WO2021215482A1 - 回転電機のスロットコイル用絶縁材とその成形方法 - Google Patents

回転電機のスロットコイル用絶縁材とその成形方法 Download PDF

Info

Publication number
WO2021215482A1
WO2021215482A1 PCT/JP2021/016218 JP2021016218W WO2021215482A1 WO 2021215482 A1 WO2021215482 A1 WO 2021215482A1 JP 2021016218 W JP2021016218 W JP 2021016218W WO 2021215482 A1 WO2021215482 A1 WO 2021215482A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating material
flange
electric machine
slot coil
rotary electric
Prior art date
Application number
PCT/JP2021/016218
Other languages
English (en)
French (fr)
Inventor
典孝 小川
Original Assignee
中川特殊鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中川特殊鋼株式会社 filed Critical 中川特殊鋼株式会社
Priority to US17/920,804 priority Critical patent/US20230208235A1/en
Priority to JP2021578271A priority patent/JP7103704B2/ja
Priority to EP21791882.0A priority patent/EP4140689A4/en
Priority to KR1020227041314A priority patent/KR20230035521A/ko
Priority to CN202180039297.0A priority patent/CN115668699A/zh
Publication of WO2021215482A1 publication Critical patent/WO2021215482A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2624Moulds provided with a multiplicity of wall-like cavities connected to a common cavity, e.g. for battery cases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • H02K15/105Applying solid insulation to windings, stators or rotors to the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0027Gate or gate mark locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/38Cutting-off equipment for sprues or ingates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3412Insulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to an insulating material for a slot coil of a rotary electric machine and a molding method thereof. More specifically, the present invention relates to an insulating material for a slot coil of a rotating electric machine used for insulating a conducting wire arranged in a stator of the rotating electric machine, and a method for forming the same.
  • a rotary electric machine having a segment coil has been proposed as a stator of a rotary electric machine such as a motor and a generator.
  • a rectangular wire having a cross-sectional shape such as a square wire or a flat wire is used in order to improve the efficiency of the motor (Patent Documents 1 and 2).
  • this segment coil is used as a slot coil.
  • the insulating material of the slot coil is replaced with insulating paper, molded by injection molding with resin, and the flat wire coil is inserted into the slot of the stator and assembled to obtain a segment coil (Patent Document 3).
  • a flange (flange portion) is formed at one end of the insulating material, and the gap between the insulating material and the slot is sealed by this flange to seal the flow of the varnish for fixing the winding.
  • An object of the present invention is to provide an insulating material for a slot coil of a rotary electric machine and a method for forming the same, which can produce an accurate shape with a thin wall thickness.
  • Another object of the present invention is to provide an insulating material for a slot coil of a rotary electric machine, which is molded of a thermoplastic synthetic resin having high insulating properties and heat resistance, and a molding method thereof.
  • the insulating material for the slot coil of the rotary electric machine of the present invention 1 is It is inserted into a slot provided in a stator or rotor of a rotary electric machine, and a through hole having a rectangular cross section is formed for inserting a conducting wire, and the through hole is formed of a thermoplastic synthetic resin, and the through holes are parallel to each other.
  • An insulating material consisting of a partition wall and an outer peripheral wall for electrically insulating the conductors from each other, In a rotary electric machine having a slot coil having a cross-sectional shape similar to that of the through hole and a lead wire inserted into the through hole.
  • the insulating material becomes a flow path of the molten resin which is the thermoplastic synthetic resin injected when the insulating material is injection-molded, is formed on the outer periphery of one end of the insulating material, and is the partition wall and the outer peripheral wall. It is characterized by having a flange formed to be thicker.
  • the insulating material for the slot coil of the rotary electric machine of the present invention 2 has two flanges arranged in parallel, and has a positioning function when the insulating material is inserted into the slot.
  • the cross-sectional area of the cross section orthogonal to the longitudinal direction of the flange is the same, and a plurality of the through holes are formed.
  • the insulating material for the slot coil of the rotary electric machine of the present invention 3 is the thermoplastic synthetic resin of the liquid crystal total aromatic polyester having heat resistance and electrical insulation in the present invention 1 or 2.
  • the wall thickness of the partition wall and the outer peripheral wall is 0.15 to 0.55 mm.
  • the molten resin is injection-molded on the flange, the molten resin is injected from a gate for injecting the molten resin. After the inflow, 90 degrees, which is an angle change of the flow of the molten resin, is performed twice, and an ear-shaped flange integrated with the flange for flowing into the flange is arranged.
  • the method for forming an insulating material for a slot coil of a rotary electric machine according to the present invention 5 has the same width as the long side on the long side side of the flange when the insulating material is molded by injection molding in the present invention 1 or 2. It is characterized in that it is molded by a fan gate.
  • the ear-shaped flange is arranged at one end of each of the flanges, and when the injection molding is performed, the molten resin is used. It is characterized by having a hot water pool arranged at the other end of the flange for storage.
  • a flow control member that obstructs the flow of the injected molten resin is arranged in the fan gate, and is downstream of the fan gate. It is characterized in that it is composed of a hot water pool arranged in the water pool and a film-shaped runner arranged downstream of the hot water pool.
  • the method for molding an insulating material for a slot coil of a rotary electric machine according to the present invention 8 is that in the present invention 6 or 7, the molding machine that performs the injection molding is a high-speed injection molding machine whose injection speed reaches its peak within 0.1 seconds. It is characterized by being.
  • a thick flange is molded on the outer circumference of one end of a through hole for inserting a conducting wire. Therefore, when molding the insulating material, the flange functions as a runner, and the thermoplastic synthetic resin smoothly flows into the outer peripheral wall and the partition wall of the thin through hole, so that a molded product having an accurate shape and a smooth shape can be produced. It will be possible.
  • FIG. 1 is an isometric view of a main part showing a stator of a rotary electric machine provided with an insulating material for a slot coil of the rotary electric machine of the present invention.
  • FIG. 2 is an isometric view showing the entire insulating material for a slot coil according to the first embodiment of the present invention.
  • 3 (a) is a view taken along the arrow P of FIG. 2, and
  • FIG. 3 (b) is an enlarged view of the Q portion of FIG. 3 (a).
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 5 is a graph showing an injection speed waveform of an injection molding machine for molding an insulating material for a slot coil of a rotary electric machine of the present invention.
  • FIG. 1 is an isometric view of a main part showing a stator of a rotary electric machine provided with an insulating material for a slot coil of the rotary electric machine of the present invention.
  • FIG. 2 is an isometric
  • FIG. 6A is an isometric view of a main part showing an insulating material for a slot coil according to a second embodiment of the present invention
  • FIG. 6B is a slot coil according to a third embodiment of the present invention. It is an isometric view of the main part which shows the insulating material for use.
  • FIG. 7A is an isometric view of the main part showing the insulating material for the slot coil according to the fourth embodiment of the present invention
  • FIG. 7B is the slot coil according to the fifth embodiment of the present invention.
  • FIG. 8A is an isometric view of the main part showing the insulating material for the slot coil according to the sixth embodiment of the present invention, and FIG.
  • FIG. 8B is the slot coil according to the seventh embodiment of the present invention. It is an isometric view of the main part which shows the insulating material for use.
  • FIG. 9 is a plan view showing an insulating material for a slot coil according to an eighth embodiment of the present invention.
  • FIG. 10 is a partially enlarged view seen from the direction of arrow A in FIG. 11 (a) is an isometric view showing the entire insulating material for a slot coil according to the ninth embodiment of the present invention, and FIG. 11 (b) is a BB of FIG. 11 (a). It is a partial cross-sectional view cut by a line.
  • 12 (a) is an isometric view showing the entire insulating material for the slot coil according to the tenth embodiment of the present invention, and FIG. 12 (b) is a BB of FIG. 12 (a). It is a partial cross-sectional view cut by a line.
  • FIG. 1 is an isometric view of a main part showing a stator of a rotary electric machine provided with an insulating material for a slot coil of the rotary electric machine of the present invention.
  • a slot coil 12 composed of an insulating material 1 and a conducting wire 11 is mounted in a plurality of slots 101 radially formed in a stator 100 of a rotary electric machine.
  • FIG. 2 is an overall isometric view showing the insulating material 1 for a slot coil according to the first embodiment of the present invention
  • FIG. 3 (a) is a view taken along the line P of FIG. 2, and FIG.
  • FIG. (A) is an enlarged view of part Q
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • the insulating material 1 according to the first embodiment of the present invention is formed with six through holes 13 for inserting the conducting wire 11 having a rectangular cross section.
  • the insulating material 1 fulfills a function of fixing the conducting wire 11 and electrically insulating the conducting wire 11.
  • the cross-sectional shape of the through hole 13 is formed into a rectangle having a cross-sectional shape similar to that of the conducting wire 11, and is arranged so as to be parallel to each other.
  • the conductor 11 of this example is a flat copper wire (meaning "flat copper wire” or the like specified by Japanese Industrial Standards, etc.), and is covered with a resin or the like (about 60 to 100 ⁇ m) without an insulating coating. Use a copper wire.
  • the insulating material 1 is injection-molded with a synthetic resin having high electrical insulation and heat resistance.
  • the insulating material 1 has outer peripheral walls 131, 132 and partition wall 133 of the through hole 13, and the thicknesses (a, b, c) thereof are the same, and in this example, 0.15 mm to 0. It is formed as thin as .55 mm.
  • a flange 14 is formed on the outer periphery of the upper end of the through hole 13 in the insulating material 1.
  • the flange 14 is composed of two long side flanges 15 and 15 and two ear-shaped flanges 16 and 16.
  • the long side flanges 15 and 15 are formed over the entire length of the two long sides, and the ear-shaped flanges 16 and 16 are formed at one end of the long side flanges 15 and 15 at right angles to the long side flanges 15 and 15. It is formed so as to protrude.
  • the thickness d of the long side flanges 15 and 15, the thickness e of the ear flanges 16 and 16, and the height f of the long side flanges 15 and 15 and the ear flanges 16 and 16 are the outer peripheral walls 131 and 132 and the partition wall. It is formed larger than the thicknesses a, b, and c of 133 (for example, 1 mm).
  • the flange 14 acts as a positioning stopper when the insulating material 1 is mounted in the slot 101 of FIG. 1, and can also stop the leakage of the varnish for electrical insulation and fixing of the conducting wire 11. Further, it is not necessary to cut the flange 14 after molding the insulating material 1.
  • the flange 14 is not essential as a function of the insulating material 1, but it does not need to be cut. This is because the flange 14 functions as a positioning stopper after the insulating material 1 is inserted into the slot 101, and does not interfere with other members constituting the rotating machine.
  • the thermoplastic synthetic resin injected from the nozzle of an injection molding machine passes from the sprue 171 in the injection molding die via the runner 172 and through the gates 173 and 173 to the ears. It flows into the shaped flanges 16 and 16, respectively.
  • the gates 173 and 173 are called side gates provided at the ends of the cavities, and the cross sections of the gates 173 and 173 are small circular or rectangular and are pinpoint gates connected to the ear-shaped flanges 16 and 16.
  • the direction in which the thermoplastic synthetic resin flows from the gates 173 and 173 into the ear-shaped flanges 16 and 16 is the wall thickness direction of the ear-shaped flanges 16 and 16. As shown in FIG.
