WO2021205706A1 - 回転子、回転子の製造方法及びモータ - Google Patents

回転子、回転子の製造方法及びモータ Download PDF

Info

Publication number
WO2021205706A1
WO2021205706A1 PCT/JP2021/002133 JP2021002133W WO2021205706A1 WO 2021205706 A1 WO2021205706 A1 WO 2021205706A1 JP 2021002133 W JP2021002133 W JP 2021002133W WO 2021205706 A1 WO2021205706 A1 WO 2021205706A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
rotor
plate
rotor yoke
magnet
Prior art date
Application number
PCT/JP2021/002133
Other languages
English (en)
French (fr)
Inventor
啓介 滝沢
久男 平林
雅一 池田
Original Assignee
シナノケンシ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シナノケンシ株式会社 filed Critical シナノケンシ株式会社
Priority to US17/802,813 priority Critical patent/US20230137688A1/en
Priority to CN202180025855.8A priority patent/CN115398780A/zh
Publication of WO2021205706A1 publication Critical patent/WO2021205706A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2215/00Specific aspects not provided for in other groups of this subclass relating to methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines

Definitions

  • the present invention relates to a rotor of a motor, a method of manufacturing the rotor, and a motor.
  • a rare earth magnet containing neodymium or the like as a main component is used as the rotor magnet.
  • a segment magnet divided into segments for each pole is used instead of an annular magnet in order to realize weight reduction and cost reduction.
  • Rare earth magnets have a stronger magnetic force than ferritic magnets, but are prone to rust, so nickel plating is applied and the surface is rust-proofed in order to improve corrosion resistance.
  • the frictional force on the wet adhesive surface to which the adhesive is applied decreases, so that the magnet becomes easy to move.
  • the viscosity of the adhesive temporarily decreases in the heat curing step, so that the position of the magnet is likely to shift. If the magnet is misaligned, the motor characteristics will deteriorate, and motor vibration and noise may occur.
  • each segment magnet 52 has a diameter of each segment magnet 52 by using a positioning member 53 that positions and holds a plurality of segment magnets 52 with respect to the tubular rotor yoke 51. It is positioned in the direction and the axial direction and fixed by adhesion.
  • comb-shaped partition members 53a are formed upright from the annular connecting portion 53a at predetermined intervals.
  • the annular connecting portion 53a defines the axial position of the segment magnet 52
  • the partition member 53b defines the radial position.
  • the segment magnet 52 coated with the adhesive 54 from the opening on the other end side of the rotor yoke 51 is divided into the partition member 53a. It is inserted between them and bonded (see FIG. 6A). Then, the adhesive 54 is heat-cured and the segment magnet 52 is adhesively fixed to the inner peripheral surface 51a of the rotor yoke 51 together with the positioning member 53 (see FIG. 6B). After that, the rotor hub 56 to which the rotor shaft 55 is integrally assembled is press-fitted and fixed to the rotor yoke 51 (see FIG. 6C), and the outer rotor type rotor 57 that can rotate around the rotor shaft 55 is 57. Is formed (see FIG. 6D).
  • the rotor of the inner rotor type motor after mounting the positioning member 53 on the outer peripheral surface 51b of the columnar rotor yoke 51 centered on the rotor shaft 55 from one side in the axial direction, the other side in the axial direction.
  • the segment magnet 52 coated with the adhesive 54 is inserted between the partition members 53a and adhered (see FIG. 7A).
  • the adhesive 54 is heat-cured to form an inner rotor type rotor 57 in which the segment magnet 52 is adhesively fixed to the outer peripheral surface 51b of the rotor yoke 51 together with the positioning member 53 (see FIG. 7B).
  • a resin holder in which a cylindrical inner case is fitted on the inner surface side of a cylindrical rotor outer cylinder, and a plurality of magnets are arranged between the rotor outer cylinder and the inner case along a circumferential direction via a section.
  • the rings are integrally assembled (see Patent Document 1: Japanese Patent Application Laid-Open No. 2003-304660).
  • segment magnet 52 is adhesively fixed to the rotor yoke 51 without using the positioning member 53, as shown in FIG. 8A, a recess for positioning the segment magnet 52 on the inner peripheral surface of the rotor yoke 51. It is necessary to alternately form the 51a and the convex portion 51b in the circumferential direction.
  • FIG. 8B it is necessary to provide a comb-shaped positioning member 56a on the outer peripheral edge of the rotor hub 56 that is press-fitted into the rotor yoke 51. In either case, the man-hours for processing the parts increase and the manufacturing cost increases.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a rotor that reduces the number of parts, reduces the manufacturing cost, and realizes weight reduction, and provides a rotor in the radial direction of a plate-shaped magnet. And provides a method of manufacturing a rotor with good assembleability that can be positioned in the axial direction and assembled to the rotor yoke, and a motor that can maintain motor characteristics at low cost and with good assembleability by using the rotor. Is to provide.
  • the present invention has at least the following configurations.
  • the first adhesive portion and the second adhesive portion coated with the second adhesive, which requires more curing time than the first adhesive but has higher adhesive strength, are formed adjacent to each other on the peripheral surface of the rotor yoke.
  • the second adhesive is cured and the plurality of plate-shaped magnets are adhesively fixed to each other at the second adhesive portion via a predetermined gap in the circumferential direction.
  • the adhesive surface of the plate-shaped magnet is coated with the first adhesive that cures in a predetermined time. Therefore, the plate-shaped magnet is positioned on the rotor yoke in the radial direction and the axial direction via the positioning member. It can be temporarily fixed at the adhesive part, and after removing the positioning member from the rotor yoke, it takes longer to cure than the first adhesive, but by curing the second adhesive, which has higher adhesive strength, multiple plate-shaped magnets can move in the circumferential direction. Since it is adhesively fixed by the second adhesive portion through a predetermined gap, it is possible to reduce the originally unnecessary positioning member, reduce the manufacturing cost, and reduce the weight of the rotor.
  • the cost is reduced as compared with the annular magnet, and the plate-shaped magnets in the radial and axial directions with respect to the rotor yoke are achieved.
  • the position accuracy of the magnet is high and it can be assembled without misalignment.
  • the plate-shaped magnet is a rare earth magnet whose surface is rust-proofed, and it is preferable that the first adhesive and the second adhesive are interposed in the gap between the rotor yoke and the magnet.
  • the high-power plate-shaped magnet can be adhesively fixed to the rotor yoke using different types of adhesives without being displaced.
  • the area of the first adhesive portion to which the first adhesive is applied and the second adhesive portion to which the second adhesive is applied on the adhesive surface of the plate-shaped magnet is equal to or equal to that of the first adhesive portion. It preferably has a larger area. As a result, the final adhesive strength of the plate magnet to the rotor yoke can be maintained.
  • At least one of an ultraviolet curable type adhesive, an anaerobic curable type adhesive, and an instant adhesive may be used as the first adhesive, and a heat curable type adhesive may be used as the second adhesive.
  • the first adhesive layer interposed between the plate-shaped magnet and the rotor yoke is exposed to ultraviolet rays or anaerobic, or is brought into contact with an instant adhesive, or these are simply combined.
  • the adhesive is cured, the plate-shaped magnet can be easily temporarily fixed to the rotor yoke. Furthermore, when the second adhesive is heat-cured, the plate-shaped magnet is temporarily fixed by the first adhesive, so that the position does not shift.
  • the plate-shaped magnet is a flat plate-shaped magnet, and the gap formed between the curved surface of the rotor yoke and the flat plate surface of the plate-shaped magnet is formed by an adhesive of the first adhesive and the second adhesive.
  • An adhesive layer may be formed as a pool portion.
  • the plate-shaped magnet is bonded, no special processing is required, so that the manufacturing cost can be reduced and the gap formed between the plate-shaped magnet and the curved surface, which is the bonding surface of the rotor yoke, is formed. Since it can be used as a sufficient adhesive space as an adhesive reservoir for the first adhesive and the second adhesive, the strength of temporary adhesion and fixed adhesion can be maintained. In particular, when ultraviolet rays are irradiated at the time of temporary fixing, a sufficient space for irradiating ultraviolet rays can be secured from the gap between the curved surface and the flat plate surface.
  • It may be a rotor of an outer rotor type motor in which a plurality of plate-shaped magnets divided in the circumferential direction are fixed at predetermined intervals on the inner peripheral surface of a rotor yoke formed in a cup shape, or formed in a columnar shape.
  • the rotor may be a rotor of an inner rotor type motor in which a plurality of plate-shaped magnets divided in the circumferential direction are fixed at predetermined intervals on the outer peripheral surface of the rotor yoke.
  • the cost and weight can be reduced, and the plate-shaped magnet can be assembled with high positional accuracy in the radial and axial directions with respect to the rotor yoke regardless of whether it is an outer rotor type or an inner rotor type.
  • the motor is inexpensive, lightweight, easy to assemble, and has good motor characteristics because it is provided with any of the above-mentioned rotors and a stator having stator pole teeth facing the plate-shaped magnet of the rotor.
  • An outer rotor type motor or an inner rotor type motor that can be maintained can be provided.
  • the process of applying the second adhesive which requires curing time but has high adhesive strength, and the comb-shaped partition member that positions the plate-shaped magnet in the radial and axial directions on the peripheral surface of the rotor yoke are annular.
  • the plate-shaped magnet is positioned between the partition members between the step of mounting the connected positioning members and the partition member of the rotor yoke to which the positioning members are mounted, and the first adhesive and the second
  • the step of arranging the rotor yoke on the peripheral surface of the rotor yoke via an adhesive at predetermined intervals and the first adhesive applied to the plate-shaped magnet are cured to place the plate-shaped magnet at the first adhesive portion.
  • the first adhesive and the second adhesive applied to the adhesive surface of the plate-shaped magnet are both directly applied to the adhesive surface and indirectly applied to the adhesive surface in advance. It shall include. Further, the plate-shaped magnet is not limited to a flat plate shape as long as it is a plate material having a certain thickness, and includes various forms such as a curved plate.
  • a plate-shaped magnet is formed between the partition members by mounting a positioning member in which comb-teeth-shaped partition members for positioning in the radial and axial directions are annularly connected to the rotor yoke. It can be positioned and arranged in the direction and the axial direction. Further, the first adhesive applied to the plate-shaped magnet may be cured to temporarily fix the plate-shaped magnet to the rotor yoke at the first adhesive portion, and then the positioning member may be pulled out from the rotor yoke. By omitting the positioning member, which is originally unnecessary, the number of parts can be reduced, the manufacturing cost can be reduced, and the weight of the rotor can be reduced.
