WO2021206038A1 - 樹脂組成物層の製造方法、該製造方法で得られた樹脂組成物層及び該樹脂組成物層を含む複合成形体 - Google Patents

樹脂組成物層の製造方法、該製造方法で得られた樹脂組成物層及び該樹脂組成物層を含む複合成形体 Download PDF

Info

Publication number
WO2021206038A1
WO2021206038A1 PCT/JP2021/014448 JP2021014448W WO2021206038A1 WO 2021206038 A1 WO2021206038 A1 WO 2021206038A1 JP 2021014448 W JP2021014448 W JP 2021014448W WO 2021206038 A1 WO2021206038 A1 WO 2021206038A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
composition layer
resin
producing
sheet
Prior art date
Application number
PCT/JP2021/014448
Other languages
English (en)
French (fr)
Inventor
敏行 澤村
裕也 古賀
田中 俊行
渡邉 朗
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202180027145.9A priority Critical patent/CN115485117A/zh
Priority to JP2022514054A priority patent/JPWO2021206038A1/ja
Priority to EP21785556.8A priority patent/EP4134398A4/en
Publication of WO2021206038A1 publication Critical patent/WO2021206038A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/244Stepwise homogeneous crosslinking of one polymer with one crosslinking system, e.g. partial curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5816Measuring, controlling or regulating temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/18Heat-exchangers or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present invention relates to a method for producing a resin composition layer, a resin composition layer obtained by the production method, and a composite molded product containing the resin composition layer.
  • the resin composition layer and the composite molded product obtained by the method for producing a resin composition layer of the present invention can be suitably used as a heat radiating material for, for example, a power semiconductor device.
  • Hexagonal boron nitride is generally a thin plate-like crystal, and the thin plate has a high thermal conductivity in the plane direction, but the thin plate has a low thermal conductivity in the thickness direction. Therefore, when a thin plate-shaped boron nitride is blended in the heat radiating sheet, the boron nitride is oriented parallel to the sheet surface when the sheet is formed, so that sufficient thermal conductivity cannot be obtained in the thickness direction of the sheet.
  • a cohesive boron nitride filler As a cohesive boron nitride filler, a coagulated boron nitride filler having a card house structure has been developed (see, for example, Patent Document 1). Further, a cohesive boron nitride filler having a card house structure having a relatively large average particle size and hardly collapsing even when pressure is applied has been developed (see, for example, Patent Document 2). As for the card house structure, the cohesive boron nitride filler secures a heat conduction path due to the card house structure. Therefore, by including this in the heat radiating sheet, the heat conductivity in the thickness direction of the sheet becomes excellent. ..
  • the boron nitride particles are agglomerated without using a separate binder. Therefore, even if an external force is applied when forming the sheet, the card house structure does not easily collapse, the heat conduction path is maintained, heat can be dissipated in the thickness direction of the sheet, and excellent heat conductivity can be achieved.
  • Patent Document 3 As a molding method for increasing the thermal conductivity in the thickness direction of the sheet, a method for increasing the thermal conductivity by surface-contacting the aggregated boron nitride fillers in the sheet is known (see, for example, Patent Document 4).
  • thermosetting resin composition containing a cohesive boron nitride filler is applied to a base material and heated and pressed to form a cohesive boron nitride filler-containing resin composition layer.
  • the press processing conditions and the press process have not been examined in detail.
  • Patent Document 5 a coating layer of a resin composition containing a boron nitride filler and alumina is dried, heat-pressurized and bonded to obtain a resin sheet in a B-stage state, and a resin sheet in a B-stage state is copper. It has been shown that a cured resin sheet laminate in a C-stage state, which is sandwiched between foils and has copper foils on both sides, is obtained.
  • Patent Document 5 since the press pressure at the B stage is low in order to obtain the fluidity of the sheet, voids remain in the sheet and the withstand voltage becomes low. In Patent Document 5, the sheet becomes brittle due to the remaining voids, and it is necessary to further improve the handleability in order to increase the area.
  • An object of the present invention is to provide a method for producing a resin composition layer capable of reducing breakage and defects of the film and improving the withstand voltage, adhesiveness, and heat resistance of the resin composition layer.
  • the present inventor has found that the above-mentioned problems can be solved by undergoing a specific pressing step in a method for producing a resin composition layer containing an agglomerated inorganic filler and a thermosetting resin.
  • the gist of the present invention is as follows.
  • a method for producing a resin composition layer comprising a resin composition containing an agglomerated inorganic filler and a thermosetting resin, which comprises the following steps (a) and (b). .. (A) A step of pressing a carrier film and a sheet formed on the carrier film using the resin composition under conditions of a press temperature of 0 ° C. or higher and 110 ° C. or lower and a press pressure of 40 MPa or higher and 1000 MPa or lower (b). ) (A) A step of pressing the sheet that has undergone the steps under the conditions of a press temperature of 70 ° C. or higher and 250 ° C. or lower and a press pressure of 3 MPa or higher and 100 MPa or lower to obtain a resin composition layer.
  • reaction rate (A) (1-(calorific value after (a) step / calorific value before (a) step)) ⁇ 100
  • reaction rate (B) The reaction rate (referred to as "reaction rate (B)" of the thermosetting resin of the sheet after the step (b) obtained by the following method is 60% or more, [1] to [3]. ].
  • the method for producing a resin composition layer according to any one of. ⁇ Measurement / calculation method of reaction rate (B)> From the calorific value of the exothermic peak obtained when the temperature of the sheet before the step (a) and after the step (b) is raised from 40 ° C. to 250 ° C. at 10 ° C./min by differential scanning calorimetry (DSC), the following formula is used. calculate. Reaction rate (B) (%) (1-(calorific value after step (b) / calorific value before step (a)))) ⁇ 100
  • thermosetting resin contains an epoxy compound
  • thermosetting resin contains an epoxy compound having a weight average molecular weight of 10,000 or more and an epoxy compound having a weight average molecular weight of 600 or less.
  • thermosetting resin contains an epoxy compound having a weight average molecular weight of 600 or less and containing three or more epoxy groups in one molecule. ..
  • the handleability of a sheet formed by using the resin composition is improved by undergoing a specific pressing step. It is possible to reduce breakage and defects of the film due to handling and improve the withstand voltage, adhesiveness, and heat resistance of the obtained resin composition layer. Further, the improvement of adhesiveness can be expected to reduce the thermal resistance at the interface.
  • the method for producing a resin composition layer of the present invention is a method for producing a resin composition layer composed of a resin composition containing an agglomerated inorganic filler and a thermosetting resin, and the following steps (a) and (b) are performed.
  • Have. A step of pressing a carrier film and a sheet formed on the carrier film using the resin composition under conditions of a press temperature of 0 ° C. or higher and 110 ° C. or lower and a press pressure of 40 MPa or higher and 1000 MPa or lower (b).
  • (A) A step of pressing the sheet that has undergone the steps under the conditions of a press temperature of 70 ° C. or higher and 250 ° C. or lower and a press pressure of 3 MPa or higher and 100 MPa or lower to obtain a resin composition layer.
  • the resin composition layer produced by the method for producing the resin composition layer of the present invention may be referred to as "the resin composition layer of the present invention".
  • a resin composition containing an agglomerated inorganic filler for forming the resin composition layer of the present invention and a thermosetting resin may be referred to as "the resin composition of the present invention”.
  • the "sheet” refers to a film-like material formed on a carrier film by the resin composition of the present invention, and is distinguished from the resin composition layer of the present invention obtained by curing the film.
  • the method for producing the resin composition layer of the present invention may include other steps in addition to the above steps (a) and (b).
  • another step may be provided between the steps (a) and (b).
  • a drying step, a smoothing step, a laminating step, and the like may be included.
  • a sheet formed on a carrier film is subjected to a pressing step to obtain the resin composition layer of the present invention.
  • the resin composition layer of the present invention may be used for various purposes while being formed on the carrier film according to the application and the manufacturing process, or may be separated from the carrier film and used as a single resin composition layer for various purposes. May be done.
  • the resin composition layer of the present invention may be covered with a protective sheet or the like.
  • One of the preferred forms is a composite molded product having a metal portion on one side or both sides of the resin composition layer of the present invention.
  • the resin composition of the present invention may contain other components in addition to the aggregated inorganic filler and the thermosetting resin.
  • the resin composition of the present invention contains a cohesive inorganic filler.
  • the resin composition of the present invention preferably contains a large amount of agglomerated inorganic filler in order to improve the thermal conductivity of the produced resin composition layer and control the coefficient of linear expansion.
  • the agglomerated inorganic fillers are deformed by contacting each other in the steps (a) and (b) described later, and by contacting with each other, more heat conduction paths are formed and high thermal conductivity is obtained. Tends to be.
  • the agglutinating morphology of the agglutinating inorganic filler can be confirmed by a scanning electron microscope (SEM).
  • the resin composition of the present invention may contain a non-aggregated inorganic filler and an organic filler in addition to the aggregated inorganic filler.
  • an electrically insulating filler can be used, and examples thereof include a filler composed of at least one kind of particles selected from the group consisting of metal carbides, metal oxides and metal nitrides.
  • metal carbides include silicon carbide, titanium carbide, tungsten carbide and the like.
  • metal oxides include magnesium oxide, aluminum oxide, silicon oxide, calcium oxide, zinc oxide, yttrium oxide, zirconium oxide, cerium oxide, itterbium oxide, and sialon (ceramics composed of silicon, aluminum, oxygen, and nitrogen).
  • metal nitrides include boron nitride, aluminum nitride, silicon nitride and the like.
  • aggregated inorganic fillers have a volume resistivity of 1 ⁇ 10 12 ⁇ ⁇ cm or more, and in particular, an inorganic substance having excellent insulating properties of 1 ⁇ 10 13 ⁇ ⁇ cm or more. It is preferably composed of a compound. Of these, oxides and nitrides are preferable because the resin composition layer to be formed has sufficient electrical insulating properties.
  • alumina Al 2 O 3 , volume resistivity 1 ⁇ 10 14 ⁇ ⁇ cm
  • aluminum nitride AlN, volume resistivity> 1 ⁇ 10 14 ⁇ ⁇ cm
  • Boron nitride BN, volume resistivity 1 ⁇ 10 14 ⁇ ⁇ cm
  • silicon nitride Si 3 N 4 , volume resistivity> 1 ⁇ 10 14 ⁇ ⁇ cm
  • silica SiO 2 , volume resistivity> 1 ⁇ 10 14 ⁇ ⁇ cm
  • alumina, aluminum nitride, boron nitride and silica are preferable, and alumina and boron nitride are particularly preferable.
  • the aggregated inorganic filler may be surface-treated with a surface treatment agent.
  • a surface treatment agent a known surface treatment agent can be used.
  • agglomerated inorganic filler one type may be used alone, or two or more types may be mixed and used in any combination and ratio.
  • the method and degree of aggregation of the aggregated inorganic filler used in the present invention are not particularly limited, but it is preferable to use the following aggregated boron nitride filler as the aggregated inorganic filler.
  • the following aggregated boron nitride filler may be used in combination with a filler having a shape and type different from that of the aggregated boron nitride filler.
  • Boron nitride has high thermal conductivity but is scaly, and exhibits high thermal conductivity in the plane direction of the scales, but low thermal conductivity in the direction perpendicular to the plane. It is preferable to use agglomerated particles in which scales are collected and aggregated into a spherical shape for better handling. When the agglomerated boron nitride filler is laminated like cabbage, it is preferable to align them in the plane direction so that the radial direction of the agglomerated particles has better heat conduction.
  • the agglomerated boron nitride filler preferably has a cardhouse structure.
  • the "card house structure” is, for example, ceramics 43 No. It is described in 2 (published by Japan Ceramics Association in 2008), and has a structure in which plate-like particles are not oriented and are intricately laminated. More specifically, the aggregated boron nitride filler having a cardhouse structure is an aggregate of boron nitride primary particles, and the flat surface portion and the end face portion of the primary particles come into contact with each other to form, for example, a T-shaped aggregate. It is a cohesive boron nitride filler having a structure of
  • the aggregated boron nitride filler used in the present invention the aggregated boron nitride filler having the above-mentioned card house structure is particularly preferable.
  • the thermal conductivity can be further increased.
  • the new Mohs hardness of the agglomerated boron nitride filler is not particularly limited, but is preferably 5 or less. There is no particular lower limit to the new Mohs hardness of the aggregated boron nitride filler, but it is, for example, 1 or more. When the new Mohs hardness is 5 or less, the contact between the particles dispersed in the resin composition tends to be surface contact, a heat conduction path between the particles is formed, and the heat conduction of the formed resin composition layer is increased. It tends to improve.
  • the volume average particle size of the aggregated boron nitride filler is not particularly limited, but is preferably 10 ⁇ m or more, and more preferably 15 ⁇ m or more.
  • the volume average particle size of the aggregated boron nitride filler is preferably 100 ⁇ m or less, more preferably 90 ⁇ m or less.
  • the volume average particle diameter is 10 ⁇ m or more, the number of particles is relatively small in the resin composition and the resin composition layer of the present invention, so that the thermal resistance is reduced by reducing the inter-particle interface, which is obtained.
  • the resin composition layer may have high thermal conductivity.
  • the volume average particle size is not more than the above upper limit value, the surface smoothness of the formed resin composition layer tends to be excellent.
  • the volume average particle size of the agglomerated boron nitride filler means the particle size when the cumulative volume becomes 50% when the cumulative curve is drawn with the volume of the powder used for measurement as 100%.
  • the measurement method includes a wet measurement method in which a sample in which aggregated particles are dispersed in a pure water medium containing sodium hexametaphosphate as a dispersion stabilizer is measured using a laser diffraction / scattering particle size distribution measuring device or the like.
  • An example is a dry measurement method in which measurement is performed using "Morphorogi" manufactured by Malvern. The same applies to the volume average particle diameters of the other aggregated inorganic fillers and the non-aggregated inorganic fillers.
  • the breaking strength of the agglomerated inorganic filler is not particularly limited, but is preferably 300 MPa or less, more preferably 100 MPa or less, still more preferably 50 MPa or less, still more preferably 20 MPa or less, and particularly preferably 15 MPa or less. Yes, most preferably 10 MPa or less.
  • the breaking strength is not more than the above upper limit value, the aggregated structure of the aggregated inorganic filler is deformed during the press treatment, and the aggregated inorganic fillers are likely to come into surface contact with each other.
  • the lower limit of the breaking strength of the agglomerated inorganic filler is not particularly limited, but from the viewpoint of facilitating handling, it is preferably 2.5 MPa or more, more preferably 3 MPa or more, still more preferably 3.5 MPa or more, and particularly preferably. Is 4 MPa or more.
  • the elastic modulus of the agglomerated inorganic filler is not particularly limited, but is preferably 10 MPa or more, more preferably 20 MPa or more, further preferably 30 MPa or more, still more preferably 48 MPa or more, and particularly preferably 50 MPa or more. Yes, most preferably 55 MPa or more.
  • the elastic modulus is equal to or higher than the above lower limit value, the agglomerated inorganic filler is plastically deformed in the direction of the press pressure, and the collapse of the agglomerated structure tends to be suppressed.
  • the upper limit of the elastic modulus of the agglomerated inorganic filler is not particularly limited, but is preferably 5 GPa or less, more preferably 2 GPa or less, still more preferably 1.5 GPa or less, from the viewpoint that sufficient deformation can be easily obtained. Even more preferably 1 GPa or less, particularly preferably 500 MPa or less, particularly preferably 300 Mpa or less, and most preferably 250 Mpa or less.
  • the agglomerated inorganic filler When the agglomerated inorganic filler is within the above elastic modulus range, it tends to maintain a spherical shape during the pressing process. When the breaking strength of the agglutinating inorganic filler is within the above range, the portion where the agglutinating inorganic fillers are in contact with each other is deformed, and surface contact tends to be facilitated. As a result, while maintaining high thermal conductivity inside the agglomerated inorganic filler, the contact thermal resistance between the interface between the agglomerated inorganic fillers and the interface between the metal part described later and the resin composition layer of the present invention is lowered, and the overall heat conduction is reduced. The rate can be improved.
  • the resin of the resin composition layer is fired and removed so that the agglomerated inorganic filler is not deteriorated to obtain the agglomerated inorganic filler. It can be taken out and then measured.
  • the content of the agglomerated inorganic filler in the resin composition layer of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, and 45% by mass or more in 100% by mass of the resin composition layer. Is more preferable, and 50% by mass or more is particularly preferable. Further, it is preferably 99% by mass or less, more preferably 90% by mass or less, further preferably 85% by mass or less, and particularly preferably 80% by mass or less.
  • the combination of the upper and lower limit values of the content of the agglomerated inorganic filler in the resin composition layer of the present invention is not particularly limited, but is preferably 30% by mass or more and 99% by mass or less, and 40% by mass or more and 90% by mass or less. It is more preferable, and it is particularly preferable that it is 50% by mass or more and 80% by mass or less.
  • the content of the aggregated inorganic filler in the resin composition of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more in 100% by mass of the solid content in the resin composition. It is more preferably 45% by mass or more, particularly preferably 50% by mass or more, preferably 99% by mass or less, more preferably 90% by mass or less, and 85% by mass or less. Is more preferable, and 80% by mass or less is particularly preferable.
  • the combination of the upper and lower limit values of the content of the agglomerated inorganic filler in the resin composition layer of the present invention is not particularly limited, but is preferably 30% by mass or more and 99% by mass or less, and 40% by mass or more and 90% by mass or less. It is more preferable, and it is particularly preferable that it is 50% by mass or more and 80% by mass or less.
  • the solid content in the resin composition refers to the total of all the components other than the solvent in the resin composition.
  • the content of the agglomerated inorganic filler is equal to or higher than the above lower limit value, the effect of improving the thermal conductivity and the effect of controlling the coefficient of linear expansion by containing the agglomerated inorganic filler tend to be sufficiently obtained.
  • the content of the agglomerated inorganic filler is not more than the above upper limit value, the void of the resin composition layer can be reduced, and the insulating property and the interfacial adhesiveness in the composite molded product tend to be improved.
  • non-aggregated inorganic filler may be used in combination with the aggregated inorganic filler.
  • shape of the non-aggregated inorganic filler There is no limitation on the shape of the non-aggregated inorganic filler, and examples thereof include spherical, whisker-like, fibrous, and plate-like.
  • the other non-aggregated inorganic filler may be scaly boron nitride primary particles or the like, and is not limited to its shape.
  • the other non-aggregating inorganic filler non-aggregating inorganic filler
  • one type may be used alone, or two or more types may be mixed and used in any combination and ratio.
  • a spherical filler As the non-aggregated inorganic filler used in addition to the aggregated inorganic filler, a spherical filler is preferably used.
  • the thermal conductivity of the spherical filler is not particularly limited, but is 1 W / m ⁇ K or more, preferably 10 W / m ⁇ K or more, more preferably 15 W / m ⁇ K or more, still more preferably 20 W / m ⁇ K or more, for example 20. It is ⁇ 30 W / m ⁇ K.
  • the spherical filler preferably has a new Mohs hardness of 3.1 or more, for example, 5 to 10.
  • the “spherical” may be anything that is generally recognized as spherical, and for example, an average circularity of 0.4 or more may be spherical, or 0.6 or more may be spherical. Normally, the upper limit of the average circularity is 1.
  • the circularity can be measured by image processing the projected image. The circularity can be measured by, for example, Sysmex's FPIA series or the like.
  • the spherical filler is preferably at least one selected from the group consisting of alumina, synthetic magnetite, crystalline silica, aluminum nitride, silicon nitride, silicon carbide, zinc oxide and magnesium oxide.
  • the volume average particle size of the spherical filler is preferably in the range of 0.5 ⁇ m or more and 40 ⁇ m or less. It is considered that when the volume average particle diameter is 0.5 ⁇ m or more, the resin and the filler can easily flow during heat molding, and the interfacial adhesive force in the composite molded body of the present invention described later can be enhanced. .. When the volume average particle size is 40 ⁇ m or less, it becomes easy to maintain the dielectric breakdown characteristics of the resin composition layer.
  • ⁇ Contents of other non-aggregated inorganic fillers> When other non-aggregated inorganic fillers are used in combination with the aggregated inorganic filler, the content of the aggregated inorganic filler in the resin composition of the present invention and the resin composition layer of the present invention and other non-aggregated inorganic fillers.
  • the ratio is not particularly limited, but the mass ratio is preferably 99: 1 to 1:99, more preferably 95: 5 to 9:91.
