WO2021199840A1 - 脂肪族ポリエステル系生分解性樹脂用分解促進剤、生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法 - Google Patents

脂肪族ポリエステル系生分解性樹脂用分解促進剤、生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法 Download PDF

Info

Publication number
WO2021199840A1
WO2021199840A1 PCT/JP2021/007757 JP2021007757W WO2021199840A1 WO 2021199840 A1 WO2021199840 A1 WO 2021199840A1 JP 2021007757 W JP2021007757 W JP 2021007757W WO 2021199840 A1 WO2021199840 A1 WO 2021199840A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium sulfate
aliphatic polyester
basic magnesium
biodegradable resin
resin composition
Prior art date
Application number
PCT/JP2021/007757
Other languages
English (en)
French (fr)
Inventor
哲生 高山
稲垣 徹
加藤 裕三
Original Assignee
宇部マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マテリアルズ株式会社 filed Critical 宇部マテリアルズ株式会社
Priority to KR1020227032670A priority Critical patent/KR20220143922A/ko
Priority to DE112021002123.0T priority patent/DE112021002123T5/de
Priority to CN202180023205.XA priority patent/CN115315473B/zh
Priority to US17/913,287 priority patent/US20230167267A1/en
Priority to JP2022511678A priority patent/JP7382490B2/ja
Publication of WO2021199840A1 publication Critical patent/WO2021199840A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3063Magnesium sulfate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a decomposition accelerator for an aliphatic polyester-based biodegradable resin, a biodegradable resin composition, and a method for promoting the decomposition of an aliphatic polyester-based biodegradable resin.
  • a biodegradable resin composition having various properties enhanced while maintaining biodegradability has been proposed. For example, by blending wallastnite as an inorganic filler into an aliphatic polyester resin (polybutylene succinate-lactic acid copolymer), a resin composition with enhanced rigidity, heat resistance and impact resistance while maintaining biodegradability. The thing is disclosed (see, for example, Patent Document 1).
  • Aliphatic polyester obtained by the polycondensation method from aliphatic dicarboxylic acid and glycol is known as a chemically synthesized biodegradable plastic.
  • succinic acid-based biodegradable resins such as polybutylene succinate adipate (PBSA) have marine degradability, it is desired to further enhance marine degradability. Since this PBSA is soft, its rigidity is low, and its use is limited. There is a demand for a biodegradable resin composition which has better marine decomposability than the conventional one and can obtain a molded product having a high flexural modulus.
  • an object of the present invention is to provide a method for promoting the decomposition of an aliphatic polyester-based biodegradable resin.
  • the decomposition accelerator for an aliphatic polyester-based biodegradable resin according to the present invention contains basic magnesium sulfate.
  • the biodegradable resin composition according to the present invention contains polybutylene succinate adipate and basic magnesium sulfate.
  • the method for accelerating the decomposition of the aliphatic polyester-based biodegradable resin according to the present invention includes adding basic magnesium sulfate to the aliphatic polyester-based biodegradable resin and then kneading.
  • a biodegradable resin composition capable of obtaining a decomposition accelerator for an aliphatic polyester-based biodegradable resin having a higher effect than before, an excellent marine degradability, and a molded product having a high bending elasticity.
  • a method for promoting the decomposition of an aliphatic polyester-based biodegradable resin can be provided.
  • basic magnesium sulfate has an action of promoting the decomposition of an aliphatic polyester-based biodegradable resin, particularly polybutylene succinate adipate (PBSA).
  • PBSA polybutylene succinate adipate
  • the resin composition obtained by blending polybutylene succinate adipate (PBSA) with basic magnesium sulfate is decomposed in seawater more than before.
  • PBSA polybutylene succinate adipate
  • a molded product having a high flexural modulus can be obtained.
  • Basic magnesium sulfate is represented by MgSO 4 ⁇ 5Mg (OH) 2 ⁇ 3H 2 O, for example, sodium hydroxide, magnesium hydroxide, magnesium oxide, as raw materials and an alkaline substance and magnesium sulfate, such as calcium hydroxide, It can be obtained by hydrothermal synthesis.
  • the basic magnesium sulfate either fibrous basic magnesium sulfate or fan-shaped basic magnesium sulfate may be used. Fibrous basic magnesium sulfate is preferable, but fibrous basic magnesium sulfate and fan-like basic magnesium sulfate can also be used in combination.
  • the fibrous basic magnesium sulfate has an average fiber length generally in the range of 2 to 100 ⁇ m, preferably 5 to 50 ⁇ m, and an average fiber diameter of generally 0.1 to 2.0 ⁇ m, preferably 0.1 to 1.0 ⁇ m. The range.
  • the fibrous basic magnesium sulfate generally has an average aspect ratio (average fiber length / average fiber diameter) of 2 or more, preferably 3 to 1000, more preferably 3 to 100, and particularly preferably 5 to 50.
  • the average fiber length and average fiber diameter of fibrous basic magnesium sulfate can be calculated from the average number of each of the fiber length and fiber diameter measured by image analysis from a magnified image by a scanning electron microscope (SEM). can.
  • the fan-shaped basic magnesium sulfate is a particle in which a part of a plurality of fibrous basic magnesium sulfate is joined and connected in a fan shape.
