JP2017167319A - 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置 - Google Patents

光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置 Download PDF

Info

Publication number
JP2017167319A
JP2017167319A JP2016052321A JP2016052321A JP2017167319A JP 2017167319 A JP2017167319 A JP 2017167319A JP 2016052321 A JP2016052321 A JP 2016052321A JP 2016052321 A JP2016052321 A JP 2016052321A JP 2017167319 A JP2017167319 A JP 2017167319A
Authority
JP
Japan
Prior art keywords
wavelength conversion
light
light wavelength
mass
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016052321A
Other languages
English (en)
Other versions
JP6772494B2 (ja
Inventor
広樹 松下
Hiroki Matsushita
広樹 松下
真哉 佐々木
Shinya Sasaki
真哉 佐々木
邦聡 芳片
Kuniaki Yoshikata
邦聡 芳片
橋本 裕介
Yusuke Hashimoto
裕介 橋本
賢治 藤田
Kenji Fujita
賢治 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2016052321A priority Critical patent/JP6772494B2/ja
Publication of JP2017167319A publication Critical patent/JP2017167319A/ja
Application granted granted Critical
Publication of JP6772494B2 publication Critical patent/JP6772494B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】優れた耐熱性を有する光波長変換組成物および光波長変換部材を提供する。また、優れた耐熱性を有するとともに、バリア部材を省略でき、またはバリア部材を用いる場合であっても点状の輝度欠点を抑制できる光波長変換シート、このような光波長変換部材または光波長変換シートを備えたバックライト装置および画像表示装置を提供する。【解決手段】光波長変換組成物であって、量子ドット17と、リン系化合物とを含み、蛍光X線分析により測定される光波長変換組成物中のリン元素の含有量が0.01質量%以上2質量%以下である、光波長変換組成物。【選択図】図1

