WO2021187445A1 - 防眩膜付き透明基材 - Google Patents

防眩膜付き透明基材 Download PDF

Info

Publication number
WO2021187445A1
WO2021187445A1 PCT/JP2021/010462 JP2021010462W WO2021187445A1 WO 2021187445 A1 WO2021187445 A1 WO 2021187445A1 JP 2021010462 W JP2021010462 W JP 2021010462W WO 2021187445 A1 WO2021187445 A1 WO 2021187445A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiglare film
base material
transparent base
particles
film according
Prior art date
Application number
PCT/JP2021/010462
Other languages
English (en)
French (fr)
Inventor
信樹 岩井
神谷 和孝
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to CN202180021081.1A priority Critical patent/CN115280191A/zh
Priority to US17/906,245 priority patent/US20230126941A1/en
Priority to JP2022508359A priority patent/JPWO2021187445A1/ja
Priority to EP21770861.9A priority patent/EP4122699A4/en
Priority to KR1020227035645A priority patent/KR20220151695A/ko
Publication of WO2021187445A1 publication Critical patent/WO2021187445A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/068Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/145Variation across the thickness of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent

Definitions

  • the present invention relates to a transparent base material with an antiglare film, particularly a transparent base material with an antiglare film suitable for use in combination with an image display device.
  • a transparent base material such as a glass plate arranged on the image display side of an image display device such as a liquid crystal display device may be provided with an antiglare function in order to suppress specular reflection of ambient light.
  • the anti-glare function can be expressed by minute irregularities.
  • the anti-glare function is evaluated to be superior as the value is smaller using the gloss as an index.
  • the diffusion of light caused by minute irregularities is evaluated by haze. A small haze is desirable so as not to impair the sharpness of the displayed image.
  • Patent Document 1 discloses a base material with an antiglare film in which an antiglare film containing two types of particles and a silica-based matrix is provided on a glass plate.
  • the antiglare film contains the first particle and the second particle, and the mass ratio of the second particle to the first particle is in the range of 0.5 to 4 (paragraph 0038).
  • the average aspect ratio of the first particles is 10 to 80, which is typically plate-like, and the average aspect ratio of the second particles is 1 to 5, which is typically spherical.
  • the presence of the second particles inhibits the specific orientation of the first particles, and the first particles are randomly oriented with respect to the main surface of the glass plate (Fig. 2).
  • Patent Document 1 The technology of Patent Document 1 is premised on being used not only for an image display device but also for a solar cell module or the like. Therefore, it is not optimized for the combination with the image display device. In view of such circumstances, it is an object of the present invention to provide a new transparent substrate with an antiglare film suitable for use on the image display side of an image display device.
  • the present invention A transparent base material with an antiglare film
  • a transparent base material and an antiglare film provided on the transparent base material are provided.
  • the antiglare film contains particles and a matrix.
  • the matrix provides a transparent substrate with an antiglare film, which comprises silicon oxide.
  • the first embodiment of the present invention is A transparent base material with an antiglare film
  • a transparent base material and an antiglare film provided on the transparent base material are provided.
  • the antiglare film contains particles and a matrix.
  • the particles are substantially composed of flat particles.
  • the flat particles have a thickness in the range of 0.3 nm to 3 nm and an average diameter of the main surface in the range of 10 nm to 1000 nm.
  • the matrix contains silicon oxide
  • the transparent base material with an antiglare film has a main surface of the flat particles arranged substantially parallel to the main surface of the transparent base material.
  • a second embodiment of the present invention A transparent base material with an antiglare film
  • a transparent base material and an antiglare film provided on the transparent base material are provided.
  • the antiglare film contains particles and a matrix.
  • the particles are substantially composed of phyllosilicate mineral particles.
  • the matrix contains silicon oxide
  • the phyllosilicate mineral contained in the phyllosilicate mineral particles is A transparent base material with an antiglare film, wherein the crystal plane oriented along the main surface of the transparent base material is the (001) plane.
  • a third embodiment of the present invention A transparent base material with an antiglare film
  • a transparent base material and an antiglare film provided on the transparent base material are provided.
  • the antiglare film contains particles and a matrix.
  • the matrix is a transparent substrate with an antiglare film containing silicon oxide and nitrogen atoms.
  • a transparent base material with an antiglare film A transparent base material and an antiglare film provided on the transparent base material are provided.
  • the antiglare film contains particles and a matrix.
  • the matrix contains silicon oxide
  • the antiglare film includes a first region in which the particles are stacked in the thickness direction of the film, and a valley-shaped second region surrounding the first region or surrounded by the first region.
  • a transparent substrate with a film A transparent substrate with a film.
  • FIG. 6 is a scanning electron microscope (SEM) photograph of an example of a transparent substrate with an antiglare film according to Example 1 (first and second embodiments). It is an SEM photograph of an example of a transparent base material with an antiglare film according to Example 4 (third embodiment). It is an SEM photograph of an example of a transparent base material with an antiglare film according to Example 5 (third embodiment). 6 is an SEM photograph of an example of a transparent substrate with an antiglare film according to Example 6 (third embodiment).
  • SEM scanning electron microscope
  • Example 3 is an SEM photograph of an example of a transparent substrate with an antiglare film according to Example 7 (third embodiment).
  • 6 is an SEM photograph of an example of a transparent substrate with an antiglare film according to Example 8 (fourth embodiment).
  • 8 is an enlarged SEM photograph of an example of a transparent substrate with an antiglare film according to Example 8 (fourth embodiment).
  • 6 is a laser micrograph of an example of a transparent substrate with an antiglare film according to Example 8 (fourth embodiment).
  • substantially parallel means that the angle formed by the two target surfaces is 30 ° or less, further 20 ° or less, and particularly 10 ° or less.
  • the “main component” means a component having a content of 50% or more, and further 80% or more on a mass basis.
  • substantially composed means that the content rate is 80% or more, further 90% or more, particularly 95% or more on a mass basis.
  • the “main surface” of the base material is the front side and the back side surface excluding the side surface, and more specifically, the surface on which the film is formed.
  • the “main surface” of the flat particle also conforms to this, and refers to a pair of front and back surfaces of the flat particle. The definition of "plateland shape” will be described later with reference to FIG. 7.
  • FIG. 1 shows a cross section of the transparent base material with an antiglare film of the present embodiment.
  • the transparent base material 100 with an antiglare film includes a transparent base material 10 and an antiglare film 20 provided on the transparent base material 10.
  • the antiglare film 20 is directly formed on the main surface 10s of the transparent base material 10, but another film may be interposed between the transparent base material 10 and the antiglare film 20.
  • the antiglare film 20 contains particles 1 and a matrix 2.
  • the antiglare film 20 may contain voids. The voids may be present in the matrix 2 or in contact with the particles 1 and the matrix 2.
  • the particle 1 may be a flat particle.
  • the particles 1 may be substantially composed of flat particles. However, a part of the particles 1 may have a shape other than a flat plate shape, for example, a spherical shape.
  • the shape of the spherical particles, the preferable average particle size, and the material are as described in the column of the third embodiment.
  • the particles 1 may be composed of only flat particles without including spherical particles or the like.
  • FIG. 2 shows an example of particle 1 which is a flat particle.
  • Particle 1 has a pair of main surfaces 1s. The pair of main surfaces 1s are substantially parallel to each other.
  • the main surface 1s can be substantially flat. However, the main surface 1s may have steps or minute irregularities. It should be noted that the particles in which spherical silicon oxide particles are connected do not correspond to flat particles because their outer shape is chain-shaped and not flat.
  • the thickness 1t of the particle 1 corresponds to the distance between the pair of main surfaces 1s, and is in the range of 0.3 nm to 3 nm.
  • the thickness of 1 t is preferably 0.5 nm or more, further 0.7 nm or more, preferably 2 nm or less, and further 1.5 nm or less.
  • the thickness 1t may be determined by averaging the maximum thickness and the minimum thickness.
  • the average diameter d of the main surface 1s of the particle 1 is in the range of 10 nm to 1000 nm.
  • the average diameter d of the main surface is preferably 20 nm or more, more preferably 30 nm or more.
  • the average diameter d is preferably 700 nm or less, more preferably 500 nm or less.
  • the average diameter d of the main surface 1s can be determined by averaging the minimum and maximum values of the diameter passing through the center of gravity of the main surface 1s.
  • the average aspect ratio of particle 1 can be calculated by d / t.
  • the average aspect ratio is not particularly limited, but is preferably 30 or more, more preferably 50 or more.
  • the average aspect ratio may be 1000 or less, further 700 or less.
  • Particle 1 may be a phyllosilicate mineral particle.
  • Phyllosilicate minerals The phyllosilicate minerals contained in the particles are also called layered silicate minerals. Examples of the phyllosilicate minerals include kaolin minerals such as kaolinite, dikite, nacrite, and haloysite, serpentine such as chrysotile, lizardite, and amesite, and equihedral smectites such as montmorillonite and bidelite, saponite, hectrite, and soconite.
  • kaolin minerals such as kaolinite, dikite, nacrite, and haloysite
  • serpentine such as chrysotile, lizardite, and amesite
  • equihedral smectites such as montmorillonite and bidelite, saponite, hectrite, and soconite.
  • 2 octahedral mica such as 3 octahedral smectite, muscovite, paragonite, illite, ceradite, etc., 3 octahedral mica such as phlogopite, anite, lepidrite, etc., 2 octahedral brittle mica such as margarite, clintite, 3 octahedral brittle mica such as anandite, 2 octahedral chlorite such as donbasite, 2.3 octahedral chlorite such as cucumberite and sudowite, 3 octahedral chlorite such as clinocloa and chamosite, pyrophyll Examples include light, talc, 2 octahedral vermiculite, and 3 octahedral vermiculite.
  • the phyllosilicate mineral particles preferably contain minerals belonging to smectite, kaolin, or talc.
  • minerals belonging to smectite montmorillonite is suitable.
  • montmorillonite belongs to the monoclinic system
  • kaolin belongs to the triclinic system
  • talc belongs to the monoclinic system or the triclinic system.
  • the main surface 1s of the particles 1 is arranged substantially parallel to the main surface 10s of the transparent base material 10. If 80% or more, more 85% or more, particularly 90% or more of the particles 1 are arranged substantially in parallel on the basis of the number of particles, even if the rest are not arranged in substantially parallel, they are substantially parallel as a whole. It shall be deemed to be placed. In determining this, it is desirable to confirm the arrangement of 30, preferably 50, flat particles.
  • the crystal plane of the phyllosilicate mineral oriented along the main surface 10s of the transparent base material 10 may be the (001) plane. Such plane orientation can be confirmed by X-ray diffraction analysis.
  • the matrix 2 contains silicon oxide, which is an oxide of Si, and preferably contains silicon oxide as a main component.
  • the matrix 2 containing silicon oxide as a main component is suitable for lowering the refractive index of the film and suppressing the reflectance of the film.
  • the matrix 2 may contain a component other than silicon oxide, or may contain a component partially containing silicon oxide.
  • the component partially containing silicon oxide includes, for example, a portion composed of a silicon atom and an oxygen atom, and is a component in which an atom other than both atoms, a functional group or the like is bonded to the silicon atom or the oxygen atom in this portion. ..
  • atoms other than silicon atoms and oxygen atoms include nitrogen atoms, carbon atoms, hydrogen atoms, and metal elements described in the next paragraph.
  • the functional group for example, an organic group described as R in the next paragraph can be exemplified. Strictly speaking, such a component is not silicon oxide in that it is not composed only of silicon atoms and oxygen atoms.
  • the silicon oxide portion composed of silicon atoms and oxygen atoms as "silicon oxide", which is consistent with the conventional practice in the art.
  • the silicon oxide portion is also treated as silicon oxide.
  • the atomic ratio of silicon atom to oxygen atom in silicon oxide does not have to be stoichiometric (1: 2).
  • Matrix 2 may contain a metal oxide other than silicon oxide, specifically, a metal oxide component or a metal oxide portion containing other than silicon.
  • the metal oxide that can be contained in the matrix 2 is not particularly limited, and is, for example, an oxide of at least one metal element selected from the group consisting of Ti, Zr, Ta, Nb, Nd, La, Ce and Sn.
  • the matrix 2 may contain an inorganic compound component other than an oxide, for example, a nitride, a carbide, a halide, or the like, or may contain an organic compound component.
  • Metal oxides such as silicon oxide can be formed from hydrolyzable organometallic compounds.
  • the hydrolyzable silicon compound include the compound represented by the formula (1).
  • R n SiY 4-n (1)
  • R is an organic group containing at least one selected from an alkyl group, a vinyl group, an epoxy group, a styryl group, a methacryloyl group and an acryloyl group.
  • Y is a hydrolyzable organic group or a halogen atom which is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group and an amino group.
  • the halogen atom is preferably Cl.
  • n is an integer from 0 to 3, preferably 0 or 1.
  • an alkyl group for example, an alkyl group having 1 to 3 carbon atoms, particularly a methyl group is preferable.
  • an alkoxy group for example, an alkoxy group having 1 to 4 carbon atoms, particularly a methoxy group and an ethoxy group are preferable.
  • Two or more compounds represented by the above formula may be used in combination. Examples of such a combination include a combination of a tetraalkoxysilane in which n is 0 and a monoalkyltrialkoxysilane in which n is 1.
  • the compound represented by the formula (1) forms a network structure in which silicon atoms are bonded to each other via oxygen atoms after hydrolysis and polycondensation.
  • the organic group represented by R is contained in a state of being directly bonded to a silicon atom.
  • the ratio of the particles 1 to the matrix 2 in the antiglare film 20 is, for example, 0.05 to 10, further 0.05 to 7, and preferably 0.05 to 5 on a mass basis.
  • the volume ratio of the voids in the antiglare film 20 is not particularly limited, but may be 10% or more, and further 10 to 20%. However, the voids do not have to exist.