  • the average particle length is 2 to 100 ⁇ m
  • the average particle width is 1 to 40 ⁇ m
  • the average aspect ratio is. It is about 1 to 100.
  • the average particle length refers to the dimension in the longitudinal direction of the particle
  • the average particle width refers to the maximum dimension in the lateral direction of the particle.
  • the longitudinal direction of the particles is the direction in which the particle length is maximized
  • the lateral direction of the particles is the direction orthogonal to the longitudinal direction.
  • the average aspect ratio is a ratio (average particle length / average particle diameter).
  • Each fibrous basic magnesium sulfate constituting the fan-shaped basic magnesium sulfate has an average fiber length of 2 to 100 ⁇ m, an average fiber diameter of 0.1 to 5 ⁇ m, and an average aspect ratio of 1 to 1000.
  • the plurality of fibrous basic magnesium sulfates are bundled at one end and spread at the other end, for example. Further, the plurality of fibrous basic magnesium sulfates may be bundled at an arbitrary position in the longitudinal direction and have spreads at both ends.
  • Such fan-shaped basic magnesium sulfate can be produced and confirmed according to the methods described in, for example, Japanese Patent Publication No. 4-36092 and Japanese Patent Publication No. 6-99147.
  • the fan-shaped basic magnesium sulfate does not necessarily have to be in a state in which individual fibrous basic magnesium sulfates are confirmed, and in some cases, fibrous basic magnesium sulfates are bonded to each other in the longitudinal direction. May be good. If it is confirmed that the fibrous basic magnesium sulfate having the above-mentioned shape and further having an average fiber length, an average fiber diameter, and an average aspect ratio in a predetermined range is contained, the fan-shaped base used in the present invention is used. It can be regarded as magnesium sulfate.
  • Wallastnite and the like are known as an inorganic filler blended in a biodegradable resin in order to improve physical characteristics. Since wallastonite is insoluble in seawater, it is released into the ocean as a decomposition residue of biodegradable resin. In this case, the accumulation of released wallastnite may cause unexpected problems.
  • biodegradable resin to which the decomposition accelerator of the present invention is applied examples include an aliphatic polyester-based biodegradable resin which is a polycondensate of an aliphatic dicarboxylic acid and glycol.
  • examples of the aliphatic dicarboxylic acid include succinic acid and adipic acid, and an aliphatic polyester-based biodegradable resin synthesized by polycondensation of these and glycol can be preferably used.
  • succinic acid-based biodegradable resin examples include polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and polybutylene succinate lactate (PBSL).
  • PBS polybutylene succinate
  • PBSA polybutylene succinate adipate
  • PBSL polybutylene succinate lactate
  • PBSLC polybutylene succinate hydrocaproate
  • PBSC polybutylene succinate carbonate
  • PBST polybutylene succinate terephthalate
  • PBS-co-DEGS polybutylene succinate diethylene glycol succinate
  • PBS-co-BDGA Polybutylene succinate butylene
  • PBSF polybutylene succinate fluoride
  • adipic acid-based biodegradable resin examples include polybutylene adipate (PBA), polybutylene adipate terephthalate (PBAT), and polyethylene adipate terephthalate (PEAT).
  • PBA polybutylene adipate
  • PBAT polybutylene adipate terephthalate
  • PEAT polyethylene adipate terephthalate
  • One type of these biodegradable resins may be used alone, or a plurality of them may be used.
  • the decomposition accelerator of the present invention containing basic magnesium sulfate is particularly effective in promoting the decomposition of PBSA.
  • the basic magnesium sulfate is preferably present in a proportion of 1 to 70% of the total mass of the aliphatic polyester-based biodegradable resin and the basic magnesium sulfate, more preferably 1 to 50%.
  • Other components may be present as long as they do not interfere with the decomposition of the aliphatic polyester-based biodegradable resin.
  • PBSA Polybutylene succinate adipate
  • the biodegradable resin composition of the present invention contains polybutylene succinate adipate (PBSA).
  • PBSA polybutylene succinate adipate
  • PBSA polybutylene succinate adipate
  • PBSA is particularly excellent in marine decomposability and resin physical characteristics, and can be synthesized by a polycondensation method using, for example, 1,4-butanediol, succinic acid and adipic acid. ..
  • PBSA and basic magnesium sulfate are first mixed.
  • a tumbler, a blender, a Henschel mixer or the like can be used for mixing.
  • the content of basic magnesium sulfate in the biodegradable resin composition is preferably 1 to 70%, preferably 1 to 50%, assuming that the total mass of PBSA and basic magnesium sulfate is 100. More preferable.
  • the biodegradable resin composition of the present invention can be obtained by melt-kneading the obtained mixture at 160 to 210 ° C. using a twin-screw kneader or the like. Since the biodegradable resin composition of the present invention contains basic magnesium sulfate, it has higher marine degradability than before. Moreover, by using the biodegradable resin composition of the present invention, it is possible to produce a molded product having a high flexural modulus.
  • the biodegradable resin composition of the present invention may contain other components as long as the effects of the present invention are not impaired.
