WO2021197722A1 - Elektrische lotverbindung, sensor mit einer lotverbindung und verfahren zur herstellung - Google Patents

Elektrische lotverbindung, sensor mit einer lotverbindung und verfahren zur herstellung Download PDF

Info

Publication number
WO2021197722A1
WO2021197722A1 PCT/EP2021/054901 EP2021054901W WO2021197722A1 WO 2021197722 A1 WO2021197722 A1 WO 2021197722A1 EP 2021054901 W EP2021054901 W EP 2021054901W WO 2021197722 A1 WO2021197722 A1 WO 2021197722A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
contact pad
solder connection
solder
opening
Prior art date
Application number
PCT/EP2021/054901
Other languages
English (en)
French (fr)
Inventor
Bettina MILKE
Erkan ESER
Original Assignee
Tdk Electronics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Electronics Ag filed Critical Tdk Electronics Ag
Priority to JP2022509070A priority Critical patent/JP2022544548A/ja
Priority to CN202180004968.XA priority patent/CN114206534A/zh
Priority to US17/630,350 priority patent/US20220295633A1/en
Publication of WO2021197722A1 publication Critical patent/WO2021197722A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/147Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/041Solder preforms in the shape of solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder

Definitions

  • the application relates to a solder connection, a sensor with the solder connection and a method for producing the solder connection.
  • it relates to a solder connection with a temperature-sensitive contact point.
  • Sensor components have sensitive structures, for example functional layers that are sensitive to pressure or temperature.
  • Wire bonding processes for example, are used to contact sensor components. Often, however, the space in a sensor component is limited. Then these methods can only be used to a limited extent, since wire bonding requires additional installation space in the area of the contact surface to be contacted.
  • wire bonding processes lead to connections that are not mechanically stable enough, that can easily tear and are particularly sensitive to vibrations or other mechanical loads during the operation of such a sensor component.
  • the object of the present invention is to provide a soldered connection which can be produced with less space requirement and the production of which produces only a low temperature input into the contact pad to be contacted. Another object is to specify a sensor component whose electrical connection can be made with little space requirement and which leads to a mechanically sufficiently stable electrical connection.
  • a solder connection is specified which is formed between a contact pad on a first surface and a strip-shaped conductor.
  • the conductor has a widening at one end and an opening therethrough.
  • a solder ball is arranged in the opening and connects the end of the conductor to the contact pad in an electrically conductive manner.
  • the strip-shaped conductor is designed to be flat and therefore only requires a small overall height, so that the solder connection including the supply line can be made compact.
  • the solder ball is arranged in the opening so that it fills the opening.
  • the area with which the solder contacts the contact pad is predetermined by the opening with regard to the size and the exact position relative to the strip-shaped conductor. With the exact size of the solder ball, the amount of heat transferred with the application of the solder can also be adjusted.
  • the contact pad can be part of a temperature-sensitive component and, for example, represent its electrical connection pad. Then, with a correspondingly large or small dimensioned solder ball, the amount of heat that can be transferred to the component when the solder connection is made and that is thermally stressed can be minimized or set to a sufficiently low value.
  • the strip-shaped conductor can be designed as a conductor track on a likewise strip-shaped substrate.
  • the through opening then extends through the widening of the conductor track and through the substrate.
  • This embodiment has the advantage that the mechanical properties of the conductor can be adjusted through a suitable selection of the substrate material. For example, it is possible to flexibly design the conductor itself using a flexible substrate. In this way it is possible to adapt the course of the ladder to the given spatial conditions.
  • the conductor can connect the contact pad to any other contact which, due to the flexible configuration, can be arranged in a wide variety of orientations relative to the contact pad.
  • the conductor is particularly suitable for the electrical connection of the contact pad to a contact arranged in spatial proximity. This spatially close contact can be provided on a circuit board.
  • the conductor then connects the contact pad and thus an electrical component to a circuit board.
  • the substrate can be electrically insulating, so that the conductor is protected against a short circuit on one side when it comes into contact with another conductive element.
  • the conductor track itself can additionally be provided with a protective layer which passivates or electrically isolates the surfaces of the conductor track not resting on the substrate. At least the inside of the opening is free of the protective layer in order to enable sufficient electrical contact between the conductor track and the solder ball.
  • the conductor has a conductor track comprising Cu, which is provided with a solderable coating in the area of the opening.
  • the solderable coating in the area of the opening can comprise Au or any other metal with a solderable surface.
  • a surface that can be soldered is understood to be wettability with liquid solder, which is a prerequisite for producing a mechanically stable solder connection.
  • the strip-shaped conductor is designed as a conductor track on a likewise strip-shaped carrier made of polyimide.
  • a sufficiently mechanically stable soldered connection for electrical contacting purposes can be achieved with a conductor in which the diameter of the opening is between 50 ⁇ m and 1 mm.
  • the conductor can be designed to be flexible and take any course between the contact and the contact pad or be adapted to the spatial conditions.
  • the conductor can be parallel to the first surface with the Contact pad run off.
  • the conductor can also have a course which assumes an acute or right angle with respect to the first surface.
  • the contact pad can have a thickness of 50 nm to 500 nm. This is sufficient for contacting electrical components or passive components such as sensors, which only have a relatively low power requirement
  • an electrical component is designed as a sensor which is in contact with a circuit environment via the conductor with a solder connection as described above.
  • the sensor can then have a sensor housing in which the following components are arranged:
  • a contact pad which is connected to the functional layer or to a conductive structure on or in the functional layer
  • the conductor connects the contact pad and thus the functional layer of the sensor with the m-processor on the board by means of the solder connection.
  • Contact and contact pad can comprise Ni and / or Au.
  • the contact pad can be located on an expansion body, which can represent the functional layer and is solid (for example made of steel, glass or ceramic) or flexible (for example made of a plastic film such as PI, thin glass or ceramic paper).
  • the expansion body expands with it increasing temperature and can thus act with a temperature-dependent strength on the functional layer of the sensor element.
  • the sensor element which includes the functional layer
  • the circuit board which includes the control and / or evaluation electronics required for the sensor function, can be arranged together in the common sensor housing in a minimal space.
  • the sensor can be designed as a temperature sensor and comprise a thermistor material as a functional layer.
  • the circuit board for determining the temperature-dependent electrical resistance is then formed in the functional layer from thermistor material.
  • sensors for measuring an electrical resistance or pressure sensors are sensors for measuring an electrical resistance or pressure sensors.
  • the sensor can also be designed as a microphone.
  • a method of making the solder joint can include the following steps:
