WO2021190585A1 - 一种耐盐纤维素分解菌的快速分离方法 - Google Patents

一种耐盐纤维素分解菌的快速分离方法 Download PDF

Info

Publication number
WO2021190585A1
WO2021190585A1 PCT/CN2021/082921 CN2021082921W WO2021190585A1 WO 2021190585 A1 WO2021190585 A1 WO 2021190585A1 CN 2021082921 W CN2021082921 W CN 2021082921W WO 2021190585 A1 WO2021190585 A1 WO 2021190585A1
Authority
WO
WIPO (PCT)
Prior art keywords
strains
salt
cmc
medium
add
Prior art date
Application number
PCT/CN2021/082921
Other languages
English (en)
French (fr)
Inventor
陈瑞蕊
赵炳梓
俞冰倩
董洋
林先贵
Original Assignee
中国科学院南京土壤研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院南京土壤研究所 filed Critical 中国科学院南京土壤研究所
Publication of WO2021190585A1 publication Critical patent/WO2021190585A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/942Hydrolases (3) acting on glycosyl compounds (3.2) acting on beta-1, 4-glucosidic bonds, e.g. cellulase

Definitions

  • the invention relates to the field of biotechnology, in particular to a method for quickly separating salt-tolerant cellulose decomposing bacteria.
  • saline-alkali soil my country's saline-alkali soil has a large area and is widely distributed, mainly in the Northeast, North China, Northwest and coastal areas, and is an important reserve arable land resource.
  • Saline soil has poor physical and chemical properties, and soil fertility and microbial activity are lower than normal soil, which is not conducive to plant growth.
  • the important nutrient source of saline soil is plant litter, the main component of which is cellulose. Therefore, the separation of salt-tolerant microorganisms that can degrade cellulose is of great significance to the nutrient cycle of saline-alkali soils.
  • Cellulose is the main substance that constitutes the cell wall of plants. It is widely distributed in nature. It is the most abundant natural organic matter in the world and an important renewable resource. Cellulose is an important raw material for papermaking, and products using cellulose as raw material are also widely used in plastics, chemicals and other fields. There are many high-energy hydrogen bonds in cellulose, making it difficult to hydrolyze and utilize, and incomplete utilization will cause certain pollution to the environment. At present, there are two main methods for degrading cellulose. One is the physical and chemical method, but it has the disadvantages of complicated equipment and high cost; the other is the microbiological method, which has attracted attention because of its high efficiency and easy operation.
  • Cellulase refers to a group of enzymes that can hydrolyze the ⁇ -1,4 glucosidic bond of cellulose and turn cellulose into cellobiose and glucose. It is not a single enzyme. At present, it is generally believed that: cellulase includes three types, one is endo 1,4- ⁇ -glucosidase, which randomly cuts the amorphous region inside the cellulose polysaccharide chain; the other is cellobiase It cuts and releases glycans from the end of the cellulose polysaccharide chain. It is an exoglucanase; the third is ⁇ -glucosidase, which hydrolyzes cellobiose and other water-soluble cellodextrins to form glucose.
  • Microorganisms cannot directly use the cellulose in the external environment, only by secreting extracellular enzymes to break down the cellulose in the external environment into small molecules that can be directly absorbed and utilized.
  • extracellular enzymes to break down the cellulose in the external environment into small molecules that can be directly absorbed and utilized.
  • cellulase is found in fungi, actinomycetes and bacteria.
  • the present invention discloses a method for rapidly separating salt-tolerant cellulosic decomposing bacteria.
  • the method uses high-salt culture medium to screen out salt-tolerant strains in saline-alkali soil, and uses fluorescence method to quickly detect strain ⁇ -glucoside Enzyme activity, salt-tolerant strains with higher ⁇ -glucosidase activity were screened out, and the viscosity of a high-salinity sodium carboxymethylcellulose liquid medium was used to characterize its cellulose degradation ability, so as to obtain the ability to degrade cellulose The salt-tolerant strains and characteristics.
