WO2021197027A1 - 一种高转速杯形砂轮 - Google Patents

一种高转速杯形砂轮 Download PDF

Info

Publication number
WO2021197027A1
WO2021197027A1 PCT/CN2021/080405 CN2021080405W WO2021197027A1 WO 2021197027 A1 WO2021197027 A1 WO 2021197027A1 CN 2021080405 W CN2021080405 W CN 2021080405W WO 2021197027 A1 WO2021197027 A1 WO 2021197027A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
working surface
grinding wheel
shaped grinding
cooling water
Prior art date
Application number
PCT/CN2021/080405
Other languages
English (en)
French (fr)
Inventor
宋京新
梁安宁
龙慧玲
叶勇
王志勇
赵亮
秦凤明
Original Assignee
桂林创源金刚石有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林创源金刚石有限公司 filed Critical 桂林创源金刚石有限公司
Priority to US17/916,066 priority Critical patent/US20230166383A1/en
Priority to JP2022559363A priority patent/JP7492774B2/ja
Priority to EP21779886.7A priority patent/EP4129572A4/en
Priority to KR1020227035759A priority patent/KR20230007330A/ko
Publication of WO2021197027A1 publication Critical patent/WO2021197027A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/10Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with cooling provisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/18Wheels of special form

Definitions

  • the invention relates to the field of grinding tools for superhard materials, in particular to a high-speed cup-shaped grinding wheel.
  • the diamond working gear ring mainly adopts through gear ring (including oblique through teeth), internal gear ring (including oblique internal teeth), external gear ring (including oblique external teeth), The form of a toothless ring.
  • gear ring including oblique through teeth
  • internal gear ring including oblique internal teeth
  • external gear ring including oblique external teeth
  • the form of a toothless ring During high-speed processing, a layer of "air flow barrier" will be formed on the inner wall, outer wall and working surface of the grinding wheel. Under the action of the "air barrier” and centrifugal force, the above-mentioned various forms of cup-shaped grinding wheels cannot be cooled by water. Fully act on the defects of the entire working surface. Therefore, the cup-shaped grinding wheel of the prior art cannot adapt to high-speed processing, and the details are as follows:
  • the cooling water flowing along the inner wall of the gear ring to the working surface is very small, it is very easy to be dispersed into small water droplets by the "air barrier", which reduces the cooling effect. Therefore, the working surface is close to the inner side of the gear ring.
  • the area has no cooling water or insufficient cooling water to obtain sufficient cooling.
  • the prior art internally toothed ring-shaped cup-shaped grinding wheel (see Figures 5-7) seals the outer side of the gear ring, that is, the end of the water channel close to the outer side of the gear ring is blocked.
  • the cup-shaped grinding wheel rotates at high speed, most of the cooling water entering the gear ring through the inner diameter cavity will tend to gather at the end of the water channel near the outer side of the gear ring under the action of centrifugal force, and approach from the working surface.
  • the area outside the gear ring is thrown out (as shown by the arrow in Figure 6), and the area near the outside of the gear ring can be sufficiently cooled at this time.
  • the area of the working surface near the inner side of the gear ring has no cooling water or insufficient cooling water to obtain sufficient cooling.
  • the toothless ring-shaped cup-shaped grinding wheel in the prior art is a continuous process and is not prone to chipping, but because there is no water channel, the cooling capacity is extremely poor.
  • the prior art externally toothed annular cup-shaped grinding wheel see Figure 9
  • there are chip grooves between the teeth but cooling water cannot enter. Therefore, the prior art gearless ring and external gear ring are less likely to adapt to high-speed processing.
  • cooling water is applied to the grinding area along the circumferential direction of the grinding wheel, and cooling water is applied from the outer radial inner diameter direction, it will be strongly affected by the "air barrier” and centrifugal force, and it is difficult for the cooling water to enter the grinding wheel.
  • the cooling effect is extremely poor in the cut area. Therefore, during high-speed processing, most of the cooling water should enter the inner diameter cavity and cover the working surface from the inside to the outside to obtain a good cooling effect.
  • the technical problem to be solved by the present invention is to provide a high-speed cup-shaped grinding wheel.
  • a high-speed cup-shaped grinding wheel comprising a ring-shaped base and a plurality of teeth; Ring, the side of the toothed ring away from the base is an annular working surface, and the interval between two adjacent toothed pieces forms a water channel for conveying cooling water to the working surface; further comprising a flow dividing structure;
  • the flow dividing structure is fixed on the gear ring and flows the cooling water into two branches, wherein the first branch is conveyed to the area outside the working surface through the inside of the water channel under the action of the centrifugal force of the rotation of the base body Cooling water, the second branch transfers cooling water to the area inside the working surface through the outside of the water channel under the centrifugal force of the rotation of the base body, and then removes the cooling water from the working surface under the obstruction of the workpiece.
  • the inner area of the face is conveyed to the outer area of the working face.
  • the beneficial effect of the present invention is that when the cup-shaped grinding wheel rotates at a high speed, it can use centrifugal force to flow the cooling water entering the inner diameter cavity into two branches, and the two branches are respectively conveyed to the outer and inner areas of the working surface
  • the cooling water realizes that the cooling water covers all the working surface and fully implements cooling, which provides cooling guarantee for high-speed, high-quality and efficient grinding.
  • the present invention can also be further improved as follows:
  • the shunt structure includes an outer ring body and an inner ring body; the outer ring body is fixed on the outer side of the gear ring, and the inner ring body is fixed on the inner side of the gear ring.
  • the side wall is provided with a water passage hole communicating with the water passage groove at a position corresponding to the water passage groove, and the first branch path is formed from the water passage hole through the water passage groove to the area outside the working surface , An area from the inner side wall of the inner ring body to the inner side of the working surface forms the second branch.
  • the beneficial effect of adopting the above-mentioned further technical solution is to realize that the cooling water entering the inner diameter cavity is flowed into two branches, and the two branches respectively transport the cooling water to the areas outside and inside the working surface.
  • the water through hole has a ring structure, and a circle is provided on the side wall of the inner ring body.
  • the water through hole is located on the side wall of the inner ring body and at one end away from the working surface.
  • the beneficial effect of adopting the above-mentioned further technical solution is: when cooling water is supplied from passing through the base to the inner diameter cavity, or when the cooling water is supplied from the direction of the working end surface to the direction of the inner diameter cavity but the base is provided with a confluence device, the cooling water in the base is restricted Divide into two branches, improve the utilization of cooling water, and make the cooling water more evenly distributed on the working surface.
  • the water-passing hole has a ring-shaped structure, and two or more rings are provided on the side wall of the inner ring body.
  • the beneficial effect of adopting the above-mentioned further technical solution is that when the cooling water is sprayed from the direction of the working end surface to the direction of the inner diameter cavity and the base body is not provided with a confluence device, the utilization rate of the cooling water can be improved, and the cooling water can be more evenly distributed.