  • the total content of the aggregated inorganic filler and the other non-aggregated inorganic filler in the resin composition layer of the present invention is the resin. It is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 45% by mass or more, and particularly preferably 50% by mass or more in 100% by mass of the composition layer. On the other hand, it is preferably 99% by mass or less, more preferably 90% by mass or less, further preferably 85% by mass or less, and particularly preferably 80% by mass or less.
  • the total content of the aggregated inorganic filler and other non-aggregated inorganic fillers of the resin composition of the present invention is preferably 30% by mass or more in 100% by mass of the solid content in the resin composition. It is more preferably 40% by mass or more, further preferably 45% by mass or more, particularly preferably 50% by mass or more, while it is preferably 99% by mass or less, and 90% by mass or less. It is more preferably 85% by mass or less, and particularly preferably 80% by mass or less.
  • the effect of improving the thermal conductivity and the effect of controlling the coefficient of linear expansion due to the inclusion of the inorganic filler are sufficient.
  • the total content of the aggregated inorganic filler and the other non-aggregated inorganic filler is not more than the above upper limit value, the void can be reduced, and the insulating property and the interfacial adhesiveness in the composite molded product tend to be improved.
  • the resin composition and the resin composition layer of the present invention may contain an organic filler in addition to the agglomerated inorganic filler.
  • the organic filler is a component that does not contain an epoxy group and does not fall under the definition of a thermosetting catalyst, and is composed of an organic component and is a solid component at room temperature.
  • the organic filler include natural products such as wood flour, cellulose and starch which may be modified, various organic pigments, thermoplastic resins, thermosetting resins and the like. Specific examples include acrylic resin particles, nylon resin particles, polyester resin particles, polystyrene resin particles, silicone resin particles, and the like.
  • the upper limit of the average particle size of the organic filler is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less. When the average particle size is not more than the above upper limit value, it is possible to suppress a decrease in thermal conductivity and prepare resin composition layers having various thicknesses.
  • the average particle size of the organic filler is also the volume average particle size obtained from the volume average particle size distribution measurement result measured by the laser diffraction type particle size distribution measuring device.
  • organic filler one type may be used alone, or two or more types may be mixed and used in any combination and ratio.
  • thermosetting resin contained in the resin composition of the present invention is not particularly limited as long as it can be cured in the presence of a curing agent or a curing catalyst to obtain a cured product.
  • thermosetting resin examples include epoxy resin, phenol resin, polycarbonate resin, unsaturated polyester resin, cyanate resin, maleimide resin, urethane resin, melamine resin, and urea resin.
  • epoxy resin is preferable from the viewpoint of viscosity, heat resistance, hygroscopicity, and handleability.
  • the epoxy resin include an epoxy group-containing silicon compound, an aliphatic epoxy resin, a bisphenol A or F type epoxy resin, a novolak type epoxy resin, an alicyclic epoxy resin, a glycidyl ether type epoxy resin, and a glycidyl ester type epoxy resin.
  • examples thereof include glycidylamine type epoxy resin, polyfunctional epoxy resin, and polymer type epoxy resin.
  • Epoxy resin is a general term for compounds having one or more oxylan rings (epoxy groups) in the molecule.
  • the oxylan ring (epoxy group) contained in the epoxy resin may be either an alicyclic epoxy group or a glycidyl group, but is preferably a glycidyl group from the viewpoint of reaction rate or heat resistance.
  • the epoxy resin used in the present invention may be an aromatic oxylan ring (epoxy group) -containing compound. Specific examples thereof include glycidylation of bisphenols such as bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol AD, tetramethyl bisphenol S, and tetrafluoro bisphenol A.
  • bisphenols such as bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol AD, tetramethyl bisphenol S, and tetrafluoro bisphenol A.
  • Epoxy resin obtained by glycidylating divalent phenols such as bisphenol type epoxy resin, biphenyl type epoxy resin, dihydroxynaphthalene, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1,1-tris (4-) Epoxy resin obtained by glycidylizing trisphenols such as hydroxyphenyl) methane, epoxy resin obtained by glycidylizing tetrakisphenols such as 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, cresol novolac, Examples thereof include a novolak type epoxy resin obtained by glycidylizing novolaks such as bisphenol A, novolak, and brominated bisphenol A novolak.
  • divalent phenols such as bisphenol type epoxy resin, biphenyl type epoxy resin, dihydroxynaphthalene, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1,1-tris (4-) Epoxy resin obtained by
  • the epoxy resin contained in the resin composition of the present invention is not particularly limited, and for example, various bisphenol type epoxy resins obtained by glycidylating bisphenols such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; biphenyls.
  • Glycidylated epoxy made from aromatic compounds with multiple hydroxyl groups, such as various glycidylated biphenyl-type epoxy resins, aliphatic epoxy resins, dihydroxynaphthalene, and 9,9-bis (4-hydroxyphenyl) fluorene.
  • Epoxy resin obtained by glycidylizing trisphenols such as 1,1,1-tris (4-hydroxyphenyl) methane, and tetraxphenols such as 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane.
  • Glycidylated epoxy resin novolak-type epoxy resin obtained by glycidylizing novolaks such as phenol novolac, cresol novolak, bisphenol A novolak, brominated bisphenol A novolak; and one or more selected from silicone-containing epoxy resins. Is preferable.
  • the epoxy resin used in the present invention may be one type or a combination of a plurality of types of epoxy resins.
  • the molecular weight of the epoxy resin used in the present invention is not particularly limited. From the viewpoint of film forming property, low moisture absorption, and flexibility, the epoxy resin used in the present invention preferably contains a high molecular weight epoxy resin. Specifically, the high molecular weight epoxy resin is preferably an epoxy resin having a weight average molecular weight of 10,000 or more, and more preferably 15,000 or more. The high molecular weight epoxy resin is preferably an epoxy resin having a weight average molecular weight of 200,000 or less, and more preferably 180,000 or less.
  • the high molecular weight epoxy resin is preferably more hydrophobic, and specifically, the epoxy equivalent of the epoxy component is better.
  • the epoxy equivalent is preferably 5,000 g / equivalent or more, more preferably 7,000 g / equivalent or more, and preferably 100,000 g / equivalent or less.
  • the epoxy resin used in the present invention preferably contains an epoxy resin having a weight average molecular weight of 600 or less, particularly 550 or less.
  • the lower limit of the weight average molecular weight of this epoxy resin is not particularly limited, but is usually 100 or more.
  • the epoxy resin having a weight average molecular weight of 600 or less used in the present invention is preferably an epoxy resin having two or more epoxy groups in one molecule. Further, it is more preferable to contain a polyfunctional epoxy resin having three or more epoxy groups and a weight average molecular weight of 600 or less in one molecule described later. As the epoxy resin having a weight average molecular weight of 600 or less, a polyfunctional epoxy resin having three or more epoxy groups in one molecule and an epoxy resin having two or less epoxy groups in one molecule may be used in combination.
  • thermosetting resin of the resin composition of the present invention may contain an epoxy resin having a weight average molecular weight of 10,000 or more and an epoxy resin having a weight average molecular weight of 600 or less. It is preferable from the viewpoint of sex.
  • the weight average molecular weight of the epoxy resin is a polystyrene-equivalent value measured by gel permeation chromatography.
  • the epoxy equivalent of an epoxy resin is defined as "the weight of an epoxy resin containing one equivalent of an epoxy group" and can be measured according to JIS K7236.
  • the resin composition of the present invention more preferably contains a polyfunctional epoxy resin having a molecular weight of 600 or less and having three or more epoxy groups in one molecule as a thermosetting resin.
  • the storage elastic modulus of the resin composition layer of the present invention especially the storage elastic modulus at high temperature, which is important when the calorific value is large such as power semiconductors, three or more oxylan rings in the molecule.
  • An epoxy resin having (epoxy group) is preferable, and an epoxy resin having four or more oxylan rings (epoxy group) in the molecule is more preferable.
  • the crosslink density of the formed resin composition layer is improved, and the strength becomes higher.
  • the resin composition layer retains its morphology without being deformed or broken, thereby causing voids or the like in the resin composition layer. It is possible to suppress the generation of voids.
  • the molecular weight of the polyfunctional epoxy resin is preferably 600 or less, and preferably 550 or less.
  • the lower limit of the molecular weight of the polyfunctional epoxy resin is not particularly limited, but is usually 100 or more.
  • a polyfunctional epoxy resin By adding a polyfunctional epoxy resin, it is possible to introduce a highly polar oxylan ring (epoxy group) at a high density. As a result, the effects of physical interactions such as van der Waals force and hydrogen bonds are increased, and the adhesiveness between the metal portion and the resin composition layer in the composite molded body described later can be improved.
  • the polyfunctional epoxy resin By adding the polyfunctional epoxy resin, the storage elastic modulus of the resin composition layer after thermosetting can be increased. As a result, after the cured product of the resin composition has entered the unevenness of the metal portion of the adherend, a strong anchoring effect can be exhibited and the adhesiveness between the metal portion and the resin composition layer can be improved.
  • the polyfunctional epoxy resin an epoxy resin having three or more epoxy groups is preferable.
  • the polyfunctional epoxy resin include jER630 manufactured by Mitsubishi Chemical Corporation, ELM-434 series manufactured by Sumitomo Chemical Corporation, ELM-100 series, EX321L, EX-411, EX-512 manufactured by Nagase ChemteX Corporation, and BATG manufactured by Showa Denko Corporation. , PETG and the like can be used.
  • Only one type of polyfunctional epoxy resin may be used, or two or more types may be used in combination.
  • the main component of the resin component excluding the inorganic filler is preferably a thermosetting resin, and particularly preferably contains an epoxy resin.
  • the principal component refers to the most abundant component.
  • the resin composition layer of the present invention preferably contains a thermosetting resin in an amount of 5 to 90% by mass, particularly 10 to 60% by mass, in 100% by mass of the resin composition layer. Therefore, the proportion of the thermosetting resin in 100% by mass of the solid content in the resin composition of the present invention is preferably 5 to 90% by mass, particularly preferably 10 to 60% by mass.
  • the content of the thermosetting resin is at least the above lower limit, the moldability is good, and when it is at least the above upper limit, the content of other components can be secured and the thermal conductivity can be enhanced.
  • the content of the thermosetting resin in the resin component excluding the inorganic filler in the resin composition layer of the present invention is not particularly limited, but is preferably 20% by mass or more, more preferably 25% by mass or more. , 30% by mass or more, and particularly preferably 45% by mass or more. Therefore, the content of the thermosetting resin in the solid content excluding the inorganic filler in the resin composition of the present invention is preferably 20% by mass or more, more preferably 25% by mass or more, and more preferably 30% by mass. It is more preferably% or more, and particularly preferably 45% by mass or more.
  • the upper limit of the content of the thermosetting resin in the resin component excluding the inorganic filler is 100% by mass, and all the components other than the inorganic filler may be a thermosetting resin.
  • the ratio of the thermosetting resin is within the above range, the effect of low hygroscopicity, high elastic modulus, high toughness, easy reaction control, high reflow resistance, high reliability in cycle test, and high thermal conductivity. Tends to express.
  • the content of the high molecular weight epoxy resin having a weight average molecular weight of 10,000 or more, which is the above-mentioned suitable epoxy resin, in the resin composition layer of the present invention and the resin component of the resin composition of the present invention is 5% by mass or more. It is preferably 10% by mass or more, and more preferably 90% by mass or less.
  • the content of the epoxy resin having a weight average molecular weight of 600 or less in the resin composition layer of the present invention and the resin component of the resin composition of the present invention is preferably 5% by mass or more, and preferably 10% by mass or more. More preferably, on the other hand, it is preferably 90% by mass or less.
  • the content ratio of the high molecular weight epoxy resin having a weight average molecular weight of 10,000 or more and the epoxy resin having a weight average molecular weight of 600 or less is preferably 1:18 to 18: 1 in terms of mass ratio.
  • the content of the high molecular weight epoxy resin is at least the above lower limit, the film-forming property of the resin composition of the present invention tends to be improved, and when it is at least the above upper limit, the strength of the resin composition layer of the present invention is increased. It can be excellent.
  • the resin composition and the resin composition layer of the present invention may contain components other than the aggregated inorganic filler and the thermosetting resin.
  • other components include the above-mentioned non-aggregating inorganic filler and organic filler, as well as the following curing catalysts, curing agents, surface treatment agents such as silane coupling agents, insulating carbon components such as reducing agents, and viscosity adjustment.
  • curing catalysts curing agents
  • surface treatment agents such as silane coupling agents
  • insulating carbon components such as reducing agents
  • viscosity adjustment examples thereof include agents, dispersants, thixotropic agents, flame retardants, colorants, organic solvents, thermoplastic resins and the like.
  • the resin composition of the present invention may contain a curing catalyst (thermosetting catalyst) in order to adjust the curing rate, physical properties of the cured product, and the like.
  • a curing catalyst thermosetting catalyst
  • the curing catalyst is not particularly limited, but is appropriately selected depending on the type of thermosetting resin and other components used.
  • Specific examples of the curing catalyst include chain or cyclic tertiary amines, organic phosphorus compounds, quaternary phosphonium salts, diazabicycloalkenes such as organic acid salts, and the like.
  • organometallic compounds, quaternary ammonium salts, metal halides and the like can also be used.
  • the organometallic compounds include zinc octylate, tin octylate or aluminum acetylacetone complex, gallium acetylacetone complex, and imidazoles. From the viewpoint of heat resistance and stability, imidazoles are particularly preferable. One of these may be used alone, or two or more thereof may be mixed and used.
  • the curing catalyst is preferably contained in an amount of 0.1 to 10% by mass, particularly 0.1 to 5% by mass, in 100% by mass of the resin composition of the present invention excluding the solvent and the inorganic filler.
  • the content of the curing catalyst is at least the above lower limit, the progress of the curing reaction can be sufficiently promoted and the curing can be performed satisfactorily.
  • the content of the curing catalyst is not more than the above upper limit, the curing rate is not too fast, and therefore the storage stability of the resin composition of the present invention can be improved.
  • the average particle size thereof is not particularly limited, but the average particle size of at least one or more curing catalysts is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the average particle size is not more than the above upper limit, the solubility of the curing catalyst in the resin component tends to be improved, the reaction rate tends to be improved, and the elastic modulus of the formed resin composition layer is further increased. It is possible to raise the glass transition temperature. Further, the dispersibility of the curing catalyst is improved, and the storage stability of the resin composition of the present invention tends to be improved.
  • the lower limit of the average particle size of the curing catalyst is not particularly limited.
  • the resin composition of the present invention may contain a curing agent.
  • the curing agent is not particularly limited, but phenol resins, aliphatic amines, aromatic amines, modified amines, polyamide resins, imidazoles, polyethercaptans, polysulfides, acid anhydrides, carboxylic acid-containing compounds, dicyandiamide and the like are used.
  • a phenol resin for example, a phenol resin, an acid anhydride having an aromatic skeleton or an alicyclic skeleton, a water additive of the acid anhydride, or a modified product of the acid anhydride is preferable.
  • a resin composition layer having an excellent balance of heat resistance, moisture resistance and electrical characteristics.
  • the curing agent only one type may be used, or two or more types may be used in combination.
  • the phenol resin used as the curing agent is not particularly limited.
  • Specific examples of the phenolic resin include phenol novolac, o-cresol novolac, p-cresol novolac, t-butylphenol novolac, dicyclopentadiencresol, polyparavinylphenol, bisphenol A novolac, xylylene-modified novolac, decalin-modified novolac, poly. Examples thereof include (di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, poly (di-p-hydroxyphenyl) methane and the like.
  • a novolac-type phenol resin or triazine skeleton having a rigid main chain skeleton is used.
  • Phenolic resin having is preferable.
  • a phenol resin having an allyl group is preferable.
  • phenolic resins include MEH-8005, MEH-8000H and NEH-8015 (all manufactured by Meiwa Kasei Co., Ltd.), YLH903 (manufactured by Mitsubishi Chemical Corporation), LA-7052, LA-7054, LA-7751, LA. -1356 and LA-3018-50P (all manufactured by Dainippon Ink Co., Ltd.), and PSM6200, PS6313 and PS6492 (manufactured by Gun Ei Chemical Industry Co., Ltd.) and the like can be mentioned.
  • the acid anhydride having an aromatic skeleton, the water additive of the acid anhydride, or the modified product of the acid anhydride used for the curing agent is not particularly limited. Specific examples include SMA resin EF30 and SMA resin EF60 (all manufactured by Sartmer Japan), ODPA-M and PEPA (all manufactured by Manac), Rikagit MTA-10, Rikagit TMTA, and Rikagit TMEG-.
  • the acid anhydride having an alicyclic skeleton, the water additive of the acid anhydride or the modified product of the acid anhydride is an acid anhydride having a polylipocyclic skeleton, a water additive of the acid anhydride or the acid.
  • An anhydride modified product, an acid anhydride having an alicyclic skeleton obtained by an addition reaction between a terpene compound and maleic anhydride, a water additive of the acid anhydride, or a modified product of the acid anhydride. Is preferable. Specific examples include Rikagit HNA and Rikagit HNA-100 (all manufactured by Shin Nihon Rika Co., Ltd.), and Epicure YH306 and Epicure YH309 (all manufactured by Mitsubishi Chemical Corporation).
  • the curing agent is preferably contained in an amount of 0 to 70% by mass, particularly 0 to 55% by mass, in 100% by mass of the resin composition of the present invention excluding the solvent and the inorganic filler.
  • the content of the curing agent is at least the above lower limit, sufficient curing performance can be obtained.
  • the content of the curing agent is not more than the above upper limit, the reaction proceeds effectively, the crosslink density can be improved, the strength can be increased, and the film forming property is further improved.
  • the content of the reactive group of the curing agent is not particularly limited, but it may be 0 equivalent with respect to the amount of the epoxy group in the thermosetting resin, and is preferably 0. It is 0.05 equivalents or more, more preferably 0.1 equivalents or more, still more preferably 0.15 equivalents or more.
  • the content of the reactive groups of the curing agent is preferably 2 equivalents or less, more preferably 1.2 equivalents or less, with respect to the amount of epoxy groups in the thermosetting resin.
  • the resin composition of the present invention may contain a dispersant.
  • the inclusion of the dispersant makes it possible to form a uniform resin composition layer, and may improve the thermal conductivity and dielectric breakdown characteristics of the obtained resin composition layer.
  • the dispersant preferably has a functional group containing a hydrogen atom having hydrogen bonding properties.
  • the thermal conductivity and dielectric breakdown characteristics of the formed resin composition layer can be further enhanced.
  • the pKa of the functional group containing a hydrogen atom having hydrogen bonding property is preferably in the range of 2 to 10, and more preferably in the range of 3 to 9.
  • the pKa is 2 or more, the acidity of the dispersant is in an appropriate range, and the reaction of the epoxy resin in the thermosetting resin component may be easily suppressed. Therefore, when the uncured molded product is stored, the storage stability tends to be improved.
  • the pKa is 10 or less, the function as a dispersant is sufficiently fulfilled, and the thermal conductivity and dielectric breakdown characteristics of the formed resin composition layer tend to be sufficiently enhanced.
  • the functional group containing a hydrogen atom having hydrogen bonding property is preferably a carboxyl group or a phosphoric acid group. In this case, the thermal conductivity and dielectric breakdown characteristics of the formed resin composition layer can be further enhanced.
  • dispersant examples include polyester-based carboxylic acid, polyether-based carboxylic acid, polyacrylic carboxylic acid, aliphatic carboxylic acid, polysiloxane-based carboxylic acid, polyester-based phosphoric acid, and polyether-based phosphoric acid.
  • examples thereof include polyacrylic phosphoric acid, aliphatic phosphoric acid, polysiloxane-based phosphoric acid, polyester-based phenol, polyether-based phenol, polyacrylic-based phenol, and polysiloxane-based phenol. Only one type of dispersant may be used, or two or more types may be used in combination.
  • the resin composition of the present invention may contain a thermoplastic resin.
  • a thermoplastic resin By containing the thermoplastic resin, it may be possible to impart appropriate extensibility to the formed resin composition layer, alleviate the generated stress, and suppress the occurrence of cracks in the temperature cycle test. ..
  • thermoplastic resin any generally known thermoplastic resin can be used.
  • thermoplastic resin include vinyl polymers such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, (meth) acrylic resin, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer, and polylactic acid resin.
  • Polyester terephthalate, Polybutylene terephthalate and other polyesters Nylon, Polyamide amine and other polyamides, Polypolyacetacetal, Polyvinylbenzal, Polyvinylbutyral resin and other polyvinyl acetal resins, Ionomer resins, Polyphenylene ethers, Polyphenylene sulfides, Polycarbonates, Polyether ethers Examples thereof include ketones, polyacetals, ABS resins, LCPs (liquid crystal polymers), fluororesins, urethane resins, silicone resins, various elastomers, and modified products of these resins.
