドット含有部と量子ドット含有部との間の領域および面方向に最も外側の量子ドット含有部の外側の領域の樹脂層18である。
 また、図1~図3に示す例では、量子ドット含有部(凹部18a内の量子ドット含有部)が円柱状であり、樹脂層18の凹部18aを形成する壁部は、矩形の断面形状を有する。但し、本発明は、これに限定はされず、壁部の断面形状は、各種の形状であることができる。例えば、樹脂層18の凹部18aを形成する壁部は、図4の左側に概念的に示すように、台形状の断面形状を有するものでもよく、または、同右側に概念的に示すように、台形の上底側の角部を曲面状に面取りしたような断面形状を有するものでもよい。樹脂層18の壁部の断面形状は、図4のように、上端から下方に向けて、少なくとも一部、好ましくは上端から下端まで、漸次、広がるような形状であることが好ましい。ここで、「上端から下方に向けて」とは、第2基材フィルム14側の端部から第1基材フィルム12側に向けて、ということである。中でも、図4の右側に示すように、第2基材フィルム側の上面の角部を面取りした形状が好ましい。かかる形状は、樹脂層18を形成する金型の製作の容易性、樹脂層18を形成する際の金型の取り外しの際の容易性および形成する樹脂層18の損傷防止等の点で有利である。
 波長変換層10は、樹脂層18の凹部18aを形成する壁部において、上端が第2基材フィルム14と離間している。また、量子ドット含有部は、樹脂層18の凹部18aに加えて、この第2基材フィルム14と離間する壁部の上端と第2基材フィルム14との間にも設けられる。図示した例の波長変換部材10では、図3に示すように、壁部はすべて、上端が第2基材フィルム14と離間して、壁部と第2基材フィルム14との間に量子ドット含有部が設けられている。このような構成を有することにより、量子ドット24を含有する波長変換層16と、上側、即ち樹脂層18の凹部18aの開口側の第2基材フィルムとの密着力を良好にできる。
 後述するように、波長変換部材の製造においては、一例として、樹脂層の凹部および壁部に対応する凹凸を有する金型(モールド)に、樹脂層となる塗布液(樹脂層形成用組成物)を充填し、金型に充填した塗布液を覆うように第1基材フィルムを積層し、樹脂層となる塗布液を硬化して、金型を外すことで、第1基材フィルムと樹脂層との積層体を形成する。次いで、樹脂層の凹部に量子ドットを含有する上記重合性組成物を充填して、樹脂層に充填した重合性組成物を封止するように、樹脂層に第2基材フィルムを積層した後、上記重合性組成物を硬化して、樹脂層と量子ドット含有部とを有する波長変換層が、第1基材フィルムと第2基材フィルムとで挟持された波長変換部材を作製する。
 第1基材フィルムと樹脂層とは、樹脂層が塗布液の状態で積層された後、塗布液を硬化させるので、十分な密着力で積層できる。また、樹脂層と量子ドット含有部も、上記重合性組成物が凹部に充填された後に硬化されるので、十分な密着力で積層できる。ここで、波長変換層と第2基材フィルムについては、量子ドットを含む上記重合性組成物が充填される樹脂層の凹部に対応する領域は、蛍光材料が塗布液の状態で充填されて硬化されるので、良好な密着力が得られ得る。更に、樹脂層18において、凹部18aを構成する壁部の少なくとも一部において、上端が第2基材フィルム14と離間し、凹部18aのみならず、第2基材フィルム14と離間する壁部の上端と第2基材フィルム14との間にも、量子ドット含有部が存在することにより、波長変換層16と第2基材フィルム14との密着力を高くすることができる。尚、本発明および本明細書において、第2基材フィルム14と離間する壁部の上端と第2基材フィルム14との間とは、上端が第2基材フィルム14と離間する壁部の直上の領域のみならず、上端が第2基材フィルム14と離間する壁部に面方向で隣接する凹部18a(その上端部)と第2基材フィルム14との間の領域も、含む。
 波長変換層10において、第2基材フィルム14と離間する樹脂層18の壁部は、図3に示すように、壁部は全て上端が第2基材フィルム14と離間し、間に量子ドット含有部が設けられる構成に限定はされない。第2基材フィルム14と離間する樹脂層18の壁部が多いほど、波長変換層16と第2基材フィルム14との密着力を高くできる。この点を考慮すると、波長変換部材10において、壁部は、波長変換部材10が利用される表示装置の表示部の面積の30%以上の面積に該当する部分の壁部の上端が第2基材フィルム14と離間していることが好ましく、壁部において、全て、上端が第2基材フィルム14と離間して、全面で量子ドット含有部と第2基材フィルム14とが接触することがより好ましい。
 波長変換層10において、上端が第2基材フィルムと離間する壁部において、壁部の上端(最上部)と第2基材フィルム14との間隙g(最短距離)については、特に制限はなく、両者が離間していればよい(図5参照)。ここで、壁部の上端と第2基材フィルム14との間隙gは、0.01~10μmが好ましく、0.05~4μmがより好ましく、0.1~4μmが更に好ましい。壁部の上端と第2基材フィルム14との間隙gを0.01μm以上とすることにより、壁部の上端と第2基材フィルム14との間に量子ドット含有部が存在する効果を十分に発揮して、波長変換層16と第2基材フィルム14との密着力を十分に高くできる。また、量子ドット含有部は樹脂層18よりも酸素を透過し得るため、壁部の上端と第2基材フィルム14との間隙gが大き過ぎると、壁部の上端と第2基材フィルム14との間隙を酸素が透過して、量子ドット24が劣化してしまう可能性があり得る。これに対し、壁部の上端と第2基材フィルム14との間隙gを10μm以下とすることにより、壁部の上端と第2基材フィルム14との間隙での酸素の透過を十分に抑制して酸素に起因する量子ドット24の劣化を防止できる。他方、壁部の上端と第2基材フィルム14との間に、後述する混合層28または更に不透過層30を有する場合には、壁部の上端と第2基材フィルム14との間隙gを10μm以下とすることにより、混合層28または更に不透過層30が厚すぎることに起因する発光輝度の低下を防止できる。壁部の上端と第2基材フィルム14との間隙gは、例えば、波長変換部材10の壁部の部分をミクロトーム等で切断して断面を形成し、その切片を走査電子顕微鏡(SEM;Scanning Electron Microscope)等で観察して求めればよい。尚、「波長変換部材10の壁部の部分」とは、「波長変換部材10の凹部18aではない箇所」である。間隙gは、無作為に抽出した10箇所での測定値の算術平均として求めることができる。
 波長変換層10において、樹脂層18の凹部18aの深さh、および、隣接する量子ドット含有部同士(隣接する凹部18a内の量子ドット含有部同士)の間隔tには、特に制限はない。樹脂層18の凹部の深さhについては、凹部18aの底から第2基材フィルム14までの量子ドット含有部の厚さ(即ち「深さh+間隙g」)を1~100μmにできる深さであることが好ましい。また、隣接する量子ドット含有部の間隔tは、5~300μmが好ましい。
 量子ドット含有部の厚さ(高さとも言うことができる。)は、目標色度への到達容易性の観点からは、1μm以上であることが好ましい。他方、量子ドット含有部が厚くなると、量子ドット含有部での光の吸収量が増大する。これらの点を考慮すると、凹部18aの底から第2基材フィルム14までの量子ドット含有部の厚さは、1~100μmが好ましく、5~80μmがより好ましく、10~50μmが更に好ましい。樹脂層18に形成される凹部18aの深さh、および、凹部18aの底から第2基材フィルム14までの量子ドット含有部の厚さは、波長変換部材の凹部18aの部分をミクロトーム等で切断して断面を形成し、励起光を波長変換層16に照射して量子ドットを発光させた状態で、この断面を共焦点レーザー顕微鏡等を用いて観察して求めればよい。深さhおよび量子ドット含有部の厚さについては、無作為に抽出した10個の量子ドット含有部の測定値の算術平均を採用できる。
 また、隣り合う量子ドット含有部同士の間隔t、即ち、隣り合う量子ドット含有部間(隣接する凹部18a間)における樹脂層18の壁部の厚さは、樹脂層18を視認できないようにするためには短く(壁部を薄く)することが好ましい。他方、強度および耐久性の観点から、隣り合う量子ドット含有部同士の間隔tは、一定以上の値であることが好ましい。これらの観点から、隣り合う量子ドット含有部同士の間隔tは、5~300μmが好ましく、10~200μmがより好ましく、15~100μmが更に好ましい。隣り合う量子ドット含有部同士の間隔tは、隣り合う量子ドット含有部間の最短距離である。この間隔tは、励起光を波長変換層16に照射して量子ドットを発光させた状態で、波長変換部材10の一方の面から、共焦点レーザー顕微鏡等を用いて表面を観察し、隣り合う量子ドット含有部の間の樹脂層18の壁部の厚さを測定して求めることができる。また、隣り合う量子ドット含有部同士の間隔tとしては、無作為に抽出した20箇所の間隔の算術平均を採用できる。