  • Working surface when the cooling water is sprayed from the direction of the working end surface to the direction of the inner diameter cavity and the base body is not provided with a confluence device, the utilization rate of the cooling water can be improved, and the cooling water can be more evenly distributed.
  • the inner and outer ends of the tooth piece are respectively provided with a second arc block and a first arc block, and both sides of the second arc block are respectively provided with notches; after the tooth piece is fixed to the base body , The first arc blocks on all the tooth pieces are spliced into the outer ring body, the second arc blocks on all the tooth pieces are spliced into the inner ring body, and two adjacent After the second arc blocks are spliced, the notches on the second arc blocks are connected to the water holes of the corresponding water channels.
  • first arc block and the second arc block are integrally formed with the corresponding tooth pieces.
  • the water passage groove has a straight groove structure consistent with the radial direction of the base body.
  • the water passage groove is a chute structure inclined radially with respect to the base body.
  • it also includes a connecting disk connected with the main shaft of the machine tool; the connecting disk is fixed on the side of the base away from the gear ring.
  • the beneficial effect of adopting the above-mentioned further technical solution is: realizing the connection with the main shaft of the machine tool.
  • a plurality of grooves are provided on one or both sides of the water passage groove, and the position corresponding to the groove on the working surface is easy to wear quickly and form a circumferential groove.
  • a groove body with a mesh structure is formed on the working surface.
  • the beneficial effect of adopting the above-mentioned further technical solution is that: the trough of the mesh structure enables the cooling water to be distributed to various positions on the working surface, so that it is easier for the cooling water to cover all the working surface and fully implement cooling.
  • the grooves are arranged on different diameters of the gear ring, and the connecting line of the grooves on the same diameter circumference of the gear ring is uniformly arranged in a single arc or multiple arcs.
  • the length of a single arc is the longest half circle of the corresponding circle, and the cumulative length of the multiple arcs is the longest half circle of the corresponding circle.
  • the beneficial effect of adopting the above-mentioned further technical solution is that the grooves on the same diameter circumference do not penetrate the entire circumference, that is, a concave-convex wave shape is formed on the circumference.
  • a concave-convex wave shape is formed on the circumference.
  • the thickness of the outer ring body and the inner ring body is set to be 3 mm or less.
  • the beneficial effect of adopting the above-mentioned further technical solution is: when the high-speed rotation of the grinding wheel reaches a certain value, the excessive cooling water is prevented from being quickly thrown out of the end face of the outer ring of the grinding wheel due to the increase of centrifugal force, but the working surface of the inner ring lacks water for cooling. defect.
  • the reverse arrangement of the water channel has the effect of blocking the rapid radial leakage of the cooling water and forming a "spring" effect, which is beneficial to strengthen the cooling effect of the cooling water on the working surface.
  • Fig. 1 is a schematic view of the structure of a ring-shaped cup-shaped grinding wheel with straight teeth in the prior art
  • Figure 2 is a top view of Figure 1;
  • Figure 3 is a cross-sectional view of Figure 2 A-A;
  • Fig. 4 is a structural diagram of a prior art ring-shaped cup-shaped grinding wheel with oblique teeth
  • Figure 5 is a schematic view of the structure of an annular cup-shaped grinding wheel with internal teeth in the prior art
  • Figure 6 is a top view of Figure 5;
  • Figure 7 is a B-B sectional view of Figure 6;
  • Figure 8 is a schematic view of the structure of a toothless ring-shaped cup-shaped grinding wheel in the prior art
  • Figure 9 is a schematic diagram of the structure of an externally toothed ring-shaped cup-shaped grinding wheel in the prior art
  • FIG. 10 is a three-dimensional diagram of Embodiment 1 of the present invention.
  • Figure 11 is a top view of Figure 10
  • Figure 12 is a C-C cross-sectional view of Figure 11;
  • FIG. 13 is a three-dimensional diagram of Embodiment 2 of the present invention.
  • Figure 14 is a top view of Figure 13;
  • Figure 15 is a D-D cross-sectional view of Figure 14;
  • FIG. 16 is a three-dimensional diagram of Embodiment 3 of the present invention.
  • Figure 17 is a three-dimensional view of the tooth plate in the third embodiment of the present invention.
  • FIG. 18 is a three-dimensional view of embodiment 4 in which the water channel has a straight groove structure and a groove is provided on one side of the water channel;
  • 19 is a three-dimensional view of the water channel in the fourth embodiment with a chute structure and grooves on one side of the water channel;
  • Figure 20 is a three-dimensional view of the fourth embodiment in which the water channel is of a chute structure and grooves are provided on both sides of the water channel;
  • Figure 21 is an enlarged view of E in Figure 20;
  • Figure 22 is a three-dimensional view of the groove body forming a mesh structure on the working surface after the gear ring is worn in the fourth embodiment
  • Figure 23 is an enlarged view of F in Figure 22;
  • Figure 24 is a schematic diagram of the arrangement of grooves on the same diameter circumference
  • Figure 25 is a schematic diagram showing the direction of rotation of the grinding wheel and the inclination direction of the water channel in the traditional processing technology
  • Fig. 26 is a schematic diagram showing the direction of rotation of the grinding wheel and the inclination direction of the water channel in the fifth embodiment are reversed.
  • the arrow indicates the flow direction of the cooling water or the rotation direction of the grinding wheel.
  • a high-speed cup-shaped grinding wheel includes a ring-shaped base 1, a number of gears 2, and a connecting plate 10 connected to the main shaft of the machine tool.
  • the tooth pieces 2 are arranged at intervals along the circumferential direction and fixed on the base 1 to form a gear ring.
  • the side of the gear ring away from the base 1 is a ring-shaped working surface, and two adjacent ones
  • the teeth 2 are spaced apart to form a water channel 3 for conveying cooling water to the working surface.
  • the water passage 3 is a straight groove structure that is radially consistent with the base 1, or the water passage 3 is a chute structure that is inclined radially relative to the base 1.
  • the connecting disk 10 is fixed on the side of the base body 1 away from the gear ring.
  • the cup-shaped grinding wheel also includes a flow dividing structure.
  • the flow dividing structure is fixed on the gear ring and flows the cooling water into two branches, wherein the first branch passes through the inside of the water channel 3 to the outside of the working surface under the action of the centrifugal force of the rotation of the base body 1 Under the action of the centrifugal force of the rotation of the base body 1, the second branch conveys the cooling water to the area inside the working surface through the outside of the water channel 3 (that is, the inner wall of the grinding wheel), and the workpiece is processed The cooling water is transported from the inner area of the working surface to the outer area of the working surface under the obstruction of the working surface.
  • the shunt structure includes an outer ring body 4 and an inner ring body 5.
  • the outer ring body 4 is fixed on the outer side of the gear ring, and the inner ring body 5 is fixed on the inner side of the gear ring on the side wall of the inner ring body 5 at a position corresponding to the water channel 3
  • a water passage hole 6 connected to the water passage groove 3 is provided, and the first branch path is formed from the water passage hole 6 to the area outside the working surface through the water passage groove 3, and from the inner ring body
