WO2021190342A1 - 散热组件及其电子器件 - Google Patents

散热组件及其电子器件 Download PDF

Info

Publication number
WO2021190342A1
WO2021190342A1 PCT/CN2021/080890 CN2021080890W WO2021190342A1 WO 2021190342 A1 WO2021190342 A1 WO 2021190342A1 CN 2021080890 W CN2021080890 W CN 2021080890W WO 2021190342 A1 WO2021190342 A1 WO 2021190342A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
layer
heat dissipation
dissipation assembly
absorption layer
Prior art date
Application number
PCT/CN2021/080890
Other languages
English (en)
French (fr)
Inventor
曾国浩
何坤
何俊
邢硕
陈帅
Original Assignee
安徽寒武纪信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽寒武纪信息科技有限公司 filed Critical 安徽寒武纪信息科技有限公司
Publication of WO2021190342A1 publication Critical patent/WO2021190342A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20454Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff with a conformable or flexible structure compensating for irregularities, e.g. cushion bags, thermal paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing

Definitions

  • This application relates to the field of heat dissipation.
  • it relates to a heat dissipating component and its electronic device.
  • the computing power of artificial intelligence products has been unprecedentedly improved.
  • the increase in computing power has also brought about phenomena such as large heating power consumption of the internal components of the product, and increased temperature of the components.
  • the work of many artificial intelligence products is periodic or intermittent, which means that the components inside the product will also be periodically or intermittently heating, which may cause the temperature of the device to rise rapidly and concentrate in a short time. High, which may lead to problems such as product reliability and life reduction.
  • the development of artificial intelligence products tends to be smaller and lighter, that is, there are strict requirements on the overall size of the product, which makes many traditional heat dissipation measures that take up more space unavailable.
  • the technical solution of the present disclosure provides a heat dissipation assembly and an electronic device thereof in various aspects.
  • the present disclosure provides a heat dissipation component, including: a heat conduction layer for transferring heat periodically or intermittently from a heat source; and a heat absorption layer that forms a surface contact with the heat conduction layer for absorbing The heat transferred by the heat-conducting layer is released to the outside, wherein the thermal conductivity of the heat-conducting layer is greater than the thermal conductivity of the heat-absorbing layer.
  • the present disclosure provides an electronic device, including a heat source that operates periodically or intermittently, and the heat dissipation component according to the present disclosure arranged on the heat source.
  • the heat dissipation assembly of the present disclosure utilizes the high thermal conductivity of the heat conduction layer and the heat absorption of the heat absorption layer to perform rapid heat transfer and absorption, respectively, so that
  • the heat dissipating component of the present disclosure has both high-efficiency heat dissipation and temperature control performance, and further improves the heat transfer efficiency, thereby effectively solving the heat dissipation problem of the heat source, especially the periodic or intermittent heat generation of the heat source.
  • the heat dissipation assembly according to the present disclosure has a simple structure, a small space occupation, and can solve the heat dissipation problem of small-sized products.
  • Fig. 1 is a schematic diagram generally showing a heat dissipation assembly according to the present disclosure.
  • FIGS 2a-2c are multiple schematic diagrams showing that the area of the heat conduction layer of the heat dissipation assembly is greater than or equal to the area of the heat absorption layer according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram showing a heat dissipation assembly including a fixed layer according to the present disclosure.
  • FIGS. 4a-4c are schematic diagrams showing a heat dissipation assembly including an encapsulation layer according to an embodiment of the present disclosure.
  • 5a and 5b are multiple schematic diagrams showing a heat dissipation assembly having flexibility according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram showing a heat dissipation assembly including a cooling member according to the present disclosure.
  • Fig. 7 is a schematic diagram showing that the heat dissipation assembly according to the present disclosure is applied to a heat dissipation device.
  • FIG 8a and 8b are multiple schematic diagrams showing the adaptive shape adjustment of the heat dissipation assembly according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing that the heat dissipation component according to an embodiment of the present disclosure is used as a gap-filling heat dissipation component.
  • the heat dissipation assembly of the present disclosure can quickly transfer the heat emitted by the heat source through the heat conduction layer with high thermal conductivity, and can contact the surface of the heat conduction layer through the heat absorption layer to absorb the heat transferred by the heat conduction layer to the greatest extent, thereby It can effectively solve the heat dissipation problem when the device is working.
  • the heat dissipation assembly according to the present disclosure is not only simple in structure and small in space, but also flexible and able to withstand certain bending, so that it can be flexibly applied to different products and products. In different structures.
  • Fig. 1 is a schematic diagram generally showing a heat dissipation assembly according to the present disclosure.
  • a heat dissipation assembly 100 is provided, which may include: a thermally conductive layer 110, which is used to transfer heat emitted by a heat source; and a heat absorbing layer 120, which may form surface contact with the thermally conductive layer 110, and In order to absorb the heat transferred from the heat conduction layer 110 and release it to the outside, the thermal conductivity of the heat conduction layer 110 is greater than the thermal conductivity of the heat absorption layer 120.
  • the heat source mentioned above may be a real object capable of dissipating heat.
  • the heat conductive layer 110 may be in direct or indirect contact with the heat source to transfer the heat emitted by the heat source. In one embodiment, the heat conductive layer 110 may be used to transfer heat periodically or intermittently emitted by the heat source.
  • the thermal conductivity of the thermally conductive layer 110 is greater than the thermal conductivity of the thermally absorbing layer 120, that is, the thermally conductive performance of the thermally conductive layer 110 is greater than that of the thermal absorbing layer 120.
  • the heat conduction layer 110 with high thermal conductivity can quickly transfer the heat of the heat source to the entire heat conduction layer 110, and can be further transferred to the heat absorption layer 120 or the surrounding environment in contact therewith.
  • the shape of the thermally conductive layer 110 can be set as required.
  • the shape of the thermally conductive layer 110 can match the shape of the heat source.
  • the thickness of the thermally conductive layer 110 can be adjusted as required, for example, according to the size of the space.
  • the thermally conductive layer 110 may be flexible (for example, when it is made thin enough, or a soft material is selected, etc.), it can withstand a certain degree of bending or folding, such as an arc shape or a zigzag shape, and so on. It is better adapted to heat sources of different structures and shapes.
  • the thermally conductive layer 110 may include at least one of a metal foil and a non-metallic material with high thermal conductivity.
  • the thermally conductive layer 110 may include a metal foil.
  • the thermally conductive layer 110 may include a non-metallic material with high thermal conductivity.
  • the thermal conductive layer 110 may include a composite material of a metal foil and a non-metallic material with high thermal conductivity.
  • the metal foil may include one or more of copper foil, aluminum foil, silver foil, etc.
  • a metal foil may be selected as the thermal conductive layer 110, and copper
  • the thermal conductivity of copper can reach 380w/(m ⁇ k).
  • the non-metallic material with high thermal conductivity may be a non-metallic material with a thermal conductivity greater than that of the heat absorption layer 120, such as one or more of graphene, graphite sheet, and the like.
  • the thermal conductivity of the heat absorption layer 120 described above is lower than that of the heat conduction layer 110, but the heat absorption layer 120 has better heat absorption performance and can absorb the heat transferred by the heat conduction layer 110, for example, it can absorb the heat conduction layer 110 periodically or intermittently. Sexual heat transfer.
  • the heat absorption layer 120 and the heat conduction layer 110 can form a surface contact to absorb the heat transferred on the heat conduction layer 110 to the greatest extent, avoiding the temperature of the heat conduction layer 110 from rising significantly, thereby avoiding the temperature of the heating device (ie, heat source) from greatly increasing. rise.
  • the heat absorption layer 120 when the heat source emits heat periodically or intermittently, can absorb its heat to prevent the temperature of the heat source from rising significantly; when the heat source stops generating heat, the heat absorption layer 120 can absorb the previously absorbed heat Gradually release into the surrounding environment. In another embodiment, when the heat source emits heat periodically or intermittently, the heat absorption layer 120 may absorb the heat thereof, and gradually release the absorbed heat to the surrounding environment.
  • the heat absorption layer 120 can be flexible (for example, when it is made thin enough, or a soft material is selected, etc.), it can withstand a certain degree of bending or folding, so it can be better adapted to heat sources of different structures and shapes. .
  • the thickness of the heat absorption layer 120 can be adjusted as required, for example, according to the size of the space, or according to the required heat absorption capacity.
  • the shape and size of the heat absorption layer 120 can be set as required.
  • the area of the heat absorption layer 120 may be larger than the area of the heat conduction layer 110, and according to such a setting, the heat transferred by the heat conduction layer 110 may not be
  • the heat absorption efficiency of the heat absorption layer 120 may be related to the thermal conductivity of the heat absorption layer 120 when transferred to various positions of the heat absorption layer 120.
  • the area of the heat conduction layer 110 may be greater than or equal to the area of the heat absorption layer 120 (that is, the contact area in contact with the heat conduction layer 110), so as to quickly transfer the heat to the heat absorption layer.
  • the entire contact surface of the layer 120 allows each position of the heat absorption layer 120 to absorb heat, so as to fully utilize the heat absorption potential of the heat absorption layer 120 to improve the heat dissipation efficiency and heat dissipation capacity of the entire heat dissipation assembly 100.
  • the heat absorption layer 120 may be composed of a phase change material, which can absorb or release heat during the phase change process, but the temperature will be kept at a constant temperature, so it has good temperature control. performance.
  • the phase change material may be an organic phase change material, an inorganic phase change material, or a composite phase change material, for example, one or more of graphite and paraffin, metal foam and organic or inorganic phase change materials. According to such an arrangement, the high thermal conductivity of the heat conduction layer 110 can quickly transfer the heat periodically or intermittently from the heat source to the phase change material of the entire heat absorption layer 120, so that the phase change latent heat of the phase change material can be fully utilized.
  • phase change potential of the phase change material In order to absorb more heat, it makes up for the defect that the phase change potential of the phase change material itself cannot be fully utilized due to its low thermal conductivity and low heat transfer performance.
  • the area of the heat conduction layer 110 is greater than or equal to the area of the heat absorption layer 120, each position of the phase change material can absorb heat, so that the phase change can occur as a whole instead of locally, and the heat absorption layer 120 can be improved.
  • the utilization rate of the phase-change material is thus directly improved the heat dissipation capacity of the heat dissipation component 100.
  • the heat dissipation assembly is generally described above with reference to FIG. 1.
  • the structure of the heat dissipation assembly 100 shown in FIG. 1 is exemplary and not restrictive, for example, a thermally conductive layer