  • the second adhesive applied to the plate-shaped magnet is cured and finally fixed to the rotor yoke at the second adhesive portion, so that the plate-shaped magnet is positioned. It can be adhered and fixed with high accuracy.
  • the first adhesive at least one of an ultraviolet curable adhesive, an anaerobic curable adhesive, and an instant adhesive may be used to temporarily fix the plate-shaped magnet to the rotor yoke.
  • the first adhesive layer interposed between the plate-shaped magnet and the rotor yoke is irradiated with ultraviolet rays or anaerobic, or is brought into contact with the magnet adhesive surface, or these are combined. Since the adhesive is cured, the plate-shaped magnet can be easily temporarily fixed to the rotor yoke.
  • the plurality of plate-shaped magnets may be magnetized before being bonded to the rotor yoke, or may be magnetized after being bonded to the rotor yoke. If the plate-shaped magnets are magnetized in advance, they may be attracted to each other when they are inserted into the rotor yoke and attracted to each other. However, by using the positioning member, such a problem does not occur. Further, if the plate-shaped magnet is magnetized after being adhered to the rotor yoke, the plate-shaped magnet can be easily assembled and is less affected by thermal demagnetization.
  • a rotor in which the number of parts is reduced, the manufacturing cost is reduced, and the weight is reduced. Further, it is possible to provide a method for manufacturing a rotor having good assembleability, which can position a plurality of plate-shaped magnets in the radial direction and the axial direction and adhesively fix them to the rotor yoke with high position accuracy. Further, by using the rotor, it is possible to provide a motor which is inexpensive, has good assembling property, and can maintain the motor characteristics.
  • 1A to 1E are explanatory views showing a manufacturing process of a rotor of an outer rotor type motor.
  • 2A to 2D are explanatory views showing a manufacturing process of the outer rotor type motor following
  • FIG. 3A1 to 3B3 are explanatory views showing the form of a plate-shaped magnet that is adhesively fixed to the rotor yoke.
  • 4A to 4C are explanatory views showing a manufacturing process of a rotor of an inner rotor type motor.
  • 5A and 5B are explanatory views showing the bonding region of the first bonding portion and the second bonding portion of the plate-shaped magnet.
  • 6A to 6D are process diagrams showing a method of manufacturing a rotor of a conventional outer rotor type motor.
  • 7A and 7B are process diagrams showing a method of manufacturing a rotor of a conventional inner rotor type motor.
  • 8A and 8B are explanatory views showing the required configurations of the rotor
  • an outer rotor type motor M having a rotor 1 and a stator 2 is used as the DC brushless motor.
  • the rotor 1 is formed in a cup shape by fitting a rotor hub 4 connected to a rotor shaft 3 so as to close one end opening of a tubular rotor yoke 5 (magnetic material such as iron or SUS). ing.
  • a tubular rotor yoke 5 magnetic material such as iron or SUS.
  • a plurality of divided plate-shaped magnets 6 (rotor magnets) magnetized alternately with N poles or S poles in the circumferential direction are adhered and fixed. (See Fig. 2B).
  • Each plate-shaped magnet 6 is arranged to face the stator pole teeth 7b of the stator core 7, which will be described later.
  • the plate-shaped magnet 6 includes various forms such as a curved plate (see FIG. 3A1) as well as a flat plate (see FIG. 3B1) as long as it is a magnetic plate material having a certain thickness.
  • the stator core 7 is assembled to the outer periphery of the bearing housing 2a in the stator 2.
  • a plurality of stator pole teeth 7b are projected outward in the radial direction from the annular core back portion 7a.
  • the stator core 7 may be a laminated core in which an electromagnetic steel sheet is laminated and pressed, or a block core made of a magnetic metal block.
  • the periphery of the stator pole teeth 7b is covered with an insulator (insulating bobbin) 7c, and a coil 7d is wound around the insulator 7c.
  • the rotor shaft 3 is inserted into the bearing housing 2a of the stator 2, and the plate-shaped magnet 6 is arranged to face the stator pole teeth 7b of the stator core 7 and is rotatably assembled (see FIG. 2D). ..
  • plate-shaped magnets 6 divided into a plurality of pieces in the circumferential direction are provided on the inner peripheral surface 5a of the cylindrical rotor yoke 5 at predetermined intervals.
  • a rare earth magnet for example, a neodymium magnet
  • the first adhesive 8a and the second adhesive are formed in the gap between the rotor yoke 5 and the flat plate-shaped magnet 6. It is bonded with 8b interposed therebetween.
  • the high-power plate-shaped magnet 6 can be adhesively fixed to the rotor yoke 5 by using different types of adhesives without being displaced.
  • the adhesive surface 6c of each plate-shaped magnet 6 has a curing time from the first adhesive portion 6a and the first adhesive 8a to which the first adhesive 8a that cures in a predetermined time is applied.
  • a second adhesive portion 6b to which the second adhesive 8b for main fixing, which has high adhesive strength, is applied is formed adjacent to the second adhesive portion 6b.
  • the first adhesive 8a for example, at least one of an ultraviolet curable type or an anaerobic curable type adhesive or an instant adhesive is used
  • the second adhesive 8b for example, a thermosetting type epoxy resin adhesive is used. ..
  • the first adhesive 8a interposed between the plate-shaped magnet 6 and the rotor yoke 5 is irradiated with ultraviolet rays or anaerobic, or is brought into contact with the adhesive surface 6c, or the first adhesive is formed by a combination thereof. Since the agent 8a is cured, the plate-shaped magnet 6 can be easily temporarily fixed to the rotor yoke 5 in a relatively short time.
  • FIG. 3B3 shows a state in which the plate-shaped magnet 6 is adhered to the inner peripheral surface 5a of the rotor yoke 5.
  • the first adhesive 8a applied to the first adhesive portion 6a of the plate-shaped magnet 6 and the second adhesive 8b applied to the second adhesive portion 6b may be applied directly to the adhesive surface 6c or in advance. It includes both cases where it is supplied to the surface to be adhered (inner peripheral surface 5a of the rotor yoke 5) and indirectly applied.
  • the plate-shaped magnet 6 has a flat plate shape, and as shown in FIG. 3B2, a gap portion 9 formed between the curved inner peripheral surface 5a of the rotor yoke 5 and the adhesive surface 6c of the flat plate-shaped magnet 6 An adhesive pool portion of the first adhesive 8a and the second adhesive 8b is formed on the surface.
  • the plate-shaped magnet 6 is formed between the plate-shaped magnet 6 and the inner peripheral surface 5a (curved surface) which is the adhesive surface of the rotor yoke 5. Since the gap portion 9 can be used as an adhesive reservoir for the first adhesive 8a and the second adhesive 8b, the strength of temporary adhesion and fixed adhesion can be maintained.
  • a sufficient space for irradiating ultraviolet rays can be secured from the gap between the inner peripheral surface 5a (curved surface) and the end surface of the plate-shaped magnet 6 on the flat plate.
  • the adhesive region formed on the adhesive surface 6c of the plate-shaped magnet 6 has an area in which the second adhesive portion 6b is equal to or larger than that of the first adhesive portion 6a (see FIG. 5A). (2) It is preferable to have the adhesive portion 6b> the first adhesive portion 6a) (see FIG. 5B). As a result, the adhesive strength of the plate-shaped magnet 6 to the rotor yoke 5 can be maintained.
  • the first adhesive 8a at least one of an ultraviolet curable type or an anaerobic curable type adhesive or an instant adhesive is used as the first adhesive 8a
  • the second adhesive 8b is a thermosetting epoxy resin adhesive. Used.
  • the first adhesive 8a interposed between the plate-shaped magnet 6 and the rotor yoke 5 is irradiated with ultraviolet rays, anaerobic, or brought into contact with the instant adhesive, or by a combination thereof, the first adhesive 8a is first. Since the adhesive 8a is cured, the plate-shaped magnet 6 can be easily temporarily fixed to the rotor yoke 5.
  • the plate-shaped magnet 6 is temporarily fixed to the rotor yoke 5 by the first adhesive 8a, so that the viscosity of the second adhesive 8b is obtained in the heat-curing step.
  • the plate-shaped magnet 6 does not shift in position even if is temporarily lowered.
  • the adhesive surface 6c may have a curved plate shape having the same curvature as the rotor yoke 5.
  • the adhesive layer formed between the curved inner peripheral surface 5a of the rotor yoke 5 and the adhesive surface 6c of the plate-shaped magnet 6 is uniform in the circumferential direction of the adhesive surface 6c as shown in FIG. 3A2. Is formed in.
  • the adhesive surface 6c of the plate-shaped magnet 6 has a first adhesive portion 6a to which the first adhesive 8a for temporary fixing is applied and a second adhesive for main fixing to be heat-cured.
  • FIG. 3A3 shows a state in which the plate-shaped magnet 6 is adhered to the inner peripheral surface 5a of the rotor yoke 5.
  • a resin positioning member 10 is used to position and bond the plurality of plate-shaped magnets 6 to the inner peripheral surface 5a of the rotor yoke 5.
  • a resin molding material is used for the positioning member 10, and an annular connecting portion 10a connected in an annular shape and a plurality of partition members 10b standing upright from the annular connecting portion 10a are formed in a comb-teeth shape.
  • the distance between the partition members 10b is equal to or slightly wider than the width dimension of the plate-shaped magnet 6.
  • the annular connecting portion 10a is provided with a flange portion 10c extending outward in the radial direction for abutting against the open end of the rotor yoke 5 for positioning.
  • the positioning member 10 (partition member 10b) is inserted into the inner peripheral surface 5a from one end opening of the rotor yoke 5, and the plate magnet 6 is inserted between the partition members 10b from the other end opening.
  • the inner peripheral surface 5a is positioned in the radial direction and the axial direction.
  • the first adhesive 8a is applied to the first adhesive portion 6a of the plate-shaped magnet 6, the plate-shaped magnet 6 is positioned on the rotor yoke 5 in the radial direction and the axial direction, and the first adhesive 8a is positioned.
  • the unnecessary positioning member 10 can be pulled out from the rotor yoke 5 and removed. ..
  • the epoxy resin-based second adhesive 8b is heat-cured at, for example, 100 ° to 180 ° to bond and fix the plate-shaped magnet 6 at the second adhesive portion 6b. do.
  • the viscosity of the second adhesive 8b temporarily decreases, but since it is temporarily fixed by the first adhesive 8a, the plate-shaped magnet 6 does not shift in position.
  • the originally unnecessary positioning member 10 can be reduced, the manufacturing cost can be reduced, and the weight of the rotor 1 can be reduced.
  • the plurality of plate-shaped magnets 6 are adhesively fixed to the rotor yoke 5 at predetermined intervals by using the positioning member 10, the cost is reduced as compared with the annular magnet, and the radial direction and the axial direction with respect to the rotor yoke 5 are achieved.
  • the plate-shaped magnet 6 has high positional accuracy and can be assembled without misalignment.