  • the film thickness of the antiglare film 20 is not particularly limited, but from the viewpoint that antiglare properties can be easily obtained, for example, 50 nm to 1000 nm, further 100 nm to 700 nm, and particularly 100 nm to 500 nm are appropriate.
  • the film thickness of the antiglare film 20 is equal to or less than the above upper limit. In thick films, the flat particles are more likely to be randomly oriented.
  • the surface 20s of the antiglare film 20 has minute irregularities. However, the unevenness of the surface 20s is suppressed by the orientation of the particles 1 along the main surface 10s of the transparent base material 10.
  • the first preferable surface roughness of the surface 20s is 20 nm to 120 nm, further 30 nm to 110 nm, preferably 40 nm to 100 nm, expressed by Ra.
  • the second preferable surface roughness is 80 nm to 500 nm, further 100 nm to 400 nm, and preferably 100 nm to 300 nm, which is indicated by Ra.
  • Ra is the arithmetic mean roughness of the roughness curve defined by JIS B0601: 2001. When the particles are randomly oriented as in Patent Document 1, Ra becomes larger than the above range.
  • the Rsm of the surface 20s is more than 0 ⁇ m and 35 ⁇ m or less, further 1 ⁇ m to 30 ⁇ m, preferably 2 ⁇ m to 20 ⁇ m.
  • Rsm is the average length of the roughness curve elements defined by JIS B0601: 2001. Rsm that is not too large is suitable for suppressing so-called sparkle.
  • Sparkle is a bright spot that is generated depending on the relationship between the minute unevenness for imparting the antiglare function and the pixel size of the image display device. Sparkle is observed as irregular light fluctuations as the relative position of the image display device and the user's viewpoint fluctuates. Sparkle has become apparent with the increase in definition of image display devices.
  • the antiglare film 20 in which Ra and Rsm are in the above ranges is particularly suitable for reducing gloss and haze in a well-balanced manner while suppressing sparkle.
  • a resin plate or a glass plate is suitable for the transparent base material 10.
  • the glass constituting the glass plate may be general-purpose soda lime glass or other glass such as borosilicate glass, aluminosilicate glass, and non-alkali glass.
  • the glass plate may be formed by a known manufacturing method such as a float method or a down draw method. According to these manufacturing methods, a glass plate having a smooth surface can be obtained.
  • the glass plate may have irregularities on the main surface, and may be, for example, template glass.
  • the template glass can be molded by a manufacturing method called a rollout method. The template glass produced by this method usually has periodic irregularities in one direction along the main surface of the glass plate.
  • an acrylic resin plate represented by a polymethyl methacrylate plate, a polycarbonate plate, or the like is suitable.
  • the resin plate may have a smooth main surface or an uneven main surface.
  • the resin plate may be surface-treated in order to impart unevenness. Examples of the surface treatment include corona discharge treatment, plasma treatment, chromic acid treatment (wet), flame treatment, hot air treatment, oxidation treatment such as ozone / ultraviolet irradiation treatment, sandblasting, and solvent treatment.
  • the thickness of the transparent base material 10 is not particularly limited, but it is better to be thin for weight reduction.
  • the thickness of the transparent substrate 10 is, for example, 0.4 mm to 5 mm, 0.3 mm to 5 mm, and further 0.5 to 3 mm, 0.4 to 3 mm, particularly 0.6 to 2.5 mm and 0.5 to 2. It is 5.5 mm.
  • Ra of the main surface 10s of the transparent base material 10 may be 10 nm or less, 5 nm or less, further 2 nm or less, particularly 1 nm or less. In this case, the antiglare effect of the antiglare film 20 is remarkable.
  • the transparent base material 10 may be a flat plate, but may be a curved plate.
  • the transparent base material 10 may be bent so that the entire transparent base material 10 has a constant curvature, or may be locally bent.
  • the main surface 10s of the transparent base material 10 may be configured by, for example, a plurality of planes connected to each other by a curved surface.
  • the radius of curvature of the transparent base material 10 is, for example, 5000 mm or less. This radius of curvature is, for example, 10 mm or more, but may be even smaller, especially in a locally bent portion, and is, for example, 1 mm or more.
  • the antiglare film 20 may be formed so as to cover the entire surface of the main surface 10s of the transparent base material 10, or may be formed so as to cover a part of the surface 10s. In the latter case, the antiglare film 20 may be formed on at least a portion of the main surface 10s that covers the image display surface of the image display device.
  • the glass plate is preferably tempered glass.
  • strengthening treatment for glass plates air cooling strengthening and chemical strengthening, and chemical strengthening treatment is suitable for thin glass plates.
  • the glass plate is immersed in a molten salt containing alkali metal ions at a temperature below the strain point of the glass constituting the glass plate, and the ionic radii of the alkali metal ions (for example, sodium ions) on the surface layer of the glass plate are relative to each other. It exchanges with a large alkali metal ion (for example, potassium ion) to generate compressive stress on the surface layer of the glass plate.
  • the chemical strengthening treatment on the glass plate may be carried out before or after forming the antiglare film.
  • the air cooling strengthening treatment can also be carried out by a known method.
  • the 60 ° mirror glossiness of the transparent substrate 10 is, for example, 60 to 130%, further 70 to 120%, particularly 80 to 110% and 85 to 100%.
  • % may be omitted from the gloss value.
  • the haze rate of the transparent substrate may be, for example, 20% or less, further 15% or less, particularly 10% or less, and in some cases 1 to 8%, further 1 to 6%, particularly 1 to 5%.
  • the relational expression (a) is established between the 60 ° mirror glossiness G and the haze rate H (%), and it is more preferable that the relational expression (b) is established. It is more preferable that it holds.
  • G and H may satisfy the relational expression (d). H ⁇ -0.2G + 25 (a) H ⁇ -0.2G + 24.5 (b) H ⁇ -0.2G + 24 (c) H ⁇ -0.15G + 18 (d)
  • Gloss can be measured according to "Method 3 (60 degree mirror gloss)" of "Mirror gloss measurement method” of JIS Z8741-1997, and haze can be measured according to JIS K7136: 2000.
  • FIG. 3 shows a cross section of an example of the transparent base material with an antiglare film of the present embodiment.
  • FIG. 4 shows a cross section of another example of the transparent base material with an antiglare film of the present embodiment.
  • the transparent base materials 200 and 300 with an antiglare film include a transparent base material 10 and antiglare films 30 and 40 provided on the transparent base material 10.
  • the antiglare films 30 and 40 are directly formed on the main surface 10s of the transparent base material 10, but another film is interposed between the transparent base material 10 and the antiglare films 30 and 40. It doesn't matter if you have it.
  • the antiglare films 30 and 40 include particles 5 and a matrix 2.
  • the antiglare films 30 and 40 may contain voids. The voids may be present in the matrix 2 or in contact with the particles 5 and the matrix 2.
  • the particles 5 are stacked in the thickness direction of the film in all regions, whereas in the antiglare film 40, the particles 5 are stacked in the same direction as the region 40a in which the particles 5 are stacked in the thickness direction of the film.
  • the region 40b is not a region where the particles 5 are not stacked in the same direction or where the particles 5 do not exist, but a region having a surface 40s which is substantially parallel to the main surface 10s of the transparent base material 10 and the particles 5 are not exposed. It may be.
  • the region 40b may be, for example, a region extending over 0.25 ⁇ m 2 or more, further 0.5 ⁇ m 2 or more, particularly 1 ⁇ m 2 or more.
  • the particles 5 are stacked to a height of 5 times or more, more 7 times or more the average particle size of the particles 5.
  • the shape of the particles 5 is not particularly limited, but is preferably spherical.
  • the particles 5 may be substantially composed of spherical particles. However, a part of the particles 5 may have a shape other than a spherical shape, for example, a flat plate shape.
  • the particles 5 may be composed of only spherical particles.
  • the spherical particles refer to particles in which the ratio of the longest diameter to the shortest diameter passing through the center of gravity is 1 or more and 1.8 or less, particularly 1 or more and 1.5 or less, and the surface is formed of a curved surface.
  • the average particle size of the spherical particles may be 5 nm to 200 nm, further 10 nm to 100 nm, and particularly 20 nm to 60 nm.
  • the average particle size of the spherical particles is determined by the average of the individual particle sizes, specifically, the average value of the shortest diameter and the longest diameter described above, and the measurement is based on an SEM image of 30 particles, preferably 30 particles. It is desirable to carry out for 50 particles.
  • the preferable ranges of the thickness t of the flat particle, the average diameter d of the main surface, and the aspect ratio d / t, which may be contained in a part of the particles 5, are as described in the columns of the first and second embodiments. Is.
  • the material constituting the particles 5 is not particularly limited, but preferably contains a metal oxide, particularly silicon oxide.
  • the metal oxide may contain, for example, an oxide of at least one metal element selected from the group consisting of Ti, Zr, Ta, Nb, Nd, La, Ce and Sn.
  • the particles 5 can be supplied from the dispersion liquid of the particles 5 to the antiglare films 30 and 40.
  • a dispersion liquid in which the particles 5 are individually dispersed independently it is preferable to use a dispersion liquid in which the particles 5 are individually dispersed independently.
  • the use of a dispersion in which the particles are not agglomerated as compared with the dispersion in which the particles are linked in a chain is suitable for realizing a desirable agglomerated state of the particles in the antiglare films 30 and 40. This is because the particles 5 that are independent of each other easily move with the volatilization of a liquid such as a dispersion medium, and tend to be in an aggregated state suitable for achieving good properties in the membrane.
  • the matrix 2 contains nitrogen atoms.
  • the nitrogen atom is preferably contained as part of an organic compound component or a functional group, particularly a nitrogen atom-containing functional group.
  • the nitrogen atom-containing functional group is preferably an amino group.
  • the nitrogen atom can be a part of a highly reactive functional group, especially in a raw material for forming a matrix containing a metal oxide such as silicon oxide as a main component.
  • Such a functional group can promote the aggregation of the particles 5 at the time of film formation, and can play a role of making the aggregated state of the particles 5 a desirable form.
  • Metal oxides such as silicon oxide can be formed from hydrolyzable organometallic compounds.
  • hydrolyzable silicon compound examples include the compound represented by the formula (1).
  • Nitrogen atoms can also be supplied to the antiglare films 30 and 40 from a compound containing a silicon atom, specifically an amino group-containing silane coupling agent.
  • This compound can be represented by, for example, the formula (2).
  • A is an organic group containing an amino group.
  • the amino group may be any of a primary, secondary and tertiary amino group.
  • A is, for example, an amino group-containing hydrocarbon, preferably an alkyl group or alkenyl group in which some atoms are substituted by an amino group, and more preferably an alkyl group or alkenyl group in which a hydrogen atom is substituted by an amino group, particularly. It is preferably an alkyl group or an alkenyl group having an amino group at the terminal.
  • the alkyl group and the alkenyl group may be linear or have a branch.
  • a specific example of A is an ⁇ -aminoalkyl group having an amino group at the end of the alkyl group, and N- ⁇ '-(aminoalkyl) - ⁇ in which the hydrogen atom of the amino group is replaced with another aminoalkyl group.
  • A preferably contains a carbon atom as an atom connected to the silicon atom.
  • a hydrocarbon group typified by an alkyl group and an alkenyl group may intervene between the nitrogen atom and the silicon atom.
  • the nitrogen atom may be bonded to the silicon atom constituting silicon oxide via a hydrocarbon group.
  • Particularly preferred A is a ⁇ -aminopropyl group or an N- (2-aminoethyl) -3-aminopropyl group.
  • B may be the organic group described above as R, or may be an alkyl group or an alkenyl group.
  • the alkyl group or alkenyl group may have a branch, and a part of its hydrogen atom may be substituted.
  • B is preferably an unsubstituted alkyl group, more preferably a linear alkyl group, and the carbon chain thereof has 1 to 3 carbon atoms, and more preferably a methyl group.
  • Y is as described above.
  • k is an integer of 1 to 3
  • m is an integer of 0 to 2
  • k + m is an integer of 1 to 3.
  • k is 1 and m is 0 or 1.
  • the compound represented by the formula (2) forms a network structure in which silicon atoms are bonded to each other via oxygen atoms after hydrolysis and polycondensation.
  • the compound of formula (2) forms part of the network structure.
  • the organic group represented by A is contained in a state of being directly bonded to a silicon atom.
  • the organic group represented by A is considered to attract particles and promote the aggregation of particles in the process of volatilizing the solvent of the coating liquid.
  • the ratio of the particles 5 to the matrix 2 in the antiglare films 30 and 40, the film thicknesses of the antiglare films 30 and 40, Ra on the surfaces 30s and 40s, and Rsm on the surfaces 30s and 40s are not particularly limited, but the first and second It may be the range described in the embodiment of.
  • the particles 5 aggregate and locally overlap to increase the height of the film at that site, while the particles 5 do not overlap and the film is locally thinned at another site. ..
  • the difference between the highest portion and the lowest portion of the antiglare films 30 and 40 measured from the main surface 10s of the transparent base material 10 may be three times or more, further four times or more the average particle size of the particles 5.
  • the particles are not stacked in the thickness direction of the film, or the particles themselves are not present.
  • the film 40 may be composed of only the matrix 2.
  • the ratio of the region 40b to the area of the region where the antiglare film 40 is formed may be, for example, 5 to 90%, further 10 to 70%, and particularly 20 to 50%.
  • the transparent base material 10 is as described above, including suitable materials and embodiments thereof.
  • the antiglare films 30 and 40 may be formed so as to cover the entire surface of the main surface 10s of the transparent base material 10, or may be formed so as to cover a part of the main surface 10s. In the latter case, the antiglare films 30 and 40 may be formed on at least a portion of the main surface 10s that covers the image display surface of the image display device.
  • the 60 ° mirror glossiness of the transparent substrate 10 is, for example, 60 to 130%, further 70 to 120%, particularly 80 to 110% and 85 to 100%. These mirror glossiness are values measured for the surface 10s on which the antiglare film 20 is formed.
  • the haze rate of the transparent substrate may be, for example, 20% or less, further 15% or less, particularly 10% or less, and in some cases 1 to 8%, further 1 to 6%, particularly 1 to 5%.
