WO2021220563A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2021220563A1
WO2021220563A1 PCT/JP2021/002151 JP2021002151W WO2021220563A1 WO 2021220563 A1 WO2021220563 A1 WO 2021220563A1 JP 2021002151 W JP2021002151 W JP 2021002151W WO 2021220563 A1 WO2021220563 A1 WO 2021220563A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
power conversion
capacitor
filter case
conversion device
Prior art date
Application number
PCT/JP2021/002151
Other languages
English (en)
French (fr)
Inventor
渉哉 粟森
賢市郎 中嶋
雄太 沼倉
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to US17/921,410 priority Critical patent/US12021459B2/en
Priority to CN202180031345.1A priority patent/CN115516748A/zh
Priority to DE112021001363.7T priority patent/DE112021001363T5/de
Priority to JP2022518603A priority patent/JP7282265B2/ja
Publication of WO2021220563A1 publication Critical patent/WO2021220563A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change

Definitions

  • the present invention relates to a power conversion device.
  • the power conversion device becomes a source of electromagnetic noise because the switching operation for performing DC AC power conversion is performed at high speed.
  • measures for arranging a noise filter circuit have been taken by electromagnetic noise countermeasures (EMC countermeasures).
  • the power conversion device needs a space for arranging parts such as capacitors and cores that make up the noise filter circuit. Furthermore, it is necessary to consider that the heat generated by the bus bar and the noise filter circuit component also affects the deterioration and destruction of other components. Therefore, it is required to improve the cooling performance of keeping the temperature of the noise filter component within the permissible range.
  • Patent Document 1 discloses a configuration in which the noise filter assembly 20A has a resin member 22 and is fixed to the bottom portion 7a of the case 7 via a flexible insulating sheet 26 made of a silicon-based material or the like. There is.
  • Patent Document 1 In the configuration of Patent Document 1, there is a concern about the fixing property of the component parts when the power conversion device is miniaturized, and the reliability of the power conversion device may be lowered. Therefore, it has been an issue to improve the cooling efficiency of the components and improve the reliability of the power conversion device while reducing the size of the power conversion device.
  • the power conversion device in the present invention includes a power conversion circuit unit that converts DC power into AC power, a flow path forming body for flowing a refrigerant that cools the power conversion circuit unit, and electricity for wiring that transmits the DC power.
  • a filter circuit unit that suppresses noise and a filter case unit that houses the filter circuit unit are provided.
  • the filter case unit is formed integrally with the flow path forming body, and the filter case unit and the filter circuit unit are integrally formed.
  • a first resin is filled between the two.
  • FIG. 1 shows the overall configuration of the power conversion device 1.
  • the power conversion device 1 is housed in the housing 2 and is integrally fixed with the housing 2 by the connector 23.
  • the periphery of the connector 23 will be described in detail with reference to FIG.
  • the housing 2 is grounded to the ground potential, has a bottom, and is formed in a box shape with an open top. A space for accommodating the power conversion device 1 is formed inside the housing 2.
  • the housing 2 is made of a metal such as aluminum or iron, and the entire structure can be formed by casting, for example, aluminum die casting.
  • the high-voltage battery connected to the power conversion device 1 is arranged outside the housing 2, and is electrically connected to the mold bus bar 4 from the outside of the filter case portion 3 described later in FIG. NS.
  • FIG. 2 is an explanatory diagram of the power conversion device 1 of FIG.
  • the arrow R is the visual direction used in the explanation of FIG. 3 described later.
  • the power conversion device 1 includes a filter case portion 3, a mold bus bar 4, a power semiconductor module 9 that converts DC power into AC power, a flow path forming body 10, a smoothing capacitor 11, a Y capacitor 13, and a DC mold. It is equipped with a bus bar 14.
  • the filter case portion 3 has a shape integrated with the flow path forming body 10, and all the flow path forming bodies 10 are housed inside the housing 2.
  • the mold bus bar 4 is housed inside the filter case portion 3 integrated with the flow path forming body 10, and is electrically connected to the power semiconductor module 9. Further, the mold bus bar 4 includes a first capacitor 6, a second capacitor 7, a magnetic core member 8 (hereinafter, core 8), an EMC filter circuit, and electronic components (unsigned) such as a discharge resistor. ing. Details will be described later.
  • FIG. 3 is an exploded view of the power conversion device 1, and is a view of the power conversion device 1 viewed from the direction of arrow R shown in FIG.
  • the flow path forming body 10 is made of a metal such as aluminum or iron, and can be formed by casting, for example, aluminum die casting.
  • the flow path forming body 10 has a structure for accommodating the power semiconductor module 9 inside, and is provided with a power semiconductor module mounting port 26 for accommodating the power semiconductor module 9.
  • the power semiconductor module mounting port 26 is provided on one of the side surface portions of the flow path forming body 10, and is arranged by the number of modules of the power semiconductor module 9.
  • the flow path forming body 10 is provided inside with a storage portion for accommodating the power semiconductor module 9, and the storage portion extends substantially horizontally from the power semiconductor module mounting port 26 to the inner depth of the flow path forming body 10. It is the existing shape. As shown in FIG. 2, the power semiconductor module 9 is fixed to the inside of the flow path forming body 10 in a state where the input / output terminal portion protrudes to the outside of the flow path forming body 10 by a fixing member (not shown).
  • the flow path forming body 10 includes a smoothing capacitor accommodating portion 24 and a Y capacitor accommodating portion 25 for accommodating the smoothing capacitor 11 and the Y capacitor 13, respectively.
  • the gap between the smoothing capacitor 11 and the Y capacitor 13, which are components of the power conversion circuit section to be described later, and the accommodating portion thereof is filled with a potting resin 15 (hereinafter, resin 15) and cured.
  • resin 15 potting resin 15
  • the resin 15 is a thermally conductive resin, which suppresses vibration between the smoothing capacitor 11 and the Y capacitor 13 and contributes to fixing the circuit components to the power conversion device 1 together with the grounding bus bar 5 described later. can. Therefore, the number of dedicated parts required for fixing screws and the like can be reduced, and the space for fixing required for installing the parts is also reduced.
  • the DC mold bus bar 14 is held by the flow path forming body 10 and is arranged so as to extend parallel to the power semiconductor module mounting port 26 and the surface on which the connection terminal of the smoothing capacitor 11 exists. NS. Further, the DC mold bus bar 14 is electrically connected to the power semiconductor module 9 and the smoothing capacitor 11. The DC mold bus bar 14 is molded with an insulating resin.
  • the power conversion circuit unit (not shown) included in the power conversion device 1 will be described.
  • the power conversion circuit unit includes a switching element and a diode such as an IGBT (insulated gate type bipolar transistor) that operates as an upper arm, and a switching element and a diode such as an IGBT that operates as a lower arm.
  • the switching element of the upper arm and the switching element of the lower arm convert DC power into AC power.
  • the power conversion circuit unit includes a power semiconductor module 9 that converts DC power into AC power, a smoothing capacitor 11 that smoothes the DC power supplied to the power semiconductor module 9, and a Y capacitor 13.
  • the smoothing capacitor 11 is connected between the high-voltage battery and the power semiconductor module 9, smoothes the DC power, and supplies the DC power to the power semiconductor module 9. That is, the smoothing capacitor 11 electrically connects the high-voltage battery and the power conversion circuit unit.