  • the thickness of 110 and the thickness of the heat absorption layer 120 may not be limited to the same as shown in the figure, and may be adjusted as required.
  • the thickness of the heat conduction layer 110 may be greater than the thickness of the heat absorption layer 120; In an example, the thickness of the heat conduction layer 110 may be less than the thickness of the heat absorption layer 120.
  • the areas of the heat conduction layer 110 and the heat absorption layer 120 may not be limited to the same as shown in the figure, and may also be set to be unequal.
  • an exemplary description will be given of the area of the heat conduction layer greater than or equal to the area of the heat absorption layer, and the various arrangements of the heat conduction layer and the heat absorption layer with reference to FIGS. 2a to 2c.
  • the thermally conductive layer 110 may have a first surface 111 and a second surface 112, and the first surface 111 may be used to transfer the heat source 200 to dissipate (for example, periodically The second surface 112 may form a surface contact with the heat absorption layer 120 to transfer the heat to the heat absorption layer 120.
  • the heat emitted by the heat source 200 e.g. periodically or intermittently
  • the first surface 111 of the thermally conductive layer 110 that is in direct or indirect contact therewith, and transferred to various positions of the thermally conductive layer 110 (for example, the transverse direction in the figure).
  • the direction indicated by the arrow is transferred through the second surface 112 of the heat conductive layer 110 to the heat absorbing layer 120 that is in contact with the surface (for example, the direction indicated by the vertical arrow in the figure).
  • the area of the heat conduction layer 110 may be equal to the area of the heat absorption layer 120.
  • the heat transferred by the thermal conductive layer 110 can be transferred to the entire contact surface 121 of the thermal absorbing layer 120 to the greatest extent, and can be further transferred to various positions in the thermal absorbing layer 120, and at the same time, the thermal conductive layer 110 can be fully utilized.
  • the first surface 111 and the second surface 112 of the two sides are conducive to reducing the size of the thermal conductive layer 110. Further, such an arrangement can maximize the effective utilization area of the heat absorption layer 120 on one side of the heat conduction layer 110, which is beneficial to make the thickness of the heat absorption layer 120 thinner and have greater heat absorption potential.
  • the heat conduction layer 110 may have a first surface 111, and the heat source 200 and the heat absorption layer 120 may be located on the first surface 111, namely The heat source 200 and the heat absorption layer 120 may be located on the same surface of the heat conductive layer 110 (for example, the first surface 111 in the figure), which is beneficial to further reduce the space occupied by the heat dissipation component.
  • the area of the heat conduction layer 110 may be greater than the area of the heat absorption layer 120, that is, the area of the contact surface 121 where the heat absorption layer 120 contacts the heat conduction layer 110 in the figure may be smaller than the heat conduction layer 110.
  • the area of the first side 111 is configured to the heat conduction layer 110.
  • the heat transfer direction can be as shown by the arrow direction in FIG. 2b, that is, the heat emitted by the heat source 200 (for example, periodically or intermittently) can pass through the first surface of the heat conductive layer 110 that is in direct or indirect contact with it.
  • 111 is transferred to the outside, and transferred to various positions of the heat conduction layer 110 (for example, in the direction shown by the horizontal arrow in the figure), and can still be transferred through the first surface 111 of the heat conduction layer 110 to the heat absorption layer 120 that is in contact with the surface ( For example, the direction indicated by the vertical arrow in the illustration).
  • the heat absorption layer 120 and the heat source 200 there may be a physical separation between the heat absorption layer 120 and the heat source 200 (for example, the heat absorption layer 120 and the heat source 200 are separated by a certain distance in the figure).
  • the heat absorption layer 120 and the heat source 200 may be in direct or indirect contact, that is, the heat absorption layer 120 may absorb the heat transferred by the heat conductive layer 110 in contact with it, or may directly absorb the heat emitted by the heat source 200.
  • the heat conductive layer 110 may have a first surface 111 and a second surface 112.
  • the first surface 111 may be used to transfer the heat emitted by the heat source 200 periodically or intermittently.
  • the heat absorption layers 120-1, 120- 2 may form a surface contact with the heat conduction layer 110, and the heat source 200 and the heat absorption layer 120-1 may be located on the first surface 111, and the heat absorption layer 120-2 may be located on the second surface 112.
  • the area of the contact surface 121-1 of the heat absorption layer 120-1 and the heat conduction layer 110 may be smaller than the area of the first surface 111 of the heat conduction layer 110, and the area of the contact surface 121-2 of the heat absorption layer 120-2 and the heat conduction layer 110 The area may be equal to the area of the second surface 112 of the heat conductive layer 110.
  • the heat transfer direction can be as shown in the arrow direction in FIG. 2c, that is, the heat emitted by the heat source 200 (for example, periodically or intermittently) can pass through the first surface of the heat conductive layer 110 that is in direct or indirect contact with it.
  • 111 is transferred to the outside and transferred to various positions of the thermally conductive layer 110 (for example, the direction indicated by the arrow in the thermally conductive layer 110 in the figure), and can pass through the first surface 111 and the second surface 112 of the thermally conductive layer 110 to face the same
  • the contacting heat absorbing layers 120-1 and 120-2 are transferred (for example, in the direction indicated by the arrows in the heat absorbing layers 120-1 and 120-2 in the figure).
  • the heat absorption layer is arranged on both sides of the heat conduction layer 110, which can further increase the total contact surface of the heat absorption layer and the heat conduction layer 110 (for example, the contact surfaces 121-1 and 121-2 in the figure). Area, which helps to improve the heat absorption capacity and heat absorption efficiency of the heat absorption layer, and the thickness of the heat absorption layer 120 can be made thinner, which is more conducive to reducing the space occupied by the heat dissipation component and improving the flexibility of the heat dissipation component.
  • the various arrangements of the heat conduction layer and the heat absorption layer of the heat dissipation assembly according to the present disclosure have been exemplarily described above with reference to Figs. 2a-2c.
  • the area of the heat absorption layer 120 may not be limited to the area equal to the heat conduction layer 110 shown in FIG. 2a, and may be set to be larger or smaller than the area of the heat conduction layer 110 as required.
  • the number of heat sources 200 directly or indirectly contacted by the thermally conductive layer 110 may not be limited to the one shown in FIGS. 2a to 2c, and the number of heat sources 200 may be set more as needed.
  • the structure of the heat dissipating component may not be limited to include the heat conduction layer and the heat absorption layer shown in FIGS. 2a to 2c, but may also include, for example, a fixed layer, etc., which will be described in conjunction with FIG. 3 below.
  • Fig. 3 is a schematic diagram showing a heat dissipation assembly including a fixed layer according to the present disclosure.
  • a heat dissipation assembly 100 is provided, which may include a thermally conductive layer 110, a heat absorbing layer 120, and may further include a fixing layer 130, which may be arranged on the thermally conductive layer 110 for attaching the The heat dissipation assembly 100 is fixed on the heat source.
  • the heat conductive layer 110 may achieve indirect contact with the heat source through the fixing layer 130, and may transfer the heat emitted by the heat source (for example, periodically or intermittently).
  • the structure and arrangement of the heat conduction layer 110 and the heat absorption layer 120 shown in FIG. 3 have been described in detail in the foregoing, and will not be repeated here.
  • the fixed layer 130 will be described below.
  • the fixing layer 130 may be arranged on the thermally conductive layer 110, and it may be connected to the thermally conductive layer 110 by means such as gluing or mechanical pressing.
  • the area of the fixed layer 130 may be equal to the area of the heat conductive layer 110 (for example, as shown in the figure), or may be set larger or smaller than the area of the heat conductive layer 110 as required.
  • the fixing layer 130 may be used to fix the heat dissipation component 100 on the heat source, for example, it may be fixed by means of pasting, magnetic attraction, or clamping.
  • the fixing layer 130 may be made of a back glue with strong adhesive force, which can be directly pasted on the heat source, which is convenient for installation.
  • the fixing layer may also have insulating properties.
  • the fixing layer 130 may be made of insulating adhesive.
  • the heat dissipation assembly including the fixing layer according to the present disclosure is described above with reference to FIG. 3. It should be understood by those skilled in the art that the structure of the heat dissipation assembly 100 shown in the figure is exemplary and not restrictive, such as fixing
  • the shape of the layer 130 can be set as required.
  • the shape of the fixed layer 130 may match the shape of the heat source.
  • the fixing layer 130 can be set to be very thin and flexible, and can withstand a certain degree of bending or folding, such as bending into an arc or zigzag shape, so as to better adapt to different structures and Shaped heat source.
  • the fixed layer 130 may not be limited to one piece as shown in the figure, and may be set as multiple pieces as required.
  • the fixing layer 130 may not be limited to being arranged on one side of the heat conductive layer 110 as shown in the figure.
  • a plurality of fixing layers 130 may be respectively arranged on different faces of the heat conductive layer 110.
  • the structure of the heat dissipating component according to the present disclosure may not be limited to the fixing layer, the heat conduction layer, and the heat absorption layer shown in FIG. 3, but may also include other structures, such as an encapsulation layer, as required. The following will be performed in conjunction with FIGS. 4a-4c. Exemplary description.
  • a heat dissipation assembly 100 is provided, which may include a heat conduction layer 110, a heat absorption layer 120, and may further include a method for fixing and fixing the heat absorption layer 120.
  • a protective encapsulation layer 140 may be arranged on the heat absorption layer 120 so that the heat absorption layer 120 is fixed between the heat conduction layer 110 and the encapsulation layer 140.
  • the structure and arrangement of the heat conduction layer 110 and the heat absorption layer 120 shown in FIG. 4a have been described in detail in the foregoing, and will not be repeated here.
  • the encapsulation layer 140 will be described below.
  • the encapsulation layer 140 described above may be composed of an insulating material.
  • the encapsulation layer 140 can fix and protect the heat absorption layer 120 by encapsulating the heat absorption layer 120, which can not only maintain the shape and structure of the heat dissipation assembly 100, but also protect the heat absorption layer 120 from external influences to avoid heat.
  • the material of the absorption layer 120 is contaminated and damaged or lost due to loss.
  • the heat absorption layer 120 may include a phase change material, and the arrangement of the encapsulation layer 140 can effectively prevent the phase change material from affecting the shape and structure of the entire heat dissipation assembly 100 due to the shape change during the phase change process.
  • the encapsulation layer 140 may be arranged on the heat absorption layer 120, which may be connected to the heat absorption layer 120 by means such as gluing, mechanical pressing, or the like.
  • the arrangement of the encapsulation layer 140 can fix the heat absorption layer 120 between the heat conduction layer 110 and the encapsulation layer 140, for example, by arranging the heat conduction layer 110 and the encapsulation layer 140 on two sides of the heat absorption layer 120 respectively.
  • the area of the encapsulation layer 140 may be equal to the area of the heat absorption layer 120 (for example, as shown in the figure), or may be set larger or smaller than the area of the heat absorption layer 120 as required.
  • the encapsulation layer 140 may be configured to wrap the heat absorption layer 120 so as to facilitate the encapsulation of the heat absorption layer 120. An exemplary description will be given below in conjunction with FIG. 4b.
