WO2021189533A1 - 一种集成镀膜设备的样品传输装置 - Google Patents

一种集成镀膜设备的样品传输装置 Download PDF

Info

Publication number
WO2021189533A1
WO2021189533A1 PCT/CN2020/083865 CN2020083865W WO2021189533A1 WO 2021189533 A1 WO2021189533 A1 WO 2021189533A1 CN 2020083865 W CN2020083865 W CN 2020083865W WO 2021189533 A1 WO2021189533 A1 WO 2021189533A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
rotating
vacuum chamber
rotating shaft
sample
Prior art date
Application number
PCT/CN2020/083865
Other languages
English (en)
French (fr)
Inventor
夏洋
卢维尔
杨胜
刘涛
李楠
何萌
屈芙蓉
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Publication of WO2021189533A1 publication Critical patent/WO2021189533A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • This application relates to the technical field of semiconductor integrated coating technology, and in particular to a sample transfer device of an integrated coating equipment.
  • Thin-film technology is the basis of physical science and information devices, and has important applications in semiconductor devices, lasers, sensors, flat panel displays, and thin-film solar cells.
  • the current thin-film stacks of high-performance chips and new semiconductor devices are only on the order of a few nanometers, so the quality of the thin-film interface layer is particularly important. Since the ultra-thin film is easily oxidized or polluted in the air, it will seriously affect the quality of the film interface layer and the performance of the prepared device. Therefore, the growth of a multi-layer ultra-thin film stack structure must be realized under full vacuum conditions. This requires the integration of different thin film deposition process platforms in a vacuum system to form an integrated coating equipment.
  • This application provides a sample transfer device for integrated coating equipment, which solves the technical problems of complex structure, high price, and slow transmission speed in the integrated coating equipment in the prior art that the transmission of samples in the integrated coating equipment relies on a manipulator.
  • the embodiment of the present invention provides a sample transfer device integrated with coating equipment, the sample transfer device includes: a support device, the support device includes a base; a cylinder fixed on the base; a rotating motor, Fixed on the cylinder to move up and down in the vertical direction with the expansion and contraction of the cylinder; a rotating shaft, one end of the rotating shaft is fixedly arranged at the output end of the rotating electric machine; a vacuum chamber is fixed on the supporting device Above, the rotating shaft passes through the bottom of the vacuum chamber; the rotating tray is fixed at the other end of the rotating shaft and is located in the vacuum chamber; the control unit is electrically connected to the cylinder and the rotating motor.
  • the rotating tray includes: M sample platforms, and the M sample platforms are uniformly arranged on the rotating tray; wherein, M ⁇ 2 and is a positive integer.
  • the sample transfer device includes a welded bellows, which is arranged between the vacuum chamber and the rotating electric machine, and the central rotating shaft passes through the welded bellows.
  • the sample transfer device includes: a first sealing device, the first sealing device is provided on the upper end of the welding bellows; a second sealing device, the second sealing device is provided on the welding bellows The lower end of the tube.
  • the first sealing device is an oxygen-free copper pad.
  • the second sealing device is a magnetic fluid seal and a rubber seal ring.
  • the supporting device includes: P fixed pillars, one end of the fixed pillar is fixed on the bottom plate, and the other end is fixed on the lower surface of the vacuum chamber; wherein, P ⁇ 2, and P is Positive integer.
  • the sample transfer device further includes a fixing block, and the rotating tray is fixed to the upper end of the rotating shaft by the fixing block.
  • the rotating motor is a stepper motor.
  • the embodiment of the present invention provides a sample transfer device integrated with coating equipment.
  • the vacuum chamber is fixed by the supporting device; the rotating tray is lifted by the extension of the cylinder , To prepare for subsequent rotation; the rotation of the rotating motor drives the rotating shaft to rotate, thereby driving the rotating tray to rotate, so as to realize the transfer of the sample on the rotating tray from one coating process chamber to another coating process chamber .
  • the control device controls the expansion and contraction of the cylinder, controls the rotation of the rotating motor, and realizes the automation of sample transmission through the control device, achieving the technical effect of simple operation.
  • FIG. 1 is a schematic structural diagram of a sample transmission device of an integrated coating equipment in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the vacuum chamber of the sample transfer device of the integrated coating equipment shown in FIG. 1.
  • the embodiment of the present invention provides a sample transfer device for integrated coating equipment, which solves the technical problems of complex structure, high price, and slow transmission speed in the integrated coating equipment in the prior art. Fast and stable transmission in coating equipment, simple structure and low cost technical effect.
  • a sample transfer device integrated with coating equipment includes: a support device, the support device includes a base; an air cylinder, which is fixed on the base; a rotating motor, which is fixed on the air cylinder to follow The expansion and contraction of the cylinder moves up and down in the vertical direction; a rotating shaft, one end of the rotating shaft is fixedly arranged at the output end of the rotating electric machine; a vacuum chamber is fixed on the supporting device, and the rotating shaft passes through the vacuum chamber The bottom of the chamber; the rotating tray is fixed at the other end of the rotating shaft and is located in the vacuum chamber; the control unit is electrically connected to the cylinder and the rotating motor.