 量子ドット含有部の形状、大きさおよび配置パターン等は特に限定されず、適宜設計すればよい。設計においては、量子ドット含有部を平面視において互いに離間して配置するための幾何学的制約、および、切断時に生じる非発光領域の幅の許容値等を考慮できる。また、例えば、後述するように量子ドット含有部の形成方法の1つとして印刷法を用いる場合、印刷容易性の観点から、個々の占有面積がある程度の大きさ以上であることが好ましい。尚、この際における占有面積とは、平面視における占有面積である。更に、隣り合う量子ドット含有部の最短距離、即ち壁部の厚さが厚いことは、波長変換部材の機械的強度向上の観点から好ましい。これらの点を考慮して、量子ドット含有部の形状、大きさおよび配置パターンを設計すればよい。
 量子ドット含有部の体積Vpと樹脂層18の体積Vbとに関する比率については、任意の比率であり得る。一形態では、比率「Vp/(Vp+Vb)」について、0.1≦Vp/(Vp+Vb)<0.9が好ましく、0.2≦Vp/(Vp+Vb)<0.85がより好ましく、0.3≦Vp/(Vp+Vb)<0.8が更に好ましい。ここで、量子ドット含有部の体積Vpと樹脂層18の体積Vbは、波長変換部材10の主面と直交する方向から観察した場合における各々の面積と厚さを掛け合わせたものと定義する。
 波長変換層においては、凹部18aを形成する壁部の上端と第2基材フィルム14との間、および、凹部18a(その上端部)と第2基材フィルム14との間の量子ドット含有部は、量子ドット含有部に加え、酸素に対する不透過性を有する材料を含んでもよい。図6に、その一例を波長変換部材の断面図で概念的に示す。尚、図6に示す波長変換部材は、上記波長変換部材10と同じ部材を含むため、同じ部材には同じ符号を付し、説明は、異なる部位について主に行う。この点に関しては、他の図面についても同様である。
 図6に示す波長変換部材10Aにおいて、混合層28は、量子ドットと酸素に対する不透過性を有する材料とを含む。以下の説明では、「酸素に対する不透過性を有する材料」を、「酸素不透過性材料」とも言う。波長変換層10Aは、このような混合層28を有することにより、凹部18aを形成する壁部の上端と第2基材フィルム14との間の量子ドット含有部に酸素が透過することを防止して、酸素によって量子ドット24が劣化することを抑制できる。本発明および本明細書において、「酸素不透過性材料」とは、好ましくは、この材料で厚さ50μmのフィルムを形成した際、このフィルムの酸素透過度が200cc/(m・day・atm)以下となる材料を示す。酸素不透過性材料は、この材料で厚さ50μmのフィルムを形成した際に、このフィルムの酸素透過度が20cc/(m・day・atm)以下となる材料であることがより好ましく、2cc/(m・day・atm)以下となる材料であることが更に好ましい。酸素不透過性材料としては、具体的には、樹脂層18の形成材料として後述で例示する各種の材料を挙げることができる。中でも、混合層28は、樹脂層18の形成材料と同じ成分を含む材料を酸素不透過性材料として含有することが好ましい。
 混合層28は、図6に示すように、壁部の上端と第2基材フィルム14との間、および、凹部18aの上部に形成される構成に限定されない。混合層28は、例えば、凹部18aには形成されず、凹部18aを形成する壁部の上端と第2基材フィルム14との間のみに形成されてもよく、または、凹部18aを形成する壁部の上端と第2基材フィルム14との間において、上方が混合層28で、下方が量子ドット含有部となっている構成でもよい。
 混合層28における酸素不透過性材料の含有率には、特に制限はない。混合層28における酸素不透過性材料の含有率が高いほど、酸素によって量子ドット24が劣化することを防止できる。その反面、混合層28における酸素不透過性材料の含有率が高くなると、相対的に量子ドット24の含有率が低くなるため、混合層28の光学特性、換言すると波長変換部材10Aの光学特性は低くなる。これらの点を考慮すると、混合層28における酸素不透過性材料の含有率は、例えば40~90質量%が好ましく、50~80質量%がより好ましい。
 また、混合層28の厚さにも、特に制限はない。混合層28においては、通常、量子ドット24の含有率が量子ドット含有部よりも低い。したがって、波長変換部材10Aの光学特性を考慮すると、混合層28の厚さ(上下方向のサイズ)は薄いことが好ましい。他方、量子ドット24の劣化防止の点からは、混合層28が厚いことは好ましい。これらの点を考慮すると、例えば、量子ドット24の劣化防止が重要である場合には、凹部18aを形成する壁部の上端と第2基材フィルム14との間の全域を混合層とすることが好ましい。
 更に、波長変換層は、図7に概念的に示す波長変換部材10Bのように、混合層28に加え、混合層28と第2基材フィルム14との間に、混合層28が含有する酸素不透過性材料と同じ酸素不透過性材料を含む、量子ドット24を含有しない層(以下、「不透過層」と言う。)30を有してもよい。不透過層30を有することにより、壁部の上端と第2基材フィルム14との間を透過する酸素に起因する量子ドット24の劣化を、より防止できる。
 波長変換部材10Bにおいて不透過層30の厚さには、特に制限はない。不透過層30は、量子ドット24を含まず、かつ、酸素不透過性材料のみから形成される層であることができる。そのため、上記混合層28と同様、厚いほうが酸素によって量子ドット24が劣化することを防止するためには有利である。他方、波長変換部材の光学特性の点からは薄いことが好ましい。波長変換部材10Bが不透過層30を有する場合には、これらの点を考慮し、不透過層30の厚さを適宜設定すればよい。
 混合層28および不透過層30は、各種の方法で形成できる。先に記載したように、波長変換層10は、第1基材フィルム12の表面に樹脂層18を形成した後、樹脂層18の凹部18aに量子ドットを含有する上記重合性組成物を充填し、その後、樹脂層18に充填した重合性組成物を封止するように、樹脂層18に第2基材フィルム14を積層して、量子ドット含有部となる重合性組成物を硬化することで製造できる。一例として、この製造方法において、第2基材フィルム14を積層する前に、第2基材フィルム14の樹脂層18側となる表面に、酸素不透過性材料を含有する塗布液を塗布しておく。その上で、酸素不透過性材料を含有する塗布液を樹脂層18に向けて、第2基材フィルム14を樹脂層18に積層する。これにより、壁部の上端と第2基材フィルム14との間で、硬化して量子ドット含有部となる上記重合性組成物と酸素不透過性材料を含有する塗布液とが混合される。その後、酸素不透過性材料を含有する塗布液と上記重合性組成物との混合物を硬化することにより、壁部の上端と第2基材フィルム14との間に、量子ドットに加え、酸素不透過性材料を含有する混合層28を形成できる。この際、第2基材フィルム14に塗布する、酸素不透過性材料を含有する塗布液の塗布厚を調節することで、混合層28のみを形成するか、混合層28および不透過層30の両者を形成するかを、設定できる。具体的には、酸素不透過性材料を含有する塗布液の塗布厚を厚くすることで、混合層28に加えて不透過層30を形成でき、この塗布液の塗布厚を厚くするほど、不透過層30が厚くなる。この点に関しては、後に詳述する。
 波長変換層10(10A、10B)は、このような樹脂層18および量子ドット含有部を有する波長変換層16を、第1基材フィルム12と第2基材フィルム14とで挟持した構成を有することができる。更に、波長変換層10は、樹脂層18および量子ドット含有部に加え、混合層28および/または不透過層30を有してもよい。
 第1基材フィルム12および第2基材フィルム14は、共に、酸素に対して不透過性を有するフィルムであることが好ましい。波長変換部材10において、一形態では、第1基材フィルム12は、支持フィルム12aにバリア層12bを積層した構成を有し、バリア層12bを波長変換層16に向けて、波長変換層16に積層される。同様に、第2基材フィルム14も、支持フィルム14aにバリア層14bを積層した構成を有し、バリア層14bを波長変換層16に向けて、波長変換層16に積層される。