  • a strip-shaped conductor which has a widening at one end with a through opening therein, is placed on the contact pad in such a way that the opening is arranged above the contact pad,
  • Laser solder jet bonding or solder ball bumping is a process that was originally derived from the inkjet printing process.
  • a solid solder ball of a defined size is loaded into a cannula that is open to the outside and is arranged in a print head of a solder jet device.
  • the solder ball is then liquefied by the rapid supply of heat and, for example, jetted out of the cannula by means of a gas flow.
  • the method is particularly suitable for “printing” liquid solder balls of precisely sized size at certain points. Small solder points can be produced in this way. It is also possible to produce solder structures in a desired geometry and dimensions by printing several solder balls at defined locations.
  • the print head of the solder jet device can move to a desired location on a surface to be printed in a very short time and print or deposit one or more solder balls there.
  • a locally accurate depositing of a solder ball in the continuous opening of the conductor is achieved in such a way that a solder connection is established between the conductor and the contact pad.
  • the solder ball can adapt to the geometry of the through opening.
  • Figure 1 shows a surface with a contact pad
  • Figure 2 shows a strip-shaped conductor in plan view
  • FIG. 3 shows a strip-shaped conductor according to FIG. 2 after it has been placed on the surface according to FIG. 1
  • FIG. 4 shows from FIG. 3 after a solder ball has been introduced into the opening
  • FIG. 5 shows the temperature / time behavior at a soldering point during different soldering techniques
  • FIG. 6A shows a strip-shaped conductor in a plan view from above
  • FIG. 6B shows the strip-shaped conductor from FIG. 6A in a cross section
  • FIG. 7 shows a sensor in the sensor housing of which a flexible strip-shaped conductor is electrically connected to a contact via a solder connection.
  • FIG. 1 shows a surface OF with a contact pad KP applied thereon.
  • the surface is, for example, the surface of a functional layer of a sensor element and can for example comprise a thermistor material such as an NTC or a PTC material.
  • the contact pad is made of metal such as Al or Ni and has a solderable coating on. Alternatively, the contact pad can also consist entirely of solderable metal.
  • a thickness of the contact pad of 50 nm to 500 nm is sufficient.
  • Figure 2 shows a flat strip-shaped conductor SL in plan view.
  • One end of the strip-shaped conductor has a widening VB in which a through opening OE is arranged. At least the inner edges of the opening are provided with a solderable coating LB.
  • the solderable coating can overlap the conductor at the edge of the opening.
  • the conductor SL can, as shown, have a round outline as seen from above. Accordingly, the opening can also have a round opening cross-section.
  • the side walls of the opening can be vertical.
  • the outline of the widening can, however, also have a different and, for example, rectangular shape.
  • the conductor can comprise Cu.
  • the solderable coating can comprise Au.
  • the conductor can be made entirely of metal. However, it can also be designed as a conductor track on a likewise strip-shaped substrate STS. Preferably, conductor SL, conductor track LB and substrate STS are designed to be flexible.
  • FIG. 3 shows a strip-shaped conductor SL according to FIG. 2 from above, which was placed on the surface OF according to FIG. 1 in such a way that the contact pad KP is arranged below the opening OE.
  • the opening is preferably centered on the contact pad, so that the contact pad completely fills the cross-sectional area of the opening when viewed from above.
  • FIG. 4 shows the arrangement of FIG. 3 after a solder ball SB has been introduced into the opening OE and the conductor has been soldered to the contact pad via the solderable coating LB.
  • the solder ball largely fills the opening and can, however, also protrude beyond its upper edge.
  • the tear-off force of the solder connection can be adjusted.
  • Corresponding solder balls can then have a diameter of 50 ⁇ m to 1 mm. With solder balls with a diameter of 350 ⁇ m, for example, solid solder connections can be obtained that withstand shear forces of up to approx. 300 cN per solder ball. The pull-off forces that can be achieved with this are correspondingly high, which are also around 300 cN per solder ball.
  • the melting point of the solder and thus the temperature resistance of the solder joint can be adjusted.
  • the solder alloy Au80Sn20 the solder connection can be set stable up to 280 °.
  • Other alloys allow low melting points down to a minimum of 100 ° C.
  • a preferred method for producing the solder connection is laser solder jet bonding. With this method, there is only a short and selective thermal load on the surface and not a complete load on the component / surface over a longer period of time.
  • FIG. 5 shows a comparison of the temperature / time behavior on a solder connection during different
  • Curve 3 illustrates the temperature behavior over the time from here, for example 60 seconds, which are required for secure soldering.
  • Curve 2 stands for a solder iron soldering process in which the solder is melted with a heating head via pressure contact.
  • the thermal load is shorter compared to reflow soldering, but cannot be controlled as well.
  • Curve 1 has only a single narrow temperature peak, as is usually measured in laser solder jet bonding. This shows that the thermal load occurs only selectively and very briefly ( ⁇ ls), and that the amount of heat introduced only corresponds to that of the printed liquid solder ball, which is low and is distributed very quickly by means of dissipation.
  • Laser-Solder-Jet-Bonding has the further advantage that it can be carried out without contact. This means that there is no mechanical stress on the surface or even on the solder connection during the soldering process.
  • FIG. 6A shows a strip-shaped conductor in a plan view from above, as already shown in FIG.
  • FIG. 6B shows the strip-shaped conductor SL from FIG. 6A in a cross section along the line AA 'shown in FIG. 6A.
  • the cross section shows a likewise strip-shaped substrate STS on which a thin conductor track LB is applied.
  • the substrate is, for example, a polyimide film, which can also absorb mechanical stress from bending or vibration without damage.
  • the opening OE in the conductor track LB also goes through the STS with the same cross-section. It can be seen here that the solderable coating BL completely covers the side walls of the conductor track in the opening.
  • FIG. 7 shows a sensor in the sensor housing of which a flexible strip-shaped conductor SL electrically connects a contact pad on a functional layer FS of a sensor element to a contact on a circuit board PCB via a solder connection.
  • the functional layer is the functional core of the sensor element and is located within a sensor housing GH.
  • the circuit board PCB is arranged in the housing in close proximity to the sensor element. It can be arranged anywhere to the surface of the functional layer, e.g. as shown or also vertically to it.
  • the flexible strip-shaped conductor SL also enables curved or angled conductor runs without being damaged.
  • the functional layer is arranged at one end of the housing, on the so-called sensor head SK.
  • the sensor head can be designed for pressure contact, which can, for example, determine the temperature of a surface by pressing the sensor head against it.
  • the sensor head can also be immersed in a medium for measurement or determine the temperature of the atmosphere.
  • soldered connection presented is also suitable for any other sensors. It is characterized by its small footprint and ease of manufacture. The manufacturing process can take place without mechanical and thermal stress on the soldering point and is therefore particular suitable for mechanically and thermally sensitive components or sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Es wird eine Lotverbindung vorgeschlagen, die ein Kontaktpad (KP) auf einer ersten Oberfläche (OF) mit einem streifenförmigen Leiter (SL) verbindet. Der streifenförmige Leiterweist an einem Ende eine Verbreiterung (VB) und darin eine durchgehende Öffnung (OE) auf. Eine Lotkugel (SB) ist in der Öffnung angeordnet ist und verbindet das Ende des Leiters mit dem Kontaktpad.