  • the difference from the heat dissipation assembly 100 shown in FIG. 4a is: the area of the heat conduction layer 110 of the heat dissipation assembly 100 in FIG.
  • the area of the absorbing layer 120, and the heat absorbing layer 120 can be wrapped inside, so that the heat absorbing layer 120 is fixed between the heat conducting layer 110 and the encapsulating layer 140, that is, the heat absorbing layer 120 and the heat conducting layer 110 maintain surface contact and can be encapsulated ⁇ encapsulation layer 140.
  • the material, function and connection mode of the encapsulation layer 140 are the same as or similar to those described above in conjunction with FIG. 4a, and will not be repeated here.
  • the above is an exemplary description of the heat dissipating assembly including a heat conduction layer, a heat absorption layer, and an encapsulation layer according to the present disclosure with reference to FIGS. 4a and 4b.
  • the disclosed heat dissipation assembly may further include a fixing layer, which will be exemplarily described below with reference to FIG. 4c.
  • a heat dissipation assembly 100 which may include a fixed layer 130, a heat conduction layer 110, a heat absorption layer 120, and an encapsulation layer 140.
  • the fixed layer 130 may be arranged on the heat conduction layer 110 and can be used to The entire heat dissipation assembly 100 is fixed on a heat source.
  • the heat conduction layer 110 can be used to transfer the heat emitted by the heat source (for example, periodically or intermittently).
  • the heat absorption layer 120 can be arranged between the heat conduction layer 110 and the encapsulation layer 140, and can be used In order to absorb the heat transferred by the thermally conductive layer 110, the layers can be connected by means of adhesive or mechanical pressing.
  • the respective shapes, materials, and connection modes of the fixing layer 130, the heat conductive layer 110, the heat absorption layer 120, and the encapsulation layer 140 have been described in detail in the foregoing, and will not be repeated here.
  • the areas of the fixed layer 130, the heat conduction layer 110, the heat absorption layer 120, and the encapsulation layer 140 described above may not be limited to the same as shown in FIG. 4c, and the area of each layer may be flexibly set as needed.
  • the arrangement of the layers may not be limited to the way shown in the figure, and can be adjusted as needed.
  • the fixed layer 130 and the heat absorption layer 120 may not be limited to the two sides of the heat conductive layer 110 as shown in the figure, and may be arranged on both sides of the heat conductive layer 110 as required. On the same side.
  • the thickness of each layer of the heat dissipation assembly 100 may not be limited to the thickness shown in the figure, and may be adjusted as required.
  • the fixing layer 130, the heat conduction layer 110, the heat absorption layer 120, and the encapsulation layer 140 may all be flexible, so the formed heat dissipation assembly 100 may be flexible and can withstand a certain degree of bending, for example, it may be formed into an arc shape or a zigzag shape. It is suitable for heat dissipation of heat sources of different shapes or structures. In order to facilitate the understanding of the flexibility of the heat dissipation assembly according to the present disclosure, an exemplary description will be given below in conjunction with FIG. 5a and FIG. 5b.
  • FIG. 5a and 5b are multiple schematic diagrams showing a heat dissipation assembly having flexibility according to an embodiment of the present disclosure.
  • the heat conduction layer 110, the heat absorption layer 120, the fixing layer 130, and the encapsulation layer 140 of the heat dissipation assembly 100 can all be flexible, so the heat dissipation assembly 100 as a whole can be flexible, for example, it appears as shown in the figure. Similar to the zigzag shape.
  • the composition, shape, connection mode, heat transfer mode, etc. of the heat conduction layer 110, the heat absorption layer 120, the fixing layer 130, and the encapsulation layer 140 have been described in detail in the foregoing, and will not be repeated here.
  • the heat dissipation assembly 100 may include a flexible heat conduction layer 110, a plurality of heat absorption layers (such as 120-1, 120-2, etc.), and a plurality of fixed layers (such as 130-1, 130-2, etc.).
  • heat absorption layers 120-1, 120-2 can be respectively arranged on two faces of the heat conductive layer 110
  • the fixing layers 130-1, 130 -2 can be respectively arranged on two faces of the heat conduction layer 110
  • the fixing layer 130-1 and the heat absorption layer 120-2 can be arranged on the same face of the heat conduction layer 110
  • the fixing layer 130-2 and the heat absorption layer 120- 1 can be arranged on the same surface of the heat conductive layer 110
  • the encapsulation layers 140-1 and 140-2 are arranged on the heat absorption layers 120-1 and 120-2, respectively.
  • the heat dissipation assembly 100 can be folded into a zigzag shape as a whole.
  • the heat dissipation assembly 100 can be fixed on both sides.
  • the composition, shape, connection method, and transmission The thermal mode and so on are all described in detail in the preceding text, and will not be repeated here.
  • the flexibility of the heat dissipation assembly according to the present disclosure and the arrangement of the fixing layer and the heat absorption layer on the same or both sides of the heat conducting layer have been exemplarily described above with reference to Figs. 5a and 5b. Those skilled in the art can according to needs.
  • the structure, number of layers, arrangement, etc. of the heat dissipation component according to the present disclosure are adjusted.
  • the structure of the heat dissipating component may not be limited to including the encapsulation layer as shown in the figure.
  • the heat absorption layer has a stable shape, and the fixing and protection of the encapsulation layer may not be required, and the heat dissipating component may not be provided with an encapsulation layer.
  • the structure of the heat dissipation component may not be limited to including the fixing layer as shown in the figure.
  • the fixing layer may not be required for fixing.
  • the shape of the heat dissipation component may not be limited to the zigzag shape in the figure, and may also be set to an arc shape, a wave shape, a step shape, etc. according to needs.
  • a cooling element can also be arranged on the heat dissipation assembly 100 to absorb heat, which will be described below in conjunction with FIG. 6.
  • Fig. 6 is a schematic diagram showing a heat dissipation assembly including a cooling member according to the present disclosure.
  • the heat dissipation assembly 100 may include a heat conduction layer 110, a heat absorption layer 120, and may further include a cooling member 150, which may be disposed on at least one of the heat conduction layer 110 and the heat absorption layer 120, In order to further absorb the heat, the overall heat absorption capacity of the heat dissipation assembly 100 can be increased.
  • the heat conduction layer 110 and the heat absorption layer 120 are the same as or similar to those described above, and will not be repeated here.
  • the cooling member 150 will be exemplarily described below.
  • the above-mentioned cooling member 150 may include one or more.
  • the cooling element 150 may be arranged on the heat conductive layer 110 (for example, as shown in FIG. 6 ), or may be arranged on other components of the heat dissipation assembly 100.
  • the cooling element 150 may be arranged on the heat absorption layer 120.
  • the cooling member 150 may be arranged on the heat conduction layer 110 and the heat absorption layer 120.
  • the heat dissipation assembly 100 may further include a fixing layer arranged on the heat conductive layer 110, and the cooling member 150 may be arranged on the fixing layer for further absorbing the heat.
  • the heat dissipation assembly 100 may further include an encapsulation layer arranged on the heat absorption layer 120, and the cooling member 150 may be arranged on the encapsulation layer for further absorbing the heat.
  • the cooling element 150 is arranged on at least one of the heat conducting layer 110, the heat absorbing layer 120, the fixing layer, and the encapsulation layer, which may include direct or indirect contact, or pasting, mechanical pressing, fastening with fasteners, welding, etc. The way of fixing and so on.
  • the cooling element 150 described above is a component with cooling and heat absorption functions, for example, it may be one or more of a component containing a cooling medium, a metal conductor, a heat sink, and the like. Since metal is a good heat conductor, it can be used as a cold end carrier as a cooling element 100 that absorbs heat.
  • the cooling element 150 may be a shell made of a material with high thermal conductivity (such as a metal shell, etc.) and a content containing a cooling medium (such as water, ice, frozen brine, etc. or a mixture thereof).
  • the cooling element 150 may be the shell of the heat dissipation assembly 100 or the cold end part of the product itself containing the heat source. The use of the product itself as the cooling element will not cause space occupation, which can meet the requirements of product miniaturization and protection. Product size has strict requirements.
  • the cooling element of the heat dissipation assembly is described above in conjunction with FIG. 6, and those skilled in the art should understand that the cooling element 150 in the figure is exemplary and not restrictive, for example, the number of cooling elements 150 , Layout position, etc. can be set according to needs.
  • the shape of the cooling element 150 may not be limited to the semicircle as shown in the figure, and may be arranged as required, for example, in a sheet shape, a block shape, a strip shape, and the like.
  • the heat dissipation assembly 100 may not be limited to include the heat conductive layer 110, the heat absorption layer 120, and the cooling element 150 as shown in the figure, and one or more of a fixed layer, an encapsulation layer, etc. may also be provided as required.
  • the heat dissipation assembly according to the present disclosure has the characteristics of simple structure and small space occupation, and can be applied to various electronic devices or heat dissipation devices for heat dissipation.
  • the heat dissipation component according to the present disclosure can be flexible, can be well adapted to changes in the heat dissipation space, and help improve the tolerance capability of heat dissipation measures.
  • the heat dissipation component according to the present disclosure has both the ability of transferring heat and absorbing heat, which is beneficial to improve the heat dissipation efficiency of the heat dissipation measures. A description will be given below in conjunction with a number of embodiments.
  • Fig. 7 is a schematic diagram showing that the heat dissipation assembly according to the present disclosure is applied to a heat dissipation device.
  • a device 300 for heat dissipation is provided, which may include: a heat dissipation housing 310 having an inner cavity 311 for accommodating a heat generating device (ie, the heat source described above) and at least one opening 312; and at least one flexible heat dissipation component (flexible heat dissipation component for short) 320 according to the present disclosure, which is connected to the heat dissipation housing 310 and arranged at the opening 312 to contact the heat generating device and The heat emitted by the heating device is transferred to the heat dissipation housing 310.
  • a heat dissipation housing 310 having an inner cavity 311 for accommodating a heat generating device (ie, the heat source described above) and at least one opening 312; and at least one flexible heat dissipation component (flexible heat dissipation component for
  • the heat dissipation housing 310 may be a metal housing or a non-metal housing with high thermal conductivity or heat absorption.
  • One or more openings 312 may be provided on the heat dissipation housing 310.
  • One or more flexible heat dissipation components 320 may be arranged at one opening 312 to make contact with one or more heating devices.
  • a flexible heat dissipation component 320 can contact a heat generating device.
  • a plurality of flexible heat dissipation components may contact one heat generating device.
  • the above-mentioned flexible heat dissipation component 320 can withstand a certain degree of bending and can change its shape.
  • the flexible heat dissipation component 320 may be any one of the aforementioned heat dissipation components according to the present disclosure, which will not be repeated here.
  • a part of the flexible heat dissipation assembly 320 may be connected to the heat dissipation housing 310, and another part thereof may be in contact with a heating device, so as to transfer the heat dissipated by the heating device to the heat dissipation housing 310.
  • the flexible heat dissipation assembly 320 can set the contact position with the heating device as required, for example, the contact position can be adjusted according to the heating position of the heating device.
  • the flexible heat dissipation component 320 and the heating device may be in direct contact or indirect contact.