  • An exemplary embodiment of the present invention provides a sample transfer device integrated with coating equipment. Please refer to Figures 1 and 2.
  • the sample transfer device includes: a base 5, a fixed support 4, a cylinder 10, a rotating motor 9, and a rotating shaft 6. , Vacuum chamber 1, rotating tray 2, control unit (not shown).
  • the number of the fixed pillars 4 may be P, one end of the P fixed pillars 4 is fixed on the base 5, and the other end is fixed on the lower surface of the vacuum chamber 1; wherein, P ⁇ 2, and P is a positive integer .
  • the base 5 and the fixed pillar 4 constitute a supporting device for supporting the vacuum chamber 1.
  • the base 5 may be a thick steel plate, and the base 5 is suspended and fixed to the bottom of the vacuum chamber 1 through P fixed pillars 4.
  • the P fixed pillars 4 are centered on the rotary shaft 6 and are evenly arranged around the rotary shaft 6, and the number of the fixed pillars 4 is greater than or equal to 2, so as to stably fix the bottom plate 5 to the vacuum Technical effect on chamber 1.
  • the cylinder 10 is fixed on the base 5.
  • the rotating electric machine 9 is fixed at the upper end of the cylinder 10 to move up and down in the vertical direction as the cylinder 10 expands and contracts.
  • the rotating motor 9 may be a stepping motor.
  • a fixed frame may be provided at the upper end of the cylinder 10, and the rotating electric machine 9 may be connected to the moving end of the cylinder through the fixed frame.
  • one end of the cylinder 10 is fixed to the base 5, and the other end is fixed to the fixing frame.
  • the cylinder 10 is connected to the control unit, and the control unit controls the start and stop of the cylinder 10 as well as the expansion and contraction length. , And equal to the length of each retraction. With the expansion and contraction of the cylinder 10, the fixing frame moves up or down a certain length in the vertical direction.
  • the rotating shaft 6 is fixed at the output end of the rotating motor 9, and the other end is fixed at the center of the bottom of the rotating tray 2. As the rotating motor 9 rotates, the rotating shaft 6 rotates, thereby driving the rotating tray 2 to rotate in the vacuum chamber 1.
  • the rotating motor 9 is a stepping motor, that is, the angle of each rotation is the same.
  • the rotation direction of the rotating electric machine 9 is variable, and it can rotate in a forward direction or in a reverse direction.
  • the rotating tray 2 is fixed at the other end of the rotating shaft 6 and is located in the vacuum chamber 1.
  • the rotating tray 2 may include: M sample platforms 12, M of the sample platforms 12 are evenly arranged on the rotating tray 2; wherein, M ⁇ 2 and a positive integer.
  • the rotating tray 2 is arranged in the vacuum chamber 1, and M sample platforms 12 are uniformly arranged on the rotating tray 2, and the M sample platforms 12 are symmetric about the center of the rotating shaft 6. .
  • the silicon wafer 13 is placed on the sample platform 12.
  • the base 5 is fixed at the bottom of the vacuum chamber 1, and the rotating shaft 6 passes through the bottom of the vacuum chamber 1.
  • the silicon wafer 13 is coated in the vacuum chamber 1, a circular through hole is provided at the center of the bottom of the vacuum chamber 1, and the rotating shaft 6 is fixed through the through hole. At the bottom center of the rotating tray 2.
  • the vacuum chamber 1 is provided with N coating process chambers 3, each of the coating process chambers 3 can perform different coating processes, and the silicon wafer 13 can be in different coating process chambers. Different coating processes are completed in the chamber 3.
  • the through hole as the center of the circle, the N coating process chambers 3 are uniformly arranged in the vacuum chamber 1.
  • the control unit is electrically connected to the cylinder 10 and the rotating electric machine 9.
  • control unit controls the lifting of the cylinder 10 and controls the rotation direction and the rotation angle of the rotating electric machine 9.
  • the control unit is provided with a fixed angle for each rotation of the rotating motor 9, and the rotation angle is determined by the number of the coating process chambers 3.
  • the angle of rotation is equal to the angle between two adjacent coating process chambers 3, that is, equal to 360/M.
  • the control unit stores a predetermined length each time the cylinder 10 is extended or retracted, and the control unit is also provided with "clockwise rotation” and “counterclockwise rotation” buttons.
  • the control unit controls the cylinder 10 to extend the predetermined length, and lifts the rotating motor 9, the rotating shaft 6, and the rotating tray 2 upwards.
  • the control unit controls the rotating motor 9 to rotate the fixed angle counterclockwise, and the rotating tray 2 also Following the counterclockwise rotation of the fixed angle; finally, the control unit controls the cylinder 10 to retract to the predetermined length, the rotating tray 2 drops the predetermined length, and the sample platform 12 of the rotating tray 2 falls into In the coating process chamber 3, the technical effect of converting the sample platform 12 from one coating process chamber 3 to the coating process chamber 3 adjacent in a counterclockwise direction is achieved.
  • the control unit controls the air cylinder 10 to extend the predetermined length, and lifts the rotating motor 9, the rotating shaft 6, and the rotating tray 2 upwards.