  • the Y capacitor 13 is connected between the power semiconductor module 9 and the ground potential, and suppresses the noise generated by the power semiconductor module 9.
  • FIG. 4 is a diagram around the connector 23 of FIG. FIG. 4 is a view when the power conversion device 1 is housed in the housing 2 and the periphery of the connector 23 is viewed from the opening surface side of the upper part of the housing 2.
  • the connector 23 is fixed to the housing 2 by the fastening member 28.
  • the connector bus bar 27 is electrically connected to the connector 23.
  • the mold bus bar 4 integrated with the filter case portion 3 is electrically connected to the connector bus bar 27.
  • the filter case portion 3 is electrically connected to the housing 2 via the mold bus bar 4, the connector bus bar 27, the connector 23, and the fastening member 28.
  • the connector 23 is electrically connected to a high-voltage battery arranged outside the housing 2 through an opening provided on the side surface of the housing 2.
  • the connector 23 is also electrically connected to the power semiconductor module 9.
  • the bus bar members such as the connector bus bar 27 and the mold bus bar 4 are also electrically connected to the power semiconductor module 9 via the connector 23.
  • FIG. 5 is a diagram showing a mold bus bar arranged in the filter case portion.
  • the filter case portion 3 is provided with a space for accommodating the mold bus bar 4 inside.
  • a storage portion for the core 8 which is a part of the mold bus bar 4 is provided in a part of the internal space, and the storage portion for the core 8 is a round bottom surface along the circumferential shape of the core 8.
  • the mold bus bar 4, the first capacitor 6, and the second capacitor 7 housed in the filter case 3 are installed so as to be in contact with the bottom surface of the filter case 3 (the back side of the paper in FIG. 5), respectively. ..
  • the gap between the mold bus bar 4 and the capacitors 6 and 7 is filled with the resin 15 and cured.
  • a part of the mold bus bar 4 is fixed by the resin 15 together with the first capacitor 6, the second capacitor 7, and the core member 8.
  • a part of the mold bus bar 4 passes through the upper part (front side of the paper surface) of the first capacitor 6. If the space of the filter case portion 3 can be taken into consideration, parts other than the mold bus bar 4 may be stored.
  • FIG. 6 is an exploded view of the inside of the filter case portion.
  • the arrow S is the visual direction used in the explanation of FIG.
  • the first capacitor 6 and the second capacitor 7 have a filter circuit function as a part of the mold bus bar 4.
  • the first capacitor 6 is arranged so that the longitudinal direction is parallel to the longitudinal direction of the filter case portion 3.
  • the second capacitor 7 is arranged so that the longitudinal direction is parallel to the lateral direction of the filter case portion 3.
  • the core 8 is held by the mold bus bar 4 and is housed so as to be concentric with respect to the circular bottom surface of the filter case portion 3, which will be described later.
  • the first capacitor 6, the second capacitor 7, and the core 8 are all filter circuits that have the effect of suppressing noise, but there is a problem that heat is generated.
  • heat loss occurs due to the electrical resistance of the bus bar material when an electric current is passed, and heat is generated from the connection portion to the first capacitor 6 and the second capacitor 7. Moves.
  • the first capacitor 6 and the second capacitor 7 may be destroyed or deteriorated due to the transfer heat, and it is necessary to suppress this heat in order to maintain the noise suppression function. That is, since the mold bus bar 4 housed in the filter case portion 3 generates heat due to the flow of an electric current, it is necessary to positively transfer the heat to the wall surface of the filter case portion 3. Therefore, heat dissipation by heat conduction through the resin 15 is required.
  • the resin 15 is filled and cured between the mold bus bar 4, the core member 8, the first capacitor 6, the second capacitor 7, and the filter case portion 3.
  • the heat generated from the mold bus bar 4, the first capacitor 6 and the second capacitor 7 is electrically conducted to the filter case portion 3 via the resin 15.
  • the mold bus bar 4, the first capacitor 6, and the second capacitor 7 are cooled by the refrigerant flowing in the flow path forming body 10 integrated with the filter case portion 3.
  • This resin 15 is a resin member having thermal conductivity and electrical insulation, which not only improves cooling efficiency but also fixes the relative position of the mold bus bar 4 installed in the filter case portion 3.
  • the filling rate of the resin 15 with respect to the volume of the accommodating portion of the filter case portion 3 is not specified, it is preferable that the filling rate of the resin 15 is high from the viewpoint of efficient cooling.
  • FIG. 7 is an exploded view of the mold bus bar 4.
  • the mold bus bar 4 is provided between the high voltage battery and the smoothing capacitor 11 as a filter circuit unit that suppresses noise in the wiring that transmits DC power.
  • the electromagnetic noise generated when the power conversion circuit unit performs the power conversion operation is suppressed by the core 8, the first capacitor 6, and the second capacitor 7.
  • the mold bus bar 4 is composed of a positive electrode bus bar 18, a negative electrode bus bar 19, a ground bus bar 5, a first capacitor 6, a second capacitor 7, and a core 8, and these are arranged along the inner wall of the filter case portion 3, respectively.
  • the mold bus bar 4 has a ground bus bar 5 as one component constituting a noise filter, and at least one of the positive electrode bus bar 18 and the negative electrode bus bar 19 and the periphery thereof, which will be described later, are molded and sealed with a resin to form a bus bar for each phase. Insulation between them is secured and integrated into parts.
  • the insulating resin used here is a second resin different from the resin 15 filled in the filter case portion 3. As a result, the mold bus bar 4 is surely kept insulated, and its components are also integrally held.
  • the positive electrode bus bar 18 and the negative electrode bus bar 19 are housed in the filter case portion 3 in a disjointed state, they are integrally molded and fixed with a second resin to form a mold bus bar 4. .. By doing so, the assemblability in the filter case portion 3 is improved. Further, since it can be formed by insert molding using the bus bar portion as an insert member, the assembly work becomes easy.
  • the mold bus bar 4 integrates the positive electrode bus bar 18, the negative electrode bus bar 19, and the ground bus bar 5, only one or two of these may be used as an insert member and integrally molded with the second resin. Further, these basses may be separated from each other and molded as one member separated from each other.
  • the first capacitor 6 and the second capacitor 7 suppress the electromagnetic noise of the current flowing through the filter circuit unit 4 as described above.
  • the first capacitor 6 and the second capacitor 7 are arranged so that the longitudinal direction is perpendicular to the connection terminal surfaces of the positive electrode bus bar 18 and the negative electrode bus bar 19.
  • One end of the first capacitor 6 is electrically connected to the positive electrode bus bar 18 and the other end is electrically connected to the negative electrode bus bar 19.
  • One end of the second capacitor 7 is connected to the positive electrode bus bar 18 or the negative electrode bus bar 19, and the other end is grounded to the ground potential by the ground bus bar 5.
  • the second capacitor 7 is connected to the metal housing 2 which is grounded to the ground potential by being connected to the filter case portion 3. By doing so, the filter case portion 3 is set to the ground potential. Further, since the connection of the second capacitor 7 with the ground potential can be realized by the connection with the filter case portion 3, the mounting workability is facilitated. Further, by arranging the connection point between the filter case portion 3 and the metal housing 2 grounded at the ground potential in the vicinity of the second capacitor 7, the arrangement is good as a countermeasure against electromagnetic noise from the viewpoint of wiring length.
  • the core 8 is a magnetic material and has a hollow cylindrical shape with a through hole on the inner circumference.