Description

本発明は、光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置に関する。
液晶表示装置等の透過型画像表示装置は、一般に、液晶表示パネル等の透過型画像表示パネルの背面側に配置され、透過型画像表示パネルを照明するバックライト装置を備えている。
現在、色再現性を高めるために、量子ドットおよびバインダ樹脂を含む光波長変換部材を備える光波長変換シートをバックライト装置に組み込むことが検討されている(例えば、特許文献1参照)。量子ドットは、光(一次光)を吸収して異なる波長の光(二次光)を放出することができる。量子ドットが放出する光の波長は、主として量子ドットの材料種および粒子径に依存する。したがって、光波長変換シートが組み込まれたバックライト装置では、単一の波長域の光を投射する光源を用いながら、種々の色を再現することができる。例えば、青色光を発する光源を用いる場合、光波長変換シートが青色光を吸収して緑色光および赤色光を放出することもできる。このような光波長変換シートが組み込まれたバックライト装置は色純度に優れることから、このバックライト装置を用いた画像表示装置は優れた色再現性を有することになる。
特開2015−111518号公報
光波長変換シートにおいては、量子ドットは水分や酸素によって劣化してしまい、発光効率が低下するおそれがあるので、光波長変換部材の両面に、水分および酸素の透過を抑制するためのバリア部材を設けている。バリア部材は光波長変換部材を挟むように設けられるので、従来の光波長変換シートは、バリア部材、光波長変換部材、バリア部材の順で積層された構造となっている。
一方、バックライト装置において、通常行われている信頼性試験として、80℃の環境下に500時間放置する耐熱性試験があり、バックライト装置の各部材はこの耐熱性試験の基準を満たすことが望まれている。しかしながら、上記構造の光波長変換シートに対し、耐熱性試験を行うと、量子ドットが劣化して、輝度が低下してしまうという問題がある。
また、バリア部材を備える光波長変換シートにおいては、耐熱性試験を行うと、バリア部材にピンホールやクラックが発生しやすい。バリア部材にピンホールやクラックが発生すると、そこから水分や酸素が入り込み、一部の量子ドットが劣化して、光波長変換シートにおいて点状に輝度が低下した部分(輝度欠点)が発生するおそれがある。この点状の輝度欠点は、全体的に量子ドットが劣化して、均一に輝度が低下する場合よりも、視認されやすい。また、現在、光波長変換シートの更なる薄型化および製造コストの低減が望まれている。これらのことから、現在、バリア部材を用いないことが検討されている。しかしながら、現在の光波長変換部材においては、水分および酸素から量子ドットを保護する機能を有していないので、バリア部材を用いないと、量子ドットが劣化してしまう。
本発明は、上記問題を解決するためになされたものである。すなわち、優れた耐熱性を有する光波長変換組成物および光波長変換部材を提供することを目的とする。また、優れた耐熱性を有するとともに、バリア部材を省略でき、またはバリア部材を用いた場合であっても点状の輝度欠点を抑制できる光波長変換シート、このような光波長変換部材または光波長変換シートを備えたバックライト装置および画像表示装置を提供することを目的とする。
本発明者らは、上記課題に対して鋭意研究を重ねたところ、光波長変換組成物にリン系化合物を特定の含有量で含ませることにより、優れた耐熱性を有する光波長変換組成物および光波長変換部材が得られ、またこの光波長変換部材を用いて光波長変換シートを形成した場合には、優れた耐熱性を有するとともに、バリア部材を省略でき、またはバリア部材を用いる場合であっても点状の輝度欠点を抑制できることを見出した。本発明は、このような知見に基づき完成されたものである。
本発明の一の態様によれば、光波長変換組成物であって、量子ドットと、リン系化合物とを含み、蛍光X線分析により測定される前記光波長変換組成物中のリン元素の含有量が0.05質量%以上である、光波長変換組成物が提供される。
本発明の他の態様によれば、光波長変換部材であって、バインダ樹脂と、前記バインダ樹脂に分散された量子ドットおよびリン系化合物とを含み、蛍光X線分析により測定される前記光波長変換部材中のリン元素の含有量が0.05質量%以上である、光波長変換部材が提供される。
本発明の他の態様によれば、光波長変換シートであって、上記の光波長変換部材を備え、かつ前記光波長変換部材が層状に形成されている、光波長変換シートが提供される。
本発明の他の態様によれば、光源と、前記光源からの光を受ける上記の光波長変換シートとを備える、バックライト装置が提供される。
本発明の他の態様によれば、上記のバックライト装置と、前記バックライト装置の出光側に配置された表示パネルとを備える、画像表示装置が提供される。
本発明の一の態様の光波長変換組成物および他の態様の光波長変換部材によれば、リン元素の含有量が0.05質量%以上となっているので、優れた耐熱性を有する光波長変換組成物および光波長変換部材を提供できる。また、本発明の他の態様によれば、この光波長変換部材を用いて光波長変換シートを形成しているので、優れた耐熱性を有するとともに、バリア部材を省略でき、またはバリア部材を用いる場合であっても点状の輝度欠点を抑制できる光波長変換シートを提供することができる。また、本発明の他の態様によれば、このような光波長変換部材や光波長変換シートを備えるバックライト装置および画像表示装置を提供できる。
実施形態に係る光波長変換シートの概略構成図である。 実施形態に係る光波長変換シートの作用を示す図である。 実施形態に係る他の光波長変換シートの概略構成図である。 実施形態に係る他の光波長変換シートの概略構成図である。 実施形態に係る他の光波長変換シートの概略構成図である。 図5の光波長変換シートのI−I線に沿った断面図である。 実施形態に係る他の光波長変換シートの概略構成図である。 実施形態に係る他の光波長変換シートの概略構成図である。 実施形態に係る光波長変換シートの製造工程を模式的に示す図である。 実施形態に係る光波長変換シートの製造工程を模式的に示す図である。 実施形態に係るバックライト装置を含む画像表示装置の概略構成図である。 図11に示されるレンズシートの斜視図である。 図12のレンズシートのII−II線に沿った断面図である。 実施形態に係る他のバックライト装置の概略構成図である。 実施形態に係る他のバックライト装置の概略構成図である。 図15に示される光源の概略構成図である。 実施形態に係る他のバックライト装置の概略構成図である。 図17に示される光学板の入光面付近の拡大図である。
以下、本発明の実施形態に係る光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置について、図面を参照しながら説明する。本明細書において、「シート」、「フィルム」等の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。したがって、例えば、「シート」は、フィルムとも呼ばれるような部材も含む意味で用いられ、また「フィルム」はシートとも呼ばれ得るような部材も含む意味で用いられる。図1は本実施形態に係る光波長変換シートの概略構成図であり、図2は本実施形態に係る光波長変換シートの作用を示す図であり、図3〜図5、図7、図8は本実施形態に係る他の光波長変換シートの概略構成図であり、図6は図5の光波長変換シートのI−I線に沿った断面図であり、図9および図10は本実施形態に係る光波長変換シートの製造工程を模式的に示す図である。
<<<光波長変換組成物>>>
光波長変換組成物は、入射する光のうち一部の光の波長を他の波長に変換し、入射した光の他の一部および波長変換された光を出射させるための組成物である。光波長変換組成物は、量子ドットと、リン系化合物とを含む。光波長変換組成物は、組成物の状態でも使用してもよく、また光波長変換組成物を硬化させて、硬化物である光波長変換部材の状態で使用してもよい。本明細書において、「光波長変換部材」とは、実質的に光波長変換組成物の硬化物からなる部材である。ここで、上記「実質的に」とは、光波長変換部材が光波長変換組成物の硬化物以外に若干他の物質等を含んでいてもよいことを意味する。なお、光波長変換部材は光波長変換組成物の硬化物のみからなる部材であってもよい。光波長変換部材を形成する場合には、光波長変換組成物は、重合性化合物をさらに含み、また重合性化合物の他、重合開始剤をさらに含んでいてもよい。光波長変換組成物は、光散乱性粒子をさらに含んでいることが好ましく、また添加剤や溶剤を含んでいてもよい。
光波長変換組成物においては、蛍光X線分析(XRF)により測定される光波長変換組成物中のリン元素の含有量は0.05質量%以上となっている。リン元素の含有量が0.05質量%未満であると、量子ドットの劣化を抑制できないおそれがある。リン元素の含有量の測定は、蛍光X線分析装置(製品名「EDX−800HS」、島津製作所製)を用いることにより行うことができる。蛍光X線分析(XRF)により測定される光波長変換組成物中のリン元素の含有量の下限は、0.3質量%以上であることが好ましく、またリン元素の含有量の上限は2質量%を越えると、光波長変換組成物を硬化させたときに、光透過性基材との密着性が低下するおそれがあり、また量子ドットが腐食してしまうおそれもあるため、2質量%以下であることが好ましい。
光波長変換組成物の粘度は、10mPa・s以上10000mPa・s以下であることが好ましい。光波長変換組成物の粘度が、10mPa・s未満であると、充分な膜厚を形成することが困難な場合があり、また10000mPa・sを超えると、光波長変換組成物を塗布する際に塗出が困難となり、レベリング性が悪くなるおそれがある。光波長変換組成物の粘度の下限は10mPa・s以上であることが好ましく、光波長変換組成物の粘度の上限は10000mPa・s以下であることが好ましい。
<<量子ドット>>
量子ドットは、量子閉じ込め効果(quantum confinement effect)を有するナノサイズの半導体粒子である。量子ドットの粒子径および平均粒子径は、例えば、1nm以上20nm以下となっている。量子ドットは、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに該当するエネルギーを放出する。よって、量子ドットの粒子径又は物質の組成を調節すると、エネルギーバンドギャップを調節することができ、様々なレベルの波長帯のエネルギーを得ることができる。とりわけ、量子ドットは、狭い波長帯で強い蛍光を発生することができる。
具体的には、量子ドットは粒子径が小さくなるに従い、エネルギーバンドギャップが大きくなる。すなわち、結晶サイズが小さくなるにつれて、量子ドットの発光は青色側へ、つまり、高エネルギー側へとシフトする。そのため、量子ドットの粒子径を変化させることにより、紫外領域、可視領域、赤外領域のスペクトルの波長全域にわたって、その発光波長を調節することができる。例えば、量子ドットが後述するCdSe/ZnSから構成されている場合には、量子ドットの粒子径が2.0nm以上4.0nm以下の場合は青色光を発し、量子ドットの粒子径が3.0nm以上6.0nm以下の場合は緑色光を発し、量子ドットの粒子径が4.5nm以上10.0nm以下の場合は赤色光を発する。なお、上記においては、青色光を発する量子ドットの粒子径と緑色光を発する量子ドットの粒子径の範囲は一部において重複しており、また緑色光を発する量子ドットの粒子径と赤色光を発する量子ドットの粒子径の範囲は一部において重複しているが、同じ粒子径を有する量子ドットであっても、量子ドットのコアの大きさによっても発光色が異なる場合があるので、何ら矛盾するものではない。
量子ドットとしては、1種類の量子ドットを用いてもよいが、粒子径または材料等が異なることにより、それぞれ単独の波長域の発光帯を有する2種類以上の量子ドットを用いることも可能である。具体的には、光波長変換組成物は、第1の量子ドットと、第1の量子ドットとは異なる波長域の発光帯を有する第2の量子ドットとを含んでいてもよい。
量子ドットは、所望の狭い波長域で強い蛍光を発生することができる。このため、光波長変換シートを用いたバックライト装置は、色純度の優れた三原色の光で、表示パネルを照明することができる。この場合、表示パネルは、優れた色再現性を有することになる。
量子ドットは、例えば、第1の半導体化合物からなるコアと、およびこのコアを覆い、かつ第1の半導体化合物と異なる第2の半導体化合物からなるシェルと、シェルの表面に結合したリガンドとから構成されている。
コアを構成する第1の半導体化合物としては、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe及びHgTeのようなII−VI族半導体化合物、AlN、AlP、AlAs、AlSb、GaAs、GaP、GaN、GaSb、InN、InAs、InP、InSb、TiN、TiP、TiAs及びTiSbのようなIII−V族半導体化合物、Si、Ge及びPbのようなIV族半導体、等の半導体化合物又は半導体を含有する半導体結晶が挙げられる。また、InGaPのような3元素以上を含んだ半導体化合物を含む半導体結晶を用いることもできる。これらの中でも、作製の容易性、可視域での発光を得られる粒子径の制御性等の観点から、CdS、CdSe、CdTe、InP、InGaP等の半導体結晶が好適である。
シェルを構成する第2の半導体化合物としては、励起子がコアに閉じ込められるように、コアを構成する第1の半導体化合物よりもバンドギャップの高い半導体化合物を用いることが好ましい。これにより、量子ドットの発光効率を高めることができる。シェルを構成する第2の半導体化合物としては、例えば、ZnS、ZnSe、CdS、GaN、CdSSe、ZnSeTe、AlP、ZnSTe、ZnSSe等が挙げられる。
コアとシェルからなるコアシェル構造(コア/シェル)の具体的な組み合わせとしては、例えば、CdSe/ZnS、CdSe/ZnSe、CdSe/CdS、CdTe/CdS、InP/ZnS、Gap/ZnS、Si/ZnS、InN/GaN、InP/CdSSe、InP/ZnSeTe、InGaP/ZnSe、InGaP/ZnS、Si/AlP、InP/ZnSTe、InP/ZnSSe、InGaP/ZnSTe、InGaP/ZnSSe等が挙げられる。
リガンドは、不安定な量子ドットを安定化させるためのものである。リガンドとしては、チオール等の硫黄系化合物、ホスフィン、またはホスフィン酸化物等のリン系化合物、アミン等の窒素系化合物、カルボン酸等が挙げられる。
量子ドットの形状は特に限定されず、例えば、球状、棒状、円盤状、その他の形状であってもよい。半導体ナノ粒子の粒子径は、半導体ナノ粒子の形状が球状でない場合、同体積を有する真球状の値とすることができる。
量子ドットの粒子径、平均粒子径、形状、分散状態等の情報については、透過型電子顕微鏡または走査透過型電子顕微鏡により得ることができる。量子ドットの平均粒子径は、透過型電子顕微鏡または走査透過型電子顕微鏡による観察により測定された20個の量子ドットの直径の平均値として求めることができる。また、量子ドットは粒子径によって発光色が変化するので、量子ドットの発光色の確認から量子ドットの粒子径を求めることも可能である。また、量子ドットの結晶構造、結晶子サイズについては、X線結晶回折(XRD)により知ることができる。さらには、紫外−可視(UV−Vis)吸収スペクトルによって、量子ドットの粒子径等に関する情報を得ることもできる。
光波長変換組成物の全固形分質量に対する量子ドットの含有量は、0.01質量%以上2質量%以下であることが好ましく、0.03質量%以上1質量%以下であることがより好ましい。量子ドットの含有量が0.01質量%未満であると、充分な発光強度が得られないおそれがあり、また、量子ドットの含有量が2質量%を超えると、充分な励起光の透過光強度が得られないおそれがある。
<<リン系化合物>>
リン系化合物は、分子内にリン元素を含む化合物であれば、特に限定されず、リン系化合物としては、例えば、ホスファイト系化合物やホスフィン系化合物を用いることができる。これらの中でも、より優れた耐熱性を得る観点から、ホスフィン系化合物が好ましい。また、リン系化合物は、量子ドット表面への固定化や析出抑制の観点から、エチレン性不飽和基等の、重合性化合物と架橋可能な基(架橋性基)を含んでいることが好ましい。リン系化合物は、2種以上含まれていてもよい。
<ホスファイト系化合物>
ホスファイト系化合物としては、下記一般式(1)で表される化合物および下記一般式(2)で表される化合物からなる群から選択される少なくとも1種の化合物を用いることができる。本明細書における「ホスファイト系化合物」とは、亜リン酸エステルのみならず、ホスホン酸エステルを含む概念である。一般に、亜リン酸エステルとホスホン酸エステルは互変異性体の関係にある。
Figure 2017167319
式中、X〜Xは、それぞれ独立して、酸素原子または硫黄原子を表し、R〜Rは、それぞれ独立して、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいアルケニル基、置換されていてもよいシクロアルケニル基、置換されていてもよいアルキニル基、置換されていてもよいアリール基、または置換されていてもよいアラルキル基を表し、またRおよびRは互いに結合して環状構造を形成してもよい。
Figure 2017167319
式中、Rは、それぞれ独立して、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいアルケニル基、置換されていてもよいシクロアルケニル基、置換されていてもよいアルキニル基、置換されていてもよいアリール基、または置換されていてもよいアラルキル基を表し、Rは、水素原子、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいアルケニル基、置換されていてもよいシクロアルケニル基、置換されていてもよいアルキニル基、置換されていてもよいアリール基、または置換されていてもよいアラルキル基を表す。
上記X〜Xは、酸素原子または硫黄原子であるが、リンに隣接する原子のサイズが大きいと、立体障害となり、ホスファイト系化合物が量子ドットに結合できないおそれがあるので、硫黄原子より原子サイズが小さい酸素原子であることが好ましい。
上記R〜Rにおけるアルキル基、アルケニル基、またはアルキニル基としては、直鎖状および分岐鎖状のいずれでもよいが、量子ドットに結合する際の立体障害が小さいという観点から、直鎖状であることが好ましい。
上記R〜Rにおけるアルキル基、アルケニル基、またはアルキニル基の炭素数としては、1以上20以下が好ましい。アルキル基、アルケニル基、またはアルキニル基の炭素数が20を超えると、耐熱性試験時に量子ドットが劣化してしまうおそれがある。上記R〜Rにおけるアルキル基、アルケニル基、またはアルキニル基の炭素数の下限は6以上であることがより好ましく、上限は12以下であることがより好ましい。
上記R〜Rにおける上記アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル、n−ヘキシル、n−オクチル基、2−エチルヘキシル基、デシル基、ラウリル基、トリデシル基、ステアリル基等が挙げられる。上記アルケニル基としては、オレイル基が挙げられる。
上記R〜Rにおけるシクロアルキル基、またはシクロアルケニル基の炭素数としては、3以上10以下が好ましい。シクロアルキル基またはシクロアルケニル基の炭素数が10を超えると、耐熱性試験時に量子ドットが劣化してしまうおそれがある。上記R〜Rにおけるシクロアルキル基またはシクロアルケニル基の炭素数の下限は5以上であることがより好ましく、上限は8以下であることがより好ましい。
上記R〜Rにおけるシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。上記シクロアルケニル基としては、例えば、シクロプロペニル基、シクロペンテニル基、又はシクロヘキセニル基が挙げられる。
上記R〜Rにおけるアリール基は、単環であっても縮合環であってもよい。アリール基の炭素数は、6以上10以下が好ましい。アリール基の炭素数が12を超えると、立体障害の問題から、ホスファイト系化合物が量子ドットに結合できないおそれがある。アリール基としては、例えば、フェニル基、クレジル基、キシリル基、イソプロピルフェニル基、ブチルフェニル基、tert−ブチルフェニル基、ジ−tert−ブチルフェニル基、p−クミルフェニル基、ナフチル基等が挙げられるが、フェニル基がより好ましい。
上記R〜Rにおけるアラルキル基の炭素数は、7以上10以下が好ましい。アラルキル基の炭素数が10を超えると、ホスファイト系化合物が、立体障害のために量子ドットと結合できないおそれがある。アラルキル基としては、例えば、ベンジル基、フェネチル基、トリルメチル基、フェニルブチル基等が挙げられる。
上記R〜Rにおけるアルキル基、アルケニル基、またはアルキニル基が置換基を有している場合、置換基としては、ハロゲン原子、水酸基、シクロアルキル基(例えば、炭素数3以上10以下)、シクロアルケニル基(例えば、炭素数3以上10以下)、アルコキシル基(例えば、炭素数1以上20以下)、アリールオキシ基、アシル基、アルコキシカルボニル基、カルボキシル基等から選択される基が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、および臭素原子が挙げられる。
上記R〜Rにおけるシクロアルキル基またはシクロアルケニル基が置換基を有している場合、置換基としては、ハロゲン原子、水酸基、アルキル基(例えば、炭素数1以上20以下)、アルケニル基(例えば、炭素数1以上20以下)、アルキニル基(例えば、炭素数1以上20以下)、アルコキシル基(例えば、炭素数1以上20以下)、アリール基(例えば、炭素数6以上10以下)、アリールオキシ基、アシル基、アルコキシカルボニル基、およびカルボキシル基等から選択される基が挙げられる。
上記R〜Rにおけるアリール基が置換基を有している場合、置換基としては、ハロゲン原子、水酸基、アルキル基(例えば、炭素数1以上20以下)、アルケニル基(例えば、炭素数1以上20以下)、アルキニル基(例えば、炭素数1以上20以下)、アルコキシル基(例えば、炭素数1以上20以下)、アリールオキシ基、アシル基、アルコキシカルボニル基、およびカルボキシル基等から選択される基が挙げられる。
上記R〜Rにおけるアラルキル基が置換基を有している場合、置換基としては、ハロゲン原子、水酸基、アルキル基(例えば、炭素数1以上20以下)、アルケニル基(例えば、炭素数1以上20以下)、アルキニル基(例えば、炭素数1以上20以下)、アルコキシル基(例えば、炭素数1以上20以下)、アリールオキシ基、アシル基、アルコキシカルボニル基、およびカルボキシル基等から選択される基が挙げられる。
上記R〜Rにおけるアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、またはアラルキル基中の1つのメチレン基または隣接しない2以上のメチレン基は、−O−、−S−、−SO−、−CO−、−COO−、−OCO−、−NR−、−CONR’−、−NR’CO−、および−N=CH−からなる群から選択された少なくとも1つの基で置換されていてもよい。上記R’はそれぞれ独立して水素原子又は炭素数1以上5以下のアルキル基を表す。
上記一般式(1)で表される化合物の中でも、耐熱性をより向上させる観点から、上記R〜Rの少なくともいずれかが、アルキル基、アルケニル基、またはアリール基である化合物が好ましい。これらの中でも、R〜Rの少なくともいずれかが、アリール基である化合物がより好ましい。
上記R〜Rの少なくともいずれかがアリール基である化合物の中でも、上記R〜Rの少なくともいずれかが下記一般式(3)で表されるアリール基である化合物がより好ましい。上記R〜Rの少なくともいずれかが下記一般式(3)で表されるアリール基である場合、R〜Rの全てが、下記一般式(3)で表されるアリール基であってもよい。
Figure 2017167319
式中、Rは、置換されていてもよいアルキル基または置換されていてもよいアルケニル基を表し、Rが複数存在する場合は同じでもあっても、異なっていてもよく、nは、0〜5の整数を表し、*は、結合位置を表す。
上記Rにおけるアルキル基またはアルケニル基としては、直鎖状および分岐鎖状のいずれでもよいが、量子ドットに結合する際の立体障害が小さいという観点から、直鎖状であることが好ましい。
上記Rにおけるアルキル基またはアルケニル基の炭素数としては、1以上20以下が好ましい。上記Rにおけるアルキル基またはアルケニル基の炭素数が20を超えると、耐熱性試験時に量子ドットが劣化してしまうおそれがある。上記Rにおけるアルキル基またはアルケニル基の炭素数の下限は6以上であることがより好ましく、上限は12以下であることがより好ましい。
上記Rにおけるアルキル基またはアルケニル基としては、上記R〜Rにおけるアルキル基またはアルケニル基と同様のものが挙げられるので、ここでは説明を省略するものとする。
上記RおよびRが互いに結合して環状構造を形成している場合、上記一般式(1)で示される化合物は、1分子中にリン原子が二つ含まれている化合物であってもよい。上記RおよびRが互いに結合して環状構造を形成している場合、上記一般式(1)で示される化合物としては、下記一般式(4)で表される化合物が挙げられる。
Figure 2017167319
式中、Rは上記と同じ意味であり、Rは、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいアルケニル基、置換されていてもよいシクロアルケニル基、置換されていてもよいアルキニル基、置換されていてもよいアリール基、または置換されていてもよいアラルキル基を表す。
上記Rのアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アラルキル基の炭素数、構造および置換基等は上記R〜Rにおけるアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アラルキル基と同様であるので、ここでは説明を省略するものとする。
上記一般式(1)で示される化合物の重量平均分子量および上記一般式(2)で示される化合物の重量平均分子量は、重量平均分子量が小さすぎると、加工後に揮発するおそれがあり、また大きすぎると、重合性化合物との相溶性が低下するおそれがあるので、200以上1000以下であることが好ましい。本明細書において、「重量平均分子量」は、テトラヒドロフラン(THF)等の溶媒に溶解して、従来公知のゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算により得られる値である。上記一般式(1)で示される化合物の重量平均分子量または上記一般式(2)で示される化合物の重量平均分子量の下限は300以上であることが好ましく、上限は700以下であることがより好ましい。
上記一般式(1)で表される化合物の具体例としては、トリエチルホスファイト、トリス(2−エチルヘキシル)ホスファイト、トリイソオクチルホスファイト、トリデシルホスファイト、トリイソデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、トリステアリルホスファイト、トリオレイルホスファイト、トリラウリルトリチオホスファイト、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリクレジルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ジフェニルモノ(2−エチルへキシル)ホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、フェニルジイソデシルホスファイト、テトラフェニルジプロピレングリコールジホスファイト、テトラ(C12〜C15アルキル)−4,4’−イソプロピリデンジフェニルジホスファイト、ビス(デシル)ペンタエリスリトールジフォスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマー、水添ビスフェノールAホスファイトポリマーが挙げられる。これらの中でも、分子中にアリール基を有する、トリフェニルホスファイト、トリスノニルフェニルホスファイト、フェニルジイソデシルホスファイトが好ましい。
上記一般式(1)で表される化合物の市販品としては、例えば、JP−3360、JP−351、JP−3CP、JP302、JP308E、JP−310、JP−312L、JP−333E、JP−318−O、JPM−308、JPM−311、JPM−313、JPS−312、JPP−100、JPP−613M、JA−805、JPP−88、JPE−10、JPE−13R、JPE−13R、JP−318E、JPP−2000PT、JP−650、JPH−3800、HBP(いずれも城北化学工業社製)、Chelex O、Chelex D、Chelex TDP、Chelex 2300、Chelex OL(いずれもSC有機化学社製)が挙げられる。
上記一般式(2)で表される化合物の具体例としては、ジエチルハイドロゲンホスファイト、ジ−2−エチルヘキシルハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト等が挙げられる。これらの中でも、重合性化合物との相溶性に優れ、また加工後に揮発等が起こり難い観点から、ジ−2−エチルヘキシルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト等が好ましい。
上記一般式(2)で表される化合物の市販品としては、例えば、JP−202、JPE−208、JP−212、JP−213D、JP−218−OR、JP−260(いずれも城北化学工業社製)、Chelex H−8、Chelex H−12、Chelex H−18D、Chelex H−18TA(いずれもSC有機化学社製)が挙げられる。
<ホスフィン系化合物>
ホスフィン系化合物としては、例えば、下記一般式(5)で表される化合物を用いることができる。
Figure 2017167319
式中、Rは、それぞれ独立して、水素原子、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよいアルケニル基、置換されていてもよいシクロアルケニル基、置換されていてもよいアルキニル基、置換されていてもよいアリール基、または置換されていてもよいアラルキル基を表す。
上記Rのアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アラルキル基の炭素数、具体例および置換基等は上記R〜Rにおけるアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アラルキル基と同様であるので、ここでは説明を省略するものとする。
上記一般式(5)で表されるホスフィン系化合物の中でも、耐熱性および耐湿熱性をより向上させる観点から、上記Rの少なくともいずれかがアリール基、シクロアルキル基、またはシクロアルケニル基であるホスフィン系化合物が好ましい。
上記Rの少なくともいずれかがアリール基、シクロアルキル基、またはシクロアルケニル基であるホスフィン系化合物の中でも、上記Rの少なくともいずれかが下記一般式(6)で表されるアリール基であるホスフィン系化合物がより好ましい。上記Rの少なくともいずれかが下記一般式(6)で表されるアリール基である場合、Rの全てが、下記一般式(6)で表されるアリール基であることが好ましい。