Description

Beschreibung
Elektrische Lotverbindung, Sensor mit einer Lotverbindung und Verfahren zur Herstellung
Die Anmeldung betrifft eine Lotverbindung, einen Sensor mit der Lotverbindung und ein Verfahren zur Herstellung der Lotverbindung. Insbesondere betrifft sie eine Lotverbindung mit einer temperaturempfindlichen Kontaktstelle.
Es existieren elektrische Bauelemente, die empfindlich gegen Druck und/oder Temperatur sind. Zum elektrischen Kontaktieren solcher Bauelemente ist zum einen darauf zu achten, dass die elektrische Anbindung ohne zu große mechanische Belastung und außerdem mit nur geringem Temperatureintrag erfolgt.
Sensor Bauelemente weisen empfindliche Strukturen auf, beispielsweise funktionale Schichten die empfindlich gegen Druck oder Temperatur sind. Zum Kontaktieren von Sensor- Bauelementen werden beispielsweise Drahtbondverfahren eingesetzt. Oft ist jedoch in einem Sensor Bauelement der Raum begrenz. Dann sind diese Verfahren nur beschränkt anwendbar, da das Drahtbonden zusätzlichen Bauraum im Bereich der zu kontaktierenden Kontaktfläche benötigt.
Außerdem führen Drahtbondverfahren zu mechanisch nicht ausreichend stabilen Verbindungen, die leicht abreißen können und insbesondere auch empfindlich gegen Vibrationen oder sonstige mechanische Belastung während des Betriebs eines solchen Sensorbauelements sind.
Andere Kontaktierverfahren wie beispielsweise Flip-Chip Bonden durch Reflowlöten können die Sensoreigenschaften beeinflussen oder verändern und sind daher meist auch nicht geeignet .
Aufgabe der vorliegenden Erfindung ist es, eine Lötverbindung anzugeben, die mit weniger Raumbedarf herstellbar ist und deren Erzeugung einen nur geringen Temperatureintrag in das zu kontaktierende Kontaktpad erzeugt. Eine weitere Aufgabe besteht darin, ein Sensor Bauelement anzugeben, dessen elektrische Anbindung mit geringem Platzbedarf erfolgen kann und die zu einer mechanisch ausreichend stabilen elektrischen Anbindung führt.
Zumindest ein Teil dieser Aufgaben wird durch ein Bauelement nach Anspruch 1 und ein Verfahren zur Herstellung nach dem weiteren unabhängigen Anspruch gelöst.
Es wird eine Lotverbindung angegeben, die zwischen einem Kontaktpad auf einer ersten Oberfläche und einem streifenförmigen Leiter ausgebildet ist. Der Leiter weist an einem Ende eine Verbreiterung und darin eine durchgehende Öffnung auf. In der Öffnung ist eine Lotkugel angeordnet, die das Ende des Leiters mit dem Kontaktpad elektrisch leitend verbindet .
Der streifenförmige Leiter ist flach ausgebildet und benötigt daher nur geringe Bauhöhe, so dass die Lotverbindung samt Zuleitung kompakt ausgeführt werden kann. Die Lotkugel ist in der Öffnung so angeordnet, dass sie die Öffnung ausfüllt. Durch die Öffnung ist die Fläche, mit der das Lot das Kontaktpad kontaktiert, bezüglich der Größe und der genauen Lage relativ zum streifenförmigen Leiter vorgegeben. Mit der genauen Größe der Lotkugel kann auch die mit dem Aufbringen des Lots übertragene Wärmemenge eingestellt werden. Das Kontaktpad kann ein Teil eines temperaturempfindlichen Bauteils sein und z.B. dessen elektrisches Anschlusspad darstellen. Dann kann mit einer entsprechend groß bzw. klein bemessenen Lotkugel die Wärmemenge, die beim Herstellen der Lotverbindung auf das Bauteil übertragen und diese thermisch belasten kann, minimiert werden oder auf einen ausreichend niedrigen Wert eingestellt werden.
Der streifenförmige Leiter kann als Leiterbahn auf einem ebenfalls streifenförmigen Substrat ausgebildet sein. Dabei erstreckt sich dann die durchgehende Öffnung durch die Verbreiterung der Leiterbahn und durch das Substrat hindurch. Diese Ausführung hat den Vorteil, dass die mechanischen Eigenschaften des Leiters über eine geeignete Auswahl des Substratmaterials eingestellt werden können. So ist z.B. möglich, den Leiter selbst mittels eines flexiblen Substrats flexibel auszubilden. Auf diese Weise ist es möglich, den Leiter in seinem Verlauf den gegebenen Raumverhältnissen anzupassen .
Der Leiter kann das Kontaktpad mit einem beliebigen anderen Kontakt verbinden, der durch die flexible Ausgestaltung in unterschiedlichsten Ausrichtungen relativ zum Kontaktpad angeordnet sein kann. Der Leiter ist insbesondere zur elektrischen Verbindung des Kontaktpads mit einem in räumlicher Nähe angeordneten Kontakt geeignet. Dieser räumlich nahe Kontakt kann auf einer Leiterplatte vorgesehen sein. Der Leiter verbindet dann das Kontaktpad und damit ein elektrisch Bauteil mit einer Leiterplatte. Das Substrat kann elektrisch isolierend sein, so dass der Leiter auf einer Seite bei Kontakt mit einem anderen leitenden Element gegen einen Kurzschluss geschützt ist.