 第1基材フィルム12のバリア層12bは、酸素不透過性を有するものであれば、公知の各種のバリア層を利用可能である。同様に、第2基材フィルム14のバリア層14bも、酸素不透過性を有するものであれば、公知の各種のバリア層を利用可能である。第1基材フィルム12および第2基材フィルム14は、積層位置が異なる以外は同様の構成を有することができるので、両者を区別する必要がある場合を除いて、以下の説明では、第1基材フィルム12を代表例とする。
 第1基材フィルム12のバリア層12bとしては、公知の各種のバリア層が利用可能である。少なくとも1層の無機層を有することが好ましく、無機層と、この無機層の下地層となる有機層の組み合わせを1以上有する、有機無機積層型のバリア層がより好ましい。
 図示した例の波長変換部材10において、第1基材フィルムのバリア層12b(および第2基材フィルム14のバリア層14b)は、図3の部分拡大図Aに示すように、支持フィルム12a(支持フィルム14a)の表面に形成される下地有機層34と、下地有機層34の上に形成される無機層36と、無機層36の上に形成される保護有機層38との、3層を積層した構成を有する。
 支持フィルム12aの表面、即ち無機層36の下層の下地有機層34は、無機層36を適正に形成するための下地層(アンダーコート層)である。有機無機積層型のバリア層において、主にバリア性を発現する部分は、無機層36である。そのため、下地有機層34を形成して、その上に無機層36を形成することにより、無機層36の形成面を適正にして、欠陥の無い無機層36を形成することができ、高いバリア性を得ることができる。尚、図示した例のバリア層12bは、下地有機層34と無機層36との組み合わせを、1組しか有さないが、バリア層は、下地有機層34と無機層36との組み合わせを、複数組、有してもよい。下地有機層34と無機層36との組み合わせが多いほど、高いバリア性を得ることができる。
 無機層36の表面に形成される保護有機層38は、主にバリア性を発現する無機層36を保護する保護層(オーバーコート層)である。この保護有機層38を有することにより、無機層36の割れおよび欠け等を防止して、無機層36の損傷に起因するバリア層12bのバリア性の低下を防止できる。
 図1~図3に示す波長変換部材10において、量子ドット含有部(凹部18a)は円柱状であり、平面視において円形である。但し、量子ドット含有部の形状には特に制限はない。例えば、図8に示すように、平面視において四角形、または、図9に示すように、平面視において六角形(ハニカム構造)等のように、量子ドット含有部は多角柱であってもよく、正多角柱であってもよい。また、上述の例においては円柱または多角柱の底面が基材フィルム面に平行に配置されている。但し、必ずしも底面が基材フィルム面に平行に配置されていなくても構わない。また、各量子ドット含有部の形状は不定形でも構わない。
 量子ドット含有部のマトリックス26と樹脂層18との境界が明確でない場合には、図10に示すように、量子ドット24が近接配置されている領域の最外部に位置する量子ドット24eの外側(量子ドット24が配置されていない側)の点を結ぶ線を量子ドット含有部の輪郭(量子ドット含有部と樹脂層18の境界)mと見なすこととする。励起光を波長変換層に照射して量子ドットを発光させ、例えば、共焦点レーザー顕微鏡等で観察することにより、量子ドットの位置を特定することができ、これにより量子ドット含有部の輪郭mを特定することができる。本発明および本明細書において、円柱および多角柱等の辺については、図10の輪郭のように蛇行しているものも許容するものとする。また、上記の形態においては、量子ドット含有部は周期的にパターン配置されている。但し、複数の量子ドット含有部が離散的に配置されていれば所望の性能が損なわれない限りにおいて、非周期的であってもよい。量子ドット含有部は、波長変換層16の全域に亘って均一に分布していることが輝度の面内分布が均等になるため好ましい。
 蛍光量を十分なものとするためには量子ドット含有部の占める領域が大きいことは好ましい。量子ドット含有部中の量子ドット24は1種であってもよいし、複数種であってもよい。また、1つの量子ドット含有部中の量子ドット24は1種として、複数の量子ドット含有部のうち、第1の量子ドットを含む領域と第1の量子ドットとは異なる第2の量子ドットを含む領域とが周期的にまたは非周期的に配置されていてもよい。量子ドットの種類は3種以上であっても構わない。量子ドットについて、詳細は先に記載した通りである。
 先に記載したように、波長変換層について、量子ドット含有部の形状、その配置パターン等には特に制限はない。いずれの場合もフィルム面において離散的に配置されているために、切断端部の量子ドット含有部の量子ドットは劣化し得る。但し、切断端部以外の部分の量子ドットはフィルム面に沿った方向において樹脂により囲まれて封止されているため、フィルム面に沿った方向からの酸素の侵入によって性能が劣化することを抑制できる。
 以下に、波長変換層の各構成要素について説明する。
 先に記載したように、図1~図3に示す波長変換部材10は、第1基材フィルム12の一方のフィルム面に波長変換層16が積層され、更に、波長変換層16の上に第2基材フィルム14が積層されて、波長変換層16が2枚の基材フィルムで挟持された構成を有する。
(樹脂層)
 樹脂層18は、例えば、マトリックス26を形成する重合性化合物と同様の重合性化合物を含む樹脂層形成用組成物を調製して塗布し、硬化して形成できる。樹脂層18は、酸素に対して不透過性を有することが好ましい。樹脂層18は、凹部18aを形成する壁部を挟んで隣り合う量子ドット含有部間の最短距離における酸素透過度が10cc/(m・day・atm)以下を満たすことが好ましい。樹脂層18の、隣り合う量子ドット含有部間の最短距離における酸素透過度は、10cc/(m・day・atm)以下であることが好ましく、1cc/(m・day・atm)以下であることがより好ましく、1×10-1cc/(m・day・atm)以下であることが更に好ましい。
 樹脂層18の組成により、量子ドット含有部間で望まれる最短距離、即ち、望ましい量子ドット含有部(凹部18a)同士の間隔tは異なる。尚、樹脂層18の隣り合う量子ドット含有部間の最短距離とは、波長変換部材主面より観察した場合の隣り合う量子ドット含有部間のフィルム面内における最短距離のことを意味する。
 樹脂層18の弾性率は、0.5~10GPaであることが好ましく、1~7GPaであることがより好ましく、3~6GPaであることが更に好ましい。樹脂層の弾性率を上記範囲にすることは、望ましい酸素透過度を維持しつつ、樹脂層を形成する際の欠損を防ぐうえで好ましい。樹脂層の弾性率は、JIS(Japanese Industrial Standards) K 7161等に例示される方法で測定される。
 樹脂層形成用組成物(重合性組成物)については、WO2018/186300の段落0174~0179を参照できる。
(基材フィルム)
 先に記載したように、第1基材フィルム12(および第2基材フィルム14)は、支持フィルム12aにバリア層12bを積層した構成を有することができる。また、バリア層12b(およびバリア層14b)は、下地有機層34と、無機層36と、保護有機層38とを有することができる。このような第1基材フィルム12は、バリア層12bを波長変換層16に向けて、波長変換層16に積層される。この構成では、支持フィルム12aによって波長変換部材10の強度を向上でき、かつ、容易に成膜を実施することが可能となる。但し、本発明および本明細書において、第1基材フィルム(および第2基材フィルム)は、このような支持フィルム12aとバリア層12bとを有する構成に限定はされず、必要な酸素に対する不透過性を確保できるものであれば、各種のフィルム状物(シート状物)を利用可能である。例えば、バリア性を十分有する支持フィルムのみで第1基材フィルムが構成されてもよい。また、支持フィルムの表面に無機層を1層のみ形成した第1基材フィルムも利用可能である。
 第1基材フィルム12は、可視光領域における全光線透過率が80%以上であることが好ましく、85%以上であることがより好ましい。可視光領域とは、380~780nmの波長領域であり、全光線透過率とは、可視光領域にわたる光線透過率の算術平均を示す。
 第1基材フィルム12としては、酸素透過度が1cc/(m・day・atm)以下であることが好ましい。第1基材フィルム12の酸素透過度は、より好ましくは0.1cc/(m・day・atm)以下、更に好ましくは0.01cc/(m・day・atm)以下であり、一層好ましくは0.001cc/(m・day・atm)以下である。
 第1基材フィルム12は、酸素を遮断するガスバリア性に加え、水分(水蒸気)を遮断する水蒸気バリア性を有していることが好ましい。第1基材フィルム12の透湿度(水蒸気透過度)は、0.10g/(m・day・atm)以下が好ましく、0.01g/(m・day・atm)以下がより好ましい。