  • the predetermined length so as to lift the rotating tray 2 from the coating process chamber 3; then, the control unit controls the rotating motor 9 to rotate the fixed angle clockwise, and the rotating tray 2 also Following the clockwise rotation of the fixed angle; finally, the control unit controls the air cylinder 10 to retract to the predetermined length, the rotating tray 2 drops the predetermined length, and the sample platform 12 of the rotating tray 2 falls into In the coating process chamber 3, the technical effect of converting the sample platform 12 from one coating process chamber 3 to the coating process chamber 3 adjacent in a clockwise direction is achieved.
  • the sample transfer device may include: a welded bellows 7, which is arranged between the vacuum chamber 1 and the rotating motor 9, and the rotating shaft 6 passes through the welded bellows 7; a first seal Device, the first sealing device is arranged at the upper end of the welded bellows 7;
  • the second sealing device is arranged at the lower end of the welded bellows 7.
  • the first sealing device may be an oxygen-free copper pad.
  • the second sealing device may be a magnetic fluid sealing device 8 and a rubber sealing ring.
  • the upper end of the welding bellows 7 may be provided with an oxygen-free copper pad for sealing the gap between the lower surface of the vacuum chamber 1 and the rotating shaft 6.
  • the lower end of the welded bellows 7 can be provided with a magnetic fluid seal 8 and a rubber sealing ring for sealing the gap between the rotating shaft 6 and the welded bellows.
  • the welded bellows 7 has strong flexibility.
  • the cylinder 10 When the rotating electric machine 9 does not need to rotate, the cylinder 10 is in a contracted state, and the welded bellows 7 is in a slightly compressed state. Under the action of the elastic force of the welded bellows 7, the first sealing device is compressed. On the lower surface of the vacuum chamber 1, the second sealing device is pressed against the lower end of the rotating shaft 6; when the rotating electric machine 9 rotates, the cylinder 10 extends, and the welded bellows 7 In a strong compression state, the pressure on the first sealing device and the second sealing device is greater, and the sealing of the vacuum chamber 1 is enhanced to achieve the technical effect of maintaining the vacuum degree inside the vacuum chamber 1 . When the rotating shaft 6 is in a rotating state, the vacuum degree in the vacuum chamber 1 is maintained between [1 ⁇ 10-3 Torr, 1 ⁇ 10-7 Torr].
  • sample transfer device may further include a fixing block 11, and the rotating tray 2 is fixed to the upper end of the rotating shaft 6 by the fixing block 11.
  • the fixed block 11 is a circular steel plate, the diameter of the fixed block 11 is less than or equal to the diameter of the rotating shaft 6, and the fixed block 11 is fixed to the upper end of the rotating shaft 6 by a plurality of bolts to achieve The technical effect of firmly fixing the rotating tray 2 to the rotating shaft 6.
  • the operation process of the sample transfer device of the integrated coating equipment of the present application is as follows. Please refer to Figure 1, when the user presses the "counterclockwise rotation” button, first, the control unit controls the cylinder 10 to extend a predetermined length, and the rotating motor 9, the rotating shaft 6, and the rotating tray 2 All lift the predetermined length upward, thereby lifting the rotating tray 2 from the coating process chamber 3; then, the control unit controls the rotating motor 9 to rotate counterclockwise by a fixed angle, and the rotating tray 2 also follows the counterclockwise rotation of the fixed angle; finally, the control unit controls the cylinder 10 to retract to the predetermined length, the rotating tray drops the predetermined length, and the sample platform 12 of the rotating tray 2 drops Into the coating process chamber 3, the technical effect of converting the sample platform 12 from one coating process chamber 3 to the coating process chamber 3 adjacent to the counterclockwise direction is achieved.
  • the control unit controls the cylinder 10 to extend a predetermined length, and lifts the rotating motor 9, the rotating shaft 6, and the rotating tray 2 upwards.
  • the rotating tray 2 is lifted from the coating process chamber 3 by a predetermined length; then, the control unit controls the rotating motor 9 to rotate clockwise by a fixed angle, and the rotating tray 2 also follows the clockwise direction. Rotate the fixed angle; finally, the control unit controls the cylinder 10 to retract to the predetermined length, the rotating tray 2 drops the predetermined length, and the sample platform 12 of the rotating tray 2 falls into the coating process In the chamber 3, the technical effect of converting the sample platform 12 from one coating process chamber 3 to the adjacent coating process chamber 3 in a clockwise direction is achieved.
  • the embodiment of the present invention provides a sample transfer device integrated with coating equipment, wherein the sample transfer device is fixed on the ground by a supporting device; the rotating tray is lifted by the expansion and contraction of the air cylinder, which is a follow-up Spin to prepare.
  • the rotation of the rotating motor drives the rotating shaft to rotate, thereby driving the rotating tray to rotate, so that the sample on the rotating tray is transferred from one coating process chamber to another coating process chamber.
  • the control device controls the expansion and contraction of the cylinder, controls the rotation of the rotating motor, and realizes the automation of sample transmission through the control device, achieving the technical effect of simple operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种集成镀膜设备的样品传输装置,包括:支撑装置,所述支撑装置包括底座(5);气缸(10),固定在所述底座上;旋转电机(9),固定在所述气缸上,以随着所述气缸的伸缩沿竖直方向上下移动;转轴(6),所述转轴的一端固定设置在所述旋转电机的输出端;真空腔室(1),固定在所述支撑装置上,所述转轴(6)穿过所述真空腔室的底部;旋转托盘(2),固定在所述转轴(6)的另一端,且位于所述真空腔室(1)内;控制单元,与所述气缸(10)、所述旋转电机(9)电连接。解决了现有技术中集成镀膜设备中样片的传输依靠机械手,结构复杂、价格昂贵、传输速度慢的技术问题,达到了样片在集成镀膜装备中快速、稳定传输,结构简单,成本低的到技术效果。

