WO2021212936A1 - 从含贵金属的废催化剂回收贵金属的方法 - Google Patents

从含贵金属的废催化剂回收贵金属的方法 Download PDF

Info

Publication number
WO2021212936A1
WO2021212936A1 PCT/CN2021/073038 CN2021073038W WO2021212936A1 WO 2021212936 A1 WO2021212936 A1 WO 2021212936A1 CN 2021073038 W CN2021073038 W CN 2021073038W WO 2021212936 A1 WO2021212936 A1 WO 2021212936A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
precious metals
filtrate
precious metal
aqueous solution
Prior art date
Application number
PCT/CN2021/073038
Other languages
English (en)
French (fr)
Inventor
张斌
陈晨
Original Assignee
贺利氏贵金属技术(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贺利氏贵金属技术(中国)有限公司 filed Critical 贺利氏贵金属技术(中国)有限公司
Priority to EP21792627.8A priority Critical patent/EP4141134A4/en
Priority to US17/996,467 priority patent/US20230212712A1/en
Publication of WO2021212936A1 publication Critical patent/WO2021212936A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/048Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering precious metals, and more particularly to a method for recovering precious metals from waste catalysts containing precious metals.
  • Precious metals are very rare on the earth, but precious metals and their compounds usually have unique physical and chemical properties, so they are widely used in petrochemical, aerospace, electronics, atomic energy, experimental instruments, medicine and other fields.
  • catalysts containing precious metals are widely used in the petrochemical industry due to their excellent catalytic activity.
  • the precious metal-containing catalyst is mainly composed of a carrier and a precious metal active material.
  • the currently used carrier materials are mainly silica carrier, alumina carrier, molecular sieve carrier, etc., and the active materials are mainly Pt, Pd, Rh, etc.
  • the precious metal-containing catalyst After the precious metal-containing catalyst is used, it usually gradually loses its activity and becomes a precious metal-containing spent catalyst.
  • the recycling of waste catalysts containing precious metals has the advantages of high precious metal content, relatively simple process, and low processing cost. Therefore, all countries in the world attach great importance to the recycling of waste catalysts containing precious metals.
  • CN 101074458 A discloses a method for recovering precious metals from waste catalysts containing precious metals.
  • the method mainly includes the following steps: pretreatment of waste catalysts containing precious metals by segmented roasting, leaching of precious metals into a solution, purification and recovery of precious metals from the solution, wherein the purification and recovery of precious metals from the solution can be used
  • Various methods commonly used in the prior art such as solvent extraction, step precipitation, resin exchange, etc., preferably use step precipitation, that is, first adjust the pH of the precious metal-containing solution to 4 to 5 with an alkali to remove Precipitation; adding alkali to adjust the pH of the solution to 8-9, after removing the precipitation, reduction with hydrazine hydrate to obtain precious metals, wherein the alkali used is various alkaline substances commonly used in the field, preferably alkali metal hydroxides such as hydroxide Sodium, potassium hydroxide.
  • the total recovery rate of Pt obtained by this method can be as high
  • CN 102676836 A discloses a method for recovering precious metals from precious metal-containing mixtures, which includes the following process steps: i) providing a precious metal-containing mixture containing an adsorbent, which is based on inorganic materials and is functionalized by organic groups, And at least one precious metal is adsorbed thereon; ii) the precious metal-containing mixture provided in step i) is calcined, so as to adjust the residual carbon content to the total weight of the precious metal-containing mixture after calcination Up to 10% by weight to obtain a calcined mixture; iii) at least partially dissolve the calcined mixture obtained in process step ii) in an alkaline aqueous solution to obtain a noble metal-containing residue; iv) at least partially dissolve in an oxidizing aqueous acid
  • the precious metal-containing residue obtained in process step iii) is used to obtain an aqueous salt solution of precious metal; v) if appropriate, the precious metal is recovered by reducing the precious
  • CN 108707751 A discloses a method for reducing platinum group metals at a low concentration in a high-alkaline desiliconization solution, which is characterized in that it comprises the following steps: 1) Put the desiliconization solution into a reactor, and then heat it to 50-80 °C; 2) Add liquid reducing agent, according to the volume ratio of liquid reducing agent to desiliconization solution is 0.001 ⁇ 0.01:1; 3) Keep the temperature at 50 ⁇ 80°C for 0.5 ⁇ 2h; 4) Heat the desiliconization solution to 60 ⁇ 90 °C; 5) Add solid reductant, the amount of solid reductant added is 10-50g per liter of desiliconization liquid; 6) Keep the temperature at 60-90°C for 0.5-5h; 7) Add flocculant, press flocculant and The volume ratio of the desiliconization solution is 0.0001 ⁇ 0.003:1; 8) The desiliconization solution settles for 3 ⁇ 10 hours and then filtered.