Weiter kann die Leiterbahn selbst zusätzlich noch mit einer Schutzschicht versehen sein, die die nicht auf dem Substrat aufliegenden Oberflächen Leiterbahn passivieren oder elektrisch isolieren. Von der Schutzschicht frei ist zumindest das Innere der Öffnung, um ausreichend elektrischen Kontakt zwischen Leiterbahn und Lotkugel zu ermöglichen.
In einer Ausgestaltung weist der Leiter eine Cu umfassende Leiterbahn auf, die im Bereich der Öffnung mit einer lötfähigen Beschichtung versehen ist. Die lötfähige Beschichtung im Bereich der Öffnung kann Au oder ein beliebiges anderes Metall mit lötbarer Oberfläche umfassen. Unter lötbarer Oberfläche wird eine Benetzbarkeit mit flüssigem Lot verstanden, die Voraussetzung für die Herstellung einer mechanisch stabilen Lotverbindung ist.
Gemäß einer weiteren Ausgestaltung ist der streifenförmige Leiter als Leiterbahn auf einem ebenfalls streifenförmigen Träger aus Polyimid ausgebildet.
Eine ausreichende mechanisch stabile Lötverbindung für elektrische Kontaktierungszwecke kann mit einem Leiter erzielt werden, bei dem der Durchmesser der Öffnung zwischen 50pm und 1mm beträgt.
Der Leiter kann flexibel ausgebildet sein und zwischen Kontakt und Kontaktpad einen beliebigen Verlauf nehmen bzw. den räumlichen Verhältnissen angepasst werden. Zum Beispiel kann der Leiter parallel zur ersten Oberfläche mit dem Kontaktpad verlaufen. Der Leiter kann auch einen Verlauf aufweisen, der gegen die erste Oberfläche einen spitzen oder rechten Winkel einnimmt.
Das Kontaktpad kann eine Dicke von 50nm bis 500nm aufweisen. Dies ist ausreichend zur Kontaktierung von elektrischen Bauteilen oder passiven Bauelementen wie z.B. Sensoren, die einen nur relativ geringen Strombedarf aufweisen
Gemäß einer Ausgestaltung ist ein elektrisches Bauteil als Sensor ausgebildet, das mit einer wie oben beschriebenen Lotverbindung über den Leiter mit einer Schaltungsumgebung kontaktiert ist. Der Sensor kann dann ein Sensorgehäuse aufweisend, in dem folgende Bestandteile angeordnet sind:
- eine Platine mit einem m-Prozessor
- ein Sensorsubstrat mit einer funktionalen Schicht, die eine Sensorfunktion aufweist
- ein Kontaktpad, das mit der funktionalen Schicht oder mit einer leitenden Struktur auf oder in der funktionalen Schicht verbunden ist
- ein streifenförmiger Leiter, der das Kontaktpad mit der Platine verbindet.
Auf diese Weise verbindet der Leiter mittels der Lotverbindung das Kontaktpad und damit die funktionale Schicht des Sensors mit dem m-Prozessor auf der Platine. Kontakt und Kontaktpad können Ni und oder Au umfassen.
Das Kontaktpad kann sich auf einem Dehnungskörper befinden, der die funktionelle Schicht darstellen kann und fest (z.B. aus Stahl, Glas oder Keramik) oder flexibel (z.B. aus einer Kunststofffolie wie PI, aus Dünnglas oder Keramikpapier) ausgebildet ist. Der Dehnungskörper dehnt sich mit zunehmender Temperatur aus und kann so mit einer temperaturabhängigen Stärke auf die funktionelle Schicht des Sensorelements einwirken.
Das Sensorelement, das die funktionale Schicht umfasst, und die Platine, die die für die Sensorfunktion erforderliche Steuer und/oder Auswerteelektronik umfasst, können auf minimalem Raum zusammen in dem gemeinsamen Sensorgehäuse angeordnet werden.
Der Sensor kann als Temperatursensor ausgebildet sein und ein Thermistormaterial als funktionale Schicht umfassen. Dann ist die Platine zur Bestimmung des temperaturabhängigen elektrischen Widerstands in der funktionalen Schicht aus Thermistormaterial ausgebildet.
Andere Typen von Sensoren, die mit der vorgeschlagenen Lotverbindung ausgestattet sein können, sind Sensoren zur Messung eines elektrischen Widerstands oder Drucksensoren.
Der Sensor kann auch als Mikrofon ausgebildet sein.
Ein Verfahren zur Herstellung der Lotverbindung kann die folgenden Schritte umfassen:
- es wird ein Sensorsubstrat mit einem Kontaktpad bereitgestellt,
- ein streifenförmiger Leiter, der an einem Ende eine Verbreiterung mit einer durchgehenden Öffnung darin aufweist, wird so auf das Kontaktpad aufgelegt, dass die Öffnung über dem Kontaktpad angeordnet ist,
- mittels Laser-Solder-Jet-Bonding wird eine flüssige Lotkugel von oben in die Öffnung gedruckt, - man lässt die Lotkugeln erkalten, wobei eine elektrisch leitende Verbindung zwischen Leiter und Kontaktpad hergestellt wird.