  • the flexible heat dissipation component 320 may be connected to the heating device by means of pasting, pressing, welding, or the like.
  • the flexible heat dissipating component 320 may be detachably contacted with the heating device through close proximity, magnetic attraction, clamping, elastic contact, or the like.
  • point contact, line contact, surface contact, etc. may be formed between the flexible heat dissipation assembly 320 and the heating device.
  • the heat dissipation assembly may also be used to support the heating device.
  • the heat dissipation component according to the present disclosure may not only have flexibility, but also have a certain strength to maintain a stable shape.
  • the heat dissipation component is in contact with the bottom of the heating device.
  • the heating device may exert pressure on the heat dissipation component.
  • the heat dissipation component can support the heating device to a certain extent to maintain the contact state with the heating device and the heating device The location is solid.
  • the heat dissipation assembly according to this embodiment can not only be used to transfer heat, but also have a mechanical support function.
  • the structure shown in FIG. 7 is exemplary and not restrictive, for example, the flexible heat dissipating assembly 320 It may not be limited to the heat dissipation housing connected to one side of the opening 312 as shown in the figure, and may be arranged to extend to the heat dissipation housing on the other side of the opening 312 as required, so that the flexible heat dissipation assembly 320 and the heat dissipation housings on both sides of the opening 312 Body connection or contact.
  • the shape of the flexible heat dissipating component 320 may not be limited to the wave shape shown in the figure, and may be set to a desired shape as required, such as linear, stepped, zigzag, circular, etc., as shown in Figs. 8a and 8b.
  • the adaptive shape adjustment of the heat dissipation component is exemplified.
  • FIGS. 8a and 8b are multiple schematic diagrams showing the adaptive shape adjustment of the heat dissipation assembly according to an embodiment of the present disclosure.
  • the flexible heat dissipation assembly 320 is connected to the heat dissipation housing 310 and is arranged at the opening 312, and the flexible heat dissipation assembly 320 is in contact with the heating device 200 in the cavity 311 of the heat dissipation housing 310 to transmit heat.
  • the connection between the flexible heat dissipation assembly 320 and the heat dissipation housing 310 may be located on the outer wall of the heat dissipation housing 310 for the heat dissipated by the device 200.
  • the size or thickness of the heating device 200 exceeds the inner cavity 311 of the heat dissipation housing 310, and the flexible heat dissipation assembly 320 can be bent into an appropriate shape to adapt to the relative position of the heating device 200 and the heat dissipation housing 310, for example
  • the figure in the figure is similar to the Z-shape. According to this arrangement, the flexible heat dissipation assembly 320 can be connected to the heat dissipation housing 310 and maintain contact with the heating device 200.
  • connection point between the flexible heat dissipation component 320 and the heat dissipation housing 310 and the contact point between the flexible heat dissipation component 320 and the heating device 200 may be located on the same surface of the flexible heat dissipation component 320.
  • shape of the flexible heat dissipation assembly 320 may not be limited to that shown in FIG. 8a, but may be changed adaptively according to the thickness and size of the heating device 200. For ease of understanding, an exemplary description will be given below in conjunction with FIG. 8b.
  • the difference between the heating device 200 shown in FIG. 8b and FIG. 8a is that the size of the heating device 200 does not exceed the space of the inner cavity 311, and the flexible heat dissipation assembly 320 can be adjusted to an appropriate shape according to the relative position of the heating device 200 and the heat dissipation housing 310, for example A shape bent in the opposite direction to the shape shown in FIG. 8a (as shown in FIG. 8b), so that the flexible heat dissipation assembly 320 can be connected to the heat dissipation housing 310 and maintain contact with the heating device 200.
  • the flexible heat dissipation assembly 320 may vary according to The size of the heating device 200 and the relative position of the heating device 200 and the heat dissipation housing 310 are adaptively adjusted to maintain the contact between the flexible heat dissipation assembly 320 and the heating device 200, thereby ensuring heat dissipation efficiency.
  • the flexible heat dissipation assembly 320 is connected to the outer wall 8 of the heat dissipation housing 310 to save the space of the inner cavity 311 to facilitate the arrangement of heat generating devices.
  • the flexible heat dissipation component 320 may not be limited to being connected to the outer wall of the heat dissipation housing 310 as shown in the figure.
  • the connection between the flexible heat dissipation component 320 and the heat dissipation housing 310 may be located on the inner wall of the heat dissipation housing 310.
  • the connection between the flexible heat dissipation assembly 320 and the heat dissipation housing 310 and the contact point between the flexible heat dissipation assembly 320 and the heating device 200 may be located on different surfaces of the flexible heat dissipation assembly 320.
  • the heat dissipation assembly according to the present disclosure can be used not only as a flexible heat dissipation assembly, but also as a gap-filling heat dissipation assembly, which will be exemplified below with reference to FIG. 9.
  • FIG. 9 is a schematic diagram showing that the heat dissipation component according to an embodiment of the present disclosure is used as a gap-filling heat dissipation component. Since the heat dissipation assembly according to the present disclosure has the characteristics of small space occupation, and the shape and thickness can be set according to needs, the limited space can be fully utilized for heat dissipation of the heating device. For example, as shown in FIG. 9, the heat dissipating assembly 330 according to the present disclosure can be arranged between the inner wall of the heat dissipating housing 310 and the heating device 200, so as to make full use of the limited space of the inner cavity 311 to dissipate heat to the heating device 200 by filling the gap. This type of heat dissipation component used for gap filling is called a gap filling heat dissipation component.
  • the gap-filling heat dissipation assembly 330 may be arranged (for example, in a filling manner) in the gap between the inner wall of the heat dissipation housing 310 and the heating device 200 to transfer and absorb the heat emitted by the heating device 200.
  • the thickness of the gap-filling heat dissipation component 330 may be set according to the size of the gap between the inner wall of the heat dissipation housing 310 and the heating device 200.
  • the gap-filling heat dissipation component 330 and the heating device 200 may be in contact or connected.
  • the above description of the embodiment in which the heat dissipation component according to the present disclosure is used for gap-filling heat dissipation is described in conjunction with FIG. 9. It should be understood by those skilled in the art that the illustration in FIG.
  • the heat dissipation assembly 330 may not be limited to being arranged in the gap between the top of the heating device 200 and the heat dissipation housing 310 as shown in the figure, and may be adjusted according to the size and shape of the heating device 200.
  • the gap is filled to dissipate heat.
  • the component 330 may be arranged in the space in the lateral direction between the heat generating device and the heat dissipation housing.
  • the number of the gap-filling heat dissipation components 330 may not be limited to one shown in the figure, and more may be arranged as required.
  • the heat dissipation device using the heat dissipation assembly according to the present disclosure has good adaptability, not only can be compatible with heating devices of different thickness specifications, has good tolerance capability, but also The limited heat dissipation space can be fully utilized to improve the heat dissipation efficiency of the heating device.
  • multiple heat dissipation components can also be contacted with the same heating device, so as to further accelerate the heat dissipation speed of the heating device.
  • an electronic device which may include a heat source that works periodically or intermittently, and the heat dissipation component as described in the present disclosure arranged on the heat source.
  • the heat source may be a component, device, etc. that generates heat during operation.
  • the heat dissipating component and its arrangement with the heat source according to the present disclosure have been described in detail in the foregoing in conjunction with a number of embodiments, and will not be repeated here.
  • the above-mentioned electronic devices that can be arranged with the heat dissipation components of the present disclosure may include artificial intelligence products (such as integrated circuit boards), data processing devices, robots, computers, printers, scanners, tablet computers, smart terminals, driving recorders, navigators, Sensors, cameras, servers, cameras, projectors, mobile storage, wearable devices, vehicles, household appliances, and/or medical equipment, etc.
  • artificial intelligence products such as integrated circuit boards
  • data processing devices such as integrated circuit boards
  • robots computers, printers, scanners, tablet computers, smart terminals, driving recorders, navigators, Sensors, cameras, servers, cameras, projectors, mobile storage, wearable devices, vehicles, household appliances, and/or medical equipment, etc.
  • the heat conduction layer and the heat absorption layer are provided to utilize their high thermal conductivity and heat absorption respectively to achieve rapid heat transfer and absorption, which can solve the problem of heat generating devices (ie heat sources).
  • Heat dissipation problems especially the periodic or intermittent heat dissipation problems of heating devices.
  • the structure and thickness of the heat dissipating component according to the present disclosure can be adjusted as required (for example, a thin film structure can be formed), and it occupies a small space and is suitable for heat dissipation of small-sized products and application scenarios where heat dissipation space is limited.
  • the heat dissipation component according to the present disclosure can be flexible, can withstand certain bending, can be applied to heat sources of different shapes or structures, and has high application flexibility.
  • the heat dissipation assembly according to the present disclosure also has the characteristics of simple structure and low cost.
  • a heat dissipating component comprising: a heat conduction layer for transferring heat periodically or intermittently from a heat source; and a heat absorption layer that forms a surface contact with the heat conduction layer for absorbing the heat transfer from the heat conduction layer The heat is released to the outside, wherein the thermal conductivity of the heat conductive layer is greater than the thermal conductivity of the heat absorbing layer.
  • the heat dissipation assembly according to clause A1, wherein the thermally conductive layer has a first surface and a second surface, and the first surface is used to transfer the heat periodically or intermittently emitted by the heat source, and The second surface is in surface contact with the heat absorption layer.
  • the heat dissipation assembly according to clause A1 further comprising an encapsulation layer for fixing and protecting the heat absorption layer, which is arranged on the heat absorption layer so that the heat absorption layer is fixed on the heat absorption layer. Between the thermally conductive layer and the encapsulation layer.
  • the heat dissipation assembly according to clause A6 or A7, wherein the heat absorption layer is composed of a phase change material, and the heat conduction layer includes at least one of a metal foil and a non-metallic material with high thermal conductivity.
  • the heat dissipation assembly according to Clause A1 further includes a cooling member arranged on at least one of the heat conducting layer and the heat absorbing layer for further absorbing the heat.
  • the heat dissipation assembly according to clause A5 or A6 further includes a cooling element arranged on the fixing layer for further absorbing the heat.
  • the heat dissipation assembly according to clause A7 further includes a cooling element arranged on the encapsulation layer for further absorbing the heat.
  • Clause A12 an electronic device, comprising a heat source that operates periodically or intermittently, and the heat dissipation component according to any one of clauses A1-A11 arranged on the heat source.
  • Clause A13 an electronic device, comprising a heat source that operates periodically or intermittently, and the heat dissipation component according to any one of clauses A1-A11 arranged on the heat source.