  • a rolling molding machine (calendar molding machine or the like), a vacuum molding machine, an extrusion molding machine, an injection molding machine, a blow molding machine, a press molding machine or the like can be used.
  • the molded product of the present invention is a soft biodegradable plastic.
  • Soft biodegradable plastics can be used in film / sheet products for packaging materials such as agricultural multi-films and garbage bags.
  • the molded product of the present invention is suitably used in a wide range of applications such as packaging materials for packaging various foods, chemicals, miscellaneous goods and other liquids, powders and solids, agricultural materials, and building materials.
  • Specific applications include, for example, injection molded products (for example, fresh food trays, coffee capsules, fast food containers, outdoor leisure products, etc.), extruded products (films, for example, fishing threads, fishing nets, vegetation nets, water retention sheets, etc.). Etc.), hollow molded products (bottles, etc.) and the like.
  • information and electronic materials such as toner binders and ink binders for thermal transfer, automobile interior parts such as electrical product housings, instrument panels, seats and pillars, and automobile exterior structural materials such as bumpers, front grilles and wheel covers. It can also be used for parts and the like.
  • packaging materials such as packaging films, bags, trays, capsules, bottles, cushioning foams, fish boxes and the like, and agricultural materials. Examples of agricultural materials include mulching films, tunnel films, house films, sunshades, weed-proof sheets, ridge sheets, germination sheets, vegetation mats, nursery beds, flower pots and the like.
  • the biodegradable resin composition of the present invention has excellent marine decomposability, and the flexural modulus can be adjusted by the content of basic magnesium sulfate, so that molded bodies for various purposes can be obtained. ..
  • ⁇ Basic magnesium sulfate> A-1 Fibrous basic magnesium sulfate Mosheidi A-1, manufactured by Ube Material Industries Ltd., average major axis 15 ⁇ m, average minor axis 0.5 ⁇ m, average aspect ratio 30
  • A-2 Fan-shaped basic magnesium sulfate, average particle length 33.0 ⁇ m, average particle width 6.0 ⁇ m, average aspect ratio 5.5
  • PBSA Polybutylene succinate adipate
  • B Polybutylene succinate adipate (BioPBS FD92PM, manufactured by PTT MCC Biochem)
  • ⁇ Inorganic filler> C Wallast Night
  • Example 2 The resin of Example 2 in the same manner as in Example 1 except that the fibrous basic magnesium sulfate (A-1) was changed to 10 parts by mass and the polybutylene succinate adipate (B) was changed to 90 parts by mass. The composition was obtained.
  • Example 3 The resin of Example 3 in the same manner as in Example 1 except that the fibrous basic magnesium sulfate (A-1) was changed to 30 parts by mass and the polybutylene succinate adipate (B) was changed to 70 parts by mass. The composition was obtained.
  • Example 4 The resin of Example 4 in the same manner as in Example 1 except that the fibrous basic magnesium sulfate (A-1) was changed to 50 parts by mass and the polybutylene succinate adipate (B) was changed to 50 parts by mass. The composition was obtained.
  • Example 5 The resin composition of Example 5 was obtained in the same manner as in Example 1 except that the fibrous basic magnesium sulfate (A-1) was changed to the same amount of fan-shaped basic magnesium sulfate (A-2).
  • Example 6 The resin composition of Example 6 was obtained in the same manner as in Example 2 except that the fibrous basic magnesium sulfate (A-1) was changed to the same amount of fan-shaped basic magnesium sulfate (A-2).
  • Example 7 The resin composition of Example 7 was obtained in the same manner as in Example 3 except that the fibrous basic magnesium sulfate (A-1) was changed to the same amount of fan-shaped basic magnesium sulfate (A-2).
  • Comparative example 2 A resin composition of Comparative Example 2 was obtained in the same manner as in Example 3 except that the fibrous basic magnesium sulfate (A-1) was changed to the same amount of wallastonite (C).
  • Table 1 summarizes the compounding compositions of the resin compositions of Examples and Comparative Examples.
  • Each resin composition is molded using a small injection molding machine (C. Mobile 0813, manufactured by Shinko Selvik Co., Ltd.) to obtain a strip test piece (length 50 mm, width 5 mm, thickness 2 mm) for evaluation of mechanical properties. rice field.
  • C. Mobile 0813 manufactured by Shinko Selvik Co., Ltd.
  • Example 3 and Comparative Example 1 The compacts obtained in Example 3 and Comparative Example 1 were pulverized by freezing and pulverization to prepare a powder sample.
  • the total oxygen consumption (TOD) of the test sample was 95.4 mgO 2 .
  • the oxygen consumption after 30 days (BOD (biochemical oxygen demand) was measured, and the degree of biodegradation (%) was calculated by ((BOD) / (TOD) ⁇ 100).
  • Table 2 below shows the flexural modulus of the molded product using each resin composition.
  • Comparative Example 2 even when an inorganic filler such as wallastonite is blended, the flexural modulus can be increased as compared with the case where it is not blended (Comparative Example 1). However, wallastonite is inferior in biodegradation and does not decompose in the ocean.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本発明に係る脂肪族ポリエステル系生分解性樹脂用分解促進剤は、塩基性硫酸マグネシウムを含む。