  • the purpose of the present invention is to provide a method for recovering precious metals from waste catalysts containing precious metals with a simple process and high recovery rate.
  • the method includes the following steps:
  • step iii) is carried out at a pressure of 8-12 bar and a temperature of 190-210°C for 2-4 hours.
  • the method for recovering precious metals from waste catalysts containing precious metals according to the present invention has the advantage of simple operation.
  • the method for recovering precious metals from spent catalysts containing precious metals according to the present invention has a high recovery rate.
  • the separated filtrate contains precious metals less than 1 ppm by weight.
  • a method for recovering precious metals from spent catalysts containing precious metals comprising the following steps:
  • step iii) is carried out at a pressure of 8-12 bar and a temperature of 190-210°C for 2-4 hours.
  • a method for recovering precious metals from spent catalysts containing precious metals is provided.
  • the method consists of the following steps:
  • step iii) is carried out at a pressure of 8-12 bar and a temperature of 190-210°C for 2-4 hours.
  • precious metals are, for example, platinum, palladium, rhodium, iridium, osmium, ruthenium, gold, silver, etc., among which platinum, palladium, rhodium, iridium are particularly preferred, and platinum and palladium are more preferred. Most preferred is platinum.
  • the precious metal-containing waste catalyst is, for example, a supported catalyst, wherein the carrier is silica (SiO 2 ), and the precious metal is one or more of platinum, palladium, rhodium, iridium, osmium, ruthenium, gold, and silver.
  • the carrier is SiO 2
  • the noble metal is one or more of platinum, palladium, rhodium and iridium. More preferably, the carrier is SiO 2 and the noble metal is platinum.
  • the precious metal-containing spent catalysts are, for example, spent catalysts from hydroprocessing, hydrocracking, hydrorefining, etc., in particular, for example, spent catalysts Pt-SiO 2 from hydrogenation of acetic acid to ethanol.
  • the alkaline aqueous solution is NaOH aqueous solution, KOH aqueous solution or a combination thereof.
  • the alkaline aqueous solution is a NaOH aqueous solution.
  • the concentration of the alkaline aqueous solution is at least 10% by weight, preferably at least 15% by weight, more preferably at least 20% by weight, based on the alkali used in step i) The total weight of the aqueous solution.
  • the concentration of the alkaline aqueous solution is 20 to 55% by weight, based on the total weight of the alkaline aqueous solution used in step i).
  • the weight ratio of the alkaline aqueous solution to the spent catalyst is preferably 3:1 to 5:1.
  • filter paper is used for filtration in step ii) to obtain a filtrate containing noble metals and noble metals.
  • step iii) is carried out at a pressure of 9-12 bar and a temperature of 190-200°C for 2-3 hours.
  • step iii) is carried out at a pressure of 10-12 bar and a temperature of 190-200°C for 2-3 hours.
  • the reducing agent used includes at least one organic reducing agent or hydrogen.
  • the at least one organic reducing agent is selected from the group consisting of formic acid, formate, formaldehyde, lower alkanols such as C1-C4 alcohols, ascorbic acid, glucose, gluconic acid and oxalic acid.
  • the formate salt is sodium formate.
  • the amount of reducing agent used is 0.1-2.0% by weight, preferably 0.5-1.0% by weight, relative to the weight of the filtrate.
  • step iv) of the method of the present invention the precious metal is separated after cooling the solution obtained from step iii).
  • the solution obtained from step iii) is cooled to below 100°C, preferably 40-80°C, and then the precious metals are separated.
  • step iv) noble metals are separated from the solution obtained in step iii) by filtration.
  • the separated filtrate contains noble metals of less than 1 ppm by weight.
  • Embodiment 1 A method for recovering precious metals from waste catalysts containing precious metals, comprising the following steps:
  • step iii) is carried out at a pressure of 8-12 bar and a temperature of 190-210°C for 2-4 hours.
  • Embodiment 2 The method according to embodiment 1, wherein the method consists of steps i), ii), iii) and iv).
  • Embodiment 3 The method according to embodiment 1 or 2, wherein the reducing agent includes at least one organic reducing agent or hydrogen.
  • Embodiment 4 The method of embodiment 3, wherein the at least one organic reducing agent is selected from the group consisting of formic acid, formate, formaldehyde, lower alkanol, ascorbic acid, glucose, gluconic acid, and oxalic acid.
  • the at least one organic reducing agent is selected from the group consisting of formic acid, formate, formaldehyde, lower alkanol, ascorbic acid, glucose, gluconic acid, and oxalic acid.
  • Embodiment 5 The method of embodiment 4, wherein the formate salt is sodium formate.
