WO2023048228A1 - 化合物、重合性組成物および硬化物 - Google Patents
化合物、重合性組成物および硬化物 Download PDFInfo
- Publication number
- WO2023048228A1 WO2023048228A1 PCT/JP2022/035369 JP2022035369W WO2023048228A1 WO 2023048228 A1 WO2023048228 A1 WO 2023048228A1 JP 2022035369 W JP2022035369 W JP 2022035369W WO 2023048228 A1 WO2023048228 A1 WO 2023048228A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- general formula
- layer
- mass
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 227
- 239000000203 mixture Substances 0.000 title claims description 173
- 125000000962 organic group Chemical group 0.000 claims abstract description 87
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 33
- 229920000642 polymer Polymers 0.000 claims abstract description 30
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 86
- 229910052757 nitrogen Inorganic materials 0.000 claims description 72
- 239000010954 inorganic particle Substances 0.000 claims description 65
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 24
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 24
- 125000003827 glycol group Chemical group 0.000 claims description 18
- 125000004429 atom Chemical group 0.000 claims description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 12
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 12
- 230000002378 acidificating effect Effects 0.000 claims description 10
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 10
- 125000005370 alkoxysilyl group Chemical group 0.000 claims description 9
- 229920001451 polypropylene glycol Polymers 0.000 claims description 9
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 9
- 229920002554 vinyl polymer Polymers 0.000 claims description 9
- 125000003700 epoxy group Chemical group 0.000 claims description 8
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 8
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 374
- 239000002096 quantum dot Substances 0.000 description 252
- 239000002585 base Substances 0.000 description 178
- 238000006243 chemical reaction Methods 0.000 description 177
- 239000011347 resin Substances 0.000 description 149
- 229920005989 resin Polymers 0.000 description 149
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 143
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 129
- 239000007788 liquid Substances 0.000 description 126
- ZQMHJBXHRFJKOT-UHFFFAOYSA-N methyl 2-[(1-methoxy-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanoate Chemical compound COC(=O)C(C)(C)N=NC(C)(C)C(=O)OC ZQMHJBXHRFJKOT-UHFFFAOYSA-N 0.000 description 81
- 238000000034 method Methods 0.000 description 79
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 78
- -1 cyclohexyloxycarbonyl group Chemical group 0.000 description 76
- 239000002245 particle Substances 0.000 description 70
- 239000000126 substance Substances 0.000 description 64
- 230000004888 barrier function Effects 0.000 description 55
- 239000007877 V-601 Substances 0.000 description 53
- 239000000047 product Substances 0.000 description 53
- 239000000463 material Substances 0.000 description 50
- 239000012044 organic layer Substances 0.000 description 48
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 45
- 239000001301 oxygen Substances 0.000 description 45
- 229910052760 oxygen Inorganic materials 0.000 description 45
- 239000000243 solution Substances 0.000 description 38
- 238000000576 coating method Methods 0.000 description 37
- 238000011156 evaluation Methods 0.000 description 37
- 239000011248 coating agent Substances 0.000 description 33
- 230000015572 biosynthetic process Effects 0.000 description 32
- 238000001816 cooling Methods 0.000 description 32
- 239000004973 liquid crystal related substance Substances 0.000 description 31
- 150000003573 thiols Chemical class 0.000 description 31
- 239000002253 acid Substances 0.000 description 29
- 125000000217 alkyl group Chemical group 0.000 description 29
- 125000001424 substituent group Chemical group 0.000 description 29
- 125000004434 sulfur atom Chemical group 0.000 description 25
- 235000010724 Wisteria floribunda Nutrition 0.000 description 23
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 22
- 238000003786 synthesis reaction Methods 0.000 description 22
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 21
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 21
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 20
- 239000011254 layer-forming composition Substances 0.000 description 20
- 230000035699 permeability Effects 0.000 description 20
- 238000001723 curing Methods 0.000 description 19
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 17
- 150000002989 phenols Chemical class 0.000 description 17
- 125000002947 alkylene group Chemical group 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 16
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 16
- 230000001681 protective effect Effects 0.000 description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 150000003839 salts Chemical class 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- GRSGFPUWHKVFJW-UHFFFAOYSA-N 1-[1-(1-hydroxypropan-2-yloxy)propan-2-yloxy]-3-methoxypropan-2-ol;prop-2-enoic acid Chemical compound OC(=O)C=C.COCC(O)COC(C)COC(C)CO GRSGFPUWHKVFJW-UHFFFAOYSA-N 0.000 description 14
- 125000003118 aryl group Chemical group 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 150000002430 hydrocarbons Chemical group 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 125000003710 aryl alkyl group Chemical group 0.000 description 12
- 125000000524 functional group Chemical group 0.000 description 12
- 210000002858 crystal cell Anatomy 0.000 description 11
- 229940079877 pyrogallol Drugs 0.000 description 11
- YAAUVJUJVBJRSQ-UHFFFAOYSA-N [3-(3-sulfanylpropanoyloxy)-2-[[3-(3-sulfanylpropanoyloxy)-2,2-bis(3-sulfanylpropanoyloxymethyl)propoxy]methyl]-2-(3-sulfanylpropanoyloxymethyl)propyl] 3-sulfanylpropanoate Chemical compound SCCC(=O)OCC(COC(=O)CCS)(COC(=O)CCS)COCC(COC(=O)CCS)(COC(=O)CCS)COC(=O)CCS YAAUVJUJVBJRSQ-UHFFFAOYSA-N 0.000 description 10
- 230000005284 excitation Effects 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 238000000149 argon plasma sintering Methods 0.000 description 9
- 230000001588 bifunctional effect Effects 0.000 description 9
- 229920001519 homopolymer Polymers 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 9
- 238000004062 sedimentation Methods 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 7
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 7
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 7
- 239000002270 dispersing agent Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 6
- OIYTYGOUZOARSH-UHFFFAOYSA-N 4-methoxy-2-methylidene-4-oxobutanoic acid Chemical compound COC(=O)CC(=C)C(O)=O OIYTYGOUZOARSH-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 125000005647 linker group Chemical group 0.000 description 6
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- IMQFZQVZKBIPCQ-UHFFFAOYSA-N 2,2-bis(3-sulfanylpropanoyloxymethyl)butyl 3-sulfanylpropanoate Chemical compound SCCC(=O)OCC(CC)(COC(=O)CCS)COC(=O)CCS IMQFZQVZKBIPCQ-UHFFFAOYSA-N 0.000 description 5
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 5
- 239000011146 organic particle Substances 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- JOBBTVPTPXRUBP-UHFFFAOYSA-N [3-(3-sulfanylpropanoyloxy)-2,2-bis(3-sulfanylpropanoyloxymethyl)propyl] 3-sulfanylpropanoate Chemical compound SCCC(=O)OCC(COC(=O)CCS)(COC(=O)CCS)COC(=O)CCS JOBBTVPTPXRUBP-UHFFFAOYSA-N 0.000 description 4
- 125000002993 cycloalkylene group Chemical group 0.000 description 4
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- HOXINJBQVZWYGZ-UHFFFAOYSA-N fenbutatin oxide Chemical compound C=1C=CC=CC=1C(C)(C)C[Sn](O[Sn](CC(C)(C)C=1C=CC=CC=1)(CC(C)(C)C=1C=CC=CC=1)CC(C)(C)C=1C=CC=CC=1)(CC(C)(C)C=1C=CC=CC=1)CC(C)(C)C1=CC=CC=C1 HOXINJBQVZWYGZ-UHFFFAOYSA-N 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- KQNPFQTWMSNSAP-UHFFFAOYSA-M isobutyrate Chemical compound CC(C)C([O-])=O KQNPFQTWMSNSAP-UHFFFAOYSA-M 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 4
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 3
- OXBLVCZKDOZZOJ-UHFFFAOYSA-N 2,3-Dihydrothiophene Chemical compound C1CC=CS1 OXBLVCZKDOZZOJ-UHFFFAOYSA-N 0.000 description 3
- IBDVWXAVKPRHCU-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCCOC(=O)C(C)=C IBDVWXAVKPRHCU-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 description 3
- IHUNBGSDBOWDMA-AQFIFDHZSA-N all-trans-acitretin Chemical compound COC1=CC(C)=C(\C=C\C(\C)=C\C=C\C(\C)=C\C(O)=O)C(C)=C1C IHUNBGSDBOWDMA-AQFIFDHZSA-N 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 125000001841 imino group Chemical group [H]N=* 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 229940105570 ornex Drugs 0.000 description 3
- 238000000016 photochemical curing Methods 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 125000000542 sulfonic acid group Chemical group 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 2
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 2
- UBJVUCKUDDKUJF-UHFFFAOYSA-N Diallyl sulfide Chemical compound C=CCSCC=C UBJVUCKUDDKUJF-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- QECVIPBZOPUTRD-UHFFFAOYSA-N N=S(=O)=O Chemical group N=S(=O)=O QECVIPBZOPUTRD-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 125000002339 acetoacetyl group Chemical group O=C([*])C([H])([H])C(=O)C([H])([H])[H] 0.000 description 2
- 125000005595 acetylacetonate group Chemical group 0.000 description 2
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 125000005587 carbonate group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 2
- FBSFWRHWHYMIOG-UHFFFAOYSA-N methyl 3,4,5-trihydroxybenzoate Chemical compound COC(=O)C1=CC(O)=C(O)C(O)=C1 FBSFWRHWHYMIOG-UHFFFAOYSA-N 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- 229940059574 pentaerithrityl Drugs 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000000565 sulfonamide group Chemical group 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- XKXIQBVKMABYQJ-UHFFFAOYSA-M tert-butyl carbonate Chemical compound CC(C)(C)OC([O-])=O XKXIQBVKMABYQJ-UHFFFAOYSA-M 0.000 description 2
- 229940113165 trimethylolpropane Drugs 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- SZCWBURCISJFEZ-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) 3-hydroxy-2,2-dimethylpropanoate Chemical compound OCC(C)(C)COC(=O)C(C)(C)CO SZCWBURCISJFEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- ROLAGNYPWIVYTG-UHFFFAOYSA-N 1,2-bis(4-methoxyphenyl)ethanamine;hydrochloride Chemical compound Cl.C1=CC(OC)=CC=C1CC(N)C1=CC=C(OC)C=C1 ROLAGNYPWIVYTG-UHFFFAOYSA-N 0.000 description 1
- TYMYJUHDFROXOO-UHFFFAOYSA-N 1,3-bis(prop-2-enoxy)-2,2-bis(prop-2-enoxymethyl)propane Chemical compound C=CCOCC(COCC=C)(COCC=C)COCC=C TYMYJUHDFROXOO-UHFFFAOYSA-N 0.000 description 1
- ZIJDEADTCQKATN-UHFFFAOYSA-N 1,3-bis(prop-2-enyl)-5-propyl-1,3,5-triazinane-2,4,6-trione Chemical compound CCCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O ZIJDEADTCQKATN-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- UHLWGJNVYHBNBV-UHFFFAOYSA-N 1-(1-hydroxypropan-2-yloxy)-3-methoxypropan-2-ol;prop-2-enoic acid Chemical compound OC(=O)C=C.COCC(O)COC(C)CO UHLWGJNVYHBNBV-UHFFFAOYSA-N 0.000 description 1
- NQUXRXBRYDZZDL-UHFFFAOYSA-N 1-(2-prop-2-enoyloxyethyl)cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1(CCOC(=O)C=C)C(O)=O NQUXRXBRYDZZDL-UHFFFAOYSA-N 0.000 description 1
- KBVVEEWTRWVZNY-UHFFFAOYSA-N 1-(2-sulfanylacetyl)oxyhexyl 2-sulfanylacetate Chemical compound CCCCCC(OC(=O)CS)OC(=O)CS KBVVEEWTRWVZNY-UHFFFAOYSA-N 0.000 description 1
- SAMJGBVVQUEMGC-UHFFFAOYSA-N 1-ethenoxy-2-(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOC=C SAMJGBVVQUEMGC-UHFFFAOYSA-N 0.000 description 1
- BVTLTBONLZSBJC-UHFFFAOYSA-N 2,4,6-tris(ethenyl)-2,4,6-trimethyl-1,3,5,2,4,6-trioxatrisilinane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O1 BVTLTBONLZSBJC-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- ZDTLUUIYCAMIMQ-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-methoxyethanol;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.COC(O)COCCO ZDTLUUIYCAMIMQ-UHFFFAOYSA-N 0.000 description 1
- IEQWWMKDFZUMMU-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethyl)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)CCOC(=O)C=C IEQWWMKDFZUMMU-UHFFFAOYSA-N 0.000 description 1
- PSYGHMBJXWRQFD-UHFFFAOYSA-N 2-(2-sulfanylacetyl)oxyethyl 2-sulfanylacetate Chemical compound SCC(=O)OCCOC(=O)CS PSYGHMBJXWRQFD-UHFFFAOYSA-N 0.000 description 1
- RMFCMEVNMFHDSL-UHFFFAOYSA-N 2-(3,4-dichlorophenyl)ethanimidamide Chemical compound NC(=N)CC1=CC=C(Cl)C(Cl)=C1 RMFCMEVNMFHDSL-UHFFFAOYSA-N 0.000 description 1
- DUCKYHSGDZYUPR-UHFFFAOYSA-N 2-(3-sulfanylpropanoyloxy)propyl 3-sulfanylpropanoate Chemical compound SCCC(=O)OC(C)COC(=O)CCS DUCKYHSGDZYUPR-UHFFFAOYSA-N 0.000 description 1
- QSOFJLDXOMMNNK-UHFFFAOYSA-N 2-(hydroxymethyl)-2-methylpropane-1,3-diol 3-sulfanylbutanoic acid Chemical compound CC(S)CC(O)=O.CC(S)CC(O)=O.CC(S)CC(O)=O.OCC(C)(CO)CO QSOFJLDXOMMNNK-UHFFFAOYSA-N 0.000 description 1
- CFKONAWMNQERAG-UHFFFAOYSA-N 2-[2,4,6-trioxo-3,5-bis[2-(3-sulfanylpropanoyloxy)ethyl]-1,3,5-triazinan-1-yl]ethyl 3-sulfanylpropanoate Chemical compound SCCC(=O)OCCN1C(=O)N(CCOC(=O)CCS)C(=O)N(CCOC(=O)CCS)C1=O CFKONAWMNQERAG-UHFFFAOYSA-N 0.000 description 1
- COORVRSSRBIIFJ-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]-1-methoxyethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(O)COCCOCCO COORVRSSRBIIFJ-UHFFFAOYSA-N 0.000 description 1
- VETIYACESIPJSO-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound OCCOCCOCCOC(=O)C=C VETIYACESIPJSO-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- SZAOTLOVASMEHW-UHFFFAOYSA-N 2-[2-(3-sulfanylbutanoyloxy)ethoxy]ethyl 3-sulfanylbutanoate Chemical compound CC(S)CC(=O)OCCOCCOC(=O)CC(C)S SZAOTLOVASMEHW-UHFFFAOYSA-N 0.000 description 1
- ZQLHFUHXRDOCBC-UHFFFAOYSA-N 2-[2-(3-sulfanylpropanoyloxy)ethoxy]ethyl 3-sulfanylpropanoate Chemical compound SCCC(=O)OCCOCCOC(=O)CCS ZQLHFUHXRDOCBC-UHFFFAOYSA-N 0.000 description 1
- BXYWKXBAMJYTKP-UHFFFAOYSA-N 2-[2-[2-[2-(3-sulfanylpropanoyloxy)ethoxy]ethoxy]ethoxy]ethyl 3-sulfanylpropanoate Chemical compound SCCC(=O)OCCOCCOCCOCCOC(=O)CCS BXYWKXBAMJYTKP-UHFFFAOYSA-N 0.000 description 1
- YIRABDCNWOSJBE-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;2-sulfanylacetic acid Chemical compound OC(=O)CS.OC(=O)CS.OC(=O)CS.OC(=O)CS.OC(=O)CS.OC(=O)CS.OCC(CO)(CO)COCC(CO)(CO)CO YIRABDCNWOSJBE-UHFFFAOYSA-N 0.000 description 1
- HFGWEGUVPBZOEA-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;2-methyl-2-sulfanylpropanoic acid Chemical compound CC(C)(S)C(O)=O.CC(C)(S)C(O)=O.CC(C)(S)C(O)=O.CCC(CO)(CO)CO HFGWEGUVPBZOEA-UHFFFAOYSA-N 0.000 description 1
- IYGAVZICZNAMTF-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;2-methyl-3-sulfanylpropanoic acid Chemical compound SCC(C)C(O)=O.SCC(C)C(O)=O.SCC(C)C(O)=O.CCC(CO)(CO)CO IYGAVZICZNAMTF-UHFFFAOYSA-N 0.000 description 1
- RFMXKZGZSGFZES-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;2-sulfanylacetic acid Chemical compound OC(=O)CS.OC(=O)CS.OC(=O)CS.CCC(CO)(CO)CO RFMXKZGZSGFZES-UHFFFAOYSA-N 0.000 description 1
- WBEKRAXYEBAHQF-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;3-sulfanylbutanoic acid Chemical compound CC(S)CC(O)=O.CC(S)CC(O)=O.CC(S)CC(O)=O.CCC(CO)(CO)CO WBEKRAXYEBAHQF-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- JTMBCYAUSCBSEY-UHFFFAOYSA-N 2-methyl-2-sulfanylpropanoic acid Chemical compound CC(C)(S)C(O)=O JTMBCYAUSCBSEY-UHFFFAOYSA-N 0.000 description 1
- MHRDCHHESNJQIS-UHFFFAOYSA-N 2-methyl-3-sulfanylpropanoic acid Chemical compound SCC(C)C(O)=O MHRDCHHESNJQIS-UHFFFAOYSA-N 0.000 description 1
- MCGWUHXQWMFRNN-UHFFFAOYSA-N 2-n,2-n,4-n,4-n,6-n,6-n-hexakis(prop-2-enyl)-1,3,5-triazine-2,4,6-triamine Chemical compound C=CCN(CC=C)C1=NC(N(CC=C)CC=C)=NC(N(CC=C)CC=C)=N1 MCGWUHXQWMFRNN-UHFFFAOYSA-N 0.000 description 1
- PMNLUUOXGOOLSP-UHFFFAOYSA-M 2-sulfanylpropanoate Chemical compound CC(S)C([O-])=O PMNLUUOXGOOLSP-UHFFFAOYSA-M 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- LYQIPMLFCQTVQK-UHFFFAOYSA-N 3,5-ditert-butyl-4-(2,6-ditert-butyl-4-hydroxyphenyl)phenol Chemical compound CC(C)(C)C1=CC(O)=CC(C(C)(C)C)=C1C1=C(C(C)(C)C)C=C(O)C=C1C(C)(C)C LYQIPMLFCQTVQK-UHFFFAOYSA-N 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoic acid Chemical compound CC(C)(C)C1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- FASUFOTUSHAIHG-UHFFFAOYSA-N 3-methoxyprop-1-ene Chemical compound COCC=C FASUFOTUSHAIHG-UHFFFAOYSA-N 0.000 description 1
- RQPNXPWEGVCPCX-UHFFFAOYSA-N 3-sulfanylbutanoic acid Chemical compound CC(S)CC(O)=O RQPNXPWEGVCPCX-UHFFFAOYSA-N 0.000 description 1
- LABQKWYHWCYABU-UHFFFAOYSA-N 4-(3-sulfanylbutanoyloxy)butyl 3-sulfanylbutanoate Chemical compound CC(S)CC(=O)OCCCCOC(=O)CC(C)S LABQKWYHWCYABU-UHFFFAOYSA-N 0.000 description 1
- JSOVZQSFWPMPKN-UHFFFAOYSA-N 4-(3-sulfanylpropanoyloxy)butyl 3-sulfanylpropanoate Chemical compound SCCC(=O)OCCCCOC(=O)CCS JSOVZQSFWPMPKN-UHFFFAOYSA-N 0.000 description 1
- XESZUVZBAMCAEJ-UHFFFAOYSA-N 4-tert-butylcatechol Chemical compound CC(C)(C)C1=CC=C(O)C(O)=C1 XESZUVZBAMCAEJ-UHFFFAOYSA-N 0.000 description 1
- 102100027123 55 kDa erythrocyte membrane protein Human genes 0.000 description 1
- GKJUPRBEPKGZIK-UHFFFAOYSA-N 8-(3-sulfanylbutanoyloxy)octyl 3-sulfanylbutanoate Chemical compound CC(S)CC(=O)OCCCCCCCCOC(=O)CC(C)S GKJUPRBEPKGZIK-UHFFFAOYSA-N 0.000 description 1
- BINMTSJHTYSQBN-UHFFFAOYSA-N 8-(3-sulfanylpropanoyloxy)octyl 3-sulfanylpropanoate Chemical compound SCCC(=O)OCCCCCCCCOC(=O)CCS BINMTSJHTYSQBN-UHFFFAOYSA-N 0.000 description 1
- 238000006596 Alder-ene reaction Methods 0.000 description 1
- LYJHVEDILOKZCG-UHFFFAOYSA-N Allyl benzoate Chemical compound C=CCOC(=O)C1=CC=CC=C1 LYJHVEDILOKZCG-UHFFFAOYSA-N 0.000 description 1
- VUFZVGQUAVDKMC-UHFFFAOYSA-N Allyl phenoxyacetate Chemical compound C=CCOC(=O)COC1=CC=CC=C1 VUFZVGQUAVDKMC-UHFFFAOYSA-N 0.000 description 1
- XRFWKHVQMACVTA-UHFFFAOYSA-N Allyl propionate Chemical compound CCC(=O)OCC=C XRFWKHVQMACVTA-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101001057956 Homo sapiens 55 kDa erythrocyte membrane protein Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 101100063942 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) dot-1 gene Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- OWENYJIXMBIZBB-UHFFFAOYSA-N [3-(2-methyl-2-sulfanylpropanoyl)oxy-2,2-bis[(2-methyl-2-sulfanylpropanoyl)oxymethyl]propyl] 2-methyl-2-sulfanylpropanoate Chemical compound CC(C)(S)C(=O)OCC(COC(=O)C(C)(C)S)(COC(=O)C(C)(C)S)COC(=O)C(C)(C)S OWENYJIXMBIZBB-UHFFFAOYSA-N 0.000 description 1
- UEUSKMPCQXJIGH-UHFFFAOYSA-N [3-(2-methyl-3-sulfanylpropanoyl)oxy-2,2-bis[(2-methyl-3-sulfanylpropanoyl)oxymethyl]propyl] 2-methyl-3-sulfanylpropanoate Chemical compound SCC(C)C(=O)OCC(COC(=O)C(C)CS)(COC(=O)C(C)CS)COC(=O)C(C)CS UEUSKMPCQXJIGH-UHFFFAOYSA-N 0.000 description 1
- RUDUCNPHDIMQCY-UHFFFAOYSA-N [3-(2-sulfanylacetyl)oxy-2,2-bis[(2-sulfanylacetyl)oxymethyl]propyl] 2-sulfanylacetate Chemical compound SCC(=O)OCC(COC(=O)CS)(COC(=O)CS)COC(=O)CS RUDUCNPHDIMQCY-UHFFFAOYSA-N 0.000 description 1
- VTLHIRNKQSFSJS-UHFFFAOYSA-N [3-(3-sulfanylbutanoyloxy)-2,2-bis(3-sulfanylbutanoyloxymethyl)propyl] 3-sulfanylbutanoate Chemical compound CC(S)CC(=O)OCC(COC(=O)CC(C)S)(COC(=O)CC(C)S)COC(=O)CC(C)S VTLHIRNKQSFSJS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- FPODCVUTIPDRTE-UHFFFAOYSA-N bis(prop-2-enyl) hexanedioate Chemical compound C=CCOC(=O)CCCCC(=O)OCC=C FPODCVUTIPDRTE-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 125000005619 boric acid group Chemical group 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 125000004977 cycloheptylene group Chemical group 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 125000004978 cyclooctylene group Chemical group 0.000 description 1
- 125000004979 cyclopentylene group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- KUQWZSZYIQGTHT-UHFFFAOYSA-N hexa-1,5-diene-3,4-diol Chemical compound C=CC(O)C(O)C=C KUQWZSZYIQGTHT-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- IBKQQKPQRYUGBJ-UHFFFAOYSA-N methyl gallate Natural products CC(=O)C1=CC(O)=C(O)C(O)=C1 IBKQQKPQRYUGBJ-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 150000004712 monophosphates Chemical group 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- HVAMZGADVCBITI-UHFFFAOYSA-M pent-4-enoate Chemical compound [O-]C(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-M 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- PLCFYBDYBCOLSP-UHFFFAOYSA-N tris(prop-2-enyl) 2-hydroxypropane-1,2,3-tricarboxylate Chemical compound C=CCOC(=O)CC(O)(CC(=O)OCC=C)C(=O)OCC=C PLCFYBDYBCOLSP-UHFFFAOYSA-N 0.000 description 1
- VOSUIKFOFHZNED-UHFFFAOYSA-N tris(prop-2-enyl) benzene-1,3,5-tricarboxylate Chemical compound C=CCOC(=O)C1=CC(C(=O)OCC=C)=CC(C(=O)OCC=C)=C1 VOSUIKFOFHZNED-UHFFFAOYSA-N 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D251/00—Heterocyclic compounds containing 1,3,5-triazine rings
- C07D251/02—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
- C07D251/12—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D251/26—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
- C07D251/30—Only oxygen atoms
- C07D251/34—Cyanuric or isocyanuric esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/04—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D307/10—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/12—Radicals substituted by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/12—Esters of monohydric alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F20/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
- C09K11/565—Chalcogenides with zinc cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/40—Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains
Definitions
- the present invention relates to novel compounds, polymerizable compositions and cured products containing these compounds.