  • thermoplastic synthetic resin flowing into the ear-shaped flanges 16 and 16 from the gates 173 and 173 collides with the facing walls 161, 161 of the ear-shaped flanges 16 and 16 and turns 90 degrees.
  • the inflow rate is reduced.
  • the direction is changed by 90 degrees and the flow flows to the long side flanges 15 and 15 to make the long side flanges 15 and 15 thermoplastic. Fill with synthetic resin.
  • thermoplastic synthetic resin flows into the thin outer peripheral walls 131, 132 and the partition wall 133 at the optimum inflow rate, so that the flow of the thermoplastic synthetic resin is improved, and a molded product having an accurate shape and a smooth shape is produced. Is possible. That is, since the ear-shaped flanges 16 and 16 and the long side flanges 15 and 15 function as runners, the thermoplastic synthetic resin smoothly flows into the thin outer peripheral walls 131 and 132 and the partition wall 133.
  • the thermoplastic synthetic resin used as the material of the insulating material 1 according to the first embodiment of the present invention is preferably a liquid crystal all-aromatic polyester.
  • the liquid crystal all-aromatic polyester has electrical insulation and heat resistance, and if the temperature control (molding temperature 320 ° C. to 400 ° C.) is accurate, the fluidity is high, so that the moldability is good.
  • the temperature control molding temperature 320 ° C. to 400 ° C.
  • the liquid crystal total aromatic polyester has a low melt viscosity at the time of molding and a high solidification rate, in the case of an ultra-thin product of 0.2 mm or less, the resin is solidified in the thin-walled portion and sufficient fluidity can be obtained. May not be available. Therefore, since it is impossible or difficult to mold with a general-purpose molding machine, injection molding using a high-speed injection molding machine having a characteristic that the injection speed reaches a peak within 0.1 seconds as shown in FIG. 5 is preferable.
  • FIG. 6A is an isometric view of a main part showing the insulating material for a slot coil according to the second embodiment of the present invention.
  • the insulating material 2 of the second embodiment of the present invention does not have the ear-shaped flanges 16 and 16 of the insulating material 1 of the first embodiment, and the arrangement positions of the gates 173 and 173 are different.
  • the number and shape of the through holes 23 are the same as those of the insulating material 1 of the first embodiment.
  • the thickness (a, b, c) of the outer peripheral wall 231 of the through hole 23 and the partition wall 233 is the same, and the insulating material 2 is formed as thin as 0.15 mm to 0.55 mm. ing.
  • the insulating material 2 has a flange 24 formed on the outer periphery of the upper end of the through hole 23.
  • the flange 24 is composed of two long-side flanges 25, 25 arranged parallel to each other.
  • the long side flanges 25, 25 are formed over the entire length of the two long sides.
  • the thickness d of the long side flanges 25 and 25 and the height f of the long side flanges 25 and 25 are formed to be larger (for example, 1 mm) than the thicknesses a, b and c of the outer peripheral walls 231 and 232 and the partition wall 233. ing.
  • the flange 24 also acts as a positioning stopper when the insulating material 2 is mounted in the slot 101 of FIG. 1 and also has a function of stopping leakage of varnish. Further, it is not necessary to cut the insulating material 2 after molding.
  • the thermoplastic synthetic resin injected from the nozzle of an injection molding machine flows into the long side flanges 25 and 25 via the pin side gates 273 and 273, respectively.
  • the pinside gates 273 and 273 are pinpoint gates provided at intermediate positions in the length direction of the long side flanges 25 and 25 and connected to the long side flanges 25 and 25 at small points.
  • the direction in which the thermoplastic synthetic resin flows from the pinside gates 273 and 273 into the long side flanges 25 and 25 is the wall thickness direction of the long side flanges 25 and 25.
  • thermoplastic synthetic resin flowing from the pinside gates 273 and 273 into the long side flanges 25 and 25 collides with the facing walls (not shown) of the long side flanges 25 and 25 and changes direction by 90 degrees to increase the inflow speed.
  • the number is reduced, and the long side flanges 25, 25 are filled with the thermoplastic synthetic resin.
  • FIG. 6B is an isometric view of a main part showing the insulating material for a slot coil according to the third embodiment of the present invention.
  • the insulating material 3 of the third embodiment of the present invention is different in the number of through holes 23 of the insulating material 2 of the second embodiment and that a flange on the short side side is added. That is, the insulating material 3 of the third embodiment has eight through holes 33 and is formed in two rows. Although the cross section of the insulating material 3 is not shown, the outer peripheral walls 331, 332 and the partition wall 333 of the through hole 33 have the same thickness (a, b, c) and are formed as thin as 0.15 mm to 0.55 mm.
  • a flange 34 is formed on the outer periphery of the upper end of the through hole 33 in the insulating material 3.
  • the flange 34 is composed of two long side flanges 35 and 35 and two short side flanges 38 and 38.
  • the long side flanges 35, 35 are formed over the entire length of the two long sides.
  • the short side flanges 38 and 38 are formed over the entire length of the two short sides.
  • the thickness d of the long side flanges 35, 35, the short side flanges 38, 38, the height f of the long side flanges 35, 35, and the short side flanges 38, 38 are the outer peripheral walls 331, 332, and the partition 333.
  • the flange 34 acts as a positioning stopper when the insulating material 3 is mounted in the slot 101 of FIG. 1, and can also stop the leakage of the varnish. Further, it is not necessary to cut the insulating material 3 after molding.
  • the thermoplastic synthetic resin injected from the nozzle of an injection molding machine flows into the long side flanges 35 and 35 via the pin side gates 373 and 373, respectively.
  • the pinside gates 373 and 373 are pinpoint gates provided at intermediate positions in the length direction of the long side flanges 35 and 35 and connected to the long side flanges 35 and 35 at small points.
  • the direction in which the thermoplastic synthetic resin flows from the pinside gates 373 and 373 into the long side flanges 35 and 35 is the wall thickness direction of the long side flanges 35 and 35.
  • thermoplastic synthetic resin flowing from the pinside gates 373 and 373 into the long side flanges 35 and 35 collides with the facing walls (not shown) of the long side flanges 35 and 35 and changes direction by 90 degrees to increase the inflow speed.
  • the number is reduced, and the long side flanges 35, 35 and the short side flanges 38, 38 are filled with the thermoplastic synthetic resin.
  • the thermoplastic synthetic resin flows into the thin outer peripheral walls 331, 332 and the partition wall 333 at the optimum inflow rate, the flow of the thermoplastic synthetic resin is improved, and a smooth molded product can be produced. That is, since the long side flanges 35 and 35 and the short side flanges 38 and 38 function as runners, the thermoplastic synthetic resin smoothly flows into the thin outer peripheral walls 331 and 332 and the partition wall 333.
  • FIG. 7A is an isometric view of a main part showing the insulating material for a slot coil according to the fourth embodiment of the present invention.
  • the insulating material 4 of the fourth embodiment of the present invention is different in the shape of the through hole 13 of the insulating material 1 of the first embodiment, and the short side flange is added. That is, in the insulating material 4 of the fourth embodiment, the shape of the through holes 43 is rectangular, and the number of the insulating materials 4 is six, which is the same.
  • the outer peripheral walls 431 and 432 of the through hole 43 and the partition wall 433 have the same thickness (a, b, c) and are formed as thin as 0.15 mm to 0.55 mm. Has been done.
  • a flange 44 is formed on the outer periphery of the upper end of the through hole 43 in the insulating material 4.
  • the flange 44 is composed of two long-side flanges 45 and 45, two ear-shaped flanges 46 and 46, and one short-side flange 48.
  • the long side flanges 45, 45 are formed over the entire length of the two long sides, and the ear-shaped flanges 46, 46 are formed at one end of the long side flanges 45, 55 at right angles from the long side flanges 45, 45. It is formed so as to protrude. Further, the short side flange 48 is formed at the other ends of the long side flanges 45 and 55 over the entire length of the short side.
  • the height f is formed to be larger (for example, 1 mm) than the thicknesses a, b, and c of the outer peripheral walls 431 and 432 and the partition wall 433.
  • the flange 44 acts as a positioning stopper when the insulating material 4 is mounted in the slot 101 of FIG. 1, and can also stop the leakage of the varnish. Further, it is not necessary to cut the insulating material 4 after molding.
  • thermoplastic synthetic resin injected from the nozzle of an injection molding machine flows into the ear-shaped flanges 46 and 46 through the gates 473 and 473, respectively.
  • the gates 473 and 473 are pinpoint gates that connect to the ear flanges 46 and 46 at small points.
  • the direction in which the thermoplastic synthetic resin flows from the gates 473 and 473 into the ear-shaped flanges 46 and 46 is the wall thickness direction of the ear-shaped flanges 46 and 46.
  • thermoplastic synthetic resin flowing into the ear-shaped flanges 46, 46 from the gates 473, 473 collides with the facing wall of the ear-shaped flanges 46, 46 (not shown) and turns 90 degrees to reduce the inflow speed, and the ear-shaped flange 46 , 66, long side flanges 45, 45, and short side flange 48 are filled with a thermoplastic synthetic resin.
  • the thermoplastic synthetic resin flows into the thin outer peripheral walls 431 and 432 and the partition wall 433 at an optimum inflow rate, so that the flow of the thermoplastic synthetic resin is improved and a smooth molded product can be produced.
  • the thermoplastic synthetic resin can be smoothly applied to the thin outer peripheral walls 431 and 432 and the partition wall 433. Inflow. Since the insulating material 4 of the fourth embodiment has a longer short side length than the insulating material 1 of the first embodiment, the function of the short side flange 48 as a runner is effective. ..
  • FIG. 7B is an isometric view of a main part showing the insulating material for a slot coil according to the fifth embodiment of the present invention.
  • the number of through holes 23 of the insulating material 2 of the second embodiment is different, the short side flange is added, and the inflow position of the gate is different. That is. That is, the insulating material 5 of the fifth embodiment has four through holes 53 and is formed in a row.
  • the insulating material 5 has a flange 54 formed on the outer periphery of the upper end of the through hole 53.
  • the flange 54 is composed of two long-side flanges 55 and 55 and one short-side flange 58.
  • the long side flanges 55 and 55 are formed over the entire length of the two long sides.
  • the short side flange 58 is formed over the entire length of one short side.
  • the length d of the long side flanges 55 and 55 and the short side flange 58, the height f of the long side flanges 55 and 55 and the short side flange 58 are the thickness a of the outer peripheral walls 531 and 532 and the partition wall 533. It is formed larger than b and c (for example, 1 mm).
  • the flange 54 acts as a positioning stopper when the insulating material 5 is mounted in the slot 101 of FIG. 1, and can also stop the leakage of the varnish. Further, it is not necessary to cut the insulating material 5 after molding.
  • the thermoplastic synthetic resin injected from the nozzle of an injection molding machine flows into the short side flange 58 via one pin sight gate 573.
  • the pin sight gate 573 is a pinpoint gate provided at an intermediate position in the length direction of the short side flange 58 and connected to the short side flange 58 at a small point.
  • the direction in which the thermoplastic synthetic resin flows from the pin sight gate 573 into the short side flange 58 is the wall thickness direction of the short side flange 58.
  • thermoplastic synthetic resin flowing into the short side flange 58 from the gate 573 collides with the facing wall (not shown) of the short side flange 58 and changes direction by 90 degrees to reduce the inflow speed, and the short side flange 58 ,
  • the long side flanges 55, 55 are filled with a thermoplastic synthetic resin.
  • the thermoplastic synthetic resin flows into the thin outer peripheral walls 531 and 532 and the partition wall 533 at the optimum inflow rate, so that the flow of the thermoplastic synthetic resin is improved and a smooth molded product can be produced. That is, since the short side flanges 58 and the long side flanges 55 and 55 function as runners, the thermoplastic synthetic resin smoothly flows into the thin outer peripheral walls 531 and 532 and the partition wall 533.