  • Embodiment 6 The method according to any one of the preceding embodiments, wherein the spent precious metal-containing catalyst is a supported catalyst, wherein the carrier is SiO 2 , and the precious metal is platinum, palladium, rhodium, iridium, osmium, ruthenium One or more of, gold and silver.
  • Embodiment 7 The method according to embodiment 6, wherein the support is SiO 2 , and the noble metal is one or more of platinum, palladium, rhodium, and iridium.
  • Embodiment 8 The method of embodiment 7, wherein the support is SiO 2 and the noble metal is platinum.
  • Embodiment 9 The method according to any one of the preceding embodiments, wherein the alkaline aqueous solution is an aqueous NaOH solution, an aqueous KOH solution, or a combination thereof.
  • Embodiment 10 The method according to embodiment 9, wherein the concentration of the alkaline aqueous solution is at least 10% by weight, preferably at least 15% by weight, more preferably at least 20% by weight, based on the alkaline aqueous solution used in step i) The total weight.
  • Embodiment 11 The method according to embodiment 10, wherein the concentration of the alkaline aqueous solution is 20 to 55% by weight.
  • Embodiment 12 The method according to any one of the preceding embodiments, wherein the weight ratio of the alkaline aqueous solution to the spent catalyst used is 3:1 to 5:1.
  • Embodiment 13 The method according to any one of the preceding embodiments, wherein step iii) is performed at a pressure of 9-12 bar and a temperature of 190-200°C for 2-3 hours.
  • Embodiment 14 The method according to any one of the preceding embodiments, wherein step iii) is carried out at a pressure of 10-12 bar and a temperature of 190-200°C for 2-3 hours.
  • Embodiment 15 The method according to any one of the preceding embodiments, wherein in step iii), the amount of reducing agent used is 0.1-2.0% by weight, preferably 0.5-1.0% by weight, relative to the weight of the filtrate.
  • Embodiment 16 The method according to any one of the preceding embodiments, wherein in step iv), the precious metal is separated after cooling the solution obtained from step iii).
  • Embodiment 17 The method according to embodiment 16, wherein the solution obtained from step iii) is cooled to below 100°C, preferably 40-80°C.
  • Embodiment 18 The method according to any one of the preceding embodiments, wherein in step iv), the precious metal is separated from the solution obtained in step iii) by filtration.
  • Embodiment 19 The method according to any one of the preceding embodiments, wherein in step iv), the separated filtrate contains less than 1 ppm by weight of precious metals.
  • the silica-supported platinum-containing waste catalyst (a waste catalyst from the hydrogenation of acetic acid to ethanol) was treated with a 45% by weight sodium hydroxide solution, where the volume ratio of the sodium hydroxide solution to the spent catalyst was 3:1. It was then filtered to obtain a sodium silicate filtrate with a platinum content of 28 ppm by weight.
  • the reaction kettle was heated, and the temperature in the reaction kettle was increased from room temperature (25°C) to 150°C within 40 minutes, maintained for 2 hours, and the pressure was recorded as 5 bar.
  • the silica-supported platinum-containing waste catalyst (a waste catalyst from the hydrogenation of acetic acid to ethanol) was treated with a 45% by weight sodium hydroxide solution, where the volume ratio of the sodium hydroxide solution to the spent catalyst was 3:1. It was then filtered to obtain a sodium silicate filtrate with a platinum content of 28 ppm by weight.
  • the reaction kettle was heated, and the temperature in the reaction kettle was increased from room temperature (25°C) to 170°C within 40 minutes, maintained for 2 hours, and the pressure was recorded as 7 bar.
  • the temperature in the reactor drops to 60°C, it is filtered and the platinum content of the filtrate is measured to be 2.5 ppm by weight.
  • the silica-supported platinum-containing waste catalyst (a waste catalyst from the hydrogenation of acetic acid to ethanol) was treated with a 45% by weight sodium hydroxide solution, where the volume ratio of the sodium hydroxide solution to the spent catalyst was 3:1. It was then filtered to obtain a sodium silicate filtrate with a platinum content of 28 ppm by weight.
  • the reaction kettle was heated, and the temperature in the reaction kettle was increased from room temperature (25°C) to 190°C within 40 minutes, maintained for 2 hours, and the pressure was recorded as 12 bar.
  • the method of the present invention has simpler operation steps than the prior art.
  • the reaction temperature and pressure of the method of the present invention make it have a higher platinum recovery rate, that is, the platinum content in the filtrate is 1 ppm by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Catalysts (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明涉及一种从含贵金属的废催化剂回收贵金属的方法,包括以下步骤:i)将含贵金属的废催化剂至少部分溶解在碱性水溶液中;ii)过滤得到含贵金属的滤液和贵金属;iii)用还原剂处理所述滤液;和iv)从处理后的滤液中分离贵金属,其中步骤iii)在8-12巴的压力和190-210℃的温度下进行2-4小时。本发明方法工艺简单且回收率高,分离得到的滤液包含按重量计1ppm以下的贵金属。