  • the positive electrode bus bar 18 and the negative electrode bus bar 19 are configured to pass through a through hole in the center of the core 8, and this configuration realizes integral fixing with the mold bus bar 4. Due to the configuration of the core 8 arranged so as to surround the positive electrode bus bar 18 and the negative electrode bus bar 19, the core 8 suppresses the electromagnetic noise by absorbing the electromagnetic noise of the current flowing through the bus bar.
  • the positive electrode bus bar 18 and the negative electrode bus bar 19 penetrating the core 8 are electrically connected to the DC mold bus bar 14.
  • the GND bus bar of the Y capacitor 13 is also fixed to the DC mold bus bar 14 (unsigned).
  • the positive electrode bus bar 18 and the negative electrode bus bar 19 are electrically connected to the first capacitor 6, the second capacitor 7, and the DC mold bus bar 14, respectively, by the connection described above. Further, the positive electrode bus bar 18 and the negative electrode bus bar 19 are also electrically connected to the connector bus bar 27 described above. The positive electrode bus bar 18 and the negative electrode bus bar 19 are provided with terminal portions for electrically connecting to the first capacitor 6 and the second capacitor 7. Note that this connection method may be any general electrical connection such as welding connection, caulking connection, and screw fastening connection.
  • the grounding bus bar 5 will be explained.
  • the ground bus bar 5 is connected to one terminal of the second capacitor 7.
  • the ground bus bar 5 is fixed to the edge surface of the filter case portion 3 by screw fastening, and is electrically connected to the same potential as the ground potential of the housing 2 fastened to the flow path forming body 10 via the filter case portion 3. Will be done.
  • the grounding bus bar 5 may be directly connected to the housing 2.
  • a fastening element such as a screw is used to connect the grounding bus bar 5 and the filter case portion 3. As a result, it has a function of fixing the position of the mold bus bar 4 and contributes to the improvement of the vibration resistance of the component parts.
  • FIG. 8 is a cross-sectional view of the power conversion device 1 according to the first embodiment of the present invention. Note that FIG. 8 is a view of the power conversion device 1 viewed from the direction of arrow S shown in FIG.
  • the power conversion device 1 has a configuration in which the flow path forming body 10 is integrated with the filter case portion 3 to reduce the size.
  • the flow path forming body 10 has a refrigerant flow path 16 between the flow path forming body 10 and the power semiconductor module 9 provided therein, and the refrigerant is allowed to flow in to be cooled.
  • the resin 15 filled and cured in the filter case portion 3 fixes the mold bus bar 4 and the capacitors 6 and 7.
  • the heat generated from the mold bus bar 4 and the capacitors 6 and 7 is radiated to the refrigerant in the refrigerant flow path 16 via the resin 15, the filter case portion 3, and the flow path forming body 10.
  • the mold bus bar 4 is schematically an L-shaped cross-sectional view.
  • the upper surface side (upper surface side of the paper surface) of the L-shape is necessary for welding with the terminals of the capacitors 6 and 7, respectively, but this portion cannot be expected to dissipate heat to the filter case integrally formed with the flow path forming body 10. .. If it is desired to dissipate the heat generated by the bus bar portion, it is necessary to intentionally provide a portion along the wall surface. Such a portion crawled along the inner peripheral wall surface for heat dissipation is arranged in parallel along the edge surface of the filter case portion 3.
  • the capacitors 6 and 7, the magnetic core 8 and the mold bus bar 4 are immersed and fixed in the potting resin 15, and the cooling effect of the EMC countermeasure component and the reliability of the power conversion device due to the cooling effect can be improved.
  • first capacitor 6 and the second capacitor 7 are arranged as described above in the present embodiment, the first capacitor 6 and the second capacitor 7 may be arranged in parallel or at an angle. Further, although the bottom surfaces of the first capacitor 6 and the second capacitor 7 are arranged so as to be in contact with the bottom surface of the filter case portion 3, they may be arranged so as to be in contact with the side surfaces of the respective capacitors. Further, in FIGS. 6 and 7, two first capacitors and two second capacitors are mounted, but the number may be one.
  • the molten resin 15 may be injected between the capacitors 6 and 7 and the capacitor accommodating portion of the filter case portion 3 to be filled and cured, or the molten state previously injected into the capacitor accommodating portion may be adopted.
  • the capacitors 6 and 7 may be fixed by submerging the capacitors 6 and 7 in the resin 15 and then curing the resin 15.
  • FIG. 9 is a diagram illustrating the arrangement of the capacitors 6 and 7 in the filter case portion 3.
  • the filter case portion 3 is formed integrally with the flow path forming body 10, and is a bag-shaped space having an opening at the upper portion (front side of the paper surface) and an edge surface surrounding the opening, and is a filter circuit portion.
  • a space for accommodating the parts constituting a certain mold bus bar 4 is formed.
  • the first capacitor 6 and the second capacitor 7 are separated by a first partition wall 20 which is a part of the filter case portion 3 between the arrangements of the respective capacitors.
  • a second partition wall 21 is similarly provided between the core 8 and the second capacitor 7.
  • the first partition wall 20 and the second partition wall 21 are a part of the filter case portion 3.
  • the number of surfaces in which the capacitors 6 and 7 and the filter case 3 are close to each other increases, and the heat generated from the capacitors 6 and 7 is transferred to the relatively low temperature filter case 3 22 to improve the cooling performance. ..
  • the fixing property of the capacitors 6 and 7 can be improved.
  • the first partition wall 20 and the second partition wall 21 for fixing the capacitors 6 and 7 do not necessarily have to be provided.
  • FIG. 10 is a perspective view illustrating an inner wall surface 17 accommodating the core 8 of the filter case portion 3.
  • the core 8 suppresses electromagnetic noise by absorbing fluctuations in the current flowing through the mold bus 4 penetrating the core 8, but at that time, it self-heats and the temperature rises. Therefore, it is necessary to improve the cooling performance around the core 8.
  • the inner wall surface 17 is a part of the filter case portion 3, and is curved in a circular circumferential surface along the shape of the outer surface of the core 8. Further, the resin 15 described above is filled and cured between the core 8 and the inner wall surface 17 (not shown). As a result, when the mold bus bar 4 is stored, the distance between the inner wall surface 17 of the filter case portion 3 and the outer peripheral portion of the core 8 becomes constant, and the thickness of the resin when the resin 15 is filled is made thin and uniform. Can be done. By doing so, the heat of the core member 8 can be efficiently transferred to the filter case portion 3 having a relatively low temperature, and the cooling performance of the core 8 can be improved. A configuration may be adopted in which the cooling efficiency is improved by making the shape of the inner wall surface 17 closer to the core 8 along the core 8.
  • the power conversion device 1 includes a power conversion circuit unit that converts DC power into AC power, a flow path forming body 10 for flowing a refrigerant that cools the power conversion circuit unit, and electricity for wiring that transmits DC power.
  • a filter circuit unit 4 that suppresses noise and a filter case unit 3 that houses the filter circuit unit 4 are provided, and the filter case unit 3 is integrally formed with the flow path forming body 10, and the filter case unit 3 and the filter circuit are provided.
  • a first resin 15 is filled between the parts 4 and the parts 4. Therefore, it is possible to provide a power conversion device having both miniaturization and improvement of cooling efficiency and improved reliability.