- Patent Document 1 discloses a polymer compound that can be used as a pigment dispersant.
- Paragraphs 0148 and 0155 of Patent Document 1 list various inorganic pigments.
- inorganic particles have been widely used in pigment applications and various other applications.
- it is required to enhance the dispersibility of the inorganic particles.
- the present inventor investigated a dispersant for enhancing the dispersibility of inorganic particles.
- a dispersant for such a dispersant, it is desirable that it has excellent solubility in a composition containing inorganic particles in order to satisfactorily exhibit the effect of improving the dispersibility of the inorganic particles.
- a composition containing a polymerizable compound as a composition containing inorganic particles is useful in various applications because the composition can be cured and molded into various shapes such as films. Therefore, as a dispersant for enhancing the dispersibility of inorganic particles, a dispersant exhibiting high solubility in the polymerizable compound is desirable.
- an object of one aspect of the present invention is to provide a novel compound that can contribute to improving the dispersibility of inorganic particles and exhibit high solubility in polymerizable compounds.
- a compound represented by the following general formula (1) In general formula (1), p ranges from 2 to 9; q ranges from 1 to 8; p+q is an integer ranging from 3 to 10; Z represents a (p+q) valent organic group, R 1 and R 2 each independently represent a single bond or a divalent organic group, A 1 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, an isocyanate group and a hydroxy represents a monovalent group containing one or more groups selected from the group consisting of p A 1 's and p R 1 's may each independently be the same or different, P 1 represents a polymer structure containing a partial structure represented by the following general formula (2), when q is 2 or more, q P
- the compound according to [1], wherein the partial structure represented by formula (2) includes a vinyl polymer chain.
- the vinyl polymer chain contains a repeating unit represented by the following general formula (4-1),
- R 45 represents a hydrogen atom or a methyl group
- X 1 , X 2 , Y 1 and n1 each have the same meaning as in general formula (2), *
- the repeating unit represented by the general formula (4-1) is a repeating unit represented by the following general formula (4-3),
- R 45 represents a hydrogen atom or a methyl group
- X 1 , Y 1 and n1 each have the same meaning as in general formula (2)
- * indicates a bonding position with an adjacent atom.
- the compound according to [3], which represents [5] The compound according to any one of [1] to [4], wherein the polymer structure represented by P 1 contains a polyalkylene glycol chain.
- a polymerizable composition comprising the compound according to any one of [1] to [10], inorganic particles, and a polymerizable compound.
- the present invention it is possible to provide a novel compound that can contribute to improving the dispersibility of inorganic particles and exhibit high solubility in polymerizable compounds. Moreover, according to one aspect of the present invention, it is possible to provide a polymerizable composition containing the above compound and a cured product obtained by curing the polymerizable composition.
- FIG. 2 is a plan view of the wavelength conversion member of FIG. 1;
- FIG. 3 is a sectional view taken along line III-III of FIGS. 1 and 2;
- FIG. 4 is a cross-sectional view for explaining an example of the shape of a resin layer of a wavelength conversion member; 4 is a partially enlarged view of FIG. 3;
- FIG. 4 is a cross-sectional view conceptually showing another example of a wavelength conversion member;
- FIG. 4 is a cross-sectional view conceptually showing another example of a wavelength conversion member;
- FIG. 4 is a plan view showing an example of a pattern of a quantum dot-containing portion;
- FIG. 10 is a plan view showing another example of the pattern of the quantum dot-containing portion;
- FIG. 4 is a conceptual diagram for explaining a method of identifying the contour of a quantum dot-containing portion; It is a conceptual diagram for demonstrating an example of the manufacturing method of a wavelength conversion member. It is a conceptual diagram for demonstrating an example of the manufacturing method of a wavelength conversion member. It is a conceptual diagram for demonstrating another example of the manufacturing method of a wavelength conversion member.
- FIG. 2 is a diagram conceptually showing the configuration of an example of a backlight unit; It is a figure which shows notionally the structure of an example of a liquid crystal display device.
- [Compound] One aspect of the present invention relates to a compound represented by general formula (1).
- the compound represented by the general formula (1) has excellent solubility in polymerizable compounds (hereinafter also simply referred to as "solubility") and inorganic particles. It was newly discovered that it can contribute to improvement in dispersibility (hereinafter also simply referred to as “dispersibility”).
- the present inventors speculate that the polymer structure contained as P1 in general formula (1) may contribute to the above-mentioned improvement in solubility.
- the group contained in A 1 in the general formula (1) can function as an adsorption group, and the excellent solubility of the compound represented by the general formula (1) contributes to the improvement of dispersibility. I think it is possible.
- the present invention is not limited to the speculations described herein, including the above.
- p is in the range of 2-9, q is in the range of 1-8, and p+q is an integer in the range of 3-10.
- p is 2 or more, preferably 3 or more.
- p is 9 or less, preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less.
- q is 1 or more, and can be 2 or more.
- q is 8 or less, preferably 7 or less, and more preferably 6 or less, 5 or less, 4 or less, and 3 or less in this order.
- p+q is 3 or greater, and can be 4 or greater or 5 or greater.
- p+q is 10 or less, and can be 9 or less, 8 or less, or 7 or less.
- Z represents a (p+q)-valent organic group.
- the organic group represented by Z includes 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms and Organic radicals composed of 0 to 20 sulfur atoms may be mentioned. Such an organic group may be unsubstituted or may further have a substituent.
- organic group represented by Z include the following structural units or groups (which may form a ring structure) formed by combining two or more of the following structural units. Such an organic group may be unsubstituted or may further have a substituent.
- the organic group represented by Z includes 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 40 oxygen atoms, 1 to 120 hydrogen atoms and Organic groups composed of 0 to 10 sulfur atoms are preferred, 1 to 50 carbon atoms, 0 to 10 nitrogen atoms, 0 to 30 oxygen atoms, 1 More preferred are organic groups consisting of from to 100 hydrogen atoms and from 0 to 7 sulfur atoms, from 1 to 40 carbon atoms, from 0 to 8 nitrogen atoms, from 0 to More preferred are organic radicals consisting of up to 20 oxygen atoms, 1 to 80 hydrogen atoms and 0 to 5 sulfur atoms. Such an organic group may be unsubstituted or may further have a substituent.
- examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as methyl group and ethyl group, an aryl group having 6 to 16 carbon atoms such as phenyl group and naphthyl group, hydroxy group, amino group, carboxy group, sulfonamide group, N-sulfonylamide group, acyloxy group having 1 to 6 carbon atoms such as acetoxy group, alkoxy group having 1 to 6 carbon atoms such as methoxy group, ethoxy group, chlorine atom , a halogen atom such as a bromine atom, a alkoxycarbonyl group having 2 to 7 carbon atoms such as a methoxycarbonyl group, an ethoxycarbonyl group, a cyclohexyloxycarbonyl group, a cyano group, a carbonate group such as t-butyl carbonate, and the like.
- R 1 and R 2 each independently represent a single bond or a divalent organic group.
- p R 1s may be the same or different, and when q is 2 or more, q R 2s may be the same or different.
- Organic groups include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms and 0 to 20 Organic radicals composed of sulfur atoms up to can be mentioned. Such an organic group may be unsubstituted or may further have a substituent.
- organic group represented by R 1 include the following structural units or organic groups formed by combining two or more of the following structural units. Such an organic group may be unsubstituted or may further have a substituent.
- R 1 is a single bond, or 1 to 50 carbon atoms, 0 to 8 nitrogen atoms, 0 to 25 oxygen atoms, 1 to 100 hydrogen atoms, and Divalent organic groups consisting of 0 to 10 sulfur atoms are preferred, single bonds or 1 to 30 carbon atoms, 0 to 6 nitrogen atoms, 0 to 15 more preferably a divalent organic group composed of up to 1 oxygen atoms, 1 to 50 hydrogen atoms and 0 to 7 sulfur atoms, a single bond, or 1 to 10 divalent organic composed of carbon atoms, 0 to 5 nitrogen atoms, 0 to 10 oxygen atoms, 1 to 30 hydrogen atoms and 0 to 5 sulfur atoms groups are more preferred.
- Such an organic group may be unsubstituted or may further have a substituent.
- R 1 include a single bond, the following structural units, or a group formed by combining two or more of the following structural units, and having from 1 to 10 carbon atoms, from 0 to A divalent organic group (having substituents) consisting of up to 5 nitrogen atoms, 0 to 10 oxygen atoms, 1 to 30 hydrogen atoms and 0 to 5 sulfur atoms.
- substituents include alkyl groups having 1 to 20 carbon atoms such as methyl group and ethyl group, aryl groups having 6 to 16 carbon atoms such as phenyl group and naphthyl group, hydroxy group, amino a carboxy group, a sulfonamide group, an N-sulfonylamide group, an acyloxy group having 1 to 6 carbon atoms such as an acetoxy group, an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, a chlorine atom, a bromine atom, etc.
- R 1 can be a linear alkylene group or a branched alkylene group.
- the number of carbon atoms in such an alkylene group can be 1 or more, preferably 2 or more, and can be, for example, 5 or less or 4 or less.
- R2 represents a single bond or a divalent organic group. Details of R 2 are as described for R 1 . Specific examples of R 2 include a single bond, an ethylene group, a propylene group, the following divalent group (a), or the following divalent group (b). In the divalent groups below, R 12 represents a hydrogen atom or a methyl group, and l represents 1 or 2.
- a 1 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, an isocyanate group and a hydroxy represents a monovalent group containing one or more groups selected from the group consisting of groups; Acid groups, basic groups having nitrogen atoms, urea groups, urethane groups, groups having coordinating oxygen atoms, hydrocarbon groups having 4 or more carbon atoms, alkoxysilyl groups, epoxy groups, isocyanate groups and hydroxy groups are adsorbed. can act as a base.
- the p A 1 's may be the same or different.
- an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group , isocyanate groups and hydroxy groups is 1 or more, and can be, for example, 5 or less, 4 or less, 3 or less or 2 or less.
- the term "acidic group” refers to a group having a pKa of 6 or less at 25°C.
- the acidic group include a carboxy group, a sulfonic acid group, a monosulfate group, a phosphoric acid group, a monophosphate group, and a boric acid group. Phosphate groups and monophosphate ester groups are preferred, and carboxy groups, sulfonate groups and phosphate groups are more preferred.
- a carboxy group is a functional group represented by -COOH, and may be contained in the form of -COOH or in the form of a salt in the compound represented by general formula (1).
- a salt of a carboxy group is a salt represented by -COO - M + .
- M + represents a cation such as an alkali metal ion.
- Specific examples of the monovalent group represented by A 1 containing one or more acidic groups include the following groups. In the following, * represents a bonding position with an adjacent atom.
- the term “basic group” refers to a group having a pKa of 4 or more at 25° C. of a conjugate acid.
- the basic group having a nitrogen atom include an amino group (--NH 2 ) and a substituted imino group (--NHR 8 , --NR 9 R10, where R 8 , R 9 and R 10 each independently have a carbon number an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.), a guanidyl group represented by the following formula (a1), an amidinyl group represented by the following formula (a2) etc. can be mentioned.
- R 11 and R 12 each independently represent an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
- R 13 and R 14 each independently represent an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
- Examples of the urea group include -NR 15 CONR 16 R 17 (wherein R 15 , R 16 and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms), and —NR 15 CONHR 17 (wherein R 15 and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, , representing an aryl group having 6 or more carbon atoms or an aralkyl group having 7 or more carbon atoms. or an aralkyl group having 7 or more carbon atoms) is more preferable.
- urethane groups include -NHCOOR 18 , -NR 19 COOR 20 , -OCONHR 21 , -OCONR 22 R 23 (wherein R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are each independently represent an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
- 18 and R 21 each independently represent an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms or an aralkyl group having 7 or more carbon atoms.
- R 18 and R 21 each independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
- Examples of the group having a coordinating oxygen atom include an acetylacetonato group and an acetoacetyl group.
- An acetylacetonato group and an acetoacetyl group are monovalent groups each having the following structure.
- * represents a bonding position with an adjacent atom.
- hydrocarbon groups having 4 or more carbon atoms include alkyl groups having 4 or more carbon atoms, aryl groups having 6 or more carbon atoms, aralkyl groups having 7 or more carbon atoms, and the like.
- an alkyl group having 4 to 15 carbon atoms eg, octyl group, dodecyl group, etc.
- an aryl group having 6 to 15 carbon atoms eg, A phenyl group, a naphthyl group, etc.
- an aralkyl group having 7 to 15 carbon atoms eg, a benzyl group, etc.
- alkyl group having 4 to 15 carbon atoms eg, octyl group, dodecyl group, etc.
- an aryl group having 6 to 15 carbon atoms eg, A phenyl group, a naphthyl group, etc.
- an aralkyl group having 7 to 15 carbon atoms eg, a benzyl group, etc.
- alkoxysilyl groups include trimethoxysilyl groups and triethoxysilyl groups.
- the group represented by A 1 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl 1 to 200 carbon atoms, 0 to 20 nitrogen atoms, 0 to 100 one or more of the groups selected from the group consisting of groups, epoxy groups, isocyanate groups and hydroxy groups
- a monovalent organic group bonded to an organic group (hereinafter also referred to as a “linking group”) composed of an oxygen atom, 1 to 400 hydrogen atoms and 0 to 40 sulfur atoms can be.
- the organic group mentioned as the linking group may be unsubstituted or may further have a substituent.
- the group represented by A 1 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, It can be a group selected from the group consisting of alkoxysilyl groups, epoxy groups, isocyanate groups and hydroxy groups.
- the above linking groups are 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms and 0 to 20 It is preferably an organic group composed of up to 10 sulfur atoms. Such an organic group may be unsubstituted or may further have a substituent.
- organic groups listed above as the linking groups include the following structural units or organic groups formed by combining two or more of the following structural units. Such an organic group may be unsubstituted or may further have a substituent.
- a 1 may include a monovalent organic group represented by the following general formula (3).
- B 1 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, represents a group selected from the group consisting of an epoxy group, an isocyanate group and a hydroxy group, and R 30 represents a single bond or an (a+1)-valent organic group; a represents an integer in the range of 1 to 10, and when a is 2 or more, a B 1 may be the same or different.
- R 30 represents a single bond or an (a+1)-valent organic group
- a represents an integer in the range of 1 to 10, preferably an integer in the range of 1 to 7, more preferably 1 to 5 It is an integer in the range, more preferably an integer in the range 1-3, more preferably 1 or 2.
- (a+1)-valent organic groups include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and Organic radicals consisting of 0 to 20 sulfur atoms may be mentioned. Such an organic group may be unsubstituted or may further have a substituent.
- the (a+1)-valent organic group include the following structural units or organic groups (which may form a ring structure) formed by combining two or more of the following structural units. can. Such an organic group may be unsubstituted or may further have a substituent.
- R 30 is a single bond, or 1 to 50 carbon atoms, 0 to 8 nitrogen atoms, 0 to 25 oxygen atoms, 1 to 100 hydrogen atoms and (a+1) valent organic groups consisting of 0 to 10 sulfur atoms are preferred, single bonds or 1 to 30 carbon atoms, 0 to 6 nitrogen atoms, 0 to 15 oxygen atoms, 1 to 50 hydrogen atoms and 0 to 7 sulfur atoms, more preferably an (a+1) valent organic group consisting of a single bond, or 1 to 10 0 to 5 nitrogen atoms, 0 to 10 oxygen atoms, 1 to 30 hydrogen atoms and 0 to 5 sulfur atoms (a+1) valence is more preferred.
- Such an organic group may be unsubstituted or may further have a substituent.
- P1 represents a polymer structure containing a partial structure represented by general formula (2) below.
- q P 1 's may be the same or different.
- P 1 can contain only one partial structure represented by general formula (2) below, or two different partial structures represented by general formula (2) below. It can also include more.
- a “polymeric structure” in the present invention and herein includes both homopolymeric and copolymeric structures.
- n1 is 1 or more, can be 2 or more, or can be 3 or more. Also, n1 can be, for example, 30 or less, 25 or less, 20 or less, 15 or less, or 10 or less.
- X 1 represents a monovalent organic group
- X 2 represents a divalent organic group
- Y 1 represents a branched divalent hydrocarbon group
- Y 1 and X 1 or X 2 may form a ring.
- the ring to be formed may be a 4- or more-membered ring, for example, a 4- or 10-membered ring.
- X 1 represents a hydrogen atom or a monovalent organic group
- X 2 represents a divalent organic group
- one or more Y 1 represents a branched divalent organic group
- Y 1 and X 1 or X 2 may form a ring.
- the ring to be formed includes, for example, a 3-membered ring or more or a 4-membered ring or more, and a 10-membered ring or less.
- n1 Y 1s may be the same or different.
- the branched divalent hydrocarbon group represented by Y1 is preferably an alkylene group.
- the number of carbon atoms in such an alkylene group can be 1 or more, preferably 2 or more, and can be, for example, 5 or less or 4 or less.
- the divalent organic group represented by Y1 is preferably a hydrocarbon group, more preferably an alkylene group.
- the number of carbon atoms in such an alkylene group can be 1 or more, preferably 2 or more, and can be, for example, 5 or less or 4 or less.
- at least one of the divalent organic groups represented by Y1 is a branched divalent organic group, and a part of Y1 is a linear divalent organic group.
- a part of Y 1 may be a branched divalent organic group, all Y 1 may be a branched divalent organic group, and all Y 1 may be branched It is preferably a divalent organic group having.
- X1 represents a monovalent organic group
- such an organic group can be, for example, a hydrocarbon group, a linear or branched alkyl and the alkyl group may have, for example, 1 to 15 carbon atoms, 1 to 10 carbon atoms, or 1 to 5 carbon atoms.
- X 1 can be a methyl group.
- the partial structure represented by general formula (2) can be included in the side chain portion of the polymer chain.
- Such polymer chains can include vinyl polymer chains.
- a "vinyl polymer chain” is a polymer chain containing a plurality of repeating units represented by the following general formula (4).
- R 40 to R 43 each independently represent a hydrogen atom or a substituent.
- R 40 to R 43 may be a partial structure represented by general formula (2) or may contain a partial structure represented by general formula (2).
- Vinyl polymer chains include those containing only a homopolymer structure in which a plurality of identical repeating units are linked, and those containing two or more different homopolymer structures.
- repeating unit represented by general formula (4) examples include R 40 and R 41 in general formula (4) representing a hydrogen atom, R 42 representing a hydrogen atom or a methyl group, and R 43 generally A repeating unit that is a partial structure represented by formula (2), that is, a repeating unit represented by the following general formula (4-1) can be mentioned.
- the polymer structure represented by P 1 can be a polymer structure represented by the following general formula (4-2).
- R 45 represents a hydrogen atom or a methyl group
- X 1 , X 2 , Y 1 and n1 are each as defined in general formula (2).
- n is 1 or more, and can be, for example, 50 or less or 30 or less.
- X 2 can represent a carbonyl group.
- Such a repeating unit is represented by the following general formula (4-3).
- the polymer structure represented by P 1 can be a polymer structure represented by the following general formula (4-4).
- R 45 represents a hydrogen atom or a methyl group
- X 1 , Y 1 and n1 have the same meanings as in general formula (2).
- n is 1 or more, and can be, for example, 50 or less or 30 or less.
- the polymer structure represented by P 1 can contain a polyalkylene glycol chain.
- a "polyalkylene glycol chain” is a polymer chain containing a plurality of repeating units represented by the following general formula (5).
- Polyalkylene glycol chains include those containing only a homopolymer structure in which a plurality of identical repeating units are linked, and those containing two or more different homopolymer structures.
- R 50 represents a linear alkylene group or a branched alkylene group.
- the number of carbon atoms in such an alkylene group can be 1 or more, preferably 2 or more, and can be, for example, 5 or less or 4 or less.
- the above alkylene group may be unsubstituted or may further have a substituent.
- the polyalkylene glycol chain can be a polypropylene glycol chain.
- a polypropylene glycol chain can be a homopolymer structure in which a plurality of the following repeating units are linked.
- the polymer structure represented by P1 can contain a polyalkylene glycol chain in the partial structure represented by general formula (2).
- a substructure represented by may represent a polyalkylene glycol chain, for example such a substructure may be or comprise a polypropylene glycol chain.
- the partial structure represented by the general formula (2) in the polymer structure represented by P 1 (however, when n1 is 2 or more, Y 1 has a branched 2
- the proportion (i.e., mass-based content) occupied by the portion that is a valent organic group) is preferably 30% by mass or more, more preferably 50% by mass or more, from the viewpoint of further improving dispersibility. It is preferably 70% by mass or more, and more preferably 70% by mass or more.
- the above ratio is also referred to as "branching-containing partial structure content".
- the branch-containing partial structure content is, for example, less than 100% by mass, 95% by mass or less, 90% by mass or less, 85% by mass or less, or 80% by mass or less. can be done.
- the branch-containing partial structure content can be calculated from the structure of the compound.
- n1 is 2 or more
- the portion in which Y1 is a branched divalent organic group in the partial structure represented by general formula (2) is represented by general formula (2), for example.
- the ratio of the partial structure represented by the general formula (2) representing a polypropylene glycol chain to the polymer structure represented by P1 is preferably within the above range.
- weight average molecular weight refers to the weight average molecular weight obtained by converting the measured value measured by gel permeation chromatography (GPC) into polystyrene.
- GPC gel permeation chromatography
- the molecular weight of polymers means the weight-average molecular weight.
- GPC device HLC-8120 (manufactured by Tosoh Corporation)
- the weight average molecular weight of the compound represented by the general formula (1) can be, for example, 3000 or more, and from the viewpoint of further improving dispersibility, it is preferably 4000 or more, and preferably 5000 or more. more preferred. Further, the weight average molecular weight of the compound represented by the general formula (1) can be, for example, 20000 or less, 19000 or less, or 18000 or less, and from the viewpoint of further improving dispersibility, it is preferably 17000 or less. It is preferably 16,000 or less, more preferably 15,000 or less, and even more preferably 14,000 or less.
- acid value is the number of mg of potassium hydroxide required to neutralize 1 g of sample, and is a value measured according to JIS K 2501:2003.
- the acid value of the compound represented by formula (1) is preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more.