Description

脂肪族ポリエステル系生分解性樹脂用分解促進剤、生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法
 本発明は、脂肪族ポリエステル系生分解性樹脂用分解促進剤、生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法に関する。
 近年、投棄されたプラスチックによる海洋汚染が地球規模の大きな問題となっている。海洋投棄されたプラスチックは、長期間形状を保つので、海洋生物の摂食障害など生態系への影響が指摘されている。また、紫外線などにより微細化したマイクロプラスチックは、海洋生物の摂取により食物連鎖に影響を与え、最終的には人体に対しても有害となるおそれがある。地球全体でSDGsが意識されるなか、生分解性プラスチック、特に海洋分解性を有する生分解性プラスチックが求められている。
 生分解性を維持しつつ、種々の特性を高めた生分解性樹脂組成物が提案されている。例えば、無機充填剤としてのワラストナイトを脂肪族ポリエステル樹脂(ポリブチレンサクシネート-乳酸コポリマー)に配合することによって、生分解性を維持しつつ、剛性、耐熱性および衝撃耐性を高めた樹脂組成物が開示されている(例えば、特許文献1参照)。
 また、ポリブチレンサクシネート(PBS)に扇状塩基性硫酸マグネシウムを配合することによって、PBSの機械特性(曲げ弾性率)を向上させたことが報告されている(例えば、非特許文献1参照)。
特開2007-99794号公報
Ind. Eng. Chem. Res. 2017, 56, 3516-3526
 脂肪族ジカルボン酸とグリコールから重縮合法で得られる脂肪族ポリエステルは化学合成系生分解性プラスチックとして知られている。ポリブチレンサクシネート・アジペート(PBSA)をはじめとするコハク酸系生分解性樹脂は、海洋分解性を備えているものの、よりいっそう海洋分解性を高めることが望まれている。このPBSAは軟質であるために剛性が低く、用途が限られてしまう。従来よりも優れた海洋分解性を備えるとともに、曲げ弾性率の高い成形体が得られる生分解性樹脂組成物が求められている。
 そこで本発明は、従来より高い効果を有する脂肪族ポリエステル系生分解性樹脂用分解促進剤、優れた海洋分解性を備えるとともに、曲げ弾性率の高い成形体が得られる生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法を提供することを目的とする。
 本発明に係る脂肪族ポリエステル系生分解性樹脂用分解促進剤は、塩基性硫酸マグネシウムを含む。
 本発明に係る生分解性樹脂組成物は、ポリブチレンサクシネート・アジペートと、塩基性硫酸マグネシウムとを含有する。
 本発明に係る脂肪族ポリエステル系生分解性樹脂の分解促進方法は、脂肪族ポリエステル系生分解性樹脂に塩基性硫酸マグネシウムを添加し、次いで混練することを含む。
 本発明によれば、従来より高い効果を有する脂肪族ポリエステル系生分解性樹脂用分解促進剤、優れた海洋分解性を備えるとともに、曲げ弾性率の高い成形体が得られる生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法を提供することができる。
 本発明者は鋭意研究の結果、塩基性硫酸マグネシウムが、脂肪族ポリエステル系生分解性樹脂、特にポリブチレンサクシネート・アジペート(PBSA)の分解を促進する作用を有することを見出した。ポリブチレンサクシネート・アジペート(PBSA)に塩基性硫酸マグネシウムを配合して得られた樹脂組成物は、海水中での分解が従来よりも促進される。しかも、係る樹脂組成物を用いることによって、曲げ弾性率の高い成形体を得ることができる。本発明は、こうした知見に基づいて成されたものである。
 以下、本発明の実施形態を詳細に説明する。
<塩基性硫酸マグネシウム>
 塩基性硫酸マグネシウムは、MgSO・5Mg(OH)2・3H2Oで表され、例えば、水酸化ナトリウム、水酸化マグネシウム、酸化マグネシウム、水酸化カルシウムなどのアルカリ性物質と硫酸マグネシウムとを原料として、水熱合成により得ることができる。塩基性硫酸マグネシウムとしては、繊維状塩基性硫酸マグネシウムおよび扇状塩基性硫酸マグネシウムのいずれを用いてもよい。繊維状塩基性硫酸マグネシウムが好ましいが、繊維状塩基性硫酸マグネシウムと扇状塩基性硫酸マグネシウムとを併用することもできる。
 繊維状塩基性硫酸マグネシウムは、平均繊維長が一般に2~100μm、好ましくは5~50μmの範囲であり、平均繊維径が一般に0.1~2.0μm、好ましくは0.1~1.0μmの範囲である。繊維状塩基性硫酸マグネシウムは、平均アスペクト比(平均繊維長/平均繊維径)が一般に2以上、好ましくは3~1000、より好ましくは3~100、特に好ましくは5~50の範囲である。なお、繊維状塩基性硫酸マグネシウムの平均繊維長および平均繊維径は、走査型電子顕微鏡(SEM)による拡大画像から画像解析により測定した繊維長および繊維径のそれぞれの個数平均値から算出することができる。
 扇状塩基性硫酸マグネシウムは、複数の繊維状塩基性硫酸マグネシウムの一部が接合されて扇状に連なった粒子であり、例えば、その平均粒子長2~100μm、平均粒子幅1~40μm、平均アスペクト比1~100程度である。ここで、平均粒子長とは、粒子の長手方向の寸法を指し、平均粒子幅とは、粒子の短手方向の最大寸法を指す。粒子の長手方向とは粒子長が最大となる方向であり、粒子の短手方向とは長手方向と直交する方向である。また、平均アスペクト比とは、比(平均粒子長/平均粒子径)である。