(支持フィルム)
 支持フィルム12a(および支持フィルム14a)としては、可視光に対して透明である可撓性を有する帯状の支持フィルムが好ましい。ここで可視光に対して透明とは、可視光領域における光線透過率が、80%以上、好ましくは85%以上であることを言う。透明の尺度として用いられる光線透過率は、JIS K 7105に記載された方法、即ち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。可撓性を有する支持フィルムについては、特開2007-290369号公報の段落0046~0052および特開2005-096108号公報の段落0040~0055を参照できる。
 支持フィルム12aの具体例としては、一例として、ポリエチレンテレフタレート(PET)フィルム、環状オレフィン構造を有するポリマーからなるフィルム、ポリスチレンフィルム等を挙げることができる。
 支持フィルム12aの厚さは、波長変換部材の耐衝撃性向上等の観点から、10~500μmであることが好ましく、20~400μmであることがより好ましく、30~300μmであることが更に好ましい。波長変換層16に含まれる量子ドットの濃度を低減した場合、および、波長変換層16の厚さを低減した場合のように、光の再帰反射を増加させる形態では、波長450nmの光の吸収率がより低い方がより好ましい。この点からは、支持フィルム12aの厚さは、40μm以下であることが好ましく、25μm以下であることが更に好ましい。
(バリア層)
 第1基材フィルム12(および第2基材フィルム14)は、支持フィルム12aの一面にバリア層12bを有する。先に記載したように、バリア層12bとしては、公知のバリア層が、各種利用可能である。少なくとも1層の無機層を有することが好ましく、無機層と無機層の下地となる有機層との組み合わせを1組以上有する有機無機積層型のバリア層がより好ましい。図示した例の波長変換部材10において、第1基材フィルムのバリア層12bは、図3の部分拡大図Aに示すように、支持フィルム12aの表面に形成される下地有機層34と、下地有機層34の上に形成される無機層36と、無機層36の上に形成される保護有機層38との、3層を積層した構成を有する。尚、以下の説明では、下地有機層34と保護有機層38とを区別する必要が無い場合には、両者をまとめて「有機層」とも言う。
 無機層36とは、無機材料を主成分とする層であり、無機材料が50質量%以上、更には80質量%以上、特に90質量%以上を占める層であることが好ましく、無機材料のみから形成される層であることがより好ましい。
 無機層36は酸素を遮断するガスバリア性を有する層であることが好ましい。具体的には、無機層の酸素透過度は、1cc/(m・day・atm)以下であることが好ましい。無機層は、水蒸気を遮断する水蒸気バリア性を有することも好ましい。
 無機層36の厚さは、1~500nmが好ましく、5~300nmがより好ましく、10~150nmが更に好ましい。無機層36の厚さが上記範囲内であることにより、良好なバリア性を実現しつつ、無機層36における反射を抑制することができ、光線透過率がより高い積層フィルムを提供できるからである。
 有機層(下地有機層34および保護有機層38)とは、有機材料を主成分とする層であって、好ましくは有機材料が50質量%以上、更には80質量%以上、特に90質量%以上を占める層を言うものとする。
 有機層としては、特開2007-290369号公報の段落0020~0042および特開2005-096108号公報の段落0074~0105を参照できる。一形態では、有機層は、カルドポリマーを含むことが好ましい。これにより、有機層と隣接する層との密着力、特に、無機層とも密着力が強くなり、更に優れたガスバリア性を実現できるからである。カルドポリマーの詳細については、特開2005-096108号公報の段落0085~0095を参照できる。
 有機層の厚さは、0.05~10μmであることが好ましく、0.5~10μmであることがより好ましい。有機層がウェットコーティング法により形成される場合には、有機層の厚さは、0.5~10μmであることが好ましく、1~5μmであることがより好ましい。一方、ドライコーティング法により形成される場合には、有機層の厚さは、0.05~5μmであることが好ましく、0.05~1μmであることがより好ましい。ウェットコーティング法またはドライコーティング法により形成される有機層の厚さが上記範囲内であることにより、無機層との密着力をより強くすることができる。
 無機層の詳細については、WO2018/186300の段落0193~0196も参照できる。また、無機層、有機層のその他詳細については、特開2007-290369号公報、特開2005-096108号公報、更にはUS2012/0113672A1の記載を参照できる。
 波長変換部材において、有機層は、無機層の下地層として支持フィルムと無機層との間に積層されていてもよく、無機層の保護層として無機層と波長変換層との間に積層されていてもよい。また、2層以上の無機層を有する場合には、有機層は無機層の間に積層されていてもよい。
 第1基材フィルム12(および第2基材フィルム14)は、波長変換層16側の面と反対側の面に、凹凸構造を付与する凹凸付与層を備えていてもよい。第1基材フィルム12が凹凸付与層を有していると、基材フィルムのブロッキング性および/または滑り性を改良することができるため好ましい。凹凸付与層は、粒子を含有する層であることが好ましい。粒子としては、シリカ、アルミナ、金属酸化物等の無機粒子または架橋高分子粒子等の有機粒子等が挙げられる。また、凹凸付与層は、基材フィルムの波長変換層とは反対側の表面に設けられることが好ましく、両面に設けられていてもよい。
 波長変換層10は、量子ドットの蛍光を効率よく外部に取り出すために光散乱機能を有することができる。光散乱機能は、波長変換層16内部に設けてもよいし、光散乱層として光散乱機能を有する層を別途設けてもよい。光散乱層は、第1基材フィルム12および/または第2基材フィルム14の波長変換層16側の面に設けられていてもよいし、第1基材フィルム12および/または第2基材フィルム14の波長変換層16とは反対側の面に設けられていてもよい。上記凹凸付与層を設ける場合は、凹凸付与層を光散乱層と兼用できる層とすることが好ましい。
(混合層、不透過層)
 先に記載したように、混合層28は、量子ドット含有部20が含有する量子ドット24を含有する。また、不透過層30は、量子ドット24を含まない、酸素不透過性材料からなる層であることができる。酸素不透過性材料としては、樹脂層18の形成材料として使用可能な各種の材料を使用することができる。中でも、混合層28および不透過層30は、酸素不透過性材料として、樹脂層18を形成するために使用される重合性化合物と同じ重合性化合物を含有することが好ましい。
(波長変換部材の製造方法)
 次に、波長変換部材の製造工程の一例について、図11および図12の概念図を参照して説明する。
 まず、樹脂層18を形成するための樹脂層形成用組成物L1を、重合性化合物に加えて必要に応じて重合開始剤、無機粒子、光散乱粒子等の各種成分を混合して調製する。
 また、量子ドットを含む上記重合性組成物L2を調製する。
 更に、樹脂層18を形成するための、樹脂層18の凹部18aおよび壁部に応じた凹凸パターンを有する金型(モールド)M、ならびに、第1基材フィルム12および第2基材フィルム14を準備する。
 これらを準備した上で、まず、図11の1段目および2段目に示すように、準備した金型Mに、調製した樹脂層形成用組成物L1を充填し、図11の3段目に示すように、樹脂層形成用組成物L1の全面を覆うように、第1基材フィルム12を金型Mに積層する。
 次いで、例えば、紫外線照射等によって樹脂層形成用組成物L1を硬化して、樹脂層18を形成し、図11の4段目に示すように、金型Mを樹脂層18から取り外す。これにより、第1基材フィルム12の一面に、凹部18aの底を第1基材フィルム12に向けた樹脂層18を積層した、積層体が形成される。
 第1基材フィルム12と樹脂層18との積層体を形成したら、図12の1段目に示すように、量子ドットを含む上記重合性組成物(量子ドット含有重合性組成物)L2を凹部18a充填する。この際、重合性組成物L2の表面張力および粘度を利用して、量子ドット含有重合性組成物L2が樹脂層18の壁部の上端よりも盛り上がるように、量子ドット含有重合性組成物L2を、凹部18aに充填する。