  • the filter circuit unit 4 of the power conversion device 1 includes a positive electrode bus bar 18 and a negative electrode bus bar 19, a magnetic core member 8 arranged so as to surround the positive electrode bus bar 18 and the negative electrode bus bar 19, and one end of the positive electrode bus bar 18.
  • a first capacitor 6 connected to the negative electrode bus bar 19 at the other end, and a second capacitor 7 connected to the positive electrode bus bar 18 and the negative electrode bus bar 19 at one end and grounded to the ground potential at the other end are provided.
  • the bus bar 18, the negative electrode bus bar 19, the core member 8, the first capacitor 6, and the second capacitor 7 are arranged along the inner wall surface of the filter case portion 3. Since this is done, it is possible to achieve both miniaturization of the power conversion device 1 and improvement of cooling efficiency.
  • the filter case portion 3 of the power conversion device 1 has an inner wall surface 17 that follows the shape of the outer surface of the core member 8. Since this is done, the cooling efficiency of the core 8 which easily generates heat can be improved.
  • the filter case portion 3 of the power conversion device 1 has a first partition wall 20 that separates the first capacitor 6 and the second capacitor 7. Since this is done, it is possible to improve the cooling efficiency of the capacitor portion that is easily affected by heat generation.
  • the filter case portion 3 of the power conversion device 1 has a second partition wall 21 that separates the second capacitor 7 from the core member 8. Since this is done, it is possible to achieve both an improvement in the cooling efficiency of the capacitor portion, which is easily affected by heat generation, and an improvement in the cooling efficiency of the bus bar portion, which is likely to generate heat.
  • the power conversion device 1 includes a metal housing 2 grounded to a ground potential, the filter case portion 3 is electrically connected to the housing 2, and the second capacitor 7 is connected to the filter case portion 3. It is electrically connected. Since this is done, it is possible to contribute to the miniaturization of the overall configuration while improving the assemblability.
  • the power conversion device 1 includes a grounded bus bar 5 for connecting the second capacitor 7 and the filter case portion 3, and at least one of the positive electrode bus bar 18 and the negative electrode bus bar 19 and the grounded bus bar 5 are a second resin member.
  • the filter case portion 3 has an edge surface surrounding the opening, and the grounding bus bar 5 is fixed to the edge surface. Since this is done, the fixing property of the component can be improved.
  • the power conversion device 1A shown in FIG. 11 has the same basic configuration as the power conversion device 1 shown in the first embodiment.
  • the structural difference from the first embodiment is that the accommodating portion of the filter case portion 3A continues to the accommodating portion of the Y capacitor 13A of the flow path forming body 10A.
  • the resin 15A is filled and cured in an integrated housing portion from the filter case portion 3A to the housing portion of the Y capacitor. This eliminates the need to separate the filling points of the resin 15A.
  • fixing the noise filter circuit component with the resin 15A eliminates the need for additional parts required for fixing.
  • the heat is transferred to the flow path forming body 10A having a relatively low temperature via the resin 15A, and the cooling performance can be similarly improved by the refrigerant flowing inside the flow path forming body 10A.
  • FIG. 12 is a mold bus bar 4A loaded in the power conversion device 1A of FIG. As described above, even if the positions of the positive electrode bus bar 18, the negative electrode bus bar 19, and the ground bus bar 5A are different from those of the power conversion device 1 of the first embodiment, and other shapes are different, as shown in FIG. , The filling status of the resin 15A does not change. Therefore, the same effect as that of the first embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