  • the relational expression (a) is established between the 60 ° mirror glossiness G and the haze rate H (%), and it is more preferable that the relational expression (b) is established.
  • H ⁇ -0.2G + 25 (a) H ⁇ -0.2G + 24.5 (b)
  • the transparent substrates 200 and 300 with an anti-fog film may have the following characteristics with respect to the parameters related to the load curve conforming to ISO25178.
  • the load curve is expressed as a percentage by accumulating the frequency at a certain height from the higher side and taking the total number of total height data as 100.
  • the load area ratio at a certain height C is given by Smr (C).
  • the load area ratio that separates the protruding peak portion and the core portion above the height of the core portion is Smr1
  • the load area ratio that separates the protruding valley portion below the height of the core portion and the core portion is Smr2.
  • the surface heights at the load area ratios of 20, 40, 60, and 80% are BH20, BH40, BH60, and BH80.
  • Smr1 may be 1 to 40%, further 3 to 35%, and in some cases 10 to 30%.
  • the BH20 is, for example, 0.04 ⁇ m to 0.5 ⁇ m, further 0.06 ⁇ m to 0.5 ⁇ m, preferably 0.12 ⁇ m to 0.3 ⁇ m.
  • the BH80 is, for example, ⁇ 0.3 ⁇ m to 0 ⁇ m, further ⁇ 0.3 ⁇ m to ⁇ 0.05 ⁇ m, preferably ⁇ 0.25 ⁇ m to ⁇ 0.12 ⁇ m.
  • FIG. 5 shows a cross section of an example of the transparent base material with an antiglare film of the present embodiment.
  • FIG. 6 shows a cross section of another example of the transparent base material with an antiglare film of the present embodiment.
  • the transparent base materials 400 and 500 with an antiglare film include a transparent base material 10 and antiglare films 50 and 60 provided on the transparent base material 10.
  • the antiglare films 50 and 60 are directly formed on the main surface 10s of the transparent base material 10, but another film is interposed between the transparent base material 10 and the antiglare films 50 and 60. It doesn't matter if you have it.
  • the antiglare films 50 and 60 include particles 5 and a matrix 2.
  • the antiglare films 50 and 60 may contain voids. The voids may be present in the matrix 2 or in contact with the particles 5 and the matrix 2.
  • the antiglare films 50 and 60 include first regions 50p and 60p and second regions 50v and 60v.
  • the particles 5 are stacked in the thickness direction of the antiglare films 50 and 60.
  • the second regions 50v and 60v surround the first regions 50p and 60p when the antiglare films 50 and 60 are observed along the thickness direction from the surface side thereof.
  • the second regions 50v and 60v may be surrounded by the first regions 50p and 60p.
  • the first regions 50p and 60p and the second regions 50v and 60v are, for example, intervening between a plurality of regions in which one of the regions exists apart from each other. This structure is sometimes called the sea island structure.
  • the second regions 50v and 60v are valley-shaped regions whose surfaces recede from the surrounding first region. Therefore, the island part of the sea island structure protrudes from the sea part when the island part is the first region 50p and 60p, and is depressed from the sea part when the island part is the second region 50v and 60v.
  • the particles 5 are less stacked than in the first regions 50p and 60p.
  • the second regions 50v and 60v may include a portion 50t in which the particles 5 are stacked (see FIG. 5).
  • the second regions 50v and 60v may include a portion where the particles 5 are not stacked or the particles 5 are absent (see FIGS. 5 and 6).
  • At least a part of the second regions 50v and 60v may be composed of a portion in which the particles 5 are not stacked or the particles 5 are absent.
  • the first regions 50p and 60p may be at least a part thereof, more than 50% or more on a number basis, and in some cases, all of them may be plateau-like regions.
  • L1 is the length of the portion corresponding to 50% of the height H of each convex portion
  • L2 is the portion corresponding to 70%, preferably 75% of the height H.
  • the length As shown in FIG. 7, for one L1, L2 may be divided into two or more portions. In this case, L2 is determined by the total length of two or more portions.
  • the boundaries 50b and 60b between the first regions 50p and 60p and the second regions 50v and 60v can be determined by the average thickness T of the antiglare films 50 and 60 (see FIG. 6).
  • the average thickness T can be measured using a laser microscope as described later.
  • the spacing between the boundaries 50b and 60b determines the width Wp of the first regions 50p and 60p and the width Wv of the second regions 50v and 60v.
  • the width Wp may be 5 ⁇ m or more, further 7.7 ⁇ m or more, preferably 10 ⁇ m or more.
  • the width Wv may be 3.5 ⁇ m or more, 7 ⁇ m or more, preferably 10 ⁇ m or more.
  • the first regions 50p and 60p and the second regions 50v and 60v extend over, for example, 0.25 ⁇ m 2 or more, further 0.5 ⁇ m 2 or more, particularly 1 ⁇ m 2 or more, and in some cases 5 ⁇ m 2 or more, and further 10 ⁇ m 2 or more, respectively. It may be an area.
  • the antiglare films 50 and 60 include first regions 50p and 60p and second regions 50v and 60v.
  • the ratio of the second regions 50v and 60v to the area of the region where the antiglare film 40 is formed may be, for example, 5 to 90%, further 10 to 70%, and particularly 20 to 50%.
  • the antiglare films 50 and 60 may be composed of only the first regions 50p and 60p and the second regions 50v and 60v.
  • the metal oxide such as silicon oxide forming the matrix 2 is preferably formed from a hydrolyzable organometallic compound, particularly a compound represented by the formula (1).
  • the matrix 2 may be substantially composed of silicon oxide.
  • the ratio of the particles 5 to the matrix 2, the film thickness, Ra on the surfaces 50s and 60s, and Rsm on the surfaces 50s and 60s are not particularly limited, but are described in the first and second embodiments. It may be a range.
  • the difference between the highest portion and the lowest portion of the antiglare films 50 and 60 measured from the main surface 10s of the transparent base material 10 may be three times or more, further four times or more the average particle size of the particles 5.
  • the transparent base material 10 is as described above, including suitable materials and embodiments thereof.
  • the 60 ° mirror glossiness of the transparent substrate 10 is, for example, 60 to 130%, further 70 to 120%, particularly 80 to 110% and 85 to 100%. These mirror glossiness are values measured for the surface 10s on which the antiglare film 20 is formed.
  • the haze rate of the transparent substrate may be, for example, 20% or less, further 15% or less, particularly 10% or less, and in some cases 1 to 8%, further 1 to 6%, particularly 1 to 5%.
  • the relational expression (a) is established between the 60 ° mirror glossiness G and the haze rate H (%), and it is more preferable that the relational expression (b) is established. It is more preferable that it holds.
  • G and H may satisfy the relational expression (d). H ⁇ -0.2G + 25 (a) H ⁇ -0.2G + 24.5 (b) H ⁇ -0.2G + 24 (c) H ⁇ -0.15G + 18 (d)
  • Example 1 oriented flat particles
  • the fine particle dispersion was prepared by ultrasonic cleaning.
  • the average diameter of the flat particles contained in the smectite dispersion was 0.05 ⁇ m, and the average thickness was 1 nm.
  • the dispersion medium of the smectite dispersion was water, and the dispersoid content was 1 wt%.
  • a glass plate (100 x 100 mm; float plate glass having a thickness of 3 mm) was immersed in a KOH aqueous solution having a pH of 13 and washed with an ultrasonic cleaner and dried.
  • 3 g of the coating liquid was taken with a dropper and applied by a flow coating method in which the coating liquid was allowed to flow down to the main surface of the glass plate. Then, it was dried in an oven set at 200 ° C. to obtain a transparent substrate with an antiglare film.
  • the 60 ° gloss value measured from the side where the antiglare film was formed using a gloss checker (“Gloss checker IG-320” manufactured by HORIBA, Ltd.) was 100.9, and was a haze meter (“Haze” manufactured by Nippon Denshoku Co., Ltd.).
  • the haze rate measured using the meter NDH-200 ”) was 6.2%.
  • the arithmetic average roughness Ra of the roughness curve measured on the surface of the antiglare film using a laser microscope was 40 nm, and the average length Rsm of the roughness curve elements was 15 ⁇ m.
  • the result of observing the transparent substrate surface with the antiglare film using SEM is shown in FIG.
  • Example 2 oriented flat particles
  • the average particle size of the flat particles contained in the kaolin dispersion was 0.2 ⁇ m, and the average thickness was 1 nm.
  • the dispersion medium of the kaolin dispersion was industrial ethanol (P-7), and the dispersoid content was 10 wt%.
  • Example 2 a transparent substrate with an antiglare film was obtained in the same manner as in Example 1.
  • the transparent substrate with the antiglare film was visually observed, no defects in appearance were confirmed.
  • the 60 ° gloss value was 92.6
  • the haze rate was 4.1%
  • Ra was 60 nm
  • Rsm was 25 ⁇ m.
  • Example 3 Propylene glycol monomethyl ether 1.254 g, propylene glycol 0.45 g, industrial ethanol (P-7) 0.225 g, nitrate solution (60 wt% concentrated nitrate diluted to 1 wt% with propylene glycol monomethyl ether) 0.101 g, Colloidal silica dispersion (Nissan Chemical's "PGM-AC-4130Y” diluted to 10 wt% with propylene glycol monomethyl ether) 0.8 g, tetraethoxysilane 0.125 g, ⁇ -aminopropyltrimethoxysilane (Shin-Etsu Chemical) 0.045 g of "KBM-903" manufactured by Co., Ltd.
  • PGM-AC-4130Y contains spherical silica particles having an average particle diameter of 40 to 50 nm at a solid content concentration of 30 wt%, and the individual particles are dispersed without agglutination.
  • a transparent substrate with an antiglare film was obtained in the same manner as in Example 1.
  • the transparent substrate with the antiglare film was visually observed, no visual defects in appearance were confirmed.
  • the 60 ° gloss value was 99.2
  • the haze rate was 5.5%
  • Ra was 81 nm
  • Rsm was 13.8 ⁇ m.
  • Example 4 to 7 uneven distribution of particles, use of nitrogen atom-containing matrix
  • the coating liquid was Example 3 except that the blending amounts of the nitrate solution, colloidal silica dispersion, tetraethoxysilane (TEOS), and ⁇ -aminopropyltrimethoxysilane (aminosilane) were shown in Table 1.
  • a transparent substrate with an antiglare film was obtained in the same manner as above. When these transparent substrates with antiglare film were visually observed, no visual defects in appearance were confirmed. Further, when the characteristics were measured in the same manner as in Example 1, the 60 ° gloss values were 99.0, 98.2, 110.4, 86.6, respectively, and the haze rate (%) was 4.3, 7. 1, 4.4, 7.1 and Ra (nm) were 92, 80, 92 and 89, respectively, and Rsm ( ⁇ m) was 9.8, 12.0, 17.0 and 13.2, respectively. The results are shown in Table 2 together with the measured values of Examples 1 to 3.
  • a load curve is calculated based on the height data in the observation field acquired by a laser microscope (“LMeye7” manufactured by Lasertec Co., Ltd.), and based on the load curve, the level difference Sk of the core part in the height direction and the core part
  • the surface heights BH20, BH40, BH60, and BH80 at the load area ratio Smr1 that separates the protruding peak portion, the load area ratio Smr2 that separates the core portion and the protruding valley portion, and the load area ratios 20, 40, 60, and 80% were determined. The results are shown in Table 3.
  • Example 8 uneven distribution of particles, existence of first and second regions
  • P-7 industrial ethanol
  • P-7 purified water diluted to 10 wt% with P-7
  • nitric acid solution 60 wt% concentrated nitrate diluted to 1 wt% with P-7)
  • a coating solution was prepared by mixing 0.101 g, 0.150 g of colloidal silica dispersion (“MEK-ST-L” manufactured by Nissan Chemical Industries, Ltd.), and 0.156 g of tetraethoxysilane with a stirrer for 3 hours.
  • MEK-ST-L colloidal silica dispersion
  • MEK-ST-L contains spherical silica particles having an average particle size of 40 to 50 nm at a solid content concentration of 30 wt%, the individual particles are dispersed without agglutination, and the dispersion medium is methyl ethyl ketone.
  • Example 2 After that, a transparent substrate with an antiglare film was obtained in the same manner as in Example 1. When the transparent substrate with the antiglare film was visually observed, no visual defects in appearance were confirmed. Moreover, when the characteristics were measured in the same manner as in Example 1, the 60 ° gloss value was 82.8 and the haze rate was 4.1%. The results of observing the transparent substrate surface with the antiglare film using SEM are shown in FIGS. 13 and 14.
  • the film surface was observed under a microscope using the above-mentioned laser microscope. As a result, three-dimensional image data including height data constituting the shape of the film surface was acquired. At that time, the optical magnification was set to 50 times.
  • the field of view of the acquired image corresponded to a square of 300 ⁇ m ⁇ 300 ⁇ m, and the resolution was 1024 pixels ⁇ 1024 pixels.
  • the micrograph is shown in FIG. In FIG. 15, a valley-shaped depressed second region surrounds a plurality of plateau-shaped protruding first regions.
  • the width of the first region (plateau-like region) and the width of the second region (valley-like region) were obtained as follows. Determine the evaluation target line for evaluating the height data, determine the plateau-like area and valley-like area on the evaluation target line while observing the image data, and measure the width of each plateau-like area and the width of the valley-like area. rice field. If the plateau-like region and the valley-like region cannot be distinguished from the observation of the image data, the cross-sectional height profile of the evaluation target line is acquired, the portion higher than the reference line is the plateau-like region, and the portion lower than the reference line is the valley-like region. I decided to define them as areas and measure their length.
  • the reference line was determined to be the arithmetic mean height of the height data in the range of at least 1/4 of the length direction of the cross-sectional height profile.
  • the reference line determines the average thickness T (see FIG. 7).
  • nine evaluation target lines are defined as straight lines at equal intervals per field of view for microscopic observation, and the obtained width Wp of the first region and width Wv of the second region are arithmetically averaged and measured.
  • the Wp and Wv of the membrane were used. As a result, Wp was 13.7 ⁇ m and Wv was 17.3 ⁇ m.
  • Example 9 uneven distribution of particles, existence of first and second regions
  • 0.158 g of purified water diluted to 10 wt% with P-7 nitric acid solution (60 wt% concentrated nitric acid diluted to 1 wt% with P-7)
  • a coating solution was prepared by mixing 0.101 g, 0.090 g of colloidal silica dispersion (“MEK-ST-L” manufactured by Nissan Chemical Industries, Ltd.), and 0.094 g of tetraethoxysilane with a stirrer for 3 hours.
  • MEK-ST-L colloidal silica dispersion
  • Example 2 After that, a transparent substrate with an antiglare film was obtained in the same manner as in Example 1. When the transparent substrate with the antiglare film was visually observed, no visual defects in appearance were confirmed. Moreover, when the characteristics were measured in the same manner as in Example 1, the 60 ° gloss value was 94.1 and the haze rate was 4.7%. As a result of obtaining the width Wp of the first region and the width Wv of the second region in the same manner as in Example 8, Wp was 9.6 ⁇ m and Wv was 20.3 ⁇ m.
  • Example 11 uneven distribution of particles, existence of first and second regions
  • P-7 industrial ethanol
  • PGM-AC-4130Y Colloidal silica dispersion
  • H ⁇ ⁇ 0.2G + 24 was established between the 60 ° mirror glossiness G and the haze rate H (%).
  • H ⁇ ⁇ 0.15G + 18 was also established.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

