WO2016031780A1 - 擦傷防止膜付き基体およびその製造方法 - Google Patents

擦傷防止膜付き基体およびその製造方法 Download PDF

Info

Publication number
WO2016031780A1
WO2016031780A1 PCT/JP2015/073754 JP2015073754W WO2016031780A1 WO 2016031780 A1 WO2016031780 A1 WO 2016031780A1 JP 2015073754 W JP2015073754 W JP 2015073754W WO 2016031780 A1 WO2016031780 A1 WO 2016031780A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
substrate
scratch
film
scratch film
Prior art date
Application number
PCT/JP2015/073754
Other languages
English (en)
French (fr)
Inventor
平社 英之
米田 貴重
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014243218A external-priority patent/JP2017186176A/ja
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2016031780A1 publication Critical patent/WO2016031780A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase

Definitions

  • the present invention relates to a substrate with an anti-scratch film and a method for producing the same.
  • Patent Document 1 discloses that a film in which hydrophilic alumina particles are dispersed in a silica matrix is formed on a glass surface to obtain scratch resistance while ensuring transparency.
  • Patent Document 2 discloses an alumina particle having an average particle diameter in the major axis direction of aggregated particles of 100 to 500 nm and an average particle diameter in the minor axis direction of 2 to 100 nm on the surface of a substrate such as glass. It is disclosed that scratch resistance is obtained by forming a film in which is dispersed in a silica matrix. However, it is difficult for films such as Patent Documents 1 and 2 to achieve both excellent transparency and scratch resistance. The alumina particles used in these films have a small primary particle size.
  • An object of the present invention is to provide a substrate with an anti-scratch film that can achieve both excellent transparency and scratch resistance, and a method for producing the same.
  • the present invention has the following configuration.
  • a method for producing a substrate with an anti-scratch film wherein an anti-scratch film containing a particle and a binder is formed on the substrate, wherein a coating liquid containing the particle and the binder precursor is applied to the substrate.
  • a coarse particle portion comprising particles having a diameter of 1 nm or more and a primary particle diameter of 30 nm or more, wherein the coarse particle portion includes particles (A) having a Mohs hardness of 8 or more, and the particles in the particle portion ratio P 1 of (a) is 60 mass% or more, the coarse grain fraction of the refractive index n 1, a primary particle diameter in said particulate matter is grain (B) of and the binder precursor is less than 30nm
  • the difference from the refractive index n 2 of the fired product obtained by firing the mixture (n 1 ⁇ n 2 ) Is 0.4 or less, a method for producing a substrate with an anti-scratch film.
  • coarse particles having an average primary particle size of 1 nm or more and a primary particle size of 30 nm or more
  • the coarse particles include particles (A) having a Mohs hardness of 8 or more
  • the ratio of the particles (A) in the minute is 60% by mass or more, the refractive index of the coarse particles in the particles, and the particles (B) whose primary particle diameter in the particles is less than 30 nm and the The refractive index of the fired product obtained by firing a mixture of binder precursors There is 0.4 or less, abrasion manufacturing method of preventing film-coated substrate.
  • [4] The method for producing a substrate with an anti-scratch film according to [1] to [3], wherein the binder contains at least one selected from the group consisting of silica, alumina and zirconia.
  • [5] The method for producing a substrate with an anti-scratch film according to any one of [1] to [4], wherein the firing temperature in the step (II) is 150 to 700 ° C.
  • It consists particles, and comprises an ⁇ -alumina particles, the coarse fraction percentage P 2 of the ⁇ -alumina particles in is at least 60 wt%, the base component, the binder or size binder and primary particles is less than 30nm
  • the area content of ⁇ -alumina particles having a diameter of 30 nm or more on the cut surface relative to the total area of the cut surface obtained by cutting the anti-scratch film in a direction perpendicular to the film surface, including particles (B) is V 1 ( %),
  • the base portion includes a binder, or a binder and particles (B) having a primary particle diameter of less than 30 nm, and the difference between the refractive index of the coarse particles and the refractive index of the anti-scratch film is 0.3.
  • a base with an anti-scratch film wherein the martens hardness of the anti-scratch film is 3800 N / mm 2 or more.
  • the area of the coarse particles having a diameter of 30 nm or more at the cut surface relative to the total area of the coarse particles and the base in the cut surface obtained by cutting the scratch-preventing film in a direction perpendicular to the film surface content V 2 is from 19 to 83% [6] or abrasion preventing film-coated substrate to [10].
  • (I-1) A step of applying a coating liquid containing the coarse particles and the binder precursor, or a coating liquid containing the coarse particles, the binder precursor and the particles (B) onto the substrate.
  • (Ii-1) A step of baking the substrate coated with the coating solution to form the scratch-preventing film on the substrate.
  • [15] A method for producing a substrate with an anti-scratch film according to any one of the above [6] to [13], comprising the following steps (i-2), (ii-2) and (iii-2) A method for producing a substrate with a film.
  • (I-2) A step of applying a coating solution containing the coarse particles or a coating solution containing the coarse particles and the particles (B) onto the substrate.
  • (Ii-2) A step of applying a coating solution containing the binder precursor on the substrate after the step (i-2).
  • (Iii-2) A step of firing the substrate coated with the coating solution after the step (ii-2) to form the scratch-preventing film on the substrate.
  • [16] The method for producing a substrate with an anti-scratch film according to [14] or [15], wherein the firing temperature when firing the substrate coated with the coating solution is 150 to 700 ° C.
  • the substrate with an anti-scratch film of the present invention can achieve both excellent transparency and scratch resistance, and is low in cost. According to the method for producing a substrate with an anti-scratch film of the present invention, a substrate with an anti-scratch film having both excellent transparency and scratch resistance can be produced at low cost.
  • the “primary particle diameter of the particle” means the maximum diameter of the primary particle measured by observation with a transmission electron microscope or a scanning electron microscope. “Average primary particle diameter of particles” means an average value of the particle diameters of 100 primary particles. The “average aggregate particle diameter” is an average value of the diameters of aggregates of primary particles, and means an average value of the maximum diameters of aggregates measured by a light scattering method. The “particle fraction” is composed of particles having an average primary particle diameter of 1 nm or more, and the “coarse particle fraction” is composed of particles having a primary particle diameter of 30 nm or more.
  • the “base” contains at least a binder and does not contain coarse particles, but may contain particles having a particle size of less than 30 nm.
  • “Area content rate V 2 ” is a value obtained for a coarse particle having a diameter of 30 nm or more in a cross-sectional photograph observed by a scanning electron microscope (SEM) on an arbitrary cut surface obtained by cutting the anti-scratch film in a direction perpendicular to the film surface. It means the ratio obtained by dividing the area by the area of the anti-scratch film (total area of coarse particles and base).
  • “Area content rate V 1 ” indicates the area of ⁇ -alumina particles having a diameter of 30 nm or more in a cross-sectional photograph of an arbitrary cut surface obtained by cutting the anti-scratch film in a direction perpendicular to the film surface with a scanning electron microscope. It means the ratio obtained by dividing by the area of the prevention film. However, when obtaining the area of the ⁇ -alumina particles, the alumina particles are identified by performing elemental analysis in combination with observation with a scanning electron microscope. “Martens hardness” is the hardness obtained from the depth of the indentation by pressing an indenter against the anti-scratch film, and is the hardness obtained by analyzing the indentation measurement using a microhardness test apparatus.
  • a Vickers pyramid indenter is attached to a microhardness tester, and a load / penetration depth curve obtained from a load speed of 0.05 mN / 10 s, a creep of 5 s, and an unload speed of 0.05 mN / 10 s is obtained. This is the required value.
  • the method for producing a substrate with an anti-scratch film of the present invention is a method for producing a substrate with an anti-scratch film in which an anti-scratch film containing particles and a binder is formed on the substrate.
  • membrane of this invention has the following process (I) and (II).
  • step (I) a coating solution containing a particle content and a binder precursor is applied onto a substrate, or a coating solution containing the particle content and a solution containing the binder precursor are applied onto a substrate, respectively.
  • any of the following embodiments (a) to (c) may be employed as the coating solution.
  • A) A mode in which a coating solution containing both the particle content and the binder precursor is prepared and coated on the substrate.
  • B) A coating solution containing particles and not containing a binder precursor and a coating solution containing a binder precursor and not containing particles are prepared, and the respective coating solutions are prepared on the substrate simultaneously or separately. A mode of applying to the surface.
  • a coating liquid containing a part of the particles and not including the binder precursor and a coating liquid including the remainder of the particles and the binder precursor are prepared, and the respective coating liquids are simultaneously or separately prepared.
  • a mode of coating on a substrate it is preferable to apply a coating solution containing a binder precursor after coating a coating solution not containing a binder precursor.
  • a known coating method can be employed.
  • roller coating, brush coating, flow coating, bar coating, die coating, gravure printing, screen printing, reverse coating, roll coating, spray coating, dip coating and the like can be mentioned.
  • a known solvent can be used according to the kind of the binder precursor.
  • examples of the solvent include acetone, methanol, ethanol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether, N- Examples include methylpyrrolidone and tetrahydrofuran.
  • the binder precursor is polysilazane
  • examples of the solvent include toluene, xylene, dibutyl ether and the like.
  • the dispersion medium include water and organic solvents such as acetone, methanol, ethanol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether, N-methylpyrrolidone, tetrahydrofuran, and xylene.
  • the coating liquid containing the remainder of the particle and the binder precursor is obtained by dispersing the remainder of the particle in a solvent that dissolves the binder precursor to obtain a dispersion. It is preferable to prepare by adding a binder precursor.
  • the solid content concentration of the dispersion in the embodiments (a) to (c) is preferably 0.1 to 30% by mass, and more preferably 1 to 20% by mass. If the solid content concentration of the dispersion is not more than the upper limit value, the stability of the dispersion is increased.
  • the solid concentration of the coating solution containing the binder precursor is preferably 0.1 to 30% by mass, and more preferably 1 to 20% by mass. If the solid content concentration of the coating solution is not more than the upper limit value, the stability of the coating solution is increased.
  • the total mass of the binder precursor in the coating solution is preferably 0.1 to 10 times, more preferably 0.5 to 3 times the total mass of the particles in terms of oxide.
  • the total mass of the binder precursor is equal to or greater than the lower limit, it is easy to form an anti-scratch film having high adhesion to the substrate. If the total mass of the binder precursor is less than or equal to the upper limit value, it is easy to form an anti-scratch film having high hardness and excellent scratch resistance.
  • the particle part is composed of particles having an average primary particle diameter of 1 nm or more.
  • the particle content includes a coarse particle having a primary particle diameter of 30 nm or more.
  • the coarse particles contain particles (A) having a Mohs hardness of 8 or more.
  • the ratio of the particles (A) in the particles is preferably 60% by mass or more in order to increase the scratch resistance.