- the acid value of the compound represented by formula (1) is preferably 100 mgKOH/g or less, more preferably 90 mgKOH/g or less, from the viewpoint of further improving the solubility.
- the method for synthesizing the compound represented by formula (1) is not particularly limited, and a known method can be employed.
- paragraphs 0114 to 0140 of JP 2007-277514 paragraphs 0145 to 0173 in corresponding US Patent Application Publication No. 2010/233595
- JP 2007-277514 See paragraphs 0266-0348 (paragraphs 0289-0429 in corresponding US Patent Application Publication No. 2010/233595).
- Polymerizable composition One aspect of the present invention relates to a polymerizable composition containing the above compound, inorganic particles, and a polymerizable compound.
- the compound can function as a dispersant for enhancing the dispersibility of the inorganic particles in the polymerizable composition.
- the polymerizable composition can be used for various applications where it is desired to improve the dispersibility of inorganic particles.
- a cured product obtained by curing the polymerizable composition may be included in the wavelength conversion member. Details of this point will be described later.
- inorganic particles refers to particles whose main component is an inorganic substance
- organic particles refers to particles whose main component is an organic substance.
- the main component refers to the component that accounts for the largest amount on a mass basis among the components constituting the particle, and the content of the main component in the particle is, for example, 50% by mass or more, 60% by mass or more, 70% by mass. % or more, 80 wt % or more, 90 wt % or more, 95 wt % or more, or 99 wt % or more, and can be 100 wt % or less, or less than 100 wt %.
- Inorganic particles can also be particles composed entirely of inorganic substances.
- particles composed only of inorganic substances refer to particles containing only inorganic substances, except for impurities that are unavoidably mixed in the manufacturing process.
- the composition can contain the compound and inorganic particles having an average particle size of 0.10 ⁇ m or more.
- Inorganic particles having an average particle diameter of 0.10 ⁇ m or more tend to settle easily, and thus dispersibility tends to decrease. people speculate.
- the "average particle size" of particles such as inorganic particles is a value obtained by the following method.
- the particles before being used in the preparation of the composition will be referred to as "powder".
- the particles to be measured are observed with a scanning electron microscope (SEM) and photographed at a magnification of 5000 times. Observe the powder for particles present as a powder.
- SEM scanning electron microscope
- a cross section of a cured product obtained by curing the polymerizable composition is observed.
- a cross section of the cured product can be observed.
- the primary particle size is measured from the photographed image. For non-spherical particles, the average length of the long axis and the length of the short axis is obtained and used as the primary particle size. In the photographed image, the arithmetic mean of the primary particle diameters of 20 randomly selected particles is taken as the average particle diameter.
- the average particle size of the inorganic particles shown in the examples below is measured by observing the cross section of the cured polymerizable composition using S-3400N manufactured by Hitachi High-Tech Co., Ltd. as a scanning electron microscope. is the value obtained by
- inorganic substances constituting inorganic particles for example inorganic particles having an average particle diameter of 0.10 ⁇ m or more, include alumina particles, titanium oxide particles, silica particles, zirconium oxide particles, zinc oxide particles, and the like. and particles of inorganic layered compounds such as talc.
- alumina particles are particles containing alumina as a main component, as described above regarding inorganic particles. The same applies to the various particles described above. The main components are as described above.
- the average particle size is, for example, the luminance of the wavelength conversion member containing the cured product obtained by curing the polymerizable composition (hereinafter also simply referred to as “luminance”). From the viewpoint of further improvement, it is preferably 0.20 ⁇ m or more, 0.30 ⁇ m or more, 0.40 ⁇ m or more, 0.50 ⁇ m or more, 0.60 ⁇ m or more, 0.70 ⁇ m or more, 0.80 ⁇ m or more, 0.90 ⁇ m The above is more preferable in order of 1.00 ⁇ m or more. On the other hand, from the viewpoint of further improving dispersibility, the average particle size is preferably 5.00 ⁇ m or less, more preferably 4.00 ⁇ m or less, and even more preferably 3.00 ⁇ m or less. .
- the content of inorganic particles having an average particle diameter of 0.10 ⁇ m or more is preferably 3% by mass or more, based on the total amount of the composition, from the viewpoint of further improving the luminance. It is more preferably 5 % by mass or more. Further, for example, from the viewpoint of further improving brightness, the content of inorganic particles having an average particle size of 0.10 ⁇ m or more is preferably 40% by mass or less, preferably 20% by mass, based on the total amount of the composition. The following are more preferable.
- a "polymerizable composition” is a composition containing at least one polymerizable compound, and has the property of being cured by being subjected to a polymerization treatment such as light irradiation or heating.
- a "polymerizable compound” is a compound containing one or more polymerizable groups in one molecule.
- a “polymerizable group” is a group that can participate in a polymerization reaction.
- the compound represented by general formula (1) can exhibit high solubility in polymerizable compounds.
- a (meth)acryloyl group can be mentioned as an example of the polymerizable group.
- the term “(meth)acryloyl” shall be used to indicate one or both of acryloyl and methacryloyl.
- “(Meth)acrylate” refers to a compound containing one or more (meth)acryloyl groups in one molecule.
- the functional number of "(meth)acrylate” to be described later refers to the number of (meth)acryloyl groups contained in one molecule of (meth)acrylate.
- (meth)acrylate “monofunctional” means that the number of (meth)acryloyl groups contained in one molecule is one, and “polyfunctional” means that the number of (meth)acryloyl groups contained in one molecule is (meth) ) The number of acryloyl groups is two or more. Also, the (meth)acryloyl group can be contained in the (meth)acrylate in the form of a (meth)acryloyloxy group.
- the term "(meth)acryloyloxy group” shall be used to indicate one or both of an acryloyloxy group and a methacryloyloxy group.
- (meth)allyl shall be used to indicate one or both of allyl and methallyl.
- a "(meth)allyl compound” means a compound containing one or more (meth)allyl groups in one molecule.
- the functional number of the "(meth)allyl compound” described later refers to the number of (meth)allyl groups contained in one molecule of the (meth)allyl compound.
- “monofunctional” means that the number of (meth)allyl groups contained in one molecule is one
- polyfunctional means that one molecule contains ( It means that the number of meta)allyl groups is two or more.
- the polymerizable composition contains one or two polymerizable compounds containing one or more polymerizable groups per molecule selected from the group consisting of (meth)acryloyl groups and (meth)allyl groups. It can contain more than Such a polymerizable compound may contain only a (meth)acryloyl group out of a (meth)acryloyl group and a (meth)allyl group, or may contain only a (meth)allyl group, It may contain a (meth)acryloyl group and a (meth)allyl group.
- the (meth)acrylate preferably contains at least a polyfunctional (meth)acrylate.
- Polyfunctional (meth)acrylates are also called "first (meth)acrylates”.
- a polyfunctional (meth)acrylate corresponding to the second (meth)acrylate described later shall be interpreted as the second (meth)acrylate.
- the polyfunctional (meth)acrylate that may be contained in the polymerizable composition is one or more of bifunctional or higher (meth)acrylates, It may be one or two or more selected from the group consisting of polyfunctional (meth)acrylates having up to 6-functionality, 2-5-functionality or 2-4-functionality.
- bifunctional (meth)acrylates include neopentyl glycol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, dipropylene glycol di(meth)acrylate, and tripropylene glycol di(meth)acrylate.
- tetraethylene glycol di(meth)acrylate tetraethylene glycol di(meth)acrylate, neopentyl glycol hydroxypivalate di(meth)acrylate, polyethylene glycol di(meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclo Pentanyl di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate and the like can be mentioned.
- trifunctional or higher (meth)acrylates include ECH (Epichlorohydrin)-modified glycerol tri(meth)acrylate, EO (Ethylene Oxide)-modified glycerol tri(meth)acrylate, and PO (Propylene Oxide)-modified glycerol tri(meth)acrylate.
- Acrylate trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, caprolactone-modified trimethylolpropane tri(meth)acrylate, EO-modified trimethylolpropane tri(meth)acrylate, PO-modified trimethylolpropane tri(meth)acrylate
- Acrylate tris(acryloxyethyl) isocyanurate, dipentaerythritol hexa(meth)acrylate, caprolactone-modified dipentaerythritol hexa(meth)acrylate, dipentaerythritol poly(meth)acrylate and the like can be mentioned.
- the molecular weight of the polyfunctional (meth)acrylate contained as the first (meth)acrylate in the polymerizable composition can be, for example, 200 or more. From the viewpoint of the viscosity of the polymerizable composition, the molecular weight of the polyfunctional (meth)acrylate is preferably 1000 or less, more preferably 500 or less.
- the content of the first (meth)acrylate is preferably 10.0% by mass or more, relative to the total amount of the composition, from the viewpoint of suppressing luminance deterioration, that is, improving durability. , more preferably 20.0% by mass or more, and even more preferably 30.0% by mass or more.
- the polymerizable composition may contain only one type of (meth)acrylate, which is the first (meth)acrylate, or may contain two or more types.
- Second (meth)acrylate The (meth)acrylate that can be contained in the polymerizable composition includes a monofunctional or higher ( Meth)acrylates may be mentioned. Such (meth)acrylates are also called “second (meth)acrylates”. It is presumed that the inclusion of the second (meth)acrylate in the polymerizable composition contributes to improving the luminance of the wavelength conversion member containing the cured product obtained by curing the polymerizable composition.
- the second (meth)acrylate has one or more functional groups in one molecule selected from the group consisting of a carboxy group, a hydroxy group, a phosphoric acid group and an amino group.
- the number of such functional groups in one molecule can be from 1 to 3, preferably 1 or 2, more preferably 1.
- these two or more functional groups may be the same or different functional groups.
- a carboxy group may be contained in the form of —COOH or in the form of a salt.
- a salt of a carboxy group is a salt represented by -COO - M + .
- M + represents a cation such as an alkali metal ion.
- the amino group may be a primary amino group, secondary amino group or tertiary amino group. From the viewpoint of further improving luminance, the functional group is preferably a carboxy group, a hydroxy group, or a phosphoric acid group, and more preferably a carboxy group.
- the second (meth)acrylate is a monofunctional or higher (meth)acrylate. From the viewpoint of further improving luminance, the second (meth)acrylate is preferably a monofunctional, difunctional or trifunctional (meth)acrylate, more preferably a monofunctional or bifunctional (meth)acrylate, and a monofunctional (meth)acrylate. (Meth)acrylates are more preferred.
- a monofunctional (meth)acrylate can be represented, for example, by the formula: ALX. In the formula, A represents one of the above functional groups, L represents a divalent linking group, and X represents a (meth)acryloyl group or a (meth)acryloyloxy group.
- the alkylene group include linear or branched alkylene groups having 1 to 3 carbon atoms (eg, methylene group, ethylene group, propylene group, etc.).
- the cycloalkylene group includes cycloalkylene groups having 5 to 8 carbon atoms (eg, cyclopentylene group, cyclohexylene group, cycloheptylene group, cyclooctylene group, etc.).
- the alkylene group may or may not have a substituent, and is preferably an unsubstituted alkylene group. This point also applies to cycloalkylene groups.
- acrylic acid can be mentioned as an example of the monofunctional (meth)acrylate which has a carboxy group.
- the second (meth)acrylate examples include carboxy group-containing (meth)acrylates such as acrylic acid, ⁇ -carboxyethyl acrylate, 2-acryloyloxyethyl-succinic acid, 2-acryloyloxyethylhexahydrophthalic acid, Examples include phosphoric acid group-containing (meth)acrylates such as 2-acryloyloxyethyl acid phosphate, and hydroxy group-containing (meth)acrylates such as 2-hydroxyethyl acrylate.
- carboxy group-containing (meth)acrylates such as acrylic acid, ⁇ -carboxyethyl acrylate, 2-acryloyloxyethyl-succinic acid, 2-acryloyloxyethylhexahydrophthalic acid
- Examples include phosphoric acid group-containing (meth)acrylates such as 2-acryloyloxyethyl acid phosphate, and hydroxy group-containing (meth)acrylates such as 2-hydroxyethyl
- the molecular weight of the (meth)acrylate contained as the second (meth)acrylate in the polymerizable composition may be, for example, 50 or more, and from the viewpoint of further improving durability, it should be 70 or more. is preferred, and 100 or more is more preferred. Further, from the viewpoint of further improving the brightness, the molecular weight of the (meth)acrylate contained as the second (meth)acrylate in the polymerizable composition is preferably 500 or less, more preferably 400 or less. It is more preferably 300 or less, even more preferably 200 or less.
- the content of the second (meth)acrylate is preferably 0.5% by mass or more, based on the total amount of the composition, from the viewpoint of further improving brightness, and 3.0% by mass. % or more is more preferable. Moreover, the content of the second (meth)acrylate is preferably 20.0% by mass or less with respect to the total amount of the composition, from the viewpoint of further improving durability.
- the polymerizable composition may contain only one type of (meth)acrylate as the second (meth)acrylate, or may contain two or more types.
- the (meth)allyl compound may be a monofunctional (meth)allyl compound or a polyfunctional (meth)allyl compound. It is often preferred that at least a polyfunctional (meth)allyl compound is included.
- the (meth)allyl compound one type may be used alone, or two or more types may be used in combination.
- One or more monofunctional (meth)allyl compounds and one or more polyfunctional (meth)allyl compounds A compound may be used in combination.
- monofunctional (meth)allyl compounds include (meth)allyl acetate, (meth)allyl n-propionate, (meth)allyl benzoate, (meth)allylphenyl acetate, (meth)allylphenoxyacetate, (meth) Allyl methyl ether, (meth)allyl glycidyl ether and the like can be mentioned.
- the functionality of the polyfunctional (meth)allyl compound is bifunctional or more, and can be, for example, bifunctional, trifunctional or tetrafunctional.
- polyfunctional (meth)allyl compounds include di(meth)allyl benzenedicarboxylate, di(meth)allyl cyclohexanedicarboxylate, di(meth)allyl maleate, di(meth)allyl adipate, di(meth) allyl phthalate, di(meth)allyl isophthalate, di(meth)allyl terephthalate, glycerin di(meth)allyl ether, trimethylolpropane di(meth)allyl ether, pentaerythritol di(meth)allyl ether, 1,3-di (meth)allyl-5-glycidyl isocyanurate, tri(meth)allyl cyanurate, tri(meth)allyl isocyanurate, tri(meth)allyl trimellitate, tetra(meth)allyl pyromellitate, 1,3,4 ,6-tetra(meth)allylglycoluri
- Preferred (meth)allyl compounds include tri(meth)allyl cyanurate, tri(meth)allyl isocyanurate, di(meth)allyl phthalate, di(meth)allyl isophthalate, di(meth)allyl terephthalate and cyclohexanedicarboxylic acid
- di(meth)allyl can be mentioned, and tri(meth)allyl isocyanurate is more preferable.
- the content of the (meth)allyl compound is preferably 10.0% by mass or more with respect to the total amount of the composition, from the viewpoint of suppressing a decrease in luminance, that is, improving durability. It is more preferably 0.0% by mass or more, and even more preferably 30.0% by mass or more.
- the said polymerizable composition can further contain 1 or more types of quantum dots in one form. Quantum dots are described in more detail below.
- a liquid crystal display device is usually composed of at least a backlight unit and a liquid crystal cell.
- the backlight unit can include at least a member containing quantum dots and a light source.
- Such members are generally called wavelength conversion members. For example, when light is incident on the wavelength conversion member from a light source, the quantum dots are excited by the incident light and emit fluorescence.
- red light, green light, and blue light are emitted from the fluorescent light emitted by the quantum dots and/or the light emitted from the light source and passed through the wavelength conversion member. It can be emitted from the wavelength conversion member.
- the color reproduction range is 72% to 100% compared to the current TV (Television) standards (FHD (Full High Definition), NTSC (National Television System Committee)). %.
- the wavelength conversion member examples include those having a cured product (generally called a "wavelength conversion layer") obtained by curing a polymerizable composition containing quantum dots and a polymerizable compound. Further containing inorganic particles, for example, inorganic particles having an average particle diameter of 0.10 ⁇ m or more in the polymerizable composition containing quantum dots and a polymerizable compound is a wavelength conversion member containing a cured product obtained by curing the polymerizable composition. It is considered preferable from the viewpoint of improving the brightness of the device. However, if the dispersibility of the inorganic particles in the polymerizable composition is low, luminance may be lowered.
- the compound represented by the general formula (1) is a polymerizable composition containing quantum dots, a polymerizable compound and inorganic particles (for example, inorganic particles having an average particle diameter of 0.10 ⁇ m or more) Dispersibility of inorganic particles in It can function as a dispersant for increasing and can also exhibit high solubility for polymerizable compounds.
- the polymerizable composition may contain only one type of quantum dots, or may contain two or more types of quantum dots with different emission properties.
- Quantum dots can be excited by excitation light to emit fluorescence.
- Known quantum dots include quantum dots (A) having an emission central wavelength in a wavelength band of 600 nm or more and 680 nm or less, quantum dots (B) having an emission central wavelength in a wavelength band of 500 nm or more and less than 600 nm, and 400 nm.
- quantum dot (C) having an emission center wavelength in a wavelength band of 500 nm or more.
- Quantum dots (A) can emit red light when excited by excitation light
- quantum dots (B) can emit green light
- quantum dots (C) can emit blue light.
- blue light is incident as excitation light on a wavelength conversion member containing quantum dots (A) and quantum dots (B)
- White light can be embodied by the green light that has passed through the wavelength conversion member and the blue light that has passed through the wavelength conversion member.
- the red light emitted by the quantum dots (A) and the quantum dots (B) White light can be embodied by the green light emitted by and the blue light emitted by the quantum dots (C).
- Quantum dots refer to particles with an average particle size of less than 0.10 ⁇ m.
- the average particle size of the quantum dots can be, for example, 50 nm or less, 20 nm or less, or 10 nm or less, and can be, for example, 1 nm or more, or 3 nm or more.
- Quantum dots can be, for example, inorganic or organic particles.
- inorganic particles refer to particles containing an inorganic substance as a main component.
- Organic particles refer to particles whose main component is an organic substance. The main components are as described above.
- the organic particles can be particles that are composed entirely of organic substances.
- particles composed only of organic substances refer to particles containing only organic substances, except for impurities that are unavoidably mixed in the manufacturing process.
- semiconductor particles with an average particle size of less than 0.10 ⁇ m that is, less than 100 nm, for example, 1 nm or more and 90 nm or less
- Quantum dots include, for example, core-shell type semiconductor nanoparticles.
- cores include group II-VI semiconductor nanoparticles, group III-V semiconductor nanoparticles, multicomponent semiconductor nanoparticles, and the like.
- CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, InP, InAs, InGaP and the like can be mentioned. However, it is not limited to these.
- CdSe, CdTe, InP and InGaP are preferable because they can emit visible light with high efficiency.
- CdS, ZnS, ZnO, GaAs and/or composites thereof can be used as the shell.
- quantum dots for example, known techniques such as paragraphs 0060 to 0066 of JP-A-2012-169271 and paragraphs 0070 to 0076 of WO2018/186300 can be referred to.
- quantum dots commercial products can be used, and those produced by known methods can also be used.
- the emission properties of quantum dots can typically be tuned by particle composition and/or size.
- the "half width" of a peak refers to the width of the peak at 1/2 of the peak height.
- light having an emission central wavelength in a wavelength band of 400 nm or more and less than 500 nm is called blue light
- light having an emission central wavelength in a wavelength band of 500 nm or more and less than 600 nm is called green light
- 600 nm or more and 680 nm or less. is called red light.
- the content of quantum dots can be, for example, in the range of 0.1 to 10.0% by mass with respect to the total amount of the composition.
- the content of each component with respect to the total amount of the composition means that when the polymerizable composition contains a solvent, the total content of all components excluding the solvent is 100.
- the content rate calculated as 0% by mass shall be referred to.
- the content of each component with respect to the total amount of the composition refers to the content calculated assuming that the total content of all components contained in the composition is 100.0% by mass.
- a certain component may be used only 1 type, and may be used 2 or more types. When two or more types are used as a certain component, the content of that component refers to the total content of those components.
- the polymerizable composition can optionally contain one or more components in addition to the components described above.
- optional components include polymerization initiators, polymers, viscosity modifiers, silane coupling agents, surfactants, antioxidants, oxygen getter agents, and light scattering particles.
- specific examples of the additive for example, paragraphs 0108 to 0137, paragraphs 0162, 0163 and paragraphs 0165 to 0169 of WO2018/186300 can be referred to.
- the polymerizable composition may contain no solvent, or may contain one or more solvents as necessary.
- the type and amount of solvent added are not limited. For example, one or more organic solvents can be used as the solvent.
- the following components can also be mentioned as components that can be arbitrarily contained in the polymerizable composition.
- the following components are suitable, for example, as components of the polymerizable composition for forming the cured product contained in the wavelength conversion member.
- Components contained in such a polymerizable composition include the above inorganic particles, polymerizable compounds and quantum dots.
- the compound represented by the general formula (1) can contribute to, for example, increasing the dispersibility of inorganic particles (for example, inorganic particles having an average particle diameter of 0.10 ⁇ m or more) in such a polymerizable composition, Moreover, it can exhibit high solubility in such a polymerizable composition.
- the polymerizable composition can optionally contain one or more monofunctional (meth)acrylates, for example, as a diluent or the like, in addition to the above components.
- monofunctional (meth)acrylates shall not include monofunctional (meth)acrylates having the above-described functional groups possessed by the second (meth)acrylate.
- Monofunctional (meth)acrylates that may optionally be included include isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, lauryl (meth)acrylate, and the like.
- the content of the monofunctional (meth)acrylate may be 0% by mass, 0% by mass or more, or more than 0% by mass with respect to the total composition amount of the polymerizable composition.
- the content is 50.0% by mass with respect to the total amount of the polymerizable composition from the viewpoint of further improving durability. The following are preferable.
- the polymerizable composition can optionally contain one or more polyfunctional thiols.
- a "polyfunctional thiol” is a compound having two or more thiol groups in one molecule. Functionality for a thiol refers to the number of thiol groups contained in one thiol molecule.
- the polyfunctional thiol that can be contained in the polymerizable composition is a thiol with a functionality of two or more, preferably a thiol with a functionality of three or more.
- the polyfunctional thiol can be, for example, a thiol having a functionality of 8 or less, 7 or less, 6 or less, 5 or less, or 4 or less.
- the polyfunctional thiol is preferably one or more selected from the group consisting of bifunctional to hexafunctional polyfunctional thiols, and bifunctional to tetrafunctional It is more preferably one or two or more selected from the group consisting of polyfunctional thiols, and one or two or more selected from the group consisting of trifunctional or tetrafunctional polyfunctional thiols. More preferably, it is a trifunctional thiol.
- polyfunctional thiols include ethylene bis(thioglycolate), diethylene glycol bis(3-mercaptopropionate), tetraethylene glycol bis(3-mercaptopropionate), 1,2-propylene glycol bis(3 -mercaptopropionate), diethylene glycol bis(3-mercaptobutyrate), 1,4-butanediol bis(3-mercaptopropionate), 1,4-butanediol bis(3-mercaptobutyrate), 1, 8-octanediol bis(3-mercaptopropionate), 1,8-octanediol bis(3-mercaptobutyrate), hexanediol bisthioglycolate, trimethylolpropane tris(3-mercaptopropionate), tri Methylolpropane tris (3-mercaptobutyrate), Trimethylolpropane tris (3-mercaptoisobutyrate), Tri
- polyfunctional thiols As polyfunctional thiols, commercially available products can be used, and those synthesized by known methods can also be used. Examples of commercially available products include commercially available polyfunctional thiols such as SC Organic Chemical Co., Ltd.'s trade name Multiiol Y3.
- the molecular weight of the polyfunctional thiol contained in the polymerizable composition can be, for example, 200 or more, and is preferably 300 or more from the viewpoint of further improving durability. Moreover, from the viewpoint of further improving brightness, the molecular weight of the polyfunctional thiol is preferably 1000 or less, more preferably 500 or less. Regarding the molecular weight, the molecular weight of the second (meth)acrylate is preferably equal to or less than the molecular weight of the polyfunctional thiol, more preferably less than the molecular weight of the polyfunctional thiol.