画像表示装置の画像表示側への配置に適した防眩膜付き透明基材を提供する。防眩膜付き透明基材100は、透明基材10とその上に設けられた防眩膜20とを備え、防眩膜20は粒子とマトリクス2とを含んでいる。粒子は、例えば、厚みが0.3nm~3nmの範囲にあり、かつ主面の平均径が10nm~1000nmの範囲にある平板状粒子1である。マトリクス2は酸化シリコンを含む。防眩膜20において、平板状粒子1は主面が透明基材10の主面と略平行に配置されていてもよい。

Description

防眩膜付き透明基材
 本発明は、防眩膜付き透明基材、特に画像表示装置と組み合わせて使用することに適した防眩膜付き透明基材に関する。
 液晶表示装置等の画像表示装置の画像表示側に配置されるガラス板等の透明基材には、環境光の鏡面反射を抑制するために防眩(アンチグレア)機能が付与されることがある。防眩機能は微小凹凸により発現させることができる。防眩機能は、グロスを指標としてその値が小さいほど優れていると評価される。一方、微小凹凸により生じる光の拡散はヘイズにより評価される。表示される画像の鮮明さを損なわないためには小さいヘイズが望ましい。
 透明基材上に、表面に微小凹凸を有する膜を設けて防眩機能を付与する技術が知られている。特許文献1には、2種類の粒子とシリカ系マトリクスとを含む防眩膜をガラス板上に設けた防眩膜付き基材が開示されている。防眩膜には、第一粒子及び第二粒子が含まれ、第一粒子に対する第二粒子の質量比は0.5~4の範囲にある(段落0038)。第一粒子の平均アスペクト比は10~80であって典型的には板状であり、第二粒子の平均アスペクト比は1~5であって典型的には球状である。この膜では、第二粒子の存在によって第一粒子の特異的な配向が阻害され、第一粒子はガラス板の主面に対してランダムに配向している(図2)。
特開2017-134094号公報
 特許文献1の技術は、画像表示装置のみならず太陽電池モジュール等に使用することを前提としている。このため、画像表示装置との組み合わせに対して最適化されているわけではない。本発明は、かかる事情に鑑み、画像表示装置の画像表示側における使用に適した新たな防眩膜付き透明基材を提供することを目的とする。
 本発明は、
 防眩膜付き透明基材であって、
 透明基材と、前記透明基材の上に設けられた防眩膜とを備え、
 前記防眩膜は、粒子とマトリクスとを含み、
 前記マトリクスは、酸化シリコンを含む、防眩膜付き透明基材、を提供する。
 本発明の第1の実施形態は、
 防眩膜付き透明基材であって、
 透明基材と、前記透明基材の上に設けられた防眩膜とを備え、
 前記防眩膜は、粒子とマトリクスとを含み、
 前記粒子は、平板状粒子により実質的に構成され、
 前記平板状粒子は、厚みが0.3nm~3nmの範囲にあり、かつ主面の平均径が10nm~1000nmの範囲にあり、
 前記マトリクスは、酸化シリコンを含み、
 前記防眩膜において、前記平板状粒子の主面が前記透明基材の主面と略平行に配置されている、防眩膜付き透明基材、である。
 本発明の第2の実施形態は、
 防眩膜付き透明基材であって、
 透明基材と、前記透明基材の上に設けられた防眩膜とを備え、
 前記防眩膜は、粒子とマトリクスとを含み、
 前記粒子は、フィロケイ酸塩鉱物粒子により実質的に構成され、
 前記マトリクスは、酸化シリコンを含み、
 前記防眩膜において、前記フィロケイ酸塩鉱物粒子に含まれるフィロケイ酸塩鉱物は、
前記透明基材の主面に沿って配向している結晶面が(001)面である、防眩膜付き透明基材、である。
 本発明の第3の実施形態は、
 防眩膜付き透明基材であって、
 透明基材と、前記透明基材の上に設けられた防眩膜とを備え、
 前記防眩膜は、粒子とマトリクスとを含み、
 前記マトリクスは、酸化シリコンと窒素原子とを含む、防眩膜付き透明基材、である。
 本発明の第4の実施形態は、
 防眩膜付き透明基材であって、
 透明基材と、前記透明基材の上に設けられた防眩膜とを備え、
 前記防眩膜は、粒子とマトリクスとを含み、
 前記マトリクスは、酸化シリコンを含み、
 前記防眩膜に、当該膜の厚み方向に前記粒子が積み重なっている第1領域と、前記第1領域を囲む又は前記第1領域により囲まれる谷状の第2領域とが存在する、防眩膜付き透明基材、である。
 本発明によれば、画像表示装置による画像表示の良好な視認に適した防眩膜付き透明基材を提供できる。
本発明の第1及び第2の実施形態による防眩膜付き透明基材の一例の断面図である。 平板状粒子の一例の斜視図である。 本発明の第3の実施形態による防眩膜付き透明基材の一例の断面図である。 本発明の第3の実施形態による防眩膜付き透明基材の一例の断面図である。 本発明の第4の実施形態による防眩膜付き透明基材の一例の断面図である。 本発明の第4の実施形態による防眩膜付き透明基材の一例の断面図である。 本発明の第4の実施形態による防眩膜付き透明基材の膜の凸部の断面を模式的に示す断面図である。 実施例1(第1及び第2の実施形態)による防眩膜付き透明基材の一例の走査型電子顕微鏡(SEM)写真である。 実施例4(第3の実施形態)による防眩膜付き透明基材の一例のSEM写真である。 実施例5(第3の実施形態)による防眩膜付き透明基材の一例のSEM写真である。 実施例6(第3の実施形態)による防眩膜付き透明基材の一例のSEM写真である。 実施例7(第3の実施形態)による防眩膜付き透明基材の一例のSEM写真である。 実施例8(第4の実施形態)による防眩膜付き透明基材の一例のSEM写真である。 実施例8(第4の実施形態)による防眩膜付き透明基材の一例の拡大したSEM写真である。 実施例8(第4の実施形態)による防眩膜付き透明基材の一例のレーザー顕微鏡写真である。
 以下、本発明の各実施形態を説明するが、以下の説明は本発明を特定の実施形態に制限する趣旨ではない。なお、本明細書において、「略平行」とは、対象とする2つの面がなす角度が30°以下、さらには20°以下、特に10°以下であることを意味する。また、「主成分」とは、質量基準で含有率が50%以上、さらには80%以上を占める成分を意味する。また、「実質的に構成されている」とは、質量基準で含有率が80%以上、さらには90%以上、特に95%以上を占めていることを意味する。基材の「主面」は、側面を除く表側及び裏側の面であり、より具体的にはその上に膜が形成される面を指す。平板状粒子の「主面」もこれに準じ、当該平板状粒子の表裏一対の面を指す。「台地状」の定義は、図7を参照しつつ後述する。
[第1及び第2の実施形態]
 図1に本実施形態の防眩膜付き透明基材の断面を示す。防眩膜付き透明基材100は、透明基材10と、透明基材10の上に設けられた防眩膜20とを備えている。図1では、透明基材10の主面10sに防眩膜20が直接形成されているが、透明基材10と防眩膜20との間に別の膜が介在していても構わない。防眩膜20は、粒子1とマトリクス2とを含んでいる。防眩膜20には空隙が含まれていてもよい。空隙は、マトリクス2中に、又は粒子1及びマトリクス2に接するように存在していてもよい。
(粒子)
 粒子1は平板状粒子であってもよい。粒子1は平板状粒子により実質的に構成されていてもよい。ただし、粒子1の一部は、平板状以外の形状、例えば球状の形状を有していてもよい。なお、球状粒子の形状、好ましい平均粒径及び材料については、第3の実施形態の欄において述べるとおりである。球状粒子等を含まず、粒子1は平板状粒子のみにより構成されていてもかまわない。図2に、平板状粒子である粒子1の一例を示す。粒子1は一対の主面1sを有する。一対の主面1sは互いに略平行である。主面1sは実質的に平坦であり得る。ただし、主面1sには段差や微小な凹凸が存在していてもよい。なお、球状の酸化シリコン粒子が連なった粒子は、その外形が鎖状であって平板状ではなく、平板状粒子には該当しない。
 粒子1の厚み1tは、一対の主面1sの間の距離に相当し、0.3nm~3nmの範囲にある。厚み1tは、好ましくは0.5nm以上、さらに0.7nm以上であり、好ましくは2nm以下、さらに1.5nm以下である。部位により厚み1tに変動がある場合は、最大厚みと最小厚みとの平均により厚み1tを定めればよい。
 粒子1の主面1sの平均径dは、10nm~1000nmの範囲にある。主面の平均径dは、20nm以上、さらに30nm以上が好ましい。また、平均径dは、700nm以下、さらに500nm以下が好ましい。主面1sの平均径dは、主面1sの重心を通過する径の最小値と最大値との平均により定めることができる。
 粒子1の平均アスペクト比はd/tにより算出できる。平均アスペクト比は、特に制限されないが、30以上、さらに50以上が好ましい。平均アスペクト比は、1000以下、さらに700以下であってもよい。
 粒子1は、フィロケイ酸塩(phyllosilicate)鉱物粒子であってもよい。フィロケイ酸塩鉱物粒子に含まれるフィロケイ酸塩鉱物は、層状ケイ酸塩鉱物とも呼ばれる。フィロケイ酸塩鉱物としては、例えばカオリナイト、ディッカイト、ナクライト、ハロイサイト等のカオリン鉱物、クリソタイル、リザーダイト、アメサイト等のサーペンティン、モンモリロナイト、バイデライト等の2八面体型スメクタイト、サポナイト、ヘクトライト、ソーコナイト等の3八面体型スメクタイト、白雲母、パラゴナイト、イライト、セラドナイト等の2八面体型雲母、金雲母、アナイト、レピドライト等の3八面体型雲母、マーガライト等の2八面体型脆雲母、クリントナイト、アナンダイト等の3八面体型脆雲母、ドンバサイト等の2八面体型クロライト、クッケアイト、スドーアイト等の2・3八面体型クロライト、クリノクロア、シャモサイト等の3八面体型クロライト、パイロフィライト、タルク、2八面体型バーミキュライト、3八面体型バーミキュライトを挙げることができる。フィロケイ酸塩鉱物粒子は、スメクタイト、カオリン、又はタルクに属する鉱物を含むことが好ましい。スメクタイトに属する鉱物としては、モンモリロナイトが好適である。なお、モンモリロナイトは単斜晶系に属し、カオリンは三斜晶系に属し、タルクは単斜晶系又は三斜晶系に属する。
 防眩膜10において、粒子1は、主面1sが透明基材10の主面10sと略平行に配置されている。粒子1は、個数基準でその80%以上、さらには85%以上、特に90%以上が略平行に配置されていれば、その残りが略平行に配置されていなくても、全体として略平行に配置されているとみなすものとする。これを判断する場合には、30個、好ましくは50個の平板状粒子の配置を確認することが望ましい。
 粒子1がフィロケイ酸塩鉱物粒子である場合、透明基材10の主面10sに沿って配向しているフィロケイ酸塩鉱物の結晶面は(001)面であってもよい。このような面配向は、X線回折分析により確認できる。
(マトリクス)
 マトリクス2は、Siの酸化物である酸化シリコンを含み、酸化シリコンを主成分とすることが好ましい。酸化シリコンを主成分とするマトリクス2は、膜の屈折率を低下させ、膜の反射率を抑制することに適している。マトリクス2は、酸化シリコン以外の成分を含んでいてもよく、酸化シリコンを部分的に含む成分を含んでいてもよい。
 酸化シリコンを部分的に含む成分は、例えば、ケイ素原子及び酸素原子により構成された部分を含み、この部分のケイ素原子又は酸素原子に、両原子以外の原子、官能基その他が結合した成分である。ケイ素原子及び酸素原子以外の原子としては、例えば、窒素原子、炭素原子、水素原子、次段落に記述する金属元素を例示できる。官能基としては、例えば次段落にRとして記述する有機基を例示できる。このような成分は、ケイ素原子及び酸素原子のみから構成されていない点で、厳密には酸化シリコンではない。しかし、マトリクス2の特性を記述する上では、ケイ素原子及び酸素原子により構成されている酸化シリコン部分も「酸化シリコン」として取り扱うことが適当であり、当該分野の慣用にも一致する。本明細書では、酸化シリコン部分も酸化シリコンとして取り扱うこととする。以上の説明からも明らかなとおり、酸化シリコンにおけるシリコン原子と酸素原子との原子比は化学量論的(1:2)でなくてもよい。