  • the thermoplastic resin may be uniform in the resin phase of the resin composition layer to be formed, or may be phase-separated so that its shape can be recognized. When phase-separated, the shape of the thermoplastic resin in the resin composition layer may be particle-like or fibrous.
  • the thermoplastic resin may be contained as the above-mentioned organic filler.
  • the resin composition of the present invention may contain an organic solvent in order to improve the coatability in the coating step described later.
  • organic solvent examples include methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, butyl acetate, isobutyl acetate, propylene glycol monomethyl ether and the like. Only one kind of organic solvent may be used, or two or more kinds may be used in combination.
  • the content thereof is such that the solid content (total of components other than the solvent) concentration in the resin composition of the present invention is 10% by mass or more, particularly 40% by mass or more. , 90% by mass or less, particularly preferably 80% by mass or less from the viewpoint of coatability in the coating step.
  • the resin composition of the present invention can be obtained by uniformly mixing an agglomerated inorganic filler, a thermosetting resin, and other components added as necessary by stirring or kneading.
  • a general kneading device such as a mixer, a kneader, a single-screw or twin-screw kneader can be used. When mixing, it may be heated if necessary.
  • each compounding component is arbitrary as long as there are no particular problems such as reaction or precipitation, but for example, a thermosetting resin component is mixed and dissolved in an organic solvent (for example, methyl ethyl ketone) to prepare a resin solution.
  • an organic solvent for example, methyl ethyl ketone
  • examples thereof include a method in which a coagulated inorganic filler and other components are sufficiently mixed with the prepared resin liquid and mixed.
  • the method for producing a resin composition layer of the present invention includes steps (a) and (b).
  • steps (a) and (b) The reasons why the effect of improving handleability, withstand voltage, adhesiveness, and heat resistance can be obtained in the production method of the present invention can be considered as follows.
  • the press process is performed at a specific press pressure and press temperature.
  • the press treatment is lower than the curing temperature of the thermosetting resin contained in the resin composition of the present invention, and the press treatment can be performed while suppressing the reaction rate of the thermosetting resin.
  • the thermosetting resin easily enters the voids derived from the aggregated inorganic filler, and the voids can be reduced.
  • the brittleness of the resin composition layer obtained by permeating the voids derived from the agglomerated inorganic filler into the voids is reduced, and the handleability is improved.
  • the sheet that has undergone the step (a) is pressed in the step (b) at a specific press pressure and press temperature.
  • Adhesiveness can be improved by performing a specific press treatment in the step (b) while suppressing the reaction rate of the thermosetting resin after the step (a), and the reaction after the step (b) is sufficient. Withstand voltage and heat resistance are improved by proceeding to. Further, by setting the press temperature of the step (b) to be higher than that of the step (a), the fluidity of the thermosetting resin before curing can be increased, and voids can be further reduced. By going through the steps (a) and (b), a resin composition layer having improved withstand voltage, adhesiveness, and heat resistance can be obtained.
  • the step (a) is a step of pressing a sheet having a layer of the resin composition of the present invention formed on a carrier film under the conditions of a press temperature of 0 ° C. or higher and 110 ° C. or lower and a press pressure of 40 MPa or higher and 1000 MPa or lower. be.
  • step (a) a sheet is formed on the carrier film using the resin composition of the present invention, and the sheet with the carrier film is pressed under specific conditions.
  • the sheet handleability up to the step (b) can be improved.
  • the method for forming the sheet using the resin composition of the present invention is not particularly limited, and examples thereof include a method for forming the sheet by a coating step.
  • the resin composition of the present invention may contain an organic solvent in order to improve the coatability.
  • the method for applying the resin composition of the present invention is not particularly limited, but for example, a dip method, a spin coating method, a spray coating method, a blade method, or any other method can be adopted.
  • a coating device such as a spin coater, a slit coater, a die coater, or a blade coater can be used. With these devices, it is possible to uniformly form a sheet (coating film) having a predetermined film thickness on the carrier film.
  • the carrier film used is not particularly limited, but it is desirable that the carrier film does not dissolve in the resin composition of the present invention and is less deformed by the press temperature and press pressure in step (a).
  • Examples thereof include olefin films, polyester films such as PET (polyethylene terephthalate), polyimide films, and copper materials.
  • the solid content concentration of the sheet before pressing in the step (a) is preferably 95% by mass or more, and more preferably 98% by mass or more.
  • the drying step is not particularly limited, but it is usually dried at a temperature of 10 to 150 ° C., preferably 25 to 120 ° C., more preferably 30 to 110 ° C.
  • the drying temperature is not more than the above upper limit, the curing of the thermosetting resin in the sheet is suppressed, and the resin flows in the subsequent pressing step, and the voids tend to be easily removed.
  • the drying temperature is at least the above lower limit, the organic solvent can be effectively removed.
  • the drying time is usually 5 minutes to 10 days, preferably 10 minutes to 3 days, more preferably 20 minutes to 1 day, and particularly preferably 30 minutes to 4 hours when drying at less than 80 ° C.
  • the drying time is at least the above lower limit, the organic solvent can be sufficiently removed, and the residual solvent tends to be suppressed from becoming voids in the sheet.
  • the drying time is not more than the above upper limit, the productivity tends to be improved and the manufacturing cost can be suppressed.
  • the press temperature in the step (a) is 0 ° C. or higher and 110 ° C. or lower, preferably 3 ° C. or higher and 100 ° C. or lower, more preferably less than 100 ° C., and further preferably 95 ° C. or lower. Within this temperature range, the reaction rate of the thermosetting resin in the step (a) is suppressed, and a sheet having good handleability tends to be obtained.
  • the press pressure in the step (a) is 40 MPa or more and 1000 MPa or less, preferably 45 MPa or more, more preferably 50 MPa or more, preferably 900 MPa or less, more preferably 700 MPa or less, still more preferably 500 MPa or less. Within this pressure range, voids tend to be reduced and a resin composition layer having good thermal conductivity tends to be obtained.
  • the press processing time of the step (a) is not particularly limited, but is preferably 1 minute or more, more preferably 3 minutes or more, preferably 5 hours or less, and more preferably 2 hours or less.
  • the pressing time is within the above range, a sheet having good handleability and adhesiveness to the metal portion tends to be obtained.
  • reaction rate (A) The reaction rate of the thermosetting resin contained in the sheet after the step (hereinafter, may be referred to as "reaction rate (A)") is not particularly limited, but is preferably less than 50%.
  • the reaction rate (A) is more preferably 40% or less, further preferably 30% or less, and particularly preferably 20% or less.
  • the reaction rate (A) of the thermosetting resin in the sheet is obtained when the temperature is raised from 40 ° C. to 250 ° C. at 10 ° C./min by differential scanning calorimetry (DSC) of the sheet before and after the step (a). It is calculated by the following formula from the calorific value of the exothermic peak.
  • Reaction rate (A) (%) (1-(calorific value after (a) step / calorific value before (a) step)) ⁇ 100
  • the film thickness (Fa) of the sheet after the step (a) is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more, preferably 1000 ⁇ m or less, and more preferably 800 ⁇ m or less.
  • the film thickness of the sheet can be measured using a contact type or non-contact type film thickness meter. The same applies to the film thickness (Fb) of the resin composition layer after the step (b).
  • the press process in step (a) is not particularly limited, but each process of flat plate press, roll press, and hydrostatic press is preferable.
  • the specific configuration of the flat plate press machine that performs the pressing process is not particularly limited, and for example, a pair of parallel flat plates (pressing machines) in which a mirror-polished hard chrome plating layer is arranged on the surface and a pressing machine are used.
  • An example is a device provided with a pressure control means for controlling a press pressure and a heating means for heating a press plate to a predetermined temperature, sandwiching a sheet between a pair of press plates, and pressing from both sides while heating to a predetermined temperature. ..
  • step (a) by performing a flat plate pressing process in which a pressurizing surface is pressed on a highly smooth pressing surface, the surface of the sheet is easily smoothed, and the adhesiveness between the formed resin composition layer and the metal portion tends to be improved. It is in.
  • the specific configuration of the roll machine that performs the roll press process is not particularly limited, and various roll machines such as a type having a pair of nip rolls and a multi-stage nip roll type can be used.
  • the roll machine that performs the roll press process includes, for example, a preheat roll (which may not be necessary in some cases) to be preheated, at least a pair of nip rolls, and preferably a heating means for heating the nip rolls, and is a pair of nip rolls. Examples thereof include a device configured to pressurize and smooth the surface of the sheet by sandwiching the sheet between them and pressing the sheet from both sides.
  • the specific configuration of the hydrostatic press is not particularly limited.
  • it includes a pressure vessel filled with a liquid such as oil or water, a pressure cylinder for pressurizing the liquid, a control means for controlling the pressure for pressurizing the liquid, and a heating means for heating the liquid to a predetermined temperature. There are things to do.
  • a sheet with a carrier film by vacuum-packing a sheet with a carrier film, immersing it in a liquid such as oil or water of a hydrostatic press, and performing hydrostatic pressing, the sheet is pressed at a uniform pressure, and the surface of the sheet is pressed.
  • a liquid such as oil or water of a hydrostatic press
  • hydrostatic pressing the sheet is pressed at a uniform pressure, and the surface of the sheet is pressed.
  • Examples thereof include a device configured to smooth the surface.
  • the step (b) is a step of pressing the sheet that has undergone the step (a) at a press temperature of 70 ° C. or higher and 250 ° C. or lower and a press pressure of 3 MPa or higher and 100 MPa or lower to obtain a resin composition layer.
  • the method of performing the press process in the step (b) is not particularly limited, and can be performed by, for example, a flat plate press.
  • the step (b) is to provide the sheet that has undergone the step (a), and the sheet alone, the carrier film / sheet / metal part laminate, the metal part / sheet laminate, or the like may be pressed.
  • the manufacturing method of the present invention is a method having excellent adhesiveness, and is suitable for a manufacturing method in which a laminate including a metal part and a sheet is pressed.
  • the press temperature in the step (b) is 70 ° C. or higher and 250 ° C. or lower, preferably 75 ° C. or higher, more preferably 80 ° C. or higher, preferably 240 ° C. or lower, more preferably 230 ° C. or lower, still more preferably 220 ° C. or lower. Is. Within this temperature range, a resin composition layer having a high elastic modulus, adhesiveness, and heat resistance tends to be obtained.
  • the press pressure in the step (b) is 3 MPa or more and 100 MPa or less, preferably 3.5 MPa or more, and more preferably 4 MPa or more. Within this pressure range, a resin composition layer having excellent withstand voltage, thermal conductivity, and adhesiveness tends to be obtained.
  • the press processing time of the step (b) is not particularly limited, but is preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 24 hours or less.
  • the press treatment time is preferably such that the reaction rate (B) of the thermosetting resin, which will be described later, becomes 60% or more.
  • reaction rate (B) The reaction rate of the thermosetting resin contained in the sheet after the step (hereinafter, may be referred to as "reaction rate (B)") is not particularly limited, but is preferably 60% or more. It is more preferably 70% or more, further preferably 80% or more, and particularly preferably 80% or more.
  • the upper limit of the reaction rate (B) is not particularly limited, but is 100%.
  • the reaction rate (B) of the thermosetting resin in the sheet is increased at 10 ° C./min from 40 ° C. to 250 ° C.
  • the film thickness (Fb) of the resin composition layer after the step is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more, preferably 1000 ⁇ m or less, and more preferably 800 ⁇ m or less. Is.
  • the film thickness (Fb) of the resin composition layer is at least the above lower limit, insulating properties tend to be obtained, and when it is at least the above upper limit, the thermal resistance tends to be reduced.
  • the press temperature of the step (b) is Tb (° C.) and the press temperature of the step (a) is Ta (° C.)
  • Tb—Ta is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, preferably 220 ° C. or lower, more preferably 200 ° C. or lower, still more preferably 180 ° C. or lower.
  • Tb-Ta is in the above range, the handleability of the sheet and the adhesiveness of the resin composition layer tend to be compatible with each other.
  • the press pressure is Pa> Pb, where Pb (MPa) is the press pressure in step (b) and Pa (MPa) is the press pressure in step (a), and Pa / Pb is 1.5 or more and 50 or less. It is preferable to have. Pa / Pb is preferably 1.5 or more, more preferably 1.8 or more, still more preferably 2 or more, preferably 50 or less, more preferably 45 or less, still more preferably 40 or less. When Pa / Pb is in the above range, voids in the resin composition layer can be reduced, and by maintaining an appropriate shape of the aggregated inorganic filler, a resin composition layer having excellent withstand voltage and thermal conductivity can be obtained. be able to.
  • the film thickness of the resin composition layer and the sheet is the ratio (Fb / Fa) when the film thickness of the resin composition layer after the step (b) is Fb and the film thickness of the sheet after the step (a) is Fa.
  • Fb / Fa is preferably 0.7 or more, more preferably 0.8 or more, still more preferably 0.85 or more, preferably 1.2 or less, and more preferably 1.1 or less.
  • the fact that Fb / Fa is in the above range indicates that (a) voids in the sheet are efficiently reduced after the step, and (b) the change in film thickness before and after the step is small, and the withstand voltage and thermal conductivity are reduced. There is a tendency to obtain an excellent resin composition layer.
  • a sheet is formed on a carrier film using the resin composition of the present invention, and a press treatment is performed together with the carrier film.
  • a sheet that has undergone the step (a) It is particularly preferable to press the laminate including the metal portion and the sheet in a state where the metal portion and the metal portion are in contact with each other.
  • the thermal conductivity and withstand voltage of the resin composition layer of the present invention are not particularly limited, but the thermal conductivity is preferably 8 W / mK or more, more preferably 9 W / mK or more, and 10 W / mK or more. Is more preferable.
  • the withstand voltage of the resin composition layer of the present invention is preferably 30 kV / mm or more, more preferably 35 kV / mm or more, and particularly preferably 40 kV / mm or more.
  • the method for measuring the thermal conductivity and the withstand voltage in the present invention is not particularly limited, and examples thereof include the methods shown in Examples described later.
  • the composite molded product of the present invention is formed by laminating and integrating the resin composition layer of the present invention and the metal portion.
  • the metal portion may be provided on only one surface of the resin composition layer of the present invention, or may be provided on two or more surfaces.
  • the resin composition layer may have a metal portion on only one surface, or may have a metal portion on both sides. Further, the metal portion may be patterned.
  • a metal portion is used as a base material (carrier film), and the resin composition of the present invention is formed in a sheet shape on the base material, and the above-mentioned step (a).
  • B) It can be manufactured by pressing the process.
  • B) It is also possible to obtain a composite molded body having metal portions on both sides by stacking it on another metal plate during the step.
  • a sheet-like resin composition formed on a base material (carrier film) different from the metal part is peeled off from the carrier film after the step (a), and becomes a metal part. It can also be manufactured by stacking it on top of it and pressing it in step (b).
  • the sheet-shaped resin composition of the present invention is peeled off from the carrier film after the step (a) in the same manner as above except that it is applied onto a carrier film such as PET which may be treated with a release agent.
  • the sheet-shaped resin composition may be placed on another metal plate or sandwiched between two metal plates and integrated by performing the press in step (b).
  • a metal plate having a thickness of about 10 ⁇ m to 10 cm made of copper, aluminum, nickel-plated metal, or the like can be used.
  • the surface of the metal plate may be physically roughened or chemically treated with a surface treatment agent or the like. From the viewpoint of the adhesiveness between the resin composition layer and the metal plate, it is more preferable that these treatments are performed.
  • the composite molded product of the present invention can be used as a semiconductor device.
  • it can be effectively used in a power semiconductor device capable of high output and high density by operating at a high temperature.
  • the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
  • the values of various conditions and evaluation results in the following examples indicate the preferable range of the present invention as well as the preferable range in the embodiment of the present invention.
  • the preferred range of the present invention can be determined in consideration of the preferred range in the above-described embodiment and the range indicated by the combination of the values of the following examples or the values of the examples.
  • Resin component 1 Epoxy resin produced in accordance with the method for producing an epoxy resin disclosed in Examples of JP-A-2006-176658. Polystyrene-equivalent weight average molecular weight: 30,000 Epoxy equivalent: 9,000 g / equivalent
  • Resin component 2 Bisphenol A type liquid epoxy resin Weight average molecular weight: 600 or less
  • Resin component 3 Biphenyl type solid epoxy resin Weight average molecular weight: 600 or less
  • Resin component 4 4 glycidyl groups per molecule
  • Inorganic filler 1 Boron nitride agglomerated particles having a card house structure manufactured in accordance with the method for producing boron nitride agglomerated particles disclosed in Examples of International Publication No. 2015/561028 New Mohs hardness: 2 Volume average particle size: 45 ⁇ m
  • Inorganic filler 2 Spherical alumina particles manufactured by Admatex New Mohs hardness: 9 Volume average particle size: 6.5 ⁇ m Thermal conductivity: 20-30 W / m ⁇ K
  • Hardener 1 "MEH-8000H” manufactured by Meiwa Kasei Co., Ltd. Phenol resin-based curing agent
  • Curing catalyst 1 "Curesol 2E4MZ-A” manufactured by Shikoku Chemicals Corporation
  • Curing catalyst 2 "Curesol 2PHZ-PW” manufactured by Shikoku Chemicals Corporation
  • thermosetting resin ⁇ Reaction rate of thermosetting resin> Differential scanning calorimetry (DSC) was performed on the sheets (resin composition layer after step (b)) formed before and after each step of steps (a) and (b), and 10 ° C./from 40 ° C. to 250 ° C. The reaction rate was calculated from the calorific value of the exothermic peak obtained when the temperature was raised in min from the following formulas.
  • Reaction rate of the step (A) (%) (1-(Amount of heat generated after the step (A) / Amount of heat generated before the step (a))) ⁇ 100
  • Reaction rate of the step (B) (%) (1-(calorific value after (b) step / calorific value before (a) step)) ⁇ 100
  • Example 1 Using a rotating and revolving stirrer, the mass ratio of the resin component 1, the resin component 2, the resin component 4, the curing agent 1, the curing catalyst 1, the inorganic filler 1, and the inorganic filler 2 is as shown in the composition A of Table 1 below.
  • the mixture was prepared as a mixture.
  • a slurry-like resin composition was prepared by using 18.5% by mass each of methyl ethyl ketone and cyclohexanone so that the mixture would be 63% by mass (solid content concentration) of the coated slurry. ..
  • the obtained slurry-like resin composition was applied onto a PET film by a doctor blade method, heated and dried at 60 ° C. for 120 minutes, and then, as a step (a), the entire PET film was heated to 50 ° C. using a flat plate press. Pressurization was performed at 147 MPa for 10 minutes to obtain a sheet having a thickness of 150 ⁇ m.
  • the total content of methyl ethyl ketone and cyclohexanone in the sheet was 1% by mass or less (solid content concentration: 99% by mass or more).
  • the reaction rate (A) of the thermosetting resin in the sheet after the step was less than 10%.
  • a copper substrate was laminated on the sheet that had undergone the step (a), and then cured at 175 ° C. and 9.8 MPa for 30 minutes as the step (b) to obtain a resin composition layer.
  • the thickness of the resin composition layer was 141 ⁇ m, and the ratio (Fb / Fa) of the film thickness after the step (b) and the film thickness after the step (a) was 0.94.
  • Table 2A shows the results of the evaluation of the handleability of the sheet (mandrel test).
  • the reaction rate (B) of the thermosetting resin in the resin composition layer after the step (b) was 90% or more, and the withstand voltage of the resin composition layer was 53 kV / mm.
  • the thermal conductivity of the resin composition layer of Example 1 was measured for the following samples having the same composition and undergoing the same steps (a) and (b).
  • the sheet-shaped resin composition after the step (a) was sandwiched between PET films and cured at a predetermined pressure and temperature in the step (b) to obtain a resin composition layer.
  • each sample of 2 sheets, 3 sheets and 4 sheets is sandwiched between PET films, and a predetermined value is obtained in the step (b).
  • By treating with pressure / temperature four kinds of resin composition layers having different thicknesses were obtained.
  • the thermal conductivity of the resin composition layer was measured by the above method and found to be 15 W / mK.
  • Examples 2 to 6 Comparative Examples 1 to 7> A resin composition was prepared according to the composition A or B shown in Table 1 according to the method of Example 1, and processed under the pressing conditions and pressing methods shown in Tables 2A and 2B. The results are summarized in Tables 2A and 2B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