- the second (meth) acrylate having a molecular weight equal to or less than the molecular weight of the polyfunctional thiol easily approaches the vicinity of the quantum dot even if the quantum dot is coordinated to the polyfunctional thiol, and the surface of the quantum dot is formed by the polyfunctional thiol. It is presumed that the non-coated portion tends to be adsorbed. It is speculated that this can contribute to increasing the coverage of ligands on the surface of the quantum dots and further improving the brightness.
- the molecular weight ratio calculated as "molecular weight ratio (unit: %) (molecular weight of the second (meth) acrylate / molecular weight of the polyfunctional thiol) x 100" is preferably 100% or less, and is 80% or less. It is more preferable that it is 50% or less.
- the content of the polyfunctional thiol is preferably 5.0% by mass or more, and 10.0% by mass, based on the total amount of the composition, from the viewpoint of further improving durability. It is more preferably 15.0% by mass or more, and even more preferably 15.0% by mass or more. Further, from the viewpoint of further improving durability, the content of the polyfunctional thiol is preferably 40.0% by mass or less, more preferably 35.0% by mass or less, relative to the total amount of the composition. The content is preferably 30.0% by mass or less, more preferably 25.0% by mass or less, and even more preferably 20.0% by mass or less.
- the polymerizable composition may contain only one type of polyfunctional thiol, or may contain two or more types.
- the polymerizable composition can include a phenolic compound.
- a phenolic compound can contribute to suppressing viscosity change over time of a polymerizable composition containing a compound having a (meth)acryloyl group and a polyfunctional thiol, that is, improving liquid stability. This point will be further explained below.
- a composition containing both a compound containing a thiol group and a compound containing a (meth)acryloyl group tends to increase in viscosity over time due to the progress of the thiol-ene reaction.
- the phenolic compound can act as a polymerization inhibitor, thereby suppressing the viscosity increase. Moreover, it is considered that the phenolic compound can contribute to further improvement in luminance of the wavelength conversion member containing the cured product obtained by curing the polymerizable composition. Although it is only speculation, it is possible that the phenolic compound may be adsorbed on the surface of the quantum dots, and this may contribute to further improvement in luminance. However, this is only a guess and does not limit the present invention.
- phenolic compound is used to include phenol and its derivatives.
- a phenolic compound can be represented by the following general formula (6).
- R 60 to R 64 each independently represent a hydrogen atom or a substituent.
- substituents include a hydroxy group, an alkyl group, and a carboxy group optionally substituted with an alkyl group.
- alkyl groups include linear or branched alkyl groups having 1 to 6 carbon atoms.
- Alkyl groups include unsubstituted and substituted alkyl groups. When having a substituent, the number of carbon atoms refers to the number of carbon atoms in the portion excluding the substituent.
- substituents that can substitute an alkyl group include a hydroxy group and a carboxy group. In one form, the alkyl group is preferably an unsubstituted alkyl group. The above also applies to the alkyl group that can substitute the carboxy group.
- the number of hydroxy groups contained in one molecule of the phenolic compound is preferably in the range of 1 to 3, more preferably 2 or 3, and still more preferably 3.
- the hydroxy group substitution position is not limited, and the hydroxy group can be substituted at any position.
- phenolic compounds include pyrogallol, methyl gallate, 4-tert-butylpyrocatechol, 2,6-di-tert-butyl-p-cresol, 4-methoxy-phenol, 2-tert -butyl-4,6-dimethylphenol, 4,4'-butylidenebis(6-tert-butyl-m-cresol), 2,6-di-tert-butylphenol, 2,2',6,6'-tetra- tert-butyl-[1,1′-biphenyl]-4,4′-diol, 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid and the like can be mentioned.
- Pyrogallol can be mentioned as a preferable phenolic compound.
- the content of pyrogallol is 0.001% by mass or more relative to the total amount of the composition, from the viewpoint of further improving brightness and/or further improving liquid stability. It is preferably 0.003% by mass or more, more preferably 0.005% by mass or more. From the viewpoint of further suppressing the decrease in brightness, that is, further improving durability, the content of pyrogallol in the polymerizable composition is preferably 0.500% by mass or less with respect to the total amount of the composition. , is more preferably 0.300% by mass or less, and even more preferably 0.100% by mass or less.
- the polymerizable composition may contain only one type of phenolic compound, or may contain two or more types of phenolic compounds. When two or more types are included, the content of each phenolic compound can be referred to the above description regarding the content of pyrogallol.
- the above polymerizable composition can be prepared by mixing the above various components simultaneously or sequentially in any order.
- One aspect of the present invention relates to a cured product obtained by curing the polymerizable composition.
- the degree of curing of the cured product is not limited.
- the cured product may be a cured product in which the polymerization reaction of the polymerizable composition has partially progressed (generally referred to as a partially cured product, a semi-cured product, etc.), and the polymerization reaction is saturated or almost saturated.
- a cured product (generally called a completely cured product or the like) may be used.
- the cured product can be used for various purposes as a member containing inorganic particles.
- the wavelength conversion member includes a wavelength conversion layer that is a cured product obtained by curing the polymerizable composition containing quantum dots (hereinafter also referred to as "quantum dot-containing polymerizable composition") into a film.
- quantum dots hereinafter also referred to as "quantum dot-containing polymerizable composition”
- the wavelength conversion member may have a wavelength conversion layer having a resin layer having a plurality of discretely arranged recesses, and the quantum dot-containing polymerizable composition is added to the resin layer. Cured cured products can be included.
- the wavelength conversion member of the above-described form will be described in more detail. Description may be made below with reference to the drawings. However, the forms shown in the drawings are exemplifications, and the present invention is not limited to such exemplifications.
- FIG. 1 shows a perspective view of an example of the wavelength conversion member
- FIG. 2 shows a plan view of the wavelength conversion member shown in FIG. 1
- FIG. 3 shows a sectional view taken along line III-III of FIGS. 1 and 2.
- a plan view of the wavelength conversion member is a view of the wavelength conversion member viewed from a direction orthogonal to the main surface (maximum surface). is viewed from the second base film side.
- the wavelength conversion member 10 has a first substrate film 12, a second substrate film 14, and a wavelength conversion layer 16.
- the second base film 14 is indicated by broken lines in FIG. 1, and the second base film 14 is omitted in FIG.
- the first base film 12 has, as an example, a support film 12a and a barrier layer 12b.
- the second base film 14 similarly has a support film 14a and a barrier layer 14b.
- the wavelength conversion layer 16 includes a resin layer 18 (see FIG. 4) having recesses 18a discretely formed in the surface direction (main surface direction) of the wavelength conversion member 10, and a resin layer 18 (see FIG. 4).
- the quantum dot-containing portion 20 has quantum dots 24 and a matrix 26 formed by a polymerization reaction of a polymerizable compound. That is, the wavelength conversion layer 16 is provided with a plurality of quantum dot-containing portions 20 each including the quantum dots 24 spaced apart in the plane direction. Specifically, the quantum dot-containing portions, which are regions containing the quantum dots 24, are spaced apart from each other in the plane direction by walls forming the concave portions 18a of the resin layer 18 and arranged discretely in the plane direction.
- the term “discretely arranged” more specifically means that, as shown in FIGS. It means that the plurality of quantum dot-containing parts 20 are arranged in isolation without contacting each other in the surface direction of the first base film 12 when viewed in plan.
- the plane direction of the film is, in other words, a two-dimensional direction along the film surface (main surface of the film).
- the quantum dot-containing portion has a cylindrical shape, is surrounded by the resin layer 18 in the surface direction of the first base film 12, and the resin layer 18 allows the first base film 12 to It is difficult for oxygen to enter the individual quantum dot-containing portions from the plane direction.
- the resin layer 18 preferably has impermeability to oxygen in at least the wall portion forming the recess 18a, and more preferably in the entire region of the resin layer 18 .
- the wavelength conversion layer 10 can thereby prevent deterioration of the quantum dots 24 in the quantum dot-containing portion 20 .
- "having impermeability to oxygen” means having an oxygen permeability of 10 cc/(m 2 ⁇ day ⁇ atm) or less.
- the oxygen permeability of the resin layer 18 impermeable to oxygen is preferably 1 cc/(m 2 ⁇ day ⁇ atm) or less, more preferably 1 ⁇ 10 ⁇ 1 cc/(m 2 ⁇ day ⁇ atm) or less. ) below.
- the SI unit of oxygen permeability is [fm/(s ⁇ Pa)].
- the oxygen permeability is measured using an oxygen gas permeability measuring device (OX-TRAN 2/20 manufactured by MOCON) under conditions of a measurement temperature of 23 ° C. and a relative humidity of 90%.
- gas barrier property means having impermeability to gas (gas)
- water vapor barrier property means having impermeability to water vapor.
- a layer that is impermeable to both oxygen and water vapor is also referred to as a "barrier layer.”
- the quantum dot-containing portions 20 are discretely arranged in the two-dimensional direction. Therefore, assuming that the wavelength conversion member 10 is part of a long film, the wavelength conversion member 10, as shown by the dashed line in FIG.
- the quantum dot-containing portions other than the quantum dot-containing portions that are formed can be surrounded by the resin layer 18 and kept sealed in the plane direction. Also, the quantum dot-containing portion that has been cut and exposed to the air may lose its original function as a region containing the quantum dots 24 .
- the quantum dot-containing portion at the cut position that is, the quantum dot-containing portion at the end in the plane direction is usually covered with a member such as a frame constituting a display device (display).
- the deactivated quantum dots can become a resin layer that protects the quantum dot-containing portion, which is not exposed to the outside air, from the outside air.
- the first base film 12 is laminated on the main surface of the resin layer 18 of the wavelength conversion layer 16 on the bottom side of the recesses 18 a. That is, the first base film 12 is laminated on the main surface of the recess 18 a of the resin layer 18 on the closed surface (closed end) side. In the illustrated example, the first base film 12 is laminated with the barrier layer 12b facing the resin layer 18 side.
- the second base film 14 is laminated on the main surface of the resin layer 18 constituting the wavelength conversion layer 16 on the side opposite to the first base film 12 . That is, the second base film 14 is laminated on the main surface of the resin layer 18 on the side of the open surface (open end) of the concave portion 18a. In the illustrated example, the second base film 14 is laminated with the barrier layer 14b facing the resin layer 18 side.
- the wavelength conversion layer may have through holes instead of recesses, and the through holes may be filled with quantum dot-containing parts using the base film as the bottom surface.
- one of the two base films sandwiching the resin layer, that is, the wavelength conversion layer is regarded as the first base film and the other is regarded as the second base film.
- the first base film is regarded as the bottom of the concave portion of the resin layer.
- quantum dots are also provided between the second base film 14 and the end of the wall portion of the resin layer 18 separated from the second base film 14 on the second base film 14 side. It is preferred that inclusions are present.
- a wall portion that divides a quantum dot-containing portion into a plurality of regions in a wavelength conversion member having a configuration in which a wavelength conversion layer in which a quantum dot-containing portion is divided into a plurality of regions is sealed with two base films.
- the second base film 14 side of the wavelength conversion member 10, i.e., the opening side of the recesses 18a of the resin layer 18 is "up"
- the first base film 12 side, i.e., the bottom of the recesses 18a of the resin layer 18 The side is also called “bottom”.
- the wall portion forming the concave portion 18a of the resin layer 18 is the portion between the concave portions 18a of the resin layer 18 and the outer circumference of the resin layer 18 in the plane direction of the base film. It is the part that forms. That is, the wall portion forming the concave portion 18a of the resin layer 18 is, in other words, the region between the quantum dot-containing portions in the plane direction of the wavelength conversion layer 16 and the outermost quantum dot portion in the plane direction. It is the resin layer 18 in the region outside the dot-containing portion.
- the quantum dot-containing portion (the quantum dot-containing portion in the recess 18a) is cylindrical, and the wall portion forming the recess 18a of the resin layer 18 has a rectangular cross-sectional shape. have.
- the present invention is not limited to this, and the cross-sectional shape of the wall can be various shapes.
- the wall portion forming the recess 18a of the resin layer 18 may have a trapezoidal cross-sectional shape, as conceptually shown on the left side of FIG. It may have a cross-sectional shape in which the corners on the upper base side of a trapezoid are chamfered into a curved surface.
- the cross-sectional shape of the wall portion of the resin layer 18 is preferably such a shape as shown in FIG. 4 that gradually expands downward from the upper end to at least a portion, preferably from the upper end to the lower end.
- “from the upper end downward” means from the end on the second base film 14 side toward the first base film 12 side.
- a shape in which the corners of the upper surface on the side of the second base film are chamfered is preferable.
- Such a shape is advantageous in terms of ease of manufacturing a mold for forming the resin layer 18, ease of removal of the mold when forming the resin layer 18, and prevention of damage to the resin layer 18 to be formed. be.
- the upper end of the wavelength conversion layer 16 is separated from the second base film 14 in the wall portion forming the concave portion 18 a of the resin layer 18 .
- the quantum dot-containing portion is also provided between the second substrate film 14 and the upper end of the wall separated from the second substrate film 14 .
- all the walls are separated from the second base film 14 at the upper ends thereof, and quantum dots are formed between the walls and the second base film 14 .
- a containing portion is provided.
- a coating liquid (resin layer-forming composition) to be the resin layer is applied to a mold having unevenness corresponding to the concave portions and wall portions of the resin layer. is filled, the first base film is laminated so as to cover the coating liquid filled in the mold, the coating liquid that becomes the resin layer is cured, and the mold is removed to form the first base film and the resin layer to form a laminate with. Then, the recesses of the resin layer are filled with the quantum dot-containing polymerizable composition, and the resin layer is laminated with a second base film so as to seal the quantum dot-containing polymerizable composition filled in the resin layer.
- the quantum dot-containing polymerizable composition is cured to obtain a wavelength conversion member in which a wavelength conversion layer having a resin layer and a quantum dot-containing portion is sandwiched between a first base film and a second base film. to make.
- the first base film and the resin layer can be laminated with sufficient adhesion because the coating liquid is cured after the resin layer is laminated in the state of the coating liquid. Moreover, since the resin layer and the quantum dot-containing portion are also cured after the quantum dot-containing polymerizable composition is filled in the concave portions, they can be laminated with sufficient adhesion.
- the region corresponding to the concave portion of the resin layer filled with the quantum dot-containing polymerizable composition is filled with the fluorescent material in the state of a coating liquid and cured. Therefore, good adhesion can be obtained.
- the wall portion forming the recess 18a has an upper end separated from the second base film 14, and not only the recess 18a but also the wall portion separated from the second base film 14. Since the quantum dot-containing portion is also present between the upper end and the second base film 14, the adhesion between the wavelength conversion layer 16 and the second base film 14 can be increased.
- the space between the upper end of the wall part separated from the second base film 14 and the second base film 14 means the wall part whose upper end is separated from the second base film 14. It includes not only the area directly above but also the area between the second substrate film 14 and the concave portion 18a (the upper end portion thereof) adjacent to the wall portion whose upper end is separated from the second substrate film 14 in the plane direction.
- the walls of the resin layer 18 separated from the second base film 14 are all separated from the second base film 14 at the upper ends, and the quantum dots
- the configuration in which the containing portion is provided is not limited. As the number of wall portions of the resin layer 18 separated from the second base film 14 increases, the adhesion between the wavelength conversion layer 16 and the second base film 14 can be increased. Considering this point, in the wavelength conversion layer 16, the upper end of the wall portion of the portion corresponding to the area of 30% or more of the area of the display portion of the display device in which the wavelength conversion member 10 is used is the second base. It is preferable that it is separated from the material film 14, and in the wall part, the upper end is separated from the second base film 14, and the quantum dot-containing part and the second base film 14 can contact the entire surface. more preferred.
- the gap g (shortest distance) between the upper end (uppermost part) of the wall portion and the second base film 14 in the wall portion whose upper end is separated from the second base film is not particularly limited. , are spaced apart from each other (see FIG. 5).
- the gap g between the upper end of the wall portion and the second base film 14 is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 4 ⁇ m, even more preferably 0.1 to 4 ⁇ m.
- the adhesion between the wavelength conversion layer 16 and the second base film 14 can be sufficiently increased.
- the quantum dot-containing portion is more permeable to oxygen than the resin layer 18, if the gap g between the upper end of the wall portion and the second base film 14 is too large, the upper end of the wall portion and the second base film 14 Oxygen may permeate through the gap between and degrade the quantum dots 24 .
- the gap g between the upper end of the wall and the second base film 14 is sufficiently suppressed. As a result, deterioration of the quantum dots 24 caused by oxygen can be prevented.
- the gap g between the upper end of the wall and the second base film 14 is 10 ⁇ m or less, it is possible to prevent a decrease in luminance due to the mixed layer 28 or the impermeable layer 30 being too thick.
- the gap g between the upper end of the wall portion and the second base film 14 is obtained by, for example, cutting the wall portion of the wavelength conversion member 10 with a microtome or the like to form a cross section, and scanning the section with a scanning electron microscope (SEM: It can be obtained by observing with a Scanning Electron Microscope or the like.
- portion of the wall portion of the wavelength conversion member 10 means “a portion of the wavelength conversion member 10 that is not the concave portion 18a".
- the gap g can be obtained as an arithmetic mean of measured values at 10 randomly selected points.
- the depth h of the concave portions 18a of the resin layer 18 and the interval t between adjacent quantum dot containing portions are not particularly limited.
- the thickness of the quantum dot-containing portion from the bottom of the recesses 18a to the second base film 14 is a depth that can be 1 to 100 ⁇ m.
- the interval t between adjacent quantum dot-containing portions is preferably 5 to 300 ⁇ m.
- the thickness (which can also be called the height) of the quantum dot-containing portion is preferably 1 ⁇ m or more from the viewpoint of the ease of reaching the target chromaticity.
- the thickness of the quantum dot-containing portion from the bottom of the concave portion 18a to the second base film 14 is preferably 1 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, even more preferably 10 to 50 ⁇ m.
- the depth h of the concave portion 18a formed in the resin layer 18 and the thickness of the quantum dot-containing portion from the bottom of the concave portion 18a to the second base film 14 can be determined by measuring the concave portion 18a of the wavelength conversion member 10 with a microtome or the like. to form a cross section, and in a state in which the wavelength conversion layer 16 is irradiated with excitation light to cause the quantum dots to emit light, the cross section may be observed using a confocal laser microscope or the like.
- the arithmetic mean of the measured values of 10 randomly selected quantum dot-containing portions can be adopted.
- the interval t between adjacent quantum dot-containing portions that is, the thickness of the wall portion of the resin layer 18 between adjacent quantum dot-containing portions (between adjacent recesses 18a) is set so that the resin layer 18 cannot be visually recognized. For this reason, it is preferable to shorten the length (thin the wall portion).
- the interval t between the adjacent quantum dot-containing portions is a certain value or more. From these points of view, the interval t between adjacent quantum dot-containing portions is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, even more preferably 15 to 100 ⁇ m.
- the interval t between adjacent quantum dot-containing portions is the shortest distance between adjacent quantum dot-containing portions. This interval t is determined by observing the surface from one surface of the wavelength conversion member 10 using a confocal laser microscope or the like in a state in which the wavelength conversion layer 16 is irradiated with excitation light to cause the quantum dots to emit light. It can be obtained by measuring the thickness of the wall portion of the resin layer 18 between the quantum dot-containing portions. Moreover, as the interval t between adjacent quantum dot-containing portions, an arithmetic average of 20 intervals extracted at random can be employed.
- the shape, size, arrangement pattern, etc. of the quantum dot-containing portion are not particularly limited, and may be designed as appropriate. In the design, it is possible to take into consideration geometric restrictions for arranging the quantum dot-containing portions apart from each other in a plan view, tolerance for the width of the non-light-emitting regions generated during cutting, and the like. Further, for example, when using a printing method as one of the methods for forming the quantum dot-containing portion, as described later, it is preferable that the individual occupied area is larger than a certain size from the viewpoint of ease of printing. The occupied area in this case is the occupied area in plan view.
- the shortest distance between the adjacent quantum dot-containing portions that is, the thick wall portion is preferable from the viewpoint of improving the mechanical strength of the wavelength conversion member.
- the shape, size and arrangement pattern of the quantum dot-containing portion may be designed.
- the ratio between the volume Vp of the quantum dot-containing portion and the volume Vb of the resin layer 18 may be any ratio.
- the ratio “Vp / (Vp + Vb)” is preferably 0.1 ⁇ Vp / (Vp + Vb) ⁇ 0.9, more preferably 0.2 ⁇ Vp / (Vp + Vb) ⁇ 0.85, and 0.3 ⁇ Vp/(Vp+Vb) ⁇ 0.8 is more preferable.
- the volume Vp of the quantum dot-containing portion and the volume Vb of the resin layer 18 are defined as the product of the respective areas and thicknesses when observed from the direction orthogonal to the main surface of the wavelength conversion member 10 .
- Quantum dot containing portion may include, in addition to the quantum dot-containing portion, a material that is impermeable to oxygen.
- FIG. 6 conceptually shows an example of this in a cross-sectional view of the wavelength conversion member. Since the wavelength conversion member shown in FIG. 6 includes the same members as the wavelength conversion member 10, the same members are denoted by the same reference numerals, and the description will mainly focus on different parts. Regarding this point, the same applies to other drawings.
- the mixed layer 28 contains quantum dots and a material that is impermeable to oxygen.
- material impermeable to oxygen is also referred to as “oxygen-impermeable material”.
- the term "oxygen-impermeable material” preferably means that when a film of 50 ⁇ m in thickness is formed from this material, the oxygen permeability of this film is 200 cc/(m 2 ⁇ day ⁇ atm ) indicates the following materials. More preferably, the oxygen-impermeable material is a material that, when formed into a film with a thickness of 50 ⁇ m, has an oxygen permeability of 20 cc/(m 2 ⁇ day ⁇ atm) or less. /(m 2 ⁇ day ⁇ atm) or less is more preferable. Specific examples of the oxygen-impermeable material include various materials exemplified later as materials for forming the resin layer 18 . Above all, the mixed layer 28 preferably contains a material containing the same components as the material forming the resin layer 18 as an oxygen-impermeable material.
- the mixed layer 28 is not limited to the structure formed between the upper end of the wall portion and the second base film 14 and on the upper portion of the recess 18a, as shown in FIG.
- the mixed layer 28 may not be formed in the recess 18a, and may be formed only between the upper end of the wall forming the recess 18a and the second base film 14, or may be formed only between the wall forming the recess 18a.
- the upper portion may be the mixed layer 28 and the lower portion may be the quantum dot-containing portion.
- the content of the oxygen-impermeable material in the mixed layer 28 is not particularly limited. The higher the content of the oxygen-impermeable material in the mixed layer 28, the more the quantum dots 24 can be prevented from being degraded by oxygen. On the other hand, when the content of the oxygen-impermeable material in the mixed layer 28 increases, the content of the quantum dots 24 relatively decreases. lower. Considering these points, the content of the oxygen-impermeable material in the mixed layer 28 is preferably, for example, 40 to 90% by mass, more preferably 50 to 80% by mass.
- the thickness of the mixed layer 28 is not particularly limited.
- the content rate of the quantum dots 24 is usually lower than that in the quantum dot-containing portion. Therefore, considering the optical characteristics of the wavelength conversion member 10A, it is preferable that the thickness (vertical size) of the mixed layer 28 is thin.
- the mixed layer 28 is thick. Considering these points, for example, when it is important to prevent deterioration of the quantum dots 24, the entire area between the upper end of the wall portion forming the recess 18a and the second base film 14 should be a mixed layer. is preferred.
- the wavelength conversion member like the wavelength conversion member 10B conceptually shown in FIG.