  • FIG. 8A is an isometric view of a main part showing the insulating material for a slot coil according to the sixth embodiment of the present invention.
  • the insulating material 6 of the sixth embodiment of the present invention is different in the number and shape of the through holes 13 of the insulating material 1 of the first embodiment.
  • the insulating material 6 of the sixth embodiment of the present invention has a large rectangular area of the through hole 63, and the number is one.
  • the insulating material 6 has the same thickness (a (not shown), b) of the outer peripheral walls 631 and 632 of the through hole 63, and is formed as thin as 0.15 mm to 0.55 mm.
  • the insulating material 6 has a flange 64 formed on the outer periphery of the upper end of the through hole 63.
  • the flange 64 is composed of two long side flanges 65 and 65 and two ear-shaped flanges 66 and 66.
  • the long side flanges 65, 65 are formed over the entire length of the two long sides, and the ear-shaped flanges 66, 66 are formed at one end of the long side flanges 65, 65 at right angles from the long side flanges 65, 65. It is formed so as to protrude.
  • the thickness d of the long side flanges 65 and 65, the thickness e of the ear flanges 66 and 66, and the height f of the long side flanges 65 and 65 and the ear flanges 66 and 66 are the thicknesses of the outer peripheral walls 631 and 632. It is formed larger than a and b (for example, 1 mm).
  • the flange 64 acts as a positioning stopper when the insulating material 6 is mounted in the slot 101 of FIG. 1, and can also stop the leakage of the varnish. Further, it is not necessary to cut the insulating material 6 after molding.
  • thermoplastic synthetic resin injected from the nozzle of an injection molding machine flows into the ear-shaped flanges 66 and 66 through the gates 673 and 673, respectively.
  • the gates 673 and 673 are pinpoint gates that connect to the ear-shaped flanges 66 and 66 at small points.
  • the direction in which the thermoplastic synthetic resin flows from the gates 673 and 673 into the ear-shaped flanges 66 and 66 is the wall thickness direction of the ear-shaped flanges 66 and 66.
  • thermoplastic synthetic resin flowing into the ear-shaped flanges 66 and 66 from the gates 673 and 673 collides with the facing wall of the ear-shaped flanges 66 and 66 (not shown) and turns 90 degrees to reduce the inflow speed, and the ear-shaped flange 66 , 66, long side flanges 65, 65 are filled with a thermoplastic synthetic resin.
  • the thermoplastic synthetic resin flows into the thin outer peripheral walls 631 and 632 at the optimum inflow rate the flow of the thermoplastic synthetic resin is improved, and a smooth molded product can be produced. That is, since the ear-shaped flanges 66, 66 and the long side flanges 65, 65 function as runners, the thermoplastic synthetic resin smoothly flows into the thin outer peripheral walls 631, 632.
  • FIG. 8B is an isometric view of a main part showing the insulating material for a slot coil according to the seventh embodiment of the present invention.
  • the insulating material 7 of the seventh embodiment of the present invention does not have the long side flanges 65 and 65 and the ear-shaped flanges 66 and 66 of the insulating material 6 of the sixth embodiment, and is provided with a short side flange. That is. That is, the insulating material 7 has the same thickness (a, b) of the outer peripheral walls 731 and 732 of the through hole 73, and is formed as thin as 0.15 mm to 0.55 mm.
  • a flange 74 is formed on the outer periphery of the upper end of the through hole 73 in the insulating material 7.
  • the flange 74 is composed of one short side flange 78.
  • the thickness d of the short side flange 78 and the height f of the short side flange 78 are formed to be larger (for example, 1 mm) than the thicknesses a and b of the outer peripheral walls 731 and 732.
  • the flange 74 acts as a positioning stopper when the insulating material 7 is mounted in the slot 101 of FIG. 1, and can also stop the leakage of the varnish. Further, it is not necessary to cut the insulating material 7 after molding.
  • the thermoplastic synthetic resin injected from the nozzle of an injection molding machine flows into the short side flange 78 via one pin sight gate 773.
  • the pin sight gate 773 is a pinpoint gate provided at an intermediate position in the length direction of the short side flange 78 and connected to the short side flange 78 at a small point.
  • the direction in which the thermoplastic synthetic resin flows from the pin sight gate 773 into the short side flange 78 is the wall thickness direction of the short side flange 78.
  • the thermoplastic synthetic resin that has flowed into the short side flange 78 from the gate 773 collides with the facing wall of the short side flange 78 (not shown) and turns 90 degrees to reduce the inflow speed and heat the short side flange 78.
  • thermoplastic synthetic resin flows into the thin outer peripheral walls 731 and 732 at the optimum inflow rate, the flow of the thermoplastic synthetic resin is improved, and a smooth molded product can be produced. That is, since the short side flange 78 functions as a runner, the thermoplastic synthetic resin smoothly flows into the thin outer peripheral walls 731 and 732.
  • FIG. 9 is a plan view showing an insulating material 1'for a slot coil according to an eighth embodiment of the present invention.
  • FIG. 10 is a partially enlarged view seen from the direction of arrow A in FIG.
  • the insulating material 1'for the slot coil of the eighth embodiment is similar in shape and molding method to the insulating material 1 for the slot coil of the first embodiment shown in FIGS. 2 to 4. ..
  • the insulating material 1 for the slot coil of the first embodiment is long and thin (for example, 0.3 mm or less) outer peripheral walls 131, 132, and partition wall 133, the injected resin is sufficient.
  • the cavities in the mold may not flow sufficiently.
  • the insulating material 1'for the slot coil of the eighth embodiment has a structure in which the flow of the injected molten resin is improved.
  • the cross-sectional area is large.
  • a hot water pool 135 extending from the long side flange 15 is formed.
  • the hot water pool 135 is formed by extending the long side flange 15 by about 1.0 to 1.5 mm in this example.
  • the gate 173a of this example has a rectangular cross-sectional shape and a pyramid shape, and the inclination angle ⁇ is preferably about 30 degrees (see FIG. 10).
  • the shape of the gate 173a a pyramid shape, the flow of the molten resin can be smoothed.
  • the injected molten resin is squeezed from the runner 172 by the gate 173a to generate frictional heat, which raises the temperature of the molten resin to lower its viscosity and flows to the ear-shaped flange 16.
  • the molten resin that has flowed through the ear-shaped flange 16 is turned 90 degrees and flows into the long side flange 15 (see FIG. 3B).
  • the molten resin flowing through the ear-shaped flange 16 is changed in the direction of 90 degrees and flows into the long side flange 15.
  • the height of the ear-shaped flange 16 is S mm lower than that of the long side flange 15. That is, the molten resin discharged from the gate 173a flows to the ear-shaped flange 16 having a narrower cross-sectional area of the flow path of the molten resin than the long side flange 15, and then flows into the long side flange 15 at an angle of 90.
  • the direction is changed twice in degrees and flows into the long side flange 15.
  • the ear flange 16 Since the molten resin flows to the long side flange 15 via the ear flange 16 whose cross-sectional area of the flow path is narrower than that of the long side flange 15, the ear flange 16 has a function of suppressing the flow of the resin flow.
  • the dynamic pressure of the molten resin decreases, and the molten resin does not immediately flow from the gate 173a to the long side flange 15. As a result, it does not immediately flow to the long side flange 15, the partition wall 133, the outer peripheral walls 131, 132, and the like.
  • the molten resin flows to the long side flange 15 which is a flow path having a large cross-sectional area and low flow resistance, and after filling the hot water pool 135 at the tip thereof, the molten resin flows to the outer peripheral walls 131, 132, and the partition wall 133.
  • the hot water pool 135 is formed at the tip of the long side flange 135 facing the gate 173a, the injected molten resin fills the long side flange 135 and the hot water pool 135, and then has a thin outer circumference.
  • the flow is guided to the walls 131, 132, and the bulkhead 133.
  • the puddle 135 is formed on the ear-shaped flange 16, the long side flange 15, and the other end facing the gate 173a. It flows evenly and smoothly on the outer peripheral walls 131 and 132 and the partition wall 133.
  • FIG. 11 (a) is an isometric view showing the insulating material 2'for the slot coil according to the ninth embodiment of the present invention
  • FIG. 11 (b) is a BB of FIG. 11 (a). It is a partial cross-sectional view cut by a line.
  • the insulating material 2'for the slot coil of the ninth embodiment is similar to the shape and molding method of the insulating material 2 for the slot coil of the second embodiment shown in FIG.
  • the insulating material 2'for the slot coil of the second embodiment is a long outer wall wall 231 and 232 and a partition wall 233 having a long and thin wall thickness, the injected resin sufficiently provides sufficient cavities in the mold. It may not flow to.
  • the insulating material 2'for the slot coil of the ninth embodiment has a structure in which the flow of the injected molten resin is improved.
  • the description of the structure of the slot coil insulating material 2'of the ninth embodiment the description of the same shape portion as that of the second embodiment will be omitted, and only the different portions will be described.
  • the molding of the insulating material 2'in the ninth embodiment of the present invention is an example using a fan gate (fan shape) 873.
  • It is a film-like thin (shallow) gate having a wide width equal to the width of the long side flange 25 of the insulating material 2'.
  • This is an example in which the fan gate 873 is arranged on both side surfaces of the long side flange 25.
  • the fan gate 873 has a function of allowing the molten resin to flow substantially parallel to the long side flange 25, uniformly filling the long side flange 25, and preventing drift or the like. It is known that the fan gate 873 is used for a resin such as a crystalline resin, in which a drift is likely to occur.
  • the flow at the center of the fan gate 873 becomes faster, especially when the injection molding pressure is large.
  • a cylindrical pin 875 arranged in an injection molding die (not shown) is arranged. By arranging the cylindrical pin 875, turbulence is generated in the molten resin flowing from the runner 874 to the fan gate 873, the flow of the molten resin flowing into the center of the long side flange 25 is suppressed, and the long side flange The molten resin flowing through 25 can be made uniform.
  • FIG. 12 (a) is an isometric view showing the insulating material 2 ′′ for the slot coil according to the tenth embodiment of the present invention
  • FIG. 12 (b) is a view showing B- of FIG. 12 (a). It is a partial cross-sectional view cut along line B.
  • the point that the fan gate 873 is used for molding the insulating material 2 ′′ of the tenth embodiment is the same as that of the ninth embodiment. The difference between the two is that in the molding of the insulating material 2 ′′ of the tenth embodiment, the molten resin is applied to the long side flange 25 from the fan gate 873 via the hot water pool 876 and the film-like film runner 877.
  • the hot water pool 876 can be said to be a kind of mini runner. Since the molten resin flowing from the fan gate 873 is squeezed, it becomes a turbulent flow, so that the flow is stabilized by using the dynamic pressure as a static pressure in the hot water pool 876. The molten resin stabilized in the puddle 876 flows into the long side flange 25 as a laminar flow in the film runner 877 whose flow path has a uniform cross section. As will be understood in this description, in the insulating material 2 ′′ molded in the tenth embodiment, the resin flows smoothly through the outer peripheral walls 231 and 232, so that even if the outer peripheral walls 231 and 232 are long, molding can be performed. It will be possible.
  • the gate 173a of the eighth embodiment described above is a so-called side gate, but depending on the structure of the injection molding die, the arrangement of the gate 173a may be changed by 90 degrees. good. Even in this case, a structure in which the direction is changed twice at an angle of 90 degrees and flows into the long side flange 15 is preferable.
  • the insulating materials 1 to 7 of the above-described embodiment have been described for use as a stator of a rotary electric machine. However, the insulating materials 1 to 7 may be used as the insulating material of the rotor.
  • the control pin 876 of the ninth embodiment described above has a circular cross-sectional shape, but is not limited to this shape.
  • the control pin 876 is arranged to make the flow of the resin uniform, and is a kind of flow control member for obstructing or delaying the flow of the injected molten resin, and thus has this function.
  • Other cross-sectional shapes may be used as long as they are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