凝集無機フィラー及び熱硬化性樹脂を含む樹脂組成物よりなる樹脂組成物層を製造する方法であって、下記(a)工程及び(b)工程を有する、樹脂組成物層の製造方法。 (a)キャリアフィルム及び該キャリアフィルム上に前記樹脂組成物を用いて形成したシートを、プレス温度が0℃以上110℃以下、プレス圧力が40MPa以上1000MPa以下の条件でプレス処理を行う工程 (b)(a)工程を経たシートを、プレス温度が70℃以上250℃以下、プレス圧力が3MPa以上100MPa以下の条件でプレス処理を行い、樹脂組成物層を得る工程

Description

樹脂組成物層の製造方法、該製造方法で得られた樹脂組成物層及び該樹脂組成物層を含む複合成形体
 本発明は、樹脂組成物層の製造方法、該製造方法で得られた樹脂組成物層及び該樹脂組成物層を含む複合成形体に関するものである。本発明の樹脂組成物層の製造方法により得られた樹脂組成物層及び複合成形体は、例えばパワー半導体デバイス用の放熱材料として好適に用いることができる。
 熱伝導性がよく、かつ絶縁性に優れる放熱シートに関しては、多くの検討がなされている。特にフィラーを樹脂に混合し、それにより熱伝導性と絶縁性を高い水準で満足する放熱樹脂シートを得るための試みが続けられている。放熱樹脂シートに含有されるフィラーとしては、各種酸化物や窒化物が用いられ、その粒径、粒度分布等についての検討も多く行われている。
 従来、放熱シートに含有されるフィラーとして、六方晶の窒化ホウ素を用いることが検
討されている。六方晶の窒化ホウ素は一般に薄板状の結晶であり、その薄板の平面方向の
熱伝導率は高いが、薄板の厚さ方向の熱伝導率が低い。このため、放熱シートに薄板状の
窒化ホウ素を配合すると、シート化する際に窒化ホウ素はシート面に平行に配向すること
から、シートの厚さ方向には十分な熱伝導性が得られない。
 シートの厚さ方向の熱伝導性を上げる材料として、凝集窒化ホウ素フィラーがある。凝集窒化ホウ素フィラーを使用することで、シートの厚さ方向の熱伝導性を向上できる。
 凝集窒化ホウ素フィラーとして、カードハウス構造の凝集窒化ホウ素フィラーが開発されている(例えば特許文献1参照)。さらに、比較的平均粒子径が大きく、かつ圧力が加わっても崩れることの少ないカードハウス構造の凝集窒化ホウ素フィラーが開発されている(例えば特許文献2参照)。カードハウス構造は凝集窒化ホウ素フィラーは、カードハウス構造による熱伝導パスが確保されることから、これを放熱シートに含有させることで、シートの厚さ方向への熱伝導性が優れたものとなる。
 凝集窒化ホウ素フィラーは、別途バインダーを使用することなく窒化ホウ素粒子が凝集している。そのため、シート化する際に外力がかかってもカードハウス構造は容易に崩壊せず熱伝導パスを維持し、シートの厚さ方向への放熱ができ、優れた熱伝導性を達成することができる(例えば特許文献3参照)。
 シートの厚さ方向の熱伝導性を上げる成形方法として、シート内の凝集窒化ホウ素フィラー同士を面接触させることで熱伝導率を高める方法が知られている(例えば特許文献4参照)。
 特許文献1~4では、凝集窒化ホウ素フィラーを含む熱硬化性樹脂組成物を基材に塗布して加熱加圧することで凝集窒化ホウ素フィラー含有樹脂組成物層を形成している。しかし、そのプレス処理条件やプレス工程についての詳細な検討はなされていない。
 特許文献5には、窒化ホウ素フィラーとアルミナを含む樹脂組成物の塗布層を乾燥させ、加熱加圧処理して貼り合わせ、Bステージ状態の樹脂シートを得ること、Bステージ状態の樹脂シートを銅箔で挟み、両面に銅箔が設けられたCステージ状態の樹脂シート積層体硬化物を得ること、が示されている。
特許第5679083号公報 特開2016-135730号公報 国際公開第2015/119198号 国際公開第2019/189746号 特開2016-79304号公報
 特許文献1~3で開示された凝集窒化ホウ素フィラーは、フィラー間に微細なボイ
ドが残存する場合があり、絶縁性のさらなる改善が必要である。
 特許文献4では、シートのハンドリング性の検討がなされておらず、大面積化のためにハンドリング性の向上が求められる。
 特許文献5では、シートの流動性を得るためにBステージでのプレス圧が低いことから、シート内にボイド残存し、耐電圧が低くなる。特許文献5では、ボイドが残存するためシートがもろくなり、大面積化のためにはハンドリング性の向上がさらに必要である。
 本発明は、凝集無機フィラー及び熱硬化性樹脂を含む樹脂組成物を用いて形成される樹脂組成物層を製造するにあたり、樹脂組成物を用いて形成したシートのハンドリング性を改良し、ハンドリングによる膜の破損や欠陥を減らすと共に、樹脂組成物層の耐電圧、接着性、耐熱性を向上させることができる樹脂組成物層の製造方法を提供することを課題とする。
 本発明者は、凝集無機フィラー及び熱硬化性樹脂を含む樹脂組成物層の製造方法において、特定のプレス工程を経ることで上記課題を解決することができることを見出した。
 本発明は、以下を要旨とする。
[1] 凝集無機フィラー及び熱硬化性樹脂を含む樹脂組成物よりなる樹脂組成物層を製造する方法であって、下記(a)工程及び(b)工程を有する、樹脂組成物層の製造方法。
(a)キャリアフィルム及び該キャリアフィルム上に前記樹脂組成物を用いて形成したシートを、プレス温度が0℃以上110℃以下、プレス圧力が40MPa以上1000MPa以下の条件でプレス処理を行う工程
(b)(a)工程を経たシートを、プレス温度が70℃以上250℃以下、プレス圧力が3MPa以上100MPa以下の条件でプレス処理を行い、樹脂組成物層を得る工程
[2] 下記方法で求められる前記(a)工程後のシートの前記熱硬化性樹脂の反応率(「反応率(A)と称す。)が50%未満である、[1]に記載の樹脂組成物層の製造方法。
<反応率(A)の測定・算出方法>
 (a)工程前後のシートについて、示差走査熱量測定(DSC)により40℃から250℃まで10℃/minで昇温した際に得られる発熱ピークの発熱量から下記式により算出する。
 反応率(A)(%)=(1-((a)工程後の発熱量/(a)工程前の発熱量))×100
[3] 前記(b)工程のプレス温度をTb(℃)、前記(a)工程のプレス温度をTa(℃)とすると、Tb>Taであり、且つ30℃≦Tb-Ta≦220℃である、[1]又は[2]に記載の樹脂組成物層の製造方法。
[4] 下記方法で求められる前記(b)工程後のシートの前記熱硬化性樹脂の反応率(「反応率(B)」と称す。)が60%以上である、[1]~[3]のいずれかに記載の樹脂組成物層の製造方法。
<反応率(B)の測定・算出方法>
 (a)工程前および(b)工程後のシートについて、示差走査熱量測定(DSC)により40℃から250℃まで10℃/minで昇温した際に得られる発熱ピークの発熱量から下記式により算出する。
 反応率(B)(%)=(1-((b)工程後の発熱量/(a)工程前の発熱量))×100
[5] 前記(b)工程のプレス圧力をPb(MPa)、前記(a)工程のプレス圧力をPa(MPa)とすると、Pa>Pbであり、且つPa/Pbが1.5以上50以下である、[1]~[4]のいずれかに記載の樹脂組成物層の製造方法。
[6] 前記(b)工程後の膜厚をFb、前記(a)工程後の膜厚をFaとすると、Fb/Faが0.7以上1.2以下である、[1]~[5]のいずれかに記載の樹脂組成物層の製造方法。
[7] 前記(a)工程のプレス処理が平板プレス処理である、[1]~[6]のいずれかに記載の樹脂組成物層の製造方法。
[8] 前記(a)工程のプレス処理がロールプレス処理である、[1]~[6]のいずれかに記載の樹脂組成物層の製造方法。
[9] 前記(a)工程のプレス処理が、静水圧プレス処理である、[1]~[6]のいずれかに記載の樹脂組成物層の製造方法。
[10] 前記熱硬化性樹脂がエポキシ化合物を含む、[1]~[9]のいずれかに記載の樹脂組成物層の製造方法。
[11] 前記熱硬化性樹脂が、重量平均分子量10,000以上のエポキシ化合物及び重量平均分子量600以下のエポキシ化合物を含む、[10]に記載の樹脂組成物層の製造方法。
[12] 前記熱硬化性樹脂が、重量平均分子量600以下で、一分子中にエポキシ基を3つ以上含むエポキシ化合物を含む、[10]又は[11]に記載の樹脂組成物層の製造方法。
[13] 前記凝集無機フィラーが凝集窒化ホウ素フィラーを含む、[1]~[12]のいずれかに記載の樹脂組成物層の製造方法。
[14] 前記凝集無機フィラーがカードハウス構造を有する凝集窒化ホウ素フィラーを含む、[13]に記載の樹脂組成物層の製造方法。
[15] [1]~[14]のいずれかに記載の製造方法で得られた、樹脂組成物層。
[16] [15]に記載の樹脂組成物層と金属部を有する、複合成形体。
[17] 樹脂組成物層と金属部とを有する複合成形体を製造する方法であって、該樹脂組成物層を、[1]~[14]のいずれかに記載の樹脂組成物層の製造方法により形成する、複合成形体の製造方法。
 本発明によれば、凝集無機フィラー及び熱硬化性樹脂を含む樹脂組成物層を製造するに当たり、特定のプレス工程を経ることによって、樹脂組成物を用いて形成したシートのハンドリング性を改良し、ハンドリングによる膜の破損や欠陥を減らすと共に、得られる樹脂組成物層の耐電圧、接着性、耐熱性を向上させることができる。更に、接着性の向上により界面での熱抵抗低下も期待できる。
 以下に、本発明の実施の形態を詳細に説明する。本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
〔樹脂組成物層の製造方法〕
 本発明の樹脂組成物層の製造方法は、凝集無機フィラー及び熱硬化性樹脂を含む樹脂組成物よりなる樹脂組成物層を製造する方法であって、下記(a)工程及び(b)工程を有する。
(a)キャリアフィルム及び該キャリアフィルム上に前記樹脂組成物を用いて形成したシートを、プレス温度が0℃以上110℃以下、プレス圧力が40MPa以上1000MPa以下の条件でプレス処理を行う工程
(b)(a)工程を経たシートを、プレス温度が70℃以上250℃以下、プレス圧力が3MPa以上100MPa以下の条件でプレス処理を行い、樹脂組成物層を得る工程
 以下において、本発明の樹脂組成物層の製造方法により製造される樹脂組成物層を「本発明の樹脂組成物層」と称す場合がある。また、本発明の樹脂組成物層を形成するための凝集無機フィラーと熱硬化性樹脂を含む樹脂組成物を「本発明の樹脂組成物」と称す場合がある。
 本発明において「シート」とは、本発明の樹脂組成物によりキャリアフィルム上に形成された膜状物をさし、これを硬化させて得られる本発明の樹脂組成物層とは区別される。
 本発明の樹脂組成物層の製造方法は、上記(a),(b)工程以外にも他の工程を有していてもよい。例えば(a)工程と(b)工程の間にそれぞれ他の工程を有していてもよい。例えば、乾燥工程、平滑化工程、積層工程等を含んでいてもよい。
 本発明の樹脂組成物層の製造方法において、キャリアフィルム上に形成されたシートがプレス工程を経て本発明の樹脂組成物層とされる。本発明の樹脂組成物層は、用途及び製造工程に合わせて、キャリアフィルム上に形成されたまま各種用途に供されてもよく、キャリアフィルムから分離されて樹脂組成物層単体として各種用途に供されてもよい。本発明の樹脂組成物層は保護シート等で覆われていてもよい。
 好ましい形態の一つは、本発明の樹脂組成物層の片面あるいは両面に、金属部を有した複合成形体である。
 本発明の樹脂組成物は、凝集無機フィラー及び熱硬化性樹脂以外にも他の成分を含んでいてもよい。
[樹脂組成物]
 本発明の樹脂組成物について説明する。
<凝集無機フィラー>
 本発明の樹脂組成物は、凝集無機フィラーを含むものである。本発明の樹脂組成物は、製造される樹脂組成物層の熱伝導性の向上と線膨張係数の制御のために、凝集無機フィラーを多く含有することが好ましい。凝集無機フィラーを含むことで、後述の(a)工程、(b)工程で凝集無機フィラーが互いに接触することで変形し、面で接触することで熱伝導パスがより多く形成されて高熱伝導率になる傾向にある。凝集無機フィラーの凝集形態は走査型電子顕微鏡(SEM)により確認することができる。
 本発明の樹脂組成物は、凝集無機フィラーに加え、凝集していない無機フィラー、有機フィラーを含有していてもよい。
 凝集無機フィラーとしては、電気絶縁性のものが使用でき、金属炭化物、金属酸化物及び金属窒化物からなる群から選ばれる少なくとも1種の粒子から構成されるフィラーが挙げられる。
 金属炭化物の例としては、炭化ケイ素、炭化チタン、炭化タングステン等が挙げられる。
 金属酸化物の例としては、酸化マグネシウム、酸化アルミニウム、酸化ケイ素、酸化カルシウム、酸化亜鉛、酸化イットリウム、酸化ジルコニウム、酸化セリウム、酸化イッテルビウム、サイアロン(ケイ素、アルミニウム、酸素、窒素からなるセラミックス)等が挙げられる。
 金属窒化物の例としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素等が挙げられる。
 パワー半導体用途にあっては、絶縁性が要求されることから、凝集無機フィラーは体積抵抗率が1×1012Ω・cm以上、特に1×1013Ω・cm以上の絶縁性に優れた無機化合物よりなることが好ましい。中でも、形成される樹脂組成物層の電気絶縁性が十分であることから、酸化物及び窒化物が好ましい。
 このような凝集無機フィラーとして、より具体的には、アルミナ(Al、体積抵抗率1×1014Ω・cm)、窒化アルミニウム(AlN、体積抵抗率>1×1014Ω・cm)、窒化ホウ素(BN、体積抵抗率1×1014Ω・cm)、窒化ケイ素(Si、体積抵抗率>1×1014Ω・cm)、シリカ(SiO、体積抵抗率>1×1014Ω・cm)などが挙げられる。凝集無機フィラーとしては、なかでも、アルミナ、窒化アルミニウム、窒化ホウ素、シリカが好ましく、とりわけアルミナ、窒化ホウ素が好ましい。
 凝集無機フィラーは、表面処理剤により表面処理がされていてもよい。表面処理剤は、公知の表面処理剤を用いることができる。
 凝集無機フィラーは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 本発明で用いる凝集無機フィラーの凝集の方法や程度に特に制限はないが、凝集無機フィラーとして以下の凝集窒化ホウ素フィラーを用いることが好ましい。以下の凝集窒化ホウ素フィラーと、該凝集窒化ホウ素フィラーとは異なる形状・種類のフィラーとを併用してもよい。
<凝集窒化ホウ素フィラー>
 窒化ホウ素は、熱伝導性が高いが鱗片状で、鱗片の面方向には高い熱伝導性を示すが、面に垂直な方向には熱伝導が小さい。取扱いをよくするために鱗片を集めて球状に凝集させた凝集粒子を用いることが好ましい。凝集窒化ホウ素フィラーがキャベツのように積層されているものについては、面方向に整列させ、凝集粒子の径方向が熱伝導のよい方にすることが好ましい。凝集窒化ホウ素フィラーは、カードハウス構造を有していることがより好ましい。
 「カードハウス構造」は、例えばセラミックス 43 No.2(2008年 日本セラミックス協会発行)に記載されており、板状粒子が配向せず複雑に積層した構造である。より具体的には、カードハウス構造を有する凝集窒化ホウ素フィラーとは、窒化ホウ素一次粒子の集合体であって、一次粒子の平面部と端面部が接触し、例えばT字型の会合体を形成する構造を有する凝集窒化ホウ素フィラーである。
 本発明で用いる凝集窒化ホウ素フィラーとしては、特に上記カードハウス構造を有する凝集窒化ホウ素フィラーが好ましい。カードハウス構造を有する凝集窒化ホウ素フィラーを用いることで、熱伝導率をより一層高めることができる。
 凝集窒化ホウ素フィラーの新モース硬度は特に限定されないが、5以下が好ましい。凝集窒化ホウ素フィラーの新モース硬度の下限は特にないが例えば1以上である。
 新モース硬度が5以下であることで、樹脂組成物中に分散した粒子同士の接触が面接触になりやすく、粒子間の熱伝導パスが形成され、形成される樹脂組成物層の熱伝導が向上する傾向にある。
 凝集窒化ホウ素フィラーの体積平均粒子径は特に限定されないが、10μm以上が好ましく、15μm以上がより好ましい。凝集窒化ホウ素フィラーの体積平均粒子径は、100μm以下が好ましく、90μm以下がより好ましい。体積平均粒子径が10μm以上であることで、本発明の樹脂組成物及び樹脂組成物層において相対的に粒子数が少なくなるため、粒子間界面が少なくなることにより熱抵抗が小さくなり、得られる樹脂組成物層が高熱伝導率になる場合がある。体積平均粒子径が上記上限値以下であることで、形成される樹脂組成物層の表面平滑性が優れる傾向にある。
 凝集窒化ホウ素フィラーの体積平均粒子径は、測定に供した粉体の体積を100%として累積曲線を描かせた際に累積体積が50%となる時の粒子径を意味する。
 測定方法は、分散安定剤としてヘキサメタリン酸ナトリウムを含有する純水媒体中に凝集粒子を分散させた試料に対して、レーザー回折/散乱式粒度分布測定装置などを用いて測定する湿式測定法や、Malvern社製「Morphologi」を用いて測定する乾式測定法が挙げられる。
 その他の凝集無機フィラーおよび凝集していない無機フィラーの体積平均粒子径についても同様である。
<凝集無機フィラーの破壊強度>
 凝集無機フィラーの破壊強度は特に限定されないが、好ましくは300MPa以下であり、より好ましくは100MPa以下であり、さらに好ましくは50MPa以下であり、よりさらに好ましくは20MPa以下であり、特に好ましくは15MPa以下であり、最も好ましくは10MPa以下である。破壊強度が上記上限値以下であることで、プレス処理したときに凝集無機フィラーの凝集構造が変形し、凝集無機フィラー同士が面接触しやすくなる。
 凝集無機フィラーの破壊強度の下限値は特に限定されないが、取り扱いを容易とする点から、2.5MPa以上が好ましく、より好ましくは3MPa以上であり、さらに好ましくは3.5MPa以上であり、特に好ましくは4MPa以上である。
<凝集無機フィラーの弾性率>