 マトリクス2は、酸化シリコン以外の金属酸化物、具体的にはケイ素以外を含む金属酸化物成分又は金属酸化物部分を含み得る。マトリクス2が含み得る金属酸化物は、特に制限されないが、例えば、Ti、Zr、Ta、Nb、Nd、La、Ce及びSnからなる群より選ばれる少なくとも1種の金属元素の酸化物である。マトリクス2は、酸化物以外の無機化合物成分、例えば、窒化物、炭化物、ハロゲン化物等を含んでいてもよく、有機化合物成分を含んでいてもよい。
 酸化シリコン等の金属酸化物は、加水分解可能な有機金属化合物から形成することができる。加水分解可能なシリコン化合物としては、式(1)で示される化合物を挙げることができる。
 RnSiY4-n (1)
 Rは、アルキル基、ビニル基、エポキシ基、スチリル基、メタクリロイル基及びアクリロイル基から選ばれる少なくとも1種を含む有機基である。Yは、アルコキシ基、アセトキシ基、アルケニルオキシ基及びアミノ基から選ばれる少なくとも1種である加水分解可能な有機基、又はハロゲン原子である。ハロゲン原子は、好ましくはClである。nは、0から3までの整数であり、好ましくは0又は1である。
 Rとしては、アルキル基、例えば炭素数1~3のアルキル基、特にメチル基が好適である。Yとしては、アルコキシ基、例えば炭素数1~4のアルコキシ基、特にメトキシ基及びエトキシ基が好適である。上記の式で示される化合物を2種以上組み合わせて用いてもよい。このような組み合わせとしては、例えばnが0であるテトラアルコキシシランと、nが1であるモノアルキルトリアルコキシシランとの併用が挙げられる。
 式(1)で示される化合物は、加水分解及び重縮合の後、シリコン原子が酸素原子を介して互いに結合したネットワーク構造を形成する。この構造において、Rで示される有機基は、シリコン原子に直接結合された状態で含まれる。
(防眩膜)
 防眩膜20におけるマトリクス2に対する粒子1の比は、質量基準で、例えば0.05~10、さらに0.05~7であり、好ましくは0.05~5である。防眩膜20における空隙の体積比率は、特に制限されないが、10%以上、さらに10~20%であってよい。ただし、空隙は存在しなくても構わない。
 防眩膜20の膜厚は、特に制限されないが、防眩性が適切に得られやすい等の観点からは、例えば50nm~1000nm、さらに100nm~700nm、特に100nm~500nmが適切である。平板状粒子の主面を基材に略平行となるように配向させるためには、防眩膜20の膜厚を上述の上限以下とすることが好ましい。厚い膜では、平板状粒子がランダムに配向する傾向が強くなる。
 防眩膜20の表面20sには微小な凹凸が存在することが好ましい。ただし、表面20sの凹凸は、透明基材10の主面10sに沿った粒子1の配向によってその発達が抑制されている。表面20sの第一の好ましい表面粗さは、Raにより表示して、20nm~120nm、さらに30nm~110nm、好ましくは40nm~100nmである。なお、第二の好ましい表面粗さは、Raにより表示して、80nm~500nm、さらに100nm~400nm、好ましくは100nm~300nmである。Raは、JIS B0601:2001により定められた粗さ曲線の算術平均粗さである。特許文献1のように粒子がランダムに配向していると、Raは上述の範囲よりも大きくなる。
 表面20sのRsmは、0μmを超え35μm以下、さら1μm~30μm、好ましくは2μm~20μmである。Rsmは、JIS B0601:2001により定められた粗さ曲線要素の平均長さである。大きすぎないRsmは、いわゆるスパークルの抑制に好適である。
 スパークルは、防眩機能を付与するための微小凹凸と画像表示装置の画素サイズとの関係に依存して発生する輝点である。スパークルは、画像表示装置とユーザの視点との相対的な位置の変動に伴って不規則な光のゆらぎとして観察される。スパークルは、画像表示装置の高精細化に伴って顕在化してきている。Ra及びRsmが上述の範囲にある防眩膜20は、スパークルを抑制しながら、グロス及びヘイズをバランスよく低下させることに特に適している。
(透明基材)
 透明基材10は、樹脂板又はガラス板が適している。ガラス板を構成するガラスは、汎用のソーダライムガラスであっても、ホウケイ酸ガラス、アルミノシリケートガラス、無アルカリガラス等その他のガラスであっても構わない。ガラス板は、フロート法、ダウンドロー法等の公知の製法により成形したものであってもよい。これらの製法によると平滑な表面を有するガラス板を得ることができる。ガラス板は、主面に凹凸を有していてもよく、例えば型板ガラスであってもよい。型板ガラスは、ロールアウト法と呼ばれる製法により成形することができる。この製法による型板ガラスは、通常、ガラス板の主面に沿った一方向について周期的な凹凸を有する。
 樹脂板としては、ポリメチルメタクリレート板に代表されるアクリル樹脂板、ポリカーボネート板等が適している。ガラス板と同様、樹脂板も、平滑な主面を有していても凹凸が存在する主面を有していてもよい。凹凸を付与するために、樹脂板には表面処理を施してもよい。表面処理としては、コロナ放電処理、プラズマ処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理等の酸化処理、サンドブラスト、溶剤処理等を挙げることができる。
 透明基材10の厚さは、特に制限されないが、軽量化のためには薄いほうがよい。透明基材10の厚さは、例えば0.4mm~5mm、0.3mm~5mm、さらには0.5~3mm、0.4~3mm、特に0.6~2.5mm、0.5~2.5mmである。透明基材10の主面10sのRaは、10nm以下、5nm以下、さらに2nm以下、特に1nm以下であってもよい。この場合は、防眩膜20による防眩効果が顕著に現れる。
 透明基材10は、通常、平板であってよいが、曲板であってもよい。特に、組み合わせるべき画像表示装置の画像表示面が曲面等の非平面である場合、透明基材10はそれに適合する非平面形状の主面を有することが好ましい。この場合、透明基材10は、その全体が一定の曲率を有するように曲げられていてもよく、局部的に曲げられていてもよい。透明基材10の主面10sは、例えば複数の平面が曲面で互いに接続されて構成されていてもよい。透明基材10の曲率半径は、例えば5000mm以下である。この曲率半径は、例えば10mm以上であるが、特に局部的に曲げられている部位ではさらに小さくてもよく、例えば1mm以上である。
 防眩膜20は、透明基材10の主面10sの全面を覆うように形成されていてもよく、表面10sの一部を覆うように形成されていてもよい。後者の場合、防眩膜20は、主面10sのうち、少なくとも画像表示装置の画像表示面を覆う部分に形成するとよい。
 透明基材10がガラス板である場合、ガラス板は強化ガラスであることが好ましい。ガラス板の強化処理には、風冷強化と化学強化とがあり、薄いガラス板には化学強化処理が適している。化学強化処理では、ガラス板を構成するガラスの歪点以下の温度でアルカリ金属イオンを含む溶融塩にガラス板を浸漬し、ガラス板の表層のアルカリ金属イオン(例えばナトリウムイオン)をイオン半径が相対的に大きいアルカリ金属イオン(例えばカリウムイオン)と交換し、ガラス板の表層に圧縮応力を生じさせる。ガラス板に対する化学強化処理は、防眩膜を形成する前後のいずれに実施してもよい。風冷強化処理も、公知の手法により実施することができる。
(光学特性)
 グロスは、鏡面光沢度により評価することができる。透明基材10の60°鏡面光沢度は、例えば60~130%、さらに70~120%、特に80~110%、85~100%である。なお、以降、グロスの値から「%」を省略することがある。これらの鏡面光沢度は、防眩膜20を形成した面10sについて測定された値である。透明基材のヘイズ率は、例えば20%以下、さらに15%以下、特に10%以下であり、場合によっては1~8%、さらに1~6%、特に1~5%であってもよい。
 60°鏡面光沢度Gとヘイズ率H(%)との間には、関係式(a)が成立することが好ましく、関係式(b)が成立することがさらに好ましく、関係式(c)が成立することがさらに好ましい。G及びHは関係式(d)を満たすものであってもよい。
 H≦-0.2G+25   (a)
 H≦-0.2G+24.5 (b)
 H≦-0.2G+24   (c)
 H≦-0.15G+18  (d)
 なお、グロスはJIS Z8741-1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に従って、ヘイズはJIS K7136:2000に従ってそれぞれ測定することができる。
[第3の実施形態]
 図3に本実施形態の防眩膜付き透明基材の一例の断面を示す。図4に本実施形態の防眩膜付き透明基材の別の一例の断面を示す。防眩膜付き透明基材200及び300は、透明基材10と、透明基材10の上に設けられた防眩膜30及び40とを備えている。図3及び4では、透明基材10の主面10sに防眩膜30及び40が直接形成されているが、透明基材10と防眩膜30及び40との間に別の膜が介在していても構わない。防眩膜30及び40は、粒子5とマトリクス2とを含んでいる。防眩膜30及び40には空隙が含まれていてもよい。空隙は、マトリクス2中に、又は粒子5及びマトリクス2に接するように存在していてもよい。
 防眩膜30ではすべての領域において膜の厚み方向に粒子5が積み重なっているのに対し、防眩膜40では膜の厚み方向に粒子5が積み重なっている領域40aと、粒子5が同方向に積み重なっていないか又は粒子5が存在しない領域40bとが存在する。領域40bは、粒子5が同方向に積み重なっていないか又は粒子5が存在しない領域ではなく、透明基材10の主面10sに略平行であって粒子5が露出していない表面40sを有する領域であってもよい。領域40bは、例えば0.25μm2以上、さらに0.5μm2以上、特に1μm2以上にわたって広がる領域であってもよい。なお、防曇膜30及び40の領域40aの少なくとも一部において、粒子5は、粒子5の平均粒径の5倍以上、さらには7倍以上の高さにまで積み重なっている。
(粒子)
 粒子5の形状は、特に制限されないが、球状であることが好ましい。粒子5は球状粒子により実質的に構成されていてもよい。ただし、粒子5の一部は、球状以外の形状、例えば平板状の形状を有していてもよい。粒子5は球状粒子のみにより構成されていても構わない。ここで、球状粒子とは、重心を通過する最短径に対する最長径の比が1以上1.8以下、特に1以上1.5以下であって、表面が曲面により構成されている粒子をいう。球状粒子の平均粒径は、5nm~200nm、さらに10nm~100nm、特に20nm~60nmであってもよい。球状粒子の平均粒径は、個々の粒径、具体的には上述の最短径と最長径との平均値、の平均により定まるが、その測定は、SEM像に基づいて、30個、好ましくは50個の粒子を対象として実施することが望ましい。
 粒子5の一部に含まれていてもよい平板状粒子の厚みt、主面の平均径d、及びアスペクト比d/tの好ましい範囲は、第1及び第2実施形態の欄において述べたとおりである。
 粒子5を構成する材料は、特に制限されないが、金属酸化物、特に酸化シリコンを含むことが好ましい。ただし、金属酸化物は、例えば、Ti、Zr、Ta、Nb、Nd、La、Ce及びSnからなる群より選ばれる少なくとも1種の金属元素の酸化物を含んでいてもよい。
 粒子5は、粒子5の分散液から防眩膜30及び40へと供給することができる。この場合は、粒子5が個々に独立して分散している分散液を用いることが好ましい。粒子が鎖状に連なっている分散液と比較して、粒子が凝集していない分散液の使用は、防眩膜30及び40における粒子の望ましい凝集状態の実現に適している。互いに独立した粒子5は、分散媒等の液体の揮発に伴って移動しやすく、膜中において良好な特性の達成に適した凝集状態となりやすいためである。
(マトリクス)
 マトリクス2は、第1及び第2の実施形態で述べたとおりである。ただし、第3の実施形態では、マトリクス2が窒素原子を含むことが好ましい。窒素原子は、有機化合物成分又は官能基、特に窒素原子含有官能基の一部として含まれていることが好ましい。窒素原子含有官能基は、好ましくはアミノ基である。窒素原子は、特に酸化シリコン等の金属酸化物を主成分とするマトリクスを形成するための原料において反応性が高い官能基の一部になりうる。このような官能基は、成膜の際に粒子5の凝集を促進し、粒子5の凝集状態を望ましい形態とする役割を奏しうる。