Figure 2017167319
式中、Rは、置換されていてもよいアルキル基または置換されていてもよいアルケニル基を表し、Rが複数存在する場合は同じでもあっても、異なっていてもよく、nは、0〜5の整数を表し、*は、結合位置を表す。
上記Rにおけるアルキル基またはアルケニル基の炭素数、具体例および置換基等は上記Rにおけるアルキル基またはアルケニル基と同様であるので、ここでは説明を省略するものとする。
上記一般式(5)で示されるホスフィン系化合物の重量平均分子量は、毒性や揮発性があるおそれがあるため、100以上であることが好ましい。
上記ホスフィン系化合物の具体例としては、フェニルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン、トリス(2−メチルフェニル)ホスフィン、トリス(4−メチルフェニル)ホスフィン、トリス(4−メトキシフェニル)ホスフィン、トリシクロヘキシルホスフィン、メチルジフェニルホスフィン、ジ−tert−ブチルフェニルホスフィン、1,2−ビス(ジフェニルホスフィノ)エタン、ビス(ジフェニルホスフィノ)メタン、1,4−ビス(ジフェニルホスフィノ)ブタン、シクロヘキシルジフェニルホスフィン、ジシクロヘキシルフェニルホスフィン等が挙げられる。これらの中でも、化学的に安定であり、取り扱いが容易であることから、トリフェニルホスフィンが好ましい。
上記一般式(5)で表されるホスフィン系化合物の市販品としては、例えば、JC−263(城北化学工業社製)が挙げられる。
光波長変換組成物中に上記ホスファイト系化合物および/またはホスフィン系化合物が含まれているか否かは、(1)赤外分光分析(IR)、(2)ガスクロマトグラフィー分析(GCMS)、(3)ゲル浸透クロマトグラフィー分析(GPC)、核磁気共鳴分光分析(NMR分光分析)を複合的に用いることによって確認することができる。具体的には、赤外分光分析においては光波長変換組成物中に含まれる化合物を大まかに特定でき、ガスクロマトグラフィー分析においては光波長変換組成物中に含まれる化合物の分子量を特定でき、ゲル浸透クロマトグラフィー分析においては光波長変換組成物中に含まれる化合物を分離でき、核磁気共鳴分光分析においては光波長変換組成物中に含まれる化合物の構造式を特定できるので、これらを複合的に用いることで光波長変換組成物中に上記ホスファイト系化合物および/またはやホスフィン系化合物が含まれているか確認することができる。
光波長変換組成物中のホスファイト系化合物および/またはホスフィン系化合物の含有量(光波長変換組成物がホスファイト系化合物およびホスフィン系化合物の両方を含んでいる場合にはその合計量)は、0.5質量%以上30質量%以下となっていることが好ましい。上記ホスフィン系化合物の含有量が0.5質量%未満であると、耐熱性試験時に量子ドットの劣化を抑制できないおそれがあり、また30質量%を越えると、光透過性基材との密着性が低下し、また加工後に凝集等が生じるおそれがある。上記ホスファイト系化合物および/またはホスフィン系化合物の含有量は、上記光波長変換組成物中の上記ホスファイト系化合物および/またはホスフィン化合物が存在するか否かの確認方法と同様の手法によって確認することができる。具体的には、例えば、核磁気共鳴分光分析によって光波長変換組成物中に含まれるホスフィン系化合物を特定(同定)し、その後、ホスファイト系化合物またはホスフィン系化合物に該当するガスクロマトグラフィー分析やゲル浸透クロマトグラフィー分析によって得られたピーク面積比から、光波長変換組成物中のホスファイト系化合物および/またはホスフィン系化合物の含有量を求めることができる。なお、ホスファイト系化合物が複数種類用いられている場合には、上記含有量は複数種類のホスファイト系化合物の合計の含有量を意味するものであり、ホスフィン系化合物が複数種類用いられている場合には、上記含有量は複数種類のホスフィン系化合物の合計の含有量を意味するものとする。光波長変換組成物中の上記ホスファイト系化合物および/またはホスフィン系化合物の含有量の下限は5質量%以上であることがより好ましく、また上記ホスファイト系化合物および/またはホスフィン系化合物の含有量の上限は20質量%以下であることが好ましい。
<<重合性化合物>>
重合性化合物(硬化性化合物)は、重合可能な化合物であり、例えば、電離放射線重合性化合物(電離放射線硬化性化合物)や熱重合性化合物(熱硬化性化合物)が挙げられる。本明細書における電離放射線としては、可視光線、並びに紫外線、X線、電子線、α線、β線、およびγ線が挙げられる。
光波長変換組成物の全固形分質量に対する重合性化合物の含有量は、30質量%以上95質量%以下であることが好ましく、50質量%以上90質量%以下であることが好ましい。重合性化合物の含有量が30質量%未満であると、光波長変換部材の形成の際に充分な硬化性が得られないおそれがあり、また、重合性化合物の含有量が95質量%を超えると、リン系化合物による耐熱性向上の効果が充分に得られないおそれがある。なお、光波長変換組成物が後述する電離放射線重合性化合物および熱重合性化合物の両方を含む場合には、上記含有量は電離放射線重合性化合物および熱重合性化合物の合計の含有量を意味するものとする。
<電離放射線重合性化合物>
電離放射線重合性化合物は、分子内に電離放射線重合性官能基を少なくとも1つ有するものである。電離放射線重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和基が挙げられる。なお、「(メタ)アクリロイル基」とは、「アクリロイル基」および「メタクリロイル基」の両方を含む意味である。
電離放射線重合性化合物としては、電離放射線重合性モノマー、電離放射線重合性オリゴマー、または電離放射線重合性プレポリマーが挙げられ、これらを適宜調整して、用いることができる。電離放射線重合性化合物としては、電離放射線重合性モノマーと、電離放射線重合性オリゴマーまたは電離放射線重合性プレポリマーとの組み合わせが好ましい。
電離放射線重合性モノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート等の水酸基を含むモノマーや、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセロール(メタ)アクリレート等の(メタ)アクリル酸エステル類が挙げられる。
電離放射線重合性オリゴマーとしては、2官能以上の多官能オリゴマーが好ましく、電離放射線重合性官能基が3つ(3官能)以上の多官能オリゴマーがより好ましい。上記多官能オリゴマーとしては、例えば、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル−ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、メラミン(メタ)アクリレート、イソシアヌレート(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
電離放射線重合性プレポリマーは、重量平均分子量が1万を超えるものであり、重量平均分子量としては1万以上8万以下が好ましく、1万以上4万以下がより好ましい。重量平均分子量が8万を超える場合は、粘度が高いため塗工適性が低下してしまい、得られる光波長変換部材の外観が悪化するおそれがある。このため、重量平均分子量が8万を超える電離放射線重合性プレポリマーを用いている場合には、上記重合性モノマーや上記重合性オリゴマーを混合して用いることが好ましい。多官能重合性プレポリマーとしては、ウレタン(メタ)アクリレート、イソシアヌレート(メタ)アクリレート、ポリエステル−ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
<熱重合性化合物>
熱重合性化合物は、分子内に熱重合性官能基を少なくとも1つ有するものである。熱重合性官能基としては、例えば、エポキシ基やオキセタニル基等の環状エーテル基、ビニルエーテル基等が挙げられる。
熱重合性化合物としては、エポキシ化合物やオキセタン化合物等の分子内に1個以上の環状エーテル基を有する環状エーテル化合物、ビニルエーテル化合物等が挙げられる。カチオン重合性化合物としては、トンネリングの発生をより抑制する観点から、環状エーテル化合物が好ましく、環状エーテル化合物の中でもエポキシ化合物が好ましい。
エポキシ化合物は、分子内に1個以上のエポキシ基を有する化合物である。エポキシ化合物としては、特に限定されないが、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビフェニル型エポキシ化合物、フルオレン型エポキシ化合物、ノボラックフェノール型エポキシ化合物、クレゾールノボラック型エポキシ化合物、これらの変性物等の芳香族系、あるいは、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル又は1,6−ヘキサンジオールジグリシジルエーテル等のアルキレングリコールジグリシジルエーテル、グリセリンあるいはそのアルキレンオキサイド付加体のジ又はトリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル、ポリエチレングリコールあるいはそのアルキレンオキサイド付加体のジグリシジルエーテル、ポリプロピレングリコールあるいはそのアルキレンオキサイド付加体のジグリシジルエーテル等のポリアルキレングリコールジグリシジルエーテル、及びアルキレンオキサイド等の脂肪族系が挙げられる。ここで、アルキレンオキサイドとしては、エチレンオキサイド及びプロピレンオキサイド等の脂肪族系エポキシ化合物、3’,4’−エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルメチルメタアクリレート等の分子内に1個以上のエポキシ基と1個以上のエステル基を含有する脂環式エポキシ化合物等が挙げられる。これらの中では、接着強度および硬化性の点で、3’,4’−エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルメチルメタアクリレート等の脂環式エポキシ化合物が好ましい。
<<重合開始剤>>
重合開始剤は、光または熱により分解されて、ラジカルやイオン種を発生させて重合性化合物の重合(架橋)を開始または進行させる成分である。重合開始剤としては、光重合開始剤(例えば、光ラジカル重合開始剤、光カチオン重合開始剤、光アニオン重合開始剤)、熱重合開始剤(例えば、熱ラジカル重合開始剤、熱カチオン重合開始剤、熱アニオン重合開始剤)、またはこれらの混合物が挙げられる。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO(いずれもBASFジャパン社製)、NCI−930(ADEKA社製)、SPEEDCURE EMK(日本シーベルヘグナー社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。
上記光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩等が挙げられる。上記光カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトマーSP−150、アデカオプトマーSP−170(いずれもADEKA社製)等が挙げられる。
上記熱ラジカル重合開始剤としては、例えば、過酸化物やアゾ化合物等が挙げられる。これらの中でも、高分子アゾ化合物からなる高分子アゾ開始剤が好ましい。高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、例えば、4,4'−アゾビス(4−シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4'−アゾビス(4−シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
上記熱ラジカル重合開始剤のうち市販されているものとしては、例えば、パーブチルO、パーヘキシルO、パーブチルPV(いずれも日油社製)、V−30、V−501、V−601、VPE−0201、VPE−0401、VPE−0601(いずれも和光純薬工業社製)等が挙げられる。
上記熱カチオン重合開始剤としては、例えば、第四級アンモニウム塩、ホスホニウム塩、スルホニウム塩等の各種オニウム塩類等が挙げられる。上記熱カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトンCP−66、アデカオプトンCP−77(いずれもADEKA社製)、サンエイドSI−60L、サンエイドSI−80L、サンエイドSI−100L(いずれも三新化学工業社製)、CIシリーズ(日本曹達社製)等が挙げられる。
光波長変換組成物中における重合開始剤の含有量は、重合性化合物100質量部に対し0.3質量部以上5.0質量部以下であることが好ましい。重合開始剤の含有量が、0.3質量部未満であると、重合性化合物が硬化しにくく、また、5.0質量部を超えると、光波長変換シートが黄変してしまうおそれがある。
<<光散乱性粒子>>
光散乱性粒子は、光波長変換部材に進入した光を散乱させることによって光の進行方向を変化させる作用を有する粒子である。
光散乱性粒子の平均粒子径は、量子ドットの平均粒子径の20倍以上2000倍以下であることが好ましく、50倍以上1000倍以下であることがより好ましい。光散乱性粒子の平均粒子径が量子ドットの平均粒子径の20倍未満であると、光波長変換部材において充分な光散乱性能が得られないことがあり、光散乱性粒子の平均粒子径が量子ドットの平均粒子径の2000倍を超えると、添加量が同じであっても光散乱性粒子の数が少なくなるため、散乱点の数が減り充分な光散乱効果が得られないおそれがある。なお、光散乱性粒子の平均粒子径は、上述した量子ドットの平均粒子径と同様の方法で測定することができる。
また、光散乱性粒子の平均粒子径は、後述する光波長変換部材の平均膜厚の1/300以上1/20以下であることが好ましく、1/200以上1/30以下であることがより好ましい。光散乱性粒子の平均粒子径が光波長変換部材の平均膜厚の1/300未満であると、光波長変換部材において充分な光散乱性能が得られないことがあり、光散乱性粒子の平均粒子径が光波長変換部材の平均膜厚の1/20を超えると、添加量が同じであっても光波長変換部材に対する光散乱性粒子の割合が低下するため、散乱点の数が減り充分な光散乱効果が得られない。
具体的には、光散乱性粒子の平均粒子径は、例えば、0.1μm以上10μm以下であることが好ましく、0.3μm以上5μm以下であることがより好ましい。光散乱性粒子の平均粒子径が0.1μm未満であると、光波長変換シートの光波長変換効率が不充分となることがあり、充分な光散乱性を出すためには光散乱性粒子の添加量を多くする必要がある。一方、光散乱性粒子の平均粒子径が10μmを超えると、添加量(質量%)が同じであっても光散乱粒子の数が少なくなるため、散乱点の数が減り充分な光散乱効果が得られない。
光散乱性粒子の形状は特に限定されず、例えば、球状(真球状、略真球状、楕円球状等)、多面体状、棒状(円柱状、角柱状等)、平板状、りん片状、不定形状等が挙げられる。なお、光散乱性粒子の粒子径は、光散乱性粒子の形状が球状でない場合、同体積を有する真球状の値とすることができる。
光散乱性粒子は、光散乱性粒子をバインダ樹脂中に強固に固定する観点から、シランカップリング剤で表面処理されていることが好ましい。シランカップリング剤で表面処理されることによって、後述するバインダ樹脂と化学結合させることができる。
シランカップリング剤としては、用いる硬化性バインダ樹脂前駆体の種類にもよるが、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、チオール基、スルフィド基およびイソシアネート基からなる群から選択される1種以上の反応性官能基を有するものを使用することが可能である。硬化性バインダ樹脂前駆体として(メタ)アクリロイル基を有する化合物を用いる場合には、カップリング剤は、チオール基、(メタ)アクリロイル基、ビニル基およびスチリル基からなる群から選択される少なくとも1種の反応性官能基を有することが好ましい。また、硬化性バインダ樹脂前駆体としてエポキシ基、イソシアネート基、および水酸基からなる群から選択される少なくとも1種の基を有する化合物を用いる場合には、シランカップリング剤はエポキシ基、イソシアネート基、チオール基およびアミノ基からなる群から選択される少なくとも1種の反応性官能基を有することが好ましい。
光散乱性粒子は、アクリル樹脂粒子、スチレン樹脂粒子、メラミン樹脂粒子、およびウレタン樹脂粒子等の有機粒子であってもよいが、耐熱性試験の前後における輝度変化率を小さくことができ、また光波長変換シートへの入射光を好適に散乱させることが可能となり、この入射光に対する光波長変換効率の向上を好適に図ることできることから、無機粒子が好ましい。
無機粒子は、Al等のアルミニウム含有化合物、ZrO等のジルコニウム含有化合物、アンチモンドープ酸化スズ(ATO)や酸化インジウムスズ(ITO)等のスズ含有化合物、MgOやMgF等のマグネシウム含有化合物、TiOやBaTiO等のチタン含有化合物、Sb等のアンチモン含有化合物、SiO等のケイ素含有化合物、およびZnO等の亜鉛含有化合物からなる群から選択される少なくとも1種の化合物の粒子が挙げられる。これらの無機粒子は、バインダ樹脂との屈折率差を大きくすることができるので、大きなミー散乱強度を得ることができる観点からも好ましい。光波長変換シート10による入射光に対する光波長変換効率の向上をより好適に図ることができることから、光散乱性粒子は、2種以上の材料からなるものであってもよい。
光波長変換組成物の全固形分質量に対する光散乱性粒子の含有量は、1質量%以上50質量%以下であることが好ましく、3質量%以上30質量%以下であることがより好ましい。光散乱性粒子の含有量が1質量%未満であると、光散乱効果が充分に得られないおそれがあり、また、光散乱性粒子の含有量が50質量%を超えると、ミー散乱が起こり難くなるので、光散乱効果を充分に得られないおそれがあり、さらに光散乱性粒子が多すぎるために加工性が低下するおそれがある。
<<添加剤>>
添加剤としては、特に限定されないが、量子ドットの酸化や劣化を抑制する化合物が好ましい。量子ドットの酸化や劣化を抑制する化合物としては、フェノール系化合物、アミン系化合物、硫黄系化合物、カルボシキシ基含有化合物、ヒドラジン系化合物、アミド系化合物、およびヒンダードアミン系化合物等が挙げられる。添加剤は、電離放射線重合性官能基や熱重合性官能基等の重合性官能基を有していてもよい。
<<溶剤>>
溶剤としては、特に限定されないが、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール等のアルコ−ル類;メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、シクロヘキサン等が挙げられる。
<<<光波長変換部材および光波長変換シート>>>
図1に示される光波長変換シート10は、入射する光のうち一部の光の波長を他の波長に変換し、入射した光の他の一部および波長変換された光を出射させるシートである。図1に示される光波長変換シート10は、層状の光波長変換部材11と、光波長変換部材11の両面に設けられた光透過性基材12、13と、光透過性基材12、13における光波長変換部材11側の面とは反対側に設けられた光拡散層14、15とを備えている。光波長変換シート10においては、光拡散層14、15の表面が光波長変換シート10の表面10A、10Bを構成している。光波長変換シート10は、光透過性基材12、13を備えているが、バリア層を備えていないので、光透過性基材およびバリア層からなるバリア部材を備えていない。なお、光波長変換シート10は、光拡散層14/光透過性基材12/光波長変換部材11/光透過性基材13/光拡散層15の構造となっているが、光波長変換部材を有していれば、光波長変換シートの構造は特に限定されない。
光波長変換シート10においては、図2に示されるように、光波長変換シート10の表面10Aから光を入射させた場合には、光波長変換部材11中の量子ドット17に入射した光L1は光L1とは異なる波長の光L2に変換されて、表面10Bから出射する。一方、表面10Aから光を入射させた場合であっても、光波長変換部材11中の量子ドット17間を通過する光L1は波長変換されずに、表面10Bから出射する。
光波長変換シート10においては、シート全体で、40℃、相対湿度90%での水蒸気透過率(WVTR:Water Vapor Transmission Rate)が0.1g/(m・24h)以上となっていてもよい。水蒸気透過率はJIS K7129:2008に準拠した手法で得られる数値である。水蒸気透過率は、水蒸気透過率測定装置(製品名「PERMATRAN−W3/31」、MOCON社製)を用いて測定することができる。従来の光波長変換シートはバリア部材が形成されているので、光波長変換シート10は、従来の光波長変換シートに比べて水蒸気透過率が高くなっている、すなわち、光波長変換シート10は、従来の光波長変換シートに比べて水分が透過しやすい。後述するように、光波長変換シートが、光波長変換部材の他、光学部材を備えている場合には、水蒸気透過率は光学部材を含めた光波長変換シート全体での水蒸気透過率である。
光波長変換シート10においては、シート全体で、23℃、相対湿度90%での酸素透過率(OTR: Oxygen Transmission Rate)が0.1cm/(m・24h・atm)以上となっていてもよい。酸素透過率はJIS K7126:2006に準拠した手法で得られる数値である。酸素透過率は、酸素ガス透過率測定装置(製品名「OX−TRAN 2/21」、MOCON社製)を用いて測定することができる。従来の光波長変換シートはバリア部材が形成されているので、光波長変換シート10は、従来の光波長変換シートに比べて酸素透過率が高くなっている、すなわち、光波長変換シート10は、従来の光波長変換シートに比べて水分のみならず酸素が透過しやすい。上記と同様に、光波長変換シートが、光波長変換部材の他、光学部材を備えている場合には、酸素透過率は光学部材を含めた光波長変換シート全体での酸素透過率である。
光波長変換シート10における40℃、相対湿度90%での水蒸気透過率は1g/(m・24h)以上となっていてもよく、また光波長変換シート10における23℃、相対湿度90%での酸素透過率が1cm/(m・24h・atm)以上となっていてもよい。
光波長変換シート10における内部ヘイズ値は50%以上となっていることが好ましい。内部ヘイズは、光波長変換シートの内部に起因するヘイズ値であり、光波長変換シートにおける表面の凹凸形状を加味しないものである。光波長変換シート10の内部ヘイズ値が50%以上であることにより、内部ヘイズによって光を充分に拡散させて、量子ドットを複数回励起させることができ、また、外部ヘイズ値をより小さくすることができる。光波長変換シート10における内部ヘイズ値は60%以上であることが好ましく、80%以上であることがより好ましい。
光波長変換シート10における外部ヘイズ値は10%以下(0%を含む)であることが好ましく、5%以下であることがより好ましい。外部ヘイズ値は、光波長変換シートにおける表面の凹凸形状のみに起因するものである。光波長変換シート10の外部ヘイズ値が10%以下であることにより、レンズシート等の再帰反射性シートで再帰反射が生じやすくなる。
光波長変換シート10においては、光波長変換シート10の外部ヘイズ値は光波長変換シート10の内部ヘイズ値よりも小さくなっていることが好ましい。すなわち、光波長変換シート10は、下記式の関係を満たしていることが好ましい。
内部ヘイズ値>外部ヘイズ値
内部ヘイズ値および外部ヘイズ値は、ヘイズメーター(製品名「HM−150」、村上色彩技術研究所製)を用いて、求めることができる。具体的には、まず、ヘイズメーターを用いて、JIS K7136:2000に従って光波長変換シートの全ヘイズ値を測定する。その後、光波長変換シートの両面に、膜厚が25μmの透明光学粘着層(製品名「パナクリーンPD−S1」、パナック社製)を介して厚みが60μmのトリアセチルセルロース基材(製品名「TD60UL」、富士フイルム社製)を貼り付ける。これによって、光波長変換シートの表面の凹凸形状が潰れ、光波長変換シートの表面が平坦化される。そして、この状態で、ヘイズメーター(製品名「HM−150」、村上色彩技術研究所製)を用いて、JIS K7136:2000に従ってヘイズ値を測定することで内部ヘイズ値を求める。また、外部ヘイズ値は、全ヘイズから内部ヘイズを差し引くことによって求められる。本明細書における「外部ヘイズ値」は、光波長変換シート全体の外部ヘイズ値を意味する。すなわち、本明細書における外部ヘイズ値は、光波長変換シートの一方の表面における外部ヘイズ値と光波長変換シートの他方の表面における外部ヘイズ値の合計を意味する。
内部ヘイズ値と外部ヘイズ値は関係性がある。具体的には、内部ヘイズ値が大きくなると、同一の表面凹凸を有する場合でも外部ヘイズが小さくなる傾向がある。これは、以下の理由からであると考えられる。JIS K7136:2000には、ヘイズは、試験片を通過する透過光のうち、前方散乱によって、入射光から0.044rad(2.5°)以上それた透過光の百分率であることが規定されている。すなわち、ヘイズの定義においては入射光に対し2.5°以上それた透過光はヘイズとして測定されるが、入射光に対し2.5°未満の透過光であればヘイズとして測定されない。一方で、内部ヘイズが大きい光波長変換シートにおいては、内部ヘイズがそれよりも小さい光波長変換シートに比べて、光はシート内部でより散乱されるので、シート表面に到達する入射光に対して2.5°未満の透過光は少なくなる。このため、内部ヘイズが大きい光波長変換シートと内部ヘイズがそれよりも小さい光波長変換シートが同一の表面凹凸を有する場合、内部ヘイズが大きい光波長変換シートの方が、内部ヘイズがそれよりも小さい光波長変換シートに比べて、表面凹凸による影響が少なくなる。したがって、シート表面に存在する表面凹凸の影響のみを考えた場合、内部ヘイズが大きい光波長変換シートと内部ヘイズがそれよりも小さい光波長変換シートが同じ表面凹凸を有していたとしても、内部ヘイズが大きい光波長変換シートの方が、内部ヘイズがそれよりも小さい光波長変換シートに比べて、表面凹凸から出射する入射光に対して2.5°未満の透過光のみならず、表面凹凸から出射する入射光に対して2.5°以上それた透過光も、少なくなる。よって、内部ヘイズ値が大きくなると、同一の表面凹凸を有する場合でも外部ヘイズが小さくなると考えられる。
光波長変換シート10において、光波長変換シート10の外部ヘイズ値を光波長変換シート10より小さくするためには、例えば、光波長変換シート10の内部に光散乱性粒子を添加することが挙げられる。光波長変換シートがバリア部材および/または光拡散層を備えている場合には、光散乱性粒子は、光波長変換部材11の他、バリア部材中にも添加されてもよく、また光拡散層中にも添加されてもよい。光散乱性粒子が添加された層が最外層である場合には、外部ヘイズを伴うことがあるため、最外層の表面凹凸を制御することにより上記の内部ヘイズと外部ヘイズの関係性を満たすことができる。
光波長変換シート10における内部ヘイズ値に対する外部ヘイズ値の割合(外部ヘイズ値/内部ヘイズ値)は、0以上0.1以下であることが好ましく、0以上0.05以下であることがより好ましい。この割合がこの範囲内にあれば、内部ヘイズによって光を充分に拡散させて、量子ドットを複数回励起させることができる。
光波長変換シート10の表面10A、10Bの算術平均粗さ(Ra)は、それぞれ0.1μm以上であることが好ましく、0.5μm以上であることがより好ましい。光波長変換シート10の表面10A、10BのRaが0.1μmであることが好ましいとしたのは、以下の理由からである。光波長変換シートはバックライト装置内では後述する光学板やレンズシートと接触するが、光波長変換シートと光学板やレンズシートとが貼り付いてしまうと、光波長変換シートと光学板との間の界面や光波長変換シートとレンズシートとの間の界面にウエットアウトと呼ばれる水で濡らしたようなパターンが形成されてしまうおそれがあるので、光波長変換シート10と光学板やレンズシートとの貼り付きを防止するために、Raは、0.1μm以上であることがより好ましい。
上記「Ra」の定義は、JIS B0601:1994に従うものとする。Raは、例えば、表面粗さ測定器(製品名「SE−3400」、小坂研究所社製)を用いて測定することができる。
青色光を発する光源を用い、青色光を緑色光に変換する量子ドットおよび青色光を赤色光に変換する量子ドットの両方を含む光波長変換シート10に照射したとき、光波長変換シートにおける透過光のうち青色光の光強度のピーク値に対する緑色光の光強度のピーク値の割合(緑色光の光強度のピーク値/青色光の光強度のピーク値)は、0.3以上2.0以下であることが好ましく、0.5以上1.5以下であることがより好ましい。
また光波長変換シート10における透過光のうち青色光の光強度のピーク値に対する赤色光の光強度のピーク値の割合(赤色光の光強度のピーク値/青色光の光強度のピーク値)は、0.3以上2.0以下であることが好ましく、0.5以上1.5以下であることがより好ましい。
本明細書における「青色光」とは、380nm以上480nm未満の波長域を有する光であり、「緑色光」とは、480nm以上590nm未満の波長域を有する光であり、「赤色光」とは、590nm以上750nm以下の波長域を有する光である。また、上記各光の光強度は、分光放射輝度計(例えば、製品名「CS2000」、コニカミノルタ社製)を用いて測定することができる。
光波長変換シート10の厚みは、10μm以上500μm以下となっていることが好ましい。光波長変換シート10の平均厚みがこの範囲であれば、バックライト装置の軽量化および薄膜化に適している。
光波長変換シート10の厚みは、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)又は走査透過型電子顕微鏡(STEM)を用いて、光波長変換シート10の断面を撮影し、その断面の画像において光波長変換シート10の厚みを20箇所測定し、その20箇所の厚みの平均値とする。これらの中でも、光波長変換シート10の膜厚がμmオーダーであることを考慮すると、SEMを用いることが好ましい。SEMの場合、加速電圧は30kV、倍率は1000〜7000倍とすることが好ましく、TEM又はSTEMの場合、加速電圧は30kV、倍率は5万〜30万倍とすることが好ましい。
<<光波長変換部材>>
光波長変換部材は、光波長変換組成物の硬化物であるが、この場合の光波長変換組成物は量子ドットおよびリン系化合物の他、重合性化合物を含むものである。本実施形態の光波長変換部材11は層状となっているが、光波長変換部材の形状は層状でなくともよい。すなわち、光波長変換部材を用いる箇所等によって、適宜、光波長変換部材の形状を変えることができる。
光波長変換部材11は、上記光波長変換組成物の硬化物であるので、量子ドット17と、リン系化合物と、重合性化合物の硬化物であるバインダ樹脂16とを含んでいる。
図1に示される量子ドット17は、第1の量子ドット17Aと、第1の量子ドット17Aとは異なる波長域の発光帯を有する第2の量子ドット17Bとを含んでいる。また、図1に示される光波長変換部材11はさらに光散乱性粒子18を含んでいる。光散乱性粒子18を含むことにより、光波長変換効率および内部ヘイズを高めることができる。なお、光波長変換部材11に含まれる量子ドット17、リン系化合物、光散乱性粒子18は、上記で説明した量子ドット、リン系化合物、光散乱性粒子と同様であるので、ここでは説明を省略するものとする。