 凝集無機フィラーの弾性率は特に限定されないが、好ましくは10MPa以上であり、より好ましくは20MPa以上であり、さらに好ましくは30MPa以上であり、よりさらに好ましくは48MPa以上であり、特に好ましくは50MPa以上であり、最も好ましくは55MPa以上である。弾性率が上記下限値以上であれば、凝集無機フィラーがプレス圧力の方向に塑性変形し、凝集構造の崩れを抑制できる傾向にある。
 凝集無機フィラーの弾性率の上限値は特に限定されないが、十分な変形が得られやすい点から、好ましくは5GPa以下であり、より好ましくは2GPa以下であり、さらに好ましくは1.5GPa以下であり、よりさらに好ましくは1GPa以下、特に好ましくは500MPa以下、とりわけ好ましくは300Mpa以下、最も好ましくは250Mpa以下である。
 凝集無機フィラーが上記弾性率の範囲である場合、プレス処理時に球状を維持しやすい傾向にある。凝集無機フィラーの破壊強度が上記範囲であると、凝集無機フィラー同士が接触している部分は変形し、面接触が容易になる傾向にある。この結果、凝集無機フィラー内部の高い熱伝導率を維持しながら、凝集無機フィラー同士の界面及び後述する金属部と本発明の樹脂組成物層との界面の接触熱抵抗を下げ、全体の熱伝導率を向上することができる。
 凝集無機フィラーの破壊強度及び弾性率は、凝集無機フィラーが樹脂組成物層中にある場合には、該凝集無機フィラーが変質しないよう、樹脂組成物層の樹脂を焼成除去して凝集無機フィラーを取り出してから、測定することができる。
<凝集無機フィラーの含有量>
 本発明の樹脂組成物層における凝集無機フィラーの含有量は、樹脂組成物層100質量%中に30質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましい。また、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。
 本発明の樹脂組成物層における凝集無機フィラーの含有量の上下限値の組み合わせは特に限定されないが、30質量%以上99質量%以下であることが好ましく、40質量%以上90質量%以下であることがより好ましく、50質量%以上80質量%以下であることが特に好ましい。
 従って、本発明の樹脂組成物の凝集無機フィラーの含有量は、樹脂組成物中の固形分100質量%中に30質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましく、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。
 本発明の樹脂組成物層における凝集無機フィラーの含有量の上下限値の組み合わせは特に限定されないが、30質量%以上99質量%以下であることが好ましく、40質量%以上90質量%以下であることがより好ましく、50質量%以上80質量%以下であることが特に好ましい。
 ここで、樹脂組成物中の固形分とは、樹脂組成物中の溶剤以外の全成分の合計をさす。
 凝集無機フィラーの含有量が上記下限値以上であることで、凝集無機フィラーを含有することによる熱伝導性の向上効果や、線膨張係数の制御効果を十分に得ることができる傾向にある。凝集無機フィラーの含有量が上記上限値以下であることで、樹脂組成物層のボイドを低減でき、絶縁性や複合成形体における界面接着性が向上する傾向にある。
<その他の凝集していない無機フィラー>
 本発明では凝集無機フィラーとは別に、その他の凝集していない無機フィラーを併用してもよい。
 凝集していない無機フィラーの形状について制限はなく、球状、ウィスカー状、繊維状、板状等が挙げられる。
 その他の凝集していない無機フィラーは、鱗片状の窒化ホウ素一次粒子等でもよく、その形状に限定されない。
 その他の凝集していない無機フィラー(非凝集無機フィラー)は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
<球状フィラー>
 凝集無機フィラー以外に用いる非凝集無機フィラーとしては球状フィラーが好ましく用いられる。
 球状フィラーの熱伝導率は特に限定されないが、1W/m・K以上、好ましくは10W/m・K以上、より好ましくは15W/m・K以上、更に好ましくは20W/m・K以上、例えば20~30W/m・Kである。
 球状フィラーは新モース硬度が3.1以上、例えば5~10であるものが好ましい。
 このような球状フィラーを前述の凝集無機フィラーと併用することにより、得られる樹脂組成物層の金属に対する接着力及び放熱性を高めることができる。
 ここで「球状」とは、一般的に球形であると認識されるものであればよく、例えば、平均円形度が0.4以上を球状としてもよく、0.6以上を球形としてもよい。通常平均円形度の上限は1である。
 円形度はその投影画像を画像処理することによって測定することができる。円形度は例えばシスメックス社のFPIAシリーズ等で測定することができる。
 球状フィラーは、アルミナ、合成マグネサイト、結晶性シリカ、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛及び酸化マグネシウムからなる群から選択された少なくとも1種であることが好ましい。これらの好ましい球状フィラーの使用により、得られる樹脂組成物層の放熱性をより一層高めることができる。
 球状フィラーの体積平均粒子径は、0.5μm以上、40μm以下の範囲内にあることが好ましい。体積平均粒子径が0.5μm以上であることで、加熱成形時に樹脂及びフィラーが容易に流動することが可能となり、後述の本発明の複合成形体における界面接着力を高めることができると考えられる。体積平均粒子径が40μm以下であることで、樹脂組成物層の絶縁破壊特性を維持しやすくなる。
<その他の凝集していない無機フィラーの含有量>
 凝集無機フィラーと共に、その他の凝集していない無機フィラーを併用する場合、本発明の樹脂組成物及び本発明の樹脂組成物層中の凝集無機フィラーとその他の凝集していない無機フィラーとの含有量比は特に限定されないが、質量比で99:1~1:99であることが好ましく、95:5~9:91であることがより好ましい。
 本発明の樹脂組成物層中の凝集窒化ホウ素フィラーの含有量と同様の理由から、本発明の樹脂組成物層における凝集無機フィラーとその他の凝集していない無機フィラーの合計の含有量は、樹脂組成物層100質量%中に30質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましく、一方、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。
 従って、本発明の樹脂組成物の凝集無機フィラーとその他の凝集していない無機フィラーの合計の含有量は、樹脂組成物中の固形分100質量%中に30質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましく、一方、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。
 凝集無機フィラーとその他の凝集していない無機フィラーの合計の含有量が上記下限値以上であることで、無機フィラーを含有することによる熱伝導性の向上効果や、線膨張係数の制御効果を十分に得ることができる傾向にある。凝集無機フィラーとその他の凝集していない無機フィラーの合計の含有量が、上記上限値以下であることで、ボイドを低減でき、絶縁性や複合成形体における界面接着性が向上する傾向にある。
<その他の有機フィラー>
 本発明の樹脂組成物及び樹脂組成物層には、凝集無機フィラーとは別に、有機フィラーが含まれていてもよい。本発明において、有機フィラーとは、エポキシ基を含まず、また熱硬化触媒の定義に入らず、有機成分で構成される室温で固体の成分である。有機フィラーとしては、木粉等の天然物、変性されていてもよいセルロース、デンプン、各種有機顔料、熱可塑性樹脂、熱硬化性樹脂等が挙げられる。具体例としては、アクリル樹脂粒子、ナイロン樹脂粒子、ポリエステル樹脂粒子、ポリスチレン樹脂粒子、シリコーン樹脂粒子などがある。
 有機フィラーが含まれていることで、樹脂組成物に適度な伸び性を付与し、発生する応力を緩和し、温度サイクル試験でのクラックの発生を押さえることができる場合がある。
 有機フィラーの平均粒子径の上限は、好ましくは100μm以下であり、より好ましくは50μm以下である。平均粒子径が上記上限値以下であることで、熱伝導率の低下を抑制して様々な厚さの樹脂組成物層を作成することができる。有機フィラーの平均粒子径も、レーザー回折式粒度分布測定装置により測定した体積平均での粒度分布測定結果から求められる体積平均粒子径である。
 有機フィラーは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
<熱硬化性樹脂>
 本発明の樹脂組成物に含まれる熱硬化性樹脂としては、硬化剤や硬化触媒の存在下で硬化し、硬化物を得ることができるものであればよく、特に限定されない。
 熱硬化性樹脂としては、具体的には、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、不飽和ポリエステル樹脂、シアネート樹脂、マレイミド樹脂、ウレタン樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。これらの中で、粘度、耐熱性、吸湿性、取扱い性の観点から、エポキシ樹脂が好ましい。エポキシ樹脂としては、例えば、エポキシ基含有ケイ素化合物、脂肪族型エポキシ樹脂、ビスフェノールAまたはF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、多官能型エポキシ樹脂、高分子型エポキシ樹脂等が挙げられる。
<エポキシ樹脂>
 エポキシ樹脂とは、分子内に1個以上のオキシラン環(エポキシ基)を有する化合物の総称である。
 エポキシ樹脂に含まれるオキシラン環(エポキシ基)は脂環式エポキシ基、グリシジル基のどちらでもよいが、反応速度もしくは耐熱性の観点から、グリシジル基であることが好ましい。
 本発明で用いるエポキシ樹脂は、芳香族オキシラン環(エポキシ基)含有化合物であってもよい。その具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラフルオロビスフェノールAなどのビスフェノール類をグリシジル化したビスフェノール型エポキシ樹脂、ビフェニル型のエポキシ樹脂、ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレンなどの2価のフェノール類をグリシジル化したエポキシ樹脂、1,1,1-トリス(4-ヒドロキシフェニル)メタンなどのトリスフェノール類をグリシジル化したエポキシ樹脂、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンなどのテトラキスフェノール類をグリシジル化したエポキシ樹脂、フェノールノボラック、クレゾールノボラック、ビスフェノールA、ノボラック、臭素化ビスフェノールAノボラックなどのノボラック類をグリシジル化したノボラック型エポキシ樹脂などが挙げられる。
 本発明の樹脂組成物に含まれるエポキシ樹脂としては、特に制限はないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール類をグリシジル化した各種ビスフェノール型エポキシ樹脂;ビフェニル類をグリシジル化した各種ビフェニル型のエポキシ樹脂、脂肪族型エポキシ樹脂、ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレンなどの複数の水酸基を有する芳香族性を有する化合物類をグリシジル化したエポキシ樹脂;1,1,1-トリス(4-ヒドロキシフェニル)メタンなどのトリスフェノール類をグリシジル化したエポキシ樹脂、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンなどのテトラキスフェノール類をグリシジル化したエポキシ樹脂;フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化ビスフェノールAノボラックなどのノボラック類をグリシジル化したノボラック型エポキシ樹脂;及びシリコーン含有エポキシ樹脂から選ばれる1種又は2種以上を含むことが好ましい。
 本発明で用いるエポキシ樹脂は、1種類でもよく、複数種類のエポキシ樹脂を組み合わせて用いてもよい。
 本発明で用いるエポキシ樹脂の分子量は特に限定されない。
 製膜性、低吸湿、柔軟性の観点から、本発明で用いるエポキシ樹脂には高分子量のエポキシ樹脂を含有することが好ましい。高分子量のエポキシ樹脂は、具体的には重量平均分子量が10,000以上のエポキシ樹脂であることが好ましく、15,000以上のエポキシ樹脂であることがより好ましい。高分子量のエポキシ樹脂は、重量平均分子量が200,000以下のエポキシ樹脂であることが好ましく、180,000以下であることがより好ましい。
 高分子量のエポキシ樹脂はより疎水性であることが好ましく、具体的にはエポキシ成分のエポキシ当量は大きい方がよい。具体的には、エポキシ当量は5,000g/当量以上が好ましく、7,000g/当量以上がより好ましく、一方、100,000g/当量以下が好ましい。
 本発明の樹脂組成物層の貯蔵弾性率を高くするという観点から、本発明で用いるエポキシ樹脂には重量平均分子量600以下、特に550以下のエポキシ樹脂を含有することが好ましい。このエポキシ樹脂の重量平均分子量の下限は特に限定されないが、通常100以上である。
 本発明で用いる重量平均分子量600以下のエポキシ樹脂は、1分子中にエポキシ基を2つ以上有するエポキシ樹脂であることが好ましい。また後述する1分子中にエポキシ基を3つ以上有する重量平均分子量600以下の多官能エポキシ樹脂を含むことがさらに好ましい。重量平均分子量600以下のエポキシ樹脂は、1分子中にエポキシ基を3つ以上有する多官能エポキシ樹脂と1分子中にエポキシ基を2つ以下有するエポキシ樹脂とを併用してもよい。
 本発明の樹脂組成物の熱硬化性樹脂は、重量平均分子量が10,000以上のエポキシ樹脂及び重量平均分子量が600以下のエポキシ樹脂を含むことが、製膜性、塗布性及び硬化後の耐熱性の観点から好ましい。
 エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定されたポリスチレン換算の値である。
 エポキシ樹脂のエポキシ当量は、「1当量のエポキシ基を含むエポキシ樹脂の重量」と定義され、JIS K7236に準じて測定することができる。
(分子量600以下の多官能エポキシ樹脂)
 本発明の樹脂組成物は、熱硬化性樹脂として分子量600以下で1分子中にエポキシ基を3つ以上有する多官能エポキシ樹脂を含有することがより好ましい。
 本発明の樹脂組成物層の貯蔵弾性率を高くする、特にパワー半導体など発熱量の多い場合に重要になる高温時の貯蔵弾性率を高くする観点からは、分子内に3個以上のオキシラン環(エポキシ基)を有するエポキシ樹脂が好ましく、さらに分子内に4個以上のオキシラン環(エポキシ基)を有するエポキシ樹脂がより好ましい。分子内に複数のオキシラン環(エポキシ基)、特にグリシジル基を有することで、形成される樹脂組成物層の架橋密度が向上し、より高強度となる。それにより、吸湿リフロー試験において樹脂組成物層に内部応力が発生した際に、樹脂組成物層が変形したり、破壊したりせずに、形態を保持することで、樹脂組成物層にボイド等の空隙が発生するのを抑制することができる。
 樹脂組成物層の貯蔵弾性率を高くするという観点から、多官能エポキシ樹脂の分子量は600以下であることが好ましく、550以下であることが好ましい。多官能エポキシ樹脂の分子量の下限は特に限定されないが、通常100以上である。
 多官能エポキシ樹脂を添加することにより、極性の高いオキシラン環(エポキシ基)を高密度で導入することが可能である。それにより、ファンデルワールス力や水素結合といった物理的相互作用の効果が増し、後述の複合成形体における金属部と樹脂組成物層との接着性を向上させることができる。
 多官能エポキシ樹脂を添加することにより、熱硬化後の樹脂組成物層の貯蔵弾性率を高くすることができる。それにより被着体である金属部の凹凸に樹脂組成物の硬化物が入り込んだ後、強固なアンカー効果を発現し、金属部と樹脂組成物層との接着性を向上させることができる。
 多官能エポキシ樹脂としては、具体的にはエポキシ基を3つ以上有するエポキシ樹脂が好ましい。多官能エポキシ樹脂としては、例えば三菱ケミカル社製jER630、住友化学製ELM-434シリーズ、ELM-100シリーズ、ナガセケムテックス社製の、EX321L、EX-411,EX-512、昭和電工社製のBATG、PETG等を用いることができる。
 多官能エポキシ樹脂は1種のみを用いてもよく、2種以上を併用してもよい。
<熱硬化性樹脂の含有量>
 本発明の樹脂組成物層の内、無機フィラーを除く樹脂成分の主成分が熱硬化性樹脂であることが好ましく、特にエポキシ樹脂を含むことが好ましい。ここで主成分とは、最も多い成分のことを指す。
 本発明の樹脂組成物層は、熱硬化性樹脂を樹脂組成物層100質量%中に5~90質量%、特に10~60質量%含有することが好ましい。従って、本発明の樹脂組成物中の固形分100質量%中の熱硬化性樹脂の割合は、5~90質量%、特に10~60質量%であることが好ましい。熱硬化性樹脂の含有量が上記下限以上であると、成形性が良好となり、上記上限以下であると、他の成分の含有量を確保することができ、熱伝導性を高めることができる。
 本発明の樹脂組成物層中の無機フィラーを除く樹脂成分中の熱硬化性樹脂の含有量は特に限定されないが、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、45質量%以上であることが特に好ましい。従って、本発明の樹脂組成物中の無機フィラーを除く固形分中の熱硬化性樹脂の含有量は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、45質量%以上であることが特に好ましい。無機フィラーを除く樹脂成分中の熱硬化性樹脂の含有量の上限値は100質量%であり、無機フィラー以外の成分はすべて熱硬化性樹脂であってもよい。