両側のゲート173、173から各耳状フランジ16、16に流入した熱可塑性合成樹脂は、耳状フランジ16の対向壁161にぶつかって90度方向転換して流入速度を減速し、耳状フランジ16、16、長辺側フランジ15、15を熱可塑性合成樹脂で満たす。その後、肉厚の薄い外周壁131、132及び隔壁133に熱可塑性合成樹脂が最適な流入速度で流れ込むため、熱可塑性合成樹脂の流れが良くなり、形状が正確で、滑らかな成形品を作ることが可能となる。耳状フランジ16、16、長辺側フランジ15、15は、ランナーとして機能し、肉厚の薄い外周壁131、132及び隔壁133に熱可塑性合成樹脂が円滑に流入する。

Description

回転電機のスロットコイル用絶縁材とその成形方法
 本発明は、回転電機のスロットコイル用絶縁材とその成形方法に関する。更に詳しくは、回転電機のステータに配置された導線の絶縁に使用される回転電機のスロットコイル用絶縁材とその成形方法に関する。
 モータ、発電機等の回転電機のステータとして、セグメントコイルを有する回転電機が提案されている。セグメントコイルの導線は、モータの効率向上とのために断面形状が真四角、平角線等の矩形のものが用いられている(特許文献1、特許文献2)。更に、組立効率の向上のために、このセグメントコイルをスロットコイルにするものも提案されている。スロットコイルの絶縁材を絶縁紙に換えて、樹脂で射出成形で成形し、これに平角線コイルをステータのスロットに挿入して組立てて、セグメントコイルとするものである(特許文献3)。この絶縁材の一端にフランジ(鍔部)を形成し、このフランジにより絶縁材料とスロットの間の隙間を封止して、巻線固定用のワニスの流れを封止するものである。
 セグメントコイルによる電動モータの損失を防ぐには、スロットコイルの導線間を電気的に絶縁性を高くする必要がある。絶縁性を高くするには肉厚を厚くすることで実現できるが、導線の密度が低くなり電動モータの変換効率が低下し、しかもモータが大型化する。一方、電動モータの銅損による発熱は避けられないので、絶縁材には耐熱性も要求される。即ち、セグメントコイルを構成する絶縁材は、絶縁性と耐熱性の両方が要求され、しかも導線間の隙間は狭いので、薄肉のものが要求されるので、可能な限り薄く形成しなければならない。しかしながら、一般的に絶縁性と耐熱性の両方が要求され、かつ薄肉の成形品を射出成形により成形することは、金型内での樹脂の流れが悪く困難である。取り分け、電機的な絶縁性と耐熱性を有する樹脂の流れは良くない。
特開2008-35687号公報 特開2019-161964号公報 特開2018-125924号公報
 本発明は、以上のような背景で発明されたものであり、以下の目的を達成するものである。
 本発明の目的は、肉厚を薄く、しかも正確な形状を製造できる、回転電機のスロットコイル用絶縁材とその成形方法を提供することにある。
 本発明の他の目的は、絶縁性、耐熱性が高い熱可塑性合成樹脂で成形された、回転電機のスロットコイル用絶縁材とその成形方法を提供することにある。
 本発明は、前記課題を解決するために、次の手段を採る。
 即ち、本発明1の回転電機のスロットコイル用絶縁材は、
 回転電機のステータ又はロータに設けられたスロットに挿入され、導線を挿入するために断面形状が矩形の貫通孔が形成され、熱可塑性合成樹脂で成形され、かつ前記貫通孔は互いに平行で、前記導線を互いに電気的に絶縁するための隔壁及び外周壁からなる絶縁材と、
 前記貫通孔の前記断面形状と断面形状が相似形で、かつ前記貫通孔に挿入される導線と
 で構成されるスロットコイルを有する回転電機において、
 前記絶縁材は、前記絶縁材を射出成形するとき、射出された前記熱可塑性合成樹脂である溶融樹脂の流路になり、前記絶縁材の一端の外周に形成され、かつ前記隔壁及び前記外周壁より肉厚に成形されたフランジを有するものであることを特徴とする。
 本発明2の回転電機のスロットコイル用絶縁材は、本発明1において、前記フランジは、平行に配置した二つからなり、前記絶縁材が前記スロットに挿入されたときの位置決め機能を有し、前記フランジの長手方向に直交する断面での断面積が同一であり、前記貫通孔は、複数個形成されていることを特徴とする。
 本発明3の回転電機のスロットコイル用絶縁材は、本発明1又は2において、前記熱可塑性合成樹脂は、耐熱性と電気絶縁性を有する液晶性全芳香族ポリエステルの熱可塑性合成樹脂であり、前記隔壁及び前記外周壁の肉厚は、0.15ないし0.55mmであることを特徴とする。
 本発明4の回転電機のスロットコイル用絶縁材の成形方法は、本発明1又は2において、前記フランジには、前記溶融樹脂を射出成形するとき、前記溶融樹脂を射出するゲートから前記溶融樹脂を流入させた後、前記溶融樹脂の流れの角度変化である90度を2回行って、前記フランジに流入させるための前記フランジと一体の耳状フランジを配置したことを特徴とする。
 本発明5の回転電機のスロットコイル用絶縁材の成形方法は、本発明1又は2において、前記絶縁材料を射出成形で成形するとき、前記フランジの長辺側に前記長辺と同じ幅を有するファンゲートとにより成形するものであることを特徴とする。
 本発明6の回転電機のスロットコイル用絶縁材の成形方法は、本発明4において、前記耳状フランジは、前記フランジの一端にそれぞれに配置されており、前記射出成形するとき、前記溶融樹脂を貯留するために、前記フランジの他端に配置されている湯だまりを有することを特徴とする。
 本発明7の回転電機のスロットコイル用絶縁材の成形方法は、本発明5において、前記ファンゲートには、射出された溶融樹脂の流れを阻害する流量制御部材を配置し、前記ファンゲートの下流に配置された湯溜まりと、前記湯溜まりの下流に配置されたフィルム状のランナとからなることを特徴とする。
 本発明8の回転電機のスロットコイル用絶縁材の成形方法は、本発明6又は7において、前記射出成形を行う成形機は、0.1秒以内に射出速度がピークに達する高速射出成形機であることを特徴とする。
 本発明の回転電機のスロットコイル用絶縁材とその成形方法は、導線を挿入するための貫通孔の一端の外周に、肉厚のフランジが成形されている。従って、絶縁材の成形時に、フランジがランナーとして機能し、肉厚の薄い貫通孔の外周壁及び隔壁に熱可塑性合成樹脂が円滑に流入するため、形状が正確で滑らかな成形品を作ることが可能となる。
図1は、本発明の回転電機のスロットコイル用絶縁材を備えた回転電機のステータを示す要部の等角投影図である。 図2は、本発明の第1の実施の形態のスロットコイル用絶縁材を示す全体を示す等角投影図である。 図3(a)は、図2のP矢視図、図3(b)は図3(a)のQ部拡大図である。 図4は、図2のA-A断面図である。 図5は、本発明の回転電機のスロットコイル用絶縁材を成形する射出成形機の射出速度波形を示すグラフである。 図6(a)は、本発明の第2の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図、図6(b)は本発明の第3の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図である。 図7(a)は、本発明の第4の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図、図7(b)は本発明の第5の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図である。 図8(a)は、本発明の第6の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図、図8(b)は本発明の第7の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図である。 図9は、本発明の第8の実施の形態のスロットコイル用絶縁材を示す平面図である。 図10は、図9の矢印Aの方向から見た部分拡大図である。 図11(a)は、本発明の第9の実施の形態のスロットコイル用絶縁材を示す全体を示す等角投影図であり、図11(b)は、図11(a)のB-B線で切断した部分断面図である。 図12(a)は、本発明の第10の実施の形態のスロットコイル用絶縁材を示す全体を示す等角投影図であり、図12(b)は、図12(a)のB-B線で切断した部分断面図である。
〔スロットコイル用絶縁材の第1の実施の形態〕
 以下、本発明の第1の実施の形態を図面に基づいて説明する。図1は、本発明の回転電機のスロットコイル用絶縁材を備えた回転電機のステータを示す要部の等角投影図である。図1に示すように、回転電機のステータ100に放射状に複数形成されたスロット101には、絶縁材1と導線11で構成されたスロットコイル12が装着されている。図2は、本発明の第1の実施の形態のスロットコイル用絶縁材1を示す全体等角投影図、図3(a)は図2のP矢視図、図3(b)は図3(a)のQ部拡大図、図4は図2のA-A断面図である。図2から図4に示すように、本発明の第1の実施の形態の絶縁材1は、断面が矩形の導線11を挿入するための6個の貫通孔13が形成されている。この絶縁材1は、導線11の固定と導線11の電気的な絶縁機能を果たすものである。貫通孔13の断面形状は、導線11と断面形状が相似形の矩形に形成され、互いに平行になるように配置されている。本例の導線11は平角銅線(日本工業規格等で規定する「平角銅線」等を意味する。)であり、絶縁被膜のないもの、又は、樹脂等(60~100μ程度)により被覆された導線を使用する。絶縁材1は、電機的な絶縁性、耐熱性の高い合成樹脂により射出成形されたものである。