光波長変換部材11においては、蛍光X線分析により測定される光波長変換部材11中のリン元素の含有量が0.05質量%以上となっている。リン元素の含有量が0.05質量%未満であると、耐熱性試験時に、量子ドットの劣化を抑制できないおそれがある。光波長変換部材中のリン元素の含有量の測定は、蛍光X線分析装置(製品名「EDX−800HS」、島津製作所製)を用いることにより行うことができる。光波長変換部材11中のリン元素の含有量の下限は、0.3質量%以上であることがより好ましく、またリン元素の含有量の上限は、2質量%を超えると、光透過性基材との密着性が低下するおそれがあり、また量子ドットが腐食してしまうそれもあるため2質量%以下であることが好ましい。
リン元素は、量子ドットの周囲およびバインダ樹脂16中に存在しているが、量子ドットのリガンドとしてリン系化合物が含まれている場合があり、この場合には、光波長変換部材の量子ドット非含有領域において電子顕微鏡付属のエネルギー分散型X線分光分析装置(EDX)による元素分析を行うことによって、バインダ樹脂中のリン元素の有無を把握することができる。
光波長変換部材11においては、光波長変換部材11中の上記ホスファイト系化合物および/またはホスフィン系化合物の含有量(光波長変換部材がホスファイト系化合物およびホスフィン系化合物の両方を含んでいる場合にはその合計量)が0.5質量%以上30質量%以下となっていることが好ましい。上記ホスファイト系化合物および/またはホスフィン系化合物の含有量が0.5質量%未満であると、耐熱性試験時に、量子ドットの劣化を抑制できないおそれがあり、また30質量%を越えると、光透過性基材との密着性が低下するおそれがある。光波長変換部材11中のホスファイト系化合物および/またはホスフィン系化合物の含有量は、上記光波長変換組成物中のホスファイト系化合物および/またはホスフィン系化合物の含有量の測定方法と同様の手法によって測定することができる。光波長変換部材11中のホスファイト系化合物および/またはホスフィン系化合物の含有量の下限は、5質量%以上であることがより好ましく、ホスファイト系化合物および/またはホスフィン系化合物の含有量の上限は20質量%以下であることがより好ましい。
光波長変換部材11の膜厚は、10μm以上200μm以下となっていることが好ましい。この光波長変換部材11の平均厚みがこの範囲であれば、バックライト装置の軽量化および薄膜化に適している。光波長変換部材11の膜厚は、走査型電子顕微鏡(SEM)を用いて、光波長変換部材11の断面を撮影し、その断面の画像において光波長変換部材11の膜厚を20箇所測定し、その20箇所の膜厚の平均値とする。光波長変換部材11の平均膜厚の上限は170μm未満であることがより好ましい。
<バインダ樹脂>
バインダ樹脂16は、上記重合性化合物の硬化物であるので、ここでは省略する。
<光散乱性粒子>
光散乱性粒子18は、光波長変換組成物に含まれる光散乱性粒子と同様であるので、下記以外は説明を省略する。光散乱性粒子18とバインダ樹脂16との屈折率差の絶対値は、充分な光散乱を得る観点から、0.05以上であることが好ましく、0.10以上であることがより好ましい。なお、光散乱性粒子18の屈折率とバインダ樹脂16の屈折率とは、いずれの方が大きくてもよい。ここで、光波長変換部材に含有させる前の光散乱性粒子の屈折率の測定方法としては、例えば、ベッケ法、最小偏角法、偏角解析、モード・ライン法、エリプソメトリ法等によって測定することができる。光波長変換部材中のバインダ樹脂、光散乱性粒子の屈折率の測定方法としては、例えば、硬化作製した光波長変換部材中から光散乱性粒子のかけら、あるいはホストマトリクスのかけらをなんらかの形で取り出したものについてベッケ法を用いることができる。このほか、位相シフトレーザー干渉顕微鏡(エフケー光学研究所製の位相シフトレーザー干渉顕微鏡や溝尻光学工業所製の二光束干渉顕微鏡等)を用いてバインダ樹脂と光散乱性粒子との屈折率差を測定することができる。
<<光透過性基材>>
光透過性基材12、13の厚みは、特に限定されないが、10μm以上300μm以下であることが好ましい。光透過性基材12、13の厚みが、10μm未満であると、光波長変換シートのアッセンブリ、取扱い時における皺や折れが発生するおそれがあり、また300μmを超えると、ディスプレイの軽量化および薄膜化に適さないおそれがある。光透過性基材12、13の厚みのより好ましい下限は50μm以上、より好ましい上限は200μm以下である。
光透過性基材12、13の厚みは、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)又は走査透過型電子顕微鏡(STEM)を用いて、光透過性基材12、13の断面を撮影し、その断面の画像において光透過性基材12、13の厚みを20箇所測定し、その20箇所の膜厚の平均値とする。
光透過性基材12、13の構成原料としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、又は、ポリウレタン等の熱可塑性樹脂が挙げられる。光透過性基材12、13の構成材料としては、好ましくは、ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)が挙げられる。
光透過性基材12、13は、単一の基材から構成されていてもよいが、複数の基材から構成される積層基材であってもよい。このような積層基材は、用途に応じて、同種の構成原料の層からなる複数の層から構成されていてもよく、異なる種類の構成原料の層からなる複数の層から構成されていてもよい。
<<光拡散層>>
光拡散層14、15は、表面に凹凸形状を有しており、この凹凸形状によって光波長変換シート10に入射する光および出射する光を拡散させることができる。光拡散層14、15を設けることにより、光波長変換シート10における光波長変換効率をより高めることができる。光拡散層14、15は、光散乱性粒子とバインダ樹脂とを含んでいる。
<光散乱性粒子>
光拡散層14、15中の光散乱性粒子は、主に、光拡散層14、15の表面に凹凸形状を形成するとともに光散乱性機能を発揮するためのものである。
光拡散層14、15中の光散乱性粒子の平均粒子径は、上述した量子ドット17の平均粒子径の10倍以上2000倍以下であることが好ましく、10〜5000倍であることがより好ましい。光散乱性粒子の平均粒子径が量子ドットの平均粒子径の10倍未満であると、光拡散層に充分な光拡散性が得られないことがあり、また光散乱性粒子の平均粒子径が量子ドットの平均粒子径の2000倍を超えると、光拡散層の光拡散性能は優れたものとなるが、光拡散層の光の透過率が大幅にダウンしやすくなる。なお、光散乱性粒子の平均粒子径は、上述した量子ドットの平均粒子径と同様の方法で測定することができる。
具体的には、光拡散層14、15中の光散乱性粒子の平均粒子径は、例えば、1μm以上30μm以下であることが好ましく、1μm以上20μm以下であることがより好ましい。光散乱性粒子の平均粒子径が1μm未満であると、光波長変換シートの光波長変換効率が不充分となることがあり、充分な光拡散性を出すためには光散乱性粒子の添加量を多くする必要がある。一方、光散乱性粒子の平均粒子径が30μmを超えると、光拡散性能は優れたものとなるが、光拡散層の光の透過率が大幅にダウンしやすくなる。
光拡散層14、15中の光散乱性粒子とバインダ樹脂との屈折率差の絶対値は、0.02以上0.15以下であることが好ましい。0.02未満であると、光学的に光散乱性粒子の持つ屈折率による光拡散性が得られず、光波長変換シートの光波長変換効率の向上が不充分となることがあり、0.15を超えると、光拡散層の透過率が低下してしまうことがある。光散乱性粒子とバインダ樹脂との屈折率差のより好ましい下限は0.03以上、より好ましい上限は0.12以下である。なお、光散乱性粒子の屈折率とバインダ樹脂の屈折率とは、いずれの方が大きくてもよい。光散乱性粒子およびバインダ樹脂の屈折率は、光散乱性粒子18およびバインダ樹脂の屈折率と同様の手法によって測定することができる。
光拡散層14、15中の光散乱性粒子の形状は光波長変換部材11中の光散乱性粒子18の形状と同様であるので、ここでは説明を省略するものとする。光拡散層14、15中の光散乱性粒子は、光散乱性粒子をバインダ樹脂中に強固に固定する観点から、バインダ樹脂と化学結合していることが好ましい。この化学結合は、シランカップリング剤で表面修飾された光散乱性粒子を用いることによって実現できる。シランカップリング剤は、光波長変換部材中の光散乱性粒子の欄で説明したシランカップリング剤と同様であるので、ここでは説明を省略するものとする。
光散乱性粒子は、有機材料からなる粒子または無機材料からなる粒子であってもよい。光散乱性粒子を構成する有機材料としては特に限定されず、例えば、ポリエステル、ポリスチレン、メラミン樹脂、(メタ)アクリル樹脂、アクリル−スチレン共重合体樹脂、シリコーン樹脂、ベンゾグアナミン樹脂、ベンゾグアナミン・ホルムアルデヒド縮合樹脂、ポリカーボネート、ポリエチレン、ポリオレフィン等が挙げられる。なかでも、架橋アクリル樹脂が好適に用いられる。また、上記光拡散粒子を構成する無機材料としては特に限定されず、例えば、シリカ、アルミナ、チタニア、酸化スズ、アンチモンドープ酸化スズ(ATO)、酸化亜鉛微粒子等の無機酸化物等が挙げられる。なかでも、シリカ及び/又はアルミナが好適に用いられる。
<バインダ樹脂>
バインダ樹脂としては、重合性化合物の硬化物を用いることができる。重合性化合物としては、光波長変換組成物に含まれる重合性化合物と同様のものを用いることができるので、ここでは説明を省略するものとする。
<<他の光波長変換シート>>
光波長変換シートは、図3に示されるように、光波長変換部材11のみ(単層構造)の光波長変換シート20であってもよい。また、光波長変換シートは、図4に示されるように、光波長変換部材11と、光波長変換部材11を支持する光透過性基材31とを備える光波長変換シート30であってもよい。光透過性基材31を備えることにより、光波長変換シート20より光波長変換シートの強度を高めることができる。
<光透過性基材>
光波長変換シート30の光透過性基材31としては、光透過性基材12、13と同様のものを用いることができるので、ここでは説明を省略するものとする。
<<他の光波長変換シート>>
光波長変換シートは、図5および図6に示されるように、光波長変換部材11と、光波長変換部材11の少なくとも一方の面側に配置され、かつ光波長変換部材11と一体化された光学部材41とを備える光波長変換シート40であってもよい。
<光学部材>
本明細書において、「光学部材」とは、光学的特性(例えば、偏光性、光屈折性、光散乱性、光反射性、光透過性、光吸収性、光回折性、旋光性など)を有する部材を意味し、光学的特性を有するシート(フィルム)状ないし板状の部材であれば、特に限定されない。光学部材としては、レンズシート、導光板および光拡散板等の光学板、ならびに反射型偏光分離シート、偏光板等が挙げられる。なお、光学部材シートが、光波長変換シートの両面側に設けられている場合には、光学部材はそれぞれ別の光学的特性を有する光学部材であってもよい。本実施形態においては、光学部材がレンズシートである例について説明する。
光学部材41は、図5および図6に示されるように、光透過性基材42と、光透過性基材42の一方の面に設けられたレンズ層43とを備えている。レンズ層43は、図5および図6に示されるように、シート状の本体部44、および本体部44の出光側に並べて配置された複数の単位レンズ45を備えている。光透過性基材42、レンズ層43、本体部44、および単位レンズ45は、後述する光透過性基材101、レンズ層102、本体部103、および単位レンズ104と同様の構成となっているので、ここでは説明を省略するものとする。
光波長変換シート40においては、光学部材41の一方の面に光波長変換組成物を直接塗布、硬化させることによって光波長変換部材11と光学部材41とが一体化されている。なお、光波長変換部材11と光学部材41は接着層を介して貼り合わせられていてもよい。
<<他の光波長変換シート>>
光波長変換シートは、図7に示されるように、光波長変換部材11と、光波長変換部材11の両面を覆うオーバーコート層51、52とを備える光波長変換シート50であってもよい。本実施形態においては、光波長変換層11の両面にオーバーコート層51、52が形成されているが、オーバーコート層は光波長変換層の少なくとも一方の面に形成されていれば、光波長変換層11の両面に形成されていなくともよい。なお、光波長変換層の一方の面のみにオーバーコート層が設けられている場合、光波長変換層の他方の面には光透過性基材が設けられていてもよい。
<オーバーコート層>
オーバーコート層51、52は、光波長変換部材11の表面を覆い、かつ塗工によって形成された樹脂からなる層である。オーバーコート層は、例えば、電離放射線や熱によって重合する重合性化合物を含む組成物の硬化物から構成することが可能である。また、オーバーコート層51、52上に光拡散層等の他の層が形成されていてもよい。
オーバーコート層51、52は、光波長変換部材11が直接大気に暴露されるのを防ぐために設けられているものである。このようなオーバーコート層51、52を光波長変換部材11の少なくとも一方の面に設けることにより、量子ドット17を水分や酸素から保護することができ、また光透過性基材を光波長変換層11の少なくとも一方の面に設けるよりも、光波長変換シートの厚みを薄くできる。
オーバーコート層51、52が、光波長変換部材11が直接大気に暴露されるのを防ぐ機能以外に、何らかの機能を有していてもよい。具体的には、オーバーコート層51、52は、水分や酸素の透過を抑制する機能の他、例えば、アンチブロッキング性、光拡散性、帯電防止性、および反射防止性等の少なくともいずれかの機能を有する層であってもよい。オーバーコート層51、52が、光波長変換部材11が直接大気に暴露されるのを防ぐ機能およびその他何らかの機能を有する層である場合、オーバーコート層51、52には、何らかの機能を有するための材料が添加されていてもよい。
オーバーコート層51、52の膜厚は、光波長変換部材11が直接大気に暴露されるのを防ぐとともに、光波長変換シートを薄型化する観点から、0.1μm以上100μm以下となっていることが好ましい。オーバーコート層51、52の膜厚は、光透過性基材12、13の厚みと同様の手法によって測定することができる。オーバーコート層51、52の膜厚の下限は1μm以上であることがより好ましく、上限は50μm以下であることがより好ましい。
オーバーコート層51、52は、スクラッチ試験において垂直力10μN以上および/または水平力−5μN以下となる硬度を有することが好ましい。オーバーコート層51、52がこのような硬度を有している場合には、オーバーコート層51、52は緻密な膜となるので、光波長変換部材11を大気暴露から防ぐ能力が高い。スクラッチ試験における垂直力および水平力は、ナノインデンテーション装置(製品名「TI950 TriboIndenter」、HYSITRON(ハイジトロン)社製)を用いて、オーバーコート層の断面からオーバーコート層の内部方向に圧子(Cube Corner:Ti037_110410(12))を50nm押し込み、その深さを一定として、30秒間この圧子を移動速度4μm/minで水平方向に移動させた際に測定される垂直力(荷重)および水平力の平均値をそれぞれ求め、さらにこのスクラッチ試験を5回繰り返すことによって求めた垂直力の5つの平均値の平均値(5回平均値)および水平力の5つの平均値の平均値(5回平均値)とする。垂直力は数値が大きいほど、水平力は数値が小さいほどオーバーコート層51、52の硬度が高い。光波長変換部材11を大気暴露から防ぐ能力を高める観点から、オーバーコート層51、52のスクラッチ試験における垂直力は15μN以上であることがより好ましく、また水平力は−8μN以下であることがより好ましい。
オーバーコート層51、52は、上記硬度を有すれば、特に限定されないが、例えば、(メタ)アクリレート系化合物、エポキシ化合物、イソシアネートおよびポリオールの組み合わせ、金属アルコキシド、ケイ素含有樹脂、水溶性高分子、またはこれらの混合物を含むオーバーコート層用組成物を用いて形成することが可能である。これらの中でも、オーバーコート層51、52は、光波長変換部材11が直接大気に暴露されるのを防ぐ観点から、アクリル酸亜鉛、アルコキシシランの加水分解生成物、ポリビニルアルコール、ポリシラザン、またはこれらの混合物を含むオーバーコート層用組成物を用いて形成されることが好ましい。
光波長変換シート20、30、40、50においては、シート全体で、40℃、相対湿度90%での水蒸気透過率が0.1g/(m・24h)以上となっていてもよい。光波長変換シート20、30、40、50においては、シート全体で、23℃、相対湿度90%での酸素透過率が0.1cm/(m・24h・atm)以上となっていてもよい。光波長変換シート20、30、40、50における40℃、相対湿度90%での水蒸気透過率は1g/(m・24h)以上となっていてもよく、また光波長変換シート20、30、40、50における23℃、相対湿度90%での酸素透過率が1cm/(m・24h・atm)以上となっていてもよい。
<<他の光波長変換シート>>
光波長変換シートは、図8に示されるような光波長変換シート60であってもよい。この場合、光波長変換シート60の水蒸気透過率や酸素透過率は、上述した範囲内になくてよい。
図8に示される光波長変換シート60は、光波長変換部材11と、光波長変換部材11の両面に設けられたバリア部材61、62と、バリア部材61、62における光波長変換部材11側の面とは反対側に設けられた光拡散層13、14とを備えている。光波長変換シート60においては、光拡散層13、14の表面が光波長変換シート60の表面60A、60Bを構成している。
<バリア部材>
バリア部材61、62は、水分や酸素の透過を抑制して、量子ドット17を水分や酸素から保護するための部材である。ここで、本明細書における「バリア部材」とは、部材単体で、40℃、相対湿度90%での水蒸気透過率が0.1g/(m・24h)未満となり、かつ23℃、相対湿度90%での酸素透過率が0.1cm/(m・24h・atm)未満となる部材を意味するものとする。バリア部材には、単層構造のフィルムのみならず、多層構造のフィルムも含まれる。光波長変換部材11を挟持する状態でバリア部材61、62を設置することで、より量子ドット17の耐久性を向上させることができる。図8に示されるバリア部材61、62は、光透過性基材12、13と、光透過性基材12、13における光波長変換部材11側に設けられ、かつ水分や酸素の透過を抑制する機能を有するバリア層63、64とを備えている。
バリア部材61、62の水蒸気透過率(WVTR:Water Vapor Transmission Rate)は、40℃、相対湿度90%の条件下において、1.0×10−2g/(m・24h)以下であることが更に好ましい。なお、上記水蒸気透過率は、水蒸気透過率測定装置(製品名「PERMATRAN−W3/31」、MOCON社製)を用いて測定することができる。
バリア部材61、62の酸素透過率(OTR: Oxygen Transmission Rate)は、23℃、相対湿度90%の条件下において、1.0×10−2cm/(m・24h・atm)以下であることが更に好ましい。なお、上記酸素透過率は、酸素ガス透過率測定装置(製品名「OX−TRAN 2/21」、MOCON社製)を用いて測定することができる。
(バリア層)
バリア層63、64は、水分や酸素の透過を抑制する機能を有する蒸着層から構成されている。蒸着層は、例えば、スパッタリング法、イオンプレーティング法等の物理気相成長(PVD)法や化学気相成長(CVD)法等の蒸着法で形成された層である。蒸着層は、バリア性を高めることができるという利点を有する。
蒸着層の形成材料としては、蒸着法によって蒸着でき、かつバリア性が得られるものであれば特に限定されないが、例えば、酸化ケイ素や酸化アルミニウム等の無機酸化物や金属等が挙げられる。
蒸着層の膜厚は、特に限定されないが、0.01μm以上1μm以下であることが好ましい。蒸着層の膜厚が0.01μm未満であると、蒸着層のバリア性能が不充分となることがあり、また1μmを超えると、蒸着層のクラック等によりバリア性能の劣化が起こりやすくなることがある。蒸着層の厚みのより好ましい下限は0.03μm以上であり、より好ましい上限は0.5μm以下である。
蒸着層の膜厚は、走査型電子顕微鏡(SEM)を用いて、光波長変換シート60の断面を撮影し、その断面の画像において蒸着膜の膜厚を20箇所測定し、その20箇所の膜厚の平均値とする。また、蒸着層は、単一の層であってもよく、複数の層が積層されたものであってもよい。蒸着層が複数層積層されたものである場合、蒸着層を構成する各層は、直接積層形成されていてもよく、貼り合わされていてもよい。
<<<光波長変換シートの製造方法>>>
光波長変換シート10は、例えば、以下のようにして作製することができる。まず、図示しないが、光透過性基材12の一方の面に、光散乱性粒子および重合性化合物を含む光拡散層用組成物を塗布し、乾燥させて、光拡散層用組成物の塗膜を形成する。また、同様に、光透過性基材13の一方の面に、光拡散層用組成物の塗膜を形成する。
次いで、光照射等によって、光拡散層用組成物の塗膜を硬化させる。これにより、図9(A)に示されるように、光透過性基材12の一方の面に光拡散層14が形成されて、光拡散層14付き光透過性基材12が形成される。また、図示しないが、同様にして、光拡散層15付き光透過性基材13を形成する。
光拡散層15付き光透過性基材13を形成した後、図9(B)に示されるように、光拡散層15付き光透過性基材13における光拡散層15側の面とは反対側の面に、上記光波長変換組成物を塗布し、乾燥させて、光波長変換組成物の塗膜19を形成する。
光波長変換組成物の塗膜19形成後、図10(A)に示されるように光拡散層14付き光透過性基材12における光拡散層14側の面とは反対側の面が光波長変換組成物の塗膜19と接するように、光波長変換組成物の塗膜19上に光拡散層14付き光透過性基材12を配置する。これにより、光波長変換組成物の塗膜19が、光透過性基材12、13間で挟まれる。
次いで、図10(B)に示されるように光透過性基材12を介して光波長変換組成物の塗膜19に電離放射線を照射して、または熱を加えて、重合性化合物を硬化させて、光波長変換部材11を形成するとともに、光波長変換部材11と、光拡散層14付き光透過性基材12および光拡散層15付き光透過性基材13とを一体化させる。これにより、図1に示される光波長変換シート10が得られる。
光波長変換シート20、30、50は、例えば、以下のようにして作製することができる。まず、基材(図示せず)上に、量子ドット、リン系化合物、重合性化合物および重合開始剤を含む光波長変換組成物を塗布し、乾燥させて、光波長変換組成物の塗膜を形成する。そして、この塗膜に電離放射線を照射して、または熱を加えて、重合性化合物を硬化させることによって、光波長変換部材11を形成する。その後、光波長変換部材11から基材を剥離する。これにより、図3に示される光波長変換シート20が得られる。一方、基材として光透過性基材31を用いた場合には、この基材を光波長変換部材11から剥離せずに、そのまま残存させることにより、図4に示される光波長変換シート30が得られる。また、光波長変換シート20の両面にオーバーコート層用組成物を塗布し、乾燥させて、光波長変換組成物の塗膜を形成する。そして、この塗膜に電離放射線を照射して、または熱を加えて、重合性化合物を硬化させることによって、オーバーコート層51、52を形成する。これにより、図7に示される光波長変換シート50が得られる。
光波長変換シート40は、光学部材41の一方の面側に、上記光波長変換組成物を塗布し、乾燥させて、光波長変換組成物の塗膜を形成する。そして、この塗膜に電離放射線を照射して、または熱を加えて、重合性化合物を硬化させることによって、光波長変換部材11を形成する。これにより、図5に示される光波長変換シート40が得られる。
光波長変換シート60は、光拡散層14、15を、光透過性基材12、13と、光透過性基材12、13の一方の面に形成されたバリア層63、64とを備えるバリア部材61、62に形成すれば、後は光波長変換シート10と同様の工程によって形成することが可能である。
光波長変換シート10、20、30、40、50、60は、バックライト装置および画像表示装置に組み込んで使用することができる。以下、光波長変換シート10をバックライト装置および画像表示装置に組み込んだ例について説明する。図11は本実施形態に係るバックライト装置を含む画像表示装置の概略構成図であり、図12は図11に示されるレンズシートの斜視図であり、図13は図12のレンズシートのII−II線に沿った断面図である。図14、図15、図17は本実施形態に係る他のバックライト装置の概略構成図であり、図16は図15に示される光源の概略構成図であり、図18は図17に示される光学板の入光面付近の拡大図である。
<<<画像表示装置>>>
図11に示される画像表示装置70は、バックライト装置80と、バックライト装置80の出光側に配置された表示パネル120とを備えている。画像表示装置70は、画像を表示する表示面70Aを有している。図11に示される画像表示装置70においては、表示パネル120の表面が表示面70Aとなっている。
バックライト装置80は、表示パネル120を背面側から面状に照らすものである。表示パネル120は、バックライト装置80からの光の透過または遮断を画素毎に制御するシャッターとして機能し、表示面70Aに像を表示するように構成されている。
<<表示パネル>>
図11に示される表示パネル120は、液晶表示パネルであり、入光側に配置された偏光板101と、出光側に配置された偏光板122と、偏光板121と偏光板122との間に配置された液晶セル103とを備えている。偏光板121、122は、入射した光を直交する二つの直線偏光成分(S偏光およびP偏光)に分解し、一方の方向(透過軸と平行な方向)に振動する直線偏光成分(例えば、P偏光)を透過させ、前記一方の方向に直交する他方の方向(吸収軸と平行な方向)に振動する直線偏光成分(例えば、S偏光)を吸収する機能を有している。
液晶セル123には、一つの画素を形成する領域毎に、電圧の印加がなされ得るように構成されている。そして、電圧印加の有無によって液晶セル123中の液晶分子の配向方向が変化するようになる。一例として、入光側に配置された偏光板121を透過した特定方向の直線偏光成分は、電圧印加がなされた液晶セル123を通過する際にその偏光方向を90°回転させ、その一方で、電圧印加がなされていない液晶セル123を通過する際にその偏光方向を維持する。この場合、液晶セル123への電圧印加の有無によって、偏光板121を透過した特定方向に振動する直線偏光成分を偏光板122に対して透過させ、または偏光板122で吸収して遮断することができる。このようにして、表示パネル120では、バックライト装置80からの光の透過または遮断を画素毎に制御し得るように構成されている。なお、液晶表示パネルの詳細については、種々の公知文献(例えば、「フラットパネルディスプレイ大辞典(内田龍男、内池平樹監修)」2001年工業調査会発行)に記載されており、ここではこれ以上の詳細な説明を省略する。
<<バックライト装置>>
図11に示されるバックライト装置80は、エッジライト型のバックライト装置として構成され、光源90と、光源90の側方に配置された導光板としての光学板95と、光学板95の出光側に配置された光波長変換シート10と、光波長変換シート10の出光側に配置されたレンズシート100と、レンズシート100の出光側に配置されたレンズシート105と、レンズシート105の出光側に配置された反射型偏光分離シート110と、光学板95の出光側とは反対側に配置された反射シート115とを備えている。バックライト装置80は、光学板95、レンズシート100、105、反射型偏光分離シート110、反射シート115を備えているが、これらのシート等は備えられていなくともよい。本明細書において、「出光側」とは、各部材においてバックライト装置から出射する方向に向かう光が出射される側を意味する。
バックライト置80は、面状に光を発光する発光面80Aを有している。図11に示されるバックライト装置80においては、反射型偏光分離シート110の出光面がバックライト装置80の発光面80Aとなっている。
光波長変換シート10における光学板95側の面が表面10A(入光面)となっており、光波長変換シート10におけるレンズシート100側の面が表面10B(出光面)となっている。
<光源>
光源90は、例えば、線状の冷陰極管等の蛍光灯や、点状の発光ダイオード(LED)や白熱電球等の発光体を備えている。本実施の形態において、光源90は、光学板95の後述する入光面95C側に、線状に並べて配置された多数の点状発光体、具体的には、多数の発光ダイオード(LED)によって、構成されている。
バックライト装置80においては光波長変換シート10が配置されていることに伴い、光源90は、単一の波長域の光を放出する発光体のみを用いることができる。例えば、光源は、色純度の高い青色光を発する青色発光ダイオードのみを用いることができる。
<光学板>
導光板としての光学板95は、平面視形状が四角形形状に形成されている。光学板95は、表示パネル120側の一方の主面によって構成された出光面95Aと、出光面95Aに対向するもう一方の主面からなる裏面95Bと、出光面95Aおよび裏面95Bの間を延びる側面とを有している。側面のうちの光源90側の側面が、光源90からの光を受ける入光面75Cとなっている。入光面95Cから光学板95内に入射した光は、入光面95Cと、入光面95Cと対向する反対面とを結ぶ方向(導光方向)に光学板内を導光され、出光面95Aから出射される。
光学板95を構成する材料としては、画像表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料、例えば、アクリル樹脂、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリアクリロニトリル等の一以上を主成分とする透明樹脂や、エポキシアクリレートやウレタンアクリレート系の反応性樹脂(電離放射線硬化型樹脂等)が好適に使用され得る。なお、必要に応じて、光学板75中に光を拡散させる機能を有する光拡散材を添加することもできる。光拡散材としては、例えば、平均粒子径が0.5μm以上100μm以下のシリカ(二酸化珪素)、アルミナ(酸化アルミニウム)、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂等の透明物質からなる粒子を用いることができる。
<<レンズシート>>
レンズシート100、105は、入射した光の進行方向を変化させて出光側から出射させる機能を有する。本実施形態においては、図13に示されるように、入射角度が大きい光L3の進行方向を変化させて出光側から出射させて、正面方向の輝度を集中的に向上させる機能(集光機能)とともに、入射角度が小さい光L4を反射させて、光波長変換シート10側に戻す機能(再帰反射機能)を有している。レンズシート100、105は、光透過性基材101と、光透過性基材101の一方の面に設けられたレンズ層102とを備えている。