Description

一种集成镀膜设备的样品传输装置
相关申请的交叉引用
本申请要求2020年03月26日提交中国专利局的专利申请No.202010222105.7的优先权,其全部内容在此通过引用合并在本申请中。
技术领域
本申请涉及半导体集成镀膜技术领域,特别涉及一种集成镀膜设备的样品传输装置。
背景技术
薄膜技术是物理科学、信息器件的基础,在半导体器件、激光器、传感器、平板显示及薄膜太阳能电池等方面有重要的应用。当前高性能芯片和新型半导体器件的薄膜叠层仅有几个纳米量级,所以薄膜界面层质量尤为重要。由于超薄薄膜在空气中极易氧化或者受到污染,会严重影响薄膜界面层质量及制备器件的性能。所以多层超薄膜堆叠结构的生长,必须在全真空条件下实现。这就需要将不同的薄膜沉积工艺平台集成在一个真空系统中,构成集成的镀膜设备。
但本申请发明人发现上述现有技术至少存在如下技术问题:
传统的集成镀膜设备,需要配套传输腔室和机械手结构来传输样片,整体结构复杂,价格昂贵,维护成本高,传输时间长,环境真空度较低。
发明内容
本申请提供了一种集成镀膜设备的样品传输装置,解决了现有技术中集成镀膜设备中样片的传输依靠机械手,结构复杂、价格昂贵、传输速度慢的技术问题,达到了样片在集成镀膜装备中快速、稳定传输,结构简单,成本低的技术效果。
为解决上述问题,本发明实施例提供了一种集成镀膜设备的样品 传输装置,所述样品传输装置包括:支撑装置,所述支撑装置包括底座;气缸,固定在所述底座上;旋转电机,固定在所述气缸上,以随着所述气缸的伸缩沿竖直方向上下移动;转轴,所述转轴的一端固定设置在所述旋转电机的输出端;真空腔室,固定在所述支撑装置上,所述转轴穿过所述真空腔室的底部;旋转托盘,固定在所述转轴的另一端,且位于所述真空腔室内;控制单元,与所述气缸、所述旋转电机电连接。
根据一些实施例,所述旋转托盘包括:M个样品平台,M个所述样品平台均匀设置在所述旋转托盘上;其中,M≥2,且为正整数。
根据一些实施例,所述真空腔室包括:N个镀膜工艺腔室,均匀设置在所述真空腔室内;其中,N为正整数,且M=N;
根据一些实施例,所述样品传输装置包括:焊接波纹管,设置在所述真空腔室与所述旋转电机之间,且所述中心转轴穿过所述焊接波纹管。
根据一些实施例,所述样品传输装置包括:第一密封装置,所述第一密封装置设置在所述焊接波纹管的上端;第二密封装置,所述第二密封装置设置在所述焊接波纹管的下端。
根据一些实施例,所述第一密封装置为无氧铜垫。
根据一些实施例,所述第二密封装置为磁流体密封件和橡胶密封圈。
根据一些实施例,所述支撑装置包括:P个固定支柱,所述固定支柱一端固定在所述底板上,另一端固定在所述真空腔室的下表面;其中,P≥2,且P为正整数。
根据一些实施例,所述样品传输装置还包括:固定块,所述旋转托盘通过所述固定块固定在所述转轴的上端。
根据一些实施例,所述旋转电机为步进电机。
本发明实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:
本发明实施例提供了一种集成镀膜设备的样品传输装置,在所述 样品传输装置中,通过所述支撑装置固定所述真空腔室;通过所述气缸的伸长将所述旋转托盘抬起,为后续的旋转做准备;通过所述旋转电机的旋转带动所述转轴旋转,从而带动所述旋转托盘旋转,实现所述旋转托盘上的样品从一个镀膜工艺腔室转移到其他镀膜工艺腔室。所述控制装置控制所述气缸的伸缩,控制所述旋转电机的转动,通过所述控制装置实现样品传输的自动化,达到操作简便的技术效果。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
图1为本发明实施例中一种集成镀膜设备的样品传输装置的结构示意图。
图2为图1所示的集成镀膜设备的样品传输装置的真空腔室的结构示意图。
附图标记说明:真空腔室1;旋转托盘2;镀膜工艺腔室3;固定支柱4;底座5;转轴6;焊接波纹管7;磁流体密封件8;旋转电机9;气缸10;固定块11;样品平台12;硅晶圆片13。
具体实施方式
本发明实施例提供了一种集成镀膜设备的样品传输装置,解决了现有技术中集成镀膜设备中样片的传输依靠机械手,结构复杂、价格昂贵、传输速度慢的技术问题,达到了样片在集成镀膜装备中快速、稳定传输,结构简单,成本低的技术效果。
本发明实施例中的技术方案,总体结构如下:
一种集成镀膜设备的样品传输装置,所述样品传输装置包括:支撑装置,所述支撑装置包括底座;气缸,固定在所述底座上;旋转电机,固定在所述气缸上,以随着所述气缸的伸缩沿竖直方向上下移动;转轴, 所述转轴的一端固定设置在所述旋转电机的输出端;真空腔室,固定在所述支撑装置上,所述转轴穿过所述真空腔室的底部;旋转托盘,固定在所述转轴的另一端,且位于所述真空腔室内;控制单元,与所述气缸、所述旋转电机电连接。通过上述集成镀膜设备的样品传输装置解决了现有技术中集成镀膜设备中样片的传输依靠机械手,结构复杂、价格昂贵、传输速度慢的技术问题,达到了样片在集成镀膜装备中快速、稳定传输,结构简单,成本低的技术效果。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一个示例实施例提供了一种集成镀膜设备的样品传输装置,请参考附图1和2,所述样品传输装置包括:底座5、固定支柱4、气缸10、旋转电机9、转轴6、真空腔室1、旋转托盘2、控制单元(未示出)。