  • the area from the inner side wall of 5 to the inner side of the working surface forms the second branch.
  • the thickness of the outer ring body 4 and the inner ring body 5 is set below 3 mm, and the optimal thickness is below 1 mm.
  • the water through hole 6 is a ring structure, which is provided with a circle on the side wall of the inner ring body 5, and is located on the side wall of the inner ring body 5 and at an end away from the working surface.
  • the cooling water entering the gear ring is blocked by the inner ring body 5 to prevent all the cooling water from entering the water channel 3. Since the inner ring body 5 is provided with a water-passing hole 6, the cooling water inside the gear ring will be divided into two branches:
  • the flow path of the first branch is: a part of the cooling water enters the water channel 3 through the water hole 6 from the gear ring. After the cooling water enters the water channel 3, it adheres to the outer ring under the barrier of the outer ring body 4. The inner wall of the body 4 flows along the axial direction of the gear ring toward the area outside the working surface, thereby cooling the area outside the working surface;
  • the flow path of the second branch is: under the effect of the flow restriction of the water hole 6, another part of the cooling water flows against the inner wall of the inner ring body 5 along the axial direction of the gear ring toward the area inside the working surface, and then to the working surface The area on the inner side is cooled, and the area on the inner side of the working surface is cooled before flowing to the area on the outer side of the working surface.
  • the two branch water flows respectively cool the outer and inner areas of the working face, and finally achieve the overall cooling effect of the working face, avoiding areas that cannot be cooled by the cooling water on the working face, and greatly improving the processing quality.
  • the water passage hole 6 has a ring structure, and two or more rings are provided on the side wall of the inner ring body 5. Since the water passage hole 6 is provided with two circles on the side wall of the inner ring body 5, the first branch formed by the water passage hole 6 will have two paths:
  • the flow path of the first branch formed by a circle of water holes 6 far away from the working surface is: the first part of the cooling water enters the water channel 3 from the inside of the gear ring through a circle of water holes 6 away from the working surface, and the cooling water enters After the water passage 3 is inside, under the obstruction of the outer ring body 4, it adheres to the inner wall of the outer ring body 4 and flows along the axial direction of the gear ring toward the area of the working surface close to the outside of the gear ring, thereby cooling the area outside the working surface;
  • the flow path of the first branch formed by a circle of water holes 6 close to the working surface is: the second part of the cooling water enters the water channel 3 from the inside of the gear ring through a circle of water holes 6 close to the working surface, and the cooling water After entering the water channel 3, it flows along the axial direction of the gear ring to the middle area of the working surface under the blocking of the outer ring body 4 and the first part of the cooling water, thereby cooling the middle area of the working surface
  • the flow path of the second branch is the same as in the first embodiment.
  • the area outside the working surface, the middle area of the working surface and the area inside the working surface are covered by corresponding cooling water, so that the cooling water is more evenly distributed on the working surface, and the processing quality is further improved.
  • the utilization rate of the cooling water can be improved.
  • This embodiment is based on the first embodiment or the second embodiment, the structure of the outer ring body 4 and the inner ring body 5 is improved, and the other parts are consistent with the first embodiment or the second embodiment, and the details are as follows:
  • the inner and outer ends of the tooth plate 2 are respectively provided with a first circular arc block 7 and a second circular arc block 8, and both sides of the second circular arc block 8 are provided with notches 9 respectively.
  • the first arc blocks 7 on all the tooth pieces 2 are spliced into the outer ring body 4, and the first circular arc blocks 7 on all the tooth pieces 2
  • the second arc blocks 8 are spliced into the inner ring body 5, and after the two adjacent second arc blocks 8 are spliced, the notches 9 on them are connected to connect the corresponding water channels 3 ⁇ 6 ⁇ Said through the water hole 6.
  • the first circular arc block 7 and the second circular arc block 8 are integrally formed with the corresponding teeth 2.
  • This embodiment improves the structure of the water channel 3 on the basis of the first embodiment or the second embodiment or the third embodiment.
  • the other parts are consistent with the first embodiment or the second embodiment or the third embodiment, and the details are as follows:
  • a plurality of grooves 11 are provided on one side of the water passage 3, as shown in Figures 20 and 21, or a plurality of grooves 11 are provided on both sides of the water passage 3, wherein
  • the water passage 3 may be a straight groove structure or a chute structure.
  • the position on the working surface corresponding to the groove 11 is easy to quickly wear and form a circumferential groove 12, and the groove 12 is staggered with the water channel 3 to form a mesh structure on the working surface Trough. Since the groove 11 is provided on the side wall of the water channel 3, it has the following advantages:
  • the groove 11 has the function of storing cooling water, so that more cooling water stays on the working surface, and the cooling effect is improved;
  • the design of the groove 11 makes the diamond (working material) contained in the working surface on the circumference of each point in the radial direction unequal, that is, the diamond contained in the working surface is at the groove 11 The total length of the cumulative circumference is short, so the groove 11 is worn first.
  • a groove 12 is formed at the groove 11 due to fast abrasion.
  • the groove 12 and its adjacent water channel 3 alternately form a trough body with a mesh structure.
  • the trough body with a mesh structure makes the cooling water Distributed to various positions on the working surface, so that it is easier for the cooling water to cover all the working surface and fully implement cooling, which improves the cooling effect.
  • the grooves 11 are arranged on different diameters of the gear ring, and the connecting lines of the grooves 11 on the same diameter circumference of the gear ring are arranged in a single arc or multiple arcs evenly distributed,
  • the longest length of the single-segment arc is a half circle of the corresponding circle
  • the accumulated length of the multi-segment arc is the longest half circle of the corresponding circle.
  • the dashed line L 1 and the dashed line L 2 indicate the connection of the groove 11 on the same diameter circle, that is, the connection of the groove 11 on the circle is two arcs (L 1 and L 2 ). Cloth settings.
  • the groove 11 on the circumference of the same diameter does not penetrate the entire circumference, that is, a concave-convex wave shape is formed on the circumference.
  • a concave-convex wave shape is formed on the circumference.
  • the grinding wheel with the chute structure of the water channel 3 is improved in processing technology, and the other parts are the same as those in embodiment one or two.
  • the third or fourth embodiment is the same, and the details are as follows:
  • the rotation direction of the grinding wheel/base body 1 relative to the inclined direction of the water channel 3 in the traditional processing technology is forward rotation.
  • the lowering makes the cooling water in the water channel 3 easier to be thrown out, thereby improving the cooling effect.
  • the centrifugal force increases due to high-speed rotation, causing excessive cooling water to be quickly thrown out from the end surface of the outer ring of the grinding wheel.
  • the inner ring working face lacks water cooling defect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