Abstract

本披露公开了一种散热组件及其电子器件,其中散热组件(100)包括:热传导层(110)和热吸收层(120)。根据本披露的散热组件可以提高传热效率,从而可以有效解决发热器件散热的问题。

Description

散热组件及其电子器件
相关申请的交叉引用
本申请要求于2020年03月26日申请,申请号为202010225215.9,名称为“散热组件及其电子器件”,在此将其全文引入作为参考。
技术领域
本申请涉及散热领域。特别是涉及一种散热组件及其电子器件。
背景技术
随着人工智能领域的快速发展,人工智能产品的计算能力得到了前所未有的提升。然而,该算力的提升也带来了产品内部器件的发热功耗大、器件温度升高等现象。另外,很多人工智能产品的工作是周期性或者间歇性的,这意味着产品内部的器件也将是周期性的或间歇性的发热,从而可能导致器件的温度在短时间内集中并快速的升高,进而有可能导致产品的可靠性和寿命降低等问题。同时,人工智能产品的发展又是趋于小型化及轻量化,即对产品的总体尺寸有严苛要求,这让许多占用空间较多的传统散热措施无法运用。
发明内容
鉴于上面所提到的技术问题,本披露的技术方案在多个方面提供一种散热组件及其电子器件。
在一个方面中,本披露提供一种散热组件,包括:热传导层,其用于传递热源周期性或间歇性散发的热量;以及热吸收层,其与所述热传导层形成面接触,用于吸收所述热传导层传递的所述热量以向外释放,其中所述热传导层的导热系数大于所述热吸收层的导热系数。
在另一个方面中,本披露提供一种电子器件,包括周期性或间歇性工作的热源以及布置于所述热源上的如本披露所述的散热组件。
通过上述对本披露的方案的描述,本领域技术人员可以理解本披露的散热组件分别利用了热传导层的高导热性和热吸收层的吸热性,以分别进行热量的快速传递和吸收,使根据本披露的散热组件兼具了高效散热和控温性能,进一步提高了传热效率,从而可以有效解决热源发热,特别是热源周期性或间歇性发热的散热问题。进一步地,根据本披露的散热组件结构简单,占用空间小,能够解决小尺寸产品的散热问题。
附图说明
通过结合附图,可以更好地理解本披露的上述特征,并且其众多目的,特征和优点对于本领域技术人员而言是显而易见的,其中相同的附图标记表示相同的元件,并且其中:
图1是总体上示出根据本披露的散热组件的示意图。
图2a-图2c是示出根据本披露实施例的散热组件的热传导层的面积大于或等于热吸收层的面积的多个示意图。
图3是示出根据本披露的包括固定层的散热组件的示意图。
图4a-图4c是示出根据本披露实施例的包括封装层的散热组件的多个示意图。
图5a和图5b是示出根据本披露实施例的具有柔性的散热组件的多个示意图。
图6是示出根据本披露的包括冷却件的散热组件的示意图。
图7是示出根据本披露的散热组件应用于散热装置的示意图。
图8a和图8b是示出根据本披露实施例的散热组件的适应性形状调整的多个示意图。
图9是示出根据本披露实施例的散热组件用作填隙散热组件的示意图。
具体实施方式
下面将结合附图,对本披露实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本披露一部分实施例,而不是全部的实施例。基于本披露中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本披露保护的范围。
本披露针对现有技术的不足,提供了一种全新的可实现的解决方案。特别地,本披露的散热组件可以通过高导热系数的热传导层快速的将热源散发的热量传递出去,并且可以通过热吸收层与热传导层的面接触,最大程度的吸收热传导层传递的热量,从而能够有效解决器件工作时的散热问题。通过下面的描述,本领域技术人员可以理解的是,根据本披露的散热组件不仅结构简单,占用空间小,还可以具有柔性,能够承受一定的弯曲,从而能够灵活的适用于不同的产品以及产品的不同结构中。
下面将结合附图来详细描述本披露的多个实施例。
图1是总体上示出根据本披露的散热组件的示意图。如图1中所示,提供了一种散热组件100,可以包括:热传导层110,其用于传递热源散发的热量;以及热吸收层120,其可以与所述热传导层110形成面接触,用于吸 收所述热传导层110传递的所述热量以向外释放,其中所述热传导层110的导热系数大于所述热吸收层120的导热系数。
上文中所述的热源可以是能够散发热量的实物。热传导层110可以与热源直接或者间接接触,以传递热源散发的热量。在一个实施例中,热传导层110可以用于传递热源周期性或间歇性散发的热量。热传导层110的导热系数大于所述热吸收层120的导热系数,即热传导层110的导热性能大于热吸收层120的导热性能。具有高导热性的热传导层110可以将热源的热量快速传递至整个热传导层110,并可以进一步传递至与其接触的例如热吸收层120或者周围环境中。
如图1中所示,热传导层110的形状可以根据需要进行设置,例如在一个实施例中,热传导层110的形状可以与热源的形状匹配。热传导层110的厚度可以根据需要进行调整,例如根据空间大小进行设置。在另一个实施例中,热传导层110可以具有柔性(例如制造的足够薄时,或者选用材质柔软的材料等),能够承受一定程度的弯曲或折叠,例如弧形或Z字型等,因此可以更好的适配于不同结构和形状的热源。
根据本披露的一个实施例中,所述热传导层110可以包括金属箔片和高导热系数的非金属材料中的至少一种。例如在一个实施例中,热传导层110可以包括金属箔片。在另一个实施例中,热传导层110可以包括高导热系数的非金属材料。在又一个实施例中,热传导层110可以包括金属箔片和高导热系数的非金属材料的复合材料。金属箔片可以包括铜箔、铝箔、银箔等中的一个或多个,由于金属通常具有较高的导热系数,因此根据本披露的技术方案,可以选用金属箔片作为热传导层110,以铜箔为例,铜的导热系数可以达到380w/(m·k)。高导热系数的非金属材料可以是导热系数大于热吸收层120的导热系数的非金属材料,例如石墨烯、石墨片等中的一个或多个。
上文中所述的热吸收层120的导热性能低于热传导层110,但是热吸收层120具有较好的吸热性能,可以吸收热传导层110传递的热量,例如可以吸收热传导层110周期性或间歇性传递的热量。并且热吸收层120与热传导层110可以形成面接触,以最大程度的吸收热传导层110上传递的热量,避免热传导层110的温度大幅度上升,从而可以避免发热器件(即热源)的温度大幅度上升。在一个实施例中,当热源周期性或间歇性散发热量时,热吸收层120可以吸收其热量以防止热源的温度大幅度上升;当热源停止发热时,热吸收层120可以将前期吸收的热量逐渐释放到周围环境中。在另一个实施例中,当热源周期性或间歇性散发热量时,热吸收层120可以吸收其热量,并将吸收的热量逐渐向周围环境中释放。
进一步地,热吸收层120可以具有柔性(例如制造的足够薄时,或者选用材质柔软的材料等),能够承受一定程度的弯曲或折叠,因此可以更好的适配于不同结构和形状的热源。热吸收层120的厚度可以根据需要进行调整,例如根据空间大小进行设置,或者根据所需吸热能力进行设置。热吸收层120的形状和尺寸等可以根据需要进行设置,例如在一个实施例中,热吸收层120的面积可以大于热传导层110的面积,而根据这样的设置,热传导层110传递的热量可能无法传递至热吸收层120的各个位置,热吸收层120的吸热效率将可能与热吸收层120的导热系数相关。在另一个实施例中,所述热传导层110的面积可以大于或等于所述热吸收层120的面积(即与热传导层110接触的接触面积),以将所述热量快速传递至所述热吸收层120的整个接触面上,使热吸收层120的各个位置都能吸收热量,从而充分发挥热吸收层120的吸热潜能,以提升整个散热组件100的散热效率和散热能力。
根据本披露的另一个实施例,所述热吸收层120可以由相变材料构成,该相变材料可以在相变过程中吸热或放热,但是温度会保持恒温,因此具有良好的控温性能。相变材料可以是有机相变材料、无机相变材料或者复合相变材料等,例如石墨与石蜡、金属泡沫与有机或无机相变材料等中的一种或多种。根据这样的设置,利用热传导层110的高导热性能,可以将热源周期性或间歇性散发的热量快速传递至整个热吸收层120的相变材料中,从而可以充分利用相变材料的相变潜热以吸收更多的热量,弥补了相变材料本身导热系数低而传热性能低下导致的相变潜能不能被充分利用的缺陷。特别地,当热传导层110的面积大于或等于热吸收层120的面积时,相变材料的各个位置都能吸收热量,从而可以整体发生相变而不是局部发生相变,能够提高热吸收层120的相变材料的利用率,进而直接提升散热组件100的散热能力。
以上结合图1总体上对根据本披露的散热组件进行了描述,本领域技术人员应该理解的是,图1中所示的散热组件100的结构是示例性的而非限制性的,例如热传导层110的厚度和热吸收层120的厚度可以不限于图示中的相等,可以根据需要进行调整,例如在一个实施例中,热传导层110的厚度可以大于热吸收层120的厚度;在另一个实施例中,热传导层110的厚度可以小于热吸收层120的厚度。热传导层110和热吸收层120的面积可以不限于图示中的相等,也可以设置为不相等。以下将结合图2a-图2c对热传导层的面积大于或等于热吸收层的面积,以及热传导层和热吸收层的多种布置方式进行示例性描述。
如图2a中所示,根据本披露的一个实施例,所述热传导层110可以具有第一面111和第二面112,所述第一面111可以用于传递所述热源200散发 (例如周期性或间歇性散发)的所述热量,所述第二面112可以与所述热吸收层120形成面接触,以将所述热量传递至热吸收层120。热源200散发(例如周期性或间歇性散发)的热量可以通过与其直接或者间接接触的热传导层110的第一面111向外传递,并传递至热传导层110的各个位置(例如图示中的横向箭头所示方向),通过热传导层110的第二面112向与其面接触的热吸收层120传递(例如图示中的竖向箭头所示方向)。
热传导层110的面积可以与热吸收层120的面积相等,例如图2a中所示,热吸收层120与热传导层110接触的接触面121可以与热传导层110的第二面112的面积相等。根据这样的设置,热传导层110传递的热量可以最大程度的传递至热吸收层120的整个接触面121上,并且可以进一步传递至热吸收层120内的各个位置,同时还可以充分利用热传导层110的第一面111和第二面112,有利于缩小热传导层110的尺寸。进一步地,这样的设置可以使位于热传导层110的一面上的热吸收层120的有效利用面积最大化,有利于使热吸收层120的厚度更薄,吸热潜能更大。
如图2b中所示,根据本披露的另一个实施例,所述热传导层110可以具有第一面111,所述热源200和所述热吸收层120可以位于所述第一面111上,即热源200与热吸收层120可以位于热传导层110的同一面(例如图示中的第一面111)上,有利于进一步减小散热组件的占用空间。根据以上描述以及图2b中所示可知,热传导层110的面积可以大于热吸收层120的面积,即图示中的热吸收层120与热传导层110接触的接触面121的面积可以小于热传导层110的第一面111的面积。
根据这样的设置,热量的传递方向可以如图2b中的箭头方向所示,即热源200散发(例如周期性或间歇性散发)的热量可以通过与其直接或者间接接触的热传导层110的第一面111向外传递,并传递至热传导层110的各个位置(例如图示中的横向箭头所示方向),并且仍然可以通过热传导层110的第一面111向与其面接触的热吸收层120传递(例如图示中的竖向箭头所示方向)。
根据本披露的一个实施例,如图2b中所示,热吸收层120与热源200之间可以存在物理间隔(例如图示中热吸收层120与热源200之间间隔一定距离)。在另一个实施例中,热吸收层120与热源200可以直接或间接接触,即热吸收层120可以吸收与其接触的热传导层110传递的热量,也可以直接吸收热源200散发的热量。