 図4に示すように、絶縁材1は、貫通孔13の外周壁131、132及び隔壁133を有し、その厚さ(a、b、c)が同一で、本例では0.15mmから0.55mmに薄く形成されている。絶縁材1には、貫通孔13の上端の外周にフランジ14が成形されている。フランジ14は、2個の長辺側フランジ15、15と2個の耳状フランジ16、16で構成されている。長辺側フランジ15、15は2個の長辺の全長に渡って形成され、耳状フランジ16、16は、長辺側フランジ15、15の一端に、長辺側フランジ15、15から直角に突出して形成されている。長辺側フランジ15、15の厚さd、耳状フランジ16、16の厚さe、長辺側フランジ15、15と耳状フランジ16、16の高さfは、外周壁131、132及び隔壁133の厚さa、b、cよりも大きく(例えば1mm)形成されている。このフランジ14は、図1のスロット101に絶縁材1を装着したときの位置決め用ストッパーとして作用し、導線11の電機的な絶縁と固定のためのワニスの漏洩を止めることもできる。また、絶縁材1を成形後、フランジ14は切断する必要が無い。なお、フランジ14は、絶縁材1の機能としては必須のものではないが、切断する必要もない。何故ならば、フランジ14は、絶縁材1がスロット101に挿入後、位置決め用のストッパーの機能を果たし、回転機を構成する他の部材と干渉することもない。
 図3(a)に示すように、図示しない射出成形機のノズルから注入された熱可塑性合成樹脂は、射出成形金型内のスプルー171からランナー172を経由し、ゲート173、173を介して耳状フランジ16、16に各々流入する。ゲート173、173は、キャビティの端部に設けたサイドゲートと呼ばれるものであり、ゲート173、173の断面は小さな円形又は矩形であり、耳状フランジ16、16に接続するピンポイントゲートである。熱可塑性合成樹脂がゲート173、173から耳状フランジ16、16に流入する方向は、耳状フランジ16、16の肉厚方向である。図3(b)に示すように、ゲート173、173から耳状フランジ16、16に流入した熱可塑性合成樹脂は、耳状フランジ16、16の対向壁161、161にぶつかって90度方向転換して流入速度が減少させられる。更に、耳状フランジ16、16から長辺側フランジ15、15に流れるときに、90度方向が変えられて、長辺側フランジ15、15に流れて、長辺側フランジ15、15を熱可塑性合成樹脂で満たす。その後、肉厚の薄い外周壁131、132及び隔壁133に熱可塑性合成樹脂が最適な流入速度で流れ込むため、熱可塑性合成樹脂の流れが良くなり、形状が正確で、滑らかな成形品を作ることが可能となる。すなわち、耳状フランジ16、16、長辺側フランジ15、15が、ランナーとして機能するため、肉厚の薄い外周壁131、132及び隔壁133に熱可塑性合成樹脂が円滑に流入する。
 本発明の第1の実施の形態の絶縁材1の材料として使用する熱可塑性合成樹脂は、液晶性全芳香族ポリエステルが好ましい。液晶性全芳香族ポリエステルは、電気的な絶縁性、耐熱性があり、しかも温度管理(成形温度320℃~400℃)を正確にすれば、流動性が高いので、成形性が良い。但し、液晶性全芳香族ポリエステルは、成形時の溶融粘度が低く、固化速度が速いため、0.2mm以下の超薄肉製品の場合、薄肉部で樹脂が固化し十分な流動性が得られない場合がある。そのため、汎用の成形機では成形できない又は困難であるので、図5に示すような、0.1秒以内に射出速度がピークに達するような特性を有する高速射出成形機を用いる射出成形が好ましい。
〔スロットコイル用絶縁材の第2の実施の形態〕
 図6(a)は、本発明の第2の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図である。本発明の第2の実施の形態の絶縁材2は、第1の実施の形態の絶縁材1の耳状フランジ16、16が無く、ゲート173、173の配置位置が異なることである。貫通孔23の個数と形状は、第1の実施の形態の絶縁材1と同一である。また、絶縁材2は、この断面を図示はしないが、貫通孔23の外周壁231及び隔壁233の厚さ(a、b、c)が同一で、0.15mmから0.55mmに薄く形成されている。絶縁材2には、貫通孔23の上端の外周にフランジ24が成形されている。フランジ24は、互いに平行に配置された2個の長辺側フランジ25、25で構成されている。長辺側フランジ25、25は2個の長辺の全長に渡って形成されている。長辺側フランジ25、25の厚さd、長辺側フランジ25、25の高さfは、外周壁231、232及び隔壁233の厚さa、b、cよりも大きく(例えば1mm)形成されている。このフランジ24は、図1のスロット101に絶縁材2を装着したときの位置決め用ストッパーとして作用とワニスの漏洩を止める機能も有する。また、絶縁材2を成形後、切断する必要が無い。
 図示しない射出成形機のノズルから注入された熱可塑性合成樹脂は、ピンサイドゲート273、273を介して長辺側フランジ25、25に各々流入する。このピンサイドゲート273、273は、長辺側フランジ25、25の長さ方向の中間位置に設けられ、小さな点で長辺側フランジ25、25に接続するピンポイントゲートである。熱可塑性合成樹脂がピンサイドゲート273、273から長辺側フランジ25、25に流入する方向は、長辺側フランジ25、25の肉厚方向である。ピンサイドゲート273、273から長辺側フランジ25、25に流入した熱可塑性合成樹脂は、長辺側フランジ25、25の対向壁(図示せず)にぶつかって90度方向転換して流入速度が減少し、長辺側フランジ25、25を熱可塑性合成樹脂で満たす。その後、肉厚の薄い外周壁231、232及び隔壁233に熱可塑性合成樹脂が最適な流入速度で流れ込むため、熱可塑性合成樹脂の流れが良くなり、滑らかな成形品を作ることが可能となる。すなわち、長辺側フランジ25、25が、ランナーとして機能するため、肉厚の薄い外周壁231、232及び隔壁233に熱可塑性合成樹脂が円滑に流入する。
〔スロットコイル用絶縁材の第3の実施の形態〕
 図6(b)は、本発明の第3の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図である。本発明の第3の実施の形態の絶縁材3は、第2の実施の形態の絶縁材2の貫通孔23の個数が異なる点と、短辺側フランジが追加された点である。すなわち、第3の実施の形態の絶縁材3は、貫通孔33の個数が8個で2列に形成されている。また、絶縁材3は、断面の図示はしないが、貫通孔33の外周壁331、332及び隔壁333の厚さ(a、b、c)が同一で、0.15mmから0.55mmに薄く形成されている。絶縁材3には、貫通孔33の上端の外周にフランジ34が成形されている。フランジ34は、2個の長辺側フランジ35、35と2個の短辺側フランジ38、38で構成されている。長辺側フランジ35、35は2個の長辺の全長に渡って形成されている。また、短辺側フランジ38、38は、2個の短辺の全長に渡って形成されている。長辺側フランジ35、35、短辺側フランジ38、38の厚さd、長辺側フランジ35、35、短辺側フランジ38、38の高さfは、外周壁331、332及び隔壁333の厚さa、b、cよりも大きく(例えば1mm)形成されている。このフランジ34は、図1のスロット101に絶縁材3を装着した時の位置決め用ストッパーとして作用し、ワニスの漏洩を止めることもできる。また、絶縁材3を成形後、切断する必要が無い。
 図示しない射出成形機のノズルから注入された熱可塑性合成樹脂は、ピンサイドゲート373、373を介して長辺側フランジ35、35に各々流入する。ピンサイドゲート373、373は、長辺側フランジ35、35の長さ方向の中間位置に設けられ、小さな点で長辺側フランジ35、35に接続するピンポイントゲートである。熱可塑性合成樹脂がピンサイドゲート373、373から長辺側フランジ35、35に流入する方向は、長辺側フランジ35、35の肉厚方向である。ピンサイドゲート373、373から長辺側フランジ35、35に流入した熱可塑性合成樹脂は、長辺側フランジ35、35の対向壁(図示せず)にぶつかって90度方向転換して流入速度が減少し、長辺側フランジ35、35、短辺側フランジ38、38を熱可塑性合成樹脂で満たす。その後、肉厚の薄い外周壁331、332及び隔壁333に熱可塑性合成樹脂が最適な流入速度で流れ込むため、熱可塑性合成樹脂の流れが良くなり、滑らかな成形品を作ることが可能となる。すなわち、長辺側フランジ35、35、短辺側フランジ38、38が、ランナーとして機能するため、肉厚の薄い外周壁331、332及び隔壁333に熱可塑性合成樹脂が円滑に流入する。
〔スロットコイル用絶縁材の第4の実施の形態〕