光波長変換シート10の表面10A、10Bが凹凸面となっている場合には、光学板95の出光面95Aは、表面10Aの一部(例えば、凸部)と光学的に密着し、また表面10Aの他の部分(例えば、凹部)と離間していることが好ましく、またレンズシート100の入光面100Aは、表面10Bの一部(例えば、凸部)と光学的に密着し、また表面10Bの他の部分(例えば、凹部)と離間していることが好ましい。この場合、出光面95Aと表面10Aの他の部分との隙間および入光面100Aと表面10Bの他の部分との隙間は空気層となっている。この空気層を設けることにより、出光面95Aと表面10Aおよび入光面100Aと表面10Bが光学的に密着するように光波長変換シート10と光学板95およびレンズシート100とを固定した場合であっても、光波長変換シート10と光学板95およびレンズシート100とが貼り付くことを抑制できるので、光波長変換シート10と光学板95との間の界面および光波長変換シート10とレンズシート100との間の界面にウエットアウトが形成されることを抑制できる。
<光透過性基材>
光透過性基材101は、光透過性基材12、13と同様のものであるので、ここでは説明を省略するものとする。
<レンズ層>
レンズ層102は、図12および図13に示されるように、シート状の本体部103、および本体部103の出光側に並べて配置された複数の単位レンズ104を備えている。
本体部103は、単位レンズ104を支持するシート状部材として機能する。図12および図13に示されるように、本体部103の出光側面103A上には、単位レンズ104が隙間をあけることなく並べられている。したがって、レンズシート100、105の出光面100B、105Bは、レンズ面によって形成されている。その一方で、図13に示すように、本体部103は、出光側面103Aに対向する入光側面103Bとして、レンズ層102の入光側面をなす平滑な面を有している。
単位レンズ104は、本体部103の出光側面103A上に並べて配列されている。図12に示されるように単位レンズ104は、単位レンズ104の配列方向ADと交差する方向に線状、とりわけ本実施の形態においては直線状に、延びている。また本実施の形態において、一つのレンズシート100、105に含まれる多数の単位レンズ104は、互いに平行に延びている。また、レンズシート100、105の単位レンズ104の長手方向LDは、レンズシート100、105における単位レンズ104の配列方向ADと直交している。
単位レンズ104は、三角柱状であってもよいし、波状や例えば半球状のような椀状であってもよい。具体的には、単位レンズとしては、単位プリズム、単位シリンドリカルレンズ、単位マイクロレンズ等が挙げられる。なお、そのような単位レンズ形状を有するレンズシートとしては、プリズムシート、レンチキュラーレンズシート、マイクロレンズシート等が挙げられる。本実施形態では、単位レンズとして、出光側に向けて幅が狭くなる三角柱状の単位プリズムについて説明する。レンズシート100、105のシート面の法線方向NDおよび単位レンズ104の配列方向ADの両方に平行な断面(レンズシートの主切断面とも呼ぶ)の形状は、出光側に突出する三角形形状となっている。とりわけ、正面方向輝度を集中的に向上させるという観点から、主切断面における単位レンズ104の断面形状は二等辺三角形形状であるとともに、等辺の間に位置する頂角が本体部103の出光側面103Aから出光側に突出するように、各単位レンズ104が構成されている。
単位レンズ104は、光の利用効率を向上させる観点から、80°以上100°以下の頂角を有することが好ましく、約90°の頂角を有することがより好ましい。ただし、光波長変換シートの巻き取りの際における単位レンズの先端の破損を考慮すると、単位レンズ104の先端は曲面であってもよい。
レンズシート100、105の寸法は、一例として、以下のように設定され得る。まず、単位レンズ104の具体例として、単位レンズ104の配列ピッチ(図示された例では、単位レンズ104の幅に相当)を10μm以上200μm以下とすることができる。ただし、昨今においては、単位レンズ104の配列の高精細化が急速に進んでおり、単位レンズ104の配列ピッチを10μm以上50μm以下とすることが好ましい。また、レンズシート100、105のシート面への法線方向NDに沿った本体部103からの単位レンズ104の突出高さを5μm以上100μm以下とすることができる。さらに、単位レンズ104の頂角θを60°以上120°以下とすることができる。
図11から理解され得るように、レンズシート100の単位レンズ104の配列方向とレンズシート105の単位レンズ104の配列方向とは交差、さらに限定的には直交している。
<反射型偏光分離シート>
反射型偏光分離シート110は、レンズシート105から出射される光のうち、第1の直線偏光成分(例えば、P偏光)のみを透過し、かつ第1の直線偏光成分と直交する第2の直線偏光成分(例えば、S偏光)を吸収せずに反射する機能を有する。反射型偏光分離シート110で反射された第2の直線偏光成分は再度反射され、偏光が解消された状態(第1の直線偏光成分と第2の直線偏光成分とを両方含んだ状態)で、再度、反射型偏光分離シート110に入射する。よって、反射型偏光分離シート110は再度入射する光のうち第1の直線偏光成分を透過し、第1の直線偏光成分と直交する第2の直線偏光成分は再度反射される。以下、同上の過程を繰り返す事により、レンズシート105から出光した光の70〜80%程度が第1の直線偏光成分となった光源光として出光される。したがって、反射型偏光分離シート110の第1の直線偏光成分(透過軸成分)の偏光方向と表示パネル120の偏光板121の透過軸方向とを一致させることにより、バックライト装置80からの出射光は全て表示パネル120で画像形成に利用可能となる。したがって、光源90から投入される光エネルギーが同じであっても、反射型偏光分離シート110を未配置の場合に比べて、より高輝度の画像形成が可能となり、又光源90のエネルギー利用効率も向上する。とりわけ、反射型偏光分離シート110で反射された光は、光波長変換シート10で波長変換が行われ得る。したがって、反射型偏光分離シート110を配置することによって、光波長変換シート10の波長変換効率がさらに上昇させることができる。したがって、更なる光の利用効率の改善を期待することができる。
反射型偏光分離シート110としては、3M社から入手可能な「DBEF」(登録商標)を用いることができる。また、「DBEF」以外にも、Shinwha Intertek社から入手可能な高輝度偏光シート「WRPS」やワイヤーグリッド偏光子等を、反射型偏光分離シート90として用いることができる。
<反射シート>
反射シート115は、光学板95の裏面95Bから漏れ出した光を反射して、再び光学板90内に入射させる機能を有する。反射シート115は、白色の散乱反射シート、金属等の高い反射率を有する材料からなるシート、高い反射率を有する材料からなる薄膜(例えば金属薄膜)を表面層として含んだシート等から、構成され得る。反射シート115での反射は、正反射(鏡面反射)でもよく、拡散反射でもよい。反射シート115での反射が拡散反射の場合には、当該拡散反射は、等方性拡散反射であってもよいし、異方性拡散反射であってもよい。
<<他のバックライト装置>>
光波長変換シート10を組み込むバックライト装置は、図14に示されるような直下型のバックライト装置であってもよい。図14に示されるバックライト装置130は、光源90と、光源90の光を受け、かつ光拡散板として機能する光学板131と、光学板131の出光側に配置された光波長変換シート10、光波長変換シート10の出光側に配置されたレンズシート100と、レンズシート100の出光側に配置されたレンズシート105と、レンズシート105の出光側に配置された反射型偏光分離シート110とを備えている。本実施形態においては、光源90は、光学板131の側方ではなく、光学板131の直下に配置されている。図14において、図11と同じ符号が付されている部材は、図8で示した部材と同じものであるので、説明を省略するものとする。なお、バックライト装置130においては、反射シート115は備えられていない。
<光学板>
光拡散板としての光学板131は、平面視形状が四角形形状に形成されている。光学板131は、光源95側の一方の主面によって構成された入光面131Aと、光波長変換シート10側の他方の主面によって構成された出光面131Bとを有している。入光面131Aから光学板131内に入射した光は、光学板131内で拡散され、出光面131Bから出射される。
光学板131としては、光源90からの光を拡散させることができれば、特に限定されないが、例えば、透明材料中に光拡散性粒子を分散させた板が挙げられる。透明材料としては、特に限定されないが、例えば透明樹脂、無機ガラス等が挙げられる。前記透明樹脂としては、成形が容易である点で、透明熱可塑性樹脂が好適に用いられる。この透明熱可塑性樹脂としては、特に限定されるものではないが、例えば、ポリスチレン樹脂、スチレン−メタクリル酸メチル共重合体樹脂、スチレン−メタクリル酸共重合体樹脂、スチレン−無水マレイン酸共重合体樹脂、メタクリル樹脂、アクリル樹脂、ポリカーボネート樹脂、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体樹脂)、AS樹脂(アクリロニトリル−スチレン共重合体樹脂)、ポリオレフィン樹脂(ポリエチレン樹脂、ポリプロピレン樹脂等)などが挙げられる。これらのうちの1種を用いても良いし、或いはこれらの2種以上を混合して用いても良い。
<光拡散性粒子>
光学板131中の光拡散性粒子としては、拡散板として一般的に用いられる光拡散性粒子が挙げられる。
<<他のバックライト装置>>
図11に示されるバックライト装置80は、光波長変換シート10を備えているが、光波長変換部材を備えていれば、バックライト装置の構造は、特に限定されない。例えば、バックライト装置は、図15に示されるように、光波長変換シート10および光源90の代わりに、光源150を備えるバックライト装置140であってもよい。光源150は、図16に示されるように、基板151と、基板151上に配置された開口部152Aを有する反射部材152と、基板151上かつ反射部材152の開口部152A内に配置された発光ダイオード等の発光体153と、発光体153を覆うように反射部材152の開口部152Aに充填された光波長変換部材154とを備えている。光波長変換部材154は、光波長変換部材11と形状および配置箇所が異なるだけで、光波長変換部材154の構成や物性は光波長変換部材11と同様であるので、ここでは説明を省略するものとする。光波長変換部材154は反射部材152の開口部152A内に上記光波長変換組成物を充填し、硬化させることによって形成することが可能である。なお、光波長変換部材154を有する光源150を用いる場合には、光波長変換部材154は発光体153を覆うように配置されていれば、構造は特に限定されない。
<<他のバックライト装置>>
バックライト装置は、図17に示されるバックライト装置160であってもよい。具体的には、図17に示されるバックライト装置160は、光波長変換シート10の代わりに、光源90と光学板95との間に配置された層状の光波長変換部材170を備えている。図17に示される光波長変換部材170は光学板95の入光面95Cに設けられている。光波長変換部材170は、光波長変換部材11と配置箇所が異なるだけで、光波長変換部材170の構成や物性は光波長変換部材11と同様であるので、ここでは説明を省略するものとする。光波長変換部材170は光学板95の入光面95Cに上記の光波長変換組成物を塗布し、硬化させることによって形成することが可能である。
量子ドットが耐熱性試験によって劣化しやすいのは、以下のことが原因であると考えられる。まず、量子ドットの表面には硫黄系化合物やリン系化合物等からなるリガンドが配位しているが、このリガンドは光や熱で脱離しやすい。リガンドが量子ドットから脱離すると、量子ドットに水分や酸素が付着しやすくなるので、量子ドットは、酸化され、劣化してしまう。これにより、量子ドットが耐熱性試験によって劣化してしまうものと考えられる。これに対し、本実施形態においては、蛍光X線分析により測定される光波長変換組成物中および光波長変換層11中のリン元素の含有量が0.05質量%以上となっているので、光波長変換組成物および光波長変換部材11の耐熱性を向上させることができる。これは、リガンドが量子ドットから脱離した場合であっても、光波長変換組成物中および光波長変換層11中に存在し、かつリガンドとは異なるリン系化合物がリガンドの役割を補助するような機能(例えば、リガンドの代わりに量子ドットに結合して、リガンドを代替する機能および/または酸素を捕捉する機能)を発揮するので、量子ドットの劣化が抑制されるためであると考えられる。
本実施形態によれば、光波長変換部材11中に存在するリン系化合物により量子ドット17の劣化を抑制できるので、光波長変換シート10、20、30、40、50、60において、耐熱性を向上させることができるとともに、バリア部材を省略できるとともに、バリア部材を用いた場合であっても点状の輝度欠点を抑制することができる。すなわち、光波長変換シート10、20、30、40、50においては、光波長変換部材11中に存在するリン系化合物により量子ドット17の劣化を抑制できるので、バリア部材を省略することができる。また、バリア部材61、62を備えている光波長変換シート60においては、光波長変換部材11中に存在するリン系化合物により量子ドット17の劣化を抑制できるので、たとえ、バリア部材61、62にピンホールやクラックが発生して、このピンホールやクラックから水分や酸素が入り込んだ場合であっても、点状の輝度欠点を抑制することができる。また、光波長変換部材11中に存在するリン系化合物により量子ドット17の劣化を抑制できるので、光波長変換シート10、20、30、40、50、60において、周縁部10C、20A、30A、40A、50A、60Cに存在する量子ドット17の劣化も抑制できる。
光波長変換シート10、20、30、40、50においては、光波長変換部材11中に存在するリン系化合物により量子ドット17の劣化を抑制できるので、バリア部材を設けていない。これにより、光波長変換シートの工程を簡素化できることにより品質を良化させやすくなるとともに、光波長変換シートの薄型化を図ることができる。
光波長変換シート40においては、光波長変換部材11と光学部材41が一体化されているので、光波長変換シートと光学部材とを別個独立に配置する場合に比べて、簡素化された薄型のバックライト装置を得ることができる。すなわち、光波長変換シートと光学部材とを別個独立に配置する場合には、光波長変換シートと光学部材との間には空気界面が存在するので、バックライト装置の中に比較的大きな空隙を要する。これに対し、本実施形態においては、光波長変換部材11と光学部材41とが一体化されているので、光波長変換部材11と光学部材41との間には空気界面が存在しない。これにより、簡素化された薄型のバックライト装置を得ることができる。
発光ダイオード等の発光体は、発光時に熱も発する。このため、通常であれば、光源に光波長変換部材を組み込む場合や光源に近接した位置に光波長変換部材を配置する場合には、量子ドットの劣化を抑制するために光波長変換部材を覆うバリア部材が必要となる。これに対し、本実施形態においては、光波長変換部材154、170中に存在するリン系化合物により光波長変換部材154、170における耐熱性を向上させることができるので、光波長変換部材154、170をバリア部材で覆わなくとも、量子ドット17の劣化を抑制できる。これにより、光波長変換部材154を光源150に組み込むことができ、または光波長変換部材170を光源90に近接した位置に配置することができる。
従来から、光波長変換シートの出光側に、光波長変換シートから出射される量子ドットによって波長変換された光を集光し、かつ光波長変換シートによって波長変換されなかった光を光波長変換シート側に戻すレンズシートを配置して、光波長変換効率を高めることが検討されている。しかしながら、このようなレンズシートを配置するだけでは光波長変換効率が充分ではなく、更なる光波長変換効率の向上が望まれている。本実施形態によれば、光波長変換シート10の外部ヘイズ値が光波長変換シート10の内部ヘイズ値よりも小さくした場合には、光波長変換効率をさらに向上させることができる。すなわち、光源から発せられる光は直進性を有しているので、光波長変換シートに入射して、量子ドットによって波長変換されずに、光波長変換シートを出射する光も直進性を有している。ここで、光波長変換シートの外部ヘイズ値が高いと、光波長変換シートの表面で直進性を有する波長変換されていない光が屈折し、光波長変換シートから出射する波長変換されていない光においては出射角度が大きい成分が多くなってしまう。一方、集光機能および再帰反射機能を有するレンズシートは、レンズシートへの入射角度が小さい光ほどレンズシートを再帰反射させやすい傾向がある。すなわち、レンズシートへの入射角度が大きい光ほどレンズシートを透過しやすいという傾向がある。本実施形態においては、光波長変換シート10においては、外部ヘイズ値が内部ヘイズ値よりも小さくなっているので、光波長変換シート10の表面で波長変換されていない光が屈折したとしても、出射角度が小さい状態で出射させることができ、これにより、光波長変換シート10から出射される波長変換されていない光においては出射角度が小さい成分を多くすることができる。したがって、レンズシート100によって、波長変換されずに光波長変換シートから出射した光を再帰反射させて、光波長変換シート10側に戻すことができるので、波長変換される機会が増える。また、内部ヘイズ値が外部ヘイズ値より大きくなっているので、光波長変換シート内部で光が複数回散乱されることにより光路長が伸び、波長変換される機会がさらに増える。これにより、光波長変換効率を向上させることができる。なお、量子ドット17は等方的に発光するので、量子ドット17によって波長変換された光は様々な方向を向いており、光波長変換シート10の表面に到達すると、さらに光波長変換シートの表面で光が屈折し、波長変換された光は角度が大きい光となって光波長変換シートから出射しやすい。このため、波長変換された光は比較的レンズシート100を透過しやすい。
上記において、外部ヘイズ値を用いて光波長変換シートの表面における光拡散特性(外部拡散特性)を表したのは、以下の理由からである。まず、光波長変換シートの光拡散特性はゴニオフォトメータのような公知の変角光度計により透過光の光強度を角度毎に測定することによって評価することができるが、測定された透過光の光強度の結果を用いて光波長変換シートの光拡散特性を規定することは極めて困難である。一方、上記したように、ヘイズの定義においては入射光に対し2.5°以上それた透過光はヘイズとして測定されるが、入射光に対し2.5°未満の透過光であればヘイズとして測定されない。このようにヘイズとしては入射光に対し2.5°未満の透過光は測定されないが、上記したようにレンズシートへの入射角度が大きい光、すなわち光波長変換シートにおける出射角度が大きい透過光が問題となっているので、入射光に対し2.5°未満の透過光よりも2.5°以上それた透過光がどの程度存在するかが重要である。このため、光波長変換シートの光拡散特性は、変角光度計による透過光の角度毎の光強度を測定しなくとも、光波長変換シートのヘイズ値の大きさで表すことができる。一方で、光波長変換シートの表面で光が屈折してしまい、出射角度が大きくなるということを考慮する必要があるので、光波長変換シートの表面での光拡散特性を表すために、外部ヘイズ値を用いた。
本実施形態によれば、光波長変換部材11が光散乱性粒子18を含んでいるので、光波長変換効率を一層向上させることができる。したがって、例えば、光源90として青色光を発する光源を用い、第1の量子ドット17Aとして青色光を緑色光に変換する量子ドットを用い、第2の量子ドット17Bとして青色光を赤色光に変換する量子ドットを含む光波長変換シートに青色光を照射した場合、光散乱性粒子を含んでいない光波長変換シートと比べて、色度x、yを上昇させることでき、白色光または白色に近い色味の光を得ることができる。
本実施形態によれば、光波長変換部材シート11が光散乱性粒子18を含んでいるので、緑色の発光が赤色の発光よりも優先的に増強させることができる。この理由は明確ではないが、光散乱性粒子は、青色光を緑色光に変換する第1の量子ドットから、青色光を赤色光に変換する第2の量子ドットへのエネルギー移動を阻害するような役割を果たしていると考えられ、本来上記エネルギー移動により失活していた緑色の発光が失活することなく発光過程に至り、結果として緑色の発光が増加するためであると考えられる。
本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの記載に限定されない。
<光波長変換組成物の調製>
まず、下記に示す組成となるように各成分を配合して、光波長変換組成物を得た。
(光波長変換組成物1)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・トリフェニルホスファイト(亜リン酸エステル、製品名「JP−360」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物2)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・トリフェニルホスファイト(亜リン酸エステル、製品名「JP−360」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・アルミナ粒子(光散乱性粒子、製品名「DAM−03」、電気化学工業社製、平均粒子径4μm):10質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物3)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):85質量部
・トリフェニルホスファイト(亜リン酸エステル、製品名「JP−360」、城北化学工業社製):15質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物4)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):75質量部
・トリフェニルホスファイト(亜リン酸エステル、製品名「JP−360」、城北化学工業株式会社製):25質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物5)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.25質量部
・トリフェニルホスファイト(亜リン酸エステル、製品名「JP−360」、城北化学工業社製):0.75質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物6)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・ビス(デシル)ペンタエリスリトールジホスファイト(亜リン酸エステル、製品名「JPE−10」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物7)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.25質量部
・ビス(デシル)ペンタエリスリトールジホスファイト(亜リン酸エステル、製品名「JPE−10」、城北化学工業社製):0.75質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物8)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・トリス(2−エチルヘキシル)ホスファイト(亜リン酸エステル、製品名「JP−308E」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物9)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99質量部
・トリス(2−エチルヘキシル)ホスファイト(亜リン酸エステル、製品名「JP−308E」、城北化学工業社製):1質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物10)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・トリラウリルホスファイト(亜リン酸エステル、製品名「JP−312L」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物11)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):98.5質量部
・トリラウリルホスファイト(亜リン酸エステル、製品名「JP−312L」、城北化学工業社製):1.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物12)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・ビス(トリデシル)ペンタエリスリトールジホスファイト(亜リン酸エステル、製品名「JPE−13R」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物13)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.25質量部
・ビス(トリデシル)ペンタエリスリトールジホスファイト(亜リン酸エステル、製品名「JPE−13R」、城北化学工業社製):0.75質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物14)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・トリスノニルフェニルホスファイト(亜リン酸エステル、製品名「JP−351」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物15)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):98.5質量部
・トリスノニルフェニルホスファイト(亜リン酸エステル、製品名「JP−351」、城北化学工業社製):1.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物16)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・ジ−2−エチルヘキシルハイドロゼンホスファイト(ホスホン酸エステル、製品名「Chelex H-8」、SC有機化学社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物17)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・ジ−2−エチルヘキシルハイドロゼンホスファイト(ホスホン酸エステル、製品名「Chelex H-8」、SC有機化学社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・アルミナ粒子(光散乱性粒子、製品名「DAM−03」、電気化学工業社製、平均粒子径4μm):10質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物18)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):85質量部
・ジ−2−エチルヘキシルハイドロゼンホスファイト(ホスホン酸エステル、製品名「Chelex H-8」、SC有機化学社製):15質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物19)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):75質量部
・ジ−2−エチルヘキシルハイドロゼンホスファイト(ホスホン酸エステル、製品名「Chelex H-8」、SC有機化学株式会社製):25質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物20)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.25質量部
・ジ−2−エチルヘキシルハイドロゼンホスファイト(ホスホン酸エステル、製品名「Chelex H-8」、SC有機化学社製):0.75質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物21)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・ジオレイルハイドロゼンホスファイト(ホスホン酸エステル、製品名「Chelex H−18D」、SC有機化学社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物22)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):98.5質量部
・ジオレイルハイドロゼンホスファイト(ホスホン酸エステル、製品名「Chelex H−18D」、SC有機化学社製):1.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物23)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・ジフェニルハイドロゲンホスファイト(ホスホン酸エステル、製品名「JP−260」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物24)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.4質量部
・ジフェニルハイドロゲンホスファイト(ホスホン酸エステル、製品名「JP−260」、城北化学工業社製):0.6質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物25)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・トリフェニルホスフィン(ホスフィン系化合物、製品名「JC−263」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物26)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・トリフェニルホスフィン(ホスフィン系化合物、製品名「JC−263」、城北化学工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・アルミナ粒子(光散乱性粒子、製品名「DAM−03」、電気化学工業社製、平均粒子径4μm):10質量部
(光波長変換組成物27)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):85質量部
・トリフェニルホスフィン(ホスフィン系化合物、製品名「JC−263」、城北化学工業社製):15質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物28)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):75質量部