Description

从含贵金属的废催化剂回收贵金属的方法 技术领域
本发明涉及一种回收贵金属的方法,更具体地涉及一种从含贵金属的废催化剂回收贵金属的方法。
背景技术
贵金属在地球上非常珍稀,但是贵金属及其化合物通常具有独特的物理化学性能,因而被广泛应用于石油化工、航空航天、电子、原子能、实验仪器、医学等领域。特别地,由于具有优异的催化活性,含贵金属的催化剂在石油化工领域被广泛使用。
含贵金属的催化剂主要由载体和贵金属活性物质组成,目前所用的载体材料主要为二氧化硅载体、氧化铝载体、分子筛载体等,活性物质主要为Pt、Pd、Rh等。含贵金属的催化剂在使用以后,通常会逐渐失去活性而变成含贵金属的废催化剂。由于对含贵金属的废催化剂回收利用与重新制备含贵金属的催化剂相比,具有贵金属含量高,工艺相对简单,加工成本低等优点,因而世界各国对含贵金属的废催化剂的回收利用都很重视。
CN 101074458 A公开了一种从含贵金属的废催化剂中回收贵金属的方法。该方法主要包括以下步骤:采用分段焙烧对含贵金属的废催化剂进行预处理,将贵金属浸取到溶液中,从溶液中提纯并回收贵金属,其中所述的从溶液中提纯并回收贵金属可采用现有技术中常用的各种方法,如溶剂萃取法、分步沉淀法、树脂交换法等,优选采用分步沉淀法,即首先用碱调节含有贵金属的溶液的pH值到4~5,除去沉淀;再加入碱调节溶液pH值到8~9,除去沉淀后,用水合肼还原得到贵金属,其中所用碱为本领域常用的各种碱性物质,优选为碱金属的氢氧化物如氢氧化钠、氢氧化钾。采用该方法获得的Pt总回收率最高可达96.6重量%。
CN 102676836 A公开了一种用于从含贵金属的混合物回收贵金属的方法,包括以下流程步骤:i)提供含有吸附剂的含贵金属的混合物,吸附剂基于无机材料,并且通过有机基团官能化,且使得至少一种贵金属被吸 附于其上;ii)使在流程步骤i)中提供的含贵金属的混合物煅烧,以便相对于含贵金属的混合物在煅烧后的总重量而言将残碳含量调节为最多10重量%,以获得煅烧混合物;iii)在碱性水溶液中至少部分溶解在流程步骤ii)中获得的煅烧混合物,以获得含贵金属的残留物;iv)在氧化性含水酸中至少部分溶解在流程步骤iii)中获得的含贵金属的残留物,以获得贵金属的含水盐溶液;v)如果合适,通过还原在流程步骤iv)中获得的贵金属盐来回收贵金属。采用该方法,一般可以获得<5mg/l或甚至<1mg/l的低贵金属浓度的残留物溶液。
CN 108707751 A公开了一种在高碱性脱硅液中低浓度铂族金属的还原方法,其特征在于:包括如下步骤:1)将脱硅液装入反应釜中,然后加热至50~80℃;2)加入液态还原剂,按液态还原剂与脱硅液的体积比为0.001~0.01:1;3)在50~80℃下保温0.5~2h;4)加热脱硅液至60~90℃;5)加入固态还原剂,固态还原剂的加入量为每升脱硅液中加入10~50g;6)在60~90℃下保温0.5~5h;7)加入絮凝剂,按絮凝剂与脱硅液的体积比为0.0001~0.003:1;8)脱硅液沉降3~10h后过滤。
一般来说,对含贵金属的废催化剂回收利用的成本取决于工艺复杂性和贵金属回收率,工艺简单且回收率高是理想的。因此,仍需要一种工艺简单且回收率高的从含贵金属的废催化剂回收贵金属的方法。
发明内容
本发明的目的是提供一种工艺简单且回收率高的从含贵金属的废催化剂回收贵金属的方法,该方法包括以下步骤:
i)将含贵金属的废催化剂至少部分溶解在碱性水溶液中;
ii)过滤得到含贵金属的滤液和贵金属;
iii)用还原剂处理所述滤液;和
iv)从处理后的滤液中分离贵金属,
其中步骤iii)在8-12巴的压力和190-210℃的温度下进行2-4小时。
本发明的有益效果:根据本发明的从含贵金属的废催化剂回收贵金属的方法具有操作简单的优点。此外,根据本发明的从含贵金属的废催化剂 回收贵金属的方法,其回收率高,在步骤iv)中,分离得到的滤液包含按重量计1ppm以下的贵金属。
具体实施方式
本文描述了各个具体实施方案、变化方案和实施例;包括为理解主张的发明而采用的示例实施方案。尽管以下详细描述给出具体的优选实施方案,本领域技术人员应当理解这些实施方案仅为示例性的且本发明可以以其它方式实践。
在一个实施方案中,提供一种从含贵金属的废催化剂回收贵金属的方法,该方法包括以下步骤:
i)将含贵金属的废催化剂至少部分溶解在碱性水溶液中;
ii)过滤得到含贵金属的滤液和贵金属;
iii)用还原剂处理所述滤液;和
iv)从处理后的滤液中分离贵金属,
其中步骤iii)在8-12巴的压力和190-210℃的温度下进行2-4小时。
在另一个实施方案中,提供一种从含贵金属的废催化剂回收贵金属的方法,该方法由以下步骤组成:
i)将含贵金属的废催化剂至少部分溶解在碱性水溶液中;
ii)过滤得到含贵金属的滤液和贵金属;
iii)用还原剂处理所述滤液;和
iv)从处理后的滤液中分离贵金属,
其中步骤iii)在8-12巴的压力和190-210℃的温度下进行2-4小时。
优选地,在含贵金属的废催化剂中,可能的贵金属例如为铂、钯、铑、铱、锇、钌、金、银等,其中特别优选铂、钯、铑、铱,更优选铂和钯,最优选铂。
所述含贵金属的废催化剂例如为负载型催化剂,其中载体为二氧化硅(SiO 2),且贵金属为铂、钯、铑、铱、锇、钌、金、银中的一种或几种。优选地,所述载体为SiO 2,且贵金属为铂、钯、铑和铱中的一种或几种。更优选地,所述载体为SiO 2,且贵金属为铂。
所述含贵金属的废催化剂例如是来自加氢加工、加氢裂化、加氢精制等的废催化剂,特别是例如来自乙酸加氢制取乙醇的废催化剂Pt-SiO 2
在本发明方法的步骤i)中,所述碱性水溶液为NaOH水溶液、KOH水溶液或其组合。优选地,所述碱性水溶液为NaOH水溶液。
在一个实施方案中,在本发明方法的步骤i)中,所述碱性水溶液的浓度为至少10重量%,优选至少15重量%,更优选至少20重量%,基于步骤i)中使用的碱性水溶液的总重量。在一个优选的实施方案中,所述碱性水溶液的浓度为20至55重量%,基于步骤i)中使用的碱性水溶液的总重量。不受理论限制,所用碱性水溶液与废催化剂的重量比优选为3:1至5:1。
在一个优选的实施方案中,在步骤ii)中利用滤纸进行过滤得到含贵金属的滤液和贵金属。
在一个实施方案中,步骤iii)在9-12巴的压力和190-200℃的温度下进行2-3小时。
在一个实施方案中,步骤iii)在10-12巴的压力和190-200℃的温度下进行2-3小时。
优选地,在步骤iii)中,所用还原剂包括至少一种有机还原剂或氢气。
所述至少一种有机还原剂选自由甲酸、甲酸盐、甲醛、低级链烷醇例如C1-C4醇、抗坏血酸、葡萄糖、葡萄糖酸和草酸组成的群组。优选地,所述甲酸盐为甲酸钠。
在一个实施方案中,在步骤iii)中,所用还原剂的量为0.1-2.0重量%,优选0.5-1.0重量%,相对于滤液的重量。
在本发明方法的步骤iv)中,将从步骤iii)获得的溶液冷却后分离贵金属。优选地,将从步骤iii)获得的溶液冷却到100℃以下,优选40-80℃,然后分离出贵金属。
在一个实施方案中,在步骤iv)中,通过过滤从步骤iii)获得的溶液中分离贵金属。
在一个实施方案中,在步骤iv)中,分离得到的滤液包含按重量计1ppm以下的贵金属。
本领域技术人员根据以下实施方案能够更容易地理解本发明:
实施方案1.一种从含贵金属的废催化剂回收贵金属的方法,包括以下步骤:
i)将含贵金属的废催化剂至少部分溶解在碱性水溶液中;
ii)过滤得到含贵金属的滤液和贵金属;
iii)用还原剂处理所述滤液;和
iv)从处理后的滤液中分离贵金属,
其中步骤iii)在8-12巴的压力和190-210℃的温度下进行2-4小时。
实施方案2.根据实施方案1所述的方法,其中所述方法由步骤i)、ii)、iii)和iv)组成。
实施方案3.根据实施方案1或2所述的方法,其中所述还原剂包括至少一种有机还原剂或氢气。
实施方案4.根据实施方案3所述的方法,其中所述至少一种有机还原剂选自由甲酸、甲酸盐、甲醛、低级链烷醇、抗坏血酸、葡萄糖、葡萄糖酸和草酸组成的群组。
实施方案5.根据实施方案4所述的方法,其中所述甲酸盐为甲酸钠。
实施方案6.根据前述实施方案中任一项所述的方法,其中所述含贵金属的废催化剂为负载型催化剂,其中载体为SiO 2,且贵金属为铂、钯、铑、铱、锇、钌、金、银中的一种或几种。
实施方案7.根据实施方案6所述的方法,其中所述载体为SiO 2,且贵金属为铂、钯、铑和铱中的一种或几种。
实施方案8.根据实施方案7所述的方法,其中所述载体为SiO 2,且贵金属为铂。