 次いで、図12の2段目に示すように、量子ドット含有重合性組成物L2の全面を覆って封止するように、第2基材フィルム14を積層する。この際における第2基材フィルム14の押圧力を調節することで、樹脂層18の壁部の上端と第2基材フィルム14との間隙を調節できる。例えば、第2基材フィルム14の積層をラミネータで行う場合には、ラミネータの圧力を調節することにより、樹脂層18の壁部の上端と第2基材フィルム14との間隙を調節できる。
 その後、例えば、光照射によって量子ドット含有重合性組成物L2を硬化して、量子ドット含有部を形成し、図12の3段目に示すように、量子ドット含有部と樹脂層18とを有する波長変換層16を、第1基材フィルム12および第2基材フィルム14で挟持した、波長変換部材10を作製する。
 図6に示す波長変換部材10A、および、図7に示す波長変換部材10Bのように、混合層28または更に不透過層30を形成する場合には、図12の2段目に示す、第2基材フィルム14の積層に先立ち、図13に概念的に示すように、第2基材フィルム14の一面に酸素不透過性材料を含有する塗布液L3を塗布する。
 その後、塗布液L3の塗布面を量子ドット含有重合性組成物L2に向けて、図12の2段目に示すように、量子ドット含有重合性組成物L2の全面を覆って封止するように、第2基材フィルム14を積層する。これにより、量子ドット含有重合性組成物L2と酸素不透過性材料を含有する塗布液L3とが混合される。
 その後、量子ドット含有重合性組成物L2および酸素不透過性材料を含有する塗布液L3を硬化することで、量子ドット含有部と共に、混合層28または更に不透過層30を有する波長変換部材を製造できる。
 この際、先に記載したように、第2基材フィルム14への酸素不透過性材料を含有する塗布液L3の塗布厚を調節することで、混合層28のみを形成するか、混合層28および不透過層30の両方を形成するかを設定できる。具体的には、第2基材フィルム14への酸素不透過性材料を含有する塗布液L3の塗布厚が薄い場合には、混合層28のみを形成でき、第2基材フィルム14への酸素不透過性材料を含有する塗布液L3の塗布厚を厚くすることで、混合層28および不透過層30の両者を形成でき、また、塗布液L3の塗布厚を厚くするほど、不透過層30が厚くなる。
 波長変換層において、樹脂層18の凹部18aの形成方法は、図11に示す方法に限定はされず、凹凸を有するシート状物を形成する公知の各種の方法を利用することができる。例えば、先に第1基材フィルム12に樹脂層形成用組成物L1を塗布した後、樹脂層形成用組成物L1に金型Mを押圧して、その後、樹脂層形成用組成物L1を硬化する方法、第1基材フィルム12と金型Mとを積層した後、第1基材フィルム12と金型Mとの間に樹脂層形成用組成物L1を充填して、その後、樹脂層形成用組成物L1を硬化する方法等が例示される。これら方法以外にも、平面状の樹脂層を形成した後、エッチングによって凹部18aを有する樹脂層18を形成する方法、インクジェット法およびディスペンサー法等の印刷法を利用して凹部18aを有する樹脂層18を形成する方法等も利用可能である。
[バックライトユニット]
 本発明の一態様は、上記波長変換部材と光源とを含むバックライトユニットに関する。
 以下、図面を参照して、バックライトユニットの一例について説明する。図14は、バックライトユニットの概略構成を示す模式図である。
 図14に示されるように、バックライトユニット50は、一次光(青色光L)を出射する光源52Aと光源52Aから出射された一次光を導光して出射する導光板52Bとからなる面状光源52Cと、面状光源52C上に配置された波長変換部材54と、面状光源52Cを挟んで波長変換部材54と対向配置された反射板56Aと、再帰反射性部材56Bとを備えている。図14においては、反射板56A、導光板52B、波長変換部材54および再帰反射性部材56Bは離間した図を示しているが、実際には、これらは互いに密着して形成されていてもよい。
 波長変換部材54は、面状光源52Cから出射された一次光Lの少なくとも一部を励起光として、蛍光を発光し、この蛍光からなる二次光(緑色光L,赤色光L)および波長変換部材54を通過した一次光Lを出射する。例えば、波長変換部材54は、青色光Lの照射により緑色光Lを発光する量子ドットと赤色光Lを発光する量子ドットとを含む波長変換層16が第1基材フィルム12および第2基材フィルム14で挟持されて構成された波長変換部材10である。
 図14において、波長変換部材54から出射されたL、LおよびLは、再帰反射性部材56Bに入射し、入射した各光は、再帰反射性部材56Bと反射板56Aとの間で反射を繰り返し、何度も波長変換部材54を通過することができる。その結果、波長変換部材54では,十分な量の励起光(青色光L)が波長変換層16内の量子ドット24によって吸収され、十分な量の蛍光(L、L)が発光し、再帰反射性部材56Bから白色光Lが具現化されて出射される。
 高輝度かつ高い色再現性の実現の観点からは、バックライトユニット50として、多波長光源化されたものを用いることが好ましい。例えば、430~480nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する青色光と、500~600nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する緑色光と、600~680nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する赤色光と、を発光することが好ましい。
 輝度および色再現性の更なる向上の観点から、バックライトユニット50が発光する青色光の波長帯域は、440~460nmであることがより好ましい。
 同様の観点から、バックライトユニット50が発光する緑色光の波長帯域は、520~560nmであることが好ましく、520~545nmであることがより好ましい。
 また、同様の観点から、バックライトユニット50が発光する赤色光の波長帯域は、610~640nmであることがより好ましい。
 また同様の観点から、バックライトユニット50が発光する青色光、緑色光および赤色光の各発光強度の半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることが更に好ましく、30nm以下であることが特に好ましい。これらの中でも、青色光の各発光強度の半値幅は25nm以下であることが特に好ましい。
 光源52Aは、例えば430~480nmの波長帯域に発光中心波長を有する青色光を発光する青色発光ダイオードであることができる。または、紫外光を発光する紫外線発光ダイオードを用いてもよい。光源52Aとしては、発光ダイオードの他レーザー光源等を使用することができる。紫外光を発光する光源を備えた場合には、波長変換部材54の波長変換層16において、紫外光の照射により青色光を発光する量子ドット、緑色光を発光する量子ドットおよび赤色光を発光する量子ドットを含むものとすればよい。
 面状光源52Cは、図14に示すように、光源52Aと光源52Aから出射された一次光を導光させて出射させる導光板52Bとからなる面状光源であってもよいし、光源52Aが波長変換部材54と平行な平面状に並べて配置され、導光板52Bに代えて拡散板を備えた面状光源であってもよい。前者の面状光源は一般にエッジライト方式、後者の面状光源は一般に直下型方式と呼ばれている。尚、上記では、光源として面状光源を用いた場合を例に説明した。但し、光源としては面状光源以外の光源も使用することができる。
<バックライトユニットの構成>
 バックライトユニットの構成としては、図14では、導光板および反射板等を構成部材とするエッジライト方式について説明した。但し、バックライトユニットの構成は、直下型方式であっても構わない。導光板としては、公知のものを使用することができる。
 また、反射板56Aとしては、特に制限はなく、公知のものを用いることができ、特許3416302号明細書、特許3363565号明細書、特許4091978号明細書、特許3448626号明細書等を参照できる。
 再帰反射性部材56Bは、公知の拡散板および拡散シート、プリズムシート(例えば、住友スリーエム社製BEFシリーズ等)、および導光器等から構成されていてもよい。再帰反射性部材56Bの構成については、特許3416302号明細書、特許3363565号公報、特許4091978号明細書、特許3448626号明細書等を参照できる。
[液晶表示装置]
 本発明の一態様は、上記バックライトユニットと液晶セルとを含む液晶表示装置に関する。
 以下、図面を参照して、液晶表示装置の一例について説明する。図15は、液晶表示装置の概略構成を示す模式図である。
 図15に示されるように、液晶表示装置60は、バックライトユニット50とバックライトユニットの再帰反射性部材側に対向配置された液晶セルユニット62とを備えている。