  • a method for rapid separation of salt-tolerant cellulosic bacteria including the following steps: (1) Isolation and purification of salt-tolerant bacteria in the sample: Weigh 1g of saline-alkaline earth, add 9mL of sterile water, and shake at a constant temperature of 30°C For 30 minutes, take the sample suspension and dilute it with sterile water into 10 -1 , 10 -2 , and 10 -3 solutions. Take 200 ⁇ L of the diluted solution and spread it evenly on the LB solid medium with a salt concentration of 2.5%. Cultivate in a constant temperature incubator at 30°C for 2 to 3 days until a single colony grows. The single colony is purified and cultivated by streaking to obtain pure strains.
  • the components of the LB solid medium with a salt concentration of 2.5% are: tryptone 10g, yeast extract 5g, sodium chloride 25g, agar powder 10-20g, deionized water to 1L, and pH to 7.4.
  • composition of the above-mentioned sodium carboxymethyl cellulose liquid medium is: CMC-Na 20g, Na 2 HPO 4 2.5g, KH 2 PO 4 1.5g, peptone 2.5g, add deionized water to 1L, adjust the pH to 7.0-7.5 .
  • the components of the above CMC-Na liquid medium are: CMC-Na 20g, Na 2 HPO 4 2.5g, KH 2 PO 4 1.5g, and peptone 2.5g. Add NaCl and deionized water to 1L according to the ratio to obtain a salt concentration of 0wt.%, 0.5wt.%, 1wt.%, 1.5wt.%, 2wt.%, 3wt.% CMC-Na liquid culture medium, adjust the pH to 7.0-7.5.
  • the present invention provides a method for quickly isolating salt-tolerant cellulolytic bacteria, through preliminary screening of the culture medium, and then measuring the enzyme activity, and finally using the viscosity change of the CMC-Na liquid medium to verify (Table 1), traditional
  • the traditional separation method of cellulolytic bacteria includes the primary screening of the selection medium, the re-screening of Congo red staining, and the determination of the enzyme activity of the fermentation medium for verification.
  • the separation method of the present invention has the advantages of being able to quantify the enzyme activity of strains, high-efficiency batches, simple operation, convenient and quick, etc., greatly improving work efficiency, accurate and reliable results, and comparable to traditional methods.
  • the specific comparison of the methods is shown in Table 2.
  • the strain obtained by screening in the present invention has the characteristics of salt tolerance and cellulose decomposing, and can exert the ability to degrade cellulose in a high-salt environment.
  • Figure 1 is a graph of ⁇ -glucosidase activity of salt-tolerant strains screened.
  • Figure 2 is a graph of intrinsic viscosity of 15 strains of bacteria in CMC-Na liquid medium.
  • Figure 3 is a graph showing the correlation between the ⁇ -glucosidase activity of 15 strains and the intrinsic viscosity of the bacterial solution.
  • Figure 4 is a graph of the intrinsic viscosity of the three strains in the CMC-Na liquid medium with different salt concentrations.
  • Figure 5 is a graph showing the change of intrinsic viscosity of the three strains in the CMC-Na liquid medium with different salt concentrations.
  • the target sample selected in the present invention is saline-alkali soil, which is universal for the separation of cellulose-degrading bacteria in samples other than the present invention, and can be carried out with reference to this embodiment.
  • the following embodiments are only used to illustrate the present invention, and are not used to limit the scope of protection claimed by the present invention.
  • Example 1 Isolation and purification of salt-tolerant strains in the sample
  • Example 2 Using fluorescence method to quickly detect and screen the ⁇ -glucosidase activity of strains
  • CMC-Na liquid medium CMC-Na 20g, Na 2 HPO 4 2.5g, KH 2 PO 4 1.5g, peptone 2.5g, add deionized water to 1L, adjust the pH to 7.0-7.5, and sterilize at 121°C 20min.
  • the CMC-Na liquid medium with different salt concentrations CMC-Na 20g, Na 2 HPO 4 2.5g, KH 2 PO 4 1.5g, and peptone 2.5g, respectively adding 0wt.%, 0.5wt.%, 1wt.%, 1.5wt.%, 2wt.%, 3wt.% NaCl, deionized water to 1L, formulated with a salt concentration of 0wt.%, 0.5wt.%, 1wt.%, 1.5wt.%, 2wt.%, 3wt. % CMC-Na liquid medium, adjust the pH to 7.0-7.5, and sterilize at 121°C for 20 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供了一种耐盐纤维素分解菌的快速分离方法,包括以下步骤:样品中的耐盐菌株的分离与纯化;用荧光法快速检测筛选得到菌株的β-葡萄糖苷酶活性;将不同β-葡萄糖苷酶活性的菌株接入羧甲基纤维素钠(CMC-Na)液体培养基,观察菌株生长情况,并测其粘度。