 酸化シリコン等の金属酸化物は、加水分解可能な有機金属化合物から形成することができる。加水分解可能なシリコン化合物としては、式(1)で示した化合物を挙げることができる。
 窒素原子も、ケイ素原子を含む化合物、具体的にはアミノ基含有シランカップリング剤から防眩膜30及び40に供給することができる。この化合物は、例えば、式(2)により示すことができる。
 AkmSiY4-k-m (2)
 Aは、アミノ基を含有する有機基である。アミノ基は、一級、二級及び三級アミノ基のいずれであってもよい。Aは、例えばアミノ基含有炭化水素であり、好ましくはアミノ基により一部の原子が置換されたアルキル基又はアルケニル基、さらに好ましくはアミノ基により水素原子が置換されたアルキル基又はアルケニル基、特に好ましくは末端にアミノ基を有するアルキル基又はアルケニル基である。アルキル基及びアルケニル基は、直鎖であっても分岐を有していても構わない。好ましいAの具体例は、アルキル基の末端にアミノ基を有するω-アミノアルキル基、及びそのアミノ基の水素原子が別のアミノアルキル基に置換されたN-ω’-(アミノアルキル)-ω-アミノアルキル基である。Aは、ケイ素原子に接続する原子として炭素原子を含むことが好ましい。この場合、窒素原子とケイ素原子との間には、アルキル基及びアルケニル基に代表される炭化水素基が介在しうる。言い換えると、窒素原子は、炭化水素基を介して、酸化シリコンを構成するケイ素原子と結合していてもよい。特に好ましいAは、γ-アミノプロピル基、或いはN-(2-アミノエチル)-3-アミノプロピル基である。
 Bは、Rとして上述した有機基であってもよく、アルキル基又はアルケニル基であってもよい。アルキル基又はアルケニル基は、分岐を有してもよく、その水素原子の一部が置換されていてもよい。Bは、好ましくは無置換のアルキル基であり、より好ましくは直鎖アルキル基であり、その炭素鎖の炭素数は1~3であり、さらに好ましくはメチル基である。Yは上述したとおりである。kは1~3の整数であり、mは0~2の整数であり、k+mは1~3の整数である。kは1、mは0又は1である。なお、Aがγ-アミノプロピル基である場合はk=1、m=0が好ましく、N-(2-アミノエチル)-3-アミノプロピル基である場合はk=1、m=0又は1が好ましい。
 式(2)で示される化合物は、加水分解及び重縮合の後、シリコン原子が酸素原子を介して互いに結合したネットワーク構造を形成する。式(1)で示される化合物と共に用いた場合、式(2)で示される化合物はネットワーク構造の一部を形成する。この構造において、Aで示される有機基は、シリコン原子に直接結合された状態で含まれる。
 Aで示される有機基は、コーティング液の溶媒が揮発する過程において、粒子を引き寄せて粒子の凝集を促進すると考えられる。
(防眩膜)
 防眩膜30及び40におけるマトリクス2に対する粒子5の比、防眩膜30及び40の膜厚、表面30s及び40sのRa、表面30s及び40sのRsmは、特に限定されないが、第1及び第2の実施形態で述べた範囲であってもよい。
 防眩膜30及び40においては、粒子5が凝集し、局所的に重なり合ってその部位で膜の高さを増す一方、別の部位では粒子5が重なり合わず膜が局所的に薄くなっている。透明基材10の主面10sから測定した防眩膜30及び40の最高部と最低部との差分は、粒子5の平均粒径の3倍以上、さらに4倍以上であってもよい。
 防眩膜40の領域40bでは、粒子が膜の厚み方向に積み重なっていないか、若しくは粒子自体が存在しない。後者の場合、領域40bでは、膜40はマトリクス2のみで構成されていてもよい。防眩膜40が形成された領域の面積に占める領域40bの比率は、例えば5~90%、さらに10~70%、特に20~50%であってもよい。
(透明基材)
 透明基材10は、その好適な材料、態様を含め、上述したとおりである。
 防眩膜30及び40は、透明基材10の主面10sの全面を覆うように形成されていてもよく、主面10sの一部を覆うように形成されていてもよい。後者の場合、防眩膜30及び40は、主面10sのうち、少なくとも画像表示装置の画像表示面を覆う部分に形成するとよい。
(光学特性)
 グロスは、鏡面光沢度により評価することができる。透明基材10の60°鏡面光沢度は、例えば60~130%、さらに70~120%、特に80~110%、85~100%である。これらの鏡面光沢度は、防眩膜20を形成した面10sについて測定された値である。透明基材のヘイズ率は、例えば20%以下、さらに15%以下、特に10%以下であり、場合によっては1~8%、さらに1~6%、特に1~5%であってもよい。
 60°鏡面光沢度Gとヘイズ率H(%)との間には、関係式(a)が成立することが好ましく、関係式(b)が成立することがさらに好ましい。
 H≦-0.2G+25   (a)
 H≦-0.2G+24.5 (b)
 グロス及びヘイズの測定について参照される日本産業規格の番号は上述したとおりである。
(負荷曲線に係るパラメータ)
 防曇膜付き透明基材200及び300は、ISO25178に準拠した負荷曲線に係るパラメータに関し、以下の特徴を有し得る。なお、ISO25178に規定されているとおり、負荷曲線は、ある高さにおける頻度を高い側から累積し、全高さデータの総数を百として百分率で表したものである。負荷曲線に基づき、ある高さCにおける負荷面積率はSmr(C)で与えられる。ある高さ2点におけるSmrの値の差が40%になる直線のうち最も傾きが小さくなる直線を等価直線として、等価直線が負荷面積率0%及び100%時における高さの差がコア部のレベル差Skである。コア部の高さ以上の突出山部とコア部を分ける負荷面積率がSmr1、逆にコア部の高さ以下の突出谷部とコア部を分ける負荷面積率がSmr2である。負荷面積率20、40、60、80%における表面高さがBH20、BH40、BH60、BH80である。
 Smr1は、1~40%、さらに3~35%、場合によっては10~30%であってもよい。BH20は、例えば0.04μm~0.5μm、さらに0.06μm~0.5μm、好ましくは0.12μm~0.3μmである。BH80は、例えば-0.3μm~0μm、さらに-0.3μm~-0.05μm、好ましくは-0.25μm~-0.12μmである。
[第4の実施形態]
 図5に本実施形態の防眩膜付き透明基材の一例の断面を示す。図6に本実施形態の防眩膜付き透明基材の別の一例の断面を示す。防眩膜付き透明基材400及び500は、透明基材10と、透明基材10の上に設けられた防眩膜50及び60とを備えている。図5及び6では、透明基材10の主面10sに防眩膜50及び60が直接形成されているが、透明基材10と防眩膜50及び60との間に別の膜が介在していても構わない。防眩膜50及び60は、粒子5とマトリクス2とを含んでいる。防眩膜50及び60には空隙が含まれていてもよい。空隙は、マトリクス2中に、又は粒子5及びマトリクス2に接するように存在していてもよい。
 防眩膜50及び60には、第1領域50p及び60pと第2領域50v及び60vとが存在する。第1領域50p及び60pでは、防眩膜50及び60の厚み方向に粒子5が積み重なっている。第2領域50v及び60vは、防眩膜50及び60をその表面側から厚さ方向に沿って観察すると、第1領域50p及び60pを囲んでいる。ただし、第2領域50v及び60vは、第1領域50p及び60pにより囲まれていてもよい。第1領域50p及び60pと第2領域50v及び60vとは、例えば、いずれか一方の領域が、互いに離間して存在する他方の複数の領域の間に介在する。この構造は海島構造と呼ばれることがある。第2領域50v及び60vは、その表面が周囲の第1領域から後退した谷状領域である。したがって、海島構造の島部は、当該島部が第1領域50p及び60pである場合は海部から突出し、当該島部が第2領域50v及び60vである場合は海部から陥没している。第2領域50v及び60vでは、第1領域50p及び60pよりも粒子5の積み重なりが少ない。第2領域50v及び60vは、粒子5が積み重なった部分50tを含んでいてもよい(図5参照)。第2領域50v及び60vは、粒子5が積み重なっていないか又は粒子5が存在しない部分を含んでいてもよい(図5及び6参照)。少なくとも一部の第2領域50v及び60vは、粒子5が積み重なっていないか又は粒子5が存在しない部分により構成されていてもよい。第1領域50p及び60pは、その少なくとも一部、さらには個数基準で50%以上、場合によっては全部が、台地状領域であってもよい。
 「台地状」は、SEM等により膜を観察したときに、防眩膜50及び60の凸部の上部が台地状に見えることを意味するが、厳密には、膜の断面において、L2/L1≧0.75、特にL2/L1≧0.8が成立することをいう。ここで、図7に示すように、L1は、各凸部の高さHの50%相当部分の長さであり、L2は、高さHの70%相当部分、好ましくは75%相当部分の長さである。図7に示すように、1つのL1に対し、L2は、2以上の部分に分かれて存在することがある。この場合、L2は、2以上の部分の合計長さにより定める。
 第1領域50p及び60pと第2領域50v及び60vとの境界50b及び60bは、防眩膜50及び60の平均厚さTにより定めることができる(図6参照)。平均厚さTは、後述するとおり、レーザー顕微鏡を用いて測定することができる。境界50b及び60bの間隔により、第1領域50p及び60pの幅Wpと第2領域50v及び60vの幅Wvとが定まる。
 幅Wpは、5μm以上、さらに7.7μm以上、好ましくは10μm以上であってもよい。幅Wvは、3.5μm以上、7μm以上、好ましくは10μm以上であってもよい・BR>B幅Wpが大きい場合、防眩膜に入射した可視光を直接透過しやすくなるためにヘイズ率が低くなる傾向にある。幅Wvが大きい場合、防眩膜に入射した可視光を適度に散乱するため、グロスが低くなる傾向にある。幅Wp及び幅Wvが共に10μm以上である膜は、低いヘイズ率とグロスとの両立に特に適している。
 第1領域50p及び60p及び第2領域50v及び60vは、それぞれ、例えば0.25μm2以上、さらに0.5μm2以上、特に1μm2以上、場合によっては5μm2以上、さらに10μm2以上、にわたって広がる領域であってもよい。
 防眩膜50及び60には、第1領域50p及び60pと第2領域50v及び60vとが存在する。防眩膜40が形成された領域の面積に占める第2領域50v及び60vの比率は、例えば5~90%、さらに10~70%、特に20~50%であってもよい。防眩膜50及び60は、第1領域50p及び60p及び第2領域50v及び60vのみから構成されていてもよい。
(粒子)
 粒子5は、第3の実施形態で述べたとおりである。
(マトリクス)
 マトリクス2は、第1~第3の実施形態で述べたとおりである。ただし第3の実施形態とは異なり、本形態では、窒素原子の添加による粒子5の凝集を促進する必要性は低い。したがって、マトリクス2を形成する酸化シリコン等の金属酸化物は、加水分解可能な有機金属化合物、特に式(1)で示した化合物から形成することが好ましい。マトリクス2は、酸化シリコンから実質的に構成されていてもよい。
(防眩膜)
 防眩膜50及び60において、マトリクス2に対する粒子5の比、膜厚、表面50s及び60sのRa、表面50s及び60sのRsmは、特に限定されないが、第1及び第2の実施形態で述べた範囲であってもよい。透明基材10の主面10sから測定した防眩膜50及び60の最高部と最低部との差分は、粒子5の平均粒径の3倍以上、さらに4倍以上であってもよい。
(透明基材)
 透明基材10は、その好適な材料、態様を含め、上述したとおりである。
(光学特性)
 グロスは、鏡面光沢度により評価することができる。透明基材10の60°鏡面光沢度は、例えば60~130%、さらに70~120%、特に80~110%、85~100%である。これらの鏡面光沢度は、防眩膜20を形成した面10sについて測定された値である。透明基材のヘイズ率は、例えば20%以下、さらに15%以下、特に10%以下であり、場合によっては1~8%、さらに1~6%、特に1~5%であってもよい。