 図7(a)は、本発明の第4の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図である。本発明の第4の実施の形態の絶縁材4は、第1の実施の形態の絶縁材1の貫通孔13の形状が異なることと、短辺側フランジが追加されたことである。すなわち、第4の実施の形態の絶縁材4は、貫通孔43の形状が長方形で、個数は6個で同一である。また、絶縁材4は、断面の図示はしないが、貫通孔43の外周壁431、432及び隔壁433の厚さ(a、b、c)が同一で、0.15mmから0.55mmに薄く形成されている。絶縁材4には、貫通孔43の上端の外周にフランジ44が成形されている。フランジ44は、2個の長辺側フランジ45、45と2個の耳状フランジ46、46、1個の短辺側フランジ48で構成されている。長辺側フランジ45、45は2個の長辺の全長に渡って形成され、耳状フランジ46、46は、長辺側フランジ45、55の一端に、長辺側フランジ45、45から直角に突出して形成されている。また、短辺側フランジ48は長辺側フランジ45、55の他端に、短辺の全長に渡って形成されている。長辺側フランジ45、45、短辺側フランジ48の厚さd、耳状フランジ46、46の厚さe、長辺側フランジ45、45、短辺側フランジ48、耳状フランジ46、46の高さfは、外周壁431、432及び隔壁433の厚さa、b、cよりも大きく(例えば1mm)形成されている。このフランジ44は、図1のスロット101に絶縁材4を装着した時の位置決め用ストッパーとして作用し、ワニスの漏洩を止めることもできる。また、絶縁材4を成形後、切断する必要が無い。
 図示しない射出成形機のノズルから注入された熱可塑性合成樹脂は、ゲート473、473を介して耳状フランジ46、46に各々流入する。ゲート473、473は、小さな点で耳状フランジ46、46に接続するピンポイントゲートである。熱可塑性合成樹脂がゲート473、473から耳状フランジ46、46に流入する方向は、耳状フランジ46、46の肉厚方向である。ゲート473、473から耳状フランジ46、46に流入した熱可塑性合成樹脂は、耳状フランジ46、46の図示しない対向壁にぶつかって90度方向転換して流入速度が減少し、耳状フランジ46、66、長辺側フランジ45、45、短辺側フランジ48を熱可塑性合成樹脂で満たす。その後、肉厚の薄い外周壁431、432及び隔壁433に熱可塑性合成樹脂が最適な流入速度で流れ込むため、熱可塑性合成樹脂の流れが良くなり、滑らかな成形品を作ることが可能となる。すなわち、耳状フランジ46、46、長辺側フランジ45、45、短辺側フランジ48が、ランナーとして機能するため、肉厚の薄い外周壁431、432及び隔壁433に熱可塑性合成樹脂が円滑に流入する。第4の実施の形態の絶縁材4は、第1の実施の形態の絶縁材1と比較して短辺の長さが長いため、短辺側フランジ48のランナーとしての機能が効果的である。
〔スロットコイル用絶縁材の第5の実施の形態〕
 図7(b)は、本発明の第5の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図である。本発明の第5の実施の形態の絶縁材5は、第2の実施の形態の絶縁材2の貫通孔23の個数が異なることと、短辺側フランジが追加され、ゲートの流入位置が異なることである。すなわち、第5の実施の形態の絶縁材5は、貫通孔53の個数が4個で1列に形成されている。また、絶縁材5は、断面の図示はしないが、貫通孔53の外周壁531、532及び隔壁533の厚さ(a、b、c)が同一で、0.15mmから0.55mmに薄く形成されている。絶縁材5には、貫通孔53の上端の外周にフランジ54が成形されている。フランジ54は、2個の長辺側フランジ55、55と1個の短辺側フランジ58で構成されている。長辺側フランジ55、55は2個の長辺の全長に渡って形成されている。また、短辺側フランジ58は1個の短辺の全長に渡って形成されている。長辺側フランジ55、55、短辺側フランジ58の厚さd、長辺側フランジ55、55、短辺側フランジ58の高さfは、外周壁531、532及び隔壁533の厚さa、b、cよりも大きく(例えば1mm)形成されている。このフランジ54は、図1のスロット101に絶縁材5を装着した時の位置決め用ストッパーとして作用し、ワニスの漏洩を止めることもできる。また、絶縁材5を成形後、切断する必要が無い。
 図示しない射出成形機のノズルから注入された熱可塑性合成樹脂は、1個のピンサイトゲート573を介して短辺側フランジ58に流入する。ピンサイトゲート573は、短辺側フランジ58の長さ方向の中間位置に設けられ、小さな点で短辺側フランジ58に接続するピンポイントゲートである。熱可塑性合成樹脂がピンサイトゲート573から短辺側フランジ58に流入する方向は、短辺側フランジ58の肉厚方向である。ゲート573から短辺側フランジ58に流入した熱可塑性合成樹脂は、短辺側フランジ58の対向壁(図示せず)にぶつかって90度方向転換して流入速度が減少し、短辺側フランジ58、長辺側フランジ55、55を熱可塑性合成樹脂で満たす。その後、肉厚の薄い外周壁531、532及び隔壁533に熱可塑性合成樹脂が最適な流入速度で流れ込むため、熱可塑性合成樹脂の流れが良くなり、滑らかな成形品を作ることが可能となる。すなわち、短辺側フランジ58、長辺側フランジ55、55がランナーとして機能するため、肉厚の薄い外周壁531、532及び隔壁533に熱可塑性合成樹脂が円滑に流入する。
〔スロットコイル用絶縁材の第6の実施の形態〕
 図8(a)は、本発明の第6の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図である。本発明の第6の実施の形態の絶縁材6は、第1の実施の形態の絶縁材1の貫通孔13の個数と形状が異なることである。本発明の第6の実施の形態の絶縁材6は、貫通孔63の矩形の面積が大きく、個数は1個である。絶縁材6は、貫通孔63の外周壁631、632の厚さ(a(図示せず。)、b)が同一で、0.15mmから0.55mmに薄く形成されている。絶縁材6には、貫通孔63の上端の外周にフランジ64が成形されている。フランジ64は、2個の長辺側フランジ65、65と2個の耳状フランジ66、66で構成されている。長辺側フランジ65、65は2個の長辺の全長に渡って形成され、耳状フランジ66、66は、長辺側フランジ65、65の一端に、長辺側フランジ65、65から直角に突出して形成されている。長辺側フランジ65、65の厚さd、耳状フランジ66、66の厚さe、長辺側フランジ65、65と耳状フランジ66、66の高さfは、外周壁631、632の厚さa、bよりも大きく(例えば1mm)形成されている。このフランジ64は、図1のスロット101に絶縁材6を装着した時の位置決め用ストッパーとして作用し、ワニスの漏洩を止めることもできる。また、絶縁材6を成形後、切断する必要が無い。
 図示しない射出成形機のノズルから注入された熱可塑性合成樹脂は、ゲート673、673を介して耳状フランジ66、66に各々流入する。ゲート673、673は、小さな点で耳状フランジ66、66に接続するピンポイントゲートである。熱可塑性合成樹脂がゲート673、673から耳状フランジ66、66に流入する方向は、耳状フランジ66、66の肉厚方向である。ゲート673、673から耳状フランジ66、66に流入した熱可塑性合成樹脂は、耳状フランジ66、66の図示しない対向壁にぶつかって90度方向転換して流入速度が減少し、耳状フランジ66、66、長辺側フランジ65、65を熱可塑性合成樹脂で満たす。その後、肉厚の薄い外周壁631、632に熱可塑性合成樹脂が最適な流入速度で流れ込むため、熱可塑性合成樹脂の流れが良くなり、滑らかな成形品を作ることが可能となる。すなわち、耳状フランジ66、66、長辺側フランジ65、65が、ランナーとして機能するため、肉厚の薄い外周壁631、632に熱可塑性合成樹脂が円滑に流入する。
〔スロットコイル用絶縁材の第7の実施の形態〕
 図8(b)は、本発明の第7の実施の形態のスロットコイル用絶縁材を示す要部の等角投影図である。本発明の第7の実施の形態の絶縁材7は、第6の実施の形態の絶縁材6の長辺側フランジ65、65と耳状フランジ66、66が無く、短辺側フランジを設けたことである。すなわち、絶縁材7は、貫通孔73の外周壁731、732の厚さ(a、b)が同一で、0.15mmから0.55mmに薄く形成されている。絶縁材7には、貫通孔73の上端の外周にフランジ74が成形されている。フランジ74は、1個の短辺側フランジ78で構成されている。短辺側フランジ78の厚さd、短辺側フランジ78の高さfは、外周壁731、732の厚さa、bよりも大きく(例えば1mm)形成されている。このフランジ74は、図1のスロット101に絶縁材7を装着した時の位置決め用ストッパーとして作用し、ワニスの漏洩を止めることもできる。また、絶縁材7を成形後、切断する必要が無い。
 図示しない射出成形機のノズルから注入された熱可塑性合成樹脂は、1個のピンサイトゲート773を介して短辺側フランジ78に流入する。ピンサイトゲート773は、短辺側フランジ78の長さ方向の中間位置に設けられ、小さな点で短辺側フランジ78に接続するピンポイントゲートである。熱可塑性合成樹脂がピンサイトゲート773から短辺側フランジ78に流入する方向は、短辺側フランジ78の肉厚方向である。ゲート773から短辺側フランジ78に流入した熱可塑性合成樹脂は、短辺側フランジ78の図示しない対向壁にぶつかって、90度方向転換して流入速度が減少し、短辺側フランジ78を熱可塑性合成樹脂で満たす。その後、肉厚の薄い外周壁731、732に熱可塑性合成樹脂が最適な流入速度で流れ込むため、熱可塑性合成樹脂の流れが良くなり、滑らかな成形品を作ることが可能となる。すなわち、短辺側フランジ78が、ランナーとして機能するため、肉厚の薄い外周壁731、732に熱可塑性合成樹脂が円滑に流入する。