Description

一种耐盐纤维素分解菌的快速分离方法 技术领域
本发明涉及生物技术领域,具体涉及一种耐盐纤维素分解菌的快速分离方法。
背景技术
我国盐碱土壤面积大,分布广泛,主要分布于东北、华北、西北及沿海地区,是重要的后备耕地资源。盐碱土壤理化性质差,土壤肥力及微生物活性较正常土壤低,不利于植物生长。盐碱土壤重要的营养来源是植物凋落物,其最主要成分是纤维素。因而分离能够降解纤维素的耐盐微生物对于盐碱土壤的营养循环具有重要意义。
纤维素是构成植物细胞壁的主要物质,广泛分布于自然界中,是世界上最丰富的天然有机物,也是重要的可再生资源。纤维素是重要的造纸原料,以纤维素为原料的产品也广泛应用于塑料、化工等领域。纤维素中存在许多高能的氢键,使其水解、利用均很困难,且不完全利用会对环境造成一定的污染。目前,降解纤维素主要有两种方法,一是物理化学法,但存在设备复杂且成本高的缺点;二是微生物法,该方法因高效且易于操作的优点而受到重视。
纤维素酶是指能水解纤维素的β-1,4葡萄糖苷键,使纤维素变成纤维二糖和葡萄糖的一组酶的总称。它不是单一酶,目前一般认为:纤维素酶包括3类,一是内切1,4-β-葡聚糖苷酶,它随机切割纤维素多糖链内部的无定型区;二是纤维二糖酶,它从纤维素多糖链的末端切割释放聚糖,是一种外切葡聚糖酶;三是β-葡萄糖苷酶,它水解纤维二糖和其他水溶性的纤维糊精产生形成葡萄糖,是目前研究最广泛、使用最多的一种纤维素酶。微生物不能直接利用外界环境中的纤维素,只有通过分泌胞外酶将外界环境中的纤维素分解成可以直接吸收利用的小分子。在自然环境中,有大量微生物能够分泌可用于降解天然纤维素的纤维素酶,在真菌、放线菌和细菌中均发现有纤维素酶的存在。
关于纤维素降解菌株分离的研究很多,但研究具有耐盐特性的纤维素降解菌较少,在盐环境下高浓度盐对常规纤维素降解菌活性有强烈抑制作用,不能正常发挥其作用,因此,筛选适应盐碱地区的高效耐盐纤维素降解菌株十分必要。
发明内容
解决的技术问题:本发明公开了一种耐盐纤维素分解菌的快速分离方法,该方法用高盐培养基筛选出盐碱土壤中的耐盐菌株,用荧光法快速检测菌株β-葡萄糖苷酶的活性,筛选出β-葡萄糖苷酶活性较高的耐盐菌株,用高盐度的羧甲基纤维素钠液体培养基的粘度来表征其纤维素降解能力,从而获得具有降解纤维素能力的耐盐菌株及特性。
技术方案:一种耐盐纤维素分解菌的快速分离方法,包括以下步骤:(1)样品中的耐盐菌株的分离与纯化:称取1g盐碱土,加入9mL无菌水,30℃恒温振荡30min,取样品悬液,用无菌水稀释成10 -1、10 -2、10 -3的溶液,分别取200μL稀释液在盐浓度为2.5%的LB固体培养基上均匀涂布,置于30℃恒温培养箱培养2~3天,直至长出单菌落,将单菌落划线纯化培养,得到纯菌株,挑取纯菌株接种于液体培养基进行富集培养;(2)用荧光法快速检测筛选 