实施方案9.根据前述实施方案中任一项所述的方法,其中所述碱性水溶液为NaOH水溶液、KOH水溶液或其组合。
实施方案10.根据实施方案9所述的方法,其中所述碱性水溶液的浓度为至少10重量%,优选至少15重量%,更优选至少20重量%,基于步骤i)中使用的碱性水溶液的总重量。
实施方案11.根据实施方案10所述的方法,其中所述碱性水溶液的浓 度为20至55重量%。
实施方案12.根据前述实施方案中任一项所述的方法,其中所用碱性水溶液与废催化剂的重量比为3:1至5:1。
实施方案13.根据前述实施方案中任一项所述的方法,其中步骤iii)在9-12巴的压力和190-200℃的温度下进行2-3小时。
实施方案14.根据前述实施方案中任一项所述的方法,其中步骤iii)在10-12巴的压力和190-200℃的温度下进行2-3小时。
实施方案15.根据前述实施方案中任一项所述的方法,其中在步骤iii)中,所用还原剂的量为0.1-2.0重量%,优选0.5-1.0重量%,相对于滤液的重量。
实施方案16.根据前述实施方案中任一项所述的方法,其中在步骤iv)中,将从步骤iii)获得的溶液冷却后分离贵金属。
实施方案17.根据实施方案16所述的方法,其中将从步骤iii)获得的溶液冷却至100℃以下,优选40-80℃。
实施方案18.根据前述实施方案中任一项所述的方法,其中在步骤iv)中,通过过滤从步骤iii)获得的溶液中分离贵金属。
实施方案19.根据前述实施方案中任一项所述的方法,其中在步骤iv)中,分离得到的滤液包含按重量计1ppm以下的贵金属。
实施例
对比例1
在70℃的温度下,用45重量%的氢氧化钠溶液处理二氧化硅负载型含铂废催化剂(来自乙酸加氢制乙醇的废催化剂),其中氢氧化钠溶液与废催化剂的体积比为3:1。然后进行过滤,得到铂含量为按重量计28ppm的硅酸钠滤液。
将420ml的硅酸钠滤液加入真空反应釜中,然后加入甲酸钠水溶液,其中甲酸钠水溶液的浓度为500g/L,且硅酸钠滤液与甲酸钠水溶液的体积比为250:2。
向反应釜内充入氮气,使得反应釜内压力至1.0巴,密闭反应釜。
加热反应釜,在40min内将反应釜内温度从室温(25℃)升至150℃,保持2h,记录压力为5巴。
待反应釜内温度下降至60℃时,过滤并测得滤液的铂含量为按重量计6ppm。
对比例2
在70℃的温度下,用45重量%的氢氧化钠溶液处理二氧化硅负载型含铂废催化剂(来自乙酸加氢制乙醇的废催化剂),其中氢氧化钠溶液与废催化剂的体积比为3:1。然后进行过滤,得到铂含量为按重量计28ppm的硅酸钠滤液。
将420ml的硅酸钠滤液加入真空反应釜中,然后加入甲酸钠水溶液,其中甲酸钠水溶液的浓度为500g/L,且硅酸钠滤液与甲酸钠水溶液的体积比为250:2。
向反应釜内充入氮气,使得反应釜内压力至1.0巴,密闭反应釜。
加热反应釜,在40min内将反应釜内温度从室温(25℃)升至170℃,保持2h,记录压力为7巴。
待反应釜内温度下降至60℃时,过滤并测得滤液的铂含量为按重量计2.5ppm。
实施例1
在70℃的温度下,用45重量%的氢氧化钠溶液处理二氧化硅负载型含铂废催化剂(来自乙酸加氢制乙醇的废催化剂),其中氢氧化钠溶液与废催化剂的体积比为3:1。然后进行过滤,得到铂含量为按重量计28ppm的硅酸钠滤液。
将420ml的硅酸钠滤液加入真空反应釜中,然后加入甲酸钠水溶液,其中甲酸钠水溶液的浓度为500g/L,且硅酸钠滤液与甲酸钠水溶液的体积比为250:2。
向反应釜内充入氮气,使得反应釜内压力至1.0巴,密闭反应釜。
加热反应釜,在40min内将反应釜内温度从室温(25℃)升至190℃, 保持2h,记录压力为12巴。
待反应釜内温度下降至60℃时,过滤并测得滤液的铂含量为按重量计1ppm。
根据上述实施例,可以看出本发明方法相对于现有技术操作步骤简单。另外,通过比较本发明实施例与对比例,发现本发明方法的反应温度和压力使得其具有更高的铂回收率,即,滤液中的铂含量为按重量计1ppm。
当在本文中列举数值下限和数值上限时,考虑的是从任何下限到任何上限的范围。尽管已特别描述了本发明的示例性实施方案,要理解的是,本领域技术人员容易看出并且容易做出各种其它修改而不背离本发明的精神和范围。