〔スロットコイル用絶縁材の第8の実施の形態〕
 図9は、本発明の第8の実施の形態のスロットコイル用の絶縁材1’を示す平面図である。図10は、図9の矢印Aの方向から見た部分拡大図である。この第8の実施の形態のスロットコイル用の絶縁材1’は、図2~4に示した第1の実施の形態のスロットコイル用の絶縁材1と形状、及び成形方法が類似している。第1の実施の形態のスロットコイル用の絶縁材1が、長くて、かつ肉厚が薄い(例えば、0.3mm以下)外周壁131、132、隔壁133の場合、射出された樹脂が充分に金型内のキャビディを充分に流れないことがある。第8の実施の形態のスロットコイル用の絶縁材1’は、射出された溶融樹脂の流れを改善した構造である。以下、第8の実施の形態のスロットコイル用絶縁材1’の構造の説明は、第1の実施の形態と同一形状部分の説明は省略し、異なる部分のみを説明する。第8の実施の形態のスロットコイル用絶縁材の両側の長辺側フランジ15は、d=1.0mm、f=1.5mm~2.0mmであり、第1の実施の形態のものよりその断面積が大きい。長辺側フランジ15の夫々の先端には、長辺側フランジ15を延長した湯溜まり135が形成されている。湯溜まり135は、長辺側フランジ15を本例では1.0~1.5mm程度延長したものである。
 本例のゲート173aは、断面形状が矩形で角錐型であり、傾斜角度βが約30度程度が良い(図10参照)。ゲート173aの形状を角錐型にすることにより、溶融樹脂の流れを円滑にできる。射出された溶融樹脂は、ランナ172からゲート173aで絞られて摩擦熱が発生し、溶融樹脂の温度を上昇させて粘度が下がり、耳状フランジ16に流れる。耳状フランジ16に流れた溶融樹脂は、90度方向が変えられて長辺側フランジ15に流入する(図3(b)参照)。更に、耳状フランジ16に流れた溶融樹脂は、90度方向が変えられて、長辺側フランジ15に流入する。耳状フランジ16の高さは、長辺側フランジ15よりその高さは、Smm低い。即ち、ゲート173aから吐出した溶融樹脂は、長辺側フランジ15より溶融樹脂の流路の断面積が狭い耳状フランジ16に流れる、この後、長辺側フランジ15に流入するまでに、角度90度で2回方向が変えられて長辺側フランジ15に流入する。溶融樹脂は、流路の断面積が長辺側フランジ15より狭い耳状フランジ16を介して、長辺側フランジ15に流れるので、耳状フランジ16は樹脂流の流れを抑制する機能を有する。
 溶融樹脂は、角度90度で2回方向が変えられるので、溶融樹脂の動圧が低下し、長辺側フランジ15にゲート173aから直ちに流れることはない。この結果、長辺側フランジ15、隔壁133、外周壁131、132等に直ちには流れない。溶融樹脂は、断面積が大きく流れの抵抗の少なく流路である長辺側フランジ15に流れ、その先端の湯溜まり135を満たした後に、溶融樹脂は外周壁131、132、隔壁133に流れる。また、ゲート173aと対向する長辺側フランジ135の先端に湯溜まり135を形成されているので、射出された溶融樹脂は長辺側フランジ135と湯溜まり135を満たした後、薄い肉厚の外周壁131、132、及び隔壁133に流れが誘導される。特に、外周壁131、132、隔壁133が長い場合(図10の下方)、この耳状フランジ16、長辺側フランジ15、及びゲート173aと対向する他端に湯溜まり135を形成したことにより、外周壁131、132、及び隔壁133に均等に、かつ円滑に流れる。
〔スロットコイル用絶縁材の第9の実施の形態〕
 図11(a)は、本発明の第9の実施の形態のスロットコイル用の絶縁材2’を示す等角投影図であり、図11(b)は、図11(a)のB-B線で切断した部分断面図である。この第9の実施の形態のスロットコイル用の絶縁材2’は、図6に示した第2の実施の形態のスロットコイル用の絶縁材2の形状及び成形方法と類似している。第2の実施の形態のスロットコイル用の絶縁材2’が、長くて、かつ肉厚が薄い外周壁231、232、隔壁233の場合、射出された樹脂が充分に金型内のキャビディを充分に流れないことがある。第9の実施の形態のスロットコイル用の絶縁材2’は、射出された溶融樹脂の流れを改善した構造である。以下、第9の実施の形態のスロットコイル用絶縁材2’の構造の説明は、第2の実施の形態と同一形状部分の説明は省略し、異なる部分のみを説明する。
 本発明の第9の実施の形態の絶縁材2’の成形は、ファンゲート(扇形)873を用いた例である。絶縁材2’の長辺側フランジ25の幅と同一長さの広い幅を持つフィルム状の薄い(浅い)ゲートである。長辺側フランジ25の両側面に、ファンゲート873を配置した例である。ファンゲート873は、溶融樹脂が長辺側フランジ25に対してほぼ平行に流れ、長辺側フランジ25を均一に充填させ、偏流等を防止する機能がある。このファンゲート873は、結晶性樹脂のように、偏流が発生し易いものに使用することが知られている。本発明の第9の実施の形態のファンゲート873の場合、特に射出成形圧力が大きいと、そのファンゲート873の中心部の流れが速くなる。本例では、これを防ぐために射出成形金型(図示せず)に配置した円筒ピン875を配置したものである。円筒ピン875を配置したことにより、ランナ874からファンゲート873に流れる溶融樹脂に乱流を発生させて、長辺側フランジ25の中心部に流れ込む溶融樹脂の流れを抑制して、長辺側フランジ25に流れる溶融樹脂を均一にすることができる。
〔スロットコイル用絶縁材の第10の実施の形態〕
 図12(a)は、本発明の第10の実施の形態のスロットコイル用の絶縁材2’’を示す等角投影図であり、図12(b)は、図12(a)のB-B線で切断した部分断面図である。第10の実施の形態の絶縁材2’’の成形にファンゲート873を用いる点は、第9の実施の形態と同一である。両者が異なる点は、第10の実施の形態の絶縁材2’’の成形は、ファンゲート873から湯溜まり876、及びフィルム状のフィルムランナ877を介して、溶融樹脂を長辺側フランジ25に流す点が異なる。湯溜まり876は、一種のミニランナとも言える。ファンゲート873から流れる溶融樹脂は、絞られることから乱流となるので、湯溜まり876で動圧を静圧として流れが安定化される。湯溜まり876で安定化した溶融樹脂は、流路が均一な断面であるフィルムランナ877で層流となって、長辺側フランジ25に流れる。この説明で理解されるように、第10の実施の形態で成形された絶縁材2’’は、外周壁231、232に円滑に樹脂が流れるので、外周壁231、232が長いものでも成形が可能となる。
〔スロットコイル用絶縁材の他の実施の形態〕
 前述した第8の実施の形態のゲート173aは、いわゆるサイドゲートと呼ばれているものであるが、射出成形金型の構造によっては、このゲート173aの配置を90度の角度を変えたものでも良い。この場合でも角度90度で2回方向が変えられて長辺側フランジ15に流入する構造が好ましい。前述した実施の形態の絶縁材料1~7は、回転電機のステータ用として説明した。しかしながら、絶縁材料1~7は、ロータの絶縁材料として使用しても良い。前述した第9の実施の形態の制御ピン876は、断面形状が円形であったがこの形状に限定されない。制御ピン876は、樹脂の流れを均一にするために配置されたものであり、射出された溶融樹脂の流れを阻害する、又は遅延させるための一種の流量制御部材であるので、この機能を備えたものであれば、他の断面形状であっても良い。
100…ステータ
101…スロット
1,1’,1’’…絶縁材
11…導線
12…スロットコイル
13…貫通孔
131、132…外周壁
133…隔壁
135…湯溜まり
14…フランジ
15…長辺側フランジ
16…耳状フランジ
161…対向壁
171…スプルー
172…ランナー
173、173a…ゲート(ピンポイントゲート)
2,2’…絶縁材
23…貫通孔
231、232…外周壁
233…隔壁
24…フランジ
25…長辺側フランジ
273…ゲート(ピンポイントゲート、ピンサイトゲート)
3…絶縁材
33…貫通孔
331、332…外周壁
333…隔壁
34…フランジ
35…長辺側フランジ
373…ゲート(ピンポイントゲート、ピンサイトゲート)
38…短辺側フランジ
4…絶縁材
43…貫通孔
431、432…外周壁
433…隔壁
44…フランジ
45…長辺側フランジ
46…耳状フランジ
473…ゲート(ピンポイントゲート)
48…短辺側フランジ
5…絶縁材
53…貫通孔
531、532…外周壁
533…隔壁
54…フランジ
55…長辺側フランジ
573…ゲート(ピンポイントゲート)
58…短辺側フランジ
6…絶縁材
63…貫通孔
631、632…外周壁
64…フランジ
65…長辺側フランジ
66…耳状フランジ
673…ゲート(ピンポイントゲート)
7…絶縁材
73…貫通孔
731、732…外周壁
74…フランジ
773…ゲート(ピンポイントゲート、又はピンサイトゲート)
78…短辺側フランジ
873…ファンゲート
875…制御ピン
876…湯溜まり
877…フィルムランナ