得到菌株的β-葡萄糖苷酶活性:取1mL菌液,5000rpm离心5min使菌体沉淀,弃上清液,加1mL无菌水,涡旋1min,用移液枪取菌悬液100μL加到96孔板中,然后加MES缓冲液,最后加β-葡萄糖苷酶底物溶液,用移液枪混合均匀,25℃-30℃室温培养30min,4000rmp离心4min,进行荧光检测,同时做平行、标曲和底物对照实验;(3)将不同β-葡萄糖苷酶活性的菌株接入羧甲基纤维素钠(CMC-Na)液体培养基,观察菌株生长情况,并测其粘度:选取β-葡萄糖苷酶活性不同的菌株,接入羧甲基纤维素钠(CMC-Na)液体培养基,置于30℃恒温培养箱培养3-5天,用乌氏黏度计测量培养基粘度,用培养基粘度表征菌株在CMC-Na培养基中降解纤维素的能力。
上述盐浓度为2.5%的LB固体培养基组分为:胰蛋白胨10g,酵母提取物5g,氯化钠25g,琼脂粉10-20g,加去离子水至1L,调节pH至7.4。
上述羧甲基纤维素钠液体培养基的组成为:CMC-Na 20g,Na 2HPO 42.5g,KH 2PO 41.5g,蛋白胨2.5g,加去离子水至1L,调节pH至7.0-7.5。
上述CMC-Na液体培养基组分为:CMC-Na 20g,Na 2HPO 42.5g,KH 2PO 41.5g,蛋白胨2.5g,根据比例分别加入NaCl,去离子水至1L,得到盐浓度为0wt.%、0.5wt.%、1wt.%、1.5wt.%、2wt.%、3wt.%的CMC-Na液体培养基,调节pH至7.0-7.5。
有益效果:本发明提供了一种快速分离耐盐纤维素分解菌的方法,通过培养基初筛,再测定酶活,最后用CMC-Na液体培养基的粘度变化来验证(表1),传统的传统纤维素分解菌的分离方法包括选择培养基初筛、刚果红染色复筛、测定发酵培养基酶活进行验证。本发明的分离方法与传统的方法相比,具有能定量菌株酶活、高效批量、操作简单和方便快捷等优点,大大提高了工作效率,结果准确可靠,且与传统方法具有可比性,两种方法具体的比较如表2所示。
表1
Figure PCTCN2021082921-appb-000001
表2
Figure PCTCN2021082921-appb-000002
本发明中筛选获得的菌株具有耐盐及分解纤维素的特性,在高盐环境下可以发挥降解纤维素的能力。
附图说明
图1为筛选获得耐盐菌株β-葡萄糖苷酶活性图。
图2为15株菌在CMC-Na液体培养基中菌液的特性粘度图。
图3为15株菌的β-葡萄糖苷酶活性和菌液的特性粘度相关性图。
图4为3菌株在不同盐浓度CMC-Na液体培养基的菌液的特性粘度图。
图5为3菌株在不同盐浓度CMC-Na液体培养基的菌液的特性粘度的变化图。
具体实施方式
下面结合附图和具体实施方式对技术方案作进一步详细说明。本发明所选的目标样品为盐碱土壤,对非本发明所述样品中的纤维素降解菌的分离具有通用性,可参考本实施方式进行。以下实施方式仅用于说明本发明,而不用于限制本发明所要求保护的范围。
实施例1:样品中的耐盐菌株的分离与纯化