Laser-Solder-Jet-Bonding oder Solder-Ball-Bumping ist ein Verfahren, das ursprünglich vom Tintenstrahldruckverfahren abgeleitet ist. In eine nach außen offene Kanüle, die in einem Druckkopf einer Solder-Jet-Vorrichtung angeordnet ist, wird eine feste Lotkugel definierter Größe geladen. Anschließend wird die Lotkugel durch schnelle Wärmezufuhr verflüssigt und zum Beispiel mittels eines Gasstroms aus der Kanüle gejettet. Das Verfahren ist besonders geeignet, in der Größe genau bemessene flüssige Lotkugeln an bestimmte Stellen „aufzudrucken". So können kleine Lotstellen erzeugt werden. Weiter ist es möglich, durch Aufdrucken mehrerer Lotkugeln an definierten Orten Lotstrukturen in einer gewünschten Geometrie und Abmessung zu erzeugen.
Der Druckkopf der Solder-Jet-Vorrichtung kann wie bei einem Tintenstrahldruckverfahren in kürzester Zeit einen gewünschten Ort auf einer zu bedruckenden Oberfläche anfahren und dort eine oder mehrere Lotkugeln aufdrucken bzw. deponieren. So gelingt auch im vorliegenden Verfahren eine ortsgenaue Deponierung einer Lotkugel in der durchgehenden Öffnung des Leiters so, dass eine Lotverbindung zwischen Leiter und Kontaktpad hergestellt wird. Die Lotkugel kann sich dabei der Geometrie der durchgehenden Öffnung anpassen.
Im Folgenden wird die Erfindung anhand von Ausführungs beispielen und der dazugehörigen Figuren näher erläutert.
Die Figuren sind schematisch und nicht maßstabsgetreu, so dass ihnen weder absolute noch relative Größenangeben entnommen werden können. Gleiche oder gleichwirkende sind in unterschiedlichen Figuren mit dem gleichen Bezugszeichen versehen.
Figur 1 zeigt eine Oberfläche mit einem Kontaktpad
Figur 2 zeigt einen streifenförmigen Leiter in der Draufsicht
Figur 3 zeigt einen streifenförmigen Leiter gemäß Figur 2 nach Auflegen auf die Oberfläche gemäß Figur 1
Figur 4 zeigt von Figur 3 nach dem Einbringen einer Lotkugel in die Öffnung
Figur 5 zeigt das Temperatur/Zeitverhalten an einer Lötstelle während unterschiedlicher Verlötungstechniken
Figur 6A zeigt einen streifenförmigen Leiter in einer Draufsicht von oben
Figur 6B zeigt den streifenförmigen Leiter von Figur 6A in einem Querschnitt
Figur 7 zeigt einen Sensor, in dessen Sensorgehäuse ein flexibler streifenförmiger Leiter über eine Lotverbindung elektrisch mit einem Kontakt verbunden ist.
Figur 1 zeigt eine Oberfläche OF mit einem darauf aufgebrachten Kontaktpad KP. Die Oberfläche ist z.B. die Oberfläche einer funktionalen Schicht eines Sensorelements und kann zum Beispiel ein Thermistormaterial wie ein NTC oder ein PTC Material umfassen. Das Kontaktpad besteht aus Metall wie z.B. Al oder Ni und weist eine lötfähige Beschichtung auf. Alternativ kann das Kontaktpad auch vollständig aus lötfähigem Metall bestehen. Für eine Sensoranwendung, wenn die Oberfläche OF eine funktionale Sensorschicht ist, ist eine Dicke des Kontaktpads von 50nm bis 500nm ausreihend.
Figur 2 zeigt einen flach ausgebildeten streifenförmigen Leiter SL in der Draufsicht. Ein Ende des streifenförmigen Leiters weist eine Verbreiterung VB auf, in der eine durchgehende Öffnung OE angeordnet ist. Zumindest die Innenränder der Öffnung sind mit einer lötfähigen Beschichtung LB versehen. Die lötfähige Beschichtung kann den Leiter am Rand der Öffnung überlappen. In der Verbreiterung VB kann der Leiter SL wie dargestellt eine von oben gesehen runden Umriss aufweisen. Dementsprechend kann auch die Öffnung einen runden Öffnungsquerschnitt aufweisen. Die Seitenwände der der Öffnung können vertikal sein. Der Umriss der Verbreiterung kann aber auch eine andere und z.B. rechteckige Form aufweisen.
Der Leiter kann Cu umfassen. Die lotfähige Beschichtung kann Au umfassen. Der Leiter kann vollständig aus Metall bestehen. Er kann jedoch auch als Leiterbahn auf einem ebenfalls streifenförmigen Substrat STS ausgebildet sein. Vorzugsweise sind Leiter SL, Leiterbahn LB und Substrat STS flexibel ausgebildet .
Figur 3 zeigt einen streifenförmigen Leiter SL gemäß Figur 2 von oben, der so auf die Oberfläche OF gemäß Figur 1 aufgelegt wurde, dass das Kontaktpad KP unterhalb der Öffnung OE angeordnet ist. Vorzugsweise ist die Öffnung auf dem Kontaktpad zentriert, so dass das Kontaktpad die Querschnittfläche der Öffnung von oben gesehen vollständig ausfüllt . Figur 4 zeigt die Anordnung von Figur 3, nachdem eine Lotkugel SB in die Öffnung OE eingebracht wurde und den Leiter über die lötfähige Beschichtung LB mit dem Kontaktpad verlötet. Die Lotkugel füllt die Öffnung weitgehend aus und kann aber auch noch über deren oberen Rand überstehen.