Claims (19)

  1. 一种从含贵金属的废催化剂回收贵金属的方法,包括以下步骤:
    i)将含贵金属的废催化剂至少部分溶解在碱性水溶液中;
    ii)过滤得到含贵金属的滤液和贵金属;
    iii)用还原剂处理所述滤液;和
    iv)从处理后的滤液中分离贵金属,
    其中步骤iii)在8-12巴的压力和190-210℃的温度下进行2-4小时。
  2. 根据权利要求1所述的方法,其中所述方法由步骤i)、ii)、iii)和iv)组成。
  3. 根据权利要求1或2所述的方法,其中所述还原剂包括至少一种有机还原剂或氢气。
  4. 根据权利要求3所述的方法,其中所述至少一种有机还原剂选自由甲酸、甲酸盐、甲醛、低级链烷醇、抗坏血酸、葡萄糖、葡萄糖酸和草酸组成的群组。
  5. 根据权利要求4所述的方法,其中所述甲酸盐为甲酸钠。
  6. 根据前述权利要求中任一项所述的方法,其中所述含贵金属的废催化剂为负载型催化剂,其中载体为SiO 2,且贵金属为铂、钯、铑、铱、锇、钌、金、银中的一种或几种。
  7. 根据权利要求6所述的方法,其中所述载体为SiO 2,且贵金属为铂、钯、铑和铱中的一种或几种。
  8. 根据权利要求7所述的方法,其中所述载体为SiO 2,且贵金属为铂。
  9. 根据前述权利要求中任一项所述的方法,其中所述碱性水溶液为NaOH水溶液、KOH水溶液或其组合。
  10. 根据权利要求9所述的方法,其中所述碱性水溶液的浓度为至少10重量%,优选至少15重量%,更优选至少20重量%,基于步骤i)中使用的碱性水溶液的总重量。
  11. 根据权利要求10所述的方法,其中所述碱性水溶液的浓度为20至55重量%。
  12. 根据前述权利要求中任一项所述的方法,其中所用碱性水溶液与 废催化剂的重量比为3:1至5:1。
  13. 根据前述权利要求中任一项所述的方法,其中步骤iii)在9-12巴的压力和190-200℃的温度下进行2-3小时。
  14. 根据前述权利要求中任一项所述的方法,其中步骤iii)在10-12巴的压力和190-200℃的温度下进行2-3小时。
  15. 根据前述权利要求中任一项所述的方法,其中在步骤iii)中,所用还原剂的量为0.1-2.0重量%,优选0.5-1.0重量%,相对于滤液的重量。
  16. 根据前述权利要求中任一项所述的方法,其中在步骤iv)中,将从步骤iii)获得的溶液冷却后分离贵金属。
  17. 根据权利要求16所述的方法,其中将从步骤iii)获得的溶液冷却至100℃以下,优选40-80℃。
  18. 根据前述权利要求中任一项所述的方法,其中在步骤iv)中,通过过滤从步骤iii)获得的溶液中分离贵金属。
  19. 根据前述权利要求中任一项所述的方法,其中在步骤iv)中,分离得到的滤液包含按重量计1ppm以下的贵金属。
PCT/CN2021/073038 2020-04-23 2021-01-21 从含贵金属的废催化剂回收贵金属的方法 WO2021212936A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21792627.8A EP4141134A4 (en) 2020-04-23 2021-01-21 METHOD FOR RECOVERING PRECIOUS METAL FROM A USED CATALYST CONTAINING PRECIOUS METAL
US17/996,467 US20230212712A1 (en) 2020-04-23 2021-01-21 Method for recovering precious metal from precious metal-containing waste catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010327422.5A CN111411240A (zh) 2020-04-23 2020-04-23 从含贵金属的废催化剂回收贵金属的方法
CN202010327422.5 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021212936A1 true WO2021212936A1 (zh) 2021-10-28

Family

ID=71490101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073038 WO2021212936A1 (zh) 2020-04-23 2021-01-21 从含贵金属的废催化剂回收贵金属的方法

Country Status (4)