称取1g盐碱土,加入用9mL无菌水,30℃恒温振荡30min,使样品充分散开,取样品悬液,用无菌水稀释成10 -1、10 -2、10 -3的溶液,分别取200μL稀释液在盐浓度为2.5wt.%的LB固体培养基均匀涂布上,置于30℃恒温培养箱,其中2.5%的LB固体培养基配制方法为胰蛋白胨10g,酵母提取物5g,氯化钠25g,琼脂粉10-20g,加去离子水至1L,调节pH至7.4,121℃灭菌20min。培养2~3天,直至长出单菌落,将单菌落划线纯化培养,得到纯菌株,挑取纯菌株接种于液体培养基进行富集培养。本实施例共分离出29株耐盐菌株。
实施例2:用荧光法快速检测筛选得到菌株的β-葡萄糖苷酶活性
取1mL菌液,5000rpm离心5min使菌体沉淀,弃上清液,加1mL无菌水,涡旋1min,用移液枪取菌悬液100μL加到96孔板中,然后加缓冲液,加β-葡萄糖苷酶底物溶液,用移液枪混合均匀,25℃-30℃室温培养30min,4000rmp离心4min,进行荧光检测。结果显示有8株编号为1-1、1-2、1-9、1-11、1-15、3-6、3-8和3-13的菌没有β-葡萄糖苷酶活性,其余菌株酶活结果如图1所示。
实施例3
选取β-葡萄糖苷酶活性不同的15株菌,接入羧甲基纤维素钠(CMC-Na)液体培养基,对照不接菌株(CK)置于30℃恒温摇床培养3-5天,用培养基粘度表征菌株在CMC-Na培养基中降解纤维素的能力。β-葡萄糖苷酶活性不同的15株菌的菌液特性粘度如表3和图2所示,β-葡萄糖苷酶活性和菌液的特性粘度相关性如图3所示。
表2
Figure PCTCN2021082921-appb-000003
其中,CMC-Na液体培养基:CMC-Na 20g,Na 2HPO 42.5g,KH 2PO 41.5g,蛋白胨2.5g,加去离子水至1L,调节pH至7.0-7.5,121℃灭菌20min。
实施例4
选取β-葡萄糖苷酶活性较高的菌株1-16、1-6和1-13,分别接入盐浓度为0wt.%、 0.5wt.%、1wt.%、1.5wt.%、2wt.%、3wt.%的CMC-Na液体培养基,对照不接菌株(CK),置于30℃恒温摇床,待菌株生长3-5天后,用乌氏黏度计测量培养基粘度。1-16、1-6和1-13菌株在不同盐浓度CMC-Na液体培养基的菌液的特性粘度如图4和图5所示。3株菌均在含盐量为1wt.%的CMC-Na培养基中生长的菌液特性粘度最低,说明该条件下这三株菌生长最好,具有较好的降解纤维素的能力,其中菌株1-16在各盐浓度的CMC-Na培养基中生长的菌液特性粘度较低,表明其在各盐浓度的CMC-Na培养基中生长较好,在高盐环境下降解纤维素的能力也较好。
其中,不同盐浓度CMC-Na液体培养基:CMC-Na 20g,Na 2HPO 42.5g,KH 2PO 41.5g,蛋白胨2.5g,分别加入0wt.%、0.5wt.%、1wt.%、1.5wt.%、2wt.%、3wt.%的NaCl,去离子水至1L,配制成盐浓度为0wt.%、0.5wt.%、1wt.%、1.5wt.%、2wt.%、3wt.%的CMC-Na液体培养基,调节pH至7.0-7.5,121℃灭菌20min。