小型化と冷却効率の向上とを両立させ、信頼性を向上させた電力変換装置を提供する。電力変換装置は、直流電力を交流電力に変換する電力変換回路部と、前記電力変換回路部を冷却する冷媒を流すための流路形成体と、前記直流電力を伝達する配線の電気ノイズを抑制するフィルタ回路部と、前記フィルタ回路部を収納するフィルタケース部と、を備え、前記フィルタケース部は、前記流路形成体と一体に形成され、前記フィルタケース部と前記フィルタ回路部との間には、第1の樹脂が充填される。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 電力変換装置は、直流交流の電力変換を行うためのスイッチング動作が高速に行われることで、電磁ノイズの発生源となる。これを抑制するため、従来は、電磁ノイズ対策(EMC対策)により、ノイズフィルタ回路を配置する対策が行われてきた。
 しかし、その対策を実行するには、ノイズフィルタ回路を構成するコンデンサやコアなどの部品を配置する空間が、電力変換装置に必要となる。さらに、バスバやノイズフィルタ回路構成部品が発熱することによって、他の構成部品の劣化や破壊にも影響することを考慮する必要がある。そのため、ノイズフィルタの部品の温度を許容範囲内に抑える冷却性能の向上が求められている。
 本願発明の背景技術として、下記の特許文献1が知られている。特許文献1では、ノイズフィルタ組立体20Aが樹脂部材22を有しており、シリコン系材料等からなる柔軟な絶縁シート26を介して、ケース7の底部7aに固定されている構成が開示されている。
国際公開第2019/064833号
 特許文献1の構成では、電力変換装置の小型化を実現させる場合に構成部品の固定性についての懸念があり、電力変換装置としての信頼性が低下する恐れがある。そのため、電力変換装置を小型化させつつ、構成部品の冷却効率も向上させ、電力変換装置の信頼性を向上させることが課題であった。
 本発明における電力変換装置は、直流電力を交流電力に変換する電力変換回路部と、前記電力変換回路部を冷却する冷媒を流すための流路形成体と、前記直流電力を伝達する配線の電気ノイズを抑制するフィルタ回路部と、前記フィルタ回路部を収納するフィルタケース部と、を備え、前記フィルタケース部は、前記流路形成体と一体に形成され、前記フィルタケース部と前記フィルタ回路部との間には、第1の樹脂が充填される。
 本発明によれば、小型化と冷却効率の向上とを両立させ、信頼性を向上させた電力変換装置を提供することができる。
電力変換装置の全体構成を表す図である。 図1の電力変換装置の説明図である。 図2の電力変換装置の分解図である。 図1のコネクタ周辺の図である。 フィルタケース部に配置されるモールドバスバを表す図である。 フィルタケース部の内部の分解図である。 モールドバスバ(フィルタ回路)の分解図である。 本発明の第1の実施形態に係る、電力変換装置の構造を表す断面図である。 フィルタケース部内のコンデンサの配置を説明する図である。 フィルタケース部のコア周辺の内壁面を説明する図である。 本発明の第2の実施形態に係る、電力変換装置の分解図である。 図11のモールドバスバの説明である。
 以下、図面を用いて本発明の第1の実施形態に係る電力変換装置の構成について図1~図10を用いて説明する。
(第1の実施形態および電力変換装置の構成)
 図1は、電力変換装置1の全体構成である。電力変換装置1は、ハウジング2に収納され、コネクタ23によってハウジング2と一体になり固定される。コネクタ23周辺については、図4で詳述する。
 ハウジング2はグラウンド電位に接地され、底部を有し、かつ上部が開口されたボックス状に形成されている。ハウジング2の内部には、電力変換装置1を収納するための空間が形成されている。ハウジング2は、アルミニウムや鉄などの金属により形成されており、例えば、アルミダイキャスト等の鋳造により全体構造を形成することができる。なお、図示しないが、電力変換装置1に接続される高電圧バッテリは、ハウジング2の外部に配置されており、図2で後述するフィルタケース部3の外部からモールドバスバ4に電気的に接続される。
 図2は、図1の電力変換装置1の説明図である。なお、矢印Rは、後述の図3の説明の際に用いる視覚方向である。
 電力変換装置1は、フィルタケース部3と、モールドバスバ4と、直流電力を交流電力に変換するパワー半導体モジュール9と、流路形成体10と、平滑コンデンサ11と、Yコンデンサ13と、DCモールドバスバ14と、を備えている。フィルタケース部3は、流路形成体10と一体となる形状を有しており、流路形成体10はすべてハウジング2の内部に収納される。
 モールドバスバ4は、流路形成体10と一体になっているフィルタケース部3の内部に収納され、パワー半導体モジュール9に電気的に接続される。また、モールドバスバ4は、第1コンデンサ6と、第2コンデンサ7と、磁性体コア部材8(以下、コア8)と、EMCフィルタ回路および放電抵抗等の電子部品(符号なし)と、を備えている。詳細は後述する。
 図3は、電力変換装置1の分解図であり、図2に示されている矢印R方向から電力変換装置1を見た図である。
 流路形成体10は、アルミニウムや鉄などの金属で形成されており、例えばアルミダイキャスト等の鋳造により形成することができる。
 流路形成体10は、パワー半導体モジュール9を内部に収納する構造になっており、パワー半導体モジュール9を収納するために、パワー半導体モジュール取付口26を備えている。パワー半導体モジュール取付口26は、流路形成体10の側面部の1つに備えられ、パワー半導体モジュール9のモジュール数だけ配置されている。
 流路形成体10は、パワー半導体モジュール9を収納する収納部を内部に備えており、その収納部は、パワー半導体モジュール取付口26からほぼ水平方向に、流路形成体10の内部奥へ延在している形状である。パワー半導体モジュール9は、図2に示すように、不図示の固定部材により入出力端子部が流路形成体10の外側に突出した状態で、流路形成体10の内部に固定される。
 流路形成体10は、平滑コンデンサ11とYコンデンサ13とをそれぞれ収容するため、平滑コンデンサ収容部24とYコンデンサ収容部25とを備えている。後述する電力変換回路部の構成部品である平滑コンデンサ11とYコンデンサ13とその収容部との間の空隙には、ポッティング樹脂15(以下、樹脂15)が充填されて硬化している。これにより、後述する流路形成体10内に流れる冷媒が、樹脂15を介してこれらの電力変換回路部の構成部品から発生する熱を逃がしている。
 樹脂15は熱伝導性の樹脂であり、平滑コンデンサ11とYコンデンサ13との振動を抑制して、電力変換装置1に対して、後述する接地バスバ5とともに回路構成部品の固定に寄与することができる。そのため、ねじ等の固定に必要な専用部品の点数を削減することができ、その部品の設置に必要な固定用のスペースも削減している。
 DCモールドバスバ14は、流路形成体10によって保持される形で、パワー半導体モジュール取付口26と、平滑コンデンサ11の接続端子が存在する面と、に対して平行に延在するように配置される。また、DCモールドバスバ14は、パワー半導体モジュール9と平滑コンデンサ11と、に電気的に接続される。なお、DCモールドバスバ14は絶縁性の樹脂によってモールドされている。
 電力変換装置1が備える電力変換回路部(図示せず)について説明する。電力変換回路部は、上アームとして動作するIGBT(絶縁ゲート型バイポーラトランジスタ)等のスイッチング素子およびダイオードと、下アームとして動作するIGBT等のスイッチング素子およびダイオードと、を有する。上アームのスイッチング素子と下アームのスイッチング素子は、直流電力を交流電力に変換する。
 電力変換回路部は、直流電力を交流電力に変換するパワー半導体モジュール9と、パワー半導体モジュール9に供給される直流電力を平滑化する平滑コンデンサ11と、Yコンデンサ13とを備えて構成される。平滑コンデンサ11は、高電圧バッテリとパワー半導体モジュール9との間に接続され、直流電力を平滑化してパワー半導体モジュール9に供給している。つまり、平滑コンデンサ11は、高電圧バッテリと電力変換回路部とを電気的に接続している。Yコンデンサ13は、パワー半導体モジュール9とグラウンド電位の間に接続され、パワー半導体モジュール9が発生するノイズを抑制する。
 図4は、図1のコネクタ23周辺の図である。なお図4は、電力変換装置1をハウジング2に収納し、ハウジング2の上部の開口面側からコネクタ23周辺を見たときの図である。
 コネクタ23は、締結部材28によりハウジング2に固定されている。コネクタバスバ27は、コネクタ23と電気的に接続されている。また、フィルタケース部3と一体になっているモールドバスバ4は、コネクタバスバ27と電気的に接続されている。これにより、フィルタケース部3は、モールドバスバ4とコネクタバスバ27とコネクタ23と締結部材28とを介して、ハウジング2と電気的に接続されている。