固定支柱4的数量可以为P个,P个固定支柱4的一端固定在所述底座5上,另一端固定在所述真空腔室1的下表面;其中,P≥2,且P为正整数。底座5和固定支柱4构成支撑真空腔室1的支撑装置。
所述底座5可以为一厚钢板,所述底座5通过P个所述固定支柱4悬挂式地固定在所述真空腔室1的底部。P个所述固定支柱4以所述转轴6为中心,均匀设置在所述转轴6的四周,且所述固定支柱4的数量大于等于2,达到将所述底板5稳定地固定到所述真空腔室1上的技术效果。
气缸10固定在所述底座5上。旋转电机9固定在所述气缸10的上端,以随着所述气缸10的伸缩沿竖直方向上下移动。所述旋转电机9可以为步进电机。
可选地,所述气缸10的上端可设置一固定架,所述旋转电机9可通过所述固定架连接到所述汽缸的移动端。
具体而言,所述气缸10的一端固定在所述底座5上,另一端固定 在所述固定架。所述气缸10与所述控制单元连接,所述控制单元控制所述气缸10的启停以及伸缩长度,所述气缸10每次的伸缩长度一定,即所述气缸10每次伸长的长度一定,且等于每次缩回的长度。随着所述气缸10的伸缩,所述固定架在竖直方向上向上或向下移动一定长度。
转轴6的一端固定设置在所述旋转电机9的输出端,另一端固定在所述旋转托盘2的底部的中心。随着所述旋转电机9的旋转,所述转轴6旋转,从而带动所述旋转托盘2在所述真空腔室1内转动。所述旋转电机9为步进电机,即每次旋转的角度相同。且所述旋转电机9的旋转方向可变,可正向转动也可反向转动。
旋转托盘2固定在所述转轴6的另一端设置,且位于在所述真空腔室1内。
进一步的,所述旋转托盘2可以包括:M个样品平台12,M个所述样品平台12均匀设置在所述旋转托盘2上;其中,M≥2,且位正整数。
具体而言,所述旋转托盘2设置在所述真空腔室1内,所述旋转托盘2上均匀设置M个所述样品平台12,且M个所述样品平台12关于所述转轴6中心对称。在对硅晶圆片13进行镀膜时,所述硅晶圆片13放置在所述样品平台12上。
所述底座5固定在所述真空腔室1的底部,所述转轴6穿过所述真空腔室1的底部。
所述真空腔室1可包括:N个镀膜工艺腔室3,均匀设置在所述真空腔室1内;其中,N为正整数,且M=N。
具体而言,所述硅晶圆片13在所述真空腔室1内进行镀膜操作,所述真空腔室1的底部中心设置一圆形通孔,所述转轴6穿过所述通孔固定在所述旋转托盘2的底部中心。所述真空腔室1内设置N个所述镀膜工艺腔室3,各个所述镀膜工艺腔室3内可进行不同的镀膜工艺,所述硅晶圆片13可在不同的所述镀膜工艺腔室3内完成不同的镀膜工艺。以所述通孔为圆心,N个所述镀膜工艺腔室3均匀设置在所述真空腔室1内。所述镀膜工艺腔室3的数量与所述样品平台12的数量相等,且位置 一一对应,也就是说,一个所述样品平台12对应一个所述镀膜工艺腔室3,M的取值范围为[2,10],本实施例中M=N=4。
控制单元,与所述气缸10、所述旋转电机9电连接。
具体而言,所述控制单元控制所述气缸10的升降,控制所述旋转电机9的旋转方向和旋转角度。
所述控制单元内设置有所述旋转电机9每次旋转的固定角度,所述旋转角度由所述镀膜工艺腔室3的数量而定。所述旋转的角度等于相邻两个所述镀膜工艺腔室3之间的夹角,即等于360/M。所述旋转电机9每旋转一次,将所述样品平台12从一个所述镀膜工艺腔室3转换到相邻的所述镀膜工艺腔室3。例如,当M=4时,所述旋转电机9每次旋转的角度为90°;当M=6时,所述旋转电机9每次旋转的角度为60°,以此类推。
所述控制单元内存诸有所述气缸10每次伸长或缩回的预定长度,所述控制单元上还设置有“顺时针旋转”、“逆时针旋转”按键。当用户按一下“逆时针旋转”按钮,首先,所述控制单元控制所述气缸10伸长所述预定长度,将所述旋转电机9、所述转轴6、所述旋转托盘2均向上抬起所述一定长度,从而将所述旋转托盘2从所述镀膜工艺腔室3内抬起;然后,所述控制单元控制所述旋转电机9逆时针旋转所述固定角度,所述旋转托盘2也跟随着逆时针旋转所述固定角度;最后,所述控制单元控制所述气缸10缩回所述预定长度,所述旋转托盘2下落所述预定长度,所述旋转托盘2的样品平台12落入所述镀膜工艺腔室3内,达到了将所述样品平台12从一个所述镀膜工艺腔室3转换到逆时针方向相邻的所述镀膜工艺腔室3的技术效果。
当用户按一下“顺时针旋转”按钮,首先,所述控制单元控制所述气缸10伸长所述预定长度,将所述旋转电机9、所述转轴6、所述旋转托盘2均向上抬起所述预定长度,从而将所述旋转托盘2从所述镀膜工艺腔室3内抬起;然后,所述控制单元控制所述旋转电机9顺时针旋转所述固定角度,所述旋转托盘2也跟随着顺时针旋转所述固定角度;最后,所述控制单元控制所述气缸10缩回所述预定长度,所述旋转托盘 2下落所述预定长度,所述旋转托盘2的样品平台12落入所述镀膜工艺腔室3内,达到了将所述样品平台12从一个所述镀膜工艺腔室3转换到顺时针方向相邻的所述镀膜工艺腔室3的技术效果。