  • the rotor 1 of the outer rotor type motor may be formed in which a plurality of plate-shaped magnets 6 divided in the circumferential direction are fixed to the inner peripheral surface 5a of the rotor yoke 5 at predetermined intervals.
  • a positioning member 10 is provided on the outer peripheral surface 5b of the rotor yoke 5 of the inner rotor type motor in order to position and bond a plurality of plate-shaped magnets 6 (curved plates). You may use it.
  • the positioning member 10 is made of a resin molding material, and an annular connecting portion 10a connected in an annular shape and a plurality of partition members 10b standing upright from the annular connecting portion 10a are formed in a comb-teeth shape.
  • the flange portion 10c may be omitted.
  • the partition member 10b of the positioning member 10 is fitted to the outer peripheral surface 5b from one end side in the axial direction of the rotor yoke 5, and the annular connecting portion 10a is abutted against one end surface of the rotor yoke 5. Is installed. By inserting a plurality of plate-shaped magnets 6 from the other end surface side of the rotor yoke 5 between the partition members 10b, the magnets 6 are positioned in the radial direction and the axial direction.
  • the plate-shaped magnet 6 is positioned on the rotor yoke 5 to cure the first adhesive 8a (for example, ultraviolet rays are applied). It can be temporarily fixed (by irradiating). With the plate-shaped magnet 6 temporarily fixed, the unnecessary positioning member 10 can be pulled out from the rotor yoke 5 to remove it. After removing the positioning member 10 from the rotor yoke 5, the plate-shaped magnet 6 is adhesively fixed by the second adhesive portion 6b by heat-curing the second adhesive 8b at, for example, 100 ° to 180 °. In the heat curing step, the viscosity of the second adhesive 8b temporarily decreases, but since it is temporarily fixed by the first adhesive 8a, the plate-shaped magnet 6 does not shift in position.
  • the viscosity of the second adhesive 8b temporarily decreases, but since it is temporarily fixed by the first adhesive 8a, the plate-shaped magnet 6 does not shift in position.
  • the inner rotor type motor in which the plate-shaped magnets 6 divided into a plurality of pieces in the circumferential direction are fixed to the outer peripheral surface 5b of the rotor yoke 5 formed in a columnar shape at predetermined intervals. Rotor 1 is obtained.
  • the motor M is inexpensive and lightweight because it is provided with any of the above-mentioned rotors 1 and a stator 2 having stator pole teeth 7b facing the plate-shaped magnet 6 of the rotor 1. It is possible to provide an outer rotor type motor or an inner rotor type motor which is easy to assemble and can maintain the motor characteristics.
  • the manufacturing process of the rotor 1 of the outer rotor type motor will be described with reference to FIGS. 1 to 2.
  • the rotor shaft 3 is fitted into the central portion of the rotor hub 4 and assembled integrally.
  • the first adhesive 8a that cures in a predetermined time is applied to the first adhesive portion 6a of the plate-shaped magnet 6 divided into a plurality of pieces.
  • the first adhesive 8a for example, at least one of an ultraviolet curable type adhesive, an anaerobic curable type adhesive, and an instant adhesive is used.
  • the second adhesive 8b which requires more curing time than the first adhesive 8a but has higher adhesive strength, is applied to the second adhesive portion 6b adjacent to the first adhesive portion 6a of the plate-shaped magnet 6.
  • a thermosetting epoxy resin adhesive is used as the second adhesive 8b.
  • the step of applying the first and second adhesives 8a and 8b is not limited to the case of directly applying to the adhesive surface 6c of the plate-shaped magnet 6 as shown in FIG. 1B, and at least one of the adhesives is applied.
  • the case where the rotor yoke 5 is indirectly applied to the surface to be adhered (inner peripheral surface 5a) is also included. That is, in FIG. 1B', the first adhesive 8a is applied around the inner peripheral surface corresponding to the first adhesive portion 6a from one end opening side of the rotor yoke 5, and the second adhesive portion 6b of the plate-shaped magnet 6 is applied.
  • the second adhesive 8b may be applied to the surface.
  • a comb-shaped partition member 10b for positioning the plate-shaped magnet 6 in the radial and axial directions is connected to the annular connecting portion 10a on the inner peripheral surface 5a of the rotor yoke 5.
  • the positioned positioning member 10 is mounted.
  • the partition member 10b is inserted from the other end opening side of the rotor yoke 5 until the flange portion 10c abuts on the opening end.
  • FIG. 1D shows a state in which the plate-shaped magnet 6 is adhered to the rotor yoke 5.
  • the first adhesive 8a applied to the plate magnet 6 is cured, and the plate magnet 6 is temporarily fixed to the rotor yoke 5 by the first adhesive portion 6a.
  • the first adhesive 8a is irradiated with ultraviolet rays, in the case of an anaerobic adhesive, it blocks the outside air, or in the case of an instant adhesive, a plate-shaped magnet.
  • the plate-shaped magnet 6 is temporarily fixed to the rotor yoke 5 by being cured by contacting with 6.
  • the first adhesive 8a at least one of an ultraviolet curable type adhesive, an anaerobic curable type adhesive, and an instant adhesive may be used.
  • an ultraviolet curable adhesive and an anaerobic adhesive are mixed. It may be the one that exists.
  • the adhesive on the end face of the plate-shaped magnet 6 is hardened by ultraviolet irradiation to block it from the outside air, and the adhesive inside (the inside of the gap 9: see FIG. 3B2) becomes anaerobic and hardens. do.
  • the unnecessary positioning member 10 is pulled out from the other end opening from the rotor yoke 5 to which the plate-shaped magnet 6 is temporarily fixed.
  • the rotor hub 4 and the rotor shaft 3 assembled in FIG. 1A are fitted into one end opening of the rotor yoke 5 and integrally assembled to assemble the rotor 1.
  • the state after assembling the rotor 1 is shown in FIG. 2B.
  • the epoxy resin-based second adhesive 8b is heat-cured at a predetermined temperature within the range of 100 ° C. to 180 ° C., and the plate-shaped magnet 6 is attached to the inner peripheral surface of the rotor yoke 5 by the second adhesive portion 6b. On the other hand, this is fixed.
  • the plurality of plate-shaped magnets 6 may be magnetized before being adhered to the rotor yoke 5, or may be magnetized after being adhered to the rotor yoke 5. If the plate-shaped magnet 6 is magnetized in advance, it may be attracted to each other when it is inserted into the rotor yoke 5, and the plate-shaped magnet 6 may be attracted to each other. However, by using the positioning member 10, such a problem may occur. There is no. Further, if the plate-shaped magnet 6 is adhered to the inner peripheral surface 5a of the rotor yoke 5 and then magnetized, the plate-shaped magnet 6 can be easily assembled and is not easily affected by thermal demagnetization. Become.
  • the rotor 1 is manufactured, and the motor M is manufactured by being assembled to the stator 2.
  • the rotor 1 is rotatably supported by a bearing (not shown) in which the rotor shaft 3 is inserted into the bearing housing 2a of the stator 2.
  • the plate-shaped magnet 6 of the rotor yoke 5 is arranged to face the stator pole teeth 7b of the stator core 7 and is rotatably assembled.
  • a motor M in which the rotor 1 is assembled to the stator 2 is shown in FIG. 2D.
  • the rotors are subjected to the same steps except that the first and second adhesives 8a and 8b are applied differently. 1 can be manufactured.
  • FIGS. 4A and 4A a comb-shaped partition that positions the plate-shaped magnet 6 in the radial direction and the axial direction on the outer peripheral surface 5b of the rotor yoke 5 assembled in a columnar shape around the rotor shaft 3.
  • the positioning member 10 in which the member 10b is connected by the annular connecting portion 10a is mounted.
  • the first adhesive 8a is circulated and applied to the outer peripheral surface 5b corresponding to the first adhesive portion 6a of the rotor yoke 5, and the first adhesive 8a is adhered to the second adhesive portion 6b of the plate-shaped magnet 6.
  • the second adhesive 8b may be applied to the surface 6c.
  • the first adhesive 8a for temporary fixing may be applied to the adhesive surface 6c of the plate-shaped magnet 6, and the second adhesive 8b may be applied to the second adhesive portion 6b. ..
  • a comb-shaped partition member 10b for positioning the plate-shaped magnet 6 in the radial and axial directions is connected to the annular connecting portion 10a on the outer peripheral surface 5b of the rotor yoke 5.
  • the positioning member 10 is mounted.
  • the partition member 10b is fitted along the outer peripheral surface 5b of the rotor yoke 5 until the annular connecting portion 10a abuts on the end surface of the rotor yoke 5.
  • FIG. 4B shows a state in which the plate-shaped magnet 6 is adhered to the rotor yoke 5.
  • the first adhesive 8a applied to the plate magnet 6 is cured, and the plate magnet 6 is temporarily fixed to the rotor yoke 5 by the first adhesive portion 6a.
  • the first adhesive 8a is irradiated with ultraviolet rays, in the case of an anaerobic adhesive, it blocks the outside air, or in the case of an instant adhesive, a plate-shaped magnet.
  • the plate-shaped magnet 6 is temporarily fixed to the rotor yoke 5 by being cured by contacting with 6.
  • the rotor 1 is assembled by pulling out an unnecessary positioning member 10 from the other end opening from the rotor yoke 5 to which the plate-shaped magnet 6 is temporarily fixed.
  • the epoxy resin-based second adhesive 8b is heat-cured at a predetermined temperature of 100 ° C. to 180 ° C., and the plate-shaped magnet 6 is attached to the outer peripheral surface 5b of the rotor yoke 5 by the second adhesive portion 6b. Fix it. As described above, the rotor 1 of the inner rotor type motor is manufactured.
  • the plurality of plate-shaped magnets 6 may be magnetized before being bonded to the rotor yoke 5 or magnetized after being bonded to the rotor yoke 5.
  • the plate is mounted on the rotor yoke 5 by mounting the positioning member 10 in which the comb-shaped partition member 10b for positioning in the radial and axial directions is connected to the annular connecting portion 10a.
  • the shape magnet 6 can be positioned and arranged in the radial direction and the axial direction between the partition members 10b.
  • the first adhesive 8a applied to the plate-shaped magnet 6 is cured to temporarily fix the plate-shaped magnet 6 to the rotor yoke 5 at the first adhesive portion 6a, and then the rotor yoke 5 is temporarily fixed.
  • the positioning member 10 can be further removed, and by omitting the positioning member 10 which is originally unnecessary, the number of parts can be reduced, the manufacturing cost can be reduced, and the weight of the rotor 1 can be reduced. Further, after the positioning member 10 is removed from the rotor yoke 5, the second adhesive 8b applied to the plate-shaped magnet 6 is heat-cured and finally fixed to the rotor yoke 5, so that the plate-shaped magnet 6 is fixed. Can be adhesively fixed with high positional accuracy.
  • the rotor 1 in which the number of parts is reduced, the manufacturing cost is reduced, and the weight is reduced. Further, it is possible to provide a method for manufacturing a rotor having good assembleability, which can position a plurality of plate-shaped magnets 6 in the radial direction and the axial direction and adhesively fix them to the rotor yoke 5 with high positional accuracy. Further, by using the rotor 1, it is possible to provide a motor M which is inexpensive, has good assembleability, and can maintain motor characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