一种高转速杯形砂轮,包括环状的基体(1)和若干齿片(2);齿片(2)沿周向间隔排列的固定在基体(1)上的一侧形成齿环,齿环远离基体(1)的一侧为环形的工作面,并且相邻两个齿片(2)之间隔开形成向工作面输送冷却水的通水槽(3);还包括分流结构;分流结构固定在齿环上并将冷却水分流成两个支路,其中第一支路通过通水槽(3)内部向工作面外侧的区域输送冷却水,第二支路通过通水槽(3)外部向工作面内侧的区域输送冷却水,并再将冷却水从工作面的内侧区域输送至工作面的外侧区域。该杯形砂轮在高速转动时,其利用离心力可以将基体内的冷却水分流成两个支路,进而实现冷却水将工作面全部覆盖,确保杯形砂轮加工时所需的冷却水。

Description

一种高转速杯形砂轮 技术领域
本发明涉及超硬材料磨削工具领域,具体涉及一种高转速杯形砂轮。
背景技术
现有中低转速加工技术的杯形砂轮,其金刚石工作齿环,主要采用通齿环(包括斜通齿)、内齿环(包括斜内齿)、外齿环(包括斜外齿)、无齿环的形式。在高转速加工的时候,在砂轮的内壁、外壁及工作面上将形成一层“气流屏障”,受到“气流屏障”和离心力的作用下,上述各种形式的杯形砂轮均存在冷却水不能充分作用于整个工作面的缺陷。因此,现有技术的杯形砂轮无法适应高转速加工,具体如下:
现有技术的通齿环(见图1-4)状杯形砂轮,其相邻两个齿片之间隔开形成可向工作面输送冷却水的通水槽,并且通水槽在齿环的径向上为贯通结构。当杯形砂轮高速转动的时候,由于通水槽在齿环的径向方向为贯通结构,冷却水通过内径腔进入到齿环内的大部分冷却水在离心力的作用下会经通水槽向齿环的外侧甩出(如图3中箭头所示),对工作面的冷却作用非常小。而沿着齿环内壁流向工作面的冷却水由于非常少,极易被“气流屏障”将束流态的水冲散成小水珠,致使冷却效果降低,因此,工作面靠近齿环内侧的区域没有冷却水或没有足够的冷却水而获得充分的冷却。
现有技术的内齿环状杯形砂轮(见图5-7),其将齿环外侧封堵,即将通水槽靠近齿环外侧的一端封堵。当杯形砂轮高速转动的时候,冷却水通过内径腔进入到齿环内的大部分冷却水在离心力的作用下,会趋于聚集在通水槽内靠近齿环外侧的一端,并从工作面靠近齿环外侧的区域甩出(如图6中 箭头所示),这时工作面靠近齿环外侧的区域能够获得充分的冷却。但是,工作面靠近齿环内侧的区域没有冷却水或没有足够的冷却水而未获得充分的冷却。
现有技术的无齿环状杯形砂轮(见图8),为连续式加工,不易产生崩边,但由于无通水槽,冷却能力极差。现有技术的外齿环状杯形砂轮(见图9),其齿间为排屑槽,但是冷却水无法进入。因此,现有技术的无齿环和外齿环更不可能适应高转速加工。
在高转速加工的时候,若将冷却水沿砂轮周向向磨削区施加、冷却水从外径向内径方向施加,会受到“气流屏障”和离心力的强烈作用,冷却水均难以进入到磨削区域,冷却效果极差。因此,在高转速加工时,大部分的冷却水应进入到内径腔内,由内向外,覆盖工作面,才能获得好的冷却效果。
发明内容
综上所述,为克服现有技术的不足,本发明所要解决的技术问题是提供一种高转速杯形砂轮。
本发明解决上述技术问题的技术方案如下:一种高转速杯形砂轮,包括环状的基体和若干齿片;所述齿片沿周向间隔排列的固定在所述基体上的一侧形成齿环,所述齿环远离所述基体的一侧为环形的工作面,并且相邻两个所述齿片之间隔开形成向所述工作面输送冷却水的通水槽;还包括分流结构;所述分流结构固定在所述齿环上并将冷却水分流成两个支路,其中第一支路在所述基体转动的离心力作用下通过所述通水槽内部向所述工作面外侧的区域输送冷却水,第二支路在所述基体转动的离心力作用下通过所述通水槽外部向所述工作面内侧的区域输送冷却水,并在被加工工件的阻挡下再将冷却水从所述工作面的内侧区域输送至所述工作面的外侧区域。
本发明的有益效果是:该杯形砂轮在高速转动时,其利用离心力可以将 进入到内径腔的冷却水分流成两个支路,并且两个支路分别向工作面外侧和内侧的区域输送冷却水,进而实现冷却水将工作面全部覆盖并充分实施冷却,为高转速高质高效磨削提供了冷却保证。
在上述技术方案的基础上,本发明还可以做如下进一步的改进:
进一步,所述分流结构包括外环体和内环体;所述外环体固定在所述齿环的外侧,所述内环体固定在所述齿环的内侧,在所述内环体的侧壁上对应所述通水槽的位置处设有连通所述通水槽的通水孔,进而从所述通水孔经所述通水槽到所述工作面外侧的区域形成所述第一支路,从所述内环体的内侧壁到所述工作面内侧的区域形成所述第二支路。
采用上述进一步技术方案的有益效果为:实现将进入内径腔的冷却水分流成两个支路,并且两个支路分别向工作面外侧和内侧的区域输送冷却水。
进一步,所述通水孔为环状结构,其在所述内环体侧壁上设有一圈。
进一步,所述通水孔处于所述内环体侧壁上且远离所述工作面的一端。
采用上述进一步技术方案的有益效果为:当冷却水从穿过基体向内径腔供给、或者当冷却水从工作端面方向向内径腔方向供给但基体上设置有汇流装置时,限制基体内的冷却水分流成两个支路,提高冷却水的利用率,并且使得冷却水更加均匀分布在工作面上。
进一步,所述通水孔为环状结构,其在所述内环体侧壁上设有两圈或两圈以上。
采用上述进一步技术方案的有益效果为:当冷却水从工作端面方向向内径腔方向喷射方式供给而基体上没有设置有汇流装置时,可提高冷却水的利用率,并且使得冷却水更加均匀分布在工作面上。