  • the shape of the particles contained in the particle portion is not particularly limited, and for example, spherical, oval, spindle, amorphous, chain shape, needle shape, columnar shape, rod shape, flat shape, scale shape, leaf shape, tube shape, Examples thereof include a sheet shape or a shape obtained by combining these shapes.
  • the particle shape is preferably spherical, oval, spindle-shaped or amorphous because the particle density in the scratch-preventing film can be easily increased and excellent scratch resistance can be easily obtained.
  • the average primary particle diameter of the particles is 1 nm or more, preferably 30 to 1000 nm, more preferably 30 to 500 nm, still more preferably 30 to 400 nm, and particularly preferably 50 to 200 nm. If the average primary particle size of the particles is equal to or greater than the lower limit, the highly hard particles (A) are exposed on the surface of the anti-scratch film, resulting in an increase in film hardness and excellent scratch resistance. If the average primary particle size of the particles is less than or equal to the upper limit value, it is easy to form an anti-scratch film excellent in transparency.
  • the particles may be aggregated in the anti-scratch film.
  • the transparency of the scratch-preventing film tends to be lower than when the particles are not aggregated.
  • the average aggregate particle size of the particles is preferably 30 to 2000 nm, more preferably 30 to 800 nm, still more preferably 40 to 500 nm, and particularly preferably 60 to 400 nm.
  • the primary particle diameter of the particles (A) contained in the particles is 30 nm or more, preferably 40 nm or more, and more preferably 50 nm or more. If the primary particle diameter of the particles (A) is not less than the lower limit, the hardness of the film is increased and excellent scratch resistance can be obtained.
  • the upper limit of the primary particle diameter of the particles (A) is preferably 1000 nm, more preferably 500 nm, still more preferably 400 nm or less, and particularly preferably 200 nm or less from the viewpoint of transparency.
  • Examples of the particles (A) include a substance capable of scratching quartz having a hardness of 7 in the Mohs hardness test, that is, a substance obtained by processing a substance having a Mohs hardness of 8 or more into a particle state having a primary particle diameter of 30 nm or more. It is done.
  • the particles (A) include, for example, zirconia particles, osmium particles, topaz particles, tungsten carbide particles, zirconium boride particles, ⁇ -alumina particles, titanium nitride particles, tungsten carbide particles, tantalum carbide particles, zirconium carbide particles, Examples thereof include chromium particles, silicon carbide particles, aluminum boride particles, boron carbide particles, and diamond particles. Of these, zirconia particles, ⁇ -alumina particles, and diamond particles are preferable from the viewpoint of transparency, and ⁇ -alumina particles are more preferable.
  • the particles (A) preferably contain ⁇ -alumina particles, and more preferably consist only of ⁇ -alumina particles.
  • the particle (A) may be one type or two or more types.
  • Examples of particles other than the particles (A) in the particle part include particles (B) having a primary particle size of less than 30 nm, and particles (C) having a primary particle size of 30 nm or more and a Mohs hardness of less than 8.
  • the particles (B) include particles having a primary particle diameter of less than 30 nm as the particles mentioned in the particles (A).
  • the particles (B) may be particles having a Mohs hardness of 8 or more, or particles having a Mohs hardness of less than 8.
  • titanium oxide particles are preferred in that the refractive index adjustment of the anti-scratch film is facilitated and the haze is lowered.
  • Tin-doped indium oxide particles, tin-doped antimony oxide particles, tin oxide particles, metal particles (gold particles, silver particles, etc.), and aluminum nitride particles are preferable in terms of easily imparting antistatic performance to the anti-scratch film.
  • Indium particles, tin-doped antimony oxide particles, and tin oxide particles are more preferable. Titanium oxide particles, zinc oxide particles, and cerium oxide particles are preferred from the viewpoint of easy adjustment of ultraviolet absorption of the scratch-preventing film and easy provision of ultraviolet absorption performance. In terms of facilitating adjustment of infrared absorption of the scratch-preventing film and imparting infrared absorption performance, tin-doped indium oxide particles, tin-doped antimony oxide particles, and cesium tungstate particles are preferred.
  • Particles having photocatalytic activity such as titanium oxide particles, zinc oxide particles, niobium oxide particles and the like are preferable in that the photocatalytic activity of the anti-scratch film can be easily adjusted and hydrophilicity can be easily imparted.
  • grains (B) are hollow particles at the point which the porosity adjustment of a scratch prevention film
  • the particle (B) may be one kind or two or more kinds.
  • Examples of the particles (C) include silica particles, titanium oxide particles, and quartz particles. Tin-doped indium oxide particles, tin-doped antimony oxide particles, tin oxide particles, metal particles (gold particles, silver particles, etc.), and aluminum nitride particles are preferable in terms of easily imparting antistatic performance to the anti-scratch film. Indium particles, tin-doped antimony oxide particles, and tin oxide particles are more preferable. Titanium oxide particles, zinc oxide particles, and cerium oxide particles are preferred from the viewpoint of easy adjustment of ultraviolet absorption of the scratch-preventing film and easy provision of ultraviolet absorption performance.
  • tin-doped indium oxide particles In terms of facilitating adjustment of infrared absorption of the scratch-preventing film and imparting infrared absorption performance, tin-doped indium oxide particles, tin-doped antimony oxide particles, and cesium tungstate particles are preferred.
  • Particles having photocatalytic activity such as titanium oxide particles, zinc oxide particles, niobium oxide particles and the like are preferable in that the photocatalytic activity of the anti-scratch film can be easily adjusted and hydrophilicity can be easily imparted.
  • grains (C) are hollow particles at the point which the porosity adjustment of a scratch prevention film
  • the particle (C) may be one kind or two or more kinds.
  • the particle component may be a component composed only of the particle (A), or may be a component composed of the particle (A) and one or both of the particle (B) and the particle (C).
  • Ratio P 1 of the particles in the particle fraction (100 mass%) (A) is preferably at least 60 wt%, more preferably at least 70 wt%, more preferably at least 90 mass%, particularly preferably 100 mass%. When the proportion P 1 is equal to or larger than the lower limit, excellent scratch resistance can be obtained.
  • a hydrolytic condensable compound in which a hydrolyzable group is bonded to an atom of Si, Al, Ti, Zr, or Ta is preferable.
  • the hydrolyzable group include an alkoxy group, an isocyanate group, an acyloxy group, an aminoxy group, and a halogen group.
  • the hydrolytic condensable compound include metal alkoxide, hydrolyzed polycondensate of metal alkoxide, polysilazane, hydrolyzed polycondensate of polysilazane, and the like.
  • metal alkoxide silicic acid alkoxide is preferable, and silicon tetraalkoxide such as tetraethoxysilane and tetramethoxysilane is more preferable.
  • metal alkoxides other than silicate alkoxides include aluminum trialkoxide (such as trimethoxyaluminum), titanium tetraalkoxide (such as titanium tetraisopropoxide), and zirconium tetraalkoxide (such as zirconium tetraethoxide). It is done.
  • tetraisocyanate silane etc. are mentioned as a hydrolytic condensable compound.
  • the hydrolytic condensable compound may have an organic group such as an alkyl group, an alkenyl group, an aryl group, a vinyl group, an epoxy group, a perfluoropolyether group, and a perfluoroalkyl group in addition to the hydrolyzable group.
  • the number of organic groups is preferably 1 to 2.
  • hydrolytic condensable compound having an organic group examples include alkyl alkoxysilanes (methyltrimethoxysilane, methyltriethoxysilane, etc.), dialkylalkoxysilanes (dimethyldimethoxysilane, dimethyldiethoxysilane, etc.), vinyltrimethoxysilane, Vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane Perfluoropolyethertriethoxysilane, perfluoroethyltriethoxysilane, and the like.
  • hydrolyzed polycondensate of metal alkoxide examples include, for example, a nitric acid partial hydrolyzate of metal alkoxide.
  • polysilazane examples include commercially available inorganic silazane coating materials.
  • step (I) of the method for producing a substrate with an anti-scratch film of the present invention particles (A), particles (B), and particles (C) may be included as particles.
  • the mixture of the particles (A) and particles (C) in the particles that is, the refractive index n 1 of the coarse particles, and the precursors of the particles (B) and the binder are fired. It is preferable to control the difference (n 1 ⁇ n 2 ) from the refractive index n 2 of the fired product to 0.4 or less. When the difference (n 1 ⁇ n 2 ) is 0.4 or less, both excellent transparency and scratch resistance can be achieved.
  • the difference (n 1 ⁇ n 2 ) is preferably 0.35 or less, and more preferably 0.3 or less.
  • the difference (n 1 ⁇ n 2 ) can be adjusted by the particle content used and the type of binder precursor.
  • step (I) the difference (n 1 ⁇ n) between the refractive index n 1 of the mixture of particles (A) and particles (C) in the particles, ie, the coarse particles, and the refractive index n of the resulting anti-scratch film. ) Is preferably controlled to 0.3 or less.
  • the difference (n 1 ⁇ n) is preferably 0.25 or less, and more preferably 0.2 or less.
  • the difference (n 1 -n) can be adjusted by the particle content used and the type of binder precursor.
  • the coating liquid may contain a surfactant in addition to the particle content and the binder precursor.
  • a surfactant any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used.
  • the surfactant —CH 2 CH 2 O—, —SO 2 —, —NR— (R is a hydrogen atom or an organic group), —NH 2 —, —SO 3 Y, —COOY (Y is a hydrogen atom, A nonionic surfactant having a group represented by (sodium atom, potassium atom or ammonium ion) is preferred.
  • nonionic surfactant examples include alkyl polyoxyethylene ether, alkyl polyoxyethylene-polypropylene ether, fatty acid polyoxyethylene ester, fatty acid polyoxyethylene sorbitan ester, fatty acid polyoxyethylene sorbitol ester, alkyl polyoxyethylene amine, Examples thereof include alkyl polyoxyethylene amide and polyether-modified silicone surfactants.
  • the coating liquid may contain various paint compounding agents in addition to the surfactant.
  • functions such as hard coat, coloring, conductivity, antistatic, polarization, light shielding, antifouling, antifogging, photocatalyst, antibacterial, phosphorescent, battery, refractive index control, water repellency, oil repellency, fingerprint removal, slipperiness, etc.
  • You may include the 1 type, or 2 or more types of well-known compounding agent to provide.
  • the coating liquid may contain an antifoaming agent, a leveling agent, an ultraviolet absorber, a viscosity modifier, an antioxidant, an antifungal agent and the like.
  • the substrate is not particularly limited, and may be a transparent substrate or an opaque substrate.
  • the transparent substrate is a substrate having a haze value of 5% or less in the standard of JIS K-7150, the haze value is preferably 2% or less, and more preferably 1% or less.
  • Examples of the transparent substrate include a glass substrate (glass plate or the like).
  • Examples of the opaque substrate include metals, ceramics, and opaque resins.
  • the shape of the substrate is not particularly limited. Examples of the shape of the substrate include a plate shape and may be curved. Further, the size of the substrate is not particularly limited.