部品点数を減らし製造コストを低減し軽量化を実現した回転子を提供することを課題とする。 解決手段として、回転子ヨーク(5)の内周面(5a)に径方向及び軸方向に位置決めする位置決め部材(10)を介して複数の板状マグネット(6)が所定間隔で第一接着剤(8a)に仮固定され、位置決め部材(10)が除去された状態で第二接着剤(8b)が加熱硬化されて複数の板状マグネット(6)どうしが周方向に隙間を介して所定間隔で接着固定されている。

Description

回転子、回転子の製造方法及びモータ
 本発明は、モータの回転子、回転子の製造方法及びモータに関する。
 例えば、高出力のモータにおいては、回転子マグネットとして、例えばネオジムなどを主成分とする希土類磁石が用いられる。希土類磁石を用いて多極マグネットを製造する場合、軽量化、低コスト化を実現するため環状マグネットではなく、1極ごとにセグメントに切り分けたセグメント磁石を用いている。しかしながら、セグメント磁石を回転子ヨークの周方向に所定位置に整列して配置固定することが難しい。希土類磁石は、フェライト系磁石に比べて磁力が強い反面錆び易いため耐食性を向上させるためニッケルめっきが施されて表面は防錆処理されている。そして、接着剤が塗布された湿潤時の接着面は摩擦力が低下するためマグネットが動きやすくなる。特にエポキシ樹脂系の接着剤を用いると、加熱硬化工程では接着剤の粘度が一時的に低下するため、マグネットの位置ずれを起こしやすくなる。マグネットが位置ずれすると、モータ特性が低下し、モータ振動や騒音が発生するおそれがある。
 そこで、例えばアウターロータ型モータの回転子において、図6Aに示すように、筒状の回転子ヨーク51に対して複数のセグメント磁石52の位置決め保持する位置決め部材53を用いて各セグメント磁石52を径方向及び軸方向に位置決めして接着固定している。位置決め部材53は、環状連結部53aより櫛歯状の仕切り部材53aが所定間隔で起立形成されている。環状連結部53aはセグメント磁石52の軸方向位置を規定し、仕切り部材53bが径方向位置を規定する。位置決め部材53を回転子ヨーク51の一端側開口部から内周面51aに沿って挿入した後、回転子ヨーク51の他端側開口部より接着剤54が塗布されたセグメント磁石52を仕切り部材53a間に挿入して接着する(図6A参照)。そして、接着剤54を加熱硬化させて回転子ヨーク51の内周面51aに位置決め部材53と共にセグメント磁石52が接着固定される(図6B参照)。この後、回転子軸55を一体に組み付けられた回転子ハブ56を、回転子ヨーク51に圧入固定し(図6C参照)、回転子軸55を中心に回転可能なアウターロータ型の回転子57が形成される(図6D参照)。
 同様に、インナーロータ型モータの回転子においては、回転子軸55を中心とする円柱状の回転子ヨーク51の外周面51bに位置決め部材53を軸方向一方側から装着した後、軸方向他方側より接着剤54が塗布されたセグメント磁石52を仕切り部材53a間に挿入して接着する(図7A参照)。そして、接着剤54を加熱硬化させて回転子ヨーク51の外周面51bに位置決め部材53と共にセグメント磁石52が接着固定されたインナーロータ型の回転子57が形成される(図7B参照)。
 また、アウターロータ型モータの回転子ヨーク内に装着されるマグネットの固定保持力を強め、組立て中のマグネットの倒れを防止して作業性を向上させる技術が提案されている。円筒状のロータ外筒の内面側に円筒状の内ケースが嵌め込まれ、ロータ外筒及び内ケースの間に円周方向に沿って複数のマグネットが仕切片を介して配設された樹脂製ホルダリングが一体に組み付けられている(特許文献1:特開2003-304660号公報参照)。
特開2003-304660号公報
 しかしながら、図6D及び図7B或いは特許文献1においては、回転子ヨーク51の内周面51a若しくは外周面51bに位置決め部材53と共にセグメント磁石52が接着固定されているので、本来不要である位置決め部材53は接着剤を加熱硬化させるとセグメント磁石52共に回転子ヨーク51に接着されてしまい、位置決め部材53を除去することができない。また、特許文献1の樹脂製ホルダリングは、マグネットを固定する必要不可欠な部材として使用されている。
 このように、回転子57に本来不要である位置決め部材53や樹脂製ホルダリングを組み込むことは、部品点数が増大して製造コストが嵩むうえに、モータ重量も増加する。
 また、位置決め部材53を使用せずに、セグメント磁石52を回転子ヨーク51に接着固定するとすれば、図8Aに示すように、回転子ヨーク51の内周面にセグメント磁石52を位置決めするため凹部51aと凸部51bを周方向に交互に形成する必要がある。或いは図8Bに示すように、回転子ヨーク51に圧入される回転子ハブ56の外周縁部に櫛歯状の位置決め部材56aを設けておく必要がある。いずれの場合も、部品の加工工数が増えて製造コストが増大する。
 本発明は、上述した課題を解決すべくなされたものであり、その目的とするところは、部品点数を減らし製造コストを低減し軽量化を実現した回転子を提供し、板状マグネットの径方向及び軸方向の位置決めを行なって回転子ヨークに組み付けることができる組立性の良い回転子の製造方法を提供し、回転子を用いて、安価で組立性がよくモータ特性を維持することができるモータを提供することにある。
 上述した課題を解決するため、本発明は少なくとも以下の構成を備える。
 回転子ヨークの周面に周方向で複数に分割された板状マグネットを所定間隔で備えた回転子であって、各板状マグネットの接着面に所定時間で硬化する第一接着剤が塗布された第一接着部と前記第一接着剤より硬化時間を要するが接着強度が高い第二接着剤が塗布された第二接着部が隣接して形成されており、前記回転子ヨークの周面に径方向及び軸方向に位置決めする位置決め部材を介して複数の前記板状マグネットが所定間隔で前記第一接着剤を硬化させて前記第一接着部で仮固定され、前記位置決め部材が除去された状態で前記第二接着剤を硬化させて複数の前記板状マグネットどうしが周方向に所定の隙間を介して前記第二接着部で接着固定されていることを特徴とする。
 これにより、板状マグネットの接着面に所定時間で硬化する第一接着剤が塗布されているので、板状マグネットを回転子ヨークに位置決め部材を介して径方向及び軸方向に位置決めして第一接着部で仮固定でき、回転子ヨークから位置決め部材を除去してから第一接着剤より硬化時間を要するが接着強度が高い第二接着剤を硬化させることで複数の板状マグネットどうしが周方向に所定の隙間を介して第二接着部で接着固定されるので、本来不要な位置決め部材を減らし製造コストを低減し回転子の軽量化を実現することができる。
 また、複数の板状マグネットが位置決め部材を用いて回転子ヨークに所定間隔で接着固定されているので、環状マグネットに比べてコストダウンを図り、回転子ヨークに対する径方向及び軸方向の板状マグネットの位置精度が高く位置ずれすることなく組み付けることができる。
 前記板状マグネットは表面が防錆処理された希土類磁石であり、回転子ヨークとマグネット間の隙間に、前記第一接着剤及び第二接着剤を介在させていることが好ましい。
 これにより、高出力の板状マグネットを回転子ヨークに対して異なる種類の接着剤を用いて位置ずれすることなく接着固定することができる。
 前記板状マグネットの接着面において第一接着剤が塗布される第一接着部と第二接着剤が塗布される第二接着部の面積は、第二接着部が第一接着部と同等かそれより大きい面積を有することが好ましい。
 これにより、板状マグネットの回転子ヨークに対する最終的な接着強度を維持することができる。
 前記第一接着剤は紫外線硬化型若しくは嫌気硬化型の接着剤又は瞬間接着剤のうち少なくともいずれかが用いられ、前記第二接着剤は熱硬化型の接着剤が用いられてもよい。
 これにより、板状マグネットと回転子ヨークとの間に介在する第一接着剤層に紫外線を照射するか嫌気状態とするか或いは瞬間接着剤を介して接触させるか或いはこれらを組み合わせるだけで、第一接着剤が硬化するため板状マグネットは回転子ヨークに対して容易に仮固定することができる。さらには、第二接着剤を加熱硬化させる際に、板状マグネットは第一接着剤により仮固定されているので、位置ずれすることはない。
 前記板状マグネットは、平板状マグネットであり、前記回転子ヨークの湾曲面と前記板状マグネットの平板面との間に形成される空隙部を前記第一接着剤及び第二接着剤の接着剤溜り部として接着剤層が形成されていてもよい。