进一步,所述齿片内外两端分别设有第二圆弧块和第一圆弧块,所述第二圆弧块两侧分别设有缺口;在所述齿片固定到所述基体上后,所有所述齿片上的所述第一圆弧块拼接成所述外环体,所有所述齿片上的所述第二圆弧 块拼接成所述内环体,并且相邻两个所述第二圆弧块拼接后,其上的所述缺口对接成连通相应的所述通水槽的所述通水孔。
进一步,所述第一圆弧块和所述第二圆弧块与相应的所述齿片一体成型。
进一步,所述通水槽为与所述基体径向一致的直槽结构。
进一步,所述通水槽为相对所述基体径向倾斜的斜槽结构。
进一步,还包括与机床主轴连接的连接盘;所述连接盘固定在所述基体远离所述齿环的一侧。
采用上述进一步技术方案的有益效果为:实现与机床主轴的连接。
进一步,所述通水槽一侧或两侧设有多个凹槽,并且所述工作面上对应所述凹槽的位置处易快速磨耗并形成周向的沟槽,所述沟槽与所述通水槽交错后在所述工作面上形成网状结构的槽体。
采用上述进一步技术方案的有益效果为:网状结构的槽体使得冷却水分布到工作面上各个位置,从而使得冷却水更容易将工作面全部覆盖并充分实施冷却。
进一步,所述凹槽布置在所述齿环的不同的直径上,且所述凹槽在所述齿环同一直径圆周上的连线呈单段圆弧或多段圆弧均布设置,所述单段圆弧长度最长为相应圆周的半圈,所述多段圆弧的累计长度最长为相应圆周的半圈。
采用上述进一步技术方案的有益效果为:同一直径圆周上的凹槽设置没有贯通整个圆周,即在该圆周上形成了凹凸的波浪形态,砂轮磨边时,即会产生轴向和径向微振动,起到冲击式断续磨削的效应,粉屑的阻滞呈频率性松弛,极大的增加了排屑、冷却效果。
进一步,所述外环体和所述内环体的厚度设置在3mm或1mm以下。
进一步,当所述基体的旋转线速度达到45m/s或以上时,所述通水槽靠近所述齿环外侧的一端相对所述通水槽靠近所述齿环内侧的一端朝所述基体旋转的方向倾斜角度θ,并且所述基体的旋转线速度越高,所述角度θ的值越大。
采用上述进一步技术方案的有益效果为:当砂轮高速旋转达到一定值时,避免由于离心力的增大冷却水过多的被快速从砂轮外环端面处甩出,但内环工作面缺水冷却的缺陷。通水槽逆向布置,有阻滞冷却水径向快速泄漏的作用,并形成“涌泉”效应,有利于强化冷却水对工作面的冷却效果。
附图说明
图1为现有技术的通直齿环状杯形砂轮的结构示意图;
图2为图1的俯视图;
图3为图2的A-A剖视图;
图4为现有技术的通斜齿环状杯形砂轮的结构示意图;
图5为现有技术的内齿环状杯形砂轮的结构示意图;
图6为图5的俯视图;
图7为图6的B-B剖视图;
图8为现有技术的无齿环状杯形砂轮的结构示意图;
图9为现有技术的外齿环状杯形砂轮的结构示意图;
图10为本发明实施例一的三维图;
图11为图10的俯视图;
图12为图11的C-C剖视图;
图13为本发明实施例二的三维图;
图14为图13的俯视图;
图15为图14的D-D剖视图;
图16为本发明实施例三的三维图;
图17为本发明实施例三中齿片的三维图;
图18为实施例四中通水槽为直槽结构且在通水槽一侧设有凹槽的三维图;
图19为实施例四中通水槽为斜槽结构且在通水槽一侧设有凹槽的三维图;
图20实施例四中通水槽为斜槽结构且在通水槽两侧设有凹槽的三维图;
图21为图20的E放大图;
图22为实施例四中齿环磨耗后在工作面上形成网状结构的槽体的三维图;
图23为图22的F放大图;
图24为凹槽在同一直径圆周上的布置示意图;
图25为传统加工工艺中砂轮旋转方向与通水槽的倾斜方向顺向的示意图;
图26为实施例五中砂轮旋转方向与通水槽的倾斜方向逆向的示意图。
其中,箭头表示冷却水的流动方向或者砂轮的旋转方向。
附图中,各标号所代表的部件列表如下:
1、基体,2、齿片,3、通水槽,4、外环,5、内环,6、通水孔,7、第一圆弧块,8、第二圆弧块,9、缺口,10、连接盘,11、凹槽,12、沟槽。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例一
如图10-12所示,一种高转速杯形砂轮,包括环状的基体1、若干齿片 2以及与机床主轴连接的连接盘10。所述齿片2沿周向间隔排列的固定在所述基体1上的一侧形成齿环,所述齿环远离所述基体1的一侧为环状的工作面,并且相邻两个所述齿片2之间隔开形成向所述工作面输送冷却水的通水槽3。所述通水槽3为与所述基体1径向一致的直槽结构,或者所述通水槽3为相对所述基体1径向倾斜的斜槽结构。所述连接盘10固定在所述基体1远离所述齿环的一侧。
该杯形砂轮还包括分流结构。所述分流结构固定在所述齿环上并将冷却水分流成两个支路,其中第一支路在所述基体1转动的离心力作用下通过所述通水槽3内部向所述工作面外侧的区域输送冷却水,第二支路在所述基体1转动的离心力作用下通过所述通水槽3外部(即砂轮的内壁)向所述工作面内侧的区域输送冷却水,并在被加工工件的阻挡下再将冷却水从所述工作面的内侧区域输送至所述工作面的外侧区域。所述分流结构包括外环体4和内环体5。所述外环体4固定在所述齿环的外侧,所述内环体5固定在所述齿环的内侧,在所述内环体5的侧壁上对应所述通水槽3的位置处设有连通所述通水槽3的通水孔6,进而从所述通水孔6经所述通水槽3到所述工作面外侧的区域形成所述第一支路,从所述内环体5的内侧壁到所述工作面内侧的区域形成所述第二支路。外环体4和内环体5的厚度设置在3mm以下,最优的厚度为1mm以下。所述通水孔6为环状结构,其在所述内环体5侧壁上设有一圈,并处于所述内环体5侧壁上且远离所述工作面的一端。