  • the substrate Before applying the coating solution, for the purpose of further improving the adhesion of the anti-scratch film, the substrate is subjected to discharge treatment such as plasma treatment, corona treatment, UV treatment, ozone treatment, chemicals such as water, acid and alkali. Treatment or physical treatment using an abrasive may be performed.
  • discharge treatment such as plasma treatment, corona treatment, UV treatment, ozone treatment, chemicals such as water, acid and alkali.
  • Treatment or physical treatment using an abrasive may be performed.
  • the substrate coated with the coating liquid is dried as necessary and then baked to form an anti-scratch film.
  • the drying method is not particularly limited, and examples thereof include hot air drying and vacuum drying.
  • the drying temperature is preferably 100 to 250 ° C, more preferably 120 to 200 ° C.
  • the drying time is preferably 1 to 60 minutes.
  • the firing method is not particularly limited, and examples thereof include a method using a muffle furnace.
  • the firing temperature is preferably 150 to 700 ° C, more preferably 200 to 600 ° C.
  • the hydrolytic condensable compound is sufficiently converted into an oxide, and a strong scratch-resistant film is easily obtained. If the firing temperature is equal to or lower than the upper limit value, deformation of the substrate due to heat can be suppressed.
  • the firing time is preferably 1 to 300 minutes, more preferably 10 to 120 minutes.
  • the anti-scratch film may be irradiated with ultraviolet rays, an electron beam or the like before or after baking, if necessary.
  • particles having an average primary particle diameter of 1 nm or more including particles (A) having a primary particle diameter of 30 nm or more and a Mohs hardness of 8 or more in a specific ratio are used.
  • a high-hardness scratch-resistant film is formed on the substrate.
  • the particle (A) is exposed on the film surface in advance or the film surface is easily exposed when the film surface is rubbed even if it is not exposed. Excellent scratch resistance is obtained.
  • the refractive index n 1 of the coarse particles in the particles is controlled, a substrate with an anti-scratch film having excellent transparency can be obtained.
  • the substrate 1 with an anti-scratch film of the present embodiment is obtained by forming an anti-scratch film 12 on a plate-like base 10.
  • the substrate 10 is not particularly limited, and may be a transparent substrate or an opaque substrate. Examples of the substrate include those described above, and a glass substrate is preferable.
  • the anti-scratch film 12 is a film containing coarse particles and a base.
  • the coarse particles preferably include particles (A) having a primary particle diameter of 30 nm or more and a Mohs hardness of 8 or more.
  • the particles (A) preferably contain ⁇ -alumina particles.
  • the ratio P 2 of the ⁇ -alumina particles in the coarse fraction (100 mass%) is preferably more than 60 wt%.
  • the coarse particles may be a component composed only of ⁇ -alumina particles, and either or both of particles (A) and particles (C) other than ⁇ -alumina particles. May be included.
  • the coarse particle content is preferably a component composed only of ⁇ -alumina particles.
  • the primary particle diameter of the particles contained in the coarse particles is 30 nm or more, preferably 40 nm or more, and more preferably 50 nm or more. If the primary particle diameter of the particles is equal to or greater than the lower limit, the hardness of the anti-scratch film 12 increases, and excellent scratch resistance is obtained.
  • the upper limit of the primary particle diameter of the particles contained in the coarse particles is preferably 1000 nm, more preferably 500 nm, further preferably 400 nm or less, and particularly preferably 200 nm or less from the viewpoint of transparency.
  • the average primary particle size of the coarse particles is preferably 30 to 1000 nm, more preferably 30 to 500 nm, still more preferably 30 to 400 nm, and particularly preferably 50 to 200 nm. If the average primary particle diameter of the coarse particles is equal to or greater than the lower limit, the film hardness increases due to exposure of the particles (A) such as ⁇ -alumina particles on the surface of the anti-scratch film 12, and the scratch has excellent scratch resistance. The prevention film 12 is easy to form. If the average primary particle diameter of the coarse particles is not more than the upper limit value, it is easy to form the scratch-preventing film 12 having excellent transparency. The coarse particles may be aggregated in the scratch preventing film 12.
  • the average agglomerated particle diameter of the coarse particles is preferably 30 to 2000 nm, more preferably 30 to 800 nm, still more preferably 40 to 500 nm, and particularly preferably 60 to 400 nm.
  • the ratio P 2 of the ⁇ -alumina particles in the coarse fraction (100 mass%) is 60 mass% or more, preferably at least 70 wt%, more preferably at least 90 mass%, particularly preferably 100 mass%.
  • the proportion P 2 is equal to or greater than the lower limit, excellent scratch resistance can be obtained.
  • Refractive index of the coarse fraction n 1 i.e., particles (refractive index n 1 of a mixture of the refractive index n 1 of A) or particles (A) and particles, (C)
  • the difference (n 1 ⁇ n) is preferably controlled to 0.3 or less. When the difference (n 1 -n) is 0.3 or less, both excellent transparency and scratch resistance can be achieved.
  • the difference (n 1 ⁇ n) is preferably 0.25 or less, and more preferably 0.2 or less.
  • the base component is a component containing a binder or a binder and particles (B) having a primary particle diameter of less than 30 nm.
  • a combination of the coarse particles and the particles (B) is the aforementioned particles.
  • Any binder can be used as long as it can form a film by adhering to the surface of the substrate while containing the coarse particles and particles (B) to be used as necessary.
  • examples thereof include inorganic substances, and an oxide is a main component.
  • An oxide matrix is preferred.
  • To have an oxide as a main component means that the ratio of the oxide is 90% by mass or more in the matrix (100% by mass).
  • the oxide used for the binder include silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, tantalum oxide, and tin oxide.
  • the oxide-based matrix is preferably substantially composed of an oxide.
  • the phrase “consisting essentially of an oxide” means that it is composed only of an oxide excluding inevitable impurities.
  • the oxide matrix may contain a small amount of components other than the oxide. Examples of the component include metal ions (Li + , Na + , Mg 2+ , K + and the like).
  • the oxide-based matrix is preferably a fired product of a hydrolysis-condensable compound that is a precursor.
  • an oxide matrix mainly composed of at least one selected from the group consisting of silica, alumina, and zirconia is preferable because a desired refractive index is obtained and haze is low. Particularly preferred is at least one selected from the group consisting of zirconia.
  • a binder may be used individually by 1 type and may use 2 or more types together.
  • the component for the base may be a component composed only of the binder, or may be a component composed of the binder and the particles (B).
  • the ratio of the binder in the base (100% by mass) is preferably 50 to 100% by mass, and more preferably 60 to 100% by mass. If the ratio of the binder is equal to or greater than the lower limit value, the adhesion between the substrate 10 and the scratch preventing film 12 is increased.
  • the refractive index n of the anti-scratch film 12 is the area content of ⁇ -alumina particles having a diameter of 30 nm or more at the cut surface relative to the total area of the cut surface obtained by cutting the anti-scratch film 12 in the direction perpendicular to the film surface.
  • V 1 (%) the condition of the following expression (1) is preferably satisfied, and the condition of the following expression (2) is more preferable.
  • the refractive index n of the anti-scratch film 12 can be controlled within the above range depending on the type and ratio of the coarse particles used, the particles (B) forming the base, and the precursor of the binder. Can be added.
  • the area content V 2 of the coarse particles having a diameter at the cut surface of 30 nm or more with respect to the total area of the coarse particles and the base in the cut surface obtained by cutting the scratch preventing film 12 in the direction perpendicular to the film surface is: 19 to 83% is preferable, and 27 to 69% is more preferable. If the area content V 2 is less than the lower limit, it is easy to obtain a high abrasion prevention effect. If the area content V 2 is more than the upper limit, adhesion between the substrate 10 and the abrasion-preventing film 12 is increased.
  • the ratio W 1 of the coarse particles to the total mass of the coarse particles and the base in the scratch preventing film 12 is preferably 30 to 90% by mass, and more preferably 40 to 80% by mass. If the ratio W 1 is at least as large as the lower limit, it is easy to obtain a high abrasion prevention effect. When the ratio W 1 is equal to or less than the upper limit value, the adhesion between the substrate 10 and the scratch preventing film 12 is increased.
  • 70 mass% or more is preferable, 80 mass% or more is more preferable, and 90 mass% or more is further more preferable for the ratio which totaled the coarse-grain content and base part in the abrasion prevention film
  • membrane 12 100 mass%).
  • the upper limit of the ratio of the coarse particles and the base is 100% by mass.
  • the thickness of the anti-scratch film 12 is preferably 100 to 3000 nm, more preferably 200 to 2000 nm, and even more preferably 300 to 1000 nm. If the thickness of the anti-scratch film 12 is not less than the lower limit value, excellent scratch resistance can be easily obtained. If the thickness of the anti-scratch film 12 is not more than the upper limit value, excellent transparency can be easily obtained.
  • the thickness of the anti-scratch film means an average thickness, which is measured by microscopic observation of the cross-section of the anti-scratch film, or an average of five measured values measured using a stylus type film thickness meter. means.
  • Martens hardness of the abrasion prevention film 12 is preferably 3800N / mm 2 or more, more preferably 4500N / mm 2 or more, 5500N / mm 2 or more is more preferable. Further, the Martens hardness of the anti-scratch film 12 is typically 10000 N / mm 2 or less.
  • Method (1) includes the following steps (i-1) and (ii-1).
  • (I-1) A step of applying a coating liquid containing a coarse particle fraction and a binder precursor or a coating liquid containing a coarse particle fraction, a binder precursor and particles (B) on a substrate.
  • (Ii-1) A step of baking the substrate coated with the coating solution to form an anti-scratch film on the substrate.
  • the binder precursor is added to the dispersion and the coating liquid is added. And applied onto the substrate by a known method.
  • the refractive index n of the anti-scratch film 12 can be controlled within the above range depending on the type and ratio of the coarse particles, particles (B) and binder precursors used.
  • Step (ii-1) is the same as step (II) described above.
  • Method (2) has the following steps (i-2), (ii-2) and (iii-2).
  • I-2) A step of applying a coating liquid containing coarse particles or a coating liquid containing coarse particles and particles (B) on a substrate.
  • Ii-2) A step of applying a coating solution containing a binder precursor onto the substrate after the step (i-2).
  • IIii-2) A step of baking the substrate coated with the coating liquid after the step (ii-2) to form an anti-scratch film on the substrate.
  • step (i-2) As described in step (I) above, when particles (B) are not used, the coarse particles are dispersed in a dispersion medium to form a coating solution, and the substrate is obtained by a known method. Apply on top. In the case of using the particles (B), the coarse particles and the particles (B) are dispersed in a dispersion medium to form a coating solution, which is coated on the substrate by a known method.
  • Step (iii-2) is the same as step (II) described above.
  • the anti-scratch film contains particles, and thus the anti-scratch film has a high hardness.
  • the particles are easily exposed when the surface of the film is rubbed even if the particles are exposed on the surface of the film in advance. Because of the contact, the film surface is hardly damaged and excellent scratch resistance is obtained.