 この場合には、板状マグネットの接着のため格別な加工は不要となるため、製造コストが低減できるうえに、回転子ヨークの接着面である湾曲面との間に形成される空隙部を第一接着剤及び第二接着剤の接着剤溜り部として十分な接着スペースとして使用できるので、仮接着や固定接着の強度を維持することができる。特に仮固定の際に紫外線照射する場合には、湾曲面と平板面の隙間から紫外線を照射する十分なスペースを確保することができる。
 カップ状に形成される回転子ヨークの内周面に周方向に複数に分割された板状マグネットを所定間隔で固定されたアウターロータ型モータの回転子であってもよいし、円柱状に形成される回転子ヨークの外周面に周方向に複数に分割された板状マグネットを所定間隔で固定されたインナーロータ型モータの回転子であってもよい。
 環状マグネットに比べてコストダウンと軽量化を図り、アウターロータ型かインナーロータ型かを問わず回転子ヨークに対する径方向及び軸方向の板状マグネットの位置精度を高く組み付けることができる。
 モータにおいては、上述したいずれかの回転子と、当該回転子の板状マグネットに対向する固定子極歯を有する固定子と、を備えたことにより、安価、軽量で組立性がよくモータ特性を維持することができるアウターロータ型モータ又はインナーロータ型モータを提供することができる。
 回転子の製造方法においては、複数に分割された板状マグネットの接着面に所定時間で硬化する第一接着剤を各々塗布する工程と、前記板状マグネットの接着面に前記第一接着剤より硬化時間を要するが接着強度が高い第二接着剤を各々塗布する工程と、前記回転子ヨークの周面に前記板状マグネットを径方向及び軸方向に位置決めする櫛歯状の仕切り部材が環状に連結された位置決め部材を装着する工程と、前記位置決め部材が装着された前記回転子ヨークの仕切り部材間に、前記板状マグネットを前記仕切り部材間に位置決めして前記第一接着剤及び前記第二接着剤を介して前記回転子ヨークの周面に所定間隔で配置する工程と、前記板状マグネットに塗布された前記第一接着剤を硬化させて当該板状マグネットを第一接着部にて前記回転子ヨークに対して仮固定する工程と、前記回転子ヨークより前記位置決め部材を抜き取る工程と、前記第二接着剤を硬化させて前記板状マグネットを第二接着部にて前記回転子ヨークに対して本固定する工程と、を含むことを特徴とする。
 尚、板状マグネットの接着面に塗布される第一接着剤及び第二接着剤は、接着面に直接塗布される場合と、予め被接着面に供給されて間接的に塗布される場合の双方含むものとする。また、板状マグネットというときは、一定の厚みを有する板材であれば平板状に限らず湾曲板等様々な形態を含むものとする。
 上記回転子の製造方法によれば、回転子ヨークに径方向及び軸方向に位置決めする櫛歯状の仕切り部材が環状に連結された位置決め部材を装着することで板状マグネットを仕切り部材間で径方向及び軸方向に位置決めして配置することができる。
 また、板状マグネットに塗布された第一接着剤を硬化させて当該板状マグネットを回転子ヨークに対して第一接着部で仮固定してから、当該回転子ヨークより位置決め部材を抜き取ることができ、本来不要である位置決め部材を省略することで部品点数を減らし製造コストを低減し回転子の軽量化を実現することができる。
 また、位置決め部材を回転子ヨークから除去した後で、板状マグネットに塗布された第二接着剤を硬化させて回転子ヨークに対して第二接着部で本固定するので、板状マグネットを位置精度よく接着固定することができる。
 筒状の回転子ヨークの内周面に前記板状マグネットを径方向及び軸方向に位置決めする櫛歯状の仕切り部材が環状連結部に連結された位置決め部材を装着する工程と、複数の前記板状マグネットを前記仕切り部材間に各々挿入すると共に第一接着剤及び第二接着剤を介して前記回転子ヨークの内周面に位置決めして所定間隔で配置する工程と、前記回転子ヨークに回転子ハブ及び回転子軸を一体に組み付ける工程と、を含むアウターロータ型モータの回転子の製造方法であってもよい。
 或いは、回転子軸を中心とする回転子ヨークの外周面に前記板状マグネットを径方向及び軸方向に位置決めする櫛歯状の仕切り部材が環状連結部に連結された位置決め部材を装着する工程と、複数の前記板状マグネットを前記仕切り部材間に各々挿入すると共に前記第一接着剤及び前記第二接着剤を介して前記回転子ヨークの外周面に位置決めして所定間隔で配置する工程と、を含むインナーロータ型モータの回転子の製造方法であってもよい。
 第一接着剤は紫外線硬化型若しくは嫌気硬化型接着剤又は瞬間接着剤のうち少なくともいずれかを用いて板状マグネットを回転子ヨークに対して仮固定するようにしてもよい。
 これにより、板状マグネットと回転子ヨークとの間に介在する第一接着剤層に紫外線を照射するか嫌気状態とするか或いはマグネット接着面と接触するか或いはこれらを組わせることで第一接着剤が硬化するため、板状マグネットは回転子ヨークに対して容易に仮固定することができる。
 複数の板状マグネットは回転子ヨーク内に接着される前に着磁されているか若しくは前記回転子ヨーク内に接着された後に着磁されるようにしてもよい。
 板状マグネットが予め着磁されていると、回転子ヨークに挿入する際に互いに吸引し合って吸着するおそれがあるが、位置決め部材を用いることにより、そのような不具合が発生することはない。
 また、板状マグネットが回転子ヨーク内に接着された後に着磁されるようにすれば、板状マグネットの組み付け作業がし易くなり、熱減磁の影響も受けにくくなる。
 上述したように、部品点数を減らし製造コストを低減し軽量化を実現した回転子を提供することができる。
 また、複数の板状マグネットの径方向及び軸方向の位置決めを行なって位置精度良く回転子ヨークに接着固定することができる組立性の良い回転子の製造方法を提供することができる。
 また、上記回転子を用いて、安価で組立性がよくモータ特性を維持することができるモータを提供することができる。
図1AからEは、アウターロータ型モータの回転子の製造工程を示す説明図である。 図2AからDは、図1に続くアウターロータ型モータの製造工程を示す説明図である。 図3A1からB3は、回転子ヨークに接着固定される板状マグネットの形態を示す説明図である。 図4AからCは、インナーロータ型モータの回転子の製造工程を示す説明図である。 図5A及びBは、板状マグネットの第一接着部と第二接着部の接着領域を示す説明図である。 図6AからDは、従来のアウターロータ型モータの回転子の製法を示す工程図である。 図7A及びBは、従来のインナーロータ型モータの回転子の製法を示す工程図である。 図8A及びBは、回転子ヨーク及び回転ハブの必要構成を示す説明図である。
 以下、本発明に係る回転子、回転子の製造方法及びモータの一実施形態について、添付図面を参照しながら説明する。先ず、モータの概略構成について図1を参照して説明する。本実施例ではモータの一例としてアウターロータ型若しくは後述するインナーロータ型のDCブラシレスモータが用いられる。
 図2C,Dに示すように、DCブラシレスモータは、回転子1と固定子2を備えたアウターロータ型のモータMが用いられる。回転子1は、回転子軸3と連繋した回転子ハブ4が筒状の回転子ヨーク5(鉄、SUS等の磁性材)の一端開口部を閉止するように嵌め込まれてカップ状に形成されている。回転子ヨーク5の内周面5a(図2A参照)には周方向にN極若しくはS極に交互に着磁された複数に分割された板状マグネット6(回転子マグネット)が接着固定されている(図2B参照)。各板状マグネット6は、後述する固定子コア7の固定子極歯7bと対向配置されている。尚、板状マグネット6というときは、一定の厚みを有する磁性板材であれば平板状(図3B1参照)に限らず湾曲板(図3A1参照)等様々な形態を含むものとする。
 図2Cに示すように、固定子2は、軸受ハウジング2aの外周に固定子コア7が組み付けられている。固定子コア7は環状のコアバック部7aより複数の固定子極歯7bが径方向外向きに突設されている。固定子コア7は、電磁鋼板が積層プレスされた積層コアであっても磁性体金属ブロックよりなるブロックコアのいずれでもよい。固定子コア7は、固定子極歯7bの周囲がインシュレータ(絶縁ボビン)7cで被覆されており、インシュレータ7cの周囲にはコイル7dが各々巻かれている。回転子1は回転子軸3を固定子2の軸受ハウジング2aに挿入され、板状マグネット6が固定子コア7の固定子極歯7bと対向配置されて回転可能に組み付けられる(図2D参照)。
 ここで回転子1の構成について詳述する。