工作的时候,在杯形砂轮高速转动离心力的作用下,进入齿环内的冷却水被内环体5阻挡,防止冷却水全部进入到通水槽3内。由于在内环体5上设有通水孔6,因此齿环内部的冷却水会分流成两个支路:
第一支路的流动路径为:一部分冷却水由齿环内部经通水孔6进入到通水槽3内,冷却水进入通水槽3内后,其在外环体4的阻挡下贴着外环体4的内壁沿齿环的轴向朝工作面外侧的区域流动,进而对工作面外侧的区域进 行冷却;
第二支路的流动路径为:在通水孔6限流的作用下,另一部分冷却水贴着内环体5的内壁沿齿环的轴向朝工作面内侧的区域流动,进而对工作面内侧的区域进行冷却,并且对工作面内侧的区域进行冷却后再流向工作面外侧的区域。
综上所述,两个支路水流分别对工作面外侧和内侧的区域进行冷却,最终达到对工作面全面冷却的效果,避免工作面存在有冷却水不能冷却的区域,极大的提高了加工质量。
实施例二
该实施例在实施例一的基础上,对通水孔6的结构进行改进,其他部分与实施例一一致,具体如下:
如图13-15所示,所述通水孔6为环状结构,其在所述内环体5侧壁上设有两圈或两圈以上。由于通水孔6在内环体5侧壁上设有两圈,经通水孔6形成的第一支路就会有两路:
远离工作面的一圈通水孔6形成的第一支路的流动路径为:第一部分冷却水由齿环内部经远离工作面的一圈通水孔6进入到通水槽3内,冷却水进入通水槽3内后,其在外环体4的阻挡下贴着外环体4的内壁沿齿环的轴向朝工作面靠近齿环外侧的区域流动,进而对工作面外侧的区域进行冷却;
靠近工作面的一圈通水孔6形成的第一支路的流动路径为:第二部分冷却水由齿环内部经靠近工作面的一圈通水孔6进入到通水槽3内,冷却水进入通水槽3内后,其在外环体4和第一部分冷却水的阻挡下沿齿环的轴向朝工作面中部的区域流动,进而对工作面中部的区域进行冷却
第二支路的流动路径同实施例一。最终工作面外侧的区域、工作面中部的区域以及作面内侧的区域均有相应的冷却水覆盖,使得冷却水更加均匀分 布在工作面上,进一步提高加工质量。另外,当冷却水从工作端面供给时,可以提高冷却水的利用率。
实施例三
该实施例在实施例一或实施例二的基础上,对外环体4和内环体5的结构进行改进,其他部分与实施例一或实施例二一致,具体如下:
如图16和17所示,所述齿片2内外两端分别设有第一圆弧块7和第二圆弧块8,所述第二圆弧块8两侧分别设有缺口9。在所述齿片2固定到所述基体1上后,所有所述齿片2上的所述第一圆弧块7拼接成所述外环体4,所有所述齿片2上的所述第二圆弧块8拼接成所述内环体5,并且相邻两个所述第二圆弧块8拼接后,其上的所述缺口9对接成连通相应的所述通水槽3的所述通水孔6。所述第一圆弧块7和所述第二圆弧块8与相应的所述齿片2一体成型。通过上述设计,在齿片2完成装配时,外环体4、内环体5和通水孔6同步形成,有利于砂轮的组装。
实施例四
该实施例在实施例一或实施例二或实施例三的基础上,对通水槽3的结构进行改进,其他部分与实施例一或实施例二或实施例三一致,具体如下:
如图18和19所示,在所述通水槽3一侧设有多个凹槽11,如图20和21所示,或者在所述通水槽3两侧设有多个凹槽11,其中通水槽3可以为直槽结构或者斜槽结构。所述工作面上对应所述凹槽11的位置处易快速磨耗并形成周向的沟槽12,所述沟槽12与所述通水槽3交错后在所述工作面上形成网状结构的槽体。由于在通水槽3的侧壁上设有凹槽11,其具有如下优势:
第一,凹槽11具有储存冷却水的作用,使更多的冷却水滞留在工作面 上,提高冷却效果;
第二,凹槽11的设计,使得工作面沿径向方向各点的圆周上,其含有的金刚石(工作材料)累积圆周总长度是不均等的,即工作面含有的金刚石在凹槽11处累积圆周总长度较短,因此凹槽11处先磨耗。如图23和24所示,凹槽11处因磨耗快会形成沟槽12,该沟槽12与其相邻的通水槽3交错构成网状结构的槽体,网状结构的槽体使得冷却水分布到工作面上各个位置,从而使得冷却水更容易将工作面全部覆盖并充分实施冷却,提升冷却效果。
另外,所述凹槽11布置在所述齿环的不同的直径上,且所述凹槽11在所述齿环同一直径圆周上的连线呈单段圆弧或多段圆弧均布设置,所述单段圆弧长度最长为相应圆周的半圈,所述多段圆弧的累计长度最长为相应圆周的半圈。如图24所示,虚线L 1和虚线L 2表示处于同一直径圆周上的凹槽11的连线,即该圆周上凹槽11的连线为两段圆弧(L 1与L 2)均布设置。同一直径圆周上的凹槽11设置没有贯通整个圆周,即在该圆周上形成了凹凸的波浪形态,砂轮磨边时,即会产生轴向和径向微振动,起到冲击式断续磨削的效应,粉屑的阻滞呈频率性松弛,极大的增加了排屑、冷却效果。
实施例五
该实施例在实施例一或实施例二或实施例三或实施例四的基础上,对通水槽3为斜槽结构的砂轮进行加工工艺上的改进,其他部分与实施例一或实施例二或实施例三或实施例四一致,具体如下:
当所述基体1的旋转线速度达到45m/s或以上时,所述通水槽3靠近所述齿环外侧的一端相对所述通水槽3靠近所述齿环内侧的一端朝所述基体旋转的方向倾斜角度θ,并且所述基体1的旋转线速度越高,所述角度θ的值越大。