Je nach Größe der Querschnittfläche der Öffnung OE bzw. abhängig vom Durchmesser einer runden Öffnung kann die Abreißkraft der Lotverbindung eingestellt werden. Entsprechende Lotkugeln können dann Durchmesser von 50pm bis 1mm aufweisen. Mit z.B. 350pm durchmessenden Lotkugeln können feste Lotverbindungen erhalten werden, die Scherkräften bis ca. 300cN pro Lotkugel widerstehen. Entsprechend hoch sind auch die damit erreichbaren Abzugskräfte, die ebenfalls bei ca. 300cN pro Lotkugel liegen.
Je nach ausgewählter Lotlegierung kann der Schmelzpunkt des Lots und damit die Temperaturbeständigkeit der Lotverbindung eingestellt werden. Mit der Lotlegierung Au80Sn20 kann die Lotverbindung bis 280° stabil eingestellt werden. Andere Legierungen erlauben niedrige Schmelzpunkte bis zu minimal 100°C.
Ein bevorzugtes Verfahren zum Herstellen der Lotverbindung ist Laser-Solder-Jet-Bonding. Bei diesem Verfahren findet eine nur kurze und punktuelle thermische Belastung der Oberfläche statt und nicht eine komplette Belastung des Bauteils/der Oberfläche über einen längeren Zeitraum.
Figur 5 zeigt im Vergleich das Temperatur/Zeitverhalten an einer Lotverbindung während unterschiedlicher
Verlötungstechniken . Die höchste Temperaturbelastung erfährt die Oberfläche und damit das gesamte Bauteil beim Reflow Löten in einem Reflow Ofen. Kurve 3 verdeutlicht das Temperaturverhalten über die Zeit von hier z.B. 60 Sekunden, die für eine sichere Verlötung erforderlich sind.
Kurve 2 steht für ein Solder Iron Lötverfahren, bei dem das Lot mit einem Heizkopf über Druckkontakt aufgeschmolzen wird. Hier ist die thermische Belastung gegenüber dem Reflow Löten zwar kürzer, kann aber nicht so gut kontrolliert werden.
Die Kurve 1 weist nur einen einzigen schmalen Temperatur-Peak auf, wie er beim Laser-Solder-Jet-Bonding üblicherweise gemessen wird. Dies zeigt, dass die thermische Belastung nur punktuell und sehr kurz (< ls) auftritt, und dass die eingebrachte Wärmemenge nur derjenigen der aufgedruckten flüssigen Lotkugel entspricht, die gering ist und sich sehr schnell mittels Dissipation verteilt.
Das Laser-Solder-Jet-Bonding hat den weiteren Vorteil, dass es berührungsfrei durchgeführt werden kann. So kommt es zu keiner mechanischen Belastung der Oberfläche oder gar der Lotverbindung während des Lötvorgangs.
Figur 6A zeigt einen streifenförmigen Leiter in einer Draufsicht von oben wie bereits in Figur 2 gezeigt.
Figur 6B zeigt den streifenförmigen Leiter SL von Figur 6A in einem Querschnitt entlang der in Figur 6A gezeigten Linie AA'. Der Querschnitt zeigt ein ebenfalls streifenförmiges Substrat STS, auf dem eine dünne Leiterbahn LB aufgebracht ist. Das Substrat ist z.B. eine Polyimidfolie, die auch eine mechanische Beanspruchung durch Biegen oder Vibration unbeschadet aufnehmen kann. Die Öffnung OE in der Leiterbahn LB geht mit gleichem Querschnitt auch durch das STS. Zu erkennen ist hier, dass die lotfähige Beschichtung BL die Seitenwände der Leiterbahn in der Öffnung vollständig bedeckt.
Figur 7 zeigt einen Sensor, in dessen Sensorgehäuse ein flexibler streifenförmiger Leiter SL über eine Lotverbindung ein Kontaktpad auf einer funktionalen Schicht FS eines Sensorelements elektrisch mit einem Kontakt auf einer Platine PCB verbindet. Die funktionelle Schicht ist der funktionelle Kern des Sensorelements und befindet innerhalb eines Sensorgehäuses GH. In räumlicher Nähe zum Sensorelement ist im Gehäuse die Platine PCB angeordnet. Sie kann beliebig zur Oberfläche der funktionellen Schicht angeordnet sein, z.B. wie dargestellt oder auch vertikal dazu. Der flexible streifenförmige Leiter SL ermöglicht auch gebogene oder abgewinkelte Leiterverläufe ohne Schaden zu nehmen.
Die funktionelle Schicht ist an einem Ende des Gehäuses angeordnet, am sogenannten Sensorkopf SK. Der Sensorkopf kann für einen Druckkontakt ausgebildet sein, der z.B. die Temperatur einer Oberfläche durch Andrücken des Sensorkopfs ermitteln kann. Der Sensorkopf kann zur Messung aber auch in ein Medium eintauchen oder die Temperatur der Atmosphäre bestimmen.
Obwohl nur für einen Temperatursensor näher beschrieben, ist die vorgestellte Lotverbindung auch für beliebige andere Sensoren geeignet. Sie zeichnet sich durch geringen Raumbedarf und einfache Herstellung aus. Das Herstellungsverfahren kann ohne mechanische und thermische Belastung der Lotstelle erfolgen und ist daher insbesondere für mechanisch und thermisch empfindliche Bauteile bzw. Sensoren geeignet.
Bezugszeichenliste
1, 2, 3 Temperatur/Zeit Messkurven AA' Schnittebene
BL lötfähige Beschichtung
FS funktionale Schicht
GH Sensorgehäuse
KP Kontaktpad
LB Leiterbahn
OE durchgehende Öffnung
OF erste Oberfläche
PCB Platine
SB Lotkugel
SK Sensorkopf
SL streifenförmiger Leiter
STS Streifenförmiges Substrat/Träger
VB Verbreiterung