  • the substrate with the anti-scratch film is preferably produced by the method (2) rather than the one produced by the method (1) from the viewpoint of obtaining better scratch resistance. Further, in the substrate with an anti-scratch film, since the refractive index n of the anti-scratch film is controlled within a specific range, excellent transparency can be obtained.
  • substrate with an anti-scratch film of this invention is not limited to the above-mentioned base
  • the base with an anti-scratch film of the present invention may have an anti-scratch film on both sides of the base.
  • the area of the coarse particles having a diameter of 30 nm or more at the cut surface with respect to the total area of the coarse particles and the base the rate V 2 was determined by the following method.
  • a cross-sectional photograph (5 ⁇ m ⁇ 5 ⁇ m) obtained by cutting an arbitrary cross section of the anti-scratch film with a focused ion beam apparatus and observing the cross section with a scanning electron microscope the area of coarse particles having a diameter of 30 nm or more is indicated as the area of the anti-scratch film. It was calculated by dividing by.
  • Mohs hardness The Mohs hardness of the particles was the value indicated by the crystal of the substance.
  • Martens hardness The Martens hardness (N / mm 2 ) of the anti-scratch film in the base with an anti-scratch film obtained in each example was measured using an indentation test apparatus (Fisco Corp., Picodenter HM500).
  • the refractive index n of the anti-scratch film in the base with an anti-scratch film obtained in each example was measured using a reflection spectral film thickness evaluation apparatus (manufactured by Otsuka Electronics Co., Ltd., FE3000).
  • the refractive index n 1 of the mixture of the particles (A) and the particles (C) and the refractive index n 2 of the fired film obtained by firing the precursor of the particles (B) and the binder were measured by the following methods.
  • the refractive index n 1 was prepared a dispersion by mixing with particle mixture a refractive index standard solution of (A) and the particles (C) (manufactured by Shimadzu Corporation, refractive index for evaluation contact liquid) .
  • the dispersion liquid is applied onto a glass substrate, the haze value of the coating film is measured, and the refractive index of the refractive index reference liquid used for the dispersion liquid having the smallest haze value is determined as a mixture of particles (A) and particles (C). Of the refractive index.
  • the refractive index n 2 of the fired film obtained by firing the particles (B) and the binder precursor is applied to the glass substrate and fired to form the fired film, and the reflection spectral film thickness evaluation apparatus (Otsuka Electronics) Measured by using FE3000).
  • the thickness of the anti-scratch film in the base with an anti-scratch film obtained in each example was measured using a scanning electron microscope (manufactured by Hitachi High-Tech, S-4300).
  • Example 1 In a glass container with a capacity of 100 mL, ethanol 40 g, ⁇ -alumina particles (manufactured by Sumitomo Chemical Co., Ltd., product name: Sumicorundum AA03, Mohs hardness: 9, average primary particle size: 300 nm, ratio of particles having a primary particle size of 30 nm or more : 100% by mass) 1 g, and 20 g of zirconia beads (particle size 0.5 mm) were placed and dispersed in a bead mill for 24 hours. The ⁇ -alumina particles were aggregates, and the average aggregate particle diameter was 350 nm.
  • a 3.0 mm thick glass plate (soda lime glass, manufactured by Asahi Glass Co., Ltd.) was polished with fine particles of cerium oxide, and then the surface was washed with water and dried.
  • coating solution-1 is applied onto the surface of the glass plate by spin coating, dried in a hot air circulation oven at 200 ° C. for 5 minutes, and further baked in a muffle furnace at 600 ° C. for 60 minutes to provide a scratch-proof film. A substrate was obtained.
  • the thickness of the anti-scratch film in the base with the anti-scratch film was 500 nm.
  • Example 2 An ⁇ -alumina dispersion (solid content concentration: 2.5 mass%) was obtained in the same manner as in Example 1 except that xylene was used instead of ethanol. 30 g of the obtained ⁇ -alumina dispersion, 3.8 g of polysilazane solution (manufactured by AZ Electronic Materials, product name: NL110A-20, SiO 2 solid content concentration: 20 mass%), and 26.2 g of xylene were mixed at room temperature. A coating solution-2 was obtained. The volume content of the ⁇ -alumina particles with respect to 100% by volume of the solid content contained in the coating liquid-2 was 36% by volume. Next, a substrate with an anti-scratch film was obtained in the same manner as in Example 1 except that the coating liquid-2 was used instead of the coating liquid-1.
  • Example 3 ⁇ -alumina particles (manufactured by Sumitomo Chemical Co., Ltd., product name: AKP-53, Mohs hardness: 9, average primary particle size: 150 nm, ratio of particles having a primary particle size of 30 nm or more: 100% by mass) are used.
  • an ⁇ -alumina dispersion was obtained.
  • the ⁇ -alumina particles were aggregates, and the average aggregate particle diameter was 200 nm.
  • a coating solution-3 was obtained in the same manner as in Example 1 except that the ⁇ -alumina dispersion was used.
  • the volume content of the ⁇ -alumina particles with respect to 100% by volume of the solid content contained in the coating liquid-3 was 53% by volume.
  • a substrate with an anti-scratch film was obtained in the same manner as in Example 1 except that the coating liquid-3 was used instead of the coating liquid-1.
  • Example 4 Instead of using ⁇ -alumina particles alone, 0.67 g of ⁇ -alumina particles (manufactured by Sumitomo Chemical Co., Ltd., product name: Sumiko Random AA03) and ⁇ alumina particles (manufactured by Daimei Chemical Co., Ltd., product name: TM-100D) An alumina dispersion was obtained in the same manner as in Example 1 except that 0.33 g of average primary particle diameter of 60 nm and Mohs hardness: 7) were used together. The alumina particles were aggregates, and the average aggregate particle diameter was 400 nm. A coating solution-4 was obtained in the same manner as in Example 1 except that the alumina dispersion was used.
  • the volume content of alumina particles with respect to 100% by volume of the solid content contained in coating solution-4 was 67% by volume.
  • a substrate with an anti-scratch film was obtained in the same manner as in Example 1 except that the coating liquid-4 was used instead of the coating liquid-1.
  • Example 5 In a glass container with a capacity of 100 mL, ethanol 36 g, alumina particle aqueous dispersion (manufactured by Nissan Chemical Industries, product name: AS-520, Mohs hardness: 7, average primary particle diameter 30 nm, ratio of particles having primary particle diameter 30 nm or more : 50% by mass) and 5 g of zirconia beads (particle size: 0.5 mm) were added and dispersed in a bead mill for 24 hours. The alumina particles were aggregates, and the average aggregate particle diameter was 50 nm. Also, a coating solution-5 was obtained in the same manner as in Example 1 except that the alumina dispersion was used.
  • alumina particle aqueous dispersion manufactured by Nissan Chemical Industries, product name: AS-520, Mohs hardness: 7, average primary particle diameter 30 nm, ratio of particles having primary particle diameter 30 nm or more : 50% by mass
  • zirconia beads particle size: 0.5 mm
  • the volume content of alumina particles with respect to 100% by volume of the solid content contained in the coating liquid-5 was 53% by volume.
  • a substrate with an anti-scratch film was obtained in the same manner as in Example 1 except that the coating solution-5 was used instead of the coating solution-1.
  • Example 6 A silica dispersion was obtained in the same manner as in Example 1 except that silica particles (manufactured by Nissan Chemical Industries, product name: KE-P30, average particle size 300 nm, Mohs hardness: 7) were used instead of ⁇ -alumina particles. .
  • the silica particles were aggregates, and the average aggregate particle diameter was 400 nm.
  • a coating solution-6 was obtained in the same manner as in Example 1 except that the silica dispersion was used.
  • the volume content of the silica particles with respect to 100% by volume of the solid content contained in the coating liquid-6 was 67% by volume.
  • a substrate with an anti-scratch film was obtained in the same manner as in Example 1 except that the coating liquid-6 was used instead of the coating liquid-1.
  • Example 7 Instead of using ⁇ -alumina particles alone, 0.5 g of ⁇ -alumina particles (manufactured by Sumitomo Chemical Co., Ltd., product name: Sumiko Random AA03) and ⁇ alumina particles (manufactured by Daimei Chemical Co., Ltd., product name: TM-100D) An alumina dispersion was obtained in the same manner as in Example 1 except that 0.5 g was used together. The alumina particles were aggregates, and the average aggregate particle diameter was 400 nm.
  • the ratio P 1 of ⁇ -alumina particles (particles (A)) with high hardness in the particle content is 50% by mass.
  • a coating solution-7 was obtained in the same manner as in Example 1 except that the silica dispersion was used.
  • the volume content of alumina particles was 67% by volume with respect to 100% by volume of the solid content contained in the coating liquid-7.
  • a substrate with an anti-scratch film was obtained in the same manner as in Example 1 except that the coating solution-7 was used instead of the coating solution-1.
  • Example 8 A coating solution-8 was obtained in the same manner as in Example 1 except that the alumina dispersion was not used. Next, a substrate with an anti-scratch film was obtained in the same manner as in Example 1 except that the coating solution-8 was used instead of the coating solution-1.
  • Example 9 Alumina dispersion was not used, but a polysilazane solution (manufactured by AZ Electronic Materials, product name: NL110A-20, SiO 2 solid content concentration: 20% by mass) was used instead of the partial hydrolyzate of tetraethoxysilane. Gave a coating solution-9 in the same manner as in Example 1. Next, a substrate with an anti-scratch film was obtained in the same manner as in Example 1 except that the coating solution-9 was used instead of the coating solution-1.
  • a polysilazane solution manufactured by AZ Electronic Materials, product name: NL110A-20, SiO 2 solid content concentration: 20% by mass
  • Example 10 As a reference, the Martens hardness, initial haze value, and haze value change ⁇ H of the surface of the 3.0 mm thick glass plate (soda lime glass, manufactured by Asahi Glass Co., Ltd.) used in Examples 1 to 9 were measured.
  • Example 11 For reference, the Martens hardness, initial haze value, and haze value change ⁇ H of the surface of a sapphire glass plate having a thickness of 1 mm were measured.
  • Table 1 shows the components used for forming the anti-scratch film, and Table 2 shows the evaluation results of each example.
  • the ratio P 1 in Table 1 the fraction of particles in a particle fraction (A), the ratio P 2 is the ratio of ⁇ -alumina in the coarse fraction.
  • the ratio W 1 is the ratio of the mass of the coarse particles to the total mass of the coarse particles and the base.
  • the Martens hardness in Examples 10 and 11 in Table 2 is the Martens hardness of the glass plate.
  • Example 1 As shown in Tables 1 and 2, in Examples 1 to 4 which are the substrates with an anti-scratch film of the present invention, the initial haze value was low, and excellent transparency was obtained. Moreover, the film hardness was high, the haze value change was small, and excellent scratch resistance was obtained.
  • Example 5 using alumina particles with a small particle size and Mohs hardness of 7
  • Example 6 using silica particles with a Mohs hardness of 7, and mixing high hardness ⁇ alumina particles and low hardness ⁇ alumina particles in half
  • Example 7 the hardness of the scratch-preventing film was insufficient, the change in haze value was large, and the scratch resistance was insufficient.