Claims (4)

  1. 一种耐盐纤维素分解菌的快速分离方法,其特征在于包括以下步骤:
    (1)样品中的耐盐菌株的分离与纯化:称取1g盐碱土,加入9mL无菌水,30℃恒温振荡30min,取样品悬液,用无菌水稀释成10 -1、10 -2、10 -3的溶液,分别取200μL稀释液在盐浓度为2.5%的LB固体培养基上均匀涂布,置于30℃恒温培养箱培养2~3天,直至长出单菌落,将单菌落划线纯化培养,得到纯菌株,挑取纯菌株接种于液体培养基进行富集培养;
    (2)用荧光法快速检测筛选得到菌株的β-葡萄糖苷酶活性:取1mL菌液,5000rpm离心5min使菌体沉淀,弃上清液,加1mL无菌水,涡旋1min,用移液枪取菌悬液100μL加到96孔板中,然后加MES缓冲液,最后加β-葡萄糖苷酶底物溶液,用移液枪混合均匀,25℃-30℃室温培养30min,4000rmp离心4min,进行荧光检测,同时做平行、标曲和底物对照实验,用菌株的β-葡萄糖苷酶活性表征菌株的纤维素能力;
    (3)将不同β-葡萄糖苷酶活性的菌株接入羧甲基纤维素钠(CMC-Na)液体培养基,观察菌株生长情况,并测其粘度:选取β-葡萄糖苷酶活性不同的菌株,接入羧甲基纤维素钠(CMC-Na)液体培养基,置于30℃恒温培养箱培养3-5天,用乌氏黏度计测量培养基粘度,用培养基粘度表征菌株在CMC-Na培养基中降解纤维素的能力。
  2. 根据权利要求1所述耐盐纤维素分解菌的快速分离方法,其特征在于所述盐浓度为2.5%的LB固体培养基组分为:胰蛋白胨10g,酵母提取物5g,氯化钠25g,琼脂粉10-20g,加去离子水至1L,调节pH至7.4。
  3. 根据权利要求1所述耐盐纤维素分解菌的快速分离方法,其特征在于所述羧甲基纤维素钠液体培养基的组成为:CMC-Na 20g,Na 2HPO 42.5g,KH 2PO 41.5g,蛋白胨2.5g,加去离子水至1L,调节pH至7.0-7.5。
  4. 根据权利要求1所述耐盐纤维素分解菌的快速分离方法,其特征在于所述CMC-Na液体培养基组分为:CMC-Na 20g,Na 2HPO 42.5g,KH 2PO 41.5g,蛋白胨2.5g,根据比例分别加入NaCl,去离子水至1L,得到盐浓度为0wt.%、0.5wt.%、1wt.%、1.5wt.%、2wt.%、3wt.%的CMC-Na液体培养基,调节pH至7.0-7.5。
PCT/CN2021/082921 2020-03-26 2021-03-25 一种耐盐纤维素分解菌的快速分离方法 WO2021190585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010222641.7A CN111411068B (zh) 2020-03-26 2020-03-26 一种耐盐纤维素分解菌的快速分离方法
CN202010222641.7 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021190585A1 true WO2021190585A1 (zh) 2021-09-30

Family

ID=71489201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082921 WO2021190585A1 (zh) 2020-03-26 2021-03-25 一种耐盐纤维素分解菌的快速分离方法

Country Status (2)