- Impermeable layer 30 can be a layer that does not contain quantum dots 24 and is formed only from oxygen impermeable materials. Therefore, as with the mixed layer 28, a thicker layer is more advantageous for preventing the quantum dots 24 from deteriorating due to oxygen. On the other hand, from the viewpoint of the optical properties of the wavelength conversion member, it is preferable that it is thin. When the wavelength conversion member 10B has the impermeable layer 30, the thickness of the impermeable layer 30 may be appropriately set in consideration of these points.
- the mixed layer 28 and the impermeable layer 30 can be formed by various methods.
- the wavelength conversion member 10 forms the resin layer 18 on the surface of the first base film 12, fills the recesses 18a of the resin layer 18 with the quantum dot-containing polymerizable composition, and then , the second base film 14 is laminated on the resin layer 18 so as to seal the quantum dot-containing polymerizable composition filled in the resin layer 18, and the quantum dot-containing polymerizable composition to be the quantum dot-containing portion It can be produced by curing an object.
- a coating liquid containing an oxygen-impermeable material is applied to the surface of the second base film 14 on the resin layer 18 side. back.
- the second base film 14 is laminated on the resin layer 18 with the coating liquid containing the oxygen-impermeable material facing the resin layer 18 .
- the quantum dot-containing polymerizable composition that cures to become the quantum dot-containing portion and the coating liquid containing the oxygen-impermeable material are mixed. be done.
- a mixed layer 28 containing an oxygen-impermeable material can be formed between the upper end of the wall and the second base film 14 .
- the coating thickness of the coating liquid containing the oxygen-impermeable material applied to the second base film 14 only the mixed layer 28 is formed, or the mixed layer 28 and the impermeable layer 30 are formed. You can set whether to form both. Specifically, by increasing the coating thickness of the coating liquid containing the oxygen-impermeable material, the impermeable layer 30 can be formed in addition to the mixed layer 28. The thicker the coating liquid of this coating liquid, the more impermeable. The transmission layer 30 becomes thicker. This point will be described in detail later.
- the wavelength conversion member 10 (10A, 10B) has a configuration in which the wavelength conversion layer 16 having such a resin layer 18 and a quantum dot-containing portion is sandwiched between the first base film 12 and the second base film 14. be able to. Furthermore, the wavelength conversion member 10 may have a mixed layer 28 and/or an impermeable layer 30 in addition to the resin layer 18 and the quantum dot-containing portion. Both the first base film 12 and the second base film 14 are preferably films impermeable to oxygen.
- the first base film 12 has a structure in which a barrier layer 12b is laminated on a support film 12a, and the barrier layer 12b is oriented toward the wavelength conversion layer 16. Laminated.
- the second base film 14 also has a structure in which a barrier layer 14b is laminated on a support film 14a and is laminated on the wavelength conversion layer 16 with the barrier layer 14b facing the wavelength conversion layer 16 .
- barrier layer 12b of the first base film 12 various known barrier layers can be used as long as they have oxygen impermeability.
- barrier layer 14b of the second base film 14 various known barrier layers can be used as long as they have oxygen impermeability.
- the first base film 12 and the second base film 14 can have the same configuration except that the lamination positions are different.
- the substrate film 12 is taken as a representative example.
- barrier layer 12b of the first base film 12 various known barrier layers can be used. It preferably has at least one inorganic layer, and more preferably an organic-inorganic laminate type barrier layer having one or more combinations of an inorganic layer and an organic layer serving as a base layer for this inorganic layer.
- the barrier layer 12b of the first base film (and the barrier layer 14b of the second base film 14) is, as shown in the partially enlarged view A of FIG.
- the surface of the support film 12a that is, the base organic layer 34 under the inorganic layer 36 is a base layer (undercoat layer) for forming the inorganic layer 36 properly.
- the inorganic layer 36 is the portion that mainly exhibits barrier properties. Therefore, by forming the base organic layer 34 and forming the inorganic layer 36 thereon, the formation surface of the inorganic layer 36 can be optimized, and the inorganic layer 36 in which the generation of defects is suppressed can be formed. A high barrier property can be obtained.
- the barrier layer 12b in the illustrated example has only one combination of the underlying organic layer 34 and the inorganic layer 36. As shown in FIG. However, this is an example, and the barrier layer may have a plurality of combinations of the base organic layer 34 and the inorganic layer 36 . As the number of combinations of the base organic layer 34 and the inorganic layer 36 increases, a higher barrier property can be obtained.
- the protective organic layer 38 formed on the surface of the inorganic layer 36 is a protective layer (overcoat layer) that mainly protects the inorganic layer 36 that exhibits barrier properties.
- a protective layer overcoat layer
- the inorganic layer 36 can be prevented from being cracked, chipped, etc., and the deterioration of the barrier properties of the barrier layer 12b due to the damage of the inorganic layer 36 can be prevented.
- the quantum dot-containing portion (recess 18a) is columnar and circular in plan view.
- the shape of the quantum dot-containing portion is not particularly limited.
- the quantum dot-containing portion may be a polygonal prism, such as a square in plan view, or a hexagon (honeycomb structure) in plan view, as shown in FIG. It may be a regular polygonal prism.
- the bottom surfaces of the cylinders or polygonal prisms are arranged parallel to the surface of the base film.
- the bottom surface does not necessarily have to be arranged parallel to the base film surface.
- the shape of each quantum dot-containing portion may be irregular.
- the line connecting the points on the side where the quantum dots 24 are not arranged is regarded as the outline of the quantum dot-containing portion (boundary between the quantum dot-containing portion and the resin layer 18) m.
- the positions of the quantum dots can be specified, and thereby the contour m of the quantum dot-containing portion can be determined. can be specified.
- meandering sides of cylinders, polygonal prisms, etc. as shown in the outline of FIG. 10 are also allowed.
- the quantum dot containing part is pattern-arranged periodically.
- a plurality of quantum dot-containing parts are arranged discretely, they may be aperiodic as long as the desired performance is not impaired.
- the quantum dot-containing portions 20 are preferably distributed uniformly over the entire wavelength conversion layer 16 because the in-plane distribution of luminance is uniform.
- Quantum dots 24 in the quantum dot-containing portion may be of one type, or may be of a plurality of types.
- the quantum dot 24 in one quantum dot-containing portion is one type, and among the plurality of quantum dot-containing portions, the region containing the first quantum dot and the second quantum dot different from the first quantum dot.
- the containing regions may be arranged periodically or aperiodically.
- the number of types of quantum dots may be three or more. The details of the quantum dots are as described above.
- the quantum dots are discretely arranged on the film surface, the quantum dots in the quantum dot-containing portion of the cut end may deteriorate.
- the quantum dots in the parts other than the cut ends are surrounded and sealed by resin in the direction along the film surface, the deterioration of performance due to the intrusion of oxygen from the direction along the film surface is suppressed. can.
- the wavelength conversion layer 16 is laminated on one film surface of the first base film 12, and the wavelength conversion layer 16 is further provided with the second wavelength conversion layer 16. It has a structure in which two base films 14 are laminated and the wavelength conversion layer 16 is sandwiched between the two base films.
- the resin layer 18 can be formed by, for example, preparing a resin layer-forming composition containing the same polymerizable compound as the polymerizable compound forming the matrix 26, applying the composition, and curing the composition.
- the resin layer 18 is preferably impermeable to oxygen.
- the resin layer 18 preferably has an oxygen permeability of 10 cc/(m 2 ⁇ day ⁇ atm) or less in the shortest distance between adjacent quantum dot-containing portions across the wall portion forming the recess 18a.
- the oxygen permeability in the shortest distance between adjacent quantum dot-containing portions of the resin layer 18 is preferably 10 cc/(m 2 ⁇ day ⁇ atm) or less, and 1 cc/(m 2 ⁇ day ⁇ atm) or less. more preferably 1 ⁇ 10 ⁇ 1 cc/(m 2 ⁇ day ⁇ atm) or less.
- the desired shortest distance between the quantum dot-containing parts that is, the desired interval t between the quantum dot-containing parts (recesses 18a) differs.
- the shortest distance between adjacent quantum dot-containing portions of the resin layer 18 means the shortest distance in the film plane between adjacent quantum dot-containing portions when observed from the main surface of the wavelength conversion member.
- the elastic modulus of the resin layer 18 is preferably 0.5 to 10 GPa, more preferably 1 to 7 GPa, even more preferably 3 to 6 GPa. It is preferable to keep the elastic modulus of the resin layer within the above range in order to prevent defects during formation of the resin layer while maintaining the desired oxygen permeability.
- the elastic modulus of the resin layer is measured by a method exemplified in JIS (Japanese Industrial Standards) K 7161 or the like.
- paragraphs 0174 to 0179 of WO2018/186300 can be referred to.
- the resin layer-forming composition can contain a compound having a bifunctional or higher photopolymerizable cross-linking group.
- compounds having a bifunctional or higher photopolymerizable crosslinking group include polymerizable compounds such as (meth)acrylates, (meth)allyl compounds, allyl ether compounds, vinyl compounds, and vinyl ether compounds.
- Polymerizable compounds such as (meth)allyl compounds, allyl ether compounds, vinyl compounds and vinyl ether compounds tend to have poor homopolymerizability compared to (meth)acrylates. For this, it is preferable to form a resin layer containing a thiol-ene resin.
- thiol-ene resins are generally flexible resins compared to (meth)acrylate crosslinked products, isocyanate It is preferable to use a component having a rigid ring structure such as nurate or triazine.
- the first base film 12 (and the second base film 14) can have a structure in which the barrier layer 12b is laminated to the support film 12a.
- Barrier layer 12 b (and barrier layer 14 b ) may also have underlying organic layer 34 , inorganic layer 36 , and protective organic layer 38 .
- Such a first substrate film 12 is laminated on the wavelength conversion layer 16 with the barrier layer 12b facing the wavelength conversion layer 16 . In this configuration, the strength of the wavelength conversion member 10 can be improved by the support film 12a, and film formation can be easily performed.
- the first base film (and the second base film) is not limited to such a structure having the support film 12a and the barrier layer 12b, and the required oxygen resistance is not limited.
- Various film-like materials can be used as long as they can ensure permeability.
- the first base film may be composed only of a support film having sufficient barrier properties.
- a first substrate film having only one inorganic layer formed on the surface of a support film can also be used.
- the first base film 12 preferably has a total light transmittance of 80% or more, more preferably 85% or more, in the visible light region.
- the visible light region is a wavelength region of 380 to 780 nm, and the total light transmittance indicates the arithmetic mean of the light transmittance over the visible light region.
- the first base film 12 preferably has an oxygen permeability of 1 cc/(m 2 ⁇ day ⁇ atm) or less.
- the oxygen permeability of the first base film 12 is more preferably 0.1 cc/(m 2 ⁇ day ⁇ atm) or less, still more preferably 0.01 cc/(m 2 ⁇ day ⁇ atm) or less, and even more preferably. is 0.001 cc/(m 2 ⁇ day ⁇ atm) or less.
- the first base film 12 preferably has a gas barrier property to block oxygen and a water vapor barrier property to block moisture (water vapor).
- the moisture permeability (water vapor permeability) of the first base film 12 is preferably 0.10 g/(m 2 ⁇ day ⁇ atm) or less, more preferably 0.01 g/(m 2 ⁇ day ⁇ atm) or less.
- a strip-shaped support film having flexibility that is transparent to visible light is preferable.
- transparent to visible light means that the light transmittance in the visible light region is 80% or more, preferably 85% or more.
- the light transmittance used as a measure of transparency is determined by measuring the total light transmittance and the amount of scattered light using the method described in JIS K 7105, that is, using an integrating sphere light transmittance measuring device, and calculating the diffuse transmission from the total light transmittance. It can be calculated by subtracting the rate.
- paragraphs 0046 to 0052 of JP-A-2007-290369 and paragraphs 0040-0055 of JP-A-2005-096108 can be referred to.
- the support film 12a examples include a polyethylene terephthalate (PET) film, a film made of a polymer having a cyclic olefin structure, and a polystyrene film.
- PET polyethylene terephthalate
- a film made of a polymer having a cyclic olefin structure examples include polystyrene film.
- the thickness of the support film 12a is preferably 10 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, even more preferably 30 to 300 ⁇ m, from the viewpoint of improving the impact resistance of the wavelength conversion member.
- the absorption rate of light with a wavelength of 450 nm is more preferable.
- the thickness of the support film 12a is preferably 40 ⁇ m or less, more preferably 25 ⁇ m or less.
- the first base film 12 (and the second base film 14) has a barrier layer 12b on one surface of the support film 12a.
- various known barrier layers can be used as the barrier layer 12b. It preferably has at least one inorganic layer, and more preferably an organic-inorganic laminated barrier layer having one or more combinations of an inorganic layer and an organic layer serving as a base for the inorganic layer.
- the barrier layer 12b of the first base film includes, as shown in the partially enlarged view A of FIG. It has a structure in which three layers are laminated, an inorganic layer 36 formed on the layer 34 and a protective organic layer 38 formed on the inorganic layer 36 . In the following description, when there is no need to distinguish between the underlying organic layer 34 and the protective organic layer 38, both are collectively referred to as the "organic layer".
- an "inorganic layer” is a layer containing an inorganic substance as a main component.
- the term “main component” refers to the component that accounts for the largest amount on a mass basis among the components that constitute the layer. This point also applies to the organic layers described below.
- the inorganic layer has an inorganic substance content of 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, or 99% by mass or more. can. Alternatively, it can be a layer composed only of an inorganic substance.
- a layer composed only of an inorganic substance refers to a layer containing only an inorganic substance, excluding impurities that are unavoidably mixed in the manufacturing process.
- the inorganic layer only one kind of inorganic substance may be contained, or two or more kinds thereof may be contained.
- the inorganic layer 36 is preferably a layer having gas barrier properties that block oxygen.
- the oxygen permeability of the inorganic layer is preferably 1 cc/(m 2 ⁇ day ⁇ atm) or less. It is also preferable that the inorganic layer has water vapor barrier properties to block water vapor.
- the thickness of the inorganic layer 36 is preferably 1-500 nm, more preferably 5-300 nm, and even more preferably 10-150 nm. This is because when the thickness of the inorganic layer 36 is within the above range, it is possible to suppress reflection in the inorganic layer 36 while realizing good barrier properties, and to provide a laminated film having a higher light transmittance. .
- an "organic layer” is a layer containing an organic substance as a main component.
- the organic layer has an organic substance content of 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, or 99% by mass or more. can.
- it can be a layer composed only of an organic substance.
- the layer composed only of organic substances refers to a layer containing only organic substances, except for impurities that are unavoidably mixed in the manufacturing process.
- the organic layer may contain only one kind of organic substance, or two or more kinds thereof.
- the organic layer preferably contains a cardopolymer. This is because the adhesive strength between the organic layer and the adjacent layer, particularly the adhesive strength with the inorganic layer, is increased, and further excellent gas barrier properties can be realized.
- the cardopolymer reference can be made to paragraphs 0085 to 0095 of JP-A-2005-096108.
- the thickness of the organic layer is preferably 0.05-10 ⁇ m, more preferably 0.5-10 ⁇ m.
- the thickness of the organic layer is preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
- the thickness of the organic layer is preferably 0.05 to 5 ⁇ m, more preferably 0.05 to 1 ⁇ m.
- paragraphs 0193 to 0196 of WO2018/186300 can also be referred to.
- paragraphs 0193 to 0196 of WO2018/186300 can also be referred to.
- the organic layer may be laminated between the support film and the inorganic layer as a base layer for the inorganic layer, and laminated between the inorganic layer and the wavelength conversion layer as a protective layer for the inorganic layer. may Moreover, when it has two or more inorganic layers, the organic layer may be laminated between the inorganic layers.
- the first base film 12 (and the second base film 14) may have an unevenness imparting layer that imparts an uneven structure on the surface opposite to the surface on the wavelength conversion layer 16 side. It is preferable that the first base film 12 has a roughening layer because the blocking property and/or the slipping property of the base film can be improved.
- the unevenness imparting layer is preferably a layer containing particles. Examples of the particles include inorganic particles such as silica, alumina and metal oxides, and organic particles such as crosslinked polymer particles.
- the unevenness imparting layer is preferably provided on the surface of the substrate film opposite to the wavelength conversion layer, and may be provided on both surfaces.
- the wavelength conversion member 10 can have a light scattering function in order to efficiently extract the fluorescence of the quantum dots to the outside.
- the light scattering function may be provided inside the wavelength conversion layer 16, or a layer having a light scattering function may be separately provided as the light scattering layer.
- the light scattering layer may be provided on the surface of the wavelength conversion layer 16 side of the first base film 12 and / or the second base film 14, or the first base film 12 and / or the second base film It may be provided on the surface of the film 14 opposite to the wavelength conversion layer 16 .
- the unevenness imparting layer it is preferable that the unevenness imparting layer be a layer that can also serve as a light scattering layer.
- mixed layer 28 contains quantum dots 24 that quantum dot-containing portion 20 contains.
- the impermeable layer 30 can be a layer of an oxygen-impermeable material that does not contain the quantum dots 24 .
- Various materials that can be used as materials for forming the resin layer 18 can be used as the oxygen-impermeable material.
- the mixed layer 28 and the impermeable layer 30 preferably contain the same polymerizable compound as the polymerizable compound used to form the resin layer 18 as the oxygen-impermeable material.
- a resin layer forming composition L1 for forming the resin layer 18 is prepared by mixing various components such as a polymerization initiator, inorganic particles, light scattering particles, etc., in addition to a polymerizable compound, if necessary. Also, the quantum dot-containing polymerizable composition L2 is prepared. Furthermore, a mold M having an uneven pattern corresponding to the concave portions 18a and wall portions of the resin layer 18, and the first base film 12 and the second base film 14 for forming the resin layer 18 are provided. prepare.
- the prepared mold M is filled with the prepared resin layer forming composition L1, and 2, the first base film 12 is laminated on the mold M so as to cover the entire surface of the resin layer forming composition L1.
- the resin layer forming composition L1 is cured by ultraviolet irradiation or the like to form the resin layer 18, and the mold M is removed from the resin layer 18 as shown in the fourth row of FIG.
- a laminate is formed in which the resin layer 18 is laminated on one surface of the first base film 12 with the bottoms of the concave portions 18 a facing the first base film 12 .
- the concave portions 18a are filled with the quantum dot-containing polymerizable composition L2 as shown in the first stage of FIG.
- the quantum dot-containing polymerizable composition L2 is raised above the upper end of the wall of the resin layer 18.
- the composition L2 is filled into the recesses 18a.
- the second base film 14 is laminated so as to cover and seal the entire surface of the quantum dot-containing polymerizable composition L2.
- the gap between the upper end of the wall portion of the resin layer 18 and the second base film 14 can be adjusted.
- the gap between the upper end of the wall of the resin layer 18 and the second base film 14 can be adjusted by adjusting the pressure of the laminator.
- the quantum dot-containing polymerizable composition L2 is cured by light irradiation to form a quantum dot-containing part, and as shown in the third row of FIG. 12, it has a quantum dot-containing part and a resin layer 18
- the wavelength conversion member 10 is produced by sandwiching the wavelength conversion layer 16 between the first base film 12 and the second base film 14 .
- the quantum dot-containing polymerizable composition L2 and the coating liquid L3 containing the oxygen-impermeable material are mixed.
- the quantum dot-containing polymerizable composition L2 and the coating liquid L3 containing the oxygen-impermeable material are cured to produce a wavelength conversion member having the mixed layer 28 or the impermeable layer 30 together with the quantum dot-containing portion. can.
- the coating thickness of the coating liquid L3 containing the oxygen-impermeable material on the second base film 14 only the mixed layer 28 is formed, or the mixed layer 28 and the impermeable layer 30 can be set.
- the thickness of the coating liquid L3 containing the oxygen-impermeable material applied to the second base film 14 is thin, only the mixed layer 28 can be formed, and the second base film 14 does not absorb oxygen.
- both the mixed layer 28 and the impermeable layer 30 can be formed. becomes thicker.
- the method of forming the recesses 18a of the resin layer 18 is not limited to the method shown in FIG.
- the mold M is pressed against the resin layer forming composition L1, and then the resin layer forming composition L1 is cured.
- the resin layer forming composition L1 is filled between the first base film 12 and the mold M, and then the resin layer is formed.
- a method of curing the composition L1 for the coating is exemplified.
- a resin layer 18 having recesses 18a may be formed by forming a resin layer 18 having recesses 18a by etching after forming a planar resin layer, or using a printing method such as an inkjet method or a dispenser method. can also be used.
- Backlight unit According to one aspect of the present invention, it is possible to provide a backlight unit including the wavelength conversion member and a light source.
- FIG. 14 is a schematic diagram showing a schematic configuration of a backlight unit.
- the backlight unit 50 includes a light source 52A that emits primary light (blue light L B ) and a light guide plate 52B that guides and emits the primary light emitted from the light source 52A.
- the reflecting plate 56A, the light guide plate 52B, the wavelength converting member 54 and the retroreflective member 56B are shown separated from each other, but actually they may be formed in close contact with each other.
- the wavelength conversion member 54 uses at least part of the primary light LB emitted from the planar light source 52C as excitation light to emit fluorescence, and secondary light (green light LG , red light LR ) composed of this fluorescence. and the primary light LB that has passed through the wavelength conversion member 54 is emitted.
- the wavelength conversion layer 16 including quantum dots that emit green light LG and quantum dots that emit red light LR when irradiated with blue light LB is composed of the first base film 12 and the second base film 12.
- the wavelength conversion member 10 is configured by being sandwiched between two base films 14 .
- LB , LG , and LR emitted from the wavelength converting member 54 are incident on the retroreflective member 56B, and each incident light is reflected between the retroreflective member 56B and the reflector 56A.
- the light can be reflected repeatedly and pass through the wavelength conversion member 54 many times.
- a sufficient amount of excitation light blue light LB
- a sufficient amount of fluorescence LG , LR
- white light LW is embodied and emitted from the retroreflective member 56B.
- a multi-wavelength light source as the backlight unit 50 .
- blue light having an emission center wavelength in a wavelength band of 430 to 480 nm and a peak of emission intensity with a half value width of 100 nm or less and a wavelength band of 500 to 600 nm having an emission center wavelength and a half value width Green light having an emission intensity peak of 100 nm or less
- the wavelength band of blue light emitted by the backlight unit 50 is more preferably 440 to 460 nm.
- the wavelength band of green light emitted by the backlight unit 50 is preferably 520 to 560 nm, more preferably 520 to 545 nm.
- the wavelength band of the red light emitted by the backlight unit 50 is 610 to 640 nm.
- the half width of each emission intensity of blue light, green light, and red light emitted by the backlight unit 50 is preferably 80 nm or less, more preferably 50 nm or less, and 40 nm. It is more preferably 30 nm or less, and particularly preferably 30 nm or less. Among these, it is particularly preferable that the half width of each emission intensity of blue light is 25 nm or less.
- the light source 52A can be, for example, a blue light emitting diode that emits blue light having an emission central wavelength in the wavelength band of 430-480 nm. Alternatively, an ultraviolet light emitting diode that emits ultraviolet light may be used. As the light source 52A, a light emitting diode, a laser light source, or the like can be used. When a light source that emits ultraviolet light is provided, the wavelength conversion layer 16 of the wavelength conversion member 54 emits quantum dots that emit blue light, quantum dots that emit green light, and quantum dots that emit red light when irradiated with ultraviolet light. Quantum dots may be included.
- the planar light source 52C may be a planar light source including a light source 52A and a light guide plate 52B that guides and emits the primary light emitted from the light source 52A.
- a planar light source that is arranged in a plane parallel to the wavelength converting member 54 and that has a diffusion plate in place of the light guide plate 52B may be used.
- the former planar light source is generally called an edge light system, and the latter planar light source is generally called a direct type system.
- a planar light source is used as the light source has been described as an example.
- a light source other than the planar light source can also be used as the light source.
- FIG. 14 illustrates an edge light system in which a light guide plate, a reflector plate, and the like are used as constituent members.
- the configuration of the backlight unit may be of a direct type. A well-known thing can be used as a light-guide plate.