如图2c中所示,热传导层110可以具有第一面111和第二面112,第一面111可以用于传递热源200周期性或间歇性散发的热量,热吸收层120-1、 120-2可以与热传导层110形成面接触,且热源200和热吸收层120-1可以位于第一面111上,热吸收层120-2可以位于第二面112上。热吸收层120-1与热传导层110接触的接触面121-1的面积可以小于热传导层110的第一面111的面积,热吸收层120-2与热传导层110接触的接触面121-2的面积可以等于热传导层110的第二面112的面积。热吸收层120-1与热源200之间可以存在物理间隔(如图中所示),也可以直接或者间接接触。
根据这样的设置,热量的传递方向可以如图2c中的箭头方向所示,即热源200散发(例如周期性或间歇性散发)的热量可以通过与其直接或者间接接触的热传导层110的第一面111向外传递,并传递至热传导层110的各个位置(例如图示中的热传导层110中的箭头所示方向),并且可以通过热传导层110的第一面111和第二面112向与其面接触的热吸收层120-1和120-2传递(例如图示中的热吸收层120-1和120-2中的箭头所示方向)。
根据这样的设置,热传导层110的两个面均布置热吸收层,可以进一步增大热吸收层与热传导层110接触的接触面(例如图示中的接触面121-1和121-2)总面积,从而有利于提高热吸收层的吸热能力和吸热效率,以及可以将热吸收层120的厚度制造的更薄,更有利于减小散热组件的占用空间以及提高散热组件的柔性等。
以上结合图2a-图2c对根据本披露的散热组件的热传导层和热吸收层的多种布置方式进行了示例性的描述,在本公开的教导下,本领域技术人员可以根据需要进行调整,例如热吸收层120的面积可以不限于图2a中所示的等于热传导层110的面积,可以根据需要设置为大于或小于热传导层110的面积。热传导层110直接或者间接接触的热源200数量可以不限于图2a-图2c中所示的一个,热源200的数量可以根据需要设置的更多。例如在一个实施例中,图2c中的热传导层110可以设置为传递两个热源散发的热量,两个热源分别布置于热传导层110的第一面111和第二面112上,且布置于第二面112上的热吸收层120-2的面积可以设置为小于热传导层110的面积。进一步地,散热组件的结构可以不限于图2a-图2c中所示的包括热传导层和热吸收层,还可以包括例如固定层等,以下将结合图3进行说明。
图3是示出根据本披露的包括固定层的散热组件的示意图。如图3中所示,提供了一种散热组件100,可以包括热传导层110、热吸收层120,以及可以进一步包括固定层130,其可以布置于所述热传导层110上,用于将所述散热组件100固定在所述热源上。热传导层110可以通过固定层130实现与热源的间接接触,并可以传递热源散发(例如周期性或者间歇性散发)的热量。图3中所示的热传导层110和热吸收层120的结构和布置方式已经在 前文中进行了详细的描述,此处不再赘述。以下将对固定层130进行描述。
如图3中所示,固定层130可以布置于热传导层110上,其可以通过例如胶粘、机械压合等方式与热传导层110连接。固定层130的面积可以与热传导层110的面积相等(例如图中所示),也可以根据需要设置的大于或者小于热传导层110的面积。固定层130可以用于将散热组件100固定在热源上,例如可以通过粘贴、磁吸、卡接等方式进行固定。在一个实施例中,该固定层130可以由具有强附着力的背胶构成,可直接粘贴在热源上,安装方便。根据本披露的另一个实施例,所述固定层还可以具有绝缘性。例如在又一个实施例中,固定层130可以由绝缘背胶构成。
以上结合图3对根据本披露的包括固定层的散热组件进行了描述,本领域技术人员应该理解的是,图中所示的散热组件100的结构是示例性的而非限制性的,例如固定层130的形状可以根据需要进行设置。例如,在一个实施例中,固定层130的形状可以与热源的形状匹配。在另一个实施例中,固定层130可以设置的很薄并具有柔性,能够承受一定程度的弯曲或折叠,例如弯曲成弧形或Z字型等形状,以更好的适配于不同结构和形状的热源。固定层130可以不限于图示中的设置为一块,可以根据需要设置为多块。固定层130可以不限于图示中的布置于热传导层110的一面上,例如在一个实施例中,多块固定层130可以分别布置于热传导层110的不同面上。根据本披露的散热组件的结构可以不限于图3中所示的包括固定层、热传导层和热吸收层,还可以根据需要包括其他结构,例如封装层等,以下将结合图4a-图4c进行示例性描述。
图4a-图4c是示出根据本披露实施例的包括封装层的散热组件的多个示意图。如图4a中所示,根据本披露的一个实施例,提供了一种散热组件100,可以包括热传导层110、热吸收层120,以及可以进一步包括用于对所述热吸收层120进行固定和保护的封装层140,其可以布置于所述热吸收层120上,以使得所述热吸收层120固定于所述热传导层110和所述封装层140之间。图4a中所示的热传导层110和热吸收层120的结构和布置方式已经在前文中进行了详细的描述,此处不再赘述。以下将对封装层140进行描述。
上文中所述的封装层140可以由绝缘材料构成。封装层140可以通过将热吸收层120进行封装,以对热吸收层120进行固定和保护,既可以保持散热组件100的形状和结构,又可以保护热吸收层120免受外界影响,以避免热吸收层120的材质受到污染和破坏或者因流失而造成损失等。例如在一个实施例中,热吸收层120可以包括相变材料,封装层140的设置可以有效避免相变材料在发生相变过程中因形状改变而对整个散热组件100的形状和结 构产生影响。
如图4a中所示,封装层140可以布置于热吸收层120上,其可以通过例如胶粘、机械压合等方式与热吸收层120连接。封装层140的设置可以使热吸收层120固定于热传导层110和封装层140之间,例如可以通过将热传导层110和封装层140分别布置于热吸收层120的两个面上实现。封装层140的面积可以与热吸收层120的面积相等(例如图中所示),也可以根据需要设置的大于或者小于热吸收层120的面积。例如,在一个实施例中,封装层140可以设置为包裹热吸收层120,以便于将热吸收层120封装在内。以下将结合图4b进行示例性描述。
如图4b中所示,与图4a中所示的散热组件100的区别在于:图4b中的散热组件100的热传导层110的面积大于热吸收层120的面积,以及封装层140的面积大于热吸收层120的面积,并可以将热吸收层120包裹在内,以使热吸收层120固定于热传导层110和封装层140之间,即热吸收层120与热传导层110保持面接触并可以封装于封装层140内。封装层140的材质、作用以及连接方式等均与上文中结合图4a所描述的相同或相似,此处不再赘述。
以上结合图4a和图4b对根据本披露的包括热传导层、热吸收层以及封装层的散热组件进行了示例性的描述,在本公开的教导下,本领域技术人员应该理解的是,根据本披露的散热组件可以进一步包括固定层,以下将结合图4c进行示例性的描述。
如图4c中所示,提供一种散热组件100,可以包括固定层130、热传导层110、热吸收层120以及封装层140,其中固定层130可以布置于热传导层110上,并可以用于将整个散热组件100固定于热源上,热传导层110可以用于传递热源散发(例如周期性或者间歇性散发)的热量,热吸收层120可以布置于热传导层110和封装层140之间,并可以用于吸收热传导层110传递的热量,各层之间可以通过胶粘或者机械压合等方式进行连接。关于固定层130、热传导层110、热吸收层120以及封装层140各自的形状、材质以及彼此的连接方式等都在前文中进行了详细的描述,此处不再赘述。
另外,上文中所述的固定层130、热传导层110、热吸收层120以及封装层140的面积可以不限于图4c中所示的相等,可以根据需要对每层的面积进行灵活设置。各层的布置方式可以不限于图示中的方式,可以根据需要进行调整,例如固定层130和热吸收层120可以不限于图示中的布置于热传导层110的两面,可以根据需要布置于例如同一面上。散热组件100的各层的厚度可以不限于图示中的厚度,可以根据需要进行调整。固定层130、热传 导层110、热吸收层120以及封装层140均可以具有柔性,因此构成的散热组件100可以具有柔性,能够承受一定程度的弯曲,例如可以形成弧形或Z字型等形状,以适用于不同形状或结构的热源的散热。为了便于理解根据本披露的散热组件的柔性,以下将结合图5a和图5b进行示例性说明。
图5a和图5b是示出根据本披露实施例的具有柔性的散热组件的多个示意图。如图5a中所示,散热组件100的热传导层110、热吸收层120、固定层130以及封装层140均可具有柔性,因此该散热组件100整体可以具有柔性,例如使其呈现图示中的类似于Z字型的形状。关于热传导层110、热吸收层120、固定层130以及封装层140的构成、形状、连接方式、传热方式等均在前文中进行了详细描述,此处不再赘述。
如图5b中所示,散热组件100可以包括具有柔性的热传导层110、多个热吸收层(例如120-1、120-2等)、多个固定层(例如130-1、130-2等)以及多个封装层(例如140-1、140-2等),其中,热吸收层120-1、120-2可以分别布置于热传导层110的两个面上,固定层130-1、130-2可以分别布置于热传导层110的两个面上,固定层130-1与热吸收层120-2可以布置于热传导层110的同一个面上,固定层130-2与热吸收层120-1可以布置于热传导层110的同一个面上,封装层140-1和140-2分别布置于热吸收层120-1和120-2上。该散热组件100整体可以折成类似于Z字型形状。根据这样的设置,可以在保证散热组件100的散热效果的前提下,使该散热组件100具有两面可固定性。关于热传导层110、热吸收层(120-1、120-2)、固定层(130-1、130-2)以及封装层(140-1、140-2)的构成、形状、连接方式、传热方式等均在前文中进行了详细描述,此处不再赘述。
以上结合图5a和图5b对根据本披露的散热组件的柔性,以及固定层与热吸收层布置于热传导层的同一面或者两面等布置方式进行了示例性的描述,本领域技术人员可以根据需要对根据本披露的散热组件的结构、各层数量、布置方式等进行调整。例如散热组件的结构可以不限于图示中的包括封装层,在一个实施例中,热吸收层的性状稳定,可以无需封装层的固定和保护,散热组件可以不设置封装层。散热组件的结构可以不限于图示中的包括固定层,例如在另一个实施例中,散热组件能够与热源保持接触的情况下,可以无需固定层进行固定。散热组件的形状可以不限于图示中的Z字型,还可以根据需要设置为弧形、波浪形、阶梯型等。散热组件100上还可以布置冷却件进行吸热,以下将结合图6进行说明。
图6是示出根据本披露的包括冷却件的散热组件的示意图。如图6中所示,散热组件100可以包括热传导层110、热吸收层120,以及可以进一步 包括冷却件150,其可以布置于所述热传导层110和热吸收层120中的至少一个上,用于进一步吸收所述热量,从而可以增大散热组件100的整体吸热能力。热传导层110和热吸收层120与前文中所述的相同或相似,此处不再赘述。以下将对冷却件150进行示例性描述。
上文中所述的冷却件150可以包括一个或多个。冷却件150可以布置于热传导层110上(例如图6中所示),也可以布置于散热组件100的其他部件上,例如在一个实施例中,冷却件150可以布置于热吸收层120上。在另一个实施例中,冷却件150可以布置于热传导层110和热吸收层120上。在又一个实施例中,散热组件100可以进一步包括布置于热传导层110上的固定层,冷却件150可以布置于所述固定层上,用于进一步吸收所述热量。在又一个实施例中,散热组件100可以进一步包括布置于热吸收层120上的封装层,冷却件150可以布置于所述封装层上,用于进一步吸收所述热量。冷却件150布置于热传导层110、热吸收层120、固定层以及封装层中的至少一个上的方式可以包括直接或者间接接触的方式,或者粘贴、机械压合、紧固件紧固、焊接等进行固定的方式等。