进一步的,所述样品传输装置可以包括:焊接波纹管7,设置在所述真空腔室1与所述旋转电机9之间,且所述转轴6穿过所述焊接波纹管7;第一密封装置,所述第一密封装置设置在所述焊接波纹管7的上端;
第二密封装置,所述第二密封装置设置在所述焊接波纹管7的下端。
所述第一密封装置可以为无氧铜垫。所述第二密封装置可以为磁流体密封装置8和橡胶密封圈。
具体而言,所述焊接波纹管7的上端可设置无氧铜垫,用于密封所述真空腔室1下表面与所述转轴6之间的空隙。所述焊接波纹管7的下端可设置磁流体密封件8和橡胶密封圈,用于密封所述转轴6与所述焊接波纹管之间的缝隙。所述焊接波纹管7的伸缩性强。
当所述旋转电机9不需要旋转时,所述气缸10处于收缩状态,所述焊接波纹管7处于微压缩状态,在所述焊接波纹管7弹力的作用下,所述第一密封装置被压在所述真空腔室1的下表面,所述第二密封装置被压在所述旋转轴6的下端;在所述旋转电机9旋转时,所述气缸10伸长,所述焊接波纹管7处于强压缩状态,对所述第一密封装置、所述第二密封装置的压力更大,增强对所述真空腔室1的密封,达到保持所述真空腔室1内部的真空度的技术效果。所述转轴6在旋转状态下,所述真空腔室1内的真空度保持在[1×10-3Torr,1×10-7Torr]之间。
进一步的,所述样品传输装置还可以包括:固定块11,所述旋转托盘2通过所述固定块11固定在所述转轴6的上端。
具体而言,所述固定块11为一圆形钢板,所述固定块11的直径小于等于所述转轴6的直径,所述固定块11通过多个螺栓固定到所述转轴6的上端,达到将所述旋转托盘2牢固固定到所述转轴6上的技术效果。
本实施例中,所述硅晶圆片13在各所述镀膜工艺腔室3中转换时, 不需要经过机械手臂,只需要所述转轴6旋转即可实现,将所述硅晶圆片13从一个镀膜工艺腔室3转换到相邻的镀膜工艺腔室3只需3-4秒,在传输过程中所述真空腔室1的真空度可达2×10-7Torr。不但传输速度快,传输稳定,还保证了所述真空腔室1的真空度,且操作简便。
通过本实施例中的集成镀膜设备的样品传输装置,解决了现有技术中集成镀膜设备中样片的传输依靠机械手,结构复杂、价格昂贵、传输速度慢的技术问题,达到了样片在集成镀膜设备中的快速、稳定传输,结构简单,成本低的到技术效果。
本申请的集成镀膜设备的样品传输装置的操作过程如下。请参考附图1,当用户按一下“逆时针旋转”按钮,首先,所述控制单元控制所述气缸10伸长预定长度,将所述旋转电机9、所述转轴6、所述旋转托盘2均向上抬起所述预定长度,从而将所述旋转托盘2从所述镀膜工艺腔室3内抬起;然后,所述控制单元控制所述旋转电机9逆时针旋转固定角度,所述旋转托盘2也跟随着逆时针旋转所述固定角度;最后,所述控制单元控制所述气缸10缩回所述预定长度,所述旋转托盘下落所述预定长度,所述旋转托盘2的样品平台12落入所述镀膜工艺腔室3内,达到了将所述样品平台12从一个所述镀膜工艺腔室3转换到逆时针方向相邻的所述镀膜工艺腔室3的技术效果。
当用户需要所述转轴6逆时针旋转两次时,按两下“逆时针旋转”按钮即可,以次类推,当用户需要所述转轴6逆时针旋转几次时,按几下“逆时针旋转”按钮即可。
当用户按一下“顺时针旋转”按钮,首先,所述控制单元控制所述气缸10伸长预定长度,将所述旋转电机9、所述转轴6、所述旋转托盘2均向上抬起所述预定长度,从而将所述旋转托盘2从所述镀膜工艺腔室3内抬起;然后,所述控制单元控制所述旋转电机9顺时针旋转固定角度,所述旋转托盘2也跟随着顺时针旋转所述固定角度;最后,所述控制单元控制所述气缸10缩回所述预定长度,所述旋转托盘2下落所述预定长度,所述旋转托盘2的样品平台12落入所述镀膜工艺腔室3内,达到了将所述样品平台12从一个所述镀膜工艺腔室3转换到顺时针方向相邻的所述镀膜工艺腔室3的技术效果。
当用户需要所述转轴6顺时针旋转两次时,按两下“顺时针旋转”按钮即可,以次类推,当用户需要所述转轴6顺时针旋转几次时,按几下“顺时针旋转”按钮即可。
通过本实施例中的集成镀膜设备的样品传输装置的操作过程,解决了现有技术中集成镀膜设备中样片的传输依靠机械手,结构复杂、价格昂贵、传输速度慢的技术问题,达到了样片在集成镀膜设备中的快速、稳定传输,结构简单,成本低的到技术效果。
本发明实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:
本发明实施例提供了一种集成镀膜设备的样品传输装置,其中,通过支撑装置将所述样品传输装置固定在地面上;通过所述气缸的伸缩达到将所述旋转托盘抬起,为后续的旋转做准备。通过所述旋转电机的旋转带动所述转轴旋转,从而带动所述旋转托盘旋转,实现所述旋转托盘上的样品从一个镀膜工艺腔室转移到其他镀膜工艺腔室。所述控制装置控制所述气缸的伸缩,控制所述旋转电机的转动,通过所述控制装置实现样品传输的自动化,达到操作简便的技术效果。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (9)