 コネクタ23は、ハウジング2の側面に設けられている開口部を介して、ハウジング2の外部に配置されている高電圧バッテリと電気的に接続する。また、コネクタ23はパワー半導体モジュール9にも電気的に接続される。これにより、コネクタ23を介して、コネクタバスバ27、モールドバスバ4などのバスバ部材も同様に、パワー半導体モジュール9に電気的に接続される。
 図5は、フィルタケース部に配置されるモールドバスバを表す図である。
 フィルタケース部3は、モールドバスバ4が内部に収納されるスペースを設けている。内部のスペースの一部にモールドバスバ4の一部であるコア8の収納部があり、コア8の収納部は、コア8の円周形状に沿ったラウンド形状の底面である。
 フィルタケース部3に収納されている、モールドバスバ4と第1コンデンサ6と第2コンデンサ7とは、それぞれフィルタケース部3の底面(図5の紙面奥側)に接触するように設置されている。モールドバスバ4とコンデンサ6,7との間の隙間には、樹脂15が充填されて硬化している。これにより、モールドバスバ4の一部は、第1コンデンサ6と、第2コンデンサ7と、コア部材8と、ともに、樹脂15により固定される。モールドバスバ4の一部は、第1コンデンサ6の上部(紙面手前側)を通過する。なお、フィルタケース部3のスペースを考慮できるなら、モールドバスバ4以外の部品を収納してもよい。
 図6は、フィルタケース部の内部の分解図である。なお、矢印Sは図8の説明時に用いられる視覚方向である。
 第1コンデンサ6と第2コンデンサ7は、モールドバスバ4の一部としてフィルタ回路の機能を持っている。第1コンデンサ6は長手方向がフィルタケース部3の長手方向と平行になるように配置される。また、第2コンデンサ7は、長手方向がフィルタケース部3の短手方向と平行になるように配置される。コア8は、モールドバスバ4に保持されており、後述するフィルタケース部3の円形状の底面に対し、同心円となるように収容されている。
 第1コンデンサ6と第2コンデンサ7とコア8は、いずれもノイズを抑制する効果があるフィルタ回路であるが、発熱する問題点がある。電力変換装置1で使用されるモールドバスバ4に代表されるバスバは、電流を流す際にバスバ材料の電気的抵抗から熱損失が発生し、接続部分から第1コンデンサ6と第2コンデンサ7へ熱が移動する。この際、第1コンデンサ6と第2コンデンサ7は、移動熱により破壊や劣化の懸念があり、ノイズ抑制機能を維持するためには、この熱を抑える必要がある。つまり、フィルタケース部3に収容されるモールドバスバ4は電流が流れることで発熱するため、その熱を積極的にフィルタケース部3の壁面に伝達する必要がある。そのため、樹脂15を介しての熱伝導による放熱が求められる。
 樹脂15は、モールドバスバ4、コア部材8、第1コンデンサ6と第2コンデンサ7とフィルタケース部3との間に、充填され硬化している。これにより、モールドバスバ4および第1コンデンサ6と第2コンデンサ7から発生する熱を、樹脂15を介してフィルタケース部3に熱伝導させている。そうすることで、フィルタケース部3と一体になっている流路形成体10内を流れる冷媒によって、モールドバスバ4、第1コンデンサ6および第2コンデンサ7が冷却されている。
 この樹脂15は、熱伝導性および電気絶縁性を有する樹脂部材であり、冷却効率を向上させるだけでなく、フィルタケース部3に設置するモールドバスバ4の相対的位置を固定している。なお、フィルタケース部3の収容部の体積に対する樹脂15の充填率は規定していないが、冷却を効率的に行う観点から樹脂15の充填率は高い方が好ましい。
 図7は、モールドバスバ4の分解図である。
 モールドバスバ4は、直流電力を伝達する配線のノイズを抑制するフィルタ回路部として、高電圧バッテリと平滑コンデンサ11との間に設けられている。電力変換回路部が電力変換動作時に発生する電磁ノイズは、コア8、第1コンデンサ6および第2コンデンサ7によって抑制されている。
 モールドバスバ4は、正極バスバ18,負極バスバ19,接地バスバ5,第1コンデンサ6,第2コンデンサ7,コア8により構成され、これらはフィルタケース部3の内壁に沿ってそれぞれ配置されている。モールドバスバ4は、ノイズフィルタを構成する一部品として接地バスバ5を有し、後述する正極バスバ18および負極バスバ19の少なくとも一方とその周囲を樹脂でモールド封止されることで、各相のバスバ間の絶縁を確保かつ一体部品化している。ここで用いられている絶縁性の樹脂は、フィルタケース部3に充填される樹脂15とは別の第2の樹脂である。これにより、モールドバスバ4は確実に絶縁を保たれ、その構成部品も一体的に保持されている。
 また、正極バスバ18や負極バスバ19をバラバラの状態でフィルタケース部3に収容すると組み立てが煩雑になることを避けるため、一体的にまとめて第2の樹脂でモールド固定してモールドバスバ4としている。そうすることで、フィルタケース部3内の組立性が向上している。さらに、バスバ部分をインサート部材とするインサート成型により形成することができるため、組立作業が容易となる。
 なお、モールドバスバ4は、正極バスバ18,負極バスバ19,接地バスバ5を一体化しているが、これらの内一つないし二つのみをインサート部材として第2の樹脂と一体に成型方法でもよい。また、これらのバスバを別体として、それぞれ相互に分離した一つの部材として成型するようにしてもよい。
 第1コンデンサ6と第2コンデンサ7は、前述のようにフィルタ回路部4に流れる電流の電磁ノイズを抑制する。第1コンデンサ6と第2コンデンサ7は、正極バスバ18および負極バスバ19の接続端子面に対し、長手方向が垂直となるように配置される。
 第1コンデンサ6は、一端を正極バスバ18と、他端を負極バスバ19と電気的に接続されている。第2コンデンサ7は、一端を正極バスバ18あるいは負極バスバ19と接続され、他端は接地バスバ5によりグラウンド電位に接地されている。
 第2コンデンサ7は、フィルタケース部3と接続されることで、グラウンド電位に接地されている金属性のハウジング2と接続されている。こうすることで、フィルタケース部3をグラウンド電位としている。また、第2コンデンサ7のグラウンド電位との接続を、フィルタケース部3との接続により実現できるため、取付作業性が容易になっている。さらに、フィルタケース部3とグラウンド電位に接地する金属製ハウジング2との接続点を第2コンデンサ7の近傍に置くことで、配線長の観点から電磁ノイズ対策に良好な配置としている。
 コア8は磁性体材料であり、内周に貫通孔を備えた中空の円筒型の形状を有している。正極バスバ18および負極バスバ19は、コア8の中央の貫通孔を通過する構成であり、この構成によりモールドバスバ4との一体固定を実現している。正極バスバ18及び負極バスバ19を囲むように配置されるコア8の構成によって、コア8はバスバに流れる電流の電磁ノイズを吸収することで電磁ノイズを抑制している。コア8を貫通した正極バスバ18および負極バスバ19は、DCモールドバスバ14に電気的接続される。なおDCモールドバスバ14には、Yコンデンサ13のGNDバスバも固定されている(符号なし)。
 正極バスバ18および負極バスバ19は、前述した接続により、第1コンデンサ6,第2コンデンサ7,およびDCモールドバスバ14にそれぞれ電気的接続される。また、正極バスバ18および負極バスバ19は、前述したコネクタバスバ27にも電気的接続される。正極バスバ18および負極バスバ19は、第1コンデンサ6と第2コンデンサ7とに電気的に接続するための端子部を備える。なお、この接続方法は、溶接による接続,カシメ接続,ねじ締結による接続など、一般的な電気的接続であればどのような手法でもよい。
 接地バスバ5の説明をする。接地バスバ5は、第2コンデンサ7の一方の端子に接続される。接地バスバ5は、フィルタケース部3の縁面にねじ締結により固定され、フィルタケース部3を介して、流路形成体10と締結されているハウジング2のグラウンド電位と同電位に電気的に接続される。なお、接地バスバ5は、ハウジング2に直接接続してもよい。これにより、第2コンデンサ7のグラウンド電位への接続を実現している。接地バスバ5とフィルタケース部3の接続には、ねじ等の締結要素を使用する。これによりモールドバスバ4の位置固定の機能を有し、構成部品の耐振性の向上に貢献している。
 図8は、本発明の第1の実施形態に係る、電力変換装置1の断面図である。なお、図8は図6で示した矢印S方向から電力変換装置1を見た図である。
 電力変換装置1は、前述のように、流路形成体10がフィルタケース部3と一体になり、小型化させている構成である。流路形成体10は、備えているパワー半導体モジュール9との間に冷媒流路16を有し、冷媒を流入させて冷却させている。さらに、フィルタケース部3に充填され硬化した樹脂15が、モールドバスバ4とコンデンサ6,7とを固定させている。これにより、モールドバスバ4とコンデンサ6,7から発生する熱を、樹脂15とフィルタケース部3と流路形成体10とを介して、冷媒流路16内の冷媒へ放熱している。そうすることで、電力変換装置1の小型化と冷却効率の向上とを両立させ、信頼性を向上させることができる。
 図8では、モールドバスバ4は模式的にL字断面図となっている。L字の上面側(紙面上側)は、コンデンサ6,7の端子とそれぞれ溶接するために必要であるが、この部分は、流路形成体10と一体形成されたフィルタケースへの放熱は期待できない。このバスバ部分の発熱を放熱したい場合には、意図的に壁面に沿うような部分を設ける必要がある。そのような、放熱のために内周壁面に沿うように這いまわされた部分を、フィルタケース部3の縁面にそって平行に配置するようにしている。コンデンサ6,7、磁性体コア8、モールドバスバ4がポッティング樹脂15に浸漬され固定されており、EMC対策部品の冷却効果およびそれによる電力変換装置の信頼性を向上させることができる。