Claims (8)

  1.  回転電機のステータ又はロータに設けられたスロットに挿入され、導線を挿入するために断面形状が矩形の貫通孔が形成され、熱可塑性合成樹脂で成形され、かつ前記貫通孔は互いに平行で、前記導線を互いに電気的に絶縁するための隔壁及び外周壁からなる絶縁材と、
     前記貫通孔の前記断面形状と断面形状が相似形で、かつ前記貫通孔に挿入される導線と
     で構成されるスロットコイルを有する回転電機において、
     前記絶縁材は、前記絶縁材を射出成形するとき、射出された前記熱可塑性合成樹脂である溶融樹脂の流路になり、前記絶縁材の一端の外周に形成され、かつ前記隔壁及び前記外周壁より肉厚に成形されたフランジを有する
     ものであることを特徴とする回転電機のスロットコイル用絶縁材。
  2.  請求項1に記載の回転電機のスロットコイル用絶縁材において、
     前記フランジは、平行に配置した二つからなり、前記絶縁材が前記スロットに挿入されたときの位置決め機能を有し、前記フランジの長手方向に直交する断面での断面積が同一であり、
     前記貫通孔は、複数個形成されている
     ことを特徴とする回転電機のスロットコイル用絶縁材。
  3.  請求項1又は2に記載の回転電機のスロットコイル用絶縁材において、
     前記熱可塑性合成樹脂は、耐熱性と電気絶縁性を有する液晶性全芳香族ポリエステルの熱可塑性合成樹脂であり、
     前記隔壁及び前記外周壁の肉厚は、0.15ないし0.55mmである
     ことを特徴とする回転電機のスロットコイル用絶縁材。
  4.  請求項1又は2に記載の回転電機のスロットコイル用絶縁材の成形方法において、
     前記フランジには、前記溶融樹脂を射出成形するとき、前記溶融樹脂を射出するゲートから前記溶融樹脂を流入させた後、前記溶融樹脂の流れの角度変化である90度を2回行って、前記フランジに流入させるための前記フランジと一体の耳状フランジを配置した
     ことを特徴とする回転電機のスロットコイル用絶縁材の成形方法。
  5.  請求項1又は2に記載の回転電機のスロットコイル用絶縁材の成形方法において、
     前記絶縁材料を射出成形で成形するとき、前記フランジの長辺側に前記長辺と同じ幅を有するファンゲートとにより成形するものである
     ことを特徴とする回転電機のスロットコイル用絶縁材の成形方法。
  6.  請求項4に記載の回転電機のスロットコイル用絶縁材の成形方法において、
     前記耳状フランジは、前記フランジの一端にそれぞれに配置されており、
     前記射出成形するとき、前記溶融樹脂を貯留するために、前記フランジの他端に配置されている湯だまりを有する
     ことを特徴とする回転電機のスロットコイル用絶縁材の成形方法。
  7.  請求項5に記載の回転電機のスロットコイル用絶縁材の成形方法において、
     前記ファンゲートには、射出された溶融樹脂の流れを阻害する流量制御部材を配置し、
     前記ファンゲートの下流に配置され、前記前記ファンゲートと平行に配置された湯溜まりと、
     前記湯溜まりの下流に配置されたフィルム状のランナと
     からなることを特徴とする回転電機のスロットコイル用絶縁材の成形方法。
  8.  請求項6又は7に記載の回転電機のスロットコイル用絶縁材の成形方法であって、
     前記射出成形を行う成形機は、0.1秒以内に射出速度がピークに達する高速射出成形機である
     ことを特徴とする回転電機のスロットコイル用絶縁材の成形方法。
PCT/JP2021/016218 2020-04-24 2021-04-21 回転電機のスロットコイル用絶縁材とその成形方法 WO2021215482A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/920,804 US20230208235A1 (en) 2020-04-24 2021-04-21 Insulating member for slot coil of rotary electric machine and method for molding the same
JP2021578271A JP7103704B2 (ja) 2020-04-24 2021-04-21 回転電機のスロットコイル用絶縁材の成形方法
EP21791882.0A EP4140689A4 (en) 2020-04-24 2021-04-21 INSULATING MATERIAL FOR SLOT COIL OF A LATHE AND FORMING METHOD THEREFOR
KR1020227041314A KR20230035521A (ko) 2020-04-24 2021-04-21 회전 전기기계의 슬롯 코일용 절연재와 그 성형 방법
CN202180039297.0A CN115668699A (zh) 2020-04-24 2021-04-21 旋转电机的槽线圈用绝缘材及其成形方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020077333A JP2022010425A (ja) 2020-04-24 2020-04-24 回転電機のスロットコイル用絶縁材とその成形方法
JP2020-077333 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215482A1 true WO2021215482A1 (ja) 2021-10-28

Family

ID=78269196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016218 WO2021215482A1 (ja) 2020-04-24 2021-04-21 回転電機のスロットコイル用絶縁材とその成形方法

Country Status (6)

Country Link
US (1) US20230208235A1 (ja)
EP (1) EP4140689A4 (ja)
JP (2) JP2022010425A (ja)
KR (1) KR20230035521A (ja)
CN (1) CN115668699A (ja)
WO (1) WO2021215482A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070201A (ja) * 2001-08-23 2003-03-07 Toyota Motor Corp 回転電機のステータおよびその製造方法
JP2008035687A (ja) 2006-07-06 2008-02-14 Nippon Soken Inc 電磁機器
JP2012148292A (ja) * 2011-01-18 2012-08-09 Honda Motor Co Ltd 鋳造用金型
JP2018125924A (ja) 2017-01-30 2018-08-09 本田技研工業株式会社 スロットコイル、回転電機のステータ、及び回転電機のステータの製造方法
JP2019134677A (ja) * 2019-04-09 2019-08-08 本田技研工業株式会社 電動機用ステータの製造方法および電動機用ステータ
JP2019161964A (ja) 2018-03-16 2019-09-19 株式会社日立製作所 ラジアルギャップ型回転電機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205264A (ja) * 1994-01-11 1995-08-08 Nippon Steel Chem Co Ltd 多層ブロー成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070201A (ja) * 2001-08-23 2003-03-07 Toyota Motor Corp 回転電機のステータおよびその製造方法
JP2008035687A (ja) 2006-07-06 2008-02-14 Nippon Soken Inc 電磁機器
JP2012148292A (ja) * 2011-01-18 2012-08-09 Honda Motor Co Ltd 鋳造用金型
JP2018125924A (ja) 2017-01-30 2018-08-09 本田技研工業株式会社 スロットコイル、回転電機のステータ、及び回転電機のステータの製造方法
JP2019161964A (ja) 2018-03-16 2019-09-19 株式会社日立製作所 ラジアルギャップ型回転電機
JP2019134677A (ja) * 2019-04-09 2019-08-08 本田技研工業株式会社 電動機用ステータの製造方法および電動機用ステータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4140689A4

Also Published As

Publication number Publication date
CN115668699A (zh) 2023-01-31
JPWO2021215482A1 (ja) 2021-10-28
EP4140689A4 (en) 2024-05-08
JP2022010425A (ja) 2022-01-17
US20230208235A1 (en) 2023-06-29
KR20230035521A (ko) 2023-03-14
EP4140689A1 (en) 2023-03-01
JP7103704B2 (ja) 2022-07-20

Similar Documents

Publication Publication Date Title
KR101193355B1 (ko) 분할 고정자 부재 및 분할 고정자 부재의 제조 방법
KR100356425B1 (ko) 모터의 몰드코어
JPWO2017026306A1 (ja) 絶縁樹脂被覆方法およびステータ
WO2021215482A1 (ja) 回転電機のスロットコイル用絶縁材とその成形方法
JP5731338B2 (ja) 回転電機
CA1165525A (en) Heated nozzle bushing with fixed spiral blade
JPWO2003028188A1 (ja) 絶縁部材を備えたコア及びその製造方法
JP2009166368A (ja) 樹脂成形品及びその製造方法
JP2021181192A (ja) 回転電機のコアと導線の絶縁材の組立方法
JPS6216465B2 (ja)
KR20170029628A (ko) 다수개 취출 사출 성형 방법 및 금형
JPH01255453A (ja) 回転電機固定子及びその製造方法
JP5900836B2 (ja) ローターの製造方法
JP6818900B2 (ja) 回転電機の固定子および固定子の製造方法
JP7118647B2 (ja) 金型、及び、該金型を用いた樹脂成形品の製造方法
JPWO2021215482A5 (ja)
JPH01255452A (ja) 回転電機固定子
JP2020089006A (ja) ステータの製造装置
JPH11170307A (ja) 射出成形装置
JP3575199B2 (ja) 樹脂モールド電動機の固定子の製造方法
KR20220082910A (ko) 릴 부재, 접착 필름 권장체
JP2002326266A (ja) 光ディスク成形金型および光ディスク成形方法
JP2022167133A (ja) 回転電機のスロットコイル用絶縁体の成形方法
JP2008213328A (ja) 成形用金型
JP2021158851A (ja) 樹脂製部材及びモータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021578271

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021791882

Country of ref document: EP

Effective date: 20221124

NENP Non-entry into the national phase

Ref country code: DE