- the reflector 56A is not particularly limited, and a known one can be used. Reference can be made to Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the like.
- the retroreflective member 56B may be composed of a known diffuser plate and diffuser sheet, a prism sheet (for example, BEF series manufactured by Sumitomo 3M Co., Ltd.), a light guide, and the like.
- Japanese Patent No. 3416302 Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626 and the like can be referred to for the configuration of the retroreflective member 56B.
- a liquid crystal display device including the above backlight unit and a liquid crystal cell can be provided.
- FIG. 15 is a schematic diagram showing a schematic configuration of a liquid crystal display device.
- the liquid crystal display device 60 includes a backlight unit 50 and a liquid crystal cell unit 62 arranged opposite to the retroreflective member side of the backlight unit.
- the liquid crystal cell unit 62 has a configuration in which a liquid crystal cell 64 is sandwiched between polarizing plates 68 and 70.
- the polarizing plates 68 and 70 serve as both main polarizers 72 and 74, respectively.
- the surfaces are protected by polarizing plate protective films 76 and 78 and 82 and 84 .
- the liquid crystal cell 64, the polarizing plates 68 and 70, and their constituent elements that constitute the liquid crystal display device 60 are not particularly limited, and those manufactured by known methods and commercially available products can be used. Further, it is of course possible to provide a known intermediate layer such as an adhesive layer between each layer.
- the driving mode of the liquid crystal cell 64 is not particularly limited, and may be twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB) can be used.
- the liquid crystal cell is preferably of VA mode, OCB mode, IPS mode or TN mode. However, it is not limited to these.
- An example of the configuration of a VA mode liquid crystal display device is the configuration shown in FIG. 2 of JP-A-2008-262161.
- the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
- the liquid crystal display device 60 can further have an accompanying functional layer such as an optical compensation member for optical compensation and an adhesive layer, if necessary.
- an optical compensation member for optical compensation and an adhesive layer, if necessary.
- an adhesive layer such as an adhesive layer, if necessary.
- the polarizing plate 68 on the backlight unit 50 side may have a retardation film as the polarizing plate protective film 78 on the liquid crystal cell 64 side.
- a known cellulose acylate film or the like can be used as such a retardation film.
- PGME is an abbreviation for “Propylene Glycol Monomethyl Ether”, specifically 1-methoxy-2-propanol.
- compound (P-1) is synthesized. bottom. Specifically, it is as follows. 25.29 g of dipentaerythritol hexakis(3-mercaptopropionate) [(Z-1); manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.] and 14.71 g of itaconic acid (A-1) were added to 1-methoxy-2. -propanol 93.33 g, and heated to a liquid temperature of 90°C under a nitrogen stream. The charge ratio at this time was 1.0:3.5 in terms of molar ratio.
- V-601 dimethyl 2,2'-azobis(2-methylpropionate) [V-601, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.] was added and heated for 2 hours. Furthermore, 65 mg of V-601 was added and reacted at a liquid temperature of 90° C. for 2 hours under a nitrogen stream. By cooling to room temperature, a 30% by mass solution of mercaptan compound (S-1) in which compound (A-1) was added to some of the sulfur atoms of compound (Z-1) was obtained.
- compound (P-1) weight average molecular weight: see Table 1, acid value: 28 mgKOH/g.
- n is the number of repeating units and is a value that can be calculated from the weight average molecular weight and the structure. This point also applies to n described later. In the structures shown below, n may be the same or different when two n's are included. In the compound (P-1), the branch-containing partial structure content is 90% by mass.
- a liquid mixture A was prepared by charging the following components into a tank and mixing them.
- Tricyclodecane dimethanol diacrylate product name A-DCP (manufactured by Shin-Nakamura Chemical Co., Ltd.)
- IBXA product name of Osaka Organic Chemical Industry Co., Ltd.
- TMMP Trimethylolpropane Tris (3-mercaptopropionate)
- TMMP product name of SC Organic Chemical Co., Ltd.
- a liquid mixture B containing inorganic particles was prepared by charging the following components into a tank and mixing them.
- Compound (P-1) 0.1 part by mass or 1 part by mass Inorganic particles (alumina particles, product name Sumicorundum AA-1.5 (manufactured by Sumitomo Chemical Co., Ltd.), average particle size: 1.50 ⁇ m): 7.5 Part by mass Liquid mixture A: 92.5 parts by mass
- the settling velocity of the inorganic particles in the liquid mixture B prepared above was measured by the following method.
- Liquid mixture B (30 g) was placed in a 30 mL vial and stirred, and then the vial was placed on a horizontal surface. At that point, it was visually confirmed that the inorganic particles (alumina particles) were uniformly dispersed throughout the liquid. After standing still for 24 hours, it was visually confirmed that the inorganic particles (alumina particles) had settled and there was a supernatant portion in which no inorganic particles were present. After standing still for 24 hours, the thickness of the supernatant portion was measured with a ruler, and this was defined as the sedimentation rate of the inorganic particles (unit: mm/day).
- Dispersibility was evaluated according to the following evaluation criteria. Regarding dispersibility, a sedimentation rate of inorganic particles of less than 5 mm/day is considered OK, and a sedimentation rate of 5 mm/day or more is considered NG.
- the evaluation result was C for the liquid mixture B prepared by the above method except that the compound (P-1) was not added.
- a liquid mixture C containing quantum dots was prepared by charging and mixing the following components in a tank.
- a toluene dispersion of quantum dots 1 (luminescence maximum: 520 nm) and a toluene dispersion of quantum dots 2 (luminescence maximum: 630 nm) were mixed so that the total content of quantum dots in the mixture was 2.0%. It was used by mixing in the amount of Quantum dots 1 and 2 are semiconductor nanoparticles described below having a core-shell structure (core: InP/shell: ZnS).
- Quantum dot 1 INP530-10 manufactured by NN-labs (average particle size: 5 to 7 nm)
- Quantum dot 2 INP620-10 manufactured by NN-labs (average particle size: 7.5 to 9.5 nm)
- a liquid mixture D containing inorganic particles was prepared by charging the following components into a tank and mixing them.
- Compound (P-1) 0.1 part by mass or 1 part by mass Inorganic particles (alumina particles, product name Sumicorundum AA-1.5 (manufactured by Sumitomo Chemical Co., Ltd.), average particle size: 1.50 ⁇ m): 7.5 Part by mass Liquid mixture C: 92.5 parts by mass
- the sedimentation velocity of the inorganic particles in the liquid mixture D prepared above was measured by the following method.
- Liquid mixture D (30 g) was placed in a 30 mL vial and stirred, and then the vial was placed on a horizontal surface. At that point, it was visually confirmed that the inorganic particles (alumina particles) were uniformly dispersed throughout the liquid. After standing still for 24 hours, it was visually confirmed that the inorganic particles (alumina particles) had settled and there was a supernatant portion in which the inorganic particles (alumina particles) did not exist. After standing still for 24 hours, the thickness of the supernatant portion was measured with a ruler, and this was defined as the sedimentation rate of the inorganic particles (unit: mm/day). The difference between alumina particles and quantum dots can be distinguished by the color of the particles (alumina particles: white, quantum dots: brown).
- Dispersibility was evaluated according to the following evaluation criteria. Regarding dispersibility, a sedimentation rate of inorganic particles of less than 5 mm/day is considered OK, and a sedimentation rate of 5 mm/day or more is considered NG.
- the evaluation result was C for the liquid mixture D prepared by the above method except that the compound (P-1) was not added.
- barrier films were produced by forming an inorganic layer and an organic layer on a support film made of polyethylene terephthalate (PET) in the following manner.
- a PET film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd., thickness 23 ⁇ m) was used as the support film, and an organic layer and an inorganic layer were sequentially formed on one side of the support film according to the following procedure.
- TMPTA Trimethylolpropane triacrylate
- ESACURE KTO46 photopolymerization initiator
- the coating liquid was cured by irradiating with ultraviolet rays in a nitrogen atmosphere (accumulated irradiation amount: about 600 mJ/cm 2 ), and wound up.
- the thickness of the organic layer formed on the support film was 1 ⁇ m.
- a silicon nitride film was formed as an inorganic layer on the surface of the underlying organic layer using a CVD (Chemical Vapor Deposition) apparatus for film formation by roll-to-roll.
- Silane gas flow rate: 160 sccm (Standard Cubic Centimeter per Minute)
- ammonia gas flow rate: 370 sccm
- hydrogen gas flow rate: 590 sccm
- nitrogen gas flow rate: 240 sccm
- a high frequency power source with a frequency of 13.56 MHz was used as a power source.
- the film formation pressure was 40 Pa (Pascal), and the ultimate film thickness was 50 nm.
- a protective organic layer was laminated on the surface of the inorganic layer.
- Urethane skeleton acrylate polymer (Acryt 8BR930 manufactured by Taisei Fine Chemical Co., Ltd.) 95.0 parts by weight, photopolymerization initiator (IRGACURE 184 manufactured by BASF) 5.0 parts by weight, These are dissolved in methyl ethyl ketone to form a protective organic layer.
- a coating liquid having a solid content concentration of 15% was used to form a .
- This coating liquid was directly applied to the surface of the inorganic layer by roll-to-roll using a die coater, and passed through a drying zone at a temperature of 100° C. for 3 minutes.
- the film was cured by being irradiated with ultraviolet rays (accumulated irradiation amount: about 600 mJ/cm 2 ) while being transported while being wrapped around a heat roll heated to a surface temperature of 60° C., and wound up.
- the thickness of the protective organic layer formed on the support film was 0.1 ⁇ m.
- barrier films with a protective organic layer were produced as the first base film and the second base film.
- the oxygen permeability of this barrier film was measured using OX-TRAN 2/20 manufactured by MOCON under the conditions of a measurement temperature of 23°C and a relative humidity of 90%, the oxygen permeability was 4.0 ⁇ 10 -3 cc/. (m 2 ⁇ day ⁇ atm) or less.
- Triallyl isocyanurate (Tike manufactured by Mitsubishi Chemical Co., Ltd.): 27.8 parts by mass Pentaerythritol tetrakis (3-mercaptopropionate) (PEMP manufactured by SC Organic Chemical Co., Ltd.): 41.8 parts by mass Light scattering particles (manufactured by Sumitomo Chemical Co., Ltd.) Advanced Alumina AA-1.5): 30.0 parts by mass Photopolymerization initiator (Irgacure TPO manufactured by BASF): 0.35 parts by mass Pyrogallol (Pyrogallol manufactured by TCI): 0.035 parts by mass
- a mold for forming the resin layer a mold having convex portions corresponding to the concave portions of the resin layer and concave portions corresponding to the wall portions was prepared.
- the concave portions of the resin layer had a regular hexagonal shape with a side length of 125 ⁇ m and a honeycomb pattern.
- the depth h of the concave portion (the height of the convex portion of the mold) is 40 ⁇ m
- the interval between the concave portions is 50 ⁇ m. (see FIG. 5).
- the concave portion of the mold M serving as the wall portion has a curved surface with a radius of curvature of 10 ⁇ m at the corner portion of the bottom.
- the previously prepared resin layer-forming composition was filled so as to completely fill the concave portions of the mold.
- a first substrate film (barrier film) is laminated on the mold so as to cover the entire surface of the resin layer-forming composition, and the resin layer-forming composition is applied in a state of pressure contact with a laminator at a pressure of 0.5 MPa. was light cured.
- Photocuring of the resin layer-forming composition was performed by irradiating 500 mJ/cm 2 of ultraviolet rays from the first substrate film side using a 200 W/cm air-cooled metal halide lamp (manufactured by igraphics). After that, the mold was removed to produce a laminate in which a resin layer was laminated on the first base film (see FIG. 11).
- a film having a thickness of 50 ⁇ m was formed under exactly the same conditions using the composition for forming a resin layer. That is, this film corresponds to a 50 ⁇ m-thick wall portion of the resin layer.
- the oxygen permeability was 1 cc/(m 2 ⁇ day ⁇ atm).
- the elastic modulus of the resin layer after curing was measured according to JIS K 7161 and found to be 2.5 GPa.
- Quantum Dot-Containing Polymerizable Composition A quantum dot-containing polymerizable composition was prepared by charging and mixing the following components in a tank. Toluene dispersion of quantum dots described in the evaluation column of dispersibility 2: 2.0 parts by mass as quantum dots Tricyclodecane dimethanol diacrylate (product name A-DCP (manufactured by Shin-Nakamura Chemical Co., Ltd.)): 35.
- Wavelength Conversion Member The recesses of the resin layer of the laminate of the first base film and the resin layer prepared above were filled with the quantum dot-containing polymerizable composition so as to completely fill the recesses of the resin layer. Next, the quantum dot-containing polymerizable composition is entirely covered, and the second base film (barrier film) is laminated on the resin layer, and the quantum dot-containing polymerizable composition is pressed with a laminator at a pressure of 0.3 MPa. By photocuring the composition, a wavelength conversion layer is formed in which quantum dot-containing portions (cured product obtained by curing the quantum dot-containing polymerizable composition) are formed in recesses discretely formed in the resin layer.
- quantum dot-containing portions cured product obtained by curing the quantum dot-containing polymerizable composition
- Photocuring of the quantum dot-containing polymerizable composition was performed by irradiating 500 mJ/cm 2 of ultraviolet rays from the first substrate film side using a 200 W/cm air-cooled metal halide lamp (manufactured by igraphics).
- the produced wavelength conversion member was cut with a microtome, and the cross section of the cut piece was observed with an SEM. As a result, this wavelength conversion member had a gap of 0.5 ⁇ m between the upper end of the wall of the resin layer and the second base film.
- the distribution of the luminescent particles in the cross section was observed with a confocal laser microscope (TCS SP5 manufactured by Leica) by irradiating excitation light with a wavelength of 405 nm and using an objective lens with a magnification of 50 times.
- TCS SP5 confocal laser microscope
- the quantum dots similar to the quantum dot-containing portions formed in the concave portions of the resin layer are formed. It was confirmed that a layer of 0.5 ⁇ m (layer containing quantum dots) was formed.
- a wavelength conversion member was produced by the above method except that the compound (P-1) was not added to the quantum dot-containing polymerizable composition.
- ⁇ Brightness evaluation of wavelength conversion member> A commercially available tablet terminal (KindleFire HDX 7 manufactured by Amazon) having a blue light source in the backlight unit was disassembled and the backlight unit was taken out. Instead of the wavelength conversion film QDEF (Quantum Dot Enhancement Film) incorporated in the backlight unit, the wavelength conversion member prepared above was cut into a rectangular shape and incorporated. Thus, a liquid crystal display device was produced. The manufactured liquid crystal display device was turned on so that the entire surface displayed white, and the luminance was measured with a luminance meter (SR3 manufactured by TOPCON) installed at a position of 520 mm in the direction perpendicular to the surface of the light guide plate.
- SR3 luminance meter
- the luminance was obtained as a relative value to the luminance measured using the reference liquid crystal display device of No.
- a reference liquid crystal display device was produced by the above method except that the above reference wavelength conversion member was used.
- the brightness of this reference liquid crystal display device was measured by the method described above. Based on the relative luminance obtained above, luminance was evaluated according to the following evaluation criteria. If the evaluation result is A or B, it can be said that the wavelength conversion member is capable of emitting light with high brightness. (Evaluation criteria) A: relative brightness>100% B: 97% ⁇ relative brightness ⁇ 100% C: relative brightness ⁇ 97%
- Example 2 Various evaluations were performed by the methods described for Example 1, except that the compound (P-2) synthesized by the method described below was used.
- Example 3 Various evaluations were performed by the method described for Example 1, except that the compound (P-3) synthesized by the method described below was used.
- Example 4 Various evaluations were performed by the method described for Example 1, except that the compound (P-4) synthesized by the method described below was used.
- Example 5 Various evaluations were performed by the method described for Example 1, except that the compound (P-5) synthesized by the method described below was used.
- Example 6 Various evaluations were performed by the method described for Example 1, except that the compound (P-6) synthesized by the method described below was used.
- Example 7 Various evaluations were performed by the method described for Example 1, except that the compound (P-7) synthesized by the method described below was used.
- Example 8 Various evaluations were performed by the method described for Example 1, except that the compound (P-8) synthesized by the method described below was used.
- V-601 was added and reacted at a liquid temperature of 90° C. for 2 hours under a nitrogen stream.
- a 30% by mass solution of mercaptan compound (S-2) in which compound (A-2) was added to some of the sulfur atoms of compound (Z-1) was obtained.
- Example 9 Various evaluations were performed by the method described for Example 1, except that the compound (P-9) synthesized by the method described below was used.
- V-601 was added and reacted at a liquid temperature of 90° C. for 2 hours under a nitrogen stream.
- a 30% by mass solution of mercaptan compound (S-3) in which compound (A-2) was added to some of the sulfur atoms of compound (Z-1) was obtained.
- Example 10 Various evaluations were performed by the method described for Example 1, except that the compound (P-10) synthesized by the method described below was used.
- Example 11 Various evaluations were performed by the method described for Example 1, except that the compound (P-11) synthesized by the method described below was used.
- V-601 was added and reacted at a liquid temperature of 90° C. for 2 hours under a nitrogen stream.
- a 30% by mass solution of mercaptan compound (S-5) in which compound (A-1) was added to some of the sulfur atoms of compound (Z-2) was obtained.
- Example 12 Various evaluations were performed by the method described for Example 1, except that the compound (P-12) synthesized by the method described below was used.
- V-601 was added and reacted at a liquid temperature of 90° C. for 2 hours under a nitrogen stream.
- a 30% by mass solution of mercaptan compound (S-6) in which compound (A-1) was added to some of the sulfur atoms of compound (Z-3) was obtained.
- Comparative Example 3 Various evaluations were performed by the method described for Example 1, except that a comparative compound (Q-3) synthesized by the method described below was used.
- comparative compound (Q-3) weight average molecular weight: see Table 1, acid value: 47 mgKOH/g.
- Table 1 Tables 1-1 to 1-5.
- a 1 , R 1 , Z, R 2 , P 1 , p and q are A 1 , R 1 , Z, R 2 , P 1 , p and q in general formula (1), respectively. be.
- "*" represents a bonding position with an adjacent atom.
- the compounds of Examples 1 to 12 exhibit high solubility in the polymerizable compound, and the polymerizable composition containing inorganic particles and further including quantum dots. It can be confirmed that it contributed to enhancing the dispersibility of the inorganic particles in any of the polymerizable compositions. Furthermore, the wavelength conversion member produced using the quantum dot-containing polymerizable composition containing the compounds of Examples 1 to 12 was a wavelength conversion member capable of emitting light with high brightness as shown in Table 1.
- Example 13 Various evaluations were performed by the method described for Example 1, except that the compound (P-21) synthesized by the method described below was used.
- Example 14 Various evaluations were performed by the method described for Example 1, except that the compound (P-22) synthesized by the method described below was used.
- V-601 was added and reacted at a liquid temperature of 90° C. for 2 hours under a nitrogen stream.
- Example 15 Various evaluations were performed by the method described for Example 1, except that the compound (P-23) synthesized by the method described below was used.
- n1 and n2 are the number of repeating units and may be the same or different. n1 and n2 are values that can be calculated from the weight average molecular weight and structure. The above points also apply to n1 and n2 described later.
- the branch-containing partial structure content is 95% by mass.
- Example 16 Various evaluations were performed by the method described for Example 1, except that the compound (P-24) synthesized by the method described below was used.
- Example 17 Various evaluations were performed by the method described for Example 1, except that the compound (P-25) synthesized by the method described below was used.
- the mixture was heated at a liquid temperature of 75°C for 2.5 hours. Further, 73 mg of V-601 was added and reacted at a liquid temperature of 90° C. for 2 hours under a nitrogen stream. After cooling to room temperature, 1-methoxy-2-propanol was distilled off under reduced pressure at 70°C, then 20 g of methanol was added, and the compound (P-25) ( weight average molecular weight: see Table 2, acid value: 28 mgKOH/g). In the compound (P-25), the branch-containing partial structure content is 95% by mass.
- Example 18 Various evaluations were performed by the method described for Example 1, except that the compound (P-26) synthesized by the method described below was used.
- Example 19 Various evaluations were performed by the method described for Example 1, except that the compound (P-27) synthesized by the method described below was used.
- Table 2 shows the above results.
- a 1 , R 1 , Z, R 2 , P 1 , p and q are A 1 , R 1 , Z, R 2 , P 1 , p and q in general formula (1), respectively. be.
- "*" represents a bonding position with an adjacent atom.
- Example 20 Among the methods for producing the wavelength conversion member described in Example 1, in the preparation of the quantum dot-containing polymerizable composition, the compound (P-1) was changed to 1 part by mass, and the compound (P-24) was added by 0.1 mass. A wavelength conversion member was produced by the method described in Example 1, except that it was partially used, and luminance was evaluated.
- Example 21 Among the methods for producing the wavelength conversion member described in Example 1, in the preparation of the quantum dot-containing polymerizable composition, the compound (P-1) was changed to 1 part by mass, and the compound (P-25) was added by 0.1 mass. A wavelength conversion member was produced by the method described in Example 1, except that it was partially used, and luminance was evaluated.