Claims

Patentansprüche
1. Lotverbindung für einen flussmittelfreien Prozess zwischen einer ersten Oberfläche (OF), auf der ein Kontaktpad (KP) angeordnet ist und
- einem streifenförmigen Leiter (SL),
- wobei der Leiter an einem Ende eine Verbreiterung (VB) und eine durchgehende Öffnung (OE) aufweist
- wobei eine Lotkugel (SB) in der Öffnung angeordnet ist und das Ende des Leiters mit dem Kontaktpad verbindet.
2. Lotverbindung nach dem vorangehenden Anspruch, bei der der streifenförmige Leiter als Leiterbahn (LB) auf einem ebenfalls streifenförmigen Substrat (STS) ausgebildet ist, bei dem sich die durchgehende Öffnung durch die Verbreiterung und das Substrat hindurch erstreckt.
3. Lotverbindung nach einem der vorangehenden Ansprüche, bei der das streifenförmige Substrat ein flexibles Material und insbesondere eine Kunststofffolie umfasst.
4. Lotverbindung nach einem der vorangehenden Ansprüche, bei dem der Leiter eine Cu umfassende Leiterbahn umfasst, die im Bereich der Öffnung mit einer lötfähigen Beschichtung (BL) versehen ist.
5. Lotverbindung nach dem vorangehenden Anspruch, bei der die lötfähige Beschichtung im Bereich der Öffnung Au umfasst.
6. Lotverbindung nach einem der vorangehenden Ansprüche, bei der der streifenförmige Leiter als Leiterbahn auf einem ebenfalls streifenförmigen Träger (STS) aus Polyimid ausgebildet ist.
7. Lotverbindung nach einem der vorangehenden Ansprüche, bei der der Durchmesser der Öffnung (OE) zwischen 50pm und 1mm beträgt.
8. Lotverbindung nach einem der vorangehenden Ansprüche, bei der die Leiterbahn parallel zur ersten Oberfläche (OF) verläuft oder einen gegen die erste Oberfläche nach oben abgebogenen Verlauf aufweist.
9. Lotverbindung nach einem der vorangehenden Ansprüche, bei der das Kontaktpad (KP) eine Dicke von 50nm bis 500nm aufweist.
10. Sensor mit einer Lotverbindung nach einem der vorangehenden Ansprüche, aufweisend ein Sensorgehäuse (GH), in dem angeordnet sind
- eine Platine (PCB) mit einem m-Prozessor
- ein Substrat mit einer funktionalen Schicht (FS), die eine Sensorfunktion aufweist
- ein Kontaktpad (KP), das mit der funktionale Schicht oder einer leitenden Struktur auf oder in der funktionalen Schicht verbunden ist
- ein streifenförmiger Leiter (SL), der das Kontaktpad mit der Platine verbindet, bei dem der Leiter mittels der Lotverbindung mit dem Kontaktpad verbunden ist.
11. Verfahren zur Herstellung einer Lotverbindung,
- bei dem ein Substrat mit einem Kontaktpad auf einer Oberfläche (OF) bereitgestellt wird
- bei dem ein streifenförmiger Leiter (SL), der an einem Ende eine Verbreiterung (VB) mit einer durchgehenden
Öffnung (OE) darin aufweist, so auf die Oberfläche mit dem Kontaktpad aufgelegt wird, dass die Öffnung über dem Kontaktpad angeordnet ist,
- bei dem mittels Laser-Solder-Jet-Bonding flüssige Lotkugeln (SB) von oben in die Öffnung gedruckt werden,
- bei dem man die Lotkugeln erkalten lässt, wobei eine elektrisch leitende Verbindung zwischen Leiter und Kontaktpad hergestellt wird.
PCT/EP2021/054901 2020-04-02 2021-02-26 Elektrische lotverbindung, sensor mit einer lotverbindung und verfahren zur herstellung WO2021197722A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022509070A JP2022544548A (ja) 2020-04-02 2021-02-26 電気的はんだ接続部、はんだ接続部を備えるセンサ及び製造方法
CN202180004968.XA CN114206534A (zh) 2020-04-02 2021-02-26 电钎焊连接、具有钎焊连接的传感器和制造方法
US17/630,350 US20220295633A1 (en) 2020-04-02 2021-02-26 Electrical solder connection, sensor with a solder connection and method of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020109226.1 2020-04-02
DE102020109226.1A DE102020109226A1 (de) 2020-04-02 2020-04-02 Elektrische Lotverbindung, Sensor mit einer Lotverbindung und Verfahren zur Herstellung

Publications (1)

Publication Number Publication Date
WO2021197722A1 true WO2021197722A1 (de) 2021-10-07

Family

ID=74853621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/054901 WO2021197722A1 (de) 2020-04-02 2021-02-26 Elektrische lotverbindung, sensor mit einer lotverbindung und verfahren zur herstellung

Country Status (5)

Country Link
US (1) US20220295633A1 (de)
JP (1) JP2022544548A (de)
CN (1) CN114206534A (de)
DE (1) DE102020109226A1 (de)
WO (1) WO2021197722A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138583A1 (de) * 2001-08-06 2003-02-20 Delphi Tech Inc Flachleiter und Verfahren zur Herstellung einer Lötverbindung mit demselben