对于斜槽结构的砂轮,如图25所示,传统加工工艺中砂轮/基体1旋转方向相对通水槽3的倾斜方向为顺向转动,顺向转动有利于冷却水流出,以此在离心力的作用下使得通水槽3内的冷却水更容易甩出,进而提高冷却效果。但是,当砂轮高速旋转且达到一定值,如旋转线速度达到45m/s或以上时,由于高速旋转带来离心力的增大,使得冷却水过多的被快速从砂轮外环端面处甩出,但内环工作面缺水冷却的缺陷。此时,如图26所示,改变砂轮/基体1的旋转方向,使其旋转方向相对通水槽3的倾斜方向逆向转动,逆向转动不利于冷却水流出,即通水槽3逆向布置,有阻滞冷却水径向快速泄漏的作用,并形成“涌泉”效应,有利于强化冷却水对工作面的冷却效果。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种高转速杯形砂轮,包括环状的基体(1)和若干齿片(2);所述齿片(2)沿周向间隔排列的固定在所述基体(1)的一侧形成齿环,所述齿环远离所述基体(1)的一侧为环形的工作面,并且相邻两个所述齿片(2)之间隔开形成向所述工作面输送冷却水的通水槽(3);其特征在于,还包括分流结构;所述分流结构固定在所述齿环上并将冷却水分流成两个支路,其中第一支路在所述基体(1)转动的离心力作用下通过所述通水槽(3)内部向所述工作面外侧的区域输送冷却水,第二支路在所述基体(1)转动的离心力作用下通过所述通水槽(3)外部向所述工作面内侧的区域输送冷却水,并在被加工工件的阻挡下再将冷却水从所述工作面的内侧区域输送至所述工作面的外侧区域。
  2. 根据权利要求1所述的高转速杯形砂轮,其特征在于,所述分流结构包括外环体(4)和内环体(5);所述外环体(4)固定在所述齿环的外侧,所述内环体(5)固定在所述齿环的内侧,在所述内环体(5)的侧壁上对应所述通水槽(3)的位置处设有连通所述通水槽(3)的通水孔(6),进而从所述通水孔(6)经所述通水槽(3)到所述工作面外侧的区域形成所述第一支路,从所述内环体(5)的内侧壁到所述工作面内侧的区域形成所述第二支路。
  3. 根据权利要求2所述的高转速杯形砂轮,其特征在于,所述通水孔(6)为环状结构,其在所述内环体(5)侧壁上设有一圈。
  4. 根据权利要求3所述的高转速杯形砂轮,其特征在于,所述通水孔(6)处于所述内环体(5)侧壁上且远离所述工作面的一端。
  5. 根据权利要求2所述的高转速杯形砂轮,其特征在于,所述通水孔(6)为环状结构,其在所述内环体(5)侧壁上设有两圈或两圈以上。
  6. 根据权利要求2所述的高转速杯形砂轮,其特征在于,所述齿片(2)内外两端分别设有第二圆弧块(8)和第一圆弧块(7),所述第二圆弧块(8)两侧分别设有缺口(9);在所述齿片(2)固定到所述基体(1)上后,所有所述齿片(2)上的所述第一圆弧块(7)拼接成所述外环体(4),所有所述齿片(2)上的所述第二圆弧块(8)拼接成所述内环体(5),并且相邻两个所述第二圆弧块(8)拼接后,其上的所述缺口(9)对接成连通相应的所述通水槽(3)的所述通水孔(6)。
  7. 根据权利要求6所述的高转速杯形砂轮,其特征在于,所述第一圆弧块(7)和所述第二圆弧块(8)与相应的所述齿片(2)一体成型。
  8. 根据权利要求1所述的高转速杯形砂轮,其特征在于,所述通水槽(3)为与所述基体(1)径向一致的直槽结构。
  9. 根据权利要求1所述的高转速杯形砂轮,其特征在于,所述通水槽(3)为相对所述基体(1)径向倾斜的斜槽结构。
  10. 根据权利要求1至9任一项所述的高转速杯形砂轮,其特征在于,还包括与机床主轴连接的连接盘(10);所述连接盘(10)固定在所述基体(1)远离所述齿环的一侧。
  11. 根据权利要求1至9任一项所述的高转速杯形砂轮,其特征在于,所述通水槽(3)一侧或两侧设有多个凹槽(11),并且所述工作面上对应所述凹槽(11)的位置处易快速磨耗并形成周向的沟槽(12),所述沟槽(12)与所述通水槽(3)交错后在所述工作面上形成网状结构的槽体。
  12. 根据权利要求11所述的高转速杯形砂轮,其特征在于,所述凹槽(11)布置在所述齿环的不同的直径上,且所述凹槽(11)在所述齿环同一直径圆周上的连线呈单段圆弧或多段圆弧均布设置,所述单段圆弧长度最长为相应圆周的半圈,所述多段圆弧的累计长度最长为相应圆周的半圈。
  13. 根据权利要求2所述的高转速杯形砂轮,其特征在于,所述外环体 (4)和所述内环体(5)的厚度设置在3mm或1mm以下。
  14. 根据权利要求9所述的高转速杯形砂轮,其特征在于,当所述基体(1)的旋转线速度达到45m/s或以上时,所述通水槽(3)靠近所述齿环外侧的一端相对所述通水槽(3)靠近所述齿环内侧的一端朝所述基体旋转的方向倾斜角度θ,并且所述基体(1)的旋转线速度越高,所述角度θ的值越大。
PCT/CN2021/080405 2020-03-30 2021-03-12 一种高转速杯形砂轮 WO2021197027A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/916,066 US20230166383A1 (en) 2020-03-30 2021-03-12 High-rotational speed cup-shaped grinding wheel
JP2022559363A JP7492774B2 (ja) 2020-03-30 2021-03-12 高回転型カップホイール
EP21779886.7A EP4129572A4 (en) 2020-03-30 2021-03-12 CUPULIFORM GRINDING WHEEL WITH HIGH ROTATIONAL SPEED
KR1020227035759A KR20230007330A (ko) 2020-03-30 2021-03-12 고속 회전 컵형 그라인딩 휠