 なお、本実施形態においては上述したように配置されるが、第1コンデンサ6および第2コンデンサ7の長手方向を、平行あるいは角度をもって配置させてもよい。また、第1コンデンサ6および第2コンデンサ7の底面は、フィルタケース部3の底面と接触するように配置されるが、それぞれのコンデンサの側面を接触するように配置してもよい。また、図6,7では第1コンデンサおよび第2コンデンサが2個ずつ搭載されているが、個数が1個でもよい。
 また、溶融状態の樹脂15をコンデンサ6,7とフィルタケース部3のコンデンサ収容部部分の間に注入して充填させ硬化させる方法を取ってもよいし、予めコンデンサ収容部分に注入された溶融状態の樹脂15にコンデンサ6,7を沈め、その後樹脂15を硬化させることでコンデンサ6,7を固定しても良い。
 図9は、フィルタケース部3内のコンデンサ6,7の配置を説明する図である。
 フィルタケース部3は、流路形成体10と一体に形成されており、上部(紙面手前側)が開口され、その開口部を囲む縁面を有した袋状の空間であり、フィルタ回路部であるモールドバスバ4を構成する部品を収納する空間が形成されている。
 第1コンデンサ6と第2コンデンサ7は、それぞれのコンデンサの配置の間をフィルタケース部3の一部である第1隔壁20によって分けられている。またコア8と第2コンデンサ7との間にも同様に第2隔壁21が設けられている。第1隔壁20と第2隔壁21は、フィルタケース部3の一部である。これにより、コンデンサ6,7とフィルタケース部3が近接する面が増え、コンデンサ6,7から発生する熱を相対的に低温のフィルタケース部3に熱移動22させ、冷却性能を高めることができる。また、隔壁をコンデンサ6,7の一部周囲に設けることで、コンデンサ6,7の固定性を高めることもできる。なお、コンデンサ6,7を固定するための第1隔壁20と第2隔壁21は、必ずしも設けなくてもよい。
 図10は、フィルタケース部3のコア8を収容する内壁面17について説明する斜視図である。
 コア8は、前述したように、コア8を貫通するモールドバスバ4に流れる電流の変動を吸収することで電磁ノイズを抑制するが、その際に自己発熱し温度が上昇する。そのため、コア8の周囲の冷却性能を高める必要がある。
 内壁面17はフィルタケース部3の一部であり、コア8の外表面の形状に沿って円形円周面に湾曲している。また、コア8と内壁面17との間には、前述した樹脂15が充填され硬化している(図示せず)。これにより、モールドバスバ4が収納された時に、フィルタケース部3の内壁面17とコア8の外周部の距離が一定となり、樹脂15が充填される際の樹脂の厚みを薄くかつ均一化させることができる。そうすることで、相対的に温度の低いフィルタケース部3に、コア部材8の熱を効率的に移動させることができ、コア8の冷却性能を高めることができる。なお、内壁面17の形状をコア8に沿ってさらに近接した形状にすることで、冷却効率を向上させるような構成を採用してもよい。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)電力変換装置1は、直流電力を交流電力に変換する電力変換回路部と、電力変換回路部を冷却する冷媒を流すための流路形成体10と、直流電力を伝達する配線の電気ノイズを抑制するフィルタ回路部4と、フィルタ回路部4を収納するフィルタケース部3と、を備え、フィルタケース部3は、流路形成体10と一体に形成され、フィルタケース部3とフィルタ回路部4との間には、第1の樹脂15が充填される。このようにしたので、小型化と冷却効率の向上とを両立させ、信頼性を向上させた電力変換装置を提供できる。
(2)電力変換装置1のフィルタ回路部4は、正極バスバ18及び負極バスバ19と、正極バスバ18及び負極バスバ19を囲むように配置される磁性体のコア部材8と、一端は正極バスバ18に接続され他端は負極バスバ19に接続される第1コンデンサ6と、一端は正極バスバ18及び負極バスバ19に接続され他端はグラウンド電位に接地される第2コンデンサ7と、を備え、正極バスバ18、負極バスバ19、コア部材8、第1コンデンサ6、第2コンデンサ7は、フィルタケース部3の内壁面に沿って配置される。このようにしたので、電力変換装置1の小型化と冷却効率の向上とを両立させることができる。
(3)電力変換装置1のフィルタケース部3は、コア部材8の外表面の形状に沿った内壁面17を有する。このようにしたので、発熱しやすいコア8の冷却効率を向上させることができる。
(4)電力変換装置1のフィルタケース部3は、第1コンデンサ6と第2コンデンサ7との間を隔てる第1隔壁20を有する。このようにしたので、発熱の影響を受けやすいコンデンサ部分の冷却効率を向上させることができる。
(5)電力変換装置1のフィルタケース部3は、第2コンデンサ7とコア部材8との間を隔てる第2隔壁21を有する。このようにしたので、発熱の影響を受けやすいコンデンサ部分の冷却効率の向上と、発熱しやすいバスバ部分の冷却効率の向上とを両立させることができる。
(6)電力変換装置1はグラウンド電位に接地される金属製のハウジング2を備え、フィルタケース部3は、ハウジング2に対して電気的に接続され、第2コンデンサ7は、フィルタケース部3に電気的に接続される。このようにしたので、組立性を向上させつつ全体構成の小型化にも貢献できる。
(7)電力変換装置1は、第2コンデンサ7とフィルタケース部3とを接続する接地バスバ5を備え、正極バスバ18および負極バスバ19の少なくとも一方と接地バスバ5とは、第2の樹脂部材により一体でモールド封止されており、フィルタケース部3は、開口部を囲む縁面を有し、接地バスバ5は縁面に固定される。このようにしたので、構成部品の固定性を高めることができる。
 なお、以上の説明はあくまでも一例であり、発明を解釈する際、上記実施の形態の記載事項と特許請求の範囲の記載事項の対応関係に何ら限定も拘束もされない。例えば、図11に示す第2の実施形態である電力変換装置1Aのような構成でもよい。
(第2の実施形態)
 図11に示す電力変換装置1Aは、基本的な構成は第1の実施形態に示す電力変換装置1と同じである。第1の実施形態と構造的に異なる点は、フィルタケース部3Aの収容部が流路形成体10AのYコンデンサ13Aの収容部まで一続きとなっているところである。樹脂15Aは、フィルタケース部3AからYコンデンサの収容部まで一体となっている収容部に充填され硬化している。これにより、樹脂15Aの充填箇所を分けることが不要になる。また、第1の実施形態と同様に、樹脂15Aによりノイズフィルタ回路構成部品を固定させることで固定に必要な追加部品が不要になる。さらに樹脂15Aを介して、相対的に温度が低い流路形成体10Aに熱移動22させ、さらに流路形成体10Aの内部に流れる冷媒によって冷却性能を同様に向上させることができる。
 図12は、図11の電力変換装置1Aに装填されているモールドバスバ4Aである。このように、第1の実施形態である電力変換装置1とは正極バスバ18や負極バスバ19、接地バスバ5Aの位置が異なり、さらにその他形状が異なる場合であっても、図11に示した通り、樹脂15Aの充填状況は変わらない。そのため、第1の実施形態と同様の効果を得ることができる。
 以上、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能であり、その態様も本発明の範囲内に含まれる。
 1…電力変換装置、2…ハウジング、3,3A…フィルタケース部、4,4A…モールドバスバ、5,5A…接地バスバ、6,6A…第1コンデンサ、7,7A…第2コンデンサ、8,8A…磁性体コア部材、9,9A…パワー半導体モジュール、10,10A…流路形成体、11…平滑コンデンサ、13,13A…Yコンデンサ、14,14A…DCモールドバスバ、15,15A…第1の樹脂、16…冷媒流路、17…内壁面、18…正極バスバ、19…負極バスバ、20…第1隔壁、21…第2隔壁、22…熱移動、23…コネクタ、24…平滑コンデンサ収容部、25…Yコンデンサ収容部、26…パワー半導体モジュール取付口、27…コネクタバスバ、28…締結部材

Claims (7)

  1.  直流電力を交流電力に変換する電力変換回路部と、
     前記電力変換回路部を冷却する冷媒を流すための流路形成体と、
     前記直流電力を伝達する配線の電気ノイズを抑制するフィルタ回路部と、
     前記フィルタ回路部を収納するフィルタケース部と、を備え、
     前記フィルタケース部は、前記流路形成体と一体に形成され、
     前記フィルタケース部と前記フィルタ回路部との間には、第1の樹脂が充填される
     電力変換装置。
  2.  請求項1に記載の電力変換装置において、
     前記フィルタ回路部は、正極バスバ及び負極バスバと、前記正極バスバ及び負極バスバを囲むように配置される磁性体のコア部材と、一端は前記正極バスバに接続され他端は前記負極バスバに接続される第1コンデンサと、一端は前記正極バスバ及び前記負極バスバに接続され他端はグラウンド電位に接地される第2コンデンサと、を備え、
     前記正極バスバ、前記負極バスバ、前記コア部材、前記第1コンデンサ、前記第2コンデンサは、前記フィルタケース部の内壁面に沿ってそれぞれ配置される