 60°鏡面光沢度Gとヘイズ率H(%)との間には、関係式(a)が成立することが好ましく、関係式(b)が成立することがさらに好ましく、関係式(c)が成立することがさらに好ましい。G及びHは関係式(d)を満たすものであってもよい。
 H≦-0.2G+25   (a)
 H≦-0.2G+24.5 (b)
 H≦-0.2G+24   (c)
 H≦-0.15G+18  (d)
 グロス及びヘイズの測定について参照される日本産業規格の番号は上述したとおりである。
(実施例1;配向した平板状粒子)
 スメクタイト分散液(BYK社製「LAPONITE」)1gと、分散助剤(BYK社製「BYK-102」を工業用エタノール(P-7)で0.15wt%に希釈した液)120gとをガラス容器に投入し、超音波洗浄機にかけて微粒子分散液を調製した。なお、スメクタイト分散液に含まれる平板状粒子の平均径は0.05μm、平均厚さは1nmであった。また、スメクタイト分散液の分散媒は水、分散質含有率は1wt%であった。
 プロピレングリコールモノメチルエーテル2.149g、プロピレングリコール0.537g、精製水0.05g、硝酸溶液(60wt%濃硝酸を工業用エタノール(P-7)で0.025wt%に希釈した液)0.125g、テトラエトキシシラン0.139g、上記分散助剤1.5gを混合し、室温で一晩エージングしてマトリクス前駆体液を調製した。このマトリクス前駆体液に微粒子分散液40gを混合し、超音波洗浄機にかけてコーティング液を調製した。
 ガラス板(100×100mm;厚み3mmのフロート板ガラス)をpH13のKOH水溶液に浸漬して超音波洗浄機にかけて洗浄し、乾燥させた。このガラス板の主面に、コーティング液3gをスポイトにとり、ガラス板の主面に流下させるフローコート法で塗布した。その後、200℃に設定したオーブン内で乾燥させ、防眩膜付き透明基材を得た。
 防眩膜付き透明基材を目視により観察したところ、外観上の欠点は確認されなかった。また、グロスチェッカ(堀場製作所製「グロスチェッカIG-320」)を用いて防眩膜を形成した側から測定した60°グロス値は100.9であり、ヘイズメーター(日本電色社製「ヘイズメーターNDH-200」)を用いて測定したヘイズ率は6.2%であった。さらに、防眩膜の表面についてレーザー顕微鏡を用いて測定した粗さ曲線の算術平均粗さRaは40nm、粗さ曲線要素の平均長さRsmは15μmであった。SEMを用いて防眩膜付き透明基材面を観察した結果を図5に示す。
(実施例2;配向した平板状粒子)
 プロピレングリコールモノメチルエーテル1.707g、プロピレングリコール0.427g、精製水0.03g、硝酸溶液(60wt%濃硝酸を工業用エタノール(AP-7)で0.025wt%に希釈した液)0.3g、テトラエトキシシラン0.417g、カオリン分散液(株式会社イメリス ミネラルズ・ジャパン社製「カオリンTS90」)0.12gを混合し、超音波洗浄機にかけてコーティング液を調製した。なお、カオリン分散液に含まれる平板状粒子の平均粒径は0.2μm、平均厚さは1nmであった。また、カオリン分散液の分散媒は工業用エタノール(P-7)、分散質含有率は10wt%であった。
 引き続き、実施例1と同様にして防眩膜付き透明基材を得た。防眩膜付き透明基材を目視により観察したところ、外観上の欠点は確認されなかった。また、実施例1と同様にして特性を測定したところ、60°グロス値は92.6、ヘイズ率は4.1%、Raは60nm、Rsmは25μmであった。
(実施例3;窒素原子含有マトリクス)
 プロピレングリコールモノメチルエーテル1.254g、プロピレングリコール0.45g、工業用エタノール(P-7)0.225g、硝酸溶液(60wt%濃硝酸をプロピレングリコールモノメチルエーテルで1wt%に希釈した液)0.101g、コロイダルシリカ分散液(日産化学社製「PGM-AC-4130Y」をプロピレングリコールモノメチルエーテルで10wt%に希釈した液)0.8g、テトラエトキシシラン0.125g、γ-アミノプロピルトリメトキシシラン(信越化学株式会社製「KBM-903」をプロピレングリコールモノメチルエーテルで1wt%に希釈した液)0.045gをスターラーで3時間混合してコーティング液を調製した。なお、「PGM-AC-4130Y」は、平均粒径40~50nmの球状シリカ粒子を固形分濃度30wt%で含み、個々の粒子は凝集することなく分散している。
 実施例1と同様にして防眩膜付き透明基材を得た。防眩膜付き透明基材を目視により観察したところ、目視による外観上の欠点は確認されなかった。また、実施例1と同様にして特性を測定したところ、60°グロス値は99.2、ヘイズ率は5.5%、Raは81nm、Rsmは13.8μmであった。
(実施例4~7;粒子の偏在、窒素原子含有マトリクスの使用)
 実施例4~7は、コーティング液を、硝酸溶液、コロイダルシリカ分散液、テトラエトキシシラン(TEOS)、γ-アミノプロピルトリメトキシシラン(アミノシラン)の配合量について表1とした以外は、実施例3と同様にして防眩膜付き透明基材を得た。これらの防眩膜付き透明基材を目視により観察したところ、目視による外観上の欠点は確認されなかった。また、実施例1と同様にして特性を測定したところ、60°グロス値はそれぞれ99.0、98.2、110.4、86.6、ヘイズ率(%)はそれぞれ4.3、7.1、4.4、7.1、Ra(nm)はそれぞれ92、80、92、89、Rsm(μm)はそれぞれ9.8、12.0、17.0、13.2であった。この結果を実施例1~3の測定値と共に表2に示す。
Figure JPOXMLDOC01-appb-T000001
 次に、ISO25178に準拠した負荷曲線に係るパラメータを検討した。レーザー顕微鏡(レーザーテック株式会社製「LMeye7」)で取得した観察視野内における高さデータに基づき、負荷曲線を算出し、その負荷曲線に基づいて、高さ方向のコア部のレベル差Sk、コア部と突出山部を分ける負荷面積率Smr1、コア部と突出谷部を分ける負荷面積率Smr2、負荷面積率20、40、60、80%における表面高さBH20、BH40、BH60、BH80を求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例2、4及び7では、60°鏡面光沢度Gとヘイズ率H(%)との間において、H≦-0.2G+24.5が成立した。
 さらにSEM写真を用いた分析を実施することにより、実施例1及び2においては、平板状粒子の主面がガラス板の主面に略平行となっていることが確認できた。また、実施例1及び2の防眩膜付き透明基材について、X線回折分析により、透明基材の主面に沿って配向しているスメクタイト及びカオリンの結晶面を確認したところ、共に(001)面であることが確認された。
(実施例8;粒子の偏在、第1/第2領域の存在)
 工業用エタノール(P-7)1.960g、精製水を上記P-7で10wt%に希釈した液0.266g、硝酸溶液(60wt%濃硝酸を上記P-7で1wt%に希釈した液)0.101g、コロイダルシリカ分散液(日産化学社製「MEK-ST-L」)0.150g、テトラエトキシシラン0.156gをスターラーで3時間混合してコーティング液を調製した。なお、「MEK-ST-L」は、平均粒径40~50nmの球状シリカ粒子を固形分濃度30wt%で含み、個々の粒子は凝集することなく分散しており、分散媒はメチルエチルケトンである。
 以降は実施例1と同様にして防眩膜付き透明基材を得た。防眩膜付き透明基材を目視により観察したところ、目視による外観上の欠点は確認されなかった。また、実施例1と同様にして特性を測定したところ、60°グロス値は82.8、ヘイズ率は4.1%だった。またSEMを用いて防眩膜付き透明基材面を観察した結果を図13及び14に示す。
 上述のレーザー顕微鏡を用いて膜表面の顕微鏡観察を行なった。それにより、膜表面の形状を構成する高さデータを含む3次元画像データを取得した。その際、光学倍率は50倍に設定した。取得した画像の視野範囲は300μm×300μmの正方形に相当し、解像度は1024ピクセル×1024ピクセルだった。その顕微鏡写真を図15に示す。なお、図15では、谷状に陥没した第2領域が台地状に突出した複数の第1領域を囲んでいる。
 この3次元画像データから、第1領域(台地状領域)の幅と第2領域(谷状領域)の幅を以下のように求めた。高さデータを評価する評価対象線を定め、画像データを観察しながら、その評価対象線における台地状領域と谷状領域とを定め、それぞれの台地状領域の幅と谷状領域の幅を測った。なお、画像データの観察からでは台地状領域と谷状領域を区別できない場合は、その評価対象線における断面高さプロファイルを取得し、その基準線より高い部分を台地状領域、低い部分を谷状領域と定めて、それらの長さを測ることにした。その基準線は、その断面高さプロファイルの長さ方向の少なくとも1/4の範囲の高さデータの算術平均の高さとすることにした。その基準線により平均厚さT(図7参照)が定まることになる。いずれの場合でも、評価対象線は顕微鏡観察の1視野あたり等間隔の直線として9本を定め、得られた第1領域の幅Wp、第2領域の幅Wvをそれぞれ算術平均して、被測定膜のWp、Wvとした。結果、Wpは13.7μm、Wvは17.3μmだった。
(実施例9;粒子の偏在、第1/第2領域の存在)
 工業用エタノール(P-7)2.319g、精製水を上記P-7で10wt%に希釈した液 0.158g、硝酸溶液(60wt%濃硝酸を上記P-7で1wt%に希釈した液)0.101g、コロイダルシリカ分散液(日産化学社製「MEK-ST-L」)0.090g、テトラエトキシシラン0.094gをスターラーで3時間混合してコーティング液を調製した。
 以降は実施例1と同様にして防眩膜付き透明基材を得た。防眩膜付き透明基材を目視により観察したところ、目視による外観上の欠点は確認されなかった。また、実施例1と同様にして特性を測定したところ、60°グロス値は94.1、ヘイズ率は4.7%だった。実施例8と同様に第1領域の幅Wpと第2領域の幅Wvを求めた結果、Wpは9.6μm、Wvは20.3μmだった。
(実施例10;粒子の偏在、第1/第2領域の存在)
 プロピレングリコールモノメチルエーテル1.776g、プロピレングリコール0.45g、硝酸溶液(60wt%濃硝酸をプロピレングリコールモノメチルエーテルで1wt%に希釈した液)0.101g、コロイダルシリカ分散液(日産化学社製「MEK-ST-L」)0.150g、テトラエトキシシラン0.150g、をスターラーで3時間混合してコーティング液を調製した。
 以降は実施例1と同様にして防眩膜付き透明基材を得た。防眩膜付き透明基材を目視により観察したところ、目視による外観上の欠点は確認されなかった。また、実施例1と同様にして特性を測定したところ、60°グロス値は98.4、ヘイズ率は4.9%だった。実施例8と同様に第1領域の幅Wpと第2領域の幅Wvを求めた結果、Wpは6.8μm、Wvは4.8μmだった。
(実施例11;粒子の偏在、第1/第2領域の存在)
 プロピレングリコールモノメチルエーテル1.776g、プロピレングリコール0.45g、工業用エタノール(P-7)0.225g、硝酸溶液(60wt%濃硝酸をプロピレングリコールモノメチルエーテルで1wt%に希釈した液)0.127g、コロイダルシリカ分散液(日産化学社製「PGM-AC-4130Y」をプロピレングリコールモノメチルエーテルで10wt%に希釈した液)0.800g、テトラエトキシシラン0.125g、をスターラーで3時間混合してコーティング液を調製した。
 以降は実施例1と同様にして防眩膜付き透明基材を得た。防眩膜付き透明基材を目視により観察したところ、目視による外観上の欠点は確認されなかった。また、実施例1と同様にして特性を測定したところ、60°グロス値は106.6、ヘイズ率は4.4%だった。実施例8と同様に第1領域の幅Wpと第2領域の幅Wvを求めた結果、Wpは5.0μm、Wvは1.7μmだった。
 実施例8~11の結果を表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
 実施例8,9では、60°鏡面光沢度Gとヘイズ率H(%)との間において、H≦-0.2G+24が成立した。実施例8では、H≦-0.15G+18の関係も成立した。 