・トリフェニルホスフィン(ホスフィン系化合物、製品名「JC−263」、城北化学工業社製):25質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物29)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.4質量部
・トリフェニルホスフィン(ホスフィン系化合物、製品名「JC−263」、城北化学工業社製):0.6質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物30)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・ビス(ジフェニルホスフィノ)エタン(ホスフィン系化合物、東京化成工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物31)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99質量部
・ビス(ジフェニルホスフィノ)エタン(ホスフィン系化合物、東京化成工業社製):1質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物32)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):92.5質量部
・ジフェニルホスフィン(ホスフィン系化合物、東京化成工業社製):7.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物33)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.5質量部
・ジフェニルホスフィン(ホスフィン系化合物、東京化成工業社製):0.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物34)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):100質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物35)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.8質量部
・トリフェニルホスファイト(亜リン酸エステル、製品名「JP−360」、城北化学工業社製):0.2質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物36)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.8質量部
・ビス(デシル)ペンタエリスリトールジホスファイト(亜リン酸エステル、製品名「JPE−10」、城北化学工業社製):0.2質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物37)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.5質量部
・トリス(2−エチルヘキシル)ホスファイト(亜リン酸エステル、製品名「JP−308E」、城北化学工業社製):0.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物38)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.5質量部
・トリラウリルホスファイト(亜リン酸エステル、製品名「JP−312L」、城北化学工業社製):0.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物39)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.8質量部
・ビス(トリデシル)ペンタエリスリトールジホスファイト(亜リン酸エステル、製品名「JPE−13R」、城北化学工業社製):0.2質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物40)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.5質量部
・トリスノニルフェニルホスファイト(亜リン酸エステル、製品名「JP−351」、城北化学工業社製):0.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物41)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.8質量部
・ジ−2−エチルヘキシルハイドロゼンホスファイト(ホスホン酸エステル、製品名「Chelex H-8」、SC有機化学社製):0.2質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物42)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.5質量部
・ジオレイルハイドロゼンホスファイト(ホスホン酸エステル、製品名「Chelex H−18D」、SC有機化学社製):0.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物43)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.8質量部
・ジフェニルハイドロゲンホスファイト(ホスホン酸エステル、製品名「JP−260」、城北化学工業社製):0.2質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物44)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.8質量部
・トリフェニルホスフィン(ホスフィン系化合物、製品名「JC−263」、城北化学工業社製):0.2質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物45)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.5質量部
・ビス(ジフェニルホスフィノ)エタン(ホスフィン系化合物、東京化成工業社製):0.5質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
(光波長変換組成物46)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99.8質量部
・ジフェニルホスフィン(ホスフィン系化合物、東京化成工業社製):0.2質量部
・緑色発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.2質量部
・赤色発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.2質量部
・ラジカル重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):0.2質量部
<オーバーコート層用組成物の調製>
下記に示す組成となるように各成分を配合して、オーバーコート層用組成物を得た。
(オーバーコート層用組成物1)
・アクリル酸亜鉛(製品名「ZN−DA」日本触媒社製):30質量部
・メタノール:70質量部
・光重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184、BASFジャパン社製):1質量部
(オーバーコート層用組成物2)
・ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートの混合物(製品名「アロニックス(登録商標)M−403」、東亞合成社製):30質量部
・メタノール:70質量部
・光重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184、BASFジャパン社製):1質量部
<光拡散層用組成物の調製>
下記に示す組成となるように各成分を配合して、光拡散層用組成物1を得た。
(光拡散層用組成物1)
・ペンタエリスリトールトリアクリレート:99質量部
・光散乱性粒子(架橋ポリスチレン樹脂ビーズ、製品名「SBX−4」、積水化成品工業株式会社製、平均粒子径4μm):158質量部
・光重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184、BASFジャパン社製):1質量部
・溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1(質量比)):170質量部
<実施例1>
大きさ7インチおよび厚みが50μmの光透過性基材としての2枚のポリエチレンテレフタレート(PET)基材(製品名「ルミラーT60」、東レ社製)の片面にそれぞれ上記光拡散層用組成物を、塗布し、塗膜を形成した。次いで、形成した塗膜に対して、80℃の乾燥空気を30秒間流通させて乾燥させることにより塗膜中の溶剤を蒸発させた。その後、紫外線を積算光量が500mJ/cmになるように照射して塗膜を硬化させることにより膜厚が10μmの光拡散層を形成し、光拡散層付きPET基材を形成した。
次いで、一方の光拡散層付きPET基材における光拡散層側の面とは反対側の面に光波長変換組成物1を塗布し、80℃で乾燥させて、塗膜を形成した。そして、塗膜に他方の光拡散層付きPET基材における光拡散層側の面とは反対側の面が接するように他方の光拡散層付きPET基材を塗膜に積層した。この状態で、紫外線を積算光量が500mJ/cmになるように照射して塗膜を硬化させ、膜厚が100μmの光波長変換部材を形成するとともに、光波長変換部材と、2枚の光拡散層付きPET基材とを一体化した。これにより、実施例1に係る光波長変換シートを得た。
<実施例2〜33>
実施例2〜33においては、光波長変換組成物1の代わりに表1および表2に示される各光波長変換組成物を用いたこと以外は、実施例1と同様にして、光波長変換シートを作製した。
<実施例34>
厚さ50μmのポリエチレンテレフタレート(PET)基材(製品名「ルミラーT60」、東レ社製)の一方の面に光波長変換組成物1を塗布し、80℃で乾燥させて、塗膜を形成した。そして、紫外線を積算光量が500mJ/cmになるように照射して塗膜を硬化させた。最後に、PET基材を剥離し、実施例34に係る膜厚が100μmの光波長変換部材のみからなる光波長変換シートを得た。
<実施例35、36>
実施例35、36においては、光波長変換組成物1の代わりに表2に示される各光波長変換組成物を用いたこと以外は、実施例34と同様にして、光波長変換シートを作製した。
<実施例37>
実施例34で作製した光波長変換シート(光波長変換部材)の一方の面に、オーバーコート層用組成物1を塗布し、塗膜を形成した。そして、紫外線を積算光量が500mJ/cmになるように照射して塗膜を硬化させて、膜厚5μmのオーバーコート層を得た。次いで、同様に、光波長変換部材の他方の面に、オーバーコート層用組成物1を塗布し、塗膜を形成した。そして、紫外線を積算光量が500mJ/cmになるように照射して塗膜を硬化させて、膜厚5μmのオーバーコート層を得た。これにより、光波長変換部材と、光波長変換部材の両面に形成されたオーバーコート層とからなる光波長変換シートを得た。
<実施例38>
実施例38においては、オーバーコート層用組成物1の代わりにオーバーコート層用組成物2を用いたこと以外は、実施例37と同様にして、光波長変換シートを作製した。
<実施例39〜41>
実施例39〜41においては、光波長変換組成物1の代わりに表2に示される各光波長変換組成物を用いたこと以外は、実施例37と同様にして、光波長変換シートを作製した。
<実施例42>
厚さ100μmのポリエチレンテレフタレート(PET)基材(製品名「ルミラーT60」、東レ社製)の一方の面にウレタンアクリレートを含むプリズム層用組成物を均一に塗布して、プリズム層用組成物の塗膜を形成し、プリズムシート用積層体を形成した。そして、所望の単位プリズムの形状に対し逆形状の凹部を有し、かつ回転する成形用型にレンズ層用組成物の塗膜が成形用型側となるようにプリズムシート用積層体を走行速度20m/分で供給して成形用型によってプリズム層用組成物の塗膜に単位プリズムの形状を賦形するとともに、PET基材を介してプリズム層用組成物の塗膜に紫外線等の光を照射して、プリズム層用組成物の塗膜を硬化させた。最後に、硬化させたプリズム層用組成物の塗膜をPET基材と共に成形用型から剥離して、PET基材の一方の面にプリズム層が形成されたプリズムシートを得た。プリズム層は、シート状の本体部と、この本体部上に並べて配置され、かつ各々が配列方向と交差する方向に延びており、頂角が90°であり、幅が47μmであり、高さが30μmである複数の三角柱状の単位プリズムを有していた。
次いで、プリズムシートにおけるPET基材のプリズム層側の面とは反対側の面に光波長変換組成物1を塗布し、80℃で乾燥させて、塗膜を形成した。そして、紫外線を積算光量が500mJ/cmになるように照射して塗膜を硬化させることにより、プリズムシートと一体化した膜厚が100μmの光波長変換部材を形成した。これにより、実施例42に係る光波長変換シートを得た。
<実施例43、44>
実施例43、44においては、光波長変換組成物1の代わりに表2に示される各光波長変換組成物を用いたこと以外は、実施例42と同様にして、光波長変換シートを作製した。
<実施例45>
まず、2枚のバリア部材を次のような方法で作製した。高周波スパッタリング装置において、電極に周波数13.56MHz、電力5kWの高周波電力を印加することにより、チャンバー内で放電を生じさせて、大きさ7インチおよび厚みが50μmの光透過性基材としてのポリエチレンテレフタレート(PET)基材(製品名「ルミラーT60」、東レ社製)の片面にターゲット物質(シリカ)からなる、厚みが50nmであり、かつ屈折率が1.46であるシリカ蒸着層を形成した。これにより、PET基材の一方の面にシリカ蒸着層が形成されたバリア部材を2枚形成した。
次いで、両方のバリア部材におけるシリカ蒸着層側の面とは反対側の面に上記光拡散層用組成物1を、塗布し、塗膜を形成した。次いで、形成した塗膜に対して、80℃の乾燥空気を30秒間流通させて乾燥させることにより塗膜中の溶剤を蒸発させた。その後、紫外線を積算光量が500mJ/cmになるように照射して塗膜を硬化させることにより膜厚が10μmの光拡散層を形成し、光拡散層付きバリア部材を形成した。
次いで、一方の光拡散層付きバリア部材のシリカ蒸着層側に光波長変換組成物1を塗布し、80℃で乾燥させて、塗膜を形成した。そして、塗膜における光拡散層付きバリア部材のシリカ蒸着層の面に、シリカ蒸着層が接するように他方の光拡散層付きバリア部材を積層した。この状態で、紫外線を積算光量が500mJ/cmになるように照射して塗膜を硬化させることにより、両方の光拡散層付きバリア部材に密着した膜厚が100μmの光波長変換部材を形成した。これにより、実施例45に係る光波長変換シートを得た。
<実施例46、47>
実施例46、47においては、光波長変換組成物1の代わりに表2に示される各光波長変換組成物を用いたこと以外は、実施例45と同様にして、光波長変換シートを作製した。
<比較例1〜13>
比較例1〜13においては、光波長変換組成物1の代わりに表3に示される各光波長変換組成物を用いたこと以外は、実施例1と同様にして、光波長変換シートを作製した。
<比較例14〜17>
比較例14〜17においては、光波長変換組成物1の代わりに表3に示される各光波長変換組成物を用いたこと以外は、実施例34と同様にして、光波長変換シートを作製した。
<比較例18〜21>
比較例18〜21においては、光波長変換組成物1の代わりに表3に示される各光波長変換組成物を用いたこと以外は、実施例37と同様にして、光波長変換シートを作製した。
<比較例22〜25>
比較例22〜25においては、光波長変換組成物1の代わりに表3に示される各光波長変換組成物を用いたこと以外は、実施例42と同様にして、光波長変換シートを作製した。
<比較例26〜29>
比較例26〜29においては、光波長変換組成物1の代わりに表3に示される各光波長変換組成物を用いたこと以外は、実施例45と同様にして、光波長変換シートを作製した。
<リン元素の含有量測定>
上記実施例および比較例で用いられた光波長変換組成物1〜46ならびに上記実施例および比較例に係る光波長変換シートにおいて、光波長変換組成物1〜46や光波長変換部材に含まれるリン元素の含有量を、蛍光X線分析装置(製品名「「EDX−800HS」」、島津製作所製)を用いて測定した。
<水蒸気透過率および酸素透過率測定>
上記実施例および比較例に係る光波長変換シートにおいて、水蒸気透過率および酸素透過率をそれぞれ測定した。光波長変換シートの水蒸気透過率は、JIS K7129:2008に準拠して、水蒸気透過率測定装置(製品名「PERMATRAN−W3/31」、MOCON社製)を用いて、40℃、相対湿度90%の条件下で測定した。また、光波長変換シートの酸素透過率は、JIS K7126:2006に準拠して、酸素ガス透過率測定装置(製品名「OX−TRAN 2/21」、MOCON社製)を用いて23℃、相対湿度90%の条件下で測定した。
<耐熱性試験後における輝度維持率測定>
上記実施例および比較例に係る光波長変換シートにおいて、光波長変換シートを80℃の環境下に500時間放置する耐熱性試験を行い、光波長変換シートにおける耐熱性試験前の輝度に対する耐熱性試験後における輝度の維持率を調べた。具体的には、まず、Kindle Fire(登録商標)HDX7のバックライト装置を用意し、耐熱性試験前の光波長変換シートをこのバックライト装置に組み込んだ。このバックライト装置は、発光ピーク波長が450nmの青色発光ダイオード、導光板、第1のプリズムシート、および第2のプリズムシートをこの順に備えているものであった。
実施例1〜41、45〜47および比較例1〜21、26〜29においては、青色発光ダイオード側が入光面となるように導光板を配置するとともに、導光板の出光面上に実施例1〜41、45〜47および比較例1〜21、26〜29に係る光波長変換シート、第1のプリズムシート、第2のプリズムシートをこの順で配置して、バックライト装置を得た。なお、第2のプリズムシートは、単位プリズムの配列方向が第1のプリズムシートの単位プリズムの配列方向と直交するように配置された。
実施例42〜44および比較例22〜25においては、青色発光ダイオード側が入光面となるように導光板を配置するとともに、導光板の出光面上にプリズムシートにおけるプリズム面が出光側となるように実施例42〜44および比較例22〜25に係る光波長変換シート、第2のプリズムシートをこの順で配置して、バックライト装置を得た。なお、第2のプリズムシートは、単位プリズムの配列方向が実施例42〜44および比較例22〜25に係る光波長変換シートにおけるプリズムシートの単位プリズムの配列方向と直交するように配置された。このようにして、実施例42〜44および比較例22〜25に係る光波長変換シートが組み込まれたバックライト装置を得た。
そして、光波長変換シートを組み込んだバックライト装置の青色発光ダイオードを点灯させ、青色光を光波長変換シートの一方の表面に照射して、光波長変換シートの他方の表面を介してバックライト装置の発光面(第2のプリズムシートの表面)から出射する光の輝度を、光波長変換シートの厚み方向から、分光放射輝度計(製品名「CS2000」、コニカミノルタ社製)を用いて、測定角1°の条件で、測定した。
次いで、バックライト装置から耐熱性試験前の光波長変換シートを外し、この光波長変換シートに、光波長変換シートを80℃の環境下に500時間放置する耐熱性試験を行った。そして、耐熱性試験後の光波長変換シートを上記と同様に上記バックライト装置に組み込んだ。この状態で、上記と同様に、青色光を光波長変換シートの一方の表面に照射して、光波長変換シートの他方の表面を介してバックライト装置の発光面(第2のプリズムシートの表面)から出射する光の輝度を、光波長変換シートの厚み方向から、分光放射輝度計(製品名「CS2000」、コニカミノルタ社製)を用いて、測定角1°の条件で、測定した。
測定したこれらの輝度から、耐熱性試験前の輝度に対する耐熱性試験後の輝度の維持率をそれぞれ求めた。輝度維持率は、輝度維持率をAとし、耐熱性試験前のバックライト装置の発光面から出射する光の輝度をBとし、耐熱性試験後のバックライト装置の発光面から出射する光の輝度をCとし、下記式によって求めた。
A=C/B×100
<点状の輝度欠点評価>
上記実施例および上記比較例に係る耐熱性試験後の光波長変換シートを組み込んだ上記のバックライト装置を用いて、バックライト装置における発光時の発光面に点状の輝度欠点が存在するかを目視で観察し、評価した。評価基準は以下の通りとした。
○:点状の輝度欠点が確認されなかった。
△:点状の輝度欠点が数点確認された。
×:点状の輝度欠点が多数確認された。
<密着性評価(1)>
上記実施例1〜33、42〜47および比較例1〜13、22〜29に係る光波長変換シートにおいて、以下のようにして光波長変換層と、PET基材との密着性を評価した。具体的には、まず、初期の各光波長変換シートから、25mm幅の試験片を、周縁部に浮きが生じないようにカッターを用いて切り出した。次いで、得られた試験片を引っ張り試験機(機器名「テンシロン」、エー・アンド・デー(A&D)社製)に付属している、チャッキング用冶具に固定し、室温で、試験片の表面を0°として、この表面に対して剥離角180°の方向に引張速度0.3m/分の条件でPET基材を引っ張り、光波長変換部材からPET基材を引き剥がし、光波長変換部材とPET基材との密着性を評価した。なお、光波長変換部材からPET基材を引き剥がすのに要する力である剥離強度が測定可能な場合には剥離強度を測定した。なお、表4〜6に示される「基材破断」とは、光波長変換部材とPET基材との密着性が優れており、光波長変換部材からPET基材を剥離する際に、剥離できずに、PET基材が破断した状態を意味する。
<密着性評価(2)>
上記実施例37〜41および比較例18〜21に係る光波長変換シートにおいて、光波長変換層とオーバーコート層との密着性を、クロスカット法による密着性試験によって、評価した。具体的には、実施例37〜41および比較例18〜21に係る光波長変換シートについて、JIS K5600−5−6に準拠して、1辺が1cmの正方形領域(マス目)が100個形成されるように光波長変換シートにカッターナイフで切り込みを入れ、100個の正方形領域全てについて、付着テープとしてニチバン(株)製の工業用24mmセロテープ(登録商標)を貼着後、直上に引き上げてオーバーコート層の剥離の有無を調べた。なお、表4〜表6における密着性評価(2)の値は、(剥がれなかったマス目の数)/(マス目の合計)を意味する。
<光波長変換シートの周縁部の劣化幅測定>
実施例および比較例に係る耐熱性試験後の光波長変換シートを組み込んだ上記のバックライト装置を用いて、バックライト装置における発光時の発光面における輝度分布を、光波長変換シートの厚み方向から、2D色彩輝度計(製品名「UA−200」、トプコンテクノハウス社製)を用いて、測定した。そして、測定した発光面の輝度分布から、発光面の中央部の輝度に対して輝度が80%となる発光面の位置(輝度80%位置)を求め、発光面における輝度80%位置に最も近い端から輝度80%位置までの最短距離を求めた。そして、この最短距離をランダムに20箇所について求め、この20箇所の最短距離の平均値を、光波長変換シートの周縁部の劣化幅とした。
以下、結果を表1〜表6に示す。
Figure 2017167319
Figure 2017167319
Figure 2017167319
Figure 2017167319
Figure 2017167319
Figure 2017167319
以下、結果について述べる。表1〜表6から分かるように、実施例1〜44に係る光波長変換シートにおいては、蛍光X線分析により測定された光波長変換組成物中および光波長変換層中のリン元素の含有量が0.05質量%以上であったので、光波長変換組成物中および光波長変換層中のリン元素の含有量が0.05質量%未満の比較例1〜25に係る光波長変換シートに比べて、輝度維持率が高かった。また、実施例45〜47に係る光波長変換シートにおいては、蛍光X線分析により測定された光波長変換組成物中および光波長変換層中のリン元素の含有量が0.05質量%以上であったので、光波長変換組成物中および光波長変換層中のリン元素の含有量が0.05質量%未満の比較例26〜29に係る光波長変換シートに比べて、輝度維持率が高かった。これは、蛍光X線分析により測定された光波長変換組成物中および光波長変換層中のリン元素の含有量が0.05質量%以上であると、耐熱性が高く、また光波長変換層中に存在するリン系化合物が、量子ドットの劣化を抑制できることを意味している。
実施例1〜44および比較例1〜25に係る光波長変換シートにおいては、バリア部材を用いていなかったので、点状の輝度欠点は確認されなかった。また、実施例45〜47に係る光波長変換シートにおいては、バリア部材を用いているが、蛍光X線分析により測定された光波長変換組成物中および光波長変換層中のリン元素の含有量が0.05質量%以上であったので、点状の輝度欠点は確認されなかった。これに対し、光波長変換組成物中および光波長変換層中のリン元素の含有量が0.05質量%未満の比較例26〜29に係る光波長変換シートにおいては、点状の輝度欠点が確認された。これは、リン系化合物の含有量を特定の範囲とすると、量子ドットの劣化を抑制できることを意味している。
実施例1〜47に係る光波長変換シートにおいては、蛍光X線分析により測定された光波長変換組成物中および光波長変換層中のリン元素の含有量が0.05質量%以上であったので、周縁部の劣化は抑制されていた。これに対し、光波長変換組成物中および光波長変換層中のリン元素の含有量が0.05質量%未満の比較例1〜25に係る光波長変換シートにおいても、周縁部の劣化の結果は0mmであったが、これは、光波長変換層が露出していたため、耐熱性試験後において、全体的に量子ドットが劣化してしまい、周縁部と中央部で輝度の差がほぼ無かったためである。また、比較例26〜29に係る光波長変換シートは、バリア部材によって中央部の劣化が比較的抑制されたが、周縁部の劣化が抑制されなかった。
実施例1〜3、5〜18、20〜27、29〜33、41〜46に係る光波長変換シートにおいては、蛍光X線分析により測定された光波長変換組成物中および光波長変換層中のリン元素の含有量が2質量%以下であったので、蛍光X線分析により測定された光波長変換組成物中および光波長変換層中のリン元素の含有量が2質量%を越えている実施例4、19、28よりもPET基材との密着性に優れていた。また、実施例37、38、40、41に係る光波長変換シートにおいては、蛍光X線分析により測定された光波長変換組成物中および光波長変換層中のリン元素の含有量が2質量%以下であったので、蛍光X線分析により測定された光波長変換組成物中および光波長変換層中のリン元素の含有量が2質量%を越えている実施例39よりもオーバーコート層との密着性に優れていた。
実施例1に係る光波長変換シートの全ヘイズ値は98.9%、内部ヘイズ値は96.7%、外部ヘイズ値は2.2%であり、実施例2に係る光波長変換シートの全ヘイズ値は99.3%、内部ヘイズ値は99.3%、外部ヘイズ値は0%であった。両方の光波長変換シートにおいては、外部ヘイズ値が内部ヘイズ値よりも小さくなっているので、両方とも耐久性試験前後に関わらず輝度が高いが、実施例1に係る光波長変換シートと実施例2に係る光波長変換シートを比べると、実施例2に係る光波長変換シートの方が耐熱性試験前後に関わらず輝度が高かった。これは、実施例2に係る光波長変換シートは光散乱性粒子としてのアルミナ粒子を含んでいるので、実施例2に係る光波長変換シートの内部ヘイズ値が実施例1に係る波長変換シートの内部ヘイズ値に比べて大きくなり、これにより外部ヘイズ値が小さくなったためである。したがって、光波長変換シートに光散乱性粒子を含ませて、内部ヘイズ値をより高めることによって、外部ヘイズ値をより小さくすることができ、これにより光波長変換効率をより向上できることが確認できた。なお、光波長変換シートにおける全ヘイズ値、内部ヘイズ値、ヘイズ値は以下のようにして測定した。まず、ヘイズメーター(製品名「HM−150」、村上色彩技術研究所製)を用いて、JIS K7136に従って光波長変換シートの全ヘイズ値を測定した。その後、光波長変換シートの両面に、膜厚が25μmの透明光学粘着層(製品名「パナクリーンPD−S1」、パナック社製)を介して厚みが60μmのトリアセチルセルロース基材(製品名「TD60UL」、富士フイルム社製)を貼り付けた。これによって、光波長変換シートにおける表面の凹凸形状が潰れ、光波長変換シートの表面が平坦になった。この状態で、ヘイズメーター(製品名「HM−150」、村上色彩技術研究所製)を用いて、JIS K7136に従ってヘイズ値を測定して内部ヘイズ値を求めた。そして、全ヘイズ値から内部ヘイズ値を差し引くことにより、外部ヘイズ値を求めた。なお、透明光学粘着層およびトリアセチルセルロース基材も光波長変換シートの内部ヘイズ値や外部ヘイズ値に影響を与えるおそれがあるが、光波長変換シートの内部散乱が極めて大きい場合には、これらが内部ヘイズ値や外部ヘイズ値に与える影響は極めて小さくなるので、無視できる。また、光波長変換シートの内部散乱が極めて大きい場合には、内部ヘイズ値が全ヘイズ値と同じ値になることがあるので、外部ヘイズ値が0%になることもある。
また、実施例37、38に係る光波長変換シートにおいて、オーバーコート層に対してスクラッチ試験を行い、その際の垂直力および水平力を測定したところ、実施例37に係る光波長変換シートは、垂直力が21μNであり、水平力が−11μNであり、実施例38に係る光波長変換シートは、垂直力が11μNであり、水平力が−6μNであった。これらのオーバーコート層は緻密な膜となり、光波長変換部材を大気暴露から防ぐ能力を有していたが、光波長変換層を大気暴露から防ぐ能力においては実施例37に係る光波長変換シートのオーバーコート層の方が実施例38に係る光波長変換シートのオーバーコート層よりも高いと言える。スクラッチ試験は、ナノインデンテーション装置(製品名「TI950 TriboIndenter」、HYSITRON(ハイジトロン)社製)を用いて、オーバーコート層の断面からオーバーコート層の内部方向に圧子(Cube Corner:Ti037_110410(12))を50nm押し込み、その深さを一定として、30秒間この圧子を移動速度4μm/minで水平方向に移動させることによって行い、その際の垂直力(荷重)および水平力を測定し、測定された垂直力および水平力の平均値を求め、さらにこのスクラッチ試験を5回繰り返すことによって求めた垂直力の5つの平均値の平均値(5回平均値)を垂直力とし、また水平力の5つの平均値の平均値(5回平均値)を水平力とした。
上記実施例においては、緑色発光量子ドットや赤色発光量子ドットのコア材料としてCdSeを用いているが、コア材料としてInP、InAs等の非Cd系材料を用いても、上記実施例と同様の結果が得られた。
10、20、30、40、50、60…光波長変換シート
11、154、170…光波長変換部材
16…バインダ樹脂
17…量子ドット
18…光散乱性粒子
19…塗膜
70…画像表示装置
80、130、140、160…バックライト装置
120…表示パネル