Country Link
US (1) US20230212712A1 (zh)
EP (1) EP4141134A4 (zh)
CN (1) CN111411240A (zh)
WO (1) WO2021212936A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411240A (zh) * 2020-04-23 2020-07-14 贺利氏贵金属技术(中国)有限公司 从含贵金属的废催化剂回收贵金属的方法
CN112501439A (zh) * 2020-10-22 2021-03-16 贵研资源(易门)有限公司 一种含贵金属铁合金的预处理方法
CN112961986A (zh) * 2021-02-06 2021-06-15 中海油(山西)贵金属有限公司 铂在线回收器中贵金属的回收方法
CN113249590B (zh) * 2021-05-13 2022-04-05 中钢集团南京新材料研究院有限公司 一种从含铂有机醇废液中高效回收铂族贵金属的方法
CN114807622A (zh) * 2022-03-10 2022-07-29 金川集团股份有限公司 一种还原锇二次吸收液的方法
CN114836629A (zh) * 2022-05-05 2022-08-02 昆明贵研新材料科技有限公司 一种废二氧化硅载体贵金属催化剂的富集方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769504A (zh) * 2004-11-04 2006-05-10 日矿金属株式会社 从废催化剂回收铂和铼的方法
CN101074458A (zh) 2006-05-19 2007-11-21 中国石油化工股份有限公司 一种从含有贵金属的废催化剂中回收贵金属的方法
CN102676836A (zh) 2011-03-18 2012-09-19 贺利氏贵金属有限及两合公司 用于从官能化的、含贵金属的吸附材料回收贵金属的方法
CN103194606A (zh) * 2013-03-28 2013-07-10 贵研资源(易门)有限公司 一种从氧化铝基废催化剂中富集铂族金属的方法
CN108707751A (zh) 2018-06-20 2018-10-26 贵研资源(易门)有限公司 一种在高碱性脱硅液中低浓度铂族金属的还原方法
US20190284660A1 (en) * 2018-03-15 2019-09-19 The Board Of Regents For Oklahoma State University Platinum group metals recovery
CN111411240A (zh) * 2020-04-23 2020-07-14 贺利氏贵金属技术(中国)有限公司 从含贵金属的废催化剂回收贵金属的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69415463T2 (de) * 1993-09-08 1999-05-12 Kawasaki Kasei Chemicals Ltd., Tokio/Tokyo Mittel zur Behandlung von Metallionen in wässriger Lösung, Verfahren zu seiner Herstellung und Verfahren zur Behandlung von Metallionen in wässriger Lösung
AU2010239157A1 (en) * 2009-04-24 2011-11-10 Precious Metals Recovery Pty Ltd Method for processing precious metal source materials
CN103526040B (zh) * 2013-10-11 2015-08-12 金川集团股份有限公司 一种从含铂族金属物料中去除贱金属的工艺
CN105506288A (zh) * 2015-11-17 2016-04-20 上海派特贵金属环保科技有限公司 一种从失效汽车尾气催化剂中回收铂的方法和设备
EP3225706B1 (de) * 2016-03-29 2018-08-01 Heraeus Deutschland GmbH & Co. KG Verfahren zur rückgewinnung von rhenium und mindestens einem platingruppenelement aus katalysatorpartikeln
JP7006332B2 (ja) * 2018-02-05 2022-01-24 住友金属鉱山株式会社 金粉の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769504A (zh) * 2004-11-04 2006-05-10 日矿金属株式会社 从废催化剂回收铂和铼的方法
CN101074458A (zh) 2006-05-19 2007-11-21 中国石油化工股份有限公司 一种从含有贵金属的废催化剂中回收贵金属的方法
CN102676836A (zh) 2011-03-18 2012-09-19 贺利氏贵金属有限及两合公司 用于从官能化的、含贵金属的吸附材料回收贵金属的方法
CN103194606A (zh) * 2013-03-28 2013-07-10 贵研资源(易门)有限公司 一种从氧化铝基废催化剂中富集铂族金属的方法
US20190284660A1 (en) * 2018-03-15 2019-09-19 The Board Of Regents For Oklahoma State University Platinum group metals recovery
CN108707751A (zh) 2018-06-20 2018-10-26 贵研资源(易门)有限公司 一种在高碱性脱硅液中低浓度铂族金属的还原方法
CN111411240A (zh) * 2020-04-23 2020-07-14 贺利氏贵金属技术(中国)有限公司 从含贵金属的废催化剂回收贵金属的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141134A4

Also Published As

Publication number Publication date
EP4141134A4 (en) 2024-05-22
CN111411240A (zh) 2020-07-14
EP4141134A1 (en) 2023-03-01
US20230212712A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
WO2021212936A1 (zh) 从含贵金属的废催化剂回收贵金属的方法
CN100400684C (zh) 一种从含有贵金属的废催化剂中回收贵金属的方法
CN100419101C (zh) 从废催化剂回收贵金属
CN108906137B (zh) 一种贵金属废料直接制备催化剂的方法
CN101395288A (zh) 催化剂再处理
CN112981105B (zh) 一种从废氧化铝载体贵金属催化剂中回收贵金属的方法
CN104831071A (zh) 一种水热法从废载体催化剂中回收铂钯的方法
CN101376923A (zh) 一种从废催化剂中回收贵金属的方法
US8057572B2 (en) Metal recovery
CN102676836B (zh) 用于从官能化的、含贵金属的吸附材料回收贵金属的方法
CN105506288A (zh) 一种从失效汽车尾气催化剂中回收铂的方法和设备
EP2831297B1 (en) Rhenium recovery from used reductive amination catalysts
JPWO2010013548A1 (ja) シクロオレフィンの製造方法及び製造装置
CN109930006B (zh) 一种回收tdi焦油残渣中贵金属铂的方法
CN113005301A (zh) 一种从废石化催化剂中回收稀贵金属的方法
US11427887B2 (en) Extraction of selected platinum-group metals from supported catalyst
JP2577978B2 (ja) 白金族金属担持触媒の再活性化方法
CN110743567A (zh) 一种α,β-不饱和醛选择加氢用铱炭催化剂及其制备方法与应用
CN115700286B (zh) 废Pd/Al2O3催化剂中Pd的回收方法
CN109837388A (zh) 一种从含贵金属的废催化剂中提取金属的方法
CN118291773A (zh) 一种利用水热法从废载体催化剂中回收贵金属的方法
CN114107663A (zh) 一种从废旧贵金属催化剂中提取贵金属的方法
CN114134335A (zh) 一种含铑亚硝酸盐废水中铑的回收方法
RU2154686C1 (ru) Способ подготовки отработанных катализаторов, включающих носитель, содержащих по крайней мере один благородный металл, к последующему извлечению этого металла
CN110684905A (zh) 一种湿法浸出铂氧化铝催化剂中金属铂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202217056925

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021792627

Country of ref document: EP

Effective date: 20221123