Claims (27)

  1.  防眩膜付き透明基材であって、
     透明基材と、前記透明基材上に設けられた防眩膜とを備え、
     前記防眩膜は、粒子とマトリクスとを含み、
     前記マトリクスは、酸化シリコンを含む、防眩膜付き透明基材。
  2.  請求項1に記載の防眩膜付き透明基材であって、
     前記防眩膜に、当該膜の厚み方向に前記粒子が積み重なっている第1領域と、前記第1領域を囲む又は前記第1領域により囲まれる谷状の第2領域とが存在する、防眩膜付き透明基材。
  3.  請求項2に記載の防眩膜付き透明基材であって、
     前記第1領域は台地状の領域である、防眩膜付き透明基材。
  4.  請求項2又は3に記載の防眩膜付き透明基材であって、
     前記第2領域は、前記粒子が積み重なっていないか又は前記粒子が存在しない部分を含む、防眩膜付き透明基材。
  5.  請求項2~4のいずれか1項に記載の防眩膜付き透明基材であって、
     前記第1領域の幅が7.7μm以上、
     前記第2領域の幅が7μm以上
    である、防眩膜付き透明基材。
  6.  請求項5に記載の防眩膜付き透明基材であって、
     前記第1領域の幅が10μm以上、
     前記第2領域の幅が10μm以上
    である、防眩膜付き透明基材。
  7.  請求項1に記載の防眩膜付き透明基材であって、
     前記粒子は、平板状粒子により実質的に構成され、
     前記平板状粒子は、厚みが0.3nm~3nmの範囲にあり、かつ主面の平均径が10nm~1000nmの範囲にあり、
     前記平板状粒子の主面が前記透明基材の主面と略平行に配置されている、防眩膜付き透明基材。
  8.  請求項7に記載の防眩膜付き透明基材であって、
     前記平板状粒子は、フィロケイ酸塩鉱物粒子である、防眩膜付き透明基材。
  9.  請求項1に記載の防眩膜付き透明基材であって、
     前記粒子は、フィロケイ酸塩鉱物粒子により実質的に構成され、
     前記フィロケイ酸塩鉱物粒子に含まれるフィロケイ酸塩鉱物は、前記透明基材の主面に沿って配向している結晶面が(001)面である、防眩膜付き透明基材。
  10.  請求項8又は9に記載の防眩膜付き透明基材であって、
     前記フィロケイ酸塩鉱物粒子は、スメクタイト、カオリン又はタルクに属する鉱物を含む、防眩膜付き透明基材。
  11.  請求項1に記載の防眩膜付き透明基材であって、
     前記マトリクスは、窒素原子を含む、防眩膜付き透明基材。
  12.  請求項11に記載の防眩膜付き透明基材であって、
     前記防眩膜に、当該膜の厚み方向に前記粒子が積み重なっている領域と、前記粒子が積み重なっていないか又は前記粒子が存在しない領域とが存在する、防眩膜付き透明基材。
  13.  請求項11又は12に記載の防眩膜付き透明基材であって、
     前記透明基材の主面から測定した前記防眩膜の最高部と最低部との差分が前記粒子の平均粒径の3倍以上である、防眩膜付き透明基材。
  14.  請求項11~13のいずれか1項に記載の防眩膜付き透明基材であって、
     ISO25178に定めるSmr1が10~30%である、防眩膜付き透明基材。
  15.  請求項11~14のいずれか1項に記載の防眩膜付き透明基材であって、
     ISO25178に定める負荷面積比率20%における表面高さBH20が0.04μm~0.5μmの範囲にある、防眩膜付き透明基材。
  16.  請求項11~15のいずれか1項に記載の防眩膜付き透明基材であって、
     ISO25178に定める負荷面積比率80%における表面高さBH80が-0.3μm~0μmの範囲にある、防眩膜付き透明基材。
  17.  請求項2~6及び11~16のいずれか1項に記載の防眩膜付き透明基材であって、
     前記粒子を構成する材料は酸化シリコンを含む、防眩膜付き透明基材。
  18.  請求項2~6及び11~17のいずれか1項に記載の防眩膜付き透明基材であって、
     前記粒子は、球状粒子により実質的に構成されている、防眩膜付き透明基材。
  19.  請求項1~18のいずれか1項に記載の防眩膜付き透明基材であって、
     前記防眩膜の表面のRsmが0μmを超え35μm以下である、防眩膜付き透明基材。
     ただし、前記Rsmは、JIS B0601:2001に定められた粗さ曲線要素の平均長さである。
  20.  請求項1~19のいずれか1項に記載の防眩膜付き透明基材であって、
     前記防眩膜の表面のRaが20nm~120nmの範囲にある、防眩膜付き透明基材。
     ただし、前記Raは、JIS B0601:2001に定められた粗さ曲線の算術平均粗さである。
  21.  請求項1~20のいずれか1項に記載の防眩膜付き透明基材であって、
     前記透明基材の主面のRaが10nm以下である、防眩膜付き透明基材。
     ただし、前記Raは、JIS B0601:2001に定められた粗さ曲線の算術平均粗さである。
  22.  請求項1~21のいずれか1項に記載の防眩膜付き透明基材であって、
     60°鏡面光沢度が60~130%である、防眩膜付き透明基材。
  23.  請求項1~22のいずれか1項に記載の防眩膜付き透明基材であって、
     ヘイズ率が20%以下である、防眩膜付き透明基材。
  24.  請求項23に記載の防眩膜付き透明基材であって、
     ヘイズ率が8%以下である、防眩膜付き透明基材。
  25.  請求項1~24のいずれか1項に記載の防眩膜付き透明基材であって、
     60°鏡面光沢度Gとヘイズ率H(%)との間に以下の関係が成立する防眩膜付き透明基材。
     H≦-0.2G+25
  26.  請求項25に記載の防眩膜付き透明基材であって、
     60°鏡面光沢度Gとヘイズ率H(%)との間に以下の関係が成立する防眩膜付き透明基材。
     H≦-0.2G+24
  27.  請求項26に記載の防眩膜付き透明基材であって、
     60°鏡面光沢度Gとヘイズ率H(%)との間に以下の関係が成立する防眩膜付き透明基材。 
     H≦-0.15G+18
PCT/JP2021/010462 2020-03-16 2021-03-15 防眩膜付き透明基材 WO2021187445A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180021081.1A CN115280191A (zh) 2020-03-16 2021-03-15 带防眩膜的透明基材
US17/906,245 US20230126941A1 (en) 2020-03-16 2021-03-15 Antiglare film-attached transparent substrate
JP2022508359A JPWO2021187445A1 (ja) 2020-03-16 2021-03-15
EP21770861.9A EP4122699A4 (en) 2020-03-16 2021-03-15 TRANSPARENT BASE MATERIAL EQUIPPED WITH AN ANTI-REFLECTIVE FILM
KR1020227035645A KR20220151695A (ko) 2020-03-16 2021-03-15 방현막을 갖는 투명 기재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-045862 2020-03-16
JP2020045862 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021187445A1 true WO2021187445A1 (ja) 2021-09-23

Family

ID=77770907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010462 WO2021187445A1 (ja) 2020-03-16 2021-03-15 防眩膜付き透明基材

Country Status (6)

Country Link
US (1) US20230126941A1 (ja)
EP (1) EP4122699A4 (ja)
JP (1) JPWO2021187445A1 (ja)
KR (1) KR20220151695A (ja)
CN (1) CN115280191A (ja)
WO (1) WO2021187445A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074492A1 (ja) * 2021-10-29 2023-05-04 京セラ株式会社 遮光膜、光学部品、蓋体、電子部品搭載用パッケージ及び撮像装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081118A (ja) * 2009-10-06 2011-04-21 Toppan Printing Co Ltd 防眩フィルム
JP2013228720A (ja) * 2012-03-30 2013-11-07 Fujifilm Corp 防眩フィルム、その製造方法、偏光板、及び画像表示装置
WO2017029735A1 (ja) * 2015-08-19 2017-02-23 旭硝子株式会社 防眩膜付き物品、その製造方法および画像表示装置
JP2017134094A (ja) 2016-01-25 2017-08-03 旭硝子株式会社 防眩膜付き基材、膜形成用塗布液およびその製造方法
JP2018077279A (ja) * 2016-11-07 2018-05-17 フクビ化学工業株式会社 防眩性および反射防止性を有する透明基板とその製造方法
JP2019144475A (ja) * 2018-02-22 2019-08-29 Agc株式会社 透光性構造体
JP2019215448A (ja) * 2018-06-13 2019-12-19 日本板硝子株式会社 防眩膜付基材、画像表示装置、及びデジタルサイネージ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081118A (ja) * 2009-10-06 2011-04-21 Toppan Printing Co Ltd 防眩フィルム
JP2013228720A (ja) * 2012-03-30 2013-11-07 Fujifilm Corp 防眩フィルム、その製造方法、偏光板、及び画像表示装置
WO2017029735A1 (ja) * 2015-08-19 2017-02-23 旭硝子株式会社 防眩膜付き物品、その製造方法および画像表示装置
JP2017134094A (ja) 2016-01-25 2017-08-03 旭硝子株式会社 防眩膜付き基材、膜形成用塗布液およびその製造方法
JP2018077279A (ja) * 2016-11-07 2018-05-17 フクビ化学工業株式会社 防眩性および反射防止性を有する透明基板とその製造方法
JP2019144475A (ja) * 2018-02-22 2019-08-29 Agc株式会社 透光性構造体
JP2019215448A (ja) * 2018-06-13 2019-12-19 日本板硝子株式会社 防眩膜付基材、画像表示装置、及びデジタルサイネージ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4122699A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074492A1 (ja) * 2021-10-29 2023-05-04 京セラ株式会社 遮光膜、光学部品、蓋体、電子部品搭載用パッケージ及び撮像装置

Also Published As

Publication number Publication date
EP4122699A1 (en) 2023-01-25
JPWO2021187445A1 (ja) 2021-09-23
EP4122699A4 (en) 2024-05-29
KR20220151695A (ko) 2022-11-15
CN115280191A (zh) 2022-11-01
US20230126941A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
US10239759B2 (en) Method of producing silica-based particles
JP5814346B2 (ja) 防眩表面処理方法およびその物品
JP5962652B2 (ja) 反射防止性ガラス基体及び反射防止性ガラス基体の製造方法
JP6586897B2 (ja) 防眩膜付き基材、膜形成用塗布液およびその製造方法
WO2015041257A1 (ja) 低反射膜付き強化ガラス板およびその製造方法
JP4527272B2 (ja) 低反射ガラス物品
JP5157143B2 (ja) 反射防止膜付き基体
WO2012137744A1 (ja) 低反射膜付きガラス板
WO2019240178A1 (ja) 防眩膜付基材、画像表示装置、及びデジタルサイネージ
WO2021187445A1 (ja) 防眩膜付き透明基材
JP2004002104A (ja) 親水性・防曇防汚性薄膜及びその製造方法
US20180273421A1 (en) Glass plate, touch pad, and touch panel
JP2015049319A (ja) 透明基材と防汚性反射防止膜とを備える物品およびその製造方法
WO2021221178A1 (ja) 表示装置
WO2021246499A1 (ja) 表示装置
JP2004083307A (ja) シリカ微粒子と低屈折率膜形成用塗料、及び低屈折率膜とその製造方法、並びに反射防止膜
JP2005298237A (ja) 防曇性物品およびその製造方法
JP6991416B1 (ja) 表示装置
WO2021261602A1 (ja) 表示装置
WO2019156076A1 (ja) 防眩膜付き透明基体
EP4309890A1 (en) Cover member
WO2022054960A1 (ja) 表示装置
CN114502515B (zh) 具纹理、防眩玻璃制品及其制作方法
WO2016031780A1 (ja) 擦傷防止膜付き基体およびその製造方法
WO2022054962A1 (ja) カバー部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508359

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227035645

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021770861

Country of ref document: EP

Effective date: 20221017