 熱硬化性樹脂の割合が上記範囲にあることで、低吸湿性、高弾性率、高靱性となると共に、反応制御が容易となり、高リフロー耐性、サイクル試験における高信頼性、高熱伝導率の効果を発現する傾向にある。
 本発明の樹脂組成物層及び本発明の樹脂組成物の樹脂成分に占める前述の好適なエポキシ樹脂である重量平均分子量が10,000以上の高分子量エポキシ樹脂の含有量は5質量%以上であることが好ましく、10質量%以上であることがより好ましく、一方、90質量%以下であることが好ましい。
 本発明の樹脂組成物層及び本発明の樹脂組成物の樹脂成分に占める重量平均分子量が600以下のエポキシ樹脂の含有量は5質量%以上であることが好ましく、10質量%以上であることがより好ましく、一方、90質量%以下であることが好ましい。
 重量平均分子量が10,000以上の高分子量エポキシ樹脂と重量平均分子量が600以下のエポキシ樹脂との含有量比は質量比で1:18~18:1あることが好ましい。
 高分子量エポキシ樹脂の含有量が上記下限以上であることで、本発明の樹脂組成物の製膜性が向上する傾向にあり、上記上限以下であることで本発明の樹脂組成物層の強度を優れたものにできる。
<その他の成分>
 本発明の樹脂組成物及び樹脂組成物層は、凝集無機フィラー及び熱硬化性樹脂以外の他の成分を含んでいてもよい。その他の成分としては、例えば、前述の非凝集無機フィラー、有機フィラーの他、以下に示す硬化触媒、硬化剤、シランカップリング剤などの表面処理剤、還元剤等の絶縁性炭素成分、粘度調整剤、分散剤、チキソ性付与剤、難燃剤、着色剤、有機溶剤、熱可塑性樹脂等が挙げられる。
<硬化触媒>
 本発明の樹脂組成物は、硬化速度や硬化物の物性などを調整するために硬化触媒(熱硬化触媒)を含んでいてもよい。
 硬化触媒は特に限定されないが、用いる熱硬化性樹脂やその他成分の種類に応じて適宜に選ばれる。硬化触媒の具体例としては、鎖状または環状の3級アミン、有機リン系化合物、4級ホスホニウム塩類又は有機酸塩等のジアザビシクロアルケン類等が挙げられる。硬化触媒としては、有機金属化合物類、4級アンモニウム塩類又は金属ハロゲン化物等を用いることもできる。有機金属化合物類としては、オクチル酸亜鉛、オクチル酸錫又はアルミニウムアセチルアセトン錯体、ガリウムアセチルアセトン錯体、イミダゾール類等が挙げられる。耐熱性と安定性の観点から、特にイミダゾール類が好ましい。
 これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 硬化触媒は、溶剤及び無機フィラーを除く本発明の樹脂組成物100質量%中に0.1~10質量%、特に0.1~5質量%含まれることが好ましい。硬化触媒の含有量が上記下限以上であると、硬化反応の進行を十分に促進して良好に硬化させることができる。硬化触媒の含有量が上記上限以下であると、硬化速度が速すぎることがなく、従って、本発明の樹脂組成物の保存安定性を良好なものとすることができる。
 硬化触媒が固体である場合、その平均粒子径は特に限定されないが、少なくとも1種以上の硬化触媒の平均粒子径が好ましくは15μm以下であり、より好ましくは10μm以下である。平均粒子径が上記上限以下であることで、樹脂成分への硬化触媒の溶解性が向上し、反応率が向上する傾向にある、また、形成される樹脂組成物層の弾性率をより高くすることができ、ガラス転移温度を上げることができる傾向にある。さらに、硬化触媒の分散性が向上し、本発明の樹脂組成物の保管安定性が向上する傾向にある。硬化触媒の平均粒子径の下限値は特に限定されない。
<硬化剤>
 本発明の樹脂組成物は硬化剤を含有していてもよい。硬化剤は特に限定されないが、フェノール樹脂、脂肪族アミン、芳香族アミン、変性アミン、ポリアミド樹脂、イミダゾール、ポリメルカプタン、ポリスルフィド、酸無水物、カルボン酸含有化合物、ジシアンジアミドなどが用いられる。
 これらのうち、例えば、フェノール樹脂、芳香族骨格もしくは脂環式骨格を有する酸無水物、又は該酸無水物の水添加物もしくは該酸無水物の変性物が好ましい。これらの好ましい硬化剤の使用により、耐熱性、耐湿性及び電気物性のバランスに優れた樹脂組成物層を得ることができる傾向にある。硬化剤は、1種のみを用いてもよく、2種以上を併用してもよい。
 硬化剤に用いる、フェノール樹脂は、特に限定されない。フェノール樹脂の具体例としては、フェノールノボラック、o-クレゾールノボラック、p-クレゾールノボラック、t-ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、キシリレン変性ノボラック、デカリン変性ノボラック、ポリ(ジ-o-ヒドロキシフェニル)メタン、ポリ(ジ-m-ヒドロキシフェニル)メタン、又はポリ(ジ-p-ヒドロキシフェニル)メタン等が挙げられる。なかでも、樹脂組成物の柔軟性及び難燃性のより一層の向上、樹脂組成物層の力学物性及び耐熱性向上のためには、剛直な主鎖骨格を持つノボラック型フェノール樹脂やトリアジン骨格を有するフェノール樹脂が好ましい。本発明の樹脂組成物の柔軟性及び本発明の樹脂組成物層の靭性向上のためには、アリル基を有するフェノール樹脂が好ましい。
 フェノール樹脂の市販品としては、MEH-8005、MEH-8000H及びNEH-8015(以上いずれも明和化成社製)、YLH903(三菱ケミカル社製)、LA―7052、LA-7054、LA-7751、LA-1356及びLA-3018-50P(以上いずれも大日本インキ社製)、並びにPSM6200、PS6313及びPS6492(群栄化学工業社製)等が挙げられる。
 硬化剤に用いる、芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物は、特に限定されない。具体的な例としては、SMAレジンEF30及びSMAレジンEF60(以上いずれもサートマー・ジャパン社製)、ODPA-M及びPEPA(以上いずれもマナック社製)、リカジットMTA-10、リカジットTMTA、リカジットTMEG-200、リカジットTMEG-500、リカジットTMEG-S、リカジットTH、リカジットMH-700、リカジットMT-500、リカジットDSDA及びリカジットTDA-100(以上いずれも新日本理化社製)、EPICLON B4400、及びEPICLON B570(以上いずれも大日本インキ化学社製)などが挙げられる。
 脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物は、多脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物、又はテルペン系化合物と無水マレイン酸との付加反応により得られる脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物であることが好ましい。具体的な例としては、リカジットHNA及びリカジットHNA-100(以上いずれも新日本理化社製)、並びにエピキュアYH306及びエピキュアYH309(以上いずれも三菱ケミカル社製)等が挙げられる。
 硬化剤は、溶剤及び無機フィラーを除く本発明の樹脂組成物100質量%中に0~70質量%、特に0~55質量%含まれることが好ましい。硬化剤の含有量が上記下限以上であると、十分な硬化性能を得ることができる。硬化剤の含有量が上記上限以下であれば反応が効果的に進行し、架橋密度を向上させ、強度を増すことができ、さらに製膜性が向上する。
 熱硬化性樹脂がエポキシ樹脂である場合、硬化剤の反応基の含有量は特に限定されないが、熱硬化性樹脂中のエポキシ基の量に対して、0当量であってもよく、好ましくは0.05当量以上、より好ましくは0.1当量以上、さらに好ましくは0.15当量以上である。硬化剤の反応基の含有量は熱硬化性樹脂中のエポキシ基の量に対して、好ましくは2当量以下であり、より好ましくは1.2当量以下である。
 熱硬化性樹脂中のエポキシ基の量に対して、硬化剤の反応基の含有量が上記下限値以上であることで、硬化速度の低減が抑制され、エポキシ基が残存し難くなり、形成される樹脂組成物層の強度向上や吸湿性の抑制効果を得られる傾向にある。エポキシ基に対する硬化剤の反応基の含有量が上記上限値以下であることで、形成される樹脂組成物層の弾性率が高くなる傾向にある。
<分散剤>
 本発明の樹脂組成物は分散剤を含んでいてもよい。分散剤が含まれていることで、均一な樹脂組成物層を形成することが可能となり、得られる樹脂組成物層の熱伝導性及び絶縁破壊特性を向上させることができる場合がある。
 分散剤は、水素結合性を有する水素原子を含む官能基を有することが好ましい。分散剤が水素結合性を有する水素原子を含む官能基を有することで、形成される樹脂組成物層の熱伝導性及び絶縁破壊特性をより一層高めることができる。上記水素結合性を有する水素原子を含む官能基としては、例えば、カルボキシル基(pKa=4)、リン酸基(pKa=7)、又はフェノール基(pKa=10)等が挙げられる。
 水素結合性を有する水素原子を含む官能基のpKaは、2~10の範囲内にあることが好ましく、3~9の範囲内にあることがより好ましい。pKaが2以上であることで、分散剤の酸性度が適当な範囲となり、熱硬化性樹脂成分中のエポキシ樹脂の反応が抑制されやすくなる場合がある。従って、未硬化状態の成形物が貯蔵された場合に、貯蔵安定性が向上する傾向にある。pKaが10以下であることで、分散剤としての機能が充分に果たされ、形成される樹脂組成物層の熱伝導性及び絶縁破壊特性が充分に高められる傾向にある。
 水素結合性を有する水素原子を含む官能基は、カルボキシル基又はリン酸基であることが好ましい。この場合には、形成される樹脂組成物層の熱伝導性及び絶縁破壊特性をさらに一層高めることができる。
 分散剤としては、具体的には、ポリエステル系カルボン酸、ポリエーテル系カルボン酸、ポリアクリル系カルボン酸、脂肪族系カルボン酸、ポリシロキサン系カルボン酸、ポリエステル系リン酸、ポリエーテル系リン酸、ポリアクリル系リン酸、脂肪族系リン酸、ポリシロキサン系リン酸、ポリエステル系フェノール、ポリエーテル系フェノール、ポリアクリル系フェノール、及びポリシロキサン系フェノール等が挙げられる。分散剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<熱可塑性樹脂>
 本発明の樹脂組成物は熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂が含まれていることで、形成される樹脂組成物層に適度な伸び性を付与し、発生する応力を緩和し、温度サイクル試験でのクラックの発生を押さえることができる場合がある。
 熱可塑性樹脂としては、一般的に知られる如何なる熱可塑性樹脂も使用することが可能である。熱可塑性樹脂としては、具体的には、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、(メタ)アクリル樹脂、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体などビニル系ポリマー、ポリ乳酸樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ナイロン、ポリアミドアミンなどのポリアミド、ポリビニルアセトアセタール、ポリビニルベンザール、ポリビニルブチラール樹脂などのポリビニルアセタール樹脂、アイオノマー樹脂、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリカーボネート、ポリエーテルエーテルケトン、ポリアセタール、ABS樹脂、LCP(液晶ポリマー)、フッ素樹脂、ウレタン樹脂、シリコーン樹脂、各種エラストマー、並びにこれらの樹脂の変性品等が挙げられる。
 熱可塑性樹脂は、形成される樹脂組成物層の樹脂相中で、均一になるものであってもよいし、相分離してその形状が認識されるものであってもよい。相分離するものである場合、樹脂組成物層における熱可塑性樹脂の形状は、粒子状であっても、繊維状であってもよい。熱可塑性樹脂は前述した有機フィラーとして含まれていてもよい。
<有機溶剤>
 本発明の樹脂組成物は、後述の塗布工程における塗布性の向上のために、有機溶剤を含有していてもよい。
 本発明の樹脂組成物が含有し得る有機溶剤の例としては、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、酢酸ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルなどが挙げられる。
 有機溶剤は、1種のみを用いてもよく、2種以上を併用してもよい。
 本発明の樹脂組成物が有機溶剤を含有する場合、その含有量は、本発明の樹脂組成物中の固形分(溶剤以外の成分の合計)濃度が10質量%以上、特に40質量%以上で、90質量%以下、特に80質量%以下となるように用いることが、塗布工程の塗布性の観点から好ましい。
<樹脂組成物の製造方法>
 本発明の樹脂組成物は、凝集無機フィラー、熱硬化性樹脂、及び必要に応じて添加されるその他の成分を撹拌や混練によって均一に混合することによって得ることができる。混合には、例えば、ミキサー、ニーダー、単軸又は二軸混練機等の一般的な混練装置を用いることができる。混合に際しては、必要に応じて加熱してもよい。
 各配合成分の混合順序も、反応や沈殿物が発生するなど特段の問題がない限り任意であるが、例えば熱硬化性樹脂成分を有機溶剤(例えば、メチルエチルケトン)に混合・溶解させて樹脂液を作成し、得られた樹脂液に、凝集無機フィラー、その他の成分を十分混合したものを加えて混合する方法が挙げられる。
[樹脂組成物層の製造方法]
 本発明の樹脂組成物層の製造方法は、(a)工程及び(b)工程を有する。
 本発明の製造方法において、ハンドリング性、耐電圧、接着性、耐熱性の向上効果が得られる理由は以下が考えられる。
 (a)工程において、特定のプレス圧力及びプレス温度でプレス処理を行う。該プレス処理は、本発明の樹脂組成物に含まれる熱硬化性樹脂の硬化温度よりも低温となり、熱硬化性樹脂の反応率を抑えたままプレスすることが可能となる。その結果として、凝集無機フィラー由来のボイドに熱硬化性樹脂が入り込みやすくなり、ボイドを低減できる。凝集無機フィラー由来のボイドに樹脂が浸透することにより得られる樹脂組成物層の脆さが低減し、ハンドリング性が向上する。
 さらに、(a)工程を経たシートを(b)工程において、特定のプレス圧力及びプレス温度でプレス処理を行う。(a)工程後の熱硬化性樹脂の反応率を抑えた状態で(b)工程の特定のプレス処理を行うことで、接着性を向上することができ、(b)工程後の反応を充分に進めることで耐電圧と耐熱性が向上する。
 また、(b)工程は(a)工程よりも高温のプレス温度とすることにより、硬化前の熱硬化性樹脂の流動性が増し、ボイドをさらに低減することができる。この(a)及び(b)工程を経ることで、耐電圧、接着性、耐熱性の向上した樹脂組成物層が得られる。
<(a)工程>
 (a)工程は、キャリアフィルム上に本発明の樹脂組成物の層を形成したシートを、プレス温度が0℃以上110℃以下、プレス圧力が40MPa以上1000MPa以下の条件でプレス処理を行う工程である。
 (a)工程では、本発明の樹脂組成物を用いてキャリアフィルム上にシートを形成し、キャリアフィルム付きシートに特定の条件にてプレス処理を行う。(a)工程をキャリアフィルム付きシートで特定条件にてプレス処理を行うことによって、(b)工程までのシートハンドリング性を向上することができる。
 本発明の樹脂組成物を用いたシートの形成方法は特に限定されないが、塗布工程により形成する方法が挙げられる。この場合、本発明の樹脂組成物は、塗布性の向上のために有機溶剤を含有していてもよい。
 本発明の樹脂組成物の塗布方法については特に制限はないが、例えばディップ法、スピンコート法、スプレーコート法、ブレード法、その他の任意の方法を採用することができる。塗布には、スピンコーター、スリットコーター、ダイコーター、ブレードコーターなどの塗布装置を用いることができる。これらの装置により、キャリアフィルム上に所定の膜厚のシート(塗膜)を均一に形成することが可能である。
 用いるキャリアフィルムは特に限定されないが、本発明の樹脂組成物に対して溶解せず、(a)工程のプレス温度、プレス圧力での変形が小さいものが望ましい。例えば、オレフィン系のフィルム、PET(ポリエチレンテレフタレート)などのポリエステルフィルム、ポリイミドフィルム、銅材などが挙げられる。
 有機溶剤を含む本発明の樹脂組成物を用いてシートを形成した場合、(a)工程のプレス前に乾燥等の工程により溶剤を除去することが好ましい。(a)工程のプレス前のシートは固形分濃度は95質量%以上であることが好ましく、98質量%以上であることがより好ましい。
 乾燥工程は特に限定されないが、通常10~150℃、好ましくは25~120℃、より好ましくは30~110℃の温度で乾燥する。
 乾燥温度が上記上限以下であることで、シート中の熱硬化性樹脂の硬化が抑制され、その後のプレス工程で樹脂が流れ、ボイドを除去しやすくなる傾向にある。乾燥温度が上記下限以上であると、効果的に有機溶剤を取り除くことができる。
 乾燥時間は、80℃未満で乾燥させる場合には通常5分~10日間、好ましくは10分~3日間、より好ましくは20分~1日間、特に好ましくは30分~4時間である。80℃以上で乾燥させる場合には、1分以上が好ましく、30分以下が好ましく、20分以下がより好ましく、15分以下がさらに好ましく、10分以下が特に好ましい。乾燥時間が上記下限以上であることで、十分に有機溶剤を除去でき、残留溶剤がシート内のボイドとなることを抑制できる傾向にある。乾燥時間が上記上限以下であることで、生産性が向上し、製造コストを抑制できる傾向にある。
 (a)工程におけるプレス温度は0℃以上110℃以下であり、好ましくは3℃以上、100℃以下であり、より好ましくは100℃未満であり、さらに好ましくは95℃以下である。この温度範囲であることで(a)工程での熱硬化性樹脂の反応率を抑え、ハンドリング性のよいシートを得ることができる傾向にある。