上文中所述的冷却件150是具有冷却和吸热功能的部件,例如可以是内装有冷却介质的部件、金属导体、散热片等中的一种或多种。由于金属是良好的热导体,因此可以作为冷端载体用作吸收热量的冷却件100。在一个实施例中,冷却件150可以是由高导热系数的材料制造的外壳(例如金属外壳等)以及包含有冷却介质(例如水、冰、冷冻盐水等或其混合物)的内容物构成。在另一个实施例中,冷却件150可以是散热组件100的外壳或包含热源的产品本身的冷端部件,选用产品本身的部件用作冷却件不会导致空间占用,能够满足产品小型化以及对产品尺寸具有严苛要求的需求。
以上结合图6对根据本披露的散热组件的冷却件进行了描述,本领域技术人员应该理解的是,图示中的冷却件150是示例性的而非限制性的,例如冷却件150的数量、布置位置等都可以根据需要进行设置。冷却件150的形状可以不限于图示中的半圆形,可以根据需要进行设置,例如设置为片状、块状、条状等。散热组件100可以不限于图示中的包括热传导层110、热吸收层120以及冷却件150,还可以根据需要设置固定层、封装层等中的一个或多个。
根据本披露的散热组件因具有结构简单、占用空间小等特点,可以应用于多种电子器件或散热装置中用于散热。根据本披露的散热组件可以具有柔性,可以很好的适应于散热空间的变化,有助于提高散热措施的容差能力。根据本披露的散热组件兼具传递热量和吸收热量的能力,有利于提高散热措 施的散热效率。以下将结合多个实施例进行说明。
图7是示出根据本披露的散热组件应用于散热装置的示意图。如图7中所示,提供了一种用于散热的装置300,可以包括:散热壳体310,其具有用于容纳发热器件(即前文中所述的热源)的内腔311和至少一个开口312;以及至少一个根据本披露的具有柔性的散热组件(简称柔性散热组件)320,其与所述散热壳体310连接并布置于所述开口312处,以与所述发热器件接触并将所述发热器件散发的热量传递至所述散热壳体310上。
散热壳体310可以是金属壳体或者是具有高导热性或吸热性的非金属壳体。散热壳体310上可以设置一个或多个开口312。一个开口312处可以布置一个或多个柔性散热组件320,以与一个或多个发热器件接触。例如,在一个实施例中,一个柔性散热组件320可以接触一个发热器件。在另一个实施例中,多个柔性散热组件可以接触一个发热器件。
上文中所述的柔性散热组件320可以承受一定程度的弯曲并可以改变形状。柔性散热组件320可以是上述根据本披露的散热组件中的任意一种,此处不再赘述。柔性散热组件320的一部分可以与散热壳体310连接,其另一部分可以与发热器件接触,以将该发热器件散发的热量传递至散热壳体310上。柔性散热组件320可以根据需要对与发热器件的接触位置进行设置,例如可以根据发热器件的发热部位对接触位置进行调整。柔性散热组件320与发热器件之间可以直接接触或者间接接触。在一个实施例中,柔性散热组件320可以通过粘贴、压合、焊接等方式与发热器件连接。在另一个实施例中,柔性散热组件320可以与发热器件通过紧挨、磁吸、卡接、弹性接触等方式可分离的接触。在又一个实施例中,柔性散热组件320与发热器件之间可以形成点接触、线接触或者面接触等。
根据本披露的一个实施例,散热组件还可以用于支撑所述发热器件。根据本披露的散热组件不仅可以具有柔性,也可以具有一定的强度,以保持形状稳定。例如,散热组件与发热器件的底部接触,在一些应用场景中,发热器件可能会对散热组件产生压力,散热组件可以对发热器件进行一定的支撑,以保持与发热器件的接触状态以及发热器件的位置稳固。根据本实施例的散热组件不仅可以用于传递热量,还可以具有机械支撑作用。
以上结合图7对根据本披露的散热组件用于散热装置进行了描述,本领域技术人员应该理解的是,图7中所示的结构是示例性的而非限制性的,例如柔性散热组件320可以不限于图示中的与开口312的一侧散热壳体连接,可以根据需要设置为延伸至开口312的另一侧散热壳体上,以使柔性散热组件320与开口312的两侧散热壳体连接或接触。柔性散热组件320的形状可 以不限于图示中的波浪形,可以根据需要设置成所需的形状,例如直线型、阶梯型、Z字型、圆环形等,以下将结合图8a和图8b对散热组件的适应性形状调整进行示例性说明。
图8a和图8b是示出根据本披露实施例的散热组件的适应性形状调整的多个示意图。如图8a和图8b中所示,柔性散热组件320与散热壳体310连接并布置于开口312处,且柔性散热组件320与散热壳体310的内腔311中的发热器件200接触以传递发热器件200散发的热量,柔性散热组件320与散热壳体310的连接处可以位于散热壳体310的外壁上。
如图8a中所示,发热器件200的尺寸或厚度超过散热壳体310的内腔311,柔性散热组件320可以弯曲成适宜的形状,以适应发热器件200与散热壳体310的相对位置,例如图示中的类似于Z字型,根据这样的设置,柔性散热组件320能够与散热壳体310连接并与发热器件200保持接触。柔性散热组件320与散热壳体310的连接处可以和柔性散热组件320与发热器件200的接触处位于柔性散热组件320的同一面上。本领域技术人员应该理解的是,柔性散热组件320的形状可以不限于图8a中所示,而是可以根据发热器件200的厚度和尺寸等进行适应性的改变。为了便于理解,以下将结合图8b进行示例性描述。
图8b中所示与图8a的区别在于:发热器件200的尺寸没有超出内腔311的空间,且柔性散热组件320可以根据发热器件200与散热壳体310的相对位置调整为适宜的形状,例如与图8a中所示的形状相反方向弯曲的形状(如图8b中示出),以使柔性散热组件320能够与散热壳体310连接并与发热器件200保持接触。
以上结合图8a和图8b对根据本披露的柔性散热组件320的适应性形状调整的多个实施例进行了示例性描述,本领域技术人员应该理解的是,柔性散热组件320的形状可以根据不同发热器件200的尺寸以及发热器件200与散热壳体310的相对位置而进行适应性调整,以保持柔性散热组件320与发热器件200的接触,从而保证散热效率。柔性散热组件320连接于散热壳体310的外壁上8可以节约内腔311空间以便于发热器件的布置。柔性散热组件320可以不限于图示中的连接于散热壳体310的外壁上,在另一个实施例中,柔性散热组件320与散热壳体310的连接处可以位于散热壳体310的内壁上。在又一个实施例中,柔性散热组件320与散热壳体310的连接处可以和柔性散热组件320与发热器件200的接触处位于柔性散热组件320的不同面上。根据本披露的散热组件不仅可以用作柔性散热组件,还可以用作填隙散热组件,以下将结合图9进行示例性说明。
图9是示出根据本披露实施例的散热组件用作填隙散热组件的示意图。由于根据本披露的散热组件具有占用空间小、形状和厚度可根据需要设置等特点,因此可以充分利用有限空间对发热器件进行散热。例如图9中所示,根据本披露的散热组件330可以布置于散热壳体310的内壁与发热器件200之间,以填补缝隙的方式充分利用内腔311的有限空间对发热器件200散热,以下将这种用于填隙的散热组件称为填隙散热组件。
如图9中所示,填隙散热组件330可以布置(例如以填补的方式)于散热壳体310的内壁和发热器件200之间的缝隙中,用于传递和吸收发热器件200散发的热量。填隙散热组件330的厚度可以根据散热壳体310的内壁和发热器件200之间的缝隙大小进行设置。填隙散热组件330与发热器件200之间可以是接触或连接。
以上结合图9对根据本披露的散热组件用作填隙散热的实施方式进行了描述,本领域技术人员应该理解的是,图9中所示是示例性的而非限制性的,例如填隙散热组件330可以不限于图示中布置于发热器件200的顶部和散热壳体310之间的缝隙中,可以根据发热器件200的尺寸和形状等进行调整,例如在一个实施例中,填隙散热组件330可以布置于发热器件与散热壳体之间的横向方向上的空间中。填隙散热组件330的数量可以不限于图示中的一个,可以根据需要布置的更多。
通过上面的描述,本领域技术人员可以理解的是,使用了根据本披露的散热组件的散热装置具有很好的适应性,不仅可以兼容不同厚度规格的发热器件,具有良好的容差能力,还可以充分利用有限的散热空间以提高对发热器件的散热效率。另外,根据本披露的实施例,还可以将多个散热组件接触同一个发热器件,以进一步加快该发热器件的散热速度。
进一步地,根据本披露的另一个方面中,提供一种电子器件,可以包括周期性或间歇性工作的热源以及布置于所述热源上的如本披露中所述的散热组件。所述热源可以是工作时发热的部件、器件等。根据本披露的散热组件及其与热源的布置方式已经在前文中结合多个实施例进行了详细描述,此处不再赘述。
可以布置本披露的散热组件的上述电子器件可以包括人工智能产品(例如集成电路板卡)、数据处理装置、机器人、电脑、打印机、扫描仪、平板电脑、智能终端、行车记录仪、导航仪、传感器、摄像头、服务器、摄像机、投影仪、移动存储、可穿戴设备、交通工具、家用电器、和/或医疗设备等。
在上述的本披露的散热组件的技术方案中,通过设置热传导层和热吸收层,以分别利用其高导热性和热吸收性,实现对热量的快速传递和吸收,能 够解决发热器件(即热源)的散热问题,特别是发热器件周期性或者间歇性的散热问题。根据本披露的散热组件的结构和厚度等都可以根据需要进行调整(例如可以形成薄膜结构),占用空间小,能够适用于小尺寸的产品的散热以及散热空间有限的应用场景。进一步地,根据本披露的散热组件可以具有柔性,能够承受一定的弯曲,能够适用于不同形状或结构的热源,应用灵活性高。根据本披露的散热组件还具有结构简单,成本低廉等特点。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。上述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述。然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
依据以下条款可更好地理解前述内容:
条款A1,一种散热组件,包括:热传导层,其用于传递热源周期性或间歇性散发的热量;以及热吸收层,其与所述热传导层形成面接触,用于吸收所述热传导层传递的所述热量以向外释放,其中所述热传导层的导热系数大于所述热吸收层的导热系数。
条款A2,根据条款A1所述的散热组件,其中所述热传导层具有第一面和第二面,所述第一面用于传递所述热源周期性或间歇性散发的所述热量,所述第二面与所述热吸收层形成面接触。
条款A3,根据条款A1所述的散热组件,其中所述热传导层具有第一面,所述热源和所述热吸收层位于所述第一面上。
条款A4,根据条款A1所述的散热组件,其中所述热传导层的面积大于或等于所述热吸收层的面积,以将所述热量传递至所述热吸收层的整个接触面上。
条款A5,根据条款A1-A4中任意一项所述的散热组件,进一步包括固定层,布置于所述热传导层上,用于将所述散热组件固定在所述热源上。
条款A6,根据条款A5所述的散热组件,其中所述固定层还具有绝缘性。
条款A7,根据条款A1所述的散热组件,进一步包括用于对所述热吸收层进行固定和保护的封装层,其布置于所述热吸收层上,以使得所述热吸收层固定于所述热传导层和所述封装层之间。
条款A8,根据条款A6或A7所述的散热组件,其中所述热吸收层由相变材料构成,并且所述热传导层包括金属箔片和高导热系数的非金属材料中的至少一种。
条款A9,根据条款A1所述的散热组件,进一步包括冷却件,其布置于 所述热传导层和热吸收层中的至少一个上,用于进一步吸收所述热量。
条款A10,根据条款A5或A6所述的散热组件,进一步包括冷却件,其布置于所述固定层上,用于进一步吸收所述热量。
条款A11,根据条款A7所述的散热组件,进一步包括冷却件,其布置于所述封装层上,用于进一步吸收所述热量。
条款A12,一种电子器件,包括周期性或间歇性工作的热源以及布置于所述热源上的如条款A1-A11中任一项所述的散热组件。
条款A13,一种电子器件,包括周期性或间歇性工作的热源以及布置于所述热源上的如条款A1-A11中任一项所述的散热组件。
以上对本披露实施例进行了详细介绍,本文中应用了具体个例对本披露的原理及实施方式进行了阐述,以上实施例的说明仅用于帮助理解本披露的方案及其核心思想。同时,本领域技术人员依据本披露的思想,基于本披露的具体实施方式及应用范围上做出的改变或变形之处,都属于本披露保护的范围。综上所述,本说明书内容不应理解为对本披露的限制。