  • Examples 8 and 9 where no coarse particles were used, the hardness of the anti-scratch film was insufficient, the change in haze value was large, and the scratch resistance was insufficient.
  • Example 12 4 g of transition alumina (manufactured by Daimei Chemical Co., Ltd., product name: TM-100D) was placed in an alumina boat, and fired at 1200 ° C. for 5 hours. The particles after firing were ⁇ -alumina. 4 g of ⁇ -alumina particles after firing were placed in a 100 mL glass container together with 40 g of distilled water and 80 g of zirconia beads (particle size 0.1 mm), and dispersed for 160 hours with a bead mill to obtain a coating solution.
  • transition alumina manufactured by Daimei Chemical Co., Ltd., product name: TM-100D
  • the ⁇ -alumina particles in the coating solution had a Mohs hardness of 9, an average primary particle size of 40 nm, and a proportion of particles having a primary particle size of 30 nm or more was 55% by mass.
  • the ⁇ -alumina particles were aggregates, and the average aggregate particle diameter was 50 nm.
  • a glass plate silica glass, manufactured by Asahi Glass Co., Ltd.
  • the surface was washed with water and dried.
  • the coating liquid was applied onto the surface of the glass plate by spin coating, and then dried in a hot air circulation oven at 150 ° C. for 30 minutes to obtain a substrate with alumina.
  • a polysilazane solution manufactured by AZ Electronic Materials, product name: NL110A-20, SiO 2 solid content concentration: 20% by mass
  • 15 g of xylene were mixed at room temperature to obtain a coating solution for overcoat.
  • the overcoat coating solution on the alumina side surface of the substrate with alumina by spin coating, drying it in a hot air circulation oven at 150 ° C. for 30 minutes, and further baking in a muffle furnace at 600 ° C. for 60 minutes.
  • a substrate with an anti-scratch film was obtained.
  • the thickness of the anti-scratch film in the base with the anti-scratch film was 500 nm.
  • the area content V 2 of ⁇ -alumina particles (coarse particles) having a diameter of 30 nm or more on the cut surface of the scratch preventing film was 53%.
  • Example 13 A coating solution was obtained in the same manner as in Example 12 except that the dispersion time by the bead mill was 80 hours.
  • the ⁇ -alumina particles in the coating solution had a Mohs hardness of 9, an average primary particle size of 70 nm, and a ratio of particles having a primary particle size of 30 nm or more was 100% by mass.
  • the ⁇ -alumina particles were aggregates, and the average aggregate particle diameter was 90 nm.
  • a substrate with an anti-scratch film was obtained in the same manner as in Example 12 except that the obtained coating solution was used.
  • Example 14 A coating solution was obtained in the same manner as in Example 12 except that the dispersion time by the bead mill was 40 hours.
  • the ⁇ -alumina particles in the coating solution had a Mohs hardness of 9, an average primary particle size of 150 nm, and a ratio of particles having a primary particle size of 30 nm or more was 100% by mass.
  • the ⁇ -alumina particles were aggregates, and the average aggregate particle size was 180 nm.
  • a substrate with an anti-scratch film was obtained in the same manner as in Example 12 except that the obtained coating solution was used.
  • Example 15 A coating solution was obtained in the same manner as in Example 12 except that the dispersion time by the bead mill was 20 hours.
  • the ⁇ -alumina particles in the coating solution had a Mohs hardness of 9, an average primary particle size of 300 nm, and a ratio of particles having a primary particle size of 30 nm or more was 100% by mass.
  • the ⁇ -alumina particles were aggregates, and the average aggregate particle diameter was 350 nm.
  • a substrate with an anti-scratch film was obtained in the same manner as in Example 12 except that the obtained coating solution was used.
  • Example 16 A coating solution was obtained in the same manner as in Example 12 except that the dispersion time by the bead mill was 10 hours.
  • the ⁇ -alumina particles in the coating solution had a Mohs hardness of 9, an average primary particle diameter of 500 nm, and a ratio of particles having a primary particle diameter of 30 nm or more was 100% by mass.
  • the ⁇ -alumina particles were aggregates, and the average aggregate particle diameter was 550 nm.
  • a substrate with an anti-scratch film was obtained in the same manner as in Example 12 except that the obtained coating solution was used.
  • Table 3 shows the evaluation results of the anti-scratch films in Examples 12 to 16.
  • Proportion P 1 in Table 3 is the ratio of particles in the particle fraction (A), the ratio P 2, the primary particle size in the coarse fraction is meant the mass ratio of more than ⁇ -alumina particles 30 nm.
  • Examples 12 to 16 which are the substrates with scratch-preventing films of the present invention, the initial haze value was low, and excellent transparency was obtained. Moreover, the film hardness was high, the haze value change was small, and excellent scratch resistance was obtained.
  • the substrate with an anti-scratch film of the present invention is a protective glass for electronic devices such as smartphones (protective glass for display, rear glass, etc.), window glass for transportation devices such as automobiles (rear glass, side window glass, roof glass, etc.) Can be suitably used.