- One aspect of the present invention is useful in various technical fields where inorganic particles are used.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
[1]下記一般式(1)で表される化合物;
pは2~9の範囲であり、
qは1~8の範囲であり、
p+qは3~10の範囲の整数であり、
Zは、(p+q)価の有機基を表し、
R1およびR2は、それぞれ独立に単結合または2価の有機基を表し、
A1は、酸性基、窒素原子を有する塩基性基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基およびヒドロキシ基からなる群から選択される基を1つ以上含む1価の基を表し、
p個のA1およびp個のR1は、それぞれ独立に、同一であっても異なっていてもよく、
P1は、下記一般式(2)で表される部分構造を含む重合体構造を表し、
qが2以上の場合、q個のP1およびq個のR2は、それぞれ独立に、同一であっても異なっていてもよい;
nは1以上であり、
*は隣り合う原子との結合位置を表し、
n1が1の場合、X1は1価の有機基を表し、X2は2価の有機基を表し、Y1は分岐を有する2価の炭化水素基を表し、Y1とX1またはX2とで環を形成してもよく、ただし該環は4員環以上の環であり、
n1が2以上の場合、X1は水素原子または1価の有機基を表し、X2は2価の有機基を表し、Y1は2価の有機基を表し、1つ以上のY1は分岐を有する2価の有機基を表し、Y1とX1またはX2とで環を形成してもよく、n1個のY1は、同一であっても異なっていてもよい。
[2]一般式(2)で表される部分構造はビニルポリマー鎖を含む、[1]に記載の化合物。
[3]上記ビニルポリマー鎖は、下記一般式(4-1)で表される繰り返し単位を含み、
[4]一般式(4-1)で表される繰り返し単位は、下記一般式(4-3)で表される繰り返し単位であり、
[5]P1で表される重合体構造はポリアルキレングリコール鎖を含む、[1]~[4]のいずれかに記載の化合物。
[6]一般式(2)中、
はポリアルキレングリコール鎖を表し、*は隣り合う原子との結合位置を表す、[5]に記載の化合物。
[7]上記ポリアルキレングリコール鎖はポリプロピレングリコール鎖である、[5]または[6]に記載の化合物。
[8]重量平均分子量が4000~15000の範囲である、[1]~[7]のいずれかに記載の化合物。
[9]P1で表される重合体構造における一般式(2)で表される部分構造、ただし、n1が2以上の場合、Y1が分岐を有する2価の有機基である部分、の含有率が30質量%以上である、[1]~[8]のいずれかに記載の化合物。
[10]P1で表される重合体構造における一般式(2)で表される部分構造、ただし、n1が2以上の場合、Y1が分岐を有する2価の有機基である部分、の含有率が70質量%以上である、[1]~[9]のいずれかに記載の化合物。
[11][1]~[10]のいずれかに記載の化合物と、無機粒子と、重合性化合物と、を含む重合性組成物。
[12][11]に記載の重合性組成物を硬化した硬化物。
本発明の一態様は、一般式(1)で表される化合物に関する。本発明者は鋭意検討を重ねた結果、一般式(1)で表される化合物が、重合性化合物に対する溶解性(以下、単に「溶解性」とも記載する。)に優れ、かつ、無機粒子の分散性(以下、単に「分散性」とも記載する。)の向上に寄与し得ることを新たに見出した。本発明者は、上記の溶解性の向上には、一般式(1)にP1として含まれる重合体構造が寄与し得ると推察している。また、一般式(1)中にA1に含まれる基が吸着基として機能し得ること、および、一般式(1)で表される化合物が溶解性に優れることが、分散性の向上に寄与し得ると考えている。ただし、本発明は、上記をはじめとする本明細書に記載の推察に限定されない。
一般式(1)中、pは2~9の範囲であり、qは1~8の範囲であり、p+qは3~10の範囲の整数である。
pは2以上であり、3以上であることが好ましい。また、pは9以下であり、8以下であることが好ましく、7以下であることがより好ましく、6以下であることが一層好ましい。
qは1以上であり、2以上であることもできる。また、qは8以下であり、7以下であることが好ましく、6以下、5以下、4以下、3以下の順により好ましい。
p+qは3以上であり、4以上または5以上であることもできる。また、p+qは10以下であり、9以下、8以下または7以下であることもできる。
また、後述する各種の基は、無置換であってもよく、置換基を更に有していてもよい。かかる置換基については、上記を参照できる。本発明および本明細書において、置換基を有する基について記載される炭素数は、置換基を含まない部分の炭素数をいうものとする。
R2の具体例としては、単結合、エチレン基、プロピレン基、下記の2価の基(a)、または下記の2価の基(b)等を挙げることができる。下記の2価の基中、R12は水素原子またはメチル基を表し、lは1または2を表す。
式(a2)中、R13およびR14は、それぞれ独立に、炭素数1~20のアルキル基、炭素数6以上のアリール基または炭素数7以上のアラルキル基を表す。
更に、アミノ基(-NH2)、置換イミノ基(-NHR8、-NR9R10、ここで、R8、R9およびR10は、それぞれ独立に、炭素数1~5のアルキル基、フェニル基またはベンジル基を表す。)、上記式(a1)で表されるグアニジル基(式(a1)中、R11およびR12は、それぞれ独立に、炭素数1~5のアルキル基、フェニル基またはベンジル基を表す。)、および上記式(a2)で表されるアミジニル基(式(a2)中、R13およびR14は、それぞれ独立に、炭素数1~5のアルキル基、フェニル基またはベンジル基を表す。)がより好ましい。
で表される部分構造は、ポリアルキレングリコール鎖を表すことができ、例えばかかる部分構造がポリプロピレングリコール鎖であるか、またはポリプロピレングリコール鎖を含むことができる。
がポリプロピレングリコール鎖を表す一般式(2)で表される部分構造がP1で表される重合体構造に占める割合(即ち質量基準の含有率)が、上記範囲であることが好ましい。
本発明および本明細書において、「重量平均分子量」とは、ゲル浸透クロマトグラフィー(GPC:Gel Permeation Chromatography)により測定された測定値をポリスチレン換算して求められる重量平均分子量をいうものとする。GPCの測定条件としては、例えば以下の条件を採用することができる。後述の実施例に示す重量平均分子量は、以下の条件によって求められた値である。また、本発明および本明細書において、分子量とは、重合体(単独重合体と共重合体とが包含される。)については、重量平均分子量をいうものとする。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
本発明および本明細書において、「酸価」とは、サンプル1gを中和するために要する水酸化カリウムのmg数であり、JIS K 2501:2003にしたがい測定される値である。
一般式(1)で表される化合物の酸価は、分散性の更なる向上の観点からは、5mgKOH/g以上であることが好ましく、10mgKOH/g以上であることがより好ましい。一方、一般式(1)で表される化合物の酸価は、溶解性の更なる向上の観点からは、100mgKOH/g以下であることが好ましく、90mgKOH/g以下であることがより好ましい。
一般式(1)で表される化合物について、合成方法は特に限定されず、公知の方法を採用することができる。合成方法については、例えば、特開2007-277514号公報の段落0114~0140(対応する米国特許出願公開第2010/233595号明細書においては段落0145~0173)および、特開2007-277514号公報の段落0266~0348(対応する米国特許出願公開第2010/233595号明細書においては段落0289~0429)を参照できる。
本発明の一態様は、上記化合物と、無機粒子と、重合性化合物と、を含む重合性組成物に関する。
本発明および本明細書において、「無機粒子」とは、無機物質を主成分とする粒子をいい、「有機粒子」とは、有機物質を主成分とする粒子をいう。主成分とは、その粒子を構成する成分の中で、質量基準で最も多くを占める成分をいい、その粒子における主成分の含有率は、例えば、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上もしくは99質量%以上であることができ、また、100質量%以下もしくは100質量%未満であることができる。無機粒子は無機物質のみから構成される粒子であることもできる。ここで、無機物質のみから構成される粒子とは、製造工程で不可避的に混入する不純物を除けば、無機物質のみを含む粒子をいうものとする。
測定対象の粒子を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)によって観察して倍率5000倍で撮影する。粉末として存在する粒子については粉末を観察する。重合性化合物を含む組成物(重合性組成物)に含まれる粒子については、重合性組成物を硬化した硬化物の断面を観察する。例えば、後述する波長変換部材に含まれる硬化物中の粒子については、この硬化物の断面を観察することができる。撮影された画像から一次粒子径を測定する。また、球形状ではない粒子については、長軸の長さと短軸の長さの平均値を求め、これを一次粒子径として採用する。上記の撮影した画像において、無作為に選択した20個の粒子の一次粒子径の算術平均を平均粒径とする。なお、後述の実施例に示す無機粒子の平均粒径は、走査型電子顕微鏡として日立ハイテク社製S-3400Nを用いて、重合性組成物を硬化した硬化物の断面を観察して測定することで得られた値である。
本発明および本明細書において、「重合性組成物」とは、重合性化合物を少なくとも1種含む組成物であり、光照射、加熱等の重合処理が施されることにより硬化する性質を有する。また、「重合性化合物」とは、1分子中に1つ以上の重合性基を含む化合物である。「重合性基」とは、重合反応に関与し得る基である。一般式(1)で表される化合物は、重合性化合物に対して高い溶解性を示すことができる。
第1の(メタ)アクリレート
上記重合性組成物が1種以上の(メタ)アクリレートを含む場合、(メタ)アクリレートとしては、少なくとも多官能(メタ)アクリレートが含まれることが好ましい。多官能(メタ)アクリレートを、「第1の(メタ)アクリレート」とも呼ぶ。ただし、後述の第2の(メタ)アクリレートに該当する多官能(メタ)アクリレートは、第2の(メタ)アクリレートと解釈するものとする。上記重合性組成物に含有され得る多官能(メタ)アクリレートは、2官能以上の(メタ)アクリレートの1種または2種以上であって、2官能~8官能、2官能~7官能、2官能~6官能、2官能~5官能または2官能~4官能の多官能(メタ)アクリレートからなる群から選ばれる1種または2種以上であることができる。
上記重合性組成物に含まれ得る(メタ)アクリレートとしては、カルボキシ基、ヒドロキシ基、リン酸基およびアミノ基からなる群から選ばれる官能基を有する単官能以上の(メタ)アクリレートを挙げることができる。かかる(メタ)アクリレートを、「第2の(メタ)アクリレート」とも呼ぶ。上記重合性組成物が第2の(メタ)アクリレートを含むことは、この重合性組成物を硬化した硬化物を含む波長変換部材の輝度向上に寄与すると推察される。
上記重合性組成物が1種以上の(メタ)アリル化合物を含む場合、(メタ)アリル化合物は、単官能(メタ)アリル化合物であってもよく、多官能(メタ)アリル化合物であってもよく、少なくとも多官能(メタ)アリル化合物が含まれることが好ましい。(メタ)アリル化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよく、1種以上の単官能(メタ)アリル化合物と1種以上の多官能(メタ)アリル化合物とを併用してもよい。
上記重合性組成物は、一形態では、1種以上の量子ドットを更に含むことができる。以下、量子ドットについて更に詳細に説明する。
上記重合性組成物は、上記成分に加えて1種以上の成分を任意に含むことができる。任意に含まれ得る成分の具体例としては、重合開始剤、ポリマー、粘度調整剤、シランカップリング剤、界面活性剤、酸化防止剤、酸素ゲッター剤、光散乱粒子等を挙げることができる。添加剤の具体例等の詳細については、例えばWO2018/186300の段落0108~0137、段落0162、0163および段落0165~0169を参照できる。また、上記重合性組成物は、溶媒を含まなくてもよく、必要に応じて1種以上の溶媒を含んでもよい。溶媒の種類および添加量は、限定されない。例えば、溶媒として1種または2種以上の有機溶媒を使用することができる。
上記重合性組成物は、例えば希釈剤等として、上記成分に加えて、単官能(メタ)アクリレートの1種以上を任意に含むことができる。かかる単官能(メタ)アクリレートには、第2の(メタ)アクリレートが有する先に記載した官能基を有する単官能(メタ)アクリレートは包含されないものとする。任意に含まれ得る単官能(メタ)アクリレートとしては、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ラウリル(メタ)アクリレート等が挙げられる。
上記重合性組成物は、多官能チオールの1種以上を任意に含むことができる。本発明および本明細書において、「多官能チオール」とは、1分子中に2つ以上のチオール基を有する化合物である。チオールについての官能数は、チオール1分子中に含まれるチオール基の数をいう。上記重合性組成物に含まれ得る多官能チオールは、2官能以上のチオールであって、3官能以上のチオールであることが好ましい。上記多官能チオールは、例えば、8官能以下、7官能以下、6官能以下、5官能以下または4官能以下のチオールであることができる。耐久性の更なる向上の観点からは、上記多官能チオールは、2官能~6官能の多官能チオールからなる群から選択される1種または2種以上であることが好ましく、2官能~4官能の多官能チオールからなる群から選択される1種または2種以上であることがより好ましく、3官能または4官能の多官能チオールからなる群から選択される1種または2種以上であることが更に好ましく、3官能チオールであることが一層好ましい。
一形態では、上記重合性組成物は、フェノール系化合物を含むことができる。フェノール系化合物は、(メタ)アクリロイル基を有する化合物と多官能チオールとを含む重合性組成物の経時的な粘度変化を抑制すること、即ち液安定性の向上に寄与し得る。この点について、以下に更に説明する。
チオール基を含有する化合物と(メタ)アクリロイル基を含む化合物を共に含む組成物については、チオール―エン反応が進行することによって経時的な粘度上昇が発生し易い傾向がある。これに対し、かかる組成物にフェノール系化合物を添加することによって、フェノール系化合物が重合禁止剤として作用し得ることで上記の粘度上昇を抑制することができると推察される。また、フェノール系化合物は、上記重合性組成物を硬化した硬化物を含む波長変換部材の輝度のより一層の向上にも寄与し得ると考えられる。あくまでも推察に過ぎないものの、フェノール系化合物が量子ドットの表面に吸着している可能性があり、このことが輝度のより一層の向上に寄与している可能性があると考えられる。ただし、推察に過ぎず、本発明を限定するものではない。
アルキル基としては、例えば、炭素数1~6の直鎖または分岐を有するアルキル基を挙げることができる。アルキル基には、無置換のものと置換基を有するものとが包含される。置換基を有する場合、炭素数とは、置換基を除く部分の炭素数をいうものとする。アルキル基を置換し得る置換基としては、例えば、ヒドロキシ基、カルボキシ基等を挙げることができる。一形態では、アルキル基は、無置換アルキル基が好ましい。
以上については、カルボキシ基を置換し得るアルキル基についても同様である。
本発明の一態様は、上記重合性組成物を硬化した硬化物に関する。
本発明の一態様によれば、上記硬化物を含む波長変換部材を提供することができる。一形態では、上記波長変換部材は、量子ドットを含む上記重合性組成物(以下、「量子ドット含有重合性組成物」とも記載する。)をフィルム状に硬化した硬化物である波長変換層を有することができる。かかる波長変換層を有する波長変換部材の製造方法については、例えば、WO2018/016589の段落0127~0155、図2および図3を参照できる。
他方、第2基材フィルム14は、波長変換層16を構成する樹脂層18の第1基材フィルム12とは逆側の主面に積層される。即ち、第2基材フィルム14は、樹脂層18の凹部18aの開放面(開放端)側の主面に積層される。図示した例においては、第2基材フィルム14は、バリア層14bを樹脂層18側に向けて積層されている。
第1基材フィルム12および第2基材フィルム14は、共に、酸素に対して不透過性を有するフィルムであることが好ましい。波長変換部材10において、一形態では、第1基材フィルム12は、支持フィルム12aにバリア層12bを積層した構成を有し、バリア層12bを波長変換層16に向けて、波長変換層16に積層される。同様に、第2基材フィルム14も、支持フィルム14aにバリア層14bを積層した構成を有し、バリア層14bを波長変換層16に向けて、波長変換層16に積層される。
樹脂層18は、例えば、マトリックス26を形成する重合性化合物と同様の重合性化合物を含む樹脂層形成用組成物を調製して塗布し、硬化して形成できる。樹脂層18は、酸素に対して不透過性を有することが好ましい。樹脂層18は、凹部18aを形成する壁部を挟んで隣り合う量子ドット含有部間の最短距離における酸素透過度が10cc/(m2・day・atm)以下を満たすことが好ましい。樹脂層18の、隣り合う量子ドット含有部間の最短距離における酸素透過度は、10cc/(m2・day・atm)以下であることが好ましく、1cc/(m2・day・atm)以下であることがより好ましく、1×10-1cc/(m2・day・atm)以下であることが更に好ましい。
先に記載したように、第1基材フィルム12(および第2基材フィルム14)は、支持フィルム12aにバリア層12bを積層した構成を有することができる。また、バリア層12b(およびバリア層14b)は、下地有機層34と、無機層36と、保護有機層38とを有することができる。このような第1基材フィルム12は、バリア層12bを波長変換層16に向けて、波長変換層16に積層される。この構成では、支持フィルム12aによって波長変換部材10の強度を向上でき、かつ、容易に成膜を実施することが可能となる。ただし、本発明および本明細書において、第1基材フィルム(および第2基材フィルム)は、このような支持フィルム12aとバリア層12bとを有する構成に限定はされず、必要な酸素に対する不透過性を確保できるものであれば、各種のフィルム状物(シート状物)を利用可能である。例えば、バリア性を十分有する支持フィルムのみで第1基材フィルムが構成されてもよい。また、支持フィルムの表面に無機層を1層のみ形成した第1基材フィルムも利用可能である。
支持フィルム12a(および支持フィルム14a)としては、可視光に対して透明である可撓性を有する帯状の支持フィルムが好ましい。ここで可視光に対して透明とは、可視光領域における光線透過率が、80%以上、好ましくは85%以上であることをいう。透明の尺度として用いられる光線透過率は、JIS K 7105に記載された方法、即ち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。可撓性を有する支持フィルムについては、特開2007-290369号公報の段落0046~0052および特開2005-096108号公報の段落0040~0055を参照できる。
第1基材フィルム12(および第2基材フィルム14)は、支持フィルム12aの一面にバリア層12bを有する。先に記載したように、バリア層12bとしては、公知のバリア層が、各種利用可能である。少なくとも1層の無機層を有することが好ましく、無機層と無機層の下地となる有機層との組み合わせを1組以上有する有機無機積層型のバリア層がより好ましい。図示した例の波長変換部材10において、第1基材フィルムのバリア層12bは、図3の部分拡大図Aに示すように、支持フィルム12aの表面に形成される下地有機層34と、下地有機層34の上に形成される無機層36と、無機層36の上に形成される保護有機層38との、3層を積層した構成を有する。なお、以下の説明では、下地有機層34と保護有機層38とを区別する必要が無い場合には、両者をまとめて「有機層」ともいう。
先に記載したように、混合層28は、量子ドット含有部20が含有する量子ドット24を含有する。また、不透過層30は、量子ドット24を含まない、酸素不透過性材料からなる層であることができる。酸素不透過性材料としては、樹脂層18の形成材料として使用可能な各種の材料を使用することができる。中でも、混合層28および不透過層30は、酸素不透過性材料として、樹脂層18を形成するために使用される重合性化合物と同じ重合性化合物を含有することが好ましい。
次に、波長変換部材の製造工程の一例について、図11および図12の概念図を参照して説明する。
また、上記量子ドット含有重合性組成物L2を調製する。
更に、樹脂層18を形成するための、樹脂層18の凹部18aおよび壁部に応じた凹凸パターンを有する金型(モールド)M、ならびに、第1基材フィルム12および第2基材フィルム14を準備する。
次いで、例えば、紫外線照射等によって樹脂層形成用組成物L1を硬化して、樹脂層18を形成し、図11の4段目に示すように、金型Mを樹脂層18から取り外す。これにより、第1基材フィルム12の一面に、凹部18aの底を第1基材フィルム12に向けた樹脂層18を積層した、積層体が形成される。
次いで、図12の2段目に示すように、量子ドット含有重合性組成物L2の全面を覆って封止するように、第2基材フィルム14を積層する。この際における第2基材フィルム14の押圧力を調節することで、樹脂層18の壁部の上端と第2基材フィルム14との間隙を調節できる。例えば、第2基材フィルム14の積層をラミネータで行う場合には、ラミネータの圧力を調節することにより、樹脂層18の壁部の上端と第2基材フィルム14との間隙を調節できる。
その後、例えば、光照射によって量子ドット含有重合性組成物L2を硬化して、量子ドット含有部を形成し、図12の3段目に示すように、量子ドット含有部と樹脂層18とを有する波長変換層16を、第1基材フィルム12および第2基材フィルム14で挟持した、波長変換部材10を作製する。
その後、塗布液L3の塗布面を量子ドット含有重合性組成物L2に向けて、図12の2段目に示すように、量子ドット含有重合性組成物L2の全面を覆って封止するように、第2基材フィルム14を積層する。これにより、量子ドット含有重合性組成物L2と酸素不透過性材料を含有する塗布液L3とが混合される。
その後、量子ドット含有重合性組成物L2および酸素不透過性材料を含有する塗布液L3を硬化することで、量子ドット含有部と共に、混合層28または更に不透過層30を有する波長変換部材を製造できる。
この際、先に記載したように、第2基材フィルム14への酸素不透過性材料を含有する塗布液L3の塗布厚を調節することで、混合層28のみを形成するか、混合層28および不透過層30の両方を形成するかを設定できる。具体的には、第2基材フィルム14への酸素不透過性材料を含有する塗布液L3の塗布厚が薄い場合には、混合層28のみを形成でき、第2基材フィルム14への酸素不透過性材料を含有する塗布液L3の塗布厚を厚くすることで、混合層28および不透過層30の両者を形成でき、また、塗布液L3の塗布厚を厚くするほど、不透過層30が厚くなる。
本発明の一態様によれば、上記波長変換部材と、光源と、を含むバックライトユニットを提供することができる。
同様の観点から、バックライトユニット50が発光する緑色光の波長帯域は、520~560nmであることが好ましく、520~545nmであることがより好ましい。
また、同様の観点から、バックライトユニット50が発光する赤色光の波長帯域は、610~640nmであることがより好ましい。
また同様の観点から、バックライトユニット50が発光する青色光、緑色光および赤色光の各発光強度の半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることが更に好ましく、30nm以下であることが特に好ましい。これらの中でも、青色光の各発光強度の半値幅は25nm以下であることが特に好ましい。
バックライトユニットの構成としては、図14では、導光板および反射板等を構成部材とするエッジライト方式について説明した。ただし、バックライトユニットの構成は、直下型方式であっても構わない。導光板としては、公知のものを使用することができる。
本発明の一態様によれば、上記バックライトユニットと、液晶セルと、を含む液晶表示装置を提供することができる。
ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)〔(Z-1);富士フイルム和光純薬社製〕25.29g、およびイタコン酸(A-1)14.71gを、1-メトキシ-2-プロパノール93.33gに溶解させ、窒素気流下、液温90℃に加熱した。このときの仕込比は、モル比で1.0:3.5であった。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕65mgを加えて2時間加熱した。更に、V-601を65mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-1)の硫黄原子のうちの一部に化合物(A-1)が付加したメルカプタン化合物(S-1)の30質量%溶液を得た。
化合物(P-1)において、上記の分岐含有部分構造含有率は、90質量%である。
以下の成分をタンクに投入して混合して液状混合物Aを調製した。
トリシクロデカンジメタノールジアクリレート(製品名A-DCP(新中村化学工業社製)):45質量部
イソボルニルアクリレート(製品名IBXA(大阪有機化学工業社製)):30質量部
トリメチロールプロパントリス(3-メルカプトプロピオネート)(製品名TMMP(SC有機化学社製)):20質量部
β-カルボキシエチルアクリレート(製品名β-CEA(ダイセル・オルネクス社製)):5質量部
目視で溶け残りが確認されなかった最大添加量での同化合物の濃度を算出し、算出された濃度に基づき、溶解性を以下の評価基準によって評価した。
(評価基準)
A:上記液状混合物Aを100質量%として、20質量%以上溶解
B:上記液状混合物Aを100質量%として、5質量%以上20質量%未満溶解
C:上記液状混合物Aを100質量%として、5質量%未満溶解または不溶
以下の成分をタンクに投入して混合して無機粒子を含む液状混合物Bを調製した。
化合物(P-1):0.1質量部または1質量部
無機粒子(アルミナ粒子、製品名スミコランダムAA-1.5(住友化学社製)、平均粒径:1.50μm):7.5質量部
上記液状混合物A:92.5質量部
液状混合物B(30g)を30mLバイアルに入れ撹拌した後、このバイアルを水平な場所に静置した。その時点で無機粒子(アルミナ粒子)が液全体に均一に分散していることを目視で確認した。24時間静置後、無機粒子(アルミナ粒子)が沈降し、無機粒子が存在しない上澄み部分があることを目視で確認した。24時間静置後の上澄み部分の厚さを定規で測定し、これを無機粒子の沈降速度(単位:mm/day)とした。
A:化合物(P-1)量が0.1質量部、1質量部のいずれも分散性OK
B:化合物(P-1)量が0.1質量部、1質量部のどちらかで分散性NG
C:化合物(P-1)量が0.1質量部、1質量部のいずれも分散性NG
以下の成分をタンクに投入して混合することで、量子ドットを含有する液状混合物Cを調製した。
液状混合物Cの調製にあたり、量子ドット1(発光極大:520nm)のトルエン分散液と量子ドット2(発光極大:630nm)のトルエン分散液を、混合物中の量子ドットの合計含有率が2.0%となる量で混合して使用した。
量子ドット1および2は、コア-シェル構造(コア:InP/シェル:ZnS)を有する下記の半導体ナノ粒子である。
量子ドット1:NN-labs社製INP530-10(平均粒径:5~7nm)
量子ドット2:NN-labs社製INP620-10(平均粒径:7.5~9.5nm)
量子ドットのトルエン分散液:量子ドットとして2.0質量部
トリシクロデカンジメタノールジアクリレート(製品名A-DCP(新中村化学工業社製)):35.9質量部
イソボルニルアクリレート(製品名IBXA(大阪有機化学工業社製)):31.3質量部
トリメチロールプロパントリス(3-メルカプトプロピオネート)(製品名TMMP(SC有機化学社製)):18.5質量部
β-カルボキシエチルアクリレート(製品名β-CEA(ダイセル・オルネクス社製))β-CEA:4.63質量部
ピロガロール(製品名Pyrogallol(TCI社製)):0.01質量部
光重合開始剤(製品名イルガキュアTPO(BASF社製)):0.16質量部
化合物(P-1):0.1質量部または1質量部
無機粒子(アルミナ粒子、製品名スミコランダムAA-1.5(住友化学社製)、平均粒径:1.50μm):7.5質量部
上記液状混合物C:92.5質量部
液状混合物D(30g)を30mLバイアルに入れ撹拌した後、このバイアルを水平な場所に静置した。その時点で無機粒子(アルミナ粒子)が液全体に均一に分散していることを目視で確認した。24時間静置後、無機粒子(アルミナ粒子)が沈降し、無機粒子(アルミナ粒子)が存在しない上澄み部分があることを目視で確認した。24時間静置後の上澄み部分の厚さを定規で測定し、これを無機粒子の沈降速度(単位:mm/day)とした。なお、アルミナ粒子と量子ドットとの違いは粒子の色(アルミナ粒子:白色、量子ドット:褐色)で区別可能である。
A:化合物(P-1)量が0.1質量部、1質量部のいずれも分散性OK
B:化合物(P-1)量が0.1質量部、1質量部のどちらかで分散性NG
C:化合物(P-1)量が0.1質量部、1質量部のいずれも分散性NG
(バリアフィルムの作製)