 液晶セルユニット62は、図15に示されるように、液晶セル64を偏光板68と偏光板70とで挟持した構成であり、偏光板68、70は、それぞれ、偏光子72、74の両主面を偏光板保護フィルム76と78、82と84で保護した構成である。
 液晶表示装置60を構成する液晶セル64、偏光板68、70およびその構成要素については、特に限定はなく、公知の方法で作製される物および市販品等を使用することができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。
 液晶セル64の駆動モードについては、特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。液晶セルは、VAモード、OCBモード、IPSモードおよびTNモードのいずれかが好ましい。但し、これらに限定されるものではない。VAモードの液晶表示装置の構成としては、特開2008-262161号公報の図2に示す構成が一例として挙げられる。但し、液晶表示装置の具体的構成には特に制限はなく、公知の構成を採用することができる。
 液晶表示装置60は、更に必要に応じて、光学補償を行う光学補償部材、接着層等の付随する機能層を有することができる。また、液晶表示装置60には、カラーフィルター基材、薄層トランジスタ基材、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに(またはそれらに代えて)、前方散乱層、プライマー層、帯電防止層、下塗り層等の表面層が配置されていてもよい。
 バックライトユニット50側の偏光板68は、液晶セル64側の偏光板保護フィルム78として、位相差フィルムを有していてもよい。このような位相差フィルムとしては、公知のセルロースアシレートフィルム等を用いることができる。
 以下に実施例に基づき本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。以下に記載の「%」は、特記しない限り、質量%を示す。
[実施例1]
<波長変換部材の作製>
(バリアフィルムの作製)
 第1基材フィルムおよび第2基材フィルムとして、以下のようにして、ポリエチレンテレフタレート(PET)からなる支持フィルム上に無機層および有機層が形成されたバリアフィルムを作製した。
 支持フィルムとしてPETフィルム(東洋紡社製コスモシャインA4300、厚さ23μm)を用いて、支持フィルムの片面側に以下の手順で有機層および無機層を順次形成した。
下地有機層の形成
 トリメチロールプロパントリアクリレート(ダイセル・オルネクス社製TMPTA)および光重合開始剤(ランベルティ社製ESACURE KTO46)を用意し、質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、下地有機層を形成するための、固形分濃度15%の塗布液とした。
 この塗布液を、ダイコーターを用いてロール・トゥ・ロール(roll-to-roll)にて支持フィルム(PETフィルム)上に塗布し、温度50℃の乾燥ゾーンに3分間通過させた。その後、窒素雰囲気下で紫外線を照射(積算照射量約600mJ/cm)することで塗布液を硬化させ、巻き取った。支持フィルム上に形成された有機層の厚さは、1μmであった。
無機層の形成
 次に、ロール・トゥ・ロールによって成膜を行うCVD(Chemical Vapor Deposition)装置を用いて、下地有機層の表面に無機層として窒化ケイ素膜を形成した。
 原料ガスとして、シランガス(流量160sccm(Standard Cubic Centimeter per Minute))、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および窒素ガス(流量240sccm)を用いた。電源として、周波数13.56MHzの高周波電源を用いた。成膜圧力は40Pa(パスカル)、到達膜厚は50nmとした。
保護有機層の形成
 更に、無機層の表面に、保護有機層を積層した。ウレタン骨格アクリレートポリマー(大成ファインケミカル社製アクリット8BR930)95.0質量部に対して、光重合開始剤(BASF社製IRGACURE184)5.0質量部を秤量し、これらをメチルエチルケトンに溶解させ、保護有機層を形成するための固形分濃度15%の塗布液とした。
 この塗布液を、ダイコーターを用いてロール・トゥ・ロールによって無機層の表面に直接に塗布し、温度100℃の乾燥ゾーンに3分間通過させた。その後、表面温度60℃に加熱したヒートロールに巻き掛けて搬送しながら、紫外線を照射(積算照射量約600mJ/cm)して硬化させ、巻き取った。支持フィルム上に形成された保護有機層の厚さは、0.1μmであった。
 このようにして、第1基材フィルムおよび第2基材フィルムとして、保護有機層付きのバリアフィルムを作製した。
 このバリアフィルムの酸素透過度をMOCON社製OX-TRAN 2/20を用いて、測定温度23℃かつ相対湿度90%の条件で測定したところ、酸素透過度は4.0×10-3cc/(m・day・atm)以下であった。
(樹脂層の形成)
樹脂層形成用組成物の調製
 以下の成分をタンクに投入して混合することで、樹脂層形成用組成物を調製した。
ウレタン(メタ)アクリレート(新中村化学工業社製U-4HA):42質量部
トリシクロデカンジメタノールジアクリレート(新中村化学工業社製A-DCP):42質量部
平板アルミナ(無機層状化合物:キンセイマティック社製セラフ05070):15質量部
光重合開始剤(BASF社製イルガキュアTPO):1質量部
樹脂層の形成
 樹脂層を形成するための金型として、樹脂層の凹部に対応する凸部および壁部に対応する凹部を有する金型を用意した。
 ここで、樹脂層の凹部(金型の凸部)は、一辺125μmの正六角形状で、ハニカム状パターンとした。凹部の深さh(金型の凸部の高さ)は40μmとし、凹部の間隔(金型の凸部の間隔(量子ドット含有部同士の間隔t、即ち壁部の厚さ))は50μmとした(図5参照)。尚、壁部となる金型Mの凹部は、底の角部を曲率半径10μmの曲面とした。
 このような金型の凹部を完全に満たすように、先に調製した樹脂層形成用組成物を充填した。次いで、樹脂層形成用組成物を全面的に覆うようにして、金型に第1基材フィルム(バリアフィルム)を積層し、ラミネータで圧力0.5MPaで圧接した状態で樹脂層形成用組成物を光硬化した。樹脂層形成用組成物の光硬化は、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を第1基材フィルム側より500mJ/cm照射することで行った。その後、金型を取り外して、第1基材フィルムの上に樹脂層を積層した積層体作製した(図11参照)。
 上記樹脂層形成用組成物を用いて、全く同じ条件で、厚さ50μmのフィルムを形成した。即ち、このフィルムは、樹脂層における厚さ50μmの壁部に相当する。このフィルムの酸素透過度を、先と同様に測定した結果、酸素透過度は8cc/(m・day・atm)であった。また、硬化後の樹脂層の弾性率を、JIS K 7161に準拠して計測した結果、弾性率は4.2GPaであった。
(波長変換部材の作製)
量子ドット含有重合性組成物の調製
 以下の成分をタンクに投入して混合することで、量子ドット含有重合性組成物を調製した。調製にあたり、量子ドット1(発光極大:520nm)のトルエン分散液と量子ドット2(発光極大:630nm)のトルエン分散液を、重合性組成物中の量子ドットの合計含有率が2.0%となる量で混合して使用した。
 量子ドット1および2は、コアーシェル構造(コア:InP/シェル:ZnS)を有する下記の半導体ナノ粒子である。
 量子ドット1:NN-labs社製INP530-10
 量子ドット2:NN-labs社製INP620-10
量子ドットのトルエン分散液:量子ドットとして2.0%
成分A(トリシクロデカンジメタノールジアクリレート(新中村化学工業社製NKエステルA-DCP)):表1参照
成分B(イソボルニルアクリレート(大阪有機化学工業社製IBXA)):表1参照
成分C(トリメチロールプロパントリス(3-メルカプトプロピオネート)(SC有機化学社製TMMP)):18.5%
成分D(β-カルボキシエチルアクリレート(ダイセル・オルネクス社製β-CEA)):4.63%
成分E(種類:表1参照):表1参照
光散乱粒子(住友化学社製アドバンストアルミナAA-1.5):7.5%
光重合開始剤(BASF社製イルガキュアTPO):0.107%