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010238283.9 2020-03-30
CN202010238283 2020-03-30
CN202020434168.4 2020-03-30
CN202020434168 2020-03-30
CN202010295353.4A CN111438643B (zh) 2020-03-30 2020-04-15 一种高转速杯形砂轮
CN202010295353.4 2020-04-15
CN202020556608.3 2020-04-15
CN202020556608.3U CN212095976U (zh) 2020-03-30 2020-04-15 一种高转速杯形砂轮

Publications (1)

Publication Number Publication Date
WO2021197027A1 true WO2021197027A1 (zh) 2021-10-07

Family

ID=71653049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080405 WO2021197027A1 (zh) 2020-03-30 2021-03-12 一种高转速杯形砂轮

Country Status (6)

Country Link
US (1) US20230166383A1 (zh)
EP (1) EP4129572A4 (zh)
JP (1) JP7492774B2 (zh)
KR (1) KR20230007330A (zh)
CN (2) CN212095976U (zh)
WO (1) WO2021197027A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212095976U (zh) * 2020-03-30 2020-12-08 桂林创源金刚石有限公司 一种高转速杯形砂轮
WO2022033386A1 (zh) * 2020-08-10 2022-02-17 桂林创源金刚石有限公司 一种高速杯形轮冷却结构
CN112247861A (zh) * 2020-10-10 2021-01-22 中铁隆昌铁路器材有限公司 一种新型打磨钢轨端面磨超硬砂轮结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203156587U (zh) * 2013-01-25 2013-08-28 河南富耐克超硬材料股份有限公司 一种杯形砂轮
CN106903567A (zh) * 2017-03-17 2017-06-30 桂林创源金刚石有限公司 一种金刚石异形砂轮及立式加工冷却系统
EP3260236A2 (en) * 2016-06-22 2017-12-27 Biesse S.p.A. Method and system for feeding a cooling fluid during machining of a workpiece by means of a cup grinding wheel, and cup grinding wheel used therein
CN108188945A (zh) * 2018-03-12 2018-06-22 桂林创源金刚石有限公司 一种薄片齿拼合式金刚石砂轮及制作方法
CN111438643A (zh) * 2020-03-30 2020-07-24 桂林创源金刚石有限公司 一种高转速杯形砂轮

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482669A (ja) * 1990-07-23 1992-03-16 Kanto Rika Kogyo Kk 研削用砥石およびそれを用いた研削方法
DE10361895B4 (de) * 2003-12-30 2013-02-07 Technische Universität Kaiserslautern Hochleistungs-Schleifscheibe
JP4874597B2 (ja) * 2005-08-04 2012-02-15 株式会社ディスコ 研削砥石の製造方法
WO2011086715A1 (ja) * 2010-01-13 2011-07-21 株式会社アライドマテリアル 超砥粒ホイールおよびそれを用いたウエハの製造方法ならびにウエハ
CN103481213A (zh) * 2013-09-13 2014-01-01 广州市敏嘉制造技术有限公司 镶嵌式内冷砂轮
CN104669090B (zh) * 2015-03-02 2016-09-07 安徽工业大学 一种砂轮设有人字型槽的磨削装置及磨削方法
CN205674046U (zh) * 2016-05-10 2016-11-09 桂林创源金刚石有限公司 一种通齿与外齿结合的金刚石杯形磨边砂轮
CN108621040A (zh) * 2017-03-18 2018-10-09 四川省宜宾普什汽车零部件有限公司 一种高精度高硬度低成本曲轴加工工艺
WO2019174580A1 (zh) * 2018-03-12 2019-09-19 桂林创源金刚石有限公司 一种磨具及制作方法
CN208468104U (zh) * 2018-06-15 2019-02-05 洛阳传顺机械设备有限公司 一种磨床用砂轮的冷却装置
CN109366374B (zh) * 2018-11-21 2020-11-06 重庆大学 一种基于3d打印技术的电镀cbn砂轮内冷装置及其内冷方法
CN110919555B (zh) * 2019-12-19 2024-04-16 宋京新 一种外转内冷可互换电镀杯型砂轮
CN110919556A (zh) * 2019-12-31 2020-03-27 桂林创源金刚石有限公司 一种杯形砂轮快速磨合结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203156587U (zh) * 2013-01-25 2013-08-28 河南富耐克超硬材料股份有限公司 一种杯形砂轮
EP3260236A2 (en) * 2016-06-22 2017-12-27 Biesse S.p.A. Method and system for feeding a cooling fluid during machining of a workpiece by means of a cup grinding wheel, and cup grinding wheel used therein
CN106903567A (zh) * 2017-03-17 2017-06-30 桂林创源金刚石有限公司 一种金刚石异形砂轮及立式加工冷却系统
CN108188945A (zh) * 2018-03-12 2018-06-22 桂林创源金刚石有限公司 一种薄片齿拼合式金刚石砂轮及制作方法
CN111438643A (zh) * 2020-03-30 2020-07-24 桂林创源金刚石有限公司 一种高转速杯形砂轮

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129572A4 *

Also Published As

Publication number Publication date
CN111438643A (zh) 2020-07-24
EP4129572A1 (en) 2023-02-08
KR20230007330A (ko) 2023-01-12
CN111438643B (zh) 2024-05-14
JP2023519397A (ja) 2023-05-10
CN212095976U (zh) 2020-12-08
JP7492774B2 (ja) 2024-05-30
US20230166383A1 (en) 2023-06-01
EP4129572A4 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
WO2021197027A1 (zh) 一种高转速杯形砂轮
JP5380674B2 (ja) 研削ホイールの保持具
CN206732729U (zh) 一种金刚石异形砂轮及立式加工冷却系统
JP2010284791A5 (zh)
CN106607775B (zh) 具有内部供给流体结构的磨盘
CN110480506A (zh) 一种用于成形磨削的内冷却开槽砂轮装置
CN106182449B (zh) 一种刀形降噪孔锯片及切削机械
KR101415159B1 (ko) 연삭 숫돌
JP4057863B2 (ja) 深穴切削装置
JP2704533B2 (ja) パイプ砥石
CN206048524U (zh) 一种刀形降噪孔锯片及切削机械
US20010023690A1 (en) Saw blade for cutting steel-reinforced structure
WO2021129512A1 (zh) 一种高速高效钻头
JPH07256558A (ja) 回転研削砥石
CN111958508A (zh) 一种高速杯形轮冷却结构
CN207373000U (zh) 一种金刚石专用切磨片
CN107443263A (zh) 一种金刚石专用切磨片
CN206028903U (zh) 一种铜管内孔倒角刀头
WO2022033386A1 (zh) 一种高速杯形轮冷却结构
JP4283372B2 (ja) 研削装置
CN212218225U (zh) 一种高速杯形轮冷却结构
JP2012143836A (ja) 切削砥石、切削砥石を備えた切削加工機械、及び切削加工機械による切削加工方法
CN217288613U (zh) 一种研磨装置
CN114770372B (zh) 一种具有均匀材料去除功能的复合表面图案抛光垫
JPH08238617A (ja) 乾式穿孔用ダイヤモンドドリルビット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021779886

Country of ref document: EP

Effective date: 20221031