 (a)工程におけるプレス圧力は40MPa以上1000MPa以下であり、好ましくは45MPa以上、より好ましくは50MPa以上で、好ましくは900MPa以下、より好ましくは700MPa以下、さらに好ましくは500MPa以下である。この圧力範囲であることでボイドを低減し、熱伝導率の良好な樹脂組成物層が得られる傾向にある。
 (a)工程のプレス処理の時間は特に限定されないが、好ましくは1分以上、より好ましくは3分以上であり、好ましくは5時間以内、より好ましくは2時間以内である。
 プレス時間が上記範囲であることで、ハンドリング性と金属部との接着性のよいシートが得られる傾向にある。
 (a)工程後のシート中に含まれる熱硬化性樹脂の反応率(以下、「反応率(A)」と称す場合がある。)は特に限定されないが、50%未満であることが好ましい。反応率(A)はより好ましくは40%以下であり、さらに好ましくは30%以下であり、特に好ましくは20%以下である。熱硬化性樹脂の反応率(A)が上記上限以下であることで、ハンドリング性と接着性のよいシートが得られる傾向にある。
 シート中の熱硬化性樹脂の反応率(A)は、(a)工程前後のシートの示差走査熱量測定(DSC)により、40℃から250℃まで10℃/minで昇温した際に得られる発熱ピークの発熱量から下記式により算出される。
 反応率(A)(%)=(1-((a)工程後の発熱量/(a)工程前の発熱量))×100
 (a)工程後のシートの膜厚(Fa)は特に限定されないが、好ましくは10μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上で、好ましくは1000μm以下、より好ましくは800μm以下である。シートの膜厚(Fa)が上記下限以上であることで絶縁性が得られる傾向にあり、上記上限以下であることで熱抵抗を小さくできる傾向にある。
 シートの膜厚は接触型または非接触型の膜厚計を用いて測定できる。
 (b)工程後の樹脂組成物層の膜厚(Fb)についても同様である。
 (a)工程のプレス処理は特に限定されないが、平板プレス、ロールプレス、静水圧プレスの各処理が好ましい。
 プレス処理を行う平板プレス機の具体的な構成については特に限定されず、例えば、鏡面研磨された硬質クロムめっき層が表面に配設された1対の平行平板(プレス盤)と、プレス盤によるプレス圧力を制御する圧力制御手段と、プレス盤を所定の温度に加熱する加熱手段を備え、一対のプレス盤間にシートを挟み、所定の温度に加熱しながら両面側から押圧する装置が挙げられる。(a)工程において、平滑性の高いプレス盤面で加圧する平板プレス処理を行うことで、シートの表面を平滑化しやすくなり、形成される樹脂組成物層と金属部との接着性が向上する傾向にある。
 ロールプレス処理を行うことで、シート表面の平滑化を、(a)工程にて行うことができ、生産性が向上する傾向にある。
 ロールプレス処理を行うロール機の具体的な構成については特に限定されず、一対のニップロールを備えたタイプや多段ニップロールタイプなどの種々なロール機を用いることができる。ロールプレス処理を行うロール機としては、例えば、予熱するプレヒートロール(場合によってはなくてもよい)と、少なくとも一対のニップロールと、望ましくは、ニップロールを加熱する加熱手段を備えてなり、一対のニップロール間にシートを挟んで両面側から押圧することにより、シートの表面を加圧して平滑化するように構成された装置が挙げられる。
 静水圧プレス処理を行うことで、大面積での高圧プレスが可能になり、シートのプレスムラを抑制できる傾向にある。静水圧プレス処理では、複数枚を同時に処理できるため、生産性が向上する傾向にある。
 静水圧プレス機の具体的な構成は特に限定されない。例えば、オイルや水などの液体が満たされた圧力容器と、液体を加圧する加圧シリンダーと、液体を加圧する圧力を制御する制御手段と、液体を所定の温度に加熱する加熱手段とを具備するものなどが挙げられる。より具体的には、キャリアフィルム付きシートを真空パックし、静水圧プレス機のオイルや水などの液体に浸漬して静水圧プレスを行うことにより、シートが均一な圧力でプレスされ、シートの表面が平滑化されるように構成された装置等が挙げられる。
<(b)工程>
 (b)工程は、(a)工程を経たシートを、プレス温度が70℃以上250℃以下、プレス圧力が3MPa以上100MPa以下でプレス処理を行い、樹脂組成物層を得る工程である。
 (b)工程でプレス処理を行う方法は特に限定されず、例えば平板プレスで行うことができる。
 (b)工程は、(a)工程を経たシートを供するものであり、シート単体、キャリアフィルム/シート/金属部の積層体、金属部/シートの積層体等をプレス処理してもよい。本発明の製造方法は接着性に優れる方法であり、金属部とシートを含む積層体をプレス処理する製造方法に適している。
 (b)工程におけるプレス温度は70℃以上250℃以下であり、好ましくは75℃以上、より好ましくは80℃以上で、好ましくは240℃以下、より好ましくは230℃以下、さらに好ましくは220℃以下である。この温度範囲であることで高い弾性率と接着性と耐熱性を有する樹脂組成物層が得られる傾向にある。
 (b)工程におけるプレス圧力は3MPa以上100MPa以下であり、好ましくは3.5MPa以上、より好ましくは4MPa以上である。この圧力範囲であることで耐電圧、熱伝導性、接着性に優れた樹脂組成物層が得られる傾向にある。
 (b)工程のプレス処理の時間は特に限定されないが、好ましくは5分以上、より好ましくは10分以上で、好ましくは24時間以内である。プレス処理の時間は、後述する熱硬化性樹脂の反応率(B)が60%以上になるような時間であることが好ましい。
 (b)工程後のシート中に含まれる熱硬化性樹脂の反応率(以下、「反応率(B)」と称す場合がある。)は特に限定されないが、60%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上であり、特に好ましくは80%以上である。反応率(B)の上限は特に限定されないが、100%である。熱硬化性樹脂の反応率(B)が上記範囲であることで、充分な硬化が進み、耐熱性、接着性に優れた樹脂組成物層が得られる傾向にある。
 シート中の熱硬化性樹脂の反応率(B)は、(a)工程前および(b)工程後のシートの示差走査熱量測定(DSC)により、40℃から250℃まで10℃/minで昇温した際に得られる発熱ピークの発熱量から下記式により算出される。
 反応率(B)(%)=(1-((b)工程後の発熱量/(a)工程前の発熱量))×100
 (b)工程後の樹脂組成物層の膜厚(Fb)は特に限定されないが、好ましくは10μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上で、好ましくは1000μm以下、より好ましくは800μm以下である。樹脂組成物層の膜厚(Fb)が上記下限以上であることで絶縁性が得られる傾向にあり、上記上限以下であることで熱抵抗を小さくできる傾向にある。
<(a)工程と(b)工程の組み合わせ>
 (a)工程及び(b)工程のプレス条件、シート及び樹脂組成物層の膜厚は、上述の範囲であれば特に限定されないが、特に以下の組み合わせであることが好ましい。
 プレス温度は、(b)工程のプレス温度をTb(℃)、前記(a)工程のプレス温度をTa(℃)とすると、
 Tb>Taであり、且つ30℃≦Tb-Ta≦220℃
であることが好ましい。
 Tb-Taは好ましくは30℃以上であり、より好ましくは40℃以上で、好ましくは220℃以下であり、より好ましくは200℃以下、さらに好ましくは180℃以下である。Tb-Taが上記範囲であることでシートのハンドリング性と樹脂組成物層の接着性が両立できる傾向にある。
 プレス圧力は、(b)工程のプレス圧力をPb(MPa)、前記(a)工程のプレス圧力をPa(MPa)とすると
 Pa>Pbであり、且つPa/Pbが1.5以上50以下
であることが好ましい。
 Pa/Pbは好ましくは1.5以上であり、より好ましくは1.8以上、さらに好ましくは2以上で、好ましくは50以下であり、より好ましくは45以下、さらに好ましくは40以下である。Pa/Pbが上記範囲であることで樹脂組成物層内のボイドを低減でき、凝集無機フィラーの形状が適度に維持されることで、耐電圧と熱伝導率に優れた樹脂組成物層を得ることができる。
 樹脂組成物層、シートの膜厚は、(b)工程後の樹脂組成物層の膜厚をFb、(a)工程後のシートの膜厚をFaとすると、その比(Fb/Fa)が、0.7以上1.2以下であることが好ましい。
 Fb/Faは好ましくは0.7以上であり、より好ましくは0.8以上、さらに好ましくは0.85以上で、好ましくは1.2以下であり、より好ましくは1.1以下である。
 Fb/Faが上記範囲であることは(a)工程後にシート内のボイドが効率よく低減され、(b)工程前後での膜厚変化が小さくなることを示しており、耐電圧と熱伝導率に優れた樹脂組成物層を得られる傾向にある。
 本発明においては、(a)工程として、本発明の樹脂組成物を用いてキャリアフィルム上にシートを形成し、キャリアフィルムごとプレス処理を行い、(b)工程として、(a)工程を経たシートと金属部を接した状態で金属部とシートを含む積層体にプレス処理を行うことが、特に好ましい。
[樹脂組成物層の熱伝導率と耐電圧]
 本発明の樹脂組成物層の熱伝導率及び耐電圧は特に限定されないが、熱伝導率は、8W/mK以上であることが好ましく、9W/mK以上であることがより好ましく、10W/mK以上であることがさらに好ましい。
 本発明の樹脂組成物層の耐電圧は、30kV/mm以上であることが好ましく、35kV/mm以上であることがより好ましく、40kV/mm以上が特に好ましい。
 本発明における熱伝導率及び耐電圧の測定方法は特に限定されないが、後掲の実施例に示す方法が挙げられる。
〔複合成形体〕
 本発明の複合成形体は、本発明の樹脂組成物層と金属部とが積層一体化されてなるものである。金属部は、本発明の樹脂組成物層の一つの面にのみ設けられていてもよく、2以上の面に設けられてもよい。例えば、樹脂組成物層の一方の面にのみ金属部を有するものであってもよく、両面に金属部を有するものであってもよい。また、金属部は、パターニングされていてもよい。
 このような本発明の複合成形体は、例えば金属部を基材(キャリアフィルム)として用い、この基材上に、本発明の樹脂組成物をシート状に形成し、前述の(a)工程、(b)工程のプレスを行うことで製造することができる。(b)工程時に別の金属板と重ねることで両面に金属部を有する複合成形体を得ることもできる。
 また、本発明の複合成形体は、金属部とは別の基材(キャリアフィルム)上に形成したシート状の樹脂組成物を(a)工程後にキャリアフィルムから剥して、金属部となる金属部材上に重ね、(b)工程のプレスを行うことにより製造することもできる。
 この場合は、剥離剤により処理されていてもよいPET等のキャリアフィルム上に塗布すること以外は上記と同様にして本発明のシート状の樹脂組成物を(a)工程後にキャリアフィルムから剥して、このシート状の樹脂組成物を別の金属板上に載置し、或いは2枚の金属板間に挟んだ状態で、(b)工程のプレスを行うことにより一体化すればよい。
 金属板としては、銅、アルミニウム、ニッケルメッキされた金属等よりなる厚さ10μm~10cm程度の金属板を用いることができる。金属板の表面は物理的に粗化処理がなされていてもよいし、化学的に表面処理剤等で処理されていてもよい。樹脂組成物層と金属板との接着性の観点から、これらの処理がなされていることがより好ましい。
[半導体デバイス]
 本発明の複合成形体は半導体デバイスとして用いることができる。特に、高温で作動させることにより高出力・高密度化が可能なパワー半導体デバイスにおいて有効に用いることができる。
 以下、実施例により本発明を更に詳細に説明する。本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 下記の実施例における各種の条件や評価結果の値は、本発明の実施態様における好ましい範囲と同様に、本発明の好ましい範囲を示すものである。本発明の好ましい範囲は前記した実施態様における好ましい範囲と下記実施例の値または実施例同士の値の組合せにより示される範囲を勘案して決めることができる。
[原材料]
 実施例及び比較例で用いた原材料は以下の通りである。
<熱硬化性樹脂>
 樹脂成分1:特開2006-176658号公報の実施例に開示されるエポキシ樹脂の製造方法に準拠して製造したエポキシ樹脂
     ポリスチレン換算の重量平均分子量:30,000
     エポキシ当量:9,000g/当量
樹脂成分2:ビスフェノールA型液状エポキシ樹脂 重量平均分子量:600以下
樹脂成分3:ビフェニル型固体エポキシ樹脂 重量平均分子量:600以下
樹脂成分4:一分子当たりグリシジル基を4個以上有する構造を含む非芳香族系多官能エポキシ樹脂 重量平均分子量:600以下
<凝集無機フィラー>
無機フィラー1:国際公開第2015/561028号の実施例に開示される窒化ホウ素凝集粒子の製造方法に準拠して製造した、カードハウス構造を有する窒化ホウ素凝集粒子
      新モース硬度:2
      体積平均粒子径:45μm
<その他のフィラー>
無機フィラー2:アドマテックス社製、球状アルミナ粒子
       新モース硬度:9
       体積平均粒子径:6.5μm
       熱伝導率:20~30W/m・K
<硬化剤>
硬化剤1:明和化成社製「MEH-8000H」
    フェノール樹脂系硬化剤
<硬化触媒成分>
硬化触媒1:四国化成社製「キュアゾール 2E4MZ-A」
硬化触媒2:四国化成社製「キュアゾール 2PHZ-PW」
[測定方法]
<熱硬化性樹脂の反応率>
 (a)工程,(b)工程の各工程の前後で形成したシート((b)工程後は樹脂組成物層)について示差走査熱量測定(DSC)を行い、40℃から250℃まで10℃/minで昇温した際に得られる発熱ピークの発熱量から、下記式より、それぞれ反応率を算出した。
 (a)工程の反応率(A)(%)=(1-((a)工程後の発熱量/(a)工程前の発熱量))×100
 (b)工程の反応率(B)(%)=(1-((b)工程後の発熱量/(a)工程前の発熱量))×100
<樹脂組成物層の厚さ方向の熱伝導率>
 熱抵抗測定装置(株式会社メンターグラフィックス製、製品名「T3ster」)を用いて、同一組成・同一条件で作製した厚さの異なる樹脂組成物層の熱抵抗値を測定し、熱抵抗値を厚さに対してプロットしたグラフの傾きから、熱伝導率を求めた。
<樹脂組成物層の耐電圧>
 絶縁油中にて、樹脂組成物層に印加する電圧を1分ごとに500Vずつ昇圧していき、樹脂組成物層が破壊される電圧を求めた。得られた破壊電圧の値を膜厚1mm当たりの破壊電圧に換算して耐電圧(kV/mm)の値を得た。
<シートのハンドリング性試験(マンドレル試験)>
 (a)工程後のキャリアフィルム付きシートをJISK 5600-5-1に従い、24℃でキャリアフィルムを内側にして屈曲試験を行った。8mm直径のマンドレルを用いて180°の折曲げ試験を行い、目視で罅や剥がれのあるものを×、罅や剥がれのないものを〇とした。
[実施例1]
 自転公転式撹拌装置を用いて、樹脂成分1、樹脂成分2、樹脂成分4、硬化剤1、硬化触媒1、無機フィラー1、無機フィラー2を下記表1の組成Aに記載の質量比となるように混合して混合物とした。この混合物を調製する際、上記混合物が塗布スラリーのうち、63質量%(固形分濃度)となるように、メチルエチルケトンとシクロヘキサノンを各18.5質量%ずつ用いてスラリー状の樹脂組成物を調製した。
 得られたスラリー状の樹脂組成物をドクターブレード法でPETフィルム上に塗布し、60℃で120分間加熱乾燥を行った後に、(a)工程として平板プレス機を用いてPETフィルムごと、50℃、147MPaで10分間加圧を行い、厚さ150μmのシートを得た。シート中のメチルエチルケトン及びシクロヘキサノンの合計の含有量は1質量%以下(固形分濃度99質量%以上)であった。
 (a)工程後のシート内の熱硬化性樹脂の反応率(A)は10%未満であった。
 (a)工程を経たシート上に銅製の基板を積層した後、(b)工程として175℃、9.8MPaで30分間硬化を行い、樹脂組成物層を得た。樹脂組成物層の厚さは141μmであり、(b)工程後の膜厚/(a)工程後の膜厚の比(Fb/Fa)は0.94であった。シートのハンドリング性の評価(マンドレル試験)結果を表2Aに示す。 
 (b)工程後の樹脂組成物層中の熱硬化性樹脂の反応率(B)は90%以上であり、樹脂組成物層の耐電圧は53kV/mmであった。
 実施例1の樹脂組成物層の熱伝導率の測定は、同組成、同(a),(b)工程を経た以下のサンプルについて行った。
 (a)工程後のシート状の樹脂組成物をPETフィルムで挟み、(b)工程の所定の圧力と温度で硬化して、樹脂組成物層を得た。
 また、同様の方法で、(a)工程後のシートのキャリアフィルムを剥がした上で、2枚重ね、3枚重ね、4枚重ねした各サンプルをPETフィルムで挟み、(b)工程で所定の圧力/温度で処理することにで、厚みの異なる4種類の樹脂組成物層を得た。該樹脂組成物層の熱伝導率を上記の方法で測定したところ、15W/mKであった。
 これらの結果を表2Aにまとめて示す。
<実施例2~6、比較例1~7>
 実施例1の方法に準拠し、表1に示す組成A又はBにて樹脂組成物を作製し、表2A,2Bに示すプレス条件とプレス方法で処理を行った。結果を表2A,2Bにまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2A,2Bより、本発明に従って、(a)工程、(b)工程で所定の圧力/温度で処理することにより、耐電圧、熱伝導率が良好な樹脂組成物層が得られることがわかる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年4月8日付で出願された日本特許出願2020-069766に基づいており、その全体が引用により援用される。