 扇状塩基性硫酸マグネシウムを構成しているそれぞれの繊維状塩基性硫酸マグネシウムは、平均繊維長2~100μm、平均繊維径0.1~5μm、平均アスペクト比1~1000である。複数の繊維状塩基性硫酸マグネシウムは、例えば一端で束ねられ、他端で広がりを有する。また、複数の繊維状塩基性硫酸マグネシウムは、長手方向における任意の位置で束ねられて、両端で広がりを有していてもよい。こうした扇状塩基性硫酸マグネシウムは、例えば、特公平4-36092号公報、および特公平6-99147号公報等に記載されている方法に従って製造し、確認することができる。
 また、扇状塩基性硫酸マグネシウムは、必ずしも個々の繊維状塩基性硫酸マグネシウムが確認される状態である必要はなく、一部において繊維状塩基性硫酸マグネシウム同士が長手方向にて接合した状態であってもよい。上述のような形状を有し、さらに所定範囲の平均繊維長、平均繊維径、および平均アスペクト比を有する繊維状塩基性硫酸マグネシウムが含まれることが確認されれば、本発明で用いられる扇状塩基性硫酸マグネシウムとみなすことができる。
 なお、物理特性を向上させるために生分解性樹脂に配合される無機充填剤として、ワラストナイトなどが知られている。ワラストナイトは海水には溶解しないので、生分解性樹脂の分解残留物として海洋中に放出される。この場合には、放出されたワラストナイトが蓄積する事によって予期せぬ問題が発生する可能性がある。
 これに対して塩基性硫酸マグネシウムは、海水中で分解して残留物が生じないので、そのような問題を回避することができる。塩基性硫酸マグネシウムは、海水中で硫酸マグネシウム(MgSO4)と水酸化マグネシウム(Mg(OH)2)とに分解する。硫酸マグネシウムは海水中に溶解し、水酸化マグネシウムは、雰囲気に存在する酸性成分と反応してMg塩として溶解するものと推測される。
<生分解性樹脂>
 本発明の分解促進剤が適用される生分解性樹脂としては、脂肪族ジカルボン酸とグリコールとの重縮合物である脂肪族ポリエステル系生分解性樹脂が挙げられる。脂肪族ジカルボン酸としては、コハク酸やアジピン酸が挙げられ、これらとグリコールとの重縮合によって合成される脂肪族ポリエステル系生分解性樹脂が好適に用いることができる。
 コハク酸系生分解性樹脂としては、例えばポリブチレンサクシネート(PBS)、ポリブチレンサクシネート・アジペート(PBSA)、およびポリブチレンサクシネート・ラクテート(PBSL)が挙げられる。さらに、ポリブチレンサクシネート・ヒドロカプロエート(PBSLC)、ポリブチレンサクシネート・カルボネート(PBSC)、ポリブチレンサクシネート・テレフタレート(PBST)、ポリブチレンサクシネート・ジエチレングリコールサクシネート(PBS-co-DEGS)、ポリブチレンサクシネート・ブチレン(PBS-co-BDGA)、およびポリブチレンサクシネート・フルオネート(PBSF)等が挙げられる。
 アジピン酸系生分解性樹脂としては、ポリブチレンアジペート(PBA)、ポリブチレンアジペート・テレフタレート(PBAT)、ポリエチレンアジペート・テレフタレート(PEAT)が挙げられる。
 これらの生分解性樹脂は、1種類を単独で用いても良いし、複数を用いても良い。塩基性硫酸マグネシウムを含む本発明の分解促進剤は、上述した生分解性樹脂のなかでも、特にPBSAの分解促進に効果を発揮する。
 脂肪族ポリエステル系生分解性樹脂に塩基性硫酸マグネシウムを添加し、次いで混練することによって、脂肪族ポリエステル系生分解性樹脂の分解を促進することができる。この場合、塩基性硫酸マグネシウムは、脂肪族ポリエステル系生分解性樹脂と塩基性硫酸マグネシウムとの合計質量の1~70%の割合で存在することが望まれ、1~50%がより好ましい。脂肪族ポリエステル系生分解性樹脂の分解を妨げない範囲であれば、他の成分が存在していてもよい。
<ポリブチレンサクシネート・アジペート(PBSA)>
 本発明の生分解性樹脂組成物には、ポリブチレンサクシネート・アジペート(PBSA)が含有される。ポリブチレンサクシネート・アジペート(PBSA)は、海洋分解性および樹脂物性等が特に優れており、例えば1,4-ブタンジオール、コハク酸およびアジピン酸を用いて、重縮合法により合成することができる。
<生分解性樹脂組成物の製造方法>
 本発明の生分解性樹脂組成物の製造に当たっては、まず、PBSAと塩基性硫酸マグネシウムとを混合する。混合には、タンブラー、ブレンダー、ヘンシェルミキサー等を用いることができる。生分解性樹脂組成物における塩基性硫酸マグネシウムの含有量は、PBSAと塩基性硫酸マグネシウムとの合計質量を100とした場合、1~70%であることが好ましく、1~50%であることがより好ましい。
 得られた混合物を、二軸混練機等を用いて160~210℃で溶融混練することによって、本発明の生分解性樹脂組成物が得られる。本発明の生分解性樹脂組成物には、塩基性硫酸マグネシウムが配合されているので、従来よりも高められた海洋分解性を備えている。しかも、本発明の生分解性樹脂組成物を用いることによって、曲げ弾性率の高い成形体を製造することが可能である。
 本発明の生分解性樹脂組成物には、本発明の効果を損なわない範囲で、他の成分を配合してもよい。
<成形体>
 本発明の生分解性樹脂組成物を成形することによって、種々の成形体を製造することができる。樹脂組成物の成形には、例えば圧延成形機(カレンダー成形機など)、真空成形機、押出成形機、射出成形機、ブロー成形機、プレス成形機などを用いることができる。
 PBSAを含有する樹脂組成物を用いて製造されるので、本発明の成形体は、軟質生分解性プラスチックとなる。軟質生分解性プラスチックは、農業用マルチフィルムやゴミ袋等、包装資材のフィルム/シート製品に使用することができる。
 本発明の成形体は、各種食品、薬品、雑貨等の液状物や粉粒物、固形物を包装するための包装用資材、農業用資材、建築資材等幅広い用途において好適に用いられる。具体的用途としては、例えば、射出成形品(例えば、生鮮食品のトレー、コーヒーカプセル、ファーストフードの容器、野外レジャー製品等)、押出成形品(フィルム、例えば、釣り糸、漁網、植生ネット、保水シート等)、中空成形品(ボトル等)等が挙げられる。