 図3A3,図3B3に示すように、筒状の回転子ヨーク5の内周面5aに周方向に複数に分割された板状マグネット6が所定間隔で隙間を空けて設けられている。板状マグネット6は表面が防錆処理された希土類磁石(例えばネオジム磁石)が用いられ、回転子ヨーク5と平板状の板状マグネット6間の隙間に、第一接着剤8a及び第二接着剤8bを介在させて接着されている。これにより、後述するように、高出力の板状マグネット6を回転子ヨーク5に対して異なる種類の接着剤を用いて位置ずれすることなく接着固定することができる。
 各板状マグネット6の接着面6cには、図5A,Bに示すように、所定時間で硬化する第一接着剤8aが塗布される第一接着部6aと第一接着剤8aより硬化時間を要するが接着強度が高い本固定用の第二接着剤8bが塗布される第二接着部6bが隣接して形成されている。第一接着剤8aは、例えば紫外線硬化型若しくは嫌気硬化型の接着剤或いは瞬間接着剤のうち少なくともいずれかが用いられ、第二接着剤8bは例えば熱硬化型のエポキシ樹脂系接着剤が用いられる。これにより、板状マグネット6と回転子ヨーク5との間に介在する第一接着剤8aに紫外線を照射するか嫌気状態とするか或いは接着面6cと接触させるか或いはこれらの組み合わせにより第一接着剤8aが硬化するため、板状マグネット6は回転子ヨーク5に対して比較的短時間で容易に仮固定することができる。回転子ヨーク5の内周面5aに板状マグネット6が接着された状態を図3B3に示す。尚、板状マグネット6の第一接着部6aに塗布される第一接着剤8a及び第二接着部6bに塗布される第二接着剤8bは、接着面6cに直接塗布される場合と、予め被接着面(回転子ヨーク5の内周面5a)に供給されて間接的に塗布される場合の双方含むものとする。
 板状マグネット6は平板状であり、図3B2に示すように、回転子ヨーク5の湾曲する内周面5aと平板状の板状マグネット6の接着面6cとの間に形成される空隙部9に第一接着剤8a及び第二接着剤8bの接着剤溜り部が形成される。この場合には、板状マグネット6の格別な加工は不要となるため、製造コストが低減できるうえに、回転子ヨーク5の接着面である内周面5a(湾曲面)との間に形成される空隙部9を第一接着剤8a及び第二接着剤8bの接着剤溜り部として使用できるので、仮接着や固定接着の強度を維持することができる。特に仮固定の際に紫外線照射する場合には、内周面5a(湾曲面)と平板上の板状マグネット6の端面の隙間から紫外線を照射する十分なスペースを確保することができる。
 図5A,Bに示すように、板状マグネット6の接着面6cに形成される接着領域は、第二接着部6bが第一接着部6aと同等か(図5A参照)それより大きい面積(第二接着部6b>第一接着部6a)を有すること(図5B参照)が好ましい。これにより、板状マグネット6の回転子ヨーク5に対する接着強度を維持することができる。
 上述したように、第一接着剤8aは紫外線硬化型若しくは嫌気硬化型の接着剤又は瞬間接着剤のうち少なくともいずれかが用いられ、第二接着剤8bは熱硬化型のエポキシ樹脂系接着剤が用いられる。これにより、板状マグネット6と回転子ヨーク5との間に介在する第一接着剤8aに紫外線を照射するか嫌気状態とするか或いは瞬間接着剤と接触させるか或いはこれらの組み合わせにより、第一接着剤8aが硬化するため板状マグネット6は回転子ヨーク5に対して容易に仮固定することができる。さらには、第二接着剤8bを加熱硬化させる際に、板状マグネット6は第一接着剤8aにより回転子ヨーク5に仮固定されているので、加熱硬化する工程で第二接着剤8bの粘度が一時的に低下しても板状マグネット6が位置ずれすることはない。
 尚、板状マグネット6が平板状の場合について説明したが、図3A1に示すように、接着面6cが回転子ヨーク5の曲率と同一である湾曲板状であってもよい。この場合、回転子ヨーク5の湾曲する内周面5aと板状マグネット6の接着面6cとの間に形成される接着剤層は、図3A2に示すように、接着面6cの周方向に均一に形成される。
 板状マグネット6の接着面6cには、図5A,Bに示すように、仮固定用の第一接着剤8aが塗布される第一接着部6aと加熱硬化させる本固定用の第二接着剤8bが塗布される第二接着部6bが隣接して形成される点は平板状マグネットの場合と同様である。回転子ヨーク5の内周面5aに板状マグネット6が接着された状態を図3A3に示す。
 また、図1C、C´に示すように、回転子ヨーク5の内周面5aに、複数の板状マグネット6を位置決めして接着固定するために樹脂製の位置決め部材10が用いられる。位置決め部材10は、樹脂成形材が用いられ、環状に連結された環状連結部10aと、この環状連結部10aより複数の仕切り部材10bが櫛歯状に起立形成されている。仕切り部材10bどうしの間隔は、板状マグネット6の幅寸法と同等か若干広い程度である。また、環状連結部10aには回転子ヨーク5の開口端に突き当てて位置決めするためのフランジ部10cが径方向外側に延設されている。
 図1Dに示すように、回転子ヨーク5の一端開口部より内周面5aに位置決め部材10(仕切り部材10b)が挿入され、板状マグネット6が他端開口部より仕切り部材10b間に挿入されることで内周面5aに径方向及び軸方向に位置決めされる。
 このとき、板状マグネット6は第一接着部6aに第一接着剤8aが塗布されているので、板状マグネット6を回転子ヨーク5に径方向及び軸方向に位置決めして第一接着剤8aを硬化させて(例えば紫外線を照射して)仮固定することができる。
 また、図1Eに示すように、板状マグネット6を回転子ヨーク5の内周面5aに仮固定した状態で、不要となった位置決め部材10を回転子ヨーク5から引き抜いて除去することができる。回転子ヨーク5から位置決め部材10を除去してから、エポキシ樹脂系の第二接着剤8bを例えば100°~180°で加熱硬化することで板状マグネット6を第二接着部6bにて接着固定する。加熱硬化工程では第二接着剤8bの粘度が一時的に低下するが、第一接着剤8aにより仮固定されているので板状マグネット6が位置ずれすることはない。
 これにより、本来不要な位置決め部材10を減らし製造コストを低減し回転子1の軽量化を実現することができる。
 また、複数の板状マグネット6が位置決め部材10を用いて回転子ヨーク5に所定間隔で接着固定されているので、環状マグネットに比べてコストダウンを図り、回転子ヨーク5に対する径方向及び軸方向の板状マグネット6の位置精度が高く位置ずれすることなく組み付けることができる。
 このように、回転子ヨーク5の内周面5aに周方向に複数に分割された板状マグネット6を所定間隔で固定されたアウターロータ型モータの回転子1を形成してもよい。
 また、図4A,A´に示すように、インナーロータ型モータの回転子ヨーク5の外周面5bに、複数の板状マグネット6(湾曲板)を位置決めして接着固定するために位置決め部材10を用いてもよい。位置決め部材10は、樹脂成形材よりなり、環状に連結された環状連結部10aと、この環状連結部10aより複数の仕切り部材10bが櫛歯状に起立形成されている。フランジ部10cはなくてもよい。
 図4A,A´に示すように、回転子ヨーク5の軸方向一端側より外周面5bに位置決め部材10の仕切り部材10bを嵌め合わせ、環状連結部10aを回転子ヨーク5の一端面に突き当てて装着される。複数の板状マグネット6を回転子ヨーク5の他端面側から仕切り部材10b間に各々挿入することで径方向及び軸方向に位置決めされる。
 このとき、板状マグネット6は接着面6cに第一接着剤8aが塗布されているので、板状マグネット6を回転子ヨーク5に位置決めして第一接着剤8aを硬化させて(例えば紫外線を照射して)仮固定することができる。板状マグネット6を仮固定した状態で、回転子ヨーク5から不要となった位置決め部材10を引き抜いて除去することができる。回転子ヨーク5から位置決め部材10を除去してから、第二接着剤8bを例えば100°~180°で加熱硬化することで板状マグネット6を第二接着部6bにて接着固定する。加熱硬化工程では第二接着剤8bの粘度が一時的に低下するが、第一接着剤8aにより仮固定されているので板状マグネット6が位置ずれすることはない。
 このようにして、図4Bに示すように円柱状に形成される回転子ヨーク5の外周面5bに周方向に複数に分割された板状マグネット6を所定間隔で固定されたインナーロータ型モータの回転子1が得られる。
 以上の回転子1の構成によれば、環状マグネットに比べてコストダウンと軽量化を図り、アウターロータ型かインナーロータ型かを問わず回転子ヨーク5に対する径方向及び軸方向の板状マグネット6の位置精度を高く組み付けることができる。