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926360A (en) 1974-05-28 1975-12-16 Burroughs Corp Method of attaching a flexible printed circuit board to a rigid printed circuit board
DE19544929C2 (de) 1995-12-01 2001-02-15 Fraunhofer Ges Forschung Vorrichtung zum flußmittelfreien Aufbringen eines Lötmittels auf ein Substrat oder einen Chip
DE19739481C2 (de) 1997-04-11 2001-02-22 Fraunhofer Ges Forschung Vorrichtung und Verfahren zum gleichzeitigen Aufbringen und Umschmelzen einer Mehrzahl von Lotkugeln auf ein Substrat
JP3447961B2 (ja) * 1998-08-26 2003-09-16 富士通株式会社 半導体装置の製造方法及び半導体製造装置
US6997043B2 (en) 2002-08-15 2006-02-14 The Boeing Company Integration of atmospheric intrusion sensors in electronic component packages
DE102004027774A1 (de) 2003-09-27 2005-08-18 Enser, Werner, Dipl.-Ing. Verfahren zur Herstellung mindestens einer Lötverbindung und elektrische Schaltung
JP2006221690A (ja) * 2005-02-08 2006-08-24 Alps Electric Co Ltd 磁気ヘッドアッセンブリの半田ボール接合方法
US7658001B1 (en) * 2005-04-14 2010-02-09 Hutchinson Technology Incorporated Electrical connector for disk drive suspension assembly and method of non-contact solder attachment of same
CN100559473C (zh) * 2005-04-25 2009-11-11 新科实业有限公司 焊接装置及在磁盘驱动单元内形成电性焊接的方法
US9398697B2 (en) 2013-03-13 2016-07-19 Mycronic AB Methods and devices for jetting viscous medium on workpiece
DE102015205820A1 (de) * 2015-03-31 2016-10-06 KLEB- UND GIEßHARZTECHNIK DR. LUDECK GMBH Heizelement für die SMD-Montage, elektronische Baugruppe mit einem solchen Heizelement und Verfahren zum Erzeugen einer elektronischen Baugruppe
CN106271062B (zh) * 2016-09-29 2020-01-31 深圳市艾贝特电子科技有限公司 激光喷焊嘴、喷焊装置及方法
DE102016119430A1 (de) * 2016-10-12 2018-04-12 Epcos Ag Anlegetemperaturmessfühler
DE102017223517A1 (de) * 2017-12-21 2019-06-27 Robert Bosch Gmbh Halbleiterbauteil mit einem Durchbruch zur optischen Kontrolle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138583A1 (de) * 2001-08-06 2003-02-20 Delphi Tech Inc Flachleiter und Verfahren zur Herstellung einer Lötverbindung mit demselben

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BURKHARDT THOMAS ET AL: "Low-strain laser-based solder joining of mounted lenses", PROCEEDINGS OF SPIE, IEEE, US, vol. 9574, 2 September 2015 (2015-09-02), pages 95740M - 95740M, XP060059848, ISBN: 978-1-62841-730-2, DOI: 10.1117/12.2186747 *
THOMAS OPPERT ET AL: "Micro ball bumping packaging for wafer level & 3-d solder sphere transfer and solder jetting", ELECTRONIC MANUFACTURING TECHNOLOGY SYMPOSIUM (IEMT), 2012 35TH IEEE/CPMT INTERNATIONAL, IEEE, 6 November 2012 (2012-11-06), pages 1 - 6, XP032415532, ISBN: 978-1-4673-4384-8, DOI: 10.1109/IEMT.2012.6521835 *

Also Published As

Publication number Publication date
DE102020109226A1 (de) 2021-10-07
CN114206534A (zh) 2022-03-18
JP2022544548A (ja) 2022-10-19
US20220295633A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
DE1300788B (de)
DE4212883C2 (de) Temperaturfühler
DE102016101246A1 (de) Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
WO2008116698A1 (de) Schmelzsicherung zur unterbrechung eines spannungs- und/oder stromführenden leiters im thermischen fehlerfall und verfahren zur herstellung der schmelzsicherung
EP3929594B1 (de) Verfahren zur herstellung einer vorrichtung zur messung von stromstärken und vorrichtung zur messung von stromstärken
DE102006048448A1 (de) Erzeugen einer Lotverbindung
DE10053389C2 (de) Verbindungsstruktur einer Leiterplatte mit einer elektrischen Komponente
DE102014115588A1 (de) Sicherungseinrichtung und Verfahren zum Herstellen einer Sicherungseinrichtung
EP2862426B1 (de) Verfahren zur fertigung von drucksensoren
DE102018116410A1 (de) Verfahren zur Herstellung einer hochtemperaturfesten bleifreien Lotverbindung und hochtemperaturfeste bleifreie Lotverbindung
WO2021197722A1 (de) Elektrische lotverbindung, sensor mit einer lotverbindung und verfahren zur herstellung
DE69733806T2 (de) Verfahren zum befestigen eines elektrischen kontakts auf einer keramikschicht und ein auf diese weise gefertigtes widerstandselement
WO2018134085A1 (de) Sensor
DE19843471A1 (de) Druckerkennungsvorrichtung
DE19736855A1 (de) Schaltungsanordnung mit einem SMD-Bauelement, insbesondere Temperatursensor und Verfahren zur Herstellung eines Temperatursensors
DE3818191C2 (de)
DE102015103885B4 (de) Halbleitervorrichtung und Verfahren zum Herstellen der Halbleitervorrichtung
AT515446B1 (de) Strukturierung der Lötstoppmaske von Leiterplatten zur Verbesserung der Lötergebnisse
DE10138583A1 (de) Flachleiter und Verfahren zur Herstellung einer Lötverbindung mit demselben
DE19802296A1 (de) Verfahren und Temperaturfühler zur Messung von Oberflächentemperaturen
EP3782172B1 (de) Thermistor-, varistor- oder kondensator-bauelement mit schmelzbarem verbindungselement zwischen dem grundkörper des bauelements und einer aussenelektrode
WO2008145512A2 (de) Kontaktierung einer vorrichtung zur bestimmung und/oder überwachung einer prozessgrösse
DE10130618B4 (de) Verfahren zum Bestücken eines Trägers mit einem Bauteil und Vorrichtung zum Verbinden derselben
EP4205893A1 (de) Verfahren zum verlöten mindestens eines bauteils mit mindestens einem trägerelement
EP2778119A2 (de) Sensor und Verfahren zum Herstellen einer flexiblen Lötverbindung zwischen einem Sensor und einer Leiterplatte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21709360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509070

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21709360

Country of ref document: EP

Kind code of ref document: A1