Claims (13)

  1. 光波長変換組成物であって、
    量子ドットと、リン系化合物とを含み、
    蛍光X線分析により測定される前記光波長変換組成物中のリン元素の含有量が0.05質量%以上である、光波長変換組成物。
  2. 重合性化合物をさらに含む、請求項1に記載の光波長変換組成物。
  3. 前記量子ドットが、第1の半導体化合物からなるコアと、前記コアを覆い、かつ前記第1の半導体化合物と異なる第2の半導体化合物からなるシェルと、前記シェルの表面に結合したリガンドとを含む、請求項1に記載の光波長変換組成物。
  4. 光散乱性粒子をさらに含む、請求項1に記載の光波長変換組成物。
  5. 光波長変換部材であって、
    バインダ樹脂と、前記バインダ樹脂に分散された量子ドットおよびリン系化合物とを含み、
    蛍光X線分析により測定される前記光波長変換部材中のリン元素の含有量が0.05質量%以上である、光波長変換部材。
  6. 前記量子ドットが、第1の半導体化合物からなるコアと、前記コアを覆い、かつ前記第1の半導体化合物と異なる第2の半導体化合物からなるシェルと、前記シェルの表面に結合したリガンドとを含む、請求項5に記載の光波長変換部材。
  7. 光散乱性粒子をさらに含む、請求項5に記載の光波長変換部材。
  8. 光波長変換シートであって、
    請求項5に記載の光波長変換部材を備え、かつ前記光波長変換部材が層状に形成されている、光波長変換シート。
  9. 前記光波長変換部材の少なくとも一方の面側に配置され、かつ前記光波長変換部材と一体化された光学部材をさらに備える、請求項5に記載の光波長変換シート。
  10. 前記光波長変換シートにおける40℃、相対湿度90%での水蒸気透過率が0.1g/(m・24h)以上であることを特徴とする、請求項5に記載の光波長変換シート。
  11. 前記光波長変換シートにおける23℃、相対湿度90%での酸素透過率が0.1cm/(m・24h・atm)以上であることを特徴とする、請求項5に記載の光波長変換シート。
  12. 光源と、
    前記光源からの光を受ける請求項5に記載の光波長変換部材または請求項8に記載の光波長変換シートと
    を備える、バックライト装置。
  13. 請求項12に記載のバックライト装置と、
    前記バックライト装置の出光側に配置された表示パネルと
    を備える、画像表示装置。
JP2016052321A 2016-03-16 2016-03-16 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置 Active JP6772494B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016052321A JP6772494B2 (ja) 2016-03-16 2016-03-16 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052321A JP6772494B2 (ja) 2016-03-16 2016-03-16 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置