Abstract

 優れた透明性と耐擦傷性を両立でき、かつ低コストである擦傷防止膜付き基体、およびその製造方法の提供。 粒子分およびバインダの前駆体を含む塗布液を基体10上に塗布する工程(I)と、前記塗布液を塗布した基体10を焼成して基体10上に擦傷防止膜12を形成する工程(II)とを有し、前記粒子分は平均一次粒子径が1nm以上の粒子からなり、前記粒子分中の一次粒子径が30nm以上でモース硬度が8以上の粒子(A)の割合が60質量%以上であり、前記粒子分中の一次粒子径が30nm以上である粒子の混合物の屈折率と、前記粒子分中の一次粒子径が30nm未満である粒子(B)および前記バインダの前駆体の混合物を焼成した焼成物の屈折率との差が0.4以下である、擦傷防止膜付き基体1の製造方法。

Description

擦傷防止膜付き基体およびその製造方法
 本発明は、擦傷防止膜付き基体およびその製造方法に関する。
 スマートフォンのディスプレイ等に用いられる保護ガラスにおいては、落下や鋭利な物品との接触により表面に傷が付いて視認性が低下することを防止するために、表面に擦傷防止膜を設けることが提案されている。
 例えば、特許文献1には、ガラス表面に、親水性アルミナ粒子をシリカマトリクス中に分散させた膜を形成して、透明性を確保しつつ耐擦傷性を得ることが開示されている。また、特許文献2には、ガラス等の基体の表面に、凝集粒子の長軸方向の平均粒子径が100~500nmであり、かつ、短軸方向の平均粒子径が2~100nmであるアルミナ粒子をシリカマトリクス中に分散させた膜を形成して耐擦傷性を得ることが開示されている。しかし、特許文献1、2のような膜では、優れた透明性と耐擦傷性を両立することは難しい。これらの膜に使用されるアルミナ粒子は、一次粒子径が小さい。
特開2003-321251号公報 特開2007-63477号公報
 本発明は、優れた透明性と耐擦傷性を両立できる擦傷防止膜付き基体、およびその製造方法を提供することを目的とする。
 本発明は、以下の構成を有する。
 [1]基体上に、粒子分とバインダとを含有する擦傷防止膜を形成する、擦傷防止膜付き基体の製造方法であって、前記粒子分および前記バインダの前駆体を含む塗布液を前記基体上に塗布する工程(I)と、前記塗布液を塗布した前記基体を焼成して前記基体上に前記擦傷防止膜を形成する工程(II)とを有し、前記粒子分は、平均一次粒子径が1nm以上の粒子からなり、かつ一次粒子径が30nm以上である粗粒分を含み、前記粗粒分は、モース硬度が8以上の粒子(A)を含み、前記粒子分中の前記粒子(A)の割合Pが60質量%以上であり、前記粗粒分の屈折率nと、前記粒子分中の一次粒子径が30nm未満である粒子(B)および前記バインダの前駆体の混合物を焼成した焼成物の屈折率nとの差(n-n)が0.4以下である、擦傷防止膜付き基体の製造方法。
 [2]基体上に、粒子分とバインダとを含有する擦傷防止膜を形成する、擦傷防止膜付き基体の製造方法であって、前記粒子分を含む塗布液および前記バインダの前駆体を含む塗布液をそれぞれ前記基体上に塗布する工程(I)と、前記塗布液を塗布した前記基体を焼成して前記基体上に前記擦傷防止膜を形成する工程(II)とを有し、前記粒子分は、平均一次粒子径が1nm以上の粒子からなり、かつ一次粒子径が30nm以上である粗粒分を含み、前記粗粒分は、モース硬度が8以上の粒子(A)を含み、前記粒子分中の前記粒子(A)の割合が60質量%以上であり、前記粒子分中の粗粒分の屈折率と、前記粒子分中の一次粒子径が30nm未満である粒子(B)および前記バインダの前駆体の混合物を焼成した焼成物の屈折率との差が0.4以下である、擦傷防止膜付き基体の製造方法。
 [3]前記粒子(A)がαアルミナ粒子を含む、[1]または[2]の擦傷防止膜付き基体の製造方法。
 [4]前記バインダが、シリカ、アルミナおよびジルコニアからなる群から選ばれる少なくとも1種を含む、[1]~[3]の擦傷防止膜付き基体の製造方法。
 [5]前記工程(II)における焼成温度が150~700℃である、[1]~[4]のいずれかの擦傷防止膜付き基体の製造方法。
 [6]基体と擦傷防止膜とを有する擦傷防止膜付き基体であって、前記擦傷防止膜は、粗粒分とベース分とを含有し、前記粗粒分は、一次粒子径が30nm以上の粒子からなり、かつαアルミナ粒子を含み、前記粗粒分中の前記αアルミナ粒子の割合Pが60質量%以上であり、前記ベース分は、バインダ、またはバインダおよび一次粒子径が30nm未満の粒子(B)を含み、前記擦傷防止膜を膜表面に対して垂直方向に切断した切断面の総面積に対する、該切断面での直径が30nm以上のαアルミナ粒子の面積含有率をV(%)としたとき、前記擦傷防止膜の屈折率nが下式(1)の条件を満たす、擦傷防止膜付き基体。
  0.37×V/100+1.35≦n≦0.22×V/100+1.50 ・・・(1)
 [7]基体と擦傷防止膜とを有する擦傷防止膜付き基体であって、前記擦傷防止膜は、粗粒分とベース分とを含有し、前記粗粒分は、一次粒子径が30nm以上の粒子からなり、前記ベース分は、バインダ、またはバインダおよび一次粒子径が30nm未満の粒子(B)を含み、前記粗粒分の屈折率と前記擦傷防止膜の屈折率との差が0.3以下であり、前記擦傷防止膜のマルテンス硬度が3800N/mm以上である、擦傷防止膜付き基体。
 [8]前記粗粒分は、αアルミナ粒子を含み、前記粗粒分中の前記αアルミナ粒子の割合が60質量%以上である、[7]の擦傷防止膜付き基体。
 [9]前記基体がガラス基体である、[6]~[8]のいずれかの擦傷防止膜付き基体。
 [10]前記粗粒分と前記ベース分の合計質量に対する前記粗粒分の質量の割合が30~90質量%である、[6]~[9]のいずれかの擦傷防止膜付き基体。
 [11]前記擦傷防止膜を膜表面に対して垂直方向に切断した切断面における、前記粗粒分と前記ベース分の合計面積に対する、該切断面での直径が30nm以上の粗粒分の面積含有率Vが19~83%である、[6]~[10]のいずれかの擦傷防止膜付き基体。
 [12]前記バインダが、シリカ、アルミナおよびジルコニアからなる群から選ばれる少なくとも1種を含む、[6]~[11]のいずれかの擦傷防止膜付き基体。
 [13]前記擦傷防止膜の厚さが100~3000nmである、[6]~[12]のいずれかの擦傷防止膜付き基体。
 [14]前記[6]~[13]のいずれかの擦傷防止膜付き基体の製造方法であって、下記工程(i-1)および(ii-1)を有する擦傷防止膜付き基体の製造方法。
 (i-1)前記粗粒分および前記バインダの前駆体を含む塗布液、または前記粗粒分、前記バインダの前駆体および前記粒子(B)を含む塗布液を前記基体上に塗布する工程。
 (ii-1)前記塗布液を塗布した基体を焼成して前記基体上に前記擦傷防止膜を形成する工程。
 [15]前記[6]~[13]のいずれかの擦傷防止膜付き基体の製造方法であって、下記工程(i-2)、(ii-2)および(iii-2)を有する擦傷防止膜付き基体の製造方法。
 (i-2)前記粗粒分を含む塗布液、または前記粗粒分および前記粒子(B)を含む塗布液を前記基体上に塗布する工程。
 (ii-2)前記工程(i-2)の後、前記バインダの前駆体を含む塗布液を前記基体上に塗布する工程。
 (iii-2)前記工程(ii-2)後の塗布液を塗布した基体を焼成して前記基体上に前記擦傷防止膜を形成する工程。
 [16]前記の塗布液を塗布した基体を焼成するときの焼成温度が150~700℃である、[14]または[15]の擦傷防止膜付き基体の製造方法。
 本発明の擦傷防止膜付き基体は、優れた透明性と耐擦傷性を両立でき、かつ低コストである。
 本発明の擦傷防止膜付き基体の製造方法によれば、優れた透明性と耐擦傷性が両立された擦傷防止膜付き基体を低コストに製造できる。
本発明の擦傷防止膜付き基体の一例を示した断面図である。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「粒子の一次粒子径」とは、透過型電子顕微鏡あるいは走査型電子顕微鏡による観察により測定した一次粒子の最大径を意味する。
 「粒子の平均一次粒子径」とは、100個の一次粒子の粒子径の平均値を意味する。
 「平均凝集粒子径」とは、一次粒子の凝集体の径の平均値であり、光散乱法により測定した凝集体の最大径の平均値を意味する。
 「粒子分」は、平均一次粒子径が1nm以上の粒子からなり、「粗粒分」は、一次粒子径が30nm以上の粒子からなる。「ベース分」は、少なくともバインダを含有し、粗粒分を含有しないが、粒子径が30nm未満の粒子を含有することがある。
 「面積含有率V」は、擦傷防止膜を膜表面に対して垂直方向に切断した任意の切断面について走査型電子顕微鏡(SEM)により観察した断面写真において、直径30nm以上の粗粒分の面積を擦傷防止膜の面積(粗粒分とベース分の合計面積)で除することで求めた割合を意味する。
 「面積含有率V」は、擦傷防止膜を膜表面に対して垂直方向に切断した任意の切断面について走査型電子顕微鏡により観察した断面写真において、直径30nm以上のαアルミナ粒子の面積を擦傷防止膜の面積で除することで求めた割合を意味する。ただし、αアルミナ粒子の面積を求めるにあたっては、走査型電子顕微鏡観察と合わせて元素分析を行うことでアルミナ粒子を同定する。
 「マルテンス硬度」は、擦傷防止膜に圧子を押しつけ、その圧痕の深さから求められる硬度であり、微小硬さ試験装置を用いてインデンテーション測定を解析することで求められる硬さである。本明細書では、微小硬さ試験機にビッカース角錐圧子を装着し、負荷速度を0.05mN/10s、クリープを5s、除荷速度を0.05mN/10sとして得られる荷重/進入深さ曲線から求められる値をいう。
[擦傷防止膜付き基体の製造方法]
 本発明の擦傷防止膜付き基体の製造方法は、基体上に、粒子分とバインダとを含有する擦傷防止膜が形成された擦傷防止膜付き基体を製造する方法である。本発明の擦傷防止膜付き基体の製造方法は、下記の工程(I)および(II)を有する。
 (I)粒子分およびバインダの前駆体を含む塗布液を基体上に塗布する工程。または、前記粒子分を含む塗布液および前記バインダの前駆体を含む溶液をそれぞれ基体上に塗布する工程。
 (II)塗布液を塗布した基体を焼成して前記基体上に前記擦傷防止膜を形成する工程。
(工程(I))
 工程(I)では、粒子分およびバインダの前駆体を含む塗布液を基体上に塗布する、または前記粒子分を含む塗布液および前記バインダの前駆体を含む溶液をそれぞれ基体上に塗布する。工程(I)では、塗布液として、下記態様(a)~(c)のいずれを採用してもよい。
 (a)粒子分とバインダの前駆体の両方を含む塗布液を調製して基体上に塗布する態様。
 (b)粒子分を含み、バインダの前駆体を含まない塗布液と、バインダの前駆体を含み、粒子分を含まない塗布液をそれぞれ調製し、それぞれの塗布液を同時に、または別々に基体上に塗布する態様。
 (c)粒子分の一部を含み、バインダの前駆体を含まない塗布液と、粒子分の残部およびバインダの前駆体を含む塗布液をそれぞれ調製し、それぞれの塗布液を同時に、または別々に基体上に塗布する態様。
 態様(b)、(c)の場合は、バインダの前駆体を含まない塗布液を塗布した後に、バインダの前駆体を含む塗布液を塗布することが好ましい。
 塗布液を基体上に塗布する方法としては、公知の塗布方法を採用できる。例えば、ローラー塗布、刷毛塗り、フローコート、バーコート、ダイコート、グラビア印刷、スクリーン印刷、リバースコート、ロールコート、スプレーコート、ディップコート等が挙げられる。
<塗布液>
 態様(a):
 態様(a)の場合は、例えば、バインダの前駆体の溶媒に粒子分を分散させて分散液を得た後、該分散液にバインダの前駆体を加えて塗布液とするのが好ましい。