Claims (13)

  1. 一种散热组件,包括:
    热传导层,其用于传递热源周期性或间歇性散发的热量;以及
    热吸收层,其与所述热传导层形成面接触,用于吸收所述热传导层传递的所述热量以向外释放,
    其中所述热传导层的导热系数大于所述热吸收层的导热系数。
  2. 根据权利要求1所述的散热组件,其中所述热传导层具有第一面和第二面,所述第一面用于传递所述热源周期性或间歇性散发的所述热量,所述第二面与所述热吸收层形成面接触。
  3. 根据权利要求1所述的散热组件,其中所述热传导层具有第一面,所述热源和所述热吸收层位于所述第一面上。
  4. 根据权利要求1所述的散热组件,其中所述热传导层的面积大于或等于所述热吸收层的面积,以将所述热量传递至所述热吸收层的整个接触面上。
  5. 根据权利要求1-4中任一项所述的散热组件,进一步包括固定层,布置于所述热传导层上,用于将所述散热组件固定在所述热源上。
  6. 根据权利要求5所述的散热组件,其中所述固定层还具有绝缘性。
  7. 根据权利要求1所述的散热组件,进一步包括用于对所述热吸收层进行固定和保护的封装层,其布置于所述热吸收层上,以使得所述热吸收层固定于所述热传导层和所述封装层之间。
  8. 根据权利要求6或7所述的散热组件,其中所述热吸收层由相变材料构成,并且所述热传导层包括金属箔片和高导热系数的非金属材料中的至少一种。
  9. 根据权利要求1所述的散热组件,进一步包括冷却件,其布置于所述热传导层和热吸收层中的至少一个上,用于进一步吸收所述热量。
  10. 根据权利要求5或6所述的散热组件,进一步包括冷却件,其布置于所述固定层上,用于进一步吸收所述热量。
  11. 根据权利要求7所述的散热组件,进一步包括冷却件,其布置于所述封装层上,用于进一步吸收所述热量。
  12. 一种散热装置,包括散热壳体,其具有用于容纳发热器件的内腔和至少一个开口;以及至少一个如权利要求1-11中任一项所述的散热组件,其与所述散热壳体连接并布置于所述开口处,以与所述发热器件接触并将所述发热器件散发的热量传递至所述散热壳体上。
  13. 一种电子器件,包括周期性或间歇性工作的热源以及布置于所述热源上的如权利要求1-11中任一项所述的散热组件。
PCT/CN2021/080890 2020-03-26 2021-03-15 散热组件及其电子器件 WO2021190342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010225215.9A CN113453484B (zh) 2020-03-26 2020-03-26 散热组件及其电子器件
CN202010225215.9 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021190342A1 true WO2021190342A1 (zh) 2021-09-30

Family

ID=77807601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080890 WO2021190342A1 (zh) 2020-03-26 2021-03-15 散热组件及其电子器件

Country Status (2)

Country Link
CN (1) CN113453484B (zh)
WO (1) WO2021190342A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404976A (zh) * 2010-09-16 2012-04-04 鸿富锦精密工业(深圳)有限公司 电子装置
JP2013004708A (ja) * 2011-06-16 2013-01-07 Sgk Kk 放熱構造と放熱材料
CN205546190U (zh) * 2016-03-24 2016-08-31 深圳市洲际恒通科技有限公司 一种手机的线路板散热结构
CN207948002U (zh) * 2018-01-30 2018-10-09 慧隆科技股份有限公司 电子装置散热结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108990365B (zh) * 2017-06-05 2022-02-08 北京小米移动软件有限公司 散热结构、壳体以及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404976A (zh) * 2010-09-16 2012-04-04 鸿富锦精密工业(深圳)有限公司 电子装置
JP2013004708A (ja) * 2011-06-16 2013-01-07 Sgk Kk 放熱構造と放熱材料
CN205546190U (zh) * 2016-03-24 2016-08-31 深圳市洲际恒通科技有限公司 一种手机的线路板散热结构
CN207948002U (zh) * 2018-01-30 2018-10-09 慧隆科技股份有限公司 电子装置散热结构

Also Published As

Publication number Publication date
CN113453484B (zh) 2023-04-18
CN113453484A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2021238450A1 (zh) 柔性显示装置
JP6233377B2 (ja) 電子機器の製造方法
JP5743251B2 (ja) 複合材料及び電子デバイス
WO2017159527A1 (ja) 複合シートおよびこれを用いた電池パック
JP2885736B2 (ja) 電子装置の冷却構造
CN107249283B (zh) 一种移动终端
CN210781834U (zh) 一种高导热硅碳复合缓冲散热片
JP2014049536A (ja) 電子機器
WO2011150874A2 (zh) 具有隔热结构的装置
WO2021190342A1 (zh) 散热组件及其电子器件
CN107509365B (zh) 一种超薄微波组件及热管散热装置
CN112397465A (zh) 一种芯片散热结构
CN209897342U (zh) 一种电路板组件和电子设备
CN205179142U (zh) 一种改进的散热型手机主板
WO2022228208A1 (zh) 芯片封装结构及电子设备
CN107249284B (zh) 一种移动终端
CN217116715U (zh) 芯片散热结构和电子设备
CN204810787U (zh) 一种散热组件及电子设备
CN113395875A (zh) 一种导热构件
CN113453483A (zh) 用于散热的装置及其电子器件
CN207596775U (zh) 一种具有凹凸部的导热散热绝缘复合胶带
CN214507721U (zh) 一种用于功率器件的散热结构
CN217822979U (zh) 终端设备
CN112543577B (zh) 一种生物控温电子产品壳体组件
CN216600606U (zh) 一种高效导热散热模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776096

Country of ref document: EP

Kind code of ref document: A1