  1. 一种集成镀膜设备的样品传输装置,包括:
    支撑装置,所述支撑装置包括底座;
    气缸,固定在所述底座上;
    旋转电机,固定在所述气缸上,以随着所述气缸的伸缩沿竖直方向上下移动;
    转轴,所述转轴的一端固定设置在所述旋转电机的输出端;
    真空腔室,固定在所述支撑装置上,所述转轴穿过所述真空腔室的底部;
    旋转托盘,固定在所述转轴的另一端,且位于所述真空腔室内;以及
    控制单元,与所述气缸、所述旋转电机电连接。
  2. 如权利要求1所述的样品传输装置,其中,所述旋转托盘包括:M个样品平台,均匀设置在所述旋转托盘上;
    其中,M≥2,且为正整数。
  3. 如权利要求2所述的样品传输装置,其中,所述真空腔室包括:N个镀膜工艺腔室,均匀设置在所述真空腔室内;
    其中,N为正整数,且M=N。
  4. 如权利要求1所述的样品传输装置,其中,所述样品传输装置包括:
    焊接波纹管,设置在所述真空腔室与所述旋转电机之间,且所述转轴穿过所述焊接波纹管;
    第一密封装置,所述第一密封装置设置在所述焊接波纹管的上端;以及
    第二密封装置,所述第二密封装置设置在所述焊接波纹管的下端。
  5. 如权利要求4所述的样品传输装置,其中,所述第一密封装置为无氧铜垫。
  6. 如权利要求4所述的样品传输装置,其中,所述第二密封装置为磁流体密封件和橡胶密封圈。
  7. 如权利要求1所述的样品传输装置,其中,所述支撑装置包括:P个固定支柱,所述固定支柱一端固定在所述底座上,另一端固 定在所述真空腔室的下表面;
    其中,P≥2,且P为正整数。
  8. 如权利要求1所述的样品传输装置,其中,所述样品传输装置还包括:
    固定块,所述旋转托盘通过所述固定块固定在所述转轴的上端。
  9. 如权利要求1所述的样品传输装置,其中,所述旋转电机为步进电机。
PCT/CN2020/083865 2020-03-26 2020-04-09 一种集成镀膜设备的样品传输装置 WO2021189533A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010222105.7 2020-03-26
CN202010222105.7A CN113445015A (zh) 2020-03-26 2020-03-26 一种集成镀膜设备的样品传输装置