     電力変換装置。
  3.  請求項2に記載の電力変換装置において、
     前記フィルタケース部は、前記コア部材の外表面の形状に沿った前記内壁面を有する
     電力変換装置。
  4.  請求項2に記載の電力変換装置において、
     前記フィルタケース部は、前記第1コンデンサと前記第2コンデンサとの間を隔てる第1隔壁を有する
     電力変換装置。
  5.  請求項2に記載の電力変換装置において、
     前記フィルタケース部は、前記第2コンデンサと前記コア部材の間を隔てる第2隔壁を有する
     電力変換装置。
  6.  請求項2に記載の電力変換装置において、
     前記グラウンド電位に接地される金属製のハウジングを備え、
     前記フィルタケース部は、前記ハウジングに対して電気的に接続され、
     前記第2コンデンサは、前記フィルタケース部に電気的に接続される
     電力変換装置。
  7.  請求項6に記載の電力変換装置において、
     前記第2コンデンサと前記フィルタケース部とを接続する接地バスバを備え、
     前記正極バスバおよび前記負極バスバの少なくとも一方と前記接地バスバとは、第2の樹脂部材により一体でモールド封止されており、
     前記フィルタケース部は、開口部を囲む縁面を有し、前記接地バスバは前記縁面に固定される
     電力変換装置。
PCT/JP2021/002151 2020-04-30 2021-01-22 電力変換装置 WO2021220563A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/921,410 US12021459B2 (en) 2020-04-30 2021-01-22 Power conversion device
CN202180031345.1A CN115516748A (zh) 2020-04-30 2021-01-22 电力转换装置
DE112021001363.7T DE112021001363T5 (de) 2020-04-30 2021-01-22 Leistungsumsetzungsvorrichtung
JP2022518603A JP7282265B2 (ja) 2020-04-30 2021-01-22 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-080810 2020-04-30
JP2020080810 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021220563A1 true WO2021220563A1 (ja) 2021-11-04

Family

ID=78331940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002151 WO2021220563A1 (ja) 2020-04-30 2021-01-22 電力変換装置

Country Status (5)

Country Link
US (1) US12021459B2 (ja)
JP (1) JP7282265B2 (ja)
CN (1) CN115516748A (ja)
DE (1) DE112021001363T5 (ja)
WO (1) WO2021220563A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022203946A1 (de) 2022-04-22 2023-10-26 Magna powertrain gmbh & co kg Verfahren zur Herstellung eines Inverters und Inverter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020000527T5 (de) * 2019-03-27 2021-10-07 Hitachi Astemo, Ltd. Leistungsumsetzungsvorrichtung und herstellungsverfahren einer leistungsumsetzungsvorrichtung
JP7180625B2 (ja) * 2020-02-03 2022-11-30 株式会社デンソー 電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261139A (ja) * 2008-04-17 2009-11-05 Hitachi Ltd 電力変換装置
JP2013198350A (ja) * 2012-03-22 2013-09-30 Toyota Motor Corp 電力変換装置
JP2014239616A (ja) * 2013-06-10 2014-12-18 日立オートモティブシステムズ株式会社 車両用電力変換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838775B2 (ja) 2017-09-29 2021-03-03 日立Astemo株式会社 電力変換装置
WO2019244491A1 (ja) * 2018-06-22 2019-12-26 日立オートモティブシステムズ株式会社 電力変換装置
JP2024015807A (ja) * 2022-07-25 2024-02-06 マツダ株式会社 インバータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261139A (ja) * 2008-04-17 2009-11-05 Hitachi Ltd 電力変換装置
JP2013198350A (ja) * 2012-03-22 2013-09-30 Toyota Motor Corp 電力変換装置
JP2014239616A (ja) * 2013-06-10 2014-12-18 日立オートモティブシステムズ株式会社 車両用電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022203946A1 (de) 2022-04-22 2023-10-26 Magna powertrain gmbh & co kg Verfahren zur Herstellung eines Inverters und Inverter

Also Published As

Publication number Publication date
JPWO2021220563A1 (ja) 2021-11-04
JP7282265B2 (ja) 2023-05-26
US20230163693A1 (en) 2023-05-25
DE112021001363T5 (de) 2022-12-22
US12021459B2 (en) 2024-06-25
CN115516748A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2021220563A1 (ja) 電力変換装置
US9712039B2 (en) In-vehicle power conversion system
US20200194159A1 (en) Coil device, coil device with circuit board, and electrical junction box
WO2014073159A1 (ja) 高電圧電気装置及び電動圧縮機
CN102916566A (zh) 使用容纳有印刷电路板的壳体的电源单元
US10263495B2 (en) Rotary electric machine
JPWO2015053139A1 (ja) 電力変換装置
JP2006196678A (ja) コンデンサ装置
CN107148731B (zh) 电力转换装置
US11776758B2 (en) Capacitor
JP2017103922A (ja) 電力供給ユニット一体型回転電機
JP6457895B2 (ja) コンデンサモジュール
JP7483963B2 (ja) 電源装置
CN113329587B (zh) 电力转换装置
US20210136948A1 (en) Power conversion apparatus
CN112106455A (zh) 用于车辆的功率转换器装置以及车辆
JP2010104146A (ja) 電力変換装置
JP2019075917A (ja) 電力変換装置
JP2021114846A (ja) 回転電機
JP6760691B1 (ja) 電力変換装置
WO2016181494A1 (ja) 車両用制御装置
CN111937290A (zh) 电力转换装置和电容器模块
JP5784094B2 (ja) 電子部品モジュールおよびその搭載方法
JP2017212774A (ja) 電力変換器
CN113597735B (zh) 电力转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518603

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21797385

Country of ref document: EP

Kind code of ref document: A1