Publications (2)

Publication Number Publication Date
JP2017167319A true JP2017167319A (ja) 2017-09-21
JP6772494B2 JP6772494B2 (ja) 2020-10-21

Family

ID=59913288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052321A Active JP6772494B2 (ja) 2016-03-16 2016-03-16 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置

Country Status (1)

Country Link
JP (1) JP6772494B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086743A (ja) * 2017-11-10 2019-06-06 Dic株式会社 カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
KR20200092025A (ko) * 2019-01-24 2020-08-03 주식회사 엘엠에스 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009995A (ja) * 2008-06-27 2010-01-14 Seiko Epson Corp 吐出液、吐出液セット、薄膜パターン形成方法、薄膜、発光素子、画像表示装置、および、電子機器
JP2014195898A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 補正値取得方法
JP2015149643A (ja) * 2014-02-07 2015-08-20 株式会社ノボル電機製作所 スピーカの取付装置
JP2015198716A (ja) * 2014-04-07 2015-11-12 株式会社藤商事 遊技機
JP2015223258A (ja) * 2014-05-27 2015-12-14 株式会社オリンピア 遊技機
JP2016065178A (ja) * 2014-09-25 2016-04-28 Jsr株式会社 硬化性樹脂組成物、硬化膜、波長変換フィルム、発光素子および発光層の形成方法
JP2016081055A (ja) * 2014-10-14 2016-05-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 感光性樹脂組成物
JP2016108548A (ja) * 2014-12-02 2016-06-20 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 自発光感光性樹脂組成物、これから製造されたカラーフィルタおよび前記カラーフィルタを含む画像表示装置
JP2016172829A (ja) * 2015-03-17 2016-09-29 コニカミノルタ株式会社 被覆半導体ナノ粒子およびその製造方法。
JP2017031398A (ja) * 2015-07-29 2017-02-09 Jsr株式会社 樹脂組成物、膜、波長変換部材、及び膜の形成方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009995A (ja) * 2008-06-27 2010-01-14 Seiko Epson Corp 吐出液、吐出液セット、薄膜パターン形成方法、薄膜、発光素子、画像表示装置、および、電子機器
JP2014195898A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 補正値取得方法
JP2015149643A (ja) * 2014-02-07 2015-08-20 株式会社ノボル電機製作所 スピーカの取付装置
JP2015198716A (ja) * 2014-04-07 2015-11-12 株式会社藤商事 遊技機
JP2015223258A (ja) * 2014-05-27 2015-12-14 株式会社オリンピア 遊技機
JP2016065178A (ja) * 2014-09-25 2016-04-28 Jsr株式会社 硬化性樹脂組成物、硬化膜、波長変換フィルム、発光素子および発光層の形成方法
JP2016081055A (ja) * 2014-10-14 2016-05-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 感光性樹脂組成物
JP2016108548A (ja) * 2014-12-02 2016-06-20 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 自発光感光性樹脂組成物、これから製造されたカラーフィルタおよび前記カラーフィルタを含む画像表示装置
JP2016172829A (ja) * 2015-03-17 2016-09-29 コニカミノルタ株式会社 被覆半導体ナノ粒子およびその製造方法。
JP2017031398A (ja) * 2015-07-29 2017-02-09 Jsr株式会社 樹脂組成物、膜、波長変換部材、及び膜の形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086743A (ja) * 2017-11-10 2019-06-06 Dic株式会社 カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
KR20200092025A (ko) * 2019-01-24 2020-08-03 주식회사 엘엠에스 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름
KR102211672B1 (ko) 2019-01-24 2021-02-04 주식회사 엘엠에스 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름

Also Published As

Publication number Publication date
JP6772494B2 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
JP6825208B2 (ja) 光波長変換組成物、波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP6866577B2 (ja) 光波長変換組成物、光波長変換粒子、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP6020684B1 (ja) 光波長変換シート、これを備えるバックライト装置、および画像表示装置
JP6679969B2 (ja) 光波長変換シート、バックライト装置、画像表示装置、および光波長変換シートの製造方法
JP6786799B2 (ja) 光波長変換シート、バックライト装置、画像表示装置、および光波長変換層用組成物
JP6866659B2 (ja) 光波長変換組成物、光波長変換粒子、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP6903927B2 (ja) 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP6679988B2 (ja) 光波長変換シート、これを備えるバックライト装置、画像表示装置、および光波長変換シートの製造方法
JP2016194558A (ja) 量子ドットシート、バックライト装置、および表示装置
JP2016194552A (ja) 量子ドットシート、バックライト装置、表示装置および量子ドットシートの製造方法
JP6844294B2 (ja) 光波長変換粒子、光波長変換粒子分散液、光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、画像表示装置、および光波長変換粒子の製造方法
JP6957876B2 (ja) 光波長変換部材、バックライト装置、および画像表示装置
JP6665477B2 (ja) 光波長変換シート、バックライト装置、および画像表示装置
JP2017021297A (ja) 量子ドットシート、バックライト及び液晶表示装置
JP6720603B2 (ja) 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP2017161938A (ja) 光波長変換シート、これを備えるバックライト装置、および画像表示装置
JP6903924B2 (ja) 光波長変換シート、バックライト装置、画像表示装置、光波長変換組成物、および光波長変換部材
JP7069543B2 (ja) 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP2017167319A (ja) 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP6786827B2 (ja) 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP6877101B2 (ja) 光波長変換粒子の製造方法、光波長変換粒子、光波長変換粒子含有組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP2016194561A (ja) 量子ドットシート、バックライト装置、および表示装置
JP2017019971A (ja) 量子ドットシート、バックライト及び液晶表示装置
JP6690257B2 (ja) 光波長変換シート、バックライト装置、および画像表示装置
JP6152917B2 (ja) 光波長変換シート、これを備えるバックライト装置、および画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6772494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150