 さらに、その他農業用のフィルム、コーティング資材、肥料用コーティング材、ラミネートフィルム、板、延伸シート、モノフィラメント、不織布、フラットヤーン、ステープル、捲縮繊維、筋付きテープ、スプリットヤーン、複合繊維、ブローボトル、ショッピングバッグ、ゴミ袋、コンポスト袋、化粧品容器、洗剤容器、漂白剤容器、ロープ、結束材、衛生用カバーストック材、保冷箱、クッション材フィルム、マルチフィラメント、合成紙、医療用として手術糸、縫合糸、人工骨、人工皮膚、マイクロカプセル等のドラッグデリバリーシステム(DDS)、創傷被覆材等が挙げられる。
 またさらに、トナーバインダー、熱転写用インキバインダー等の情報電子材料、電気製品筐体、インストルメントパネル、シート、ピラー等の自動車内装部品、バンパー、フロントグリル、ホイールカバー等の自動車外装構造材料等の自動車部品等に使用することもできる。中でもより好ましいのは、包装用資材、例えば、包装用フィルム、袋、トレー、カプセル、ボトル、緩衝用発泡体、魚箱等、および、農業用資材等である。農業用資材としては、例えば、マルチングフィルム、トンネルフィルム、ハウスフィルム、日覆い、防草シート、畦シート、発芽シート、植生マット、育苗床、植木鉢等が挙げられる。
 上述したとおり本発明の生分解性樹脂組成物は、優れた海洋分解性を備えるとともに、塩基性硫酸マグネシウムの含有量により曲げ弾性率を調整できるため、様々な用途の成形体を得ることができる。
 以下に本発明の具体例を示すが、これらは本発明を限定するものではない。
 用いる原料を以下にまとめる。
<塩基性硫酸マグネシウム>
A-1 :繊維状塩基性硫酸マグネシウム モスハイジA-1、宇部マテリアルズ(株)製、平均長径15μm、平均短径0.5μm、平均アスペクト比30
A-2 :扇状塩基性硫酸マグネシウム、平均粒子長33.0μm、平均粒子幅6.0μm、平均アスペクト比5.5
<ポリブチレンサクシネート・アジペート(PBSA)>
B :ポリブチレンサクシネート・アジペート(BioPBS FD92PM、PTT MCCBiochem製)
<無機充填剤>
C :ワラストナイト
 <実施例1>
 繊維状塩基性硫酸マグネシウム(A-1)5質量部、ポリブチレンサクシネート・アジペート(B)95部を混合した。得られた混合物を、二軸溶融混練押出機(L/D=25、(株)井元製作所製)を用いて160℃で溶融混練して、実施例1の樹脂組成物を得た。
 <実施例2>
 繊維状塩基性硫酸マグネシウム(A-1)を10質量部に変更し、ポリブチレンサクシネート・アジペート(B)を90質量部に変更した以外は実施例1と同様にして、実施例2の樹脂組成物を得た。
 <実施例3>
 繊維状塩基性硫酸マグネシウム(A-1)を30質量部に変更し、ポリブチレンサクシネート・アジペート(B)を70質量部に変更した以外は実施例1と同様にして、実施例3の樹脂組成物を得た。
 <実施例4>
 繊維状塩基性硫酸マグネシウム(A-1)を50質量部に変更し、ポリブチレンサクシネート・アジペート(B)を50質量部に変更した以外は実施例1と同様にして、実施例4の樹脂組成物を得た。
 <実施例5>
 繊維状塩基性硫酸マグネシウム(A-1)を同量の扇状塩基性硫酸マグネシウム(A-2)に変更した以外は実施例1と同様にして、実施例5の樹脂組成物を得た。
 <実施例6>
 繊維状塩基性硫酸マグネシウム(A-1)を同量の扇状塩基性硫酸マグネシウム(A-2)に変更した以外は実施例2と同様にして、実施例6の樹脂組成物を得た。
 <実施例7>
 繊維状塩基性硫酸マグネシウム(A-1)を同量の扇状塩基性硫酸マグネシウム(A-2)に変更した以外は実施例3と同様にして、実施例7の樹脂組成物を得た。
 <比較例1>
 塩基性硫酸マグネシウム(A)を配合せず、ポリブチレンサクシネート・アジペート(B)単味を比較例1とした。
 <比較例2>
 繊維状塩基性硫酸マグネシウム(A-1)を同量のワラストナイト(C)に変更した以外は実施例3と同様にして、比較例2の樹脂組成物を得た。
 下記表1には、実施例および比較例の樹脂組成物の配合組成をまとめる。
Figure JPOXMLDOC01-appb-T000001
<試験片の作製>
 小型射出成形機(C.Mobile0813、(株)新興セルビック製)を用いて各樹脂組成物を成形して、力学物性評価用の短冊試験片(長さ50mm、幅5mm、厚さ2mm)を得た。
 <曲げ弾性率の評価>
 万能力学試験機((株)イマダ製)を用いて、JISK7171に準拠した方法で3点曲げ試験を行った。支点間距離は40mm、負荷速度は10mm/minとした。得られた荷重たわみ曲線から、曲げ弾性率を評価した。
<海洋分解性試験>
 実施例3、比較例1で得られた成形体を冷凍粉砕により粉砕して、粉末試料を調製した。粉末試料(実施例3は76mg、比較例1は53mg)と200mLの天然海水(福岡県福岡市で採取)を密閉容器に収容し、30℃恒温槽中にて撹拌した。被験試料の全酸素消費量(TOD)は、95.4mgO2とした。30日後の酸素消費量(BOD(生物化学的酸素要求量)を測定し、((BOD)/(TOD)×100)によって生分解度(%)を算出した。
 下記表2には、各樹脂組成物を用いた成形体の曲げ弾性率を示す。
Figure JPOXMLDOC01-appb-T000002
 ポリブチレンサクシネート・アジペートに塩基性硫酸マグネシウムを配合することによって、曲げ弾性率が向上することが、実施例1~7と比較例1との比較からわかる。塩基性硫酸マグネシウムの配合量が多いほど、曲げ弾性率は向上している。
 また、塩基性硫酸マグネシウムが配合されることによって、海洋分解性は著しく向上している。
 比較例2に示されるように、ワラストナイトのような無機充填剤を配合した場合も、未配合時(比較例1)より曲げ弾性率を高めることができる。しかしながら、ワラストナイトは生分解度が劣る上、海洋中で分解することもない。