 バインダの前駆体の溶媒としては、バインダの前駆体の種類に応じて公知の溶媒を使用できる。具体的には、例えば、バインダの前駆体が金属アルコキシドの加水分解重縮合物の場合、溶媒としては、アセトン、メタノール、エタノール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、N-メチルピロリドン、テトラヒドロフラン等が挙げられる。また、バインダの前駆体がポリシラザンの場合、溶媒としては、トルエン、キシレン、ジブチルエーテル等が挙げられる。
 態様(b):
 態様(b)の場合は、例えば、粒子分を分散媒中に分散させて分散液からなる塗布液とし、別途バインダの前駆体を溶媒に溶解して塗布液とするのが好ましい。
 分散媒としては、例えば、水や、アセトン、メタノール、エタノール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、N-メチルピロリドン、テトラヒドロフラン、キシレン等の有機溶剤等が挙げられる。
 態様(c):
 態様(c)の場合、粒子分の残部およびバインダの前駆体を含む塗布液は、バインダの前駆体を溶解する溶媒に粒子分の残部を分散させて分散液を得た後、該分散液にバインダの前駆体を加えて調製するのが好ましい。
 態様(a)~(c)における分散液の固形分濃度は、0.1~30質量%が好ましく、1~20質量%がより好ましい。分散液の固形分濃度が上限値以下であれば、分散液の安定性が高くなる。
 バインダの前駆体を含む塗布液の固形分濃度は、0.1~30質量%が好ましく、1~20質量%がより好ましい。塗布液の固形分濃度が上限値以下であれば、塗布液の安定性が高くなる。
 塗布液中のバインダの前駆体の合計質量は、酸化物換算量で、粒子分の合計質量に対して0.1~10倍が好ましく、0.5~3倍がより好ましい。バインダの前駆体の合計質量が下限値以上であれば、基体との密着力が高い擦傷防止膜を形成しやすい。バインダの前駆体の合計質量が上限値以下であれば、高硬度で耐擦傷性に優れた擦傷防止膜を形成しやすい。
 ≪粒子分≫
 粒子分は、平均一次粒子径が1nm以上の粒子からなる。また、粒子分は、一次粒子径が30nm以上の粗粒分を含む。粗粒分は、モース硬度が8以上の粒子(A)を含む。粒子分中の粒子(A)の割合は、耐擦傷性が高くなるために60質量%以上が好ましい。
 粒子分に含まれる粒子の形状は、特に限定されず、例えば、球形、卵形、紡錘形、無定型、鎖状形状、針状、円柱形、棒状、偏平状、鱗片状、葉状、チューブ状、シート状、あるいはこれらの形状が組み合わされた形状等が挙げられる。なかでも、擦傷防止膜中の粒子密度を高くしやすく、優れた耐擦傷性が得られやすい点から、粒子形状は、球形、卵形、紡錘形、無定型が好ましい。
 粒子分の平均一次粒子径は、1nm以上であり、30~1000nmが好ましく、30~500nmがより好ましく、30~400nmがさらに好ましく、50~200nmが特に好ましい。粒子分の平均一次粒子径が前記下限値以上であれば、擦傷防止膜の表面に高硬度の粒子(A)が露出することで膜の硬度が高くなり、優れた耐擦傷性が得られる。粒子分の平均一次粒径が上限値以下であれば、透明性に優れた擦傷防止膜を形成しやすい。
 粒子分は、擦傷防止膜中で凝集していてもよい。この場合、粒子分が凝集していない場合に比べて擦傷防止膜の透明性が低下する傾向がある。粒子分の平均凝集粒子径は、30~2000nmが好ましく、30~800nmがより好ましく、40~500nmがさらに好ましく、60~400nmが特に好ましい。
 粒子分に含まれる粒子(A)の一次粒子径は、30nm以上であり、40nm以上が好ましく、50nm以上がより好ましい。粒子(A)の一次粒子径が前記下限値以上であれば、膜の硬度が高くなり、優れた耐擦傷性が得られる。
 粒子(A)の一次粒子径の上限値は、透明性の点から、1000nmが好ましく、500nmがより好ましく、400nm以下がさらに好ましく、200nm以下が特に好ましい。
 粒子(A)としては、例えば、モース硬度試験において硬度7の石英を傷付けることができる物質、すなわち、モース硬度が8以上の物質を、一次粒子径が30nm以上の粒子状態に加工したものが挙げられる。
 粒子(A)の具体例としては、例えば、ジルコニア粒子、オスミウム粒子、トパーズ粒子、タングステンカーバイド粒子、ホウ化ジルコニウム粒子、αアルミナ粒子、窒化チタン粒子、炭化タングステン粒子、炭化タンタル粒子、炭化ジルコニム粒子、クロム粒子、炭化ケイ素粒子、ホウ化アルミニウム粒子、炭化ホウ素粒子、ダイヤモンド粒子等が挙げられる。なかでも、透明性の点から、ジルコニア粒子、αアルミナ粒子、ダイヤモンド粒子が好ましく、αアルミナ粒子がより好ましい。
 粒子(A)は、αアルミナ粒子を含むことが好ましく、αアルミナ粒子のみからなることがより好ましい。
 粒子(A)は、1種であってもよく、2種以上であってもよい。
 粒子分における粒子(A)以外の粒子としては、一次粒子径が30nm未満の粒子(B)、一次粒子径が30nm以上で、かつモース硬度が8未満の粒子(C)が挙げられる。
 粒子(B)としては、例えば、粒子(A)で挙げた粒子の一次粒子径が30nm未満の粒子が挙げられる。粒子(B)は、モース硬度8以上の粒子であってもよく、モース硬度8未満の粒子であってもよい。
 粒子(B)としては、擦傷防止膜の屈折率調整が容易になりヘーズが低くなる点では、酸化チタン粒子が好ましい。擦傷防止膜に帯電防止性能を付与しやすい点では、錫ドープ酸化インジウム粒子、錫ドープ酸化アンチモン粒子、酸化錫粒子、金属粒子(金粒子、銀粒子等)、窒化アルミニウム粒子が好ましく、錫ドープ酸化インジウム粒子、錫ドープ酸化アンチモン粒子、酸化錫粒子がより好ましい。擦傷防止膜の紫外線吸収性調整が容易になり紫外線吸収性能を付与しやすい点では、酸化チタン粒子、酸化亜鉛粒子、酸化セリウム粒子が好ましい。擦傷防止膜の赤外線吸収性調整が容易になり赤外線吸収性能を付与する点では、錫ドープ酸化インジウム粒子、錫ドープ酸化アンチモン粒子、タングステン酸セシウム粒子が好ましい。擦傷防止膜の光触媒活性調整が容易になり親水化性能を付与しやすい点では、酸化チタン粒子、酸化亜鉛粒子、酸化ニオブ粒子等の光触媒活性を有する粒子が好ましい。
 また、擦傷防止膜の空隙率調整が容易になり断熱性能を付与しやすい点では、粒子(B)は、中空粒子であることが好ましい。
 粒子(B)は、1種であってもよく、2種以上であってもよい。
 粒子(C)としては、例えば、シリカ粒子、酸化チタン粒子、石英粒子等が挙げられる。擦傷防止膜に帯電防止性能を付与しやすい点では、錫ドープ酸化インジウム粒子、錫ドープ酸化アンチモン粒子、酸化錫粒子、金属粒子(金粒子、銀粒子等)、窒化アルミニウム粒子が好ましく、錫ドープ酸化インジウム粒子、錫ドープ酸化アンチモン粒子、酸化錫粒子がさらに好ましい。擦傷防止膜の紫外線吸収性調整が容易になり紫外線吸収性能を付与しやすい点では、酸化チタン粒子、酸化亜鉛粒子、酸化セリウム粒子が好ましい。擦傷防止膜の赤外線吸収性調整が容易になり赤外線吸収性能を付与する点では、錫ドープ酸化インジウム粒子、錫ドープ酸化アンチモン粒子、タングステン酸セシウム粒子が好ましい。擦傷防止膜の光触媒活性調整が容易になり親水化性能を付与しやすい点では、酸化チタン粒子、酸化亜鉛粒子、酸化ニオブ粒子等の光触媒活性を有する粒子が好ましい。
 また、擦傷防止膜の空隙率調整が容易になり断熱性能を付与しやすい点では、粒子(C)は、中空粒子であることが好ましい。粒子(C)は、1種であってもよく、2種以上であってもよい。
 粒子分は、粒子(A)のみからなる成分であってもよく、粒子(A)と、粒子(B)および粒子(C)のいずれか一方または両方とからなる成分であってもよい。
 粒子分(100質量%)中の粒子(A)の割合Pは、60質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%が特に好ましい。割合Pが前記下限値以上であれば、優れた耐擦傷性が得られる。
 ≪バインダの前駆体≫
 バインダの前駆体としては、Si、Al、Ti、Zr、Taの原子に加水分解性基が結合した加水分解縮合性化合物が好ましい。加水分解性基としては、アルコキシ基、イソシアネート基、アシルオキシ基、アミノキシ基、ハロゲン基等が挙げられる。
 加水分解縮合性化合物としては、金属アルコキシド、金属アルコキシドの加水分解重縮合物、ポリシラザン、ポリシラザンの加水分解重縮合物等が挙げられる。
 金属アルコキシドとしては、ケイ酸アルコキシドが好ましく、テトラエトキシシラン、テトラメトキシシラン等のシリコンテトラアルコシドがより好ましい。ケイ酸アルコキシド以外の金属アルコキシドとしては、例えば、アルミニウムトリアルコキシド(トリメトキシアルミニウム等)、チタンテトラアルコシキド(チタンテトライソプロポキシド等)、ジルコニウムテトラアルコシキド(ジルコニウムテトラエトキシド等)が挙げられる。
 また、加水分解縮合性化合物としては、テトライソシアネートシラン等も挙げられる。
 加水分解縮合性化合物は、加水分解性基の他にアルキル基、アルケニル基、アリール基、ビニル基、エポキシ基、ペルフルオロポリエーテル基、ペルフルオロアルキル基等の有機基を有していてもよい。有機基の数は1~2個が好ましい。
 有機基を有する加水分解縮合性化合物としては、例えば、アルキルアルコキシシラン(メチルトリメトキシシラン、メチルトリエトキシシラン等)、ジアルキルアルコキシシラン(ジメチルジメトキシシラン、ジメチルジエトキシシラン等)、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、ペルフルオロポリエーテルトリエトキシシラン、ペルフルオロエチルトリエトキシシラン等が挙げられる。
 金属アルコキシドの加水分解重縮合物としては、例えば、金属アルコキシドの硝酸部分加水分解物等が挙げられる。
 ポリシラザンとしては、例えば、市販の無機シラザンコーティング材等が挙げられる。
 本発明の擦傷防止膜付き基体の製造方法の前記した工程(I)では、粒子分として、粒子(A)、粒子(B)および粒子(C)を含んでいてもよい。そして、この場合、工程(I)では、粒子分中の粒子(A)と粒子(C)の混合物、すなわち粗粒分の屈折率nと、粒子(B)とバインダの前駆体を焼成した焼成物の屈折率nとの差(n-n)を0.4以下に制御することが好ましい。前記差(n-n)が0.4以下であれば、優れた透明性と耐擦傷性を両立できる。前記差(n-n)は、0.35以下が好ましく、0.3以下がより好ましい。
 差(n-n)は、使用する粒子分およびバインダの前駆体の種類によって調節できる。
 工程(I)では、粒子分中の粒子(A)と粒子(C)の混合物、すなわち粗粒分の屈折率nと、得られる擦傷防止膜の屈折率nとの差(n-n)を0.3以下に制御することが好ましい。前記差(n-n)が0.3以下であれば、優れた透明性と耐擦傷性を両立できる。前記差(n-n)は、0.25以下が好ましく、0.2以下がより好ましい。
 差(n-n)は、使用する粒子分およびバインダの前駆体の種類によって調節できる。
 ≪界面活性剤≫
 塗布液は、粒子分およびバインダの前駆体の他に、界面活性剤を含んでもよい。塗布液が界面活性剤を含むことで、基体への濡れ性が向上する。
 界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤のいずれも使用できる。
 界面活性剤としては、-CHCHO-、-SO-、-NR-(Rは水素原子または有機基)、-NH-、-SOY、-COOY(Yは水素原子、ナトリウム原子、カリウム原子またはアンモニウムイオン)で表される基を有するノニオン性界面活性剤が好ましい。
 ノニオン性界面活性剤としては、例えば、アルキルポリオキシエチレンエーテル、アルキルポリオキシエチレン-ポリプロピレンエーテル、脂肪酸ポリオキシエチレンエステル、脂肪酸ポリオキシエチレンソルビタンエステル、脂肪酸ポリオキシエチレンソルビトールエステル、アルキルポリオキシエチレンアミン、アルキルポリオキシエチレンアミド、ポリエーテル変性のシリコーン系界面活性剤等が挙げられる。
 ≪他の成分≫
 また、塗布液は、前記界面活性剤の他にも各種塗料用配合剤を含んでもよい。例えば、ハードコート、着色、導電、帯電防止、偏光、光遮蔽、防汚、防曇、光触媒、抗菌、蓄光、電池、屈折率制御、撥水、撥油、指紋除去、滑り性等の機能を付与する1種または2種以上の公知の配合剤を含んでもよい。