 また、モータMにおいては、上述したいずれかの回転子1と、当該回転子1の板状マグネット6に対向する固定子極歯7bを有する固定子2と、を備えたことにより、安価、軽量で組立性がよくモータ特性を維持することができるアウターロータ型モータ又はインナーロータ型モータを提供することができる。
 ここで、アウターロータ型モータの回転子1の製造工程について図1~図2を参照して説明する。図1Aにおいて、回転子軸3を回転子ハブ4の中心部に嵌め込んで一体に組み付ける。図1Bに示すように、複数に分割された板状マグネット6の第一接着部6aに所定時間で硬化する第一接着剤8aを各々塗布する。第一接着剤8aは、例えば紫外線硬化型若しくは嫌気硬化型の接着剤或いは瞬間接着剤のうち少なくともいずれかが用いられる。また、板状マグネット6の第一接着部6aに隣接する第二接着部6bに第一接着剤8aより硬化時間を要するが接着強度が高い第二接着剤8bを各々塗布する。第二接着剤8bは、例えば熱硬化型のエポキシ樹脂系接着剤が用いられる。
 また、第一,第二接着剤8a,8bを塗布する工程は、図1Bに示すように、板状マグネット6の接着面6cに直接塗布する場合に限らず、少なくともいずれか一方の接着剤を回転子ヨーク5の被接着面(内周面5a)に間接的に塗布する場合も含まれる。即ち、図1B´において、回転子ヨーク5の一端開口側より第一接着部6aに対応する内周面に第一接着剤8aを周回して塗布し、板状マグネット6の第二接着部6bに第二接着剤8bを塗布するようにしてもよい。
 次に、図1C,C´に示すように、回転子ヨーク5の内周面5aに板状マグネット6を径方向及び軸方向に位置決めする櫛歯状の仕切り部材10bが環状連結部10aに連結された位置決め部材10を装着する。仕切り部材10bを回転子ヨーク5の他端開口側より挿入しフランジ部10cが開口端に突き当たるまで挿入する。
 次いで、位置決め部材10が装着された回転子ヨーク5の仕切り部材10b間に板状マグネット6を一端開口側より各々挿入して第一接着剤8a及び第二接着剤8bを介して回転子ヨーク5の内周面5aに所定間隔で配置する。回転子ヨーク5に板状マグネット6を接着した状態を図1Dに示す。
 図1Dの状態で、板状マグネット6に塗布された第一接着剤8aを硬化させて当該板状マグネット6を第一接着部6aにて回転子ヨーク5に対して仮固定する。具体的には、紫外線硬化性の接着剤の場合には、第一接着剤8aに紫外線を照射し、嫌気性接着剤の場合には外気と遮断し或いは瞬間接着剤の場合には板状マグネット6と接触することで硬化させて板状マグネット6を回転子ヨーク5に対して仮固定する。
 尚、第一接着剤8aは、紫外線硬化型若しくは嫌気硬化型の接着剤又は瞬間接着剤のうち少なくともいずれかが用いられればよく、例えば紫外線硬化性の接着剤と嫌気性接着剤が混在しているものであってもよい。この場合には、紫外線照射により板状マグネット6の端面の接着剤が硬化することにより外気と遮断され、それより内部(空隙部9内部:図3B2参照)の接着剤が嫌気状態となって硬化する。
 次に図1Eに示すように、板状マグネット6が仮固定された回転子ヨーク5より、不要な位置決め部材10を他端開口より抜き取る。
 次いで図2Aに示すように、図1Aで組み立てた回転子ハブ4及び回転子軸3を回転子ヨーク5の一端開口に嵌め込んで一体に組み付け回転子1を組み立てる。回転子1組み立て後の状態を図2Bに示す。
 次にエポキシ樹脂系の第二接着剤8bを100℃から180℃の範囲内の所定温度で加熱硬化させて、板状マグネット6を第二接着部6bにて回転子ヨーク5の内周面に対して本固定する。
 尚、複数の板状マグネット6は回転子ヨーク5内に接着される前に着磁されているか若しくは回転子ヨーク5内に接着された後に着磁されるかいずれでもよい。
 板状マグネット6が予め着磁されていると、回転子ヨーク5に挿入する際に互いに吸引し合って吸着するおそれがあるが、位置決め部材10を用いることにより、そのような不具合が発生することはない。また、板状マグネット6が回転子ヨーク5の内周面5aに接着された後に着磁されるようにすれば、板状マグネット6の組み付け作業がし易くなり、熱減磁の影響も受けにくくなる。
 以上により回転子1が製造され、固定子2に組み付けられてモータMが製造される。具体的には、図2Cに示すように回転子1は回転子軸3を固定子2の軸受ハウジング2aに挿入されて図示しない軸受により回転可能に支持される。回転子ヨーク5の板状マグネット6が固定子コア7の固定子極歯7bと対向配置されて回転可能に組み付けられる。固定子2に回転子1を組み付けたモータMを図2Dに示す。
 また、インナーロータ型モータの回転子1の場合には、図4A,A´に示すように第一,第二接着剤8a,8bの塗布の仕方が異なるだけで、同様な工程を経て回転子1を製造することができる。
 即ち、図4A,A´に示すように回転子軸3を中心として柱状に組み付けられた回転子ヨーク5の外周面5bに板状マグネット6を径方向及び軸方向に位置決めする櫛歯状の仕切り部材10bが環状連結部10aで連結された位置決め部材10を装着する。図4Aに示すように、回転子ヨーク5の第一接着部6aに対応する外周面5bに第一接着剤8aを周回して塗布し、板状マグネット6の第二接着部6bに対応する接着面6cに第二接着剤8bを塗布するようにしてもよい。或いは図4A´に示すように、板状マグネット6の接着面6cに仮固定用の第一接着剤8aを各々塗布し、第二接着部6bに第二接着剤8bを各々塗布してもよい。
 次に、図4A,A´に示すように、回転子ヨーク5の外周面5bに板状マグネット6を径方向及び軸方向に位置決めする櫛歯状の仕切り部材10bが環状連結部10aに連結された位置決め部材10を装着する。仕切り部材10bを回転子ヨーク5の外周面5bに沿って嵌め合わせて環状連結部10aが回転子ヨーク5の端面に突き当たるまで嵌め込む。
 次いで、位置決め部材10が装着された回転子ヨーク5の仕切り部材10b間に板状マグネット6を各々挿入して第一接着剤8a及び第二接着剤8bを介して回転子ヨーク5の外周面5bに位置決めして所定間隔で配置する。回転子ヨーク5に板状マグネット6を接着した状態を図4Bに示す。
 図4Bの状態で、板状マグネット6に塗布された第一接着剤8aを硬化させて当該板状マグネット6を第一接着部6aにて回転子ヨーク5に対して仮固定する。具体的には、紫外線硬化性の接着剤の場合には、第一接着剤8aに紫外線を照射し、嫌気性接着剤の場合には外気と遮断し或いは瞬間接着剤の場合には板状マグネット6と接触することで硬化させて板状マグネット6を回転子ヨーク5に対して仮固定する。
 次に図4Cに示すように、板状マグネット6が仮固定された回転子ヨーク5より、不要な位置決め部材10を他端開口より抜き取ることで回転子1を組み立てる。
 最後にエポキシ樹脂系の第二接着剤8bを100℃から180℃の所定温度で加熱硬化させて、板状マグネット6を第二接着部6bにて回転子ヨーク5の外周面5bに対して本固定する。以上によりインナーロータ型モータの回転子1が製造される。
 尚、複数の板状マグネット6は回転子ヨーク5に接着される前に着磁されているか若しくは回転子ヨーク5内に接着された後に着磁されるかいずれでもよい。
 上述した回転子1の製造方法によれば、回転子ヨーク5に径方向及び軸方向に位置決めする櫛歯状の仕切り部材10bが環状連結部10aに連結された位置決め部材10を装着することで板状マグネット6を仕切り部材10b間で径方向及び軸方向に位置決めして配置することができる。
 また、板状マグネット6に塗布された第一接着剤8aを硬化させて当該板状マグネット6を第一接着部6aにて回転子ヨーク5に対して仮固定してから、当該回転子ヨーク5より位置決め部材10を抜き取ることができ、本来不要である位置決め部材10を省略することで部品点数を減らし製造コストを低減し回転子1の軽量化を実現することができる。
 また、位置決め部材10を回転子ヨーク5から除去した後で、板状マグネット6に塗布された第二接着剤8bを加熱硬化させて回転子ヨーク5に対して本固定するので、板状マグネット6を位置精度よく接着固定することができる。
 以上説明したように、部品点数を減らし製造コストを低減し軽量化を実現した回転子1を提供することができる。また、複数の板状マグネット6の径方向及び軸方向の位置決めを行なって位置精度良く回転子ヨーク5に接着固定することができる組立性の良い回転子の製造方法を提供することができる。
 また、上記回転子1を用いて、安価で組立性がよくモータ特性を維持することができるモータMを提供することができる。