Claims (8)

  1.  塩基性硫酸マグネシウムを含む脂肪族ポリエステル系生分解性樹脂用分解促進剤。
  2.  前記脂肪族ポリエステル系生分解性樹脂が、脂肪族ジカルボン酸とグリコールとの重縮合物である請求項1記載の脂肪族ポリエステル系生分解性樹脂用分解促進剤。
  3.  前記脂肪族ポリエステル系生分解性樹脂は、ポリブチレンサクシネート・アジペートである請求項2記載の脂肪族ポリエステル系生分解性樹脂用分解促進剤。
  4.  前記塩基性硫酸マグネシウムは、少なくとも一部が繊維状塩基性硫酸マグネシウムである請求項1乃至3のいずれか1項記載の脂肪族ポリエステル系生分解性樹脂用分解促進剤。
  5.  前記塩基性硫酸マグネシウムは、少なくとも一部が扇状塩基性硫酸マグネシウムである請求項1乃至3のいずれか1項記載の脂肪族ポリエステル系生分解性樹脂用分解促進剤。
  6.  ポリブチレンサクシネート・アジペートと、塩基性硫酸マグネシウムとを含有する生分解性樹脂組成物。
  7.  前記ポリブチレンサクシネート・アジペートと前記塩基性硫酸マグネシウムとの合計質量を100とした場合、前記塩基性硫酸マグネシウムの含有量は、1~70%である請求項6記載の生分解性樹脂組成物。
  8.  脂肪族ポリエステル系生分解性樹脂に塩基性硫酸マグネシウムを添加し、次いで混練することを含む脂肪族ポリエステル系生分解性樹脂の分解促進方法。

     
PCT/JP2021/007757 2020-03-30 2021-03-01 脂肪族ポリエステル系生分解性樹脂用分解促進剤、生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法 WO2021199840A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227032670A KR20220143922A (ko) 2020-03-30 2021-03-01 지방족 폴리에스테르계 생분해성 수지용 분해 촉진제, 생분해성 수지 조성물, 및 지방족 폴리에스테르계 생분해성 수지의 분해 촉진 방법
DE112021002123.0T DE112021002123T5 (de) 2020-03-30 2021-03-01 Abbaupromotoren für biologisch abbaubares aliphatisches Polyesterharz, biologisch abbaubare Harzzusammensetzung und Verfahren zum Beschleunigen des Abbaus von biologisch abbaubarem aliphatischem Polyesterharz
CN202180023205.XA CN115315473B (zh) 2020-03-30 2021-03-01 生物可分解性树脂组成物及树脂的分解促进方法
US17/913,287 US20230167267A1 (en) 2020-03-30 2021-03-01 Degradation promoter for aliphatic polyester biodegradable resin, biodegradable resin composition, and method for promoting degradation of aliphatic polyester biodegradable resin
JP2022511678A JP7382490B2 (ja) 2020-03-30 2021-03-01 脂肪族ポリエステル系生分解性樹脂用分解促進剤、生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-059410 2020-03-30
JP2020059410 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021199840A1 true WO2021199840A1 (ja) 2021-10-07

Family

ID=77930305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007757 WO2021199840A1 (ja) 2020-03-30 2021-03-01 脂肪族ポリエステル系生分解性樹脂用分解促進剤、生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法

Country Status (7)