 上記成分Aは第1の(メタ)アクリレート(多官能(メタ)アクリレート)、上記成分Bは単官能(メタ)アクリレート、上記成分Cは多官能チオール、上記成分Dは第2の(メタ)アクリレート、実施例1および後述の実施例で使用されている成分Eはフェノール系化合物である。
波長変換部材の作製
 先に作製した第1基材フィルムと樹脂層との積層体の樹脂層の凹部を完全に満たすように、樹脂層の凹部に上記量子ドット含有重合性組成物を充填した。次いで、量子ドット含有重合性組成物を全面的に覆うようにして、樹脂層に第2基材フィルム(バリアフィルム)を積層し、ラミネータで圧力0.3MPaで圧接した状態で量子ドット含有重合性組成物を光硬化することで、樹脂層に離散的に形成された凹部内に量子ドット含有部(量子ドット含有重合性組成物を硬化した硬化物)が形成された波長変換層を形成して、波長変換部材を作製した(図12参照)。量子ドット含有重合性組成物の光硬化は、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を第1基材フィルム側より500mJ/cm照射することで行った。
 作製した波長変換部材をミクロトームで切削し、その切片の断面をSEMで観察した。その結果、この波長変換部材は、樹脂層の壁部の上端と第2基材フィルムとの間に0.5μmの間隙があった。また、波長405nmの励起光を照射し、倍率50倍の対物レンズを用いて共焦点レーザー顕微鏡(Leica社製TCS SP5)で上記断面の発光粒子の分布を観察した。その結果、この波長変換部材には、樹脂層の壁部の上端と第2基材フィルムとの間に、樹脂層の凹部に形成された量子ドット含有部と同様の量子ドットを含む厚さ0.5μmの層(量子ドットを含む層)が形成されていることを確認した。
[実施例2~8、比較例1~3]
 量子ドット含有重合性組成物の各種成分の種類および/または含有率を表1に示すように変更した点以外、実施例1と同様に波長変換部材を作製した。
[評価方法]
<相対輝度>
 バックライトユニットに青色光源を備える市販のタブレット端末(Amazon社製KindleFire HDX 7)を分解し、バックライトユニットを取り出した。バックライトユニットに組み込まれていた波長変換フィルムQDEF(Quantum Dot Enhancement Film)に代えて矩形に切り出した実施例または比較例の波長変換部材を組み込んだ。このようにして液晶表示装置を作製した。
 作製した液晶表示装置を点灯させ、全面が白表示になるようにし、導光板の面に対して垂直方向520mmの位置に設置した輝度計(TOPCON社製SR3)によって輝度を測定した。
 実施例および比較例について、それぞれ比較例1の輝度に対する相対値として輝度(相対輝度)を求めた。こうして求められた相対輝度に基づき、下記評価基準によって輝度評価を行った。評価結果がA、BまたはCであれば、高輝度での発光が可能な波長変換部材であると言うことができる。
 A:相対輝度≧102%
 B:101%≦相対輝度<102%
 C:100%≦相対輝度<101%
 D:相対輝度<100%
<耐久後輝度>
 実施例および比較例の各波長変換部材を、上記輝度評価後に液晶表示装置から一旦取り出した。取り出した波長変換部材に対して、第2基材フィルム側表面に向かって雰囲気温度50℃の環境で波長445nmの光を1000時間照射した。
 上記光照射後の波長変換部材を再び液晶表示装置に組み込んだ後、上記と同様に輝度測定を行い、光照射前の比較例1の輝度に対する相対値として輝度を求めた。実施例および比較例の各波長変換部材について、「耐久後輝度(単位:%)=(光照射後の相対輝度/光照射前の相対輝度)×100」を算出した。算出された値に基づき、下記評価基準によって耐久性を評価した。評価結果がAまたはBであれば、輝度の低下が少なく耐久性に優れると言うことができ、Aであれば耐久性により優れると言うことができる。
 A:耐久後輝度≧96%
 B:94%≦耐久後輝度<96%
<液安定性>
 以下の粘度測定は、雰囲気温度25℃かつ相対湿度60%の環境において、粘度計としてエー・アンド・デイ社製音叉型振動式粘度計SV-10Aを使用して行った。
 実施例および比較例の各波長変換部材の作製のために調製した量子ドット含有重合性組成物の一部を採取して粘度(保管前粘度)の測定を行った。
 その後、各量子ドット含有重合性組成物を、雰囲気温度25℃かつ相対湿度60%の環境において2週間保管した後、粘度(保管後粘度)の測定を行った。
 「粘度変化(単位:%)=(保管後粘度/保管前粘度)×100-100」により算出される粘度変化に基づき、以下の評価基準によって液安定性を評価した。評価結果がA、BまたはCであれば、液安定性に優れるということができる。
 A:粘度変化≦10%
 B:10%<粘度変化≦30%
 C:30%<粘度変化≦100%
 D:100%<粘度変化≦300%
 E:ゲル化
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果から、実施例の波長変換部材が、高輝度で発光が可能であり、かつ波長変換部材の作製のために使用した量子ドット含有重合性組成物が液安定性に優れることが確認できる。
 表1に記載の製品名の成分の詳細を表2に示し、構造を以下に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-C000004
 本発明の一態様は、液晶表示装置の技術分野において有用である。
10、10A、10B 波長変換部材
12 第1基材フィルム
12a、14a 支持フィルム
12b、14b バリア層
14 第2基材フィルム
16 波長変換層
18 樹脂層
18a 凹部
20 量子ドット含有部
24、24e 量子ドット
26 マトリックス
28 混合層
30 不透過層
34 下地有機層
36 無機層
38 保護有機層
50 バックライトユニット
52A 光源
52B 導光板
52C 面状光源
54 波長変換部材
56A 反射板
56B 再帰反射性部材
60 液晶表示装置
62 液晶セルユニット
64 液晶セル
68、70 偏光板
72、74 偏光子
76、78、82、84 偏光板保護フィルム
L1 樹脂層形成用組成物
L2 量子ドット含有重合性組成物
L3 酸素不透過性材料を含有する塗布液
M 金型

Claims (12)

  1. 量子ドットと、
    多官能チオールと、
    多官能(メタ)アクリレートと、
    フェノール系化合物と、
    を含む重合性組成物。
  2. 前記フェノール系化合物の1分子中に含まれるヒドロキシ基の数は1~3の範囲である、請求項1に記載の重合性組成物。
  3. 前記フェノール系化合物の1分子中に含まれるヒドロキシ基の数は2または3である、請求項1または2に記載の重合性組成物。
  4. 前記フェノール系化合物の1分子中に含まれるヒドロキシ基の数は3である、請求項1~3のいずれか1項に記載の重合性組成物。
  5. 前記フェノール系化合物としてピロガロールを含む、請求項1~4のいずれか1項に記載の重合性組成物。
  6. 組成物全量に対するピロガロールの含有率が0.001質量%以上0.500質量%以下である、請求項1~5のいずれか1項に記載の重合性組成物。
  7. 組成物全量に対するピロガロールの含有率が0.005質量%以上0.300質量%以下である、請求項1~6のいずれか1項に記載の重合性組成物。
  8. 組成物全量に対するピロガロールの含有率が0.010質量%以上0.100質量%以下である、請求項1~7のいずれか1項に記載の重合性組成物。
  9. 請求項1~8のいずれか1項に記載の重合性組成物を硬化した硬化物。
  10. 請求項9に記載の硬化物を含む波長変換部材。
  11. 請求項10に記載の波長変換部材と、光源と、を含むバックライトユニット。
  12. 請求項11に記載のバックライトユニットと、液晶セルと、を含む液晶表示装置。
PCT/JP2021/016874 2020-04-28 2021-04-28 量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置 WO2021221081A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022518102A JP7351001B2 (ja) 2020-04-28 2021-04-28 量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置