Publications (1)

Publication Number Publication Date
WO2021189533A1 true WO2021189533A1 (zh) 2021-09-30

Family

ID=77807023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083865 WO2021189533A1 (zh) 2020-03-26 2020-04-09 一种集成镀膜设备的样品传输装置

Country Status (2)

Country Link
CN (1) CN113445015A (zh)
WO (1) WO2021189533A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962081A (zh) * 2021-02-01 2021-06-15 肇庆宏旺金属实业有限公司 一种钢板连续镀膜生产线及镀膜工艺
CN114875374A (zh) * 2022-05-27 2022-08-09 安徽越好电子装备有限公司 中转室、磁控溅射镀膜系统和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006564A (zh) * 2005-02-28 2007-07-25 三菱重工业株式会社 等离子体处理装置
US20080295962A1 (en) * 2007-05-30 2008-12-04 Rick Endo Method and system for mask handling in high productivity chamber
CN101826446A (zh) * 2009-03-04 2010-09-08 东京毅力科创株式会社 成膜装置和成膜方法
US20150024147A1 (en) * 2013-07-19 2015-01-22 Samsung Display Co., Ltd. Plasma-enhanced chemical vapor deposition apparatus and method of manufacturing display apparatus using the same
US20160233100A1 (en) * 2015-02-07 2016-08-11 Applied Materials, Inc. Selective deposition utilizing masks and directional plasma treatment
CN105990083A (zh) * 2014-11-28 2016-10-05 株式会社日立国际电气 衬底处理装置及半导体器件的制造方法
CN108257890A (zh) * 2016-12-28 2018-07-06 株式会社斯库林集团 基板处理装置、基板处理方法和基板处理系统
CN108315721A (zh) * 2018-04-24 2018-07-24 武汉华星光电技术有限公司 成膜机台及成膜制程调整基板偏转量的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330379A (ja) * 1995-05-31 1996-12-13 Toshiba Corp ウェハ搬送制御方法
JP2007211286A (ja) * 2006-02-09 2007-08-23 Seiko Epson Corp 成膜装置の制御方法及び成膜装置
JP5993154B2 (ja) * 2012-01-20 2016-09-14 東京エレクトロン株式会社 パーティクル低減方法
CN202968685U (zh) * 2012-11-29 2013-06-05 肇庆市科润真空设备有限公司 旋转式真空镀膜装置
CN102936100B (zh) * 2012-11-29 2014-12-17 肇庆市科润真空设备有限公司 旋转式连续镀膜装置及其方法
KR20160087953A (ko) * 2015-01-14 2016-07-25 에스엔유 프리시젼 주식회사 유기발광소자 제조용 클러스터 타입 증착장치
CN105118801B (zh) * 2015-09-25 2017-11-07 西安立芯光电科技有限公司 半导体芯片的表面处理系统
CN108179396B (zh) * 2018-01-09 2020-07-28 温州职业技术学院 环形循环连续式真空镀膜装置
CN108277471A (zh) * 2018-01-09 2018-07-13 温州职业技术学院 立式周向循环连续式气相沉积设备
CN207958501U (zh) * 2018-01-09 2018-10-12 温州职业技术学院 立式周向循环连续式类金刚石涂层设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006564A (zh) * 2005-02-28 2007-07-25 三菱重工业株式会社 等离子体处理装置
US20080295962A1 (en) * 2007-05-30 2008-12-04 Rick Endo Method and system for mask handling in high productivity chamber
CN101826446A (zh) * 2009-03-04 2010-09-08 东京毅力科创株式会社 成膜装置和成膜方法
US20150024147A1 (en) * 2013-07-19 2015-01-22 Samsung Display Co., Ltd. Plasma-enhanced chemical vapor deposition apparatus and method of manufacturing display apparatus using the same
CN105990083A (zh) * 2014-11-28 2016-10-05 株式会社日立国际电气 衬底处理装置及半导体器件的制造方法
US20160233100A1 (en) * 2015-02-07 2016-08-11 Applied Materials, Inc. Selective deposition utilizing masks and directional plasma treatment
CN108257890A (zh) * 2016-12-28 2018-07-06 株式会社斯库林集团 基板处理装置、基板处理方法和基板处理系统
CN108315721A (zh) * 2018-04-24 2018-07-24 武汉华星光电技术有限公司 成膜机台及成膜制程调整基板偏转量的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962081A (zh) * 2021-02-01 2021-06-15 肇庆宏旺金属实业有限公司 一种钢板连续镀膜生产线及镀膜工艺
CN114875374A (zh) * 2022-05-27 2022-08-09 安徽越好电子装备有限公司 中转室、磁控溅射镀膜系统和方法

Also Published As

Publication number Publication date
CN113445015A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2021189533A1 (zh) 一种集成镀膜设备的样品传输装置
KR20010089428A (ko) 신속한 웨이퍼 교체 처리 챔버
JP7462370B2 (ja) イオンビームエッチング機及びその昇降回転テーブル装置
CN110828359B (zh) 预对准装置及硅片预对准方法
CN109594119A (zh) 一种电致化学抛光装置及其工作方法
CN2762970Y (zh) 一种传输机器人
JPH0851138A (ja) 多重基板伝達装置
KR101044586B1 (ko) 기판 반송 방법
CN111999991A (zh) 一种接近接触式光刻真空曝光工件台装置
CN102709476A (zh) 基片旋涂装置和基片处理方法
US8528438B2 (en) Robotic arm for transporting substrate in ultrahigh vacuum
CN117080156B (zh) 一种用于晶圆检测的载台装置
JP2010076073A (ja) 回転駆動装置
KR20090001050A (ko) 기판 반송 로봇
JP2601179Y2 (ja) 基板保持装置
CN209045524U (zh) 一种晶圆升降装置
WO2018043976A1 (en) Substrate processing apparatus
CN112201606B (zh) 具有柔性连轴器的晶圆对中机构、传输装置及减薄设备
CN112542414B (zh) 一种基板夹持承载台
CN210287480U (zh) 一种高通量分立掩膜装置
JPH06124995A (ja) ウェハー搬送ロボット
CN202454613U (zh) 有机薄膜晶体管基片旋涂设备
WO2023123602A1 (zh) 一种旋转式晶圆交互系统
KR100630955B1 (ko) 기판 반송장치
JP7335103B2 (ja) 産業用ロボットおよび産業用ロボットの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927491

Country of ref document: EP

Kind code of ref document: A1