 また、塗布液は、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤等を含有してもよい。
<基体>
 基体としては、特に限定されず、透明基体であってもよく、不透明な基体であってもよい。透明基体は、JIS K-7150の規格におけるヘーズ値が5%以下の基体であり、ヘーズ値が2%以下であることが好ましく、1%以下であることがより好ましい。
 透明基体としては、例えば、ガラス基体(ガラス板等)が挙げられる。
 不透明な基体としては、例えば、金属、セラミックス、不透明樹脂等が挙げられる。
 基体の形状は、特に限定されない。基体の形状としては、例えば、板状が挙げられ、湾曲していてもよい。
 また、基体の大きさも特に限定されない。
 塗布液を塗布する前には、擦傷防止膜の密着性をより高める目的で、基体に対して、プラズマ処理、コロナ処理、UV処理、オゾン処理等の放電処理、水、酸やアルカリ等の化学処理、または研磨剤を用いた物理的処理を施してもよい。
(工程(II))
 塗布液を塗布した基体に対して、必要に応じて乾燥した後に焼成して擦傷防止膜を形成する。
 乾燥方法は、特に限定されず、例えば、熱風乾燥、真空乾燥等が挙げられる。乾燥温度は、100~250℃が好ましく、120~200℃がより好ましい。
 乾燥時間は、1~60分間が好ましい。
 焼成方法は、特に限定されず、例えば、マッフル炉を用いる方法等が挙げられる。
 焼成温度は、150~700℃が好ましく、200~600℃がより好ましい。焼成温度が下限値以上であれば、加水分解縮合性化合物が酸化物に充分に変換され、強固な擦傷防止膜が得られやすい。焼成温度が上限値以下であれば、熱による基体の変形などを抑制することができる。
 焼成時間は、1~300分間が好ましく、10~120分間がより好ましい。
 また、擦傷防止膜の機械的強度を高める目的で、必要に応じて、焼成前または焼成後に、擦傷防止膜に紫外線や電子線等を照射してもよい。
(作用効果)
 本発明の擦傷防止膜付き基体の製造方法においては、一次粒子径が30nm以上でモース硬度8以上の粒子(A)を特定の比率で含む、平均一次粒子径が1nm以上の粒子分を用いるため、基体上に高硬度な擦傷防止膜が形成される。また、膜表面に粒子(A)が予め露出しているか、または露出していなくても膜表面が擦れた際に容易に粒子(A)が露出することで、膜表面に傷が付きにくく、優れた耐擦傷性が得られる。
 また、本発明の擦傷防止膜付き基体の製造方法においては、粒子分中の粗粒分の屈折率nを制御しているため、優れた透明性を有する擦傷防止膜付き基体が得られる。
[擦傷防止膜付き基体]
 以下、本発明の擦傷防止膜付き基体の一例を示して説明する。
 本実施形態の擦傷防止膜付き基体1は、図1に示すように、板状の基体10上に、擦傷防止膜12が形成されたものである。
(基体)
 基体10としては、特に限定されず、透明基体であってもよく、不透明な基体であってもよい。基体としては、例えば、前記したものが挙げられ、ガラス基体が好ましい。
(擦傷防止膜)
 擦傷防止膜12は、粗粒分と、ベース分とを含有する膜である。
<粗粒分>
 粗粒分は、一次粒子径が30nm以上の粒子からなり、モース硬度が8以上の粒子(A)を含むことが好ましい。粒子(A)は、αアルミナ粒子を含むことが好ましい。粗粒分(100質量%)中のαアルミナ粒子の割合Pは、60質量%以上が好ましい。
 粗粒分がαアルミナ粒子を含む場合において、粗粒分は、αアルミナ粒子のみからなる成分であってもよく、αアルミナ粒子以外の粒子(A)および粒子(C)のいずれか一方または両方をさらに含む成分であってもよい。
 粗粒分は、αアルミナ粒子のみからなる成分であることが好ましい。
 粗粒分に含まれる粒子の一次粒子径は、30nm以上であり、40nm以上が好ましく、50nm以上がより好ましい。該粒子の一次粒子径が前記下限値以上であれば、擦傷防止膜12の硬度が高くなり、優れた耐擦傷性が得られる。
 粗粒分に含まれる粒子の一次粒子径の上限値は、透明性の点から、1000nmが好ましく、500nmがより好ましく、400nm以下がさらに好ましく、200nm以下が特に好ましい。
 粗粒分の平均一次粒径は、30~1000nmが好ましく、30~500nmがより好ましく、30~400nmがさらに好ましく、50~200nmが特に好ましい。粗粒分の平均一次粒子径が下限値以上であれば、擦傷防止膜12の表面にαアルミナ粒子等の粒子(A)が露出することで膜硬度が高くなり、耐擦傷性に優れた擦傷防止膜12を形成しやすい。粗粒分の平均一次粒子径が上限値以下であれば、透明性に優れた擦傷防止膜12を形成しやすい。
 また、粗粒分は、擦傷防止膜12中で凝集していてもよい。この場合、粗粒分が凝集していない場合に比べて擦傷防止膜12の透明性が低下する傾向がある。粗粒分の平均凝集粒子径は、30~2000nmが好ましく、30~800nmがより好ましく、40~500nmがさらに好ましく、60~400nmが特に好ましい。
 粗粒分(100質量%)中のαアルミナ粒子の割合Pは、60質量%以上であり、70質量%以上が好ましく、90質量%以上がより好ましく、100質量%が特に好ましい。割合Pが前記下限値以上であれば、優れた耐擦傷性が得られる。
 粗粒分の屈折率n(すなわち、粒子(A)の屈折率n、または粒子(A)と粒子(C)の混合物の屈折率n)は、擦傷防止膜の屈折率nとの差(n-n)が0.3以下に制御されることが好ましい。前記差(n-n)が0.3以下であれば、優れた透明性と耐擦傷性を両立できる。前記差(n-n)は、0.25以下が好ましく、0.2以下がより好ましい。
<ベース分>
 ベース分は、バインダ、またはバインダおよび一次粒子径が30nm未満の粒子(B)を含む成分である。なお、粗粒分と粒子(B)とを合わせたものが前記した粒子分である。
 バインダとしては、粗粒分および必要に応じて用いる粒子(B)を含みつつ基体表面に接着して膜を形成できるものであればよく、例えば、無機物が挙げられ、酸化物を主成分とする酸化物系マトリクスが好ましい。酸化物を主成分とするとは、酸化物の割合がマトリクス(100質量%)のうち90質量%以上であることを意味する。
 バインダに用いる酸化物としては、例えば、ケイ素酸化物、アルミニウム酸化物、チタン酸化物、ジルコニウム酸化物、タンタル酸化物、スズ酸化物等が挙げられる。
 酸化物系マトリクスとしては、実質的に酸化物からなるものが好ましい。実質的に酸化物からなるとは、不可避不純物を除いて酸化物のみから構成されていることを意味する。
 酸化物系マトリクスは、酸化物以外の成分を少量含んでもよい。該成分としては、例えば、金属イオン(Li、Na、Mg2+、K等)等が挙げられる。
 酸化物系マトリクスとしては、前駆体である加水分解縮合性化合物の焼成物であることが好ましい。
 バインダとしては、所望の屈折率が得られ、またヘーズが低くなる点から、シリカ、アルミナおよびジルコニアからなる群から選ばれる少なくとも1種を主成分とする酸化物系マトリクスが好ましく、シリカ、アルミナおよびジルコニアからなる群から選ばれる少なくとも1種であることが特に好ましい。

 バインダは、1種を単独で使用してもよく、2種以上を併用してもよい。
 ベース分は、バインダのみからなる成分であってもよく、バインダと粒子(B)とからなる成分であってもよい。
 ベース分(100質量%)中のバインダの割合は、50~100質量%が好ましく、60~100質量%がより好ましい。前記バインダの割合が下限値以上であれば、基体10と擦傷防止膜12との密着力が高くなる。
 擦傷防止膜12の屈折率nは、擦傷防止膜12を膜表面に対して垂直方向に切断した切断面の総面積に対する、該切断面での直径が30nm以上のαアルミナ粒子の面積含有率をV(%)としたとき、下式(1)の条件を満たすことが好ましく、下式(2)の条件を満たすことがより好ましい。
 0.37×V/100+1.35≦n≦0.22×V/100+1.50 ・・・(1)
 0.34×V/100+1.38≦n≦0.24×V/100+1.48 ・・・(2)
 擦傷防止膜12の屈折率nが前記範囲であれば、反射率が低く、視認性が高い。
 使用する粗粒分、ベース分を形成する粒子(B)およびバインダの前駆体の種類および比率によって、擦傷防止膜12の屈折率nを前記範囲に制御でき、擦傷防止膜12に様々な機能を付加することができる。
 擦傷防止膜12を膜表面に対して垂直方向に切断した切断面における、粗粒分とベース分の合計面積に対する、該切断面での直径が30nm以上の粗粒分の面積含有率Vは、19~83%が好ましく、27~69%がより好ましい。前記面積含有率Vが下限値以上であれば、高い擦傷防止効果が得られやすい。前記面積含有率Vが上限値以下であれば、基体10と擦傷防止膜12との密着力が高くなる。
 擦傷防止膜12中の粗粒分とベース分の合計質量に対する粗粒分の割合Wは、30~90質量%が好ましく、40~80質量%がより好ましい。前記割合Wが下限値以上であれば、高い擦傷防止効果が得られやすい。前記割合Wが上限値以下であれば、基体10と擦傷防止膜12との密着力が高くなる。
 擦傷防止膜12(100質量%)中の粗粒分とベース分を合計した割合は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。前記粗粒分とベース分を合計した割合の上限値は100質量%である。
 擦傷防止膜12の厚さは、100~3000nmが好ましく、200~2000nmがより好ましく、300~1000nmがさらに好ましい。擦傷防止膜12の厚さが下限値以上であれば、優れた耐擦傷性を得やすい。擦傷防止膜12の厚さが上限値以下であれば、優れた透明性を得やすい。
 なお、擦傷防止膜の厚さは、平均厚さを意味し、擦傷防止膜の断面の顕微鏡観察により測定するか、または触針式膜厚計を用いて測定した5箇所の測定値の平均を意味する。
 擦傷防止膜12のマルテンス硬度は、3800N/mm以上が好ましく、4500N/mm以上がより好ましく、5500N/mm以上がさらに好ましい。また、擦傷防止膜12のマルテンス硬度は、典型的には10000N/mm以下である。
(製造方法)
 擦傷防止膜付き基体1のような態様の擦傷防止膜付き基体の製造方法としては、例えば、下記の方法(1)および方法(2)が挙げられる。
 (1)粗粒分およびバインダの前駆体の両方を含む塗布液を用いる方法。
 (2)粗粒分を含む塗布液と、バインダの前駆体を含む塗布液をそれぞれ用いる方法。
 以下、方法(1)と方法(2)についてそれぞれ説明する。
<方法(1)>
 方法(1)は、下記工程(i-1)および(ii-1)を有する。
 (i-1)粗粒分およびバインダの前駆体を含む塗布液、または粗粒分、バインダの前駆体および粒子(B)を含む塗布液を基体上に塗布する工程。
 (ii-1)前記塗布液を塗布した基体を焼成して、基体上に擦傷防止膜を形成する工程。
 ≪工程(i-1)≫
 塗布液が粒子(B)を含まない場合、粗粒分が前記した粒子分である。塗布液が粒子(B)を含む場合、粗粒分と粒子(B)を合わせたものが粒子分である。
 工程(i-1)では、前記した工程(I)で説明したように、粒子(B)を用いない場合、例えば、バインダの前駆体の溶媒に粗粒分を分散させて分散液を得た後、該分散液にバインダの前駆体を加えて塗布液とし、公知の方法で基体上に塗布する。粒子(B)を用いる場合は、例えば、バインダの前駆体の溶媒に粗粒分および粒子(B)を分散させて分散液を得た後、該分散液にバインダの前駆体を加えて塗布液とし、公知の方法で基体上に塗布する。
 使用する粗粒分、粒子(B)およびバインダの前駆体の種類および比率によって、擦傷防止膜12の屈折率nを前記範囲に制御できる。
 ≪工程(ii-1)≫
 工程(ii-1)は、前記した工程(II)と同様である。
<方法(2)>
 方法(2)は、下記工程(i-2)、(ii-2)および(iii-2)を有する。
 (i-2)粗粒分を含む塗布液、または粗粒分および粒子(B)を含む塗布液を基体上に塗布する工程。
 (ii-2)前記工程(i-2)の後、バインダの前駆体を含む塗布液を基体上に塗布する工程。
 (iii-2)前記工程(ii-2)後の塗布液を塗布した基体を焼成して、基体上に擦傷防止膜を形成する工程。
 ≪工程(