US18/050,368 US20230088475A1 (en) 2020-04-28 2022-10-27 Quantum dot-containing polymerizable composition, cured product, wavelength conversion member, backlight unit, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-079834 2020-04-28
JP2020079834 2020-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/050,368 Continuation US20230088475A1 (en) 2020-04-28 2022-10-27 Quantum dot-containing polymerizable composition, cured product, wavelength conversion member, backlight unit, and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2021221081A1 true WO2021221081A1 (ja) 2021-11-04

Family

ID=78373244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016874 WO2021221081A1 (ja) 2020-04-28 2021-04-28 量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置

Country Status (3)

Country Link
US (1) US20230088475A1 (ja)
JP (1) JP7351001B2 (ja)
WO (1) WO2021221081A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213821A (ja) * 2010-03-31 2011-10-27 Sekisui Chem Co Ltd 硬化組成物及び透明複合シート
JP2017078120A (ja) * 2015-10-20 2017-04-27 富士フイルム株式会社 重合性組成物、重合物、波長変換部材、バックライトユニット、および液晶表示装置
JP2017137451A (ja) * 2016-02-05 2017-08-10 大日本印刷株式会社 光波長変換組成物、波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
WO2017154428A1 (ja) * 2016-03-07 2017-09-14 昭和電工株式会社 活性エネルギー線硬化性組成物及びその硬化物
WO2019189495A1 (ja) * 2018-03-27 2019-10-03 日立化成株式会社 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
WO2019225377A1 (ja) * 2018-05-22 2019-11-28 昭和電工株式会社 チオールエン硬化性組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213821A (ja) * 2010-03-31 2011-10-27 Sekisui Chem Co Ltd 硬化組成物及び透明複合シート
JP2017078120A (ja) * 2015-10-20 2017-04-27 富士フイルム株式会社 重合性組成物、重合物、波長変換部材、バックライトユニット、および液晶表示装置
JP2017137451A (ja) * 2016-02-05 2017-08-10 大日本印刷株式会社 光波長変換組成物、波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
WO2017154428A1 (ja) * 2016-03-07 2017-09-14 昭和電工株式会社 活性エネルギー線硬化性組成物及びその硬化物
WO2019189495A1 (ja) * 2018-03-27 2019-10-03 日立化成株式会社 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
WO2019225377A1 (ja) * 2018-05-22 2019-11-28 昭和電工株式会社 チオールエン硬化性組成物

Also Published As

Publication number Publication date
JPWO2021221081A1 (ja) 2021-11-04
US20230088475A1 (en) 2023-03-23
JP7351001B2 (ja) 2023-09-26

Similar Documents

Publication Publication Date Title
KR102191226B1 (ko) 형광체 함유 필름 및 백라이트 유닛
JP6757463B2 (ja) 蛍光体含有フィルムおよびバックライトユニット
WO2018016589A1 (ja) 量子ドット含有組成物、波長変換部材、バックライトユニット、および液晶表示装置
US20150330602A1 (en) Wave length conversion member, back light unit, liquid crystal display device, and quantum dot-containing polymerizable composition
JP2017107174A (ja) 積層体の製造方法、積層体、バックライト装置、および表示装置
JP2017137451A (ja) 光波長変換組成物、波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
KR20190039542A (ko) 형광체 함유 필름 및 백라이트 유닛
JP2016194558A (ja) 量子ドットシート、バックライト装置、および表示装置
JP6675008B2 (ja) 蛍光体含有フィルムおよびバックライトユニット
JP2017120358A (ja) 光波長変換シート、これを備えるバックライト装置、画像表示装置、および光波長変換シートの製造方法
WO2018117095A1 (ja) 波長変換フィルムおよびバックライトユニット
WO2021221080A1 (ja) 量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置
JP2017201386A (ja) 光波長変換粒子、光波長変換粒子分散液、光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、画像表示装置、および光波長変換粒子の製造方法
WO2021221081A1 (ja) 量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置
JP6903924B2 (ja) 光波長変換シート、バックライト装置、画像表示装置、光波長変換組成物、および光波長変換部材
JP6720603B2 (ja) 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP2016194561A (ja) 量子ドットシート、バックライト装置、および表示装置
JP6676184B2 (ja) 蛍光体含有フィルムおよびバックライトユニット
WO2021251448A1 (ja) 波長変換部材、発光装置および液晶表示装置
WO2023048228A1 (ja) 化合物、重合性組成物および硬化物
JP2017167319A (ja) 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP2017167320A (ja) 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP6822044B2 (ja) 量子ドットシート、バックライト及び液晶表示装置
WO2023048229A1 (ja) 重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置
JP7373084B1 (ja) 波長変換シート、並びに、これを用いたバックライト及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797479

Country of ref document: EP

Kind code of ref document: A1