 

Claims (17)

  1.  凝集無機フィラー及び熱硬化性樹脂を含む樹脂組成物よりなる樹脂組成物層を製造する方法であって、下記(a)工程及び(b)工程を有する、樹脂組成物層の製造方法。
    (a)キャリアフィルム及び該キャリアフィルム上に前記樹脂組成物を用いて形成したシートを、プレス温度が0℃以上110℃以下、プレス圧力が40MPa以上1000MPa以下の条件でプレス処理を行う工程
    (b)(a)工程を経たシートを、プレス温度が70℃以上250℃以下、プレス圧力が3MPa以上100MPa以下の条件でプレス処理を行い、樹脂組成物層を得る工程
  2.  下記方法で求められる前記(a)工程後のシートの前記熱硬化性樹脂の反応率(「反応率(A)と称す。)が50%未満である、請求項1に記載の樹脂組成物層の製造方法。
    <反応率(A)の測定・算出方法>
     (a)工程前後のシートについて、示差走査熱量測定(DSC)により40℃から250℃まで10℃/minで昇温した際に得られる発熱ピークの発熱量から下記式により算出する。
     反応率(A)(%)=(1-((a)工程後の発熱量/(a)工程前の発熱量))×100
  3.  前記(b)工程のプレス温度をTb(℃)、前記(a)工程のプレス温度をTa(℃)とすると、Tb>Taであり、且つ30℃≦Tb-Ta≦220℃である、請求項1又は2に記載の樹脂組成物層の製造方法。
  4.  下記方法で求められる前記(b)工程後のシートの前記熱硬化性樹脂の反応率(「反応率(B)」と称す。)が60%以上である、請求項1~3のいずれか1項に記載の樹脂組成物層の製造方法。
    <反応率(B)の測定・算出方法>
     (a)工程前および(b)工程後のシートについて、示差走査熱量測定(DSC)により40℃から250℃まで10℃/minで昇温した際に得られる発熱ピークの発熱量から下記式により算出する。
     反応率(B)(%)=(1-((b)工程後の発熱量/(a)工程前の発熱量))×100
  5.  前記(b)工程のプレス圧力をPb(MPa)、前記(a)工程のプレス圧力をPa(MPa)とすると、Pa>Pbであり、且つPa/Pbが1.5以上50以下である、請求項1~4のいずれか1項に記載の樹脂組成物層の製造方法。
  6.  前記(b)工程後の膜厚をFb、前記(a)工程後の膜厚をFaとすると、Fb/Faが0.7以上1.2以下である、請求項1~5のいずれか1項に記載の樹脂組成物層の製造方法。
  7.  前記(a)工程のプレス処理が平板プレス処理である、請求項1~6のいずれか1項に記載の樹脂組成物層の製造方法。
  8.  前記(a)工程のプレス処理がロールプレス処理である、請求項1~6のいずれか1項に記載の樹脂組成物層の製造方法。
  9.  前記(a)工程のプレス処理が、静水圧プレス処理である、請求項1~6のいずれか1項に記載の樹脂組成物層の製造方法。
  10.  前記熱硬化性樹脂がエポキシ化合物を含む、請求項1~9のいずれか1項に記載の樹脂組成物層の製造方法。
  11.  前記熱硬化性樹脂が、重量平均分子量10,000以上のエポキシ化合物及び重量平均分子量600以下のエポキシ化合物を含む、請求項10に記載の樹脂組成物層の製造方法。
  12.  前記熱硬化性樹脂が、重量平均分子量600以下で、一分子中にエポキシ基を3つ以上含むエポキシ化合物を含む、請求項10又は11に記載の樹脂組成物層の製造方法。
  13.  前記凝集無機フィラーが凝集窒化ホウ素フィラーを含む、請求項1~12のいずれか1項に記載の樹脂組成物層の製造方法。
  14.  前記凝集無機フィラーがカードハウス構造を有する凝集窒化ホウ素フィラーを含む、請求項13に記載の樹脂組成物層の製造方法。
  15.  請求項1~14のいずれか1項に記載の製造方法で得られた、樹脂組成物層。
  16.  請求項15に記載の樹脂組成物層と金属部を有する、複合成形体。
  17.  樹脂組成物層と金属部とを有する複合成形体を製造する方法であって、該樹脂組成物層を、請求項1~14のいずれか1項に記載の樹脂組成物層の製造方法により形成する、複合成形体の製造方法。

     
PCT/JP2021/014448 2020-04-08 2021-04-05 樹脂組成物層の製造方法、該製造方法で得られた樹脂組成物層及び該樹脂組成物層を含む複合成形体 WO2021206038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180027145.9A CN115485117A (zh) 2020-04-08 2021-04-05 树脂组合物层的制造方法、通过该制造方法得到的树脂组合物层及包含该树脂组合物层的复合成型体
JP2022514054A JPWO2021206038A1 (ja) 2020-04-08 2021-04-05
EP21785556.8A EP4134398A4 (en) 2020-04-08 2021-04-05 METHOD FOR PRODUCING A RESIN COMPOSITION LAYER, RESIN COMPOSITION LAYER PRODUCED BY SAID PRODUCTION METHOD, AND COMPOSITE MOLDED ARTICLE COMPRISING SAID RESIN COMPOSITION LAYER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-069766 2020-04-08
JP2020069766 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021206038A1 true WO2021206038A1 (ja) 2021-10-14

Family

ID=78022839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014448 WO2021206038A1 (ja) 2020-04-08 2021-04-05 樹脂組成物層の製造方法、該製造方法で得られた樹脂組成物層及び該樹脂組成物層を含む複合成形体

Country Status (4)

Country Link
EP (1) EP4134398A4 (ja)
JP (1) JPWO2021206038A1 (ja)
CN (1) CN115485117A (ja)
WO (1) WO2021206038A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679083B2 (ja) * 2011-11-29 2015-03-04 三菱化学株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
JP2016079304A (ja) * 2014-10-17 2016-05-16 日立化成株式会社 樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置並びにled装置
WO2019176074A1 (ja) * 2018-03-15 2019-09-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、樹脂シート、bステージシート、cステージシート、硬化物、樹脂付金属箔、金属基板、及びパワー半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE059775T2 (hu) * 2018-03-30 2022-12-28 Mitsubishi Chem Corp Hõelvezetõ lemez, hõelvezetõ elem, továbbá félvezetõ eszköz

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679083B2 (ja) * 2011-11-29 2015-03-04 三菱化学株式会社 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
JP2016079304A (ja) * 2014-10-17 2016-05-16 日立化成株式会社 樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置並びにled装置
WO2019176074A1 (ja) * 2018-03-15 2019-09-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、樹脂シート、bステージシート、cステージシート、硬化物、樹脂付金属箔、金属基板、及びパワー半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Ceramics", vol. 43, 2008, THE CERAMIC SOCIETY OF JAPAN

Also Published As

Publication number Publication date
EP4134398A1 (en) 2023-02-15
EP4134398A4 (en) 2023-09-20
CN115485117A (zh) 2022-12-16
JPWO2021206038A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
TWI530519B (zh) 樹脂組成物,樹脂薄片,樹脂薄片硬化物,附有樹脂之金屬箔及散熱構件
JP6945241B2 (ja) フィルム用樹脂組成物、フィルム、基材付フィルム、金属/樹脂積層体、樹脂硬化物、半導体装置、および、フィルム製造方法
TW201335260A (zh) 樹脂硬化物與半硬化樹脂膜及其製造方法、樹脂組合物
US20220251335A1 (en) Resin composition, cured product, composite molded product, semiconductor device
JP7188070B2 (ja) 放熱絶縁シートおよび該シート硬化物を絶縁層とする積層構造体
JP2021091783A (ja) 組成物、硬化物、多層シート、放熱部品、並びに電子部品
JP5888584B2 (ja) 樹脂組成物、樹脂シート、プリプレグシート、樹脂硬化物シート、構造体、および動力用又は光源用半導体デバイス
JPWO2012039324A1 (ja) 熱伝導性樹脂組成物、樹脂シート、樹脂付金属箔、樹脂シート硬化物及び放熱部材
JP2021091784A (ja) 硬化物、多層シート、放熱部品、並びに電子部品
WO2021206038A1 (ja) 樹脂組成物層の製造方法、該製造方法で得られた樹脂組成物層及び該樹脂組成物層を含む複合成形体
JP7383971B2 (ja) 樹脂組成物、樹脂硬化物および複合成形体
TWI824032B (zh) 樹脂組成物、複合成形體、半導體元件及樹脂硬化物
JP2022151867A (ja) シート硬化物の製造方法及び複合成形体の製造方法
WO2022210686A1 (ja) 樹脂組成物、シート硬化物、複合成形体及び半導体デバイス
WO2023189030A1 (ja) 熱硬化性樹脂組成物、樹脂硬化物および複合成形体
JP2003347320A (ja) 半導体用樹脂ペースト及び半導体装置
JP2023145370A (ja) 熱硬化性樹脂組成物、熱硬化性樹脂シート、絶縁シート及び半導体装置
JP2023145355A (ja) 熱硬化性樹脂組成物、熱硬化性樹脂シート、絶縁シート及び半導体装置
JP2023048546A (ja) 熱伝導性接着シート
JP2023102284A (ja) 熱伝導性樹脂組成物、熱伝導性樹脂シート、放熱積層体、放熱性回路基板、半導体装置およびパワーモジュール
JP2023152859A (ja) 放熱シート積層体、及び放熱シート積層体の製造方法
KR20220030218A (ko) 다이싱·다이본딩 일체형 필름, 다이본딩 필름, 및 반도체 장치의 제조 방법
TW201725236A (zh) 環氧樹脂組成物、熱傳導材料前驅物、b階段薄片、預浸體、散熱材料、積層板、金屬基板及印刷線路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021785556

Country of ref document: EP

Effective date: 20221108