 

Claims (13)

  1.  回転子ヨークの周面に周方向で複数に分割された板状マグネットを所定間隔で備えた回転子であって、
     各板状マグネットの接着面に所定時間で硬化する第一接着剤が塗布された第一接着部と前記第一接着剤より硬化時間を要するが接着強度が高い第二接着剤が塗布された第二接着部が隣接して形成されており、
     前記回転子ヨークの周面に径方向及び軸方向に位置決めする位置決め部材を介して複数の前記板状マグネットが所定間隔で前記第一接着剤を硬化させて前記第一接着部で仮固定され、前記位置決め部材が除去された状態で前記第二接着剤を硬化させて複数の前記板状マグネットどうしが周方向に所定の隙間を介して前記第二接着部で接着固定されていることを特徴とする回転子。
  2.  前記板状マグネットは表面が防錆処理された希土類磁石であり、回転子ヨークとマグネット間の隙間に、前記第一接着剤及び第二接着剤を介在させている請求項1記載の回転子。
  3.  前記板状マグネットの接着面において第一接着剤が塗布される第一接着部と第二接着剤が塗布される第二接着部の面積は、第二接着部が第一接着部と同等かそれより大きい面積を有する請求項1又は請求項2記載の回転子。
  4.  前記第一接着剤は紫外線硬化型若しくは嫌気硬化型の接着剤又は瞬間接着剤のうち少なくともいずれかが用いられ、前記第二接着剤は熱硬化型の接着剤が用いられる請求項1乃至請求項3のいずれかに記載の回転子。
  5.  前記板状マグネットは、平板状マグネットであり、前記回転子ヨークの湾曲面と前記板状マグネットの平板面との間に形成される空隙部を前記第一接着剤及び第二接着剤の接着剤溜り部として接着剤層が形成されている請求項1乃至請求項4のいずれかに記載の回転子。
  6.  カップ状に形成される回転子ヨークの内周面に周方向に複数に分割された板状マグネットを所定間隔で固定されたアウターロータ型モータの回転子である請求項1乃至請求項5のいずれかに記載の回転子。
  7.  円柱状に形成される回転子ヨークの外周面に周方向に複数に分割された板状マグネットを所定間隔で固定されたインナーロータ型モータの回転子である請求項1乃至請求項5のいずれかに記載の回転子。
  8.  請求項1乃至請求項7のいずれかに記載の回転子と、当該回転子の板状マグネットに対向する固定子極歯を有する固定子と、を備えたことを特徴とするモータ。
  9.  複数に分割された板状マグネットの接着面に所定時間で硬化する第一接着剤を各々塗布する工程と、
     前記板状マグネットの接着面に前記第一接着剤より硬化時間を要するが接着強度が高い第二接着剤を各々塗布する工程と、
     前記回転子ヨークの周面に前記板状マグネットを径方向及び軸方向に位置決めする櫛歯状の仕切り部材が環状に連結された位置決め部材を装着する工程と、
     前記位置決め部材が装着された前記回転子ヨークの仕切り部材間に、前記板状マグネットを前記仕切り部材間に位置決めして前記第一接着剤及び前記第二接着剤を介して前記回転子ヨークの周面に所定間隔で配置する工程と、
     前記板状マグネットに塗布された前記第一接着剤を硬化させて当該板状マグネットを第一接着部にて前記回転子ヨークに対して仮固定する工程と、
     前記回転子ヨークより前記位置決め部材を抜き取る工程と、
     前記第二接着剤を硬化させて前記板状マグネットを第二接着部にて前記回転子ヨークに対して本固定する工程と、を含むことを特徴とする回転子の製造方法。
  10.  筒状の回転子ヨークの内周面に前記板状マグネットを径方向及び軸方向に位置決めする櫛歯状の仕切り部材が環状連結部に連結された位置決め部材を装着する工程と、
     複数の前記板状マグネットを前記仕切り部材間に各々挿入すると共に第一接着剤及び第二接着剤を介して前記回転子ヨークの内周面に位置決めして所定間隔で配置する工程と、
     前記回転子ヨークに回転子ハブ及び回転子軸を一体に組み付ける工程と、を含む請求項9記載のアウターロータ型モータの回転子の製造方法。
  11.  回転子軸を中心とする回転子ヨークの外周面に前記板状マグネットを径方向及び軸方向に位置決めする櫛歯状の仕切り部材が環状連結部に連結された位置決め部材を装着する工程と、
     複数の前記板状マグネットを前記仕切り部材間に各々挿入すると共に前記第一接着剤及び前記第二接着剤を介して前記回転子ヨークの外周面に位置決めして所定間隔で配置する工程と、を含む請求項9記載のインナーロータ型モータの回転子の製造方法。
  12.  第一接着剤は紫外線硬化型若しくは嫌気硬化型接着剤又は瞬間接着剤のうち少なくともいずれかを用いて板状マグネットを回転子ヨークに対して仮固定する請求項9乃至請求項11のいずれかに記載の回転子の製造方法。
  13.  複数の板状マグネットは回転子ヨーク内に接着される前に着磁されているか若しくは前記回転ヨーク内に接着された後に着磁される請求項9乃至請求項12のいずれかに記載の回転子の製造方法。

     
PCT/JP2021/002133 2020-04-07 2021-01-22 回転子、回転子の製造方法及びモータ WO2021205706A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/802,813 US20230137688A1 (en) 2020-04-07 2021-01-22 Rotor, method of producing the rotor, and motor
CN202180025855.8A CN115398780A (zh) 2020-04-07 2021-01-22 转子、转子的制造方法和马达

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-069094 2020-04-07
JP2020069094A JP7208945B2 (ja) 2020-04-07 2020-04-07 回転子、回転子の製造方法及びモータ

Publications (1)

Publication Number Publication Date
WO2021205706A1 true WO2021205706A1 (ja) 2021-10-14

Family

ID=78022279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002133 WO2021205706A1 (ja) 2020-04-07 2021-01-22 回転子、回転子の製造方法及びモータ

Country Status (4)

Country Link
US (1) US20230137688A1 (ja)
JP (1) JP7208945B2 (ja)
CN (1) CN115398780A (ja)
WO (1) WO2021205706A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197774U (ja) * 1981-06-11 1982-12-15
JPS6146151A (ja) * 1984-08-09 1986-03-06 Toshiba Corp 永久磁石付回転子の製造方法
JPS63228949A (ja) * 1987-03-17 1988-09-22 Toshiba Corp 永久磁石付回転子の製造方法
JPH0678483A (ja) * 1992-08-26 1994-03-18 Fuji Electric Co Ltd 磁気ディスク用スピンドルモータ
JP2008236895A (ja) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd 表面磁石型ロータおよびその製造方法
JP2013183537A (ja) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp 永久磁石式モータのロータおよびそのロータの製造方法
JP2015159639A (ja) * 2014-02-21 2015-09-03 ファナック株式会社 回転子鉄心の外周面に貼り付けられた磁石を備える電動機の回転子、電動機、及び電動機の回転子の製造方法
JP2019033591A (ja) * 2017-08-08 2019-02-28 マブチモーター株式会社 アウタロータ型ブラシレスモータ
JP2020054175A (ja) * 2018-09-28 2020-04-02 日本電産株式会社 モータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6146151B2 (ja) 2013-06-14 2017-06-14 三菱化学株式会社 ポリカーボネート樹脂の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197774U (ja) * 1981-06-11 1982-12-15
JPS6146151A (ja) * 1984-08-09 1986-03-06 Toshiba Corp 永久磁石付回転子の製造方法
JPS63228949A (ja) * 1987-03-17 1988-09-22 Toshiba Corp 永久磁石付回転子の製造方法
JPH0678483A (ja) * 1992-08-26 1994-03-18 Fuji Electric Co Ltd 磁気ディスク用スピンドルモータ
JP2008236895A (ja) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd 表面磁石型ロータおよびその製造方法
JP2013183537A (ja) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp 永久磁石式モータのロータおよびそのロータの製造方法
JP2015159639A (ja) * 2014-02-21 2015-09-03 ファナック株式会社 回転子鉄心の外周面に貼り付けられた磁石を備える電動機の回転子、電動機、及び電動機の回転子の製造方法
JP2019033591A (ja) * 2017-08-08 2019-02-28 マブチモーター株式会社 アウタロータ型ブラシレスモータ
JP2020054175A (ja) * 2018-09-28 2020-04-02 日本電産株式会社 モータ

Also Published As

Publication number Publication date
JP7208945B2 (ja) 2023-01-19
CN115398780A (zh) 2022-11-25
US20230137688A1 (en) 2023-05-04
JP2021166439A (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
KR100909197B1 (ko) 회전자 및 그 제조 방법
US10498202B2 (en) Manufacturing method for rotor for rotary electric machine
JP2001169483A (ja) 分割コアモータ
JP2002064965A (ja) インナーロータ形電動機用ロータアセンブリ、インナーロータ形電動機及びインナーロータ形電動機の製造方法
KR20060133373A (ko) 전동기의 마그네트 고정 구조
JP6689416B2 (ja) 回転子、電動機、空気調和装置、および回転子の製造方法
JP4930127B2 (ja) 表面磁石型ロータおよびその製造方法
JP2012130218A (ja) 回転電機
US6339275B1 (en) Rotor, method for assembling rotor, and motor using the rotor
JP7396291B2 (ja) ロータ、ロータの製造方法、モータ
JP4678321B2 (ja) ロータの製造方法及び電動パワーステアリング用モータ
JP2005354768A (ja) 表面磁石型界磁ロータ及びそれを利用したモータ
WO2021205706A1 (ja) 回転子、回転子の製造方法及びモータ
WO2021205707A1 (ja) 回転子、回転子の製造方法及びモータ
WO2018138914A1 (ja) アキシャルギャップ型回転電機
JP2013183537A (ja) 永久磁石式モータのロータおよびそのロータの製造方法
JP4925851B2 (ja) モータ及びディスク駆動用モータ
JP6668443B1 (ja) 2相中空ステッピングモータ
JP2001078376A (ja) 回転電機用磁石回転子
JP4348606B2 (ja) アキシャルギャップ型電動機
JPH11113197A (ja) 電動機の回転子およびその製造方法
JPH11252839A (ja) ロータの磁石位置決め方法
JP2006230093A (ja) マグネットモータ
JP2006191735A (ja) モータの製造方法
WO2021186973A1 (ja) モータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785470

Country of ref document: EP

Kind code of ref document: A1