第1基材フィルムおよび第2基材フィルムとして、以下のようにして、ポリエチレンテレフタレート(PET)からなる支持フィルム上に無機層および有機層が形成されたバリアフィルムを作製した。
トリメチロールプロパントリアクリレート(ダイセル・オルネクス社製TMPTA)および光重合開始剤(ランベルティ社製ESACURE KTO46)を用意し、質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、下地有機層を形成するための、固形分濃度15%の塗布液とした。
この塗布液を、ダイコーターを用いてロール・トゥ・ロール(roll-to-roll)にて支持フィルム(PETフィルム)上に塗布し、温度50℃の乾燥ゾーンに3分間通過させた。その後、窒素雰囲気下で紫外線を照射(積算照射量約600mJ/cm2)することで塗布液を硬化させ、巻き取った。支持フィルム上に形成された有機層の厚さは、1μmであった。
次に、ロール・トゥ・ロールによって成膜を行うCVD(Chemical Vapor Deposition)装置を用いて、下地有機層の表面に無機層として窒化ケイ素膜を形成した。
原料ガスとして、シランガス(流量160sccm(Standard Cubic Centimeter per Minute))、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および窒素ガス(流量240sccm)を用いた。電源として、周波数13.56MHzの高周波電源を用いた。成膜圧力は40Pa(パスカル)、到達膜厚は50nmとした。
更に、無機層の表面に、保護有機層を積層した。ウレタン骨格アクリレートポリマー(大成ファインケミカル社製アクリット8BR930)95.0質量部に対して、光重合開始剤(BASF社製IRGACURE184)5.0質量部を秤量し、これらをメチルエチルケトンに溶解させ、保護有機層を形成するための固形分濃度15%の塗布液とした。
この塗布液を、ダイコーターを用いてロール・トゥ・ロールによって無機層の表面に直接に塗布し、温度100℃の乾燥ゾーンに3分間通過させた。その後、表面温度60℃に加熱したヒートロールに巻き掛けて搬送しながら、紫外線を照射(積算照射量約600mJ/cm2)して硬化させ、巻き取った。支持フィルム上に形成された保護有機層の厚さは、0.1μmであった。
このバリアフィルムの酸素透過度をMOCON社製OX-TRAN 2/20を用いて、測定温度23℃かつ相対湿度90%の条件で測定したところ、酸素透過度は4.0×10-3cc/(m2・day・atm)以下であった。
樹脂層形成用組成物の調製
以下の成分をタンクに投入して混合することで、樹脂層形成用組成物を調製した。
ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学社製PEMP):41.8質量部
光散乱粒子(住友化学社製アドバンストアルミナAA-1.5):30.0質量部
光重合開始剤(BASF社製イルガキュアTPO):0.35質量部
ピロガロール(TCI社製Pyrogallol):0.035質量部
樹脂層を形成するための金型として、樹脂層の凹部に対応する凸部および壁部に対応する凹部を有する金型を用意した。
ここで、樹脂層の凹部(金型の凸部)は、一辺125μmの正六角形状で、ハニカム状パターンとした。凹部の深さh(金型の凸部の高さ)は40μmとし、凹部の間隔(金型の凸部の間隔(量子ドット含有部同士の間隔t、即ち壁部の厚さ))は50μmとした(図5参照)。尚、壁部となる金型Mの凹部は、底の角部を曲率半径10μmの曲面とした。
このような金型の凹部を完全に満たすように、先に調製した樹脂層形成用組成物を充填した。次いで、樹脂層形成用組成物を全面的に覆うようにして、金型に第1基材フィルム(バリアフィルム)を積層し、ラミネータで圧力0.5MPaで圧接した状態で樹脂層形成用組成物を光硬化した。樹脂層形成用組成物の光硬化は、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を第1基材フィルム側より500mJ/cm2照射することで行った。その後、金型を取り外して、第1基材フィルムの上に樹脂層を積層した積層体を作製した(図11参照)。
上記樹脂層形成用組成物を用いて、全く同じ条件で、厚さ50μmのフィルムを形成した。即ち、このフィルムは、樹脂層における厚さ50μmの壁部に相当する。このフィルムの酸素透過度を、先と同様に測定した結果、酸素透過度は1cc/(m2・day・atm)であった。また、硬化後の樹脂層の弾性率を、JIS K 7161に準拠して計測した結果、弾性率は2.5GPaであった。
量子ドット含有重合性組成物の調製
以下の成分をタンクに投入して混合することで、量子ドット含有重合性組成物を調製した。
分散性2の評価の欄に記載の量子ドットのトルエン分散液:量子ドットとして2.0質量部
トリシクロデカンジメタノールジアクリレート(製品名A-DCP(新中村化学工業社製)):35.9質量部
イソボルニルアクリレート(製品名IBXA(大阪有機化学工業社製)):31.3質量部
トリメチロールプロパントリス(3-メルカプトプロピオネート)(製品名TMMP(SC有機化学社製)):18.5質量部
β-カルボキシエチルアクリレート(製品名β-CEA(ダイセル・オルネクス社製))β-CEA:4.63質量部
ピロガロール(製品名Pyrogallol(TCI社製)):0.01質量部
光重合開始剤(製品名イルガキュアTPO(BASF社製)):0.16質量部
化合物(P-1):1質量部
無機粒子(アルミナ粒子、製品名スミコランダムAA-1.5(住友化学社製)、平均粒径:1.50μm):7.5質量部
先に作製した第1基材フィルムと樹脂層との積層体の樹脂層の凹部を完全に満たすように、樹脂層の凹部に上記量子ドット含有重合性組成物を充填した。次いで、量子ドット含有重合性組成物を全面的に覆うようにして、樹脂層に第2基材フィルム(バリアフィルム)を積層し、ラミネータで圧力0.3MPaで圧接した状態で量子ドット含有重合性組成物を光硬化することで、樹脂層に離散的に形成された凹部内に量子ドット含有部(量子ドット含有重合性組成物を硬化した硬化物)が形成された波長変換層を形成して、波長変換部材を作製した(図12参照)。量子ドット含有重合性組成物の光硬化は、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を第1基材フィルム側より500mJ/cm2照射することで行った。
バックライトユニットに青色光源を備える市販のタブレット端末(Amazon社製KindleFire HDX 7)を分解し、バックライトユニットを取り出した。バックライトユニットに組み込まれていた波長変換フィルムQDEF(Quantum Dot Enhancement Film)に代えて、上記で作製した波長変換部材を矩形に切り出して組み込んだ。このようにして液晶表示装置を作製した。
作製した液晶表示装置を点灯させ、全面が白表示になるようにし、導光板の面に対して垂直方向520mmの位置に設置した輝度計(TOPCON社製SR3)によって輝度を測定し、以下に記載の参照用液晶表示装置を用いて測定された輝度に対する相対値として輝度(相対輝度)を求めた。
参照用液晶表示装置は、上記の参照用波長変換部材を使用した点以外は上記方法で作製した。この参照用液晶表示装置について、上記方法で輝度を測定した。
上記で求められた相対輝度に基づき、下記評価基準によって輝度評価を行った。評価結果がAまたはBであれば、高輝度での発光が可能な波長変換部材であるということができる。
(評価基準)
A:相対輝度>100%
B:97%≦相対輝度≦100%
C:相対輝度<97%
以下に記載の方法で合成した化合物(P-2)を使用した点以外、実施例1について記載した方法で各種評価を行った。
化合物(P-2)において、上記の分岐含有部分構造含有率は、70質量%である。
以下に記載の方法で合成した化合物(P-3)を使用した点以外、実施例1について記載した方法で各種評価を行った。
化合物(P-3)において、上記の分岐含有部分構造含有率は、90質量%である。
以下に記載の方法で合成した化合物(P-4)を使用した点以外、実施例1について記載した方法で各種評価を行った。
化合物(P-4)において、上記の分岐含有部分構造含有率は、90質量%である。
以下に記載の方法で合成した化合物(P-5)を使用した点以外、実施例1について記載した方法で各種評価を行った。
化合物(P-5)において、上記の分岐含有部分構造含有率は、50質量%である。
以下に記載の方法で合成した化合物(P-6)を使用した点以外、実施例1について記載した方法で各種評価を行った。
化合物(P-6)において、上記の分岐含有部分構造含有率は、45質量%である。
以下に記載の方法で合成した化合物(P-7)を使用した点以外、実施例1について記載した方法で各種評価を行った。
化合物(P-7)において、上記の分岐含有部分構造含有率は、83質量%である。
以下に記載の方法で合成した化合物(P-8)を使用した点以外、実施例1について記載した方法で各種評価を行った。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕52mgを加えて2時間加熱した。更に、V-601を52mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-1)の硫黄原子のうちの一部に化合物(A-2)が付加したメルカプタン化合物(S-2)の30質量%溶液を得た。
化合物(P-8)において、上記の分岐含有部分構造含有率は、90質量%である。
以下に記載の方法で合成した化合物(P-9)を使用した点以外、実施例1について記載した方法で各種評価を行った。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕52mgを加えて2時間加熱した。更に、V-601を52mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-1)の硫黄原子のうちの一部に化合物(A-2)が付加したメルカプタン化合物(S-3)の30質量%溶液を得た。
化合物(P-9)において、上記の分岐含有部分構造含有率は、90質量%である。
以下に記載の方法で合成した化合物(P-10)を使用した点以外、実施例1について記載した方法で各種評価を行った。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕39mgを加えて2時間加熱した。更に、V-601を39mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-1)の硫黄原子のうちの一部に化合物(A-4)が付加したメルカプタン化合物(S-4)の30質量%溶液を得た。
化合物(P-10)において、上記の分岐含有部分構造含有率は、90質量%である。
以下に記載の方法で合成した化合物(P-11)を使用した点以外、実施例1について記載した方法で各種評価を行った。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕53mgを加えて2時間加熱した。更に、V-601を53mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-2)の硫黄原子のうちの一部に化合物(A-1)が付加したメルカプタン化合物(S-5)の30質量%溶液を得た。
化合物(P-11)において、上記の分岐含有部分構造含有率は、90質量%である。
以下に記載の方法で合成した化合物(P-12)を使用した点以外、実施例1について記載した方法で各種評価を行った。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕44mgを加えて2時間加熱した。更に、V-601を44mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-3)の硫黄原子のうちの一部に化合物(A-1)が付加したメルカプタン化合物(S-6)の30質量%溶液を得た。
化合物(P-12)において、上記の分岐含有部分構造含有率は、90質量%である。
以下に記載の方法で合成した比較化合物(Q-1)を使用した点以外、実施例1について記載した方法で溶解性の評価を行った。その結果、溶解性の評価結果がCであったため、その他の項目の評価は実施しなかった。
以下に記載の方法で合成した比較化合物(Q-2)を使用した点以外、実施例1について記載した方法で溶解性の評価を行った。その結果、溶解性の評価結果がCであったため、その他の項目の評価は実施しなかった。
以下に記載の方法で合成した比較化合物(Q-3)を使用した点以外、実施例1について記載した方法で各種評価を行った。
以下に記載の方法で合成した化合物(P-21)を使用した点以外、実施例1について記載した方法で各種評価を行った。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕47mgを加えて2時間加熱した。更に、V-601を47mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-1)の硫黄原子のうちの一部に化合物(A-5)が付加したメルカプタン化合物(S-7)の30質量%溶液を得た。
化合物(P-21)において、上記の分岐含有部分構造含有率は、95質量%である。
以下に記載の方法で合成した化合物(P-22)を使用した点以外、実施例1について記載した方法で各種評価を行った。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕49mgを加えて2時間加熱した。更に、V-601を49mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-1)の硫黄原子のうちの一部に化合物(A-1)、化合物(A-5)が付加したメルカプタン化合物(S-8)の30質量%溶液を得た。
化合物(P-22)において、上記の分岐含有部分構造含有率は、95質量%である。
以下に記載の方法で合成した化合物(P-23)を使用した点以外、実施例1について記載した方法で各種評価を行った。
化合物(P-23)において、上記の分岐含有部分構造含有率は、95質量%である。
以下に記載の方法で合成した化合物(P-24)を使用した点以外、実施例1について記載した方法で各種評価を行った。
化合物(P-24)において、上記の分岐含有部分構造含有率は、95質量%である。
以下に記載の方法で合成した化合物(P-25)を使用した点以外、実施例1について記載した方法で各種評価を行った。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕49mgを加えて2時間加熱した。更に、V-601を49mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-1)の硫黄原子のうちの一部に化合物(A-1)が付加したメルカプタン化合物(S-8)の30質量%溶液を得た。
化合物(P-25)において、上記の分岐含有部分構造含有率は、95質量%である。
以下に記載の方法で合成した化合物(P-26)を使用した点以外、実施例1について記載した方法で各種評価を行った。
化合物(P-26)において、上記の分岐含有部分構造含有率は、95質量%である。
以下に記載の方法で合成した化合物(P-27)を使用した点以外、実施例1について記載した方法で各種評価を行った。
これに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)〔V-601、富士フイルム和光純薬社製〕53mgを加えて2時間加熱した。更に、V-601を53mg加え、窒素気流下、液温90℃で2時間反応させた。室温まで冷却することで、化合物(Z-1)の硫黄原子のうちの一部に化合物(A-1)が付加したメルカプタン化合物(S-9)の30質量%溶液を得た。
化合物(P-27)において、上記の分岐含有部分構造含有率は、95質量%である。
実施例1に記載した波長変換部材の作製方法のうち、量子ドット含有重合性組成物の調製において、化合物(P-1)1質量部に変えて、化合物(P-24)を0.1質量部使用した点以外は、実施例1に記載した方法で波長変換部材を作製し、輝度評価を行ったところ、評価はAであった。
実施例1に記載した波長変換部材の作製方法のうち、量子ドット含有重合性組成物の調製において、化合物(P-1)1質量部に変えて、化合物(P-25)を0.1質量部使用した点以外は、実施例1に記載した方法で波長変換部材を作製し、輝度評価を行ったところ、評価はAであった。
更に、表2に示す結果ならびに実施例20および21の上記の結果から、化合物(P-21)~(P-27)を含む量子ドット含有重合性組成物を用いて作製された波長変換部材が高輝度での発光が可能な波長変換部材であったことも確認できる。
12 第1基材フィルム
12a、14a 支持フィルム
12b、14b バリア層
14 第2基材フィルム
16 波長変換層
18 樹脂層
18a 凹部
20 量子ドット含有部
24、24e 量子ドット
26 マトリックス
28 混合層
30 不透過層
34 下地有機層
36 無機層
38 保護有機層
50 バックライトユニット
52A 光源
52B 導光板
52C 面状光源
54 波長変換部材
56A 反射板
56B 再帰反射性部材
60 液晶表示装置
62 液晶セルユニット
64 液晶セル
68、70 偏光板
72、74 偏光子
76、78、82、84 偏光板保護フィルム
L1 樹脂層形成用組成物
L2 量子ドット含有重合性組成物
L3 酸素不透過性材料を含有する塗布液
M 金型
Claims (13)
- 下記一般式(1)で表される化合物;
pは2~9の範囲であり、
qは1~8の範囲であり、
p+qは3~10の範囲の整数であり、
Zは、(p+q)価の有機基を表し、
R1およびR2は、それぞれ独立に単結合または2価の有機基を表し、
A1は、酸性基、窒素原子を有する塩基性基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基およびヒドロキシ基からなる群から選択される基を1つ以上含む1価の基を表し、
p個のA1およびp個のR1は、それぞれ独立に、同一であっても異なっていてもよく、
P1は、下記一般式(2)で表される部分構造を含む重合体構造を表し、
qが2以上の場合、q個のP1およびq個のR2は、それぞれ独立に、同一であっても異なっていてもよい;
nは1以上であり、
*は隣り合う原子との結合位置を表し、
n1が1の場合、X1は1価の有機基を表し、X2は2価の有機基を表し、Y1は分岐を有する2価の炭化水素基を表し、Y1とX1またはX2とで環を形成してもよく、ただし該環は4員環以上の環であり、
n1が2以上の場合、X1は水素原子または1価の有機基を表し、X2は2価の有機基を表し、Y1は2価の有機基を表し、1つ以上のY1は分岐を有する2価の有機基を表し、Y1とX1またはX2とで環を形成してもよく、n1個のY1は、同一であっても異なっていてもよい。 - 一般式(2)で表される部分構造はビニルポリマー鎖を含む、請求項1に記載の化合物。
- P1で表される重合体構造はポリアルキレングリコール鎖を含む、請求項1に記載の化合物。
- 前記ポリアルキレングリコール鎖はポリプロピレングリコール鎖である、請求項5に記載の化合物。
- 重量平均分子量が4000~15000の範囲である、請求項1に記載の化合物。
- P1で表される重合体構造における一般式(2)で表される部分構造、ただし、n1が2以上の場合、Y1が分岐を有する2価の有機基である部分、の含有率が30質量%以上である、請求項1に記載の化合物。
- P1で表される重合体構造における一般式(2)で表される部分構造、ただし、n1が2以上の場合、Y1が分岐を有する2価の有機基である部分、の含有率が70質量%以上である、請求項1に記載の化合物。
- 請求項1~11のいずれか1項に記載の化合物と、無機粒子と、重合性化合物と、を含む重合性組成物。
- 請求項12に記載の重合性組成物を硬化した硬化物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023549742A JPWO2023048228A1 (ja) | 2021-09-22 | 2022-09-22 | |
CN202280064276.9A CN117999294A (zh) | 2021-09-22 | 2022-09-22 | 化合物、聚合性组合物及固化物 |
US18/611,199 US20240294678A1 (en) | 2021-09-22 | 2024-03-20 | Compound, polymerizable composition, and cured product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-154609 | 2021-09-22 | ||
JP2021154609 | 2021-09-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/611,199 Continuation US20240294678A1 (en) | 2021-09-22 | 2024-03-20 | Compound, polymerizable composition, and cured product |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023048228A1 true WO2023048228A1 (ja) | 2023-03-30 |
Family
ID=85720754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/035369 WO2023048228A1 (ja) | 2021-09-22 | 2022-09-22 | 化合物、重合性組成物および硬化物 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240294678A1 (ja) |
JP (1) | JPWO2023048228A1 (ja) |
CN (1) | CN117999294A (ja) |
WO (1) | WO2023048228A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277514A (ja) * | 2006-03-17 | 2007-10-25 | Fujifilm Corp | 高分子化合物およびその製造方法、顔料分散剤、顔料分散組成物、光硬化性組成物、並びにカラーフィルタおよびその製造方法 |
JP5454126B2 (ja) * | 2009-12-21 | 2014-03-26 | 横浜ゴム株式会社 | 硬化性樹脂組成物 |
JP2014062222A (ja) * | 2012-08-31 | 2014-04-10 | Fujifilm Corp | 化合物 |
US9044902B2 (en) * | 2010-11-29 | 2015-06-02 | The Regents Of The University Of Colorado, A Body Corporate | Radio frequency magnetic field responsive polymer composites |
-
2022
- 2022-09-22 WO PCT/JP2022/035369 patent/WO2023048228A1/ja active Application Filing
- 2022-09-22 CN CN202280064276.9A patent/CN117999294A/zh active Pending
- 2022-09-22 JP JP2023549742A patent/JPWO2023048228A1/ja active Pending
-
2024
- 2024-03-20 US US18/611,199 patent/US20240294678A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277514A (ja) * | 2006-03-17 | 2007-10-25 | Fujifilm Corp | 高分子化合物およびその製造方法、顔料分散剤、顔料分散組成物、光硬化性組成物、並びにカラーフィルタおよびその製造方法 |
JP5454126B2 (ja) * | 2009-12-21 | 2014-03-26 | 横浜ゴム株式会社 | 硬化性樹脂組成物 |
US9044902B2 (en) * | 2010-11-29 | 2015-06-02 | The Regents Of The University Of Colorado, A Body Corporate | Radio frequency magnetic field responsive polymer composites |
JP2014062222A (ja) * | 2012-08-31 | 2014-04-10 | Fujifilm Corp | 化合物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023048228A1 (ja) | 2023-03-30 |
CN117999294A (zh) | 2024-05-07 |
US20240294678A1 (en) | 2024-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109476989B (zh) | 含有量子点的组合物、波长转换部件、背光单元及液晶显示装置 | |
JP6326003B2 (ja) | 波長変換部材、バックライトユニット、および液晶表示装置、ならびに量子ドット含有重合性組成物 | |
JP6653622B2 (ja) | 波長変換部材、バックライトユニット、液晶表示装置、および量子ドット含有重合性組成物 | |
WO2017068781A1 (ja) | 重合性組成物、重合物、波長変換部材、バックライトユニット、および液晶表示装置 | |
JP6419960B2 (ja) | 組成物とポリマー成形用組成物、及びそれを用いて得られた波長変換体、波長変換部材、バックライトユニット、液晶表示装置 | |
WO2016052625A1 (ja) | バックライトユニット、液晶表示装置、波長変換部材、および光硬化性組成物 | |
KR101617387B1 (ko) | 코팅 조성물 및 이로부터 제조되는 플라스틱 필름 | |
JP6526190B2 (ja) | 重合性組成物、波長変換部材、バックライトユニット、および液晶表示装置 | |
JP2017214486A (ja) | 光波長変換組成物、光波長変換粒子、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置 | |
JP6679988B2 (ja) | 光波長変換シート、これを備えるバックライト装置、画像表示装置、および光波長変換シートの製造方法 | |
JP6560914B2 (ja) | バックライトユニット、液晶表示装置、波長変換部材、および光硬化性組成物 | |
WO2016129419A1 (ja) | 波長変換部材、バックライトユニット、画像表示装置および波長変換部材の製造方法 | |
JP6732045B2 (ja) | 波長変換フィルムおよびバックライトユニット | |
KR20150133143A (ko) | 파장 변환 부재, 백라이트 유닛 및 액정 표시 장치 | |
JP2017201386A (ja) | 光波長変換粒子、光波長変換粒子分散液、光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、画像表示装置、および光波長変換粒子の製造方法 | |
JP6903924B2 (ja) | 光波長変換シート、バックライト装置、画像表示装置、光波長変換組成物、および光波長変換部材 | |
WO2023048228A1 (ja) | 化合物、重合性組成物および硬化物 | |
US20230096684A1 (en) | Quantum dot-containing polymerizable composition, cured product, wavelength conversion member, backlight unit, and liquid crystal display device | |
JP6720603B2 (ja) | 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置 | |
WO2023048229A1 (ja) | 重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置 | |
JP7351001B2 (ja) | 量子ドット含有重合性組成物、硬化物、波長変換部材、バックライトユニットおよび液晶表示装置 | |
WO2021251448A1 (ja) | 波長変換部材、発光装置および液晶表示装置 | |
WO2024043127A1 (ja) | 波長変換シート、並びに、これを用いたバックライト及び液晶表示装置 | |
KR20230053722A (ko) | 파장 변환 시트용 필름, 그리고 이것을 이용한 파장 변환 시트, 백라이트 및 액정 표시 장치 | |
KR20160016053A (ko) | 자외선 경화형 접착제 조성 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22872979 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023549742 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280064276.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22872979 Country of ref document: EP Kind code of ref document: A1 |