Country Link
US (1) US20230167267A1 (ja)
JP (1) JP7382490B2 (ja)
KR (1) KR20220143922A (ja)
CN (1) CN115315473B (ja)
DE (1) DE112021002123T5 (ja)
TW (1) TWI830009B (ja)
WO (1) WO2021199840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145665A1 (ja) * 2022-01-25 2023-08-03 宇部マテリアルズ株式会社 生分解性樹脂組成物、成形体、および生分解樹脂組成物の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122438A (ja) * 1990-09-14 1992-04-22 Nippon Chem Ind Co Ltd 空気浄化剤およびその製造方法
JPH06200280A (ja) * 1992-09-25 1994-07-19 Oiles Ind Co Ltd 複層摺動部材
JP2005307128A (ja) * 2004-04-26 2005-11-04 Mitsui Chemicals Inc ポリ乳酸系樹脂組成物
JP2010155392A (ja) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp 生分解性樹脂積層体及びその製造方法
JP2010270309A (ja) * 2009-04-24 2010-12-02 Sumitomo Chemical Co Ltd 樹脂組成物の製造方法及び成形体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256920A (ja) 1985-05-07 1986-11-14 Ube Ind Ltd 扇状マグネシウムオキシサルフエ−トおよびその製法
JP4609268B2 (ja) 2005-09-30 2011-01-12 三菱化学株式会社 脂肪族ポリエステル樹脂組成物
JP2009013362A (ja) 2007-07-09 2009-01-22 Mitsubishi Chemicals Corp 生分解性樹脂組成物及びその成型品
TWI525046B (zh) * 2011-03-02 2016-03-11 宇部材料股份有限公司 Fibrous alkaline magnesium sulfate powder and method for producing the same
CN106008931B (zh) 2016-06-08 2017-09-19 青岛科技大学 一种pbs/碱式硫酸镁晶须复合材料及制备方法
JPWO2018193893A1 (ja) * 2017-04-17 2020-02-27 宇部マテリアルズ株式会社 ポリオレフィン樹脂組成物及びポリオレフィン樹脂組成物成形体
WO2020138222A1 (ja) * 2018-12-27 2020-07-02 宇部マテリアルズ株式会社 ポリカーボネート樹脂組成物及びその製造方法、マスターバッチペレット、並びに成形体
KR20210141580A (ko) * 2019-03-18 2021-11-23 우베 마테리알즈 가부시키가이샤 폴리카보네이트 수지 조성물 및 그 제조 방법, 마스터배치 펠릿, 및 성형체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122438A (ja) * 1990-09-14 1992-04-22 Nippon Chem Ind Co Ltd 空気浄化剤およびその製造方法
JPH06200280A (ja) * 1992-09-25 1994-07-19 Oiles Ind Co Ltd 複層摺動部材
JP2005307128A (ja) * 2004-04-26 2005-11-04 Mitsui Chemicals Inc ポリ乳酸系樹脂組成物
JP2010155392A (ja) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp 生分解性樹脂積層体及びその製造方法
JP2010270309A (ja) * 2009-04-24 2010-12-02 Sumitomo Chemical Co Ltd 樹脂組成物の製造方法及び成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145665A1 (ja) * 2022-01-25 2023-08-03 宇部マテリアルズ株式会社 生分解性樹脂組成物、成形体、および生分解樹脂組成物の製造方法

Also Published As

Publication number Publication date
JPWO2021199840A1 (ja) 2021-10-07
US20230167267A1 (en) 2023-06-01
TWI830009B (zh) 2024-01-21
TW202204502A (zh) 2022-02-01
JP7382490B2 (ja) 2023-11-16
KR20220143922A (ko) 2022-10-25
CN115315473A (zh) 2022-11-08
CN115315473B (zh) 2023-12-22
DE112021002123T5 (de) 2023-01-12

Similar Documents

Publication Publication Date Title
CN108102318B (zh) 可生物分解的薄膜材料
ES2333382T3 (es) Nueva composicion polimerica biodegradable util para la preparacion de plastico biodegradable y proceso para la preparacion de dicha composicion.
Tang et al. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials
US7619025B2 (en) Biodegradable polymeric nanocomposite compositions particularly for packaging
KR101802362B1 (ko) 무기항균제를 함유한 항균성 폴리락트산계 압출발포시트 및 그를 이용한 생분해성 항균 발포 성형품
JP7139351B2 (ja) 生分解性フィルム
CN113597442A (zh) 生物降解性树脂组合物的制造方法
JP7110228B2 (ja) 生分解性フィルム
JP7382490B2 (ja) 脂肪族ポリエステル系生分解性樹脂用分解促進剤、生分解性樹脂組成物、および脂肪族ポリエステル系生分解性樹脂の分解促進方法
ES2673023T5 (es) Plástico biodigestible, biocompostable y biodegradable
US20100076099A1 (en) Biodegradable polymeric nanocomposite compositions particularly for packaging
Ghosh et al. Green composites based on aliphatic and aromatic polyester: opportunities and application
JP7421635B2 (ja) 生分解性樹脂組成物
JP7240775B1 (ja) 樹脂組成物及び成形品
Jiménez et al. Nano-biocomposites for food packaging
Nasrollahzadeh et al. Application of biopolymers in bioplastics
Ibrahim et al. Overview of Bioplastic Introduction and Its Applications in Product Packaging. Coatings 2021, 11, 1423
WO2023145665A1 (ja) 生分解性樹脂組成物、成形体、および生分解樹脂組成物の製造方法
Ameer Ali et al. Polylactic acid-based nanocomposites: an important class of biodegradable composites
KR20230078010A (ko) 곡물이 함유된 생분해성 조성물 및 이를 이용한 가공품 제조방법
JP4476469B2 (ja) 生分解性フィルム
TR2023007733T2 (tr) İnorgani̇k katki i̇çeren poli̇meri̇k terki̇pler ve bunlarin üreti̇m yöntemi̇
WO2024024361A1 (ja) 生分解性樹脂用可塑剤、それを含む樹脂組成物及び成形品
JP2001031134A (ja) 生分解性フィルム及びこれを用いた生分解性袋
JP4132955B2 (ja) 微生物崩壊性樹脂組成物および成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511678

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227032670

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21781473

Country of ref document: EP

Kind code of ref document: A1