Country Link
CN (1) CN111411068B (zh)
WO (1) WO2021190585A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410472A (zh) * 2021-12-27 2022-04-29 乌兰察布职业学院 一种产纤维素酶菌株的筛选方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411068B (zh) * 2020-03-26 2022-08-12 中国科学院南京土壤研究所 一种耐盐纤维素分解菌的快速分离方法
CN112358333A (zh) * 2020-11-27 2021-02-12 商丘职业技术学院 轻度盐碱地改良菌剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105524835A (zh) * 2016-01-07 2016-04-27 华南农业大学 一种耐盐纤维素分解菌群的获得方法及其应用
CN111411068A (zh) * 2020-03-26 2020-07-14 中国科学院南京土壤研究所 一种耐盐纤维素分解菌的快速分离方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1597929A (zh) * 2004-09-10 2005-03-23 哈尔滨益生环境技术有限公司 能降解秸秆类纤维素细菌的分离方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105524835A (zh) * 2016-01-07 2016-04-27 华南农业大学 一种耐盐纤维素分解菌群的获得方法及其应用
CN111411068A (zh) * 2020-03-26 2020-07-14 中国科学院南京土壤研究所 一种耐盐纤维素分解菌的快速分离方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SARULA YANG, HENG-SHAN FAN, FU, ZHANG QING-GUO, TAI JI-CHENG, MIN GAO: "Screening for a Salt-tolerant Cellulolytic Bacterium", JOURNAL OF INNER MONGOLIA UNIVERSITY FOR NATIONALITIES(NATURAL SCIENCES), vol. 32, no. 1, 31 January 2017 (2017-01-31), pages 77 - 82, XP055852389, ISSN: 1671-0185, DOI: 10.14045/j.cnki.15-1220.2017.01.016 *
WANG XUHUI, YE KAI, XU XIN, SHAN QI, MIKE WANG HUI, LI GUAN, DENG YU: "Study on the Isolation,Identification of Salt-tolerant Cellulose-Degrading Strains and Optimization of Its Strain Ratio", XINJIANG-NONGYE-KEXUE : SHUANGYUEKAN = XINJIANG AGRICULTURAL SCIENCES, XINJIANG NONGYE KEXUEYUAN, CN, vol. 54, no. 12, 31 December 2017 (2017-12-31), CN, pages 2282 - 2292, XP055852385, ISSN: 1001-4330, DOI: 10.6048/j.issn.1001-4330.2017.12.016 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410472A (zh) * 2021-12-27 2022-04-29 乌兰察布职业学院 一种产纤维素酶菌株的筛选方法

Also Published As

Publication number Publication date
CN111411068A (zh) 2020-07-14
CN111411068B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2021190585A1 (zh) 一种耐盐纤维素分解菌的快速分离方法
CN101157903B (zh) 一种β-甘露聚糖酶的产生菌及其制备方法
CN105567592A (zh) 一种能同时产果胶酶和半纤维素酶的枯草芽孢杆菌及筛选方法和应用
CN109161495B (zh) 一种高效降解秸秆纤维素的复合菌剂
CN111518731B (zh) 一株具有拮抗作用低温降解纤维素的枯草芽孢杆菌及其应用
Sharma et al. Isolation of cellulolytic organisms from the gut contents of termites native to Nepal and their utility in saccharification and fermentation of lignocellulosic biomass
WO2021227622A1 (zh) 一株肺炎克雷伯氏菌及其用途
CN108913629B (zh) 一种产纤维素酶的细菌及其制备方法与应用
CN109182163B (zh) 一种低温高效降解玉米秸秆的复合菌剂及其应用
CN113122460B (zh) 一种水稻秸秆降解菌及其筛选方法和应用
CN103131639A (zh) 一种长枝木霉菌株及其应用
Poly et al. Isolation, documentation, and biochemical characterization of cellulolytic bacteria from rumen fluid of cattle
CN112226380B (zh) 一株降解纤维素生防芽孢杆菌及其应用和制剂
CN110835610B (zh) 一种适用于降解秸秆的复合菌剂及制备方法
Masngut et al. Bacteria isolation from landfill for production of industrial enzymes for waste degradation
CN112725194A (zh) 一株高产纤维素酶的真菌Flavodon sp.x10及其应用
CN103361275A (zh) 羊毛状青霉(Penicillium lanosum)2# 10-2 No.110411-1
CN117004495B (zh) 一株深绿木霉t280及其筛选方法、应用
Myat et al. Extraction and characterization of chi‑tosanase enzyme from Bacillus megaterium under liquid state fermenta‑tion
CN114480180B (zh) 一种用于秸秆降解的地衣芽孢杆菌及其应用
CN110643529B (zh) 一株对纤维素具有良好降解效果的爱文氏菌
Harish et al. Isolation and identification of cellulase producing Bacillus cereus from soil samples from Tirupati, India
CN109234174B (zh) 一种产纤维素酶的嗜热真菌及其应用
Hussein et al. Isolation and screening of thermophilic bacteria for producing cellulase enzyme using agricultural waste
Bondre et al. Production of cellulase from agrowaste by acinetobacter species isolated from clinical specimens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776021

Country of ref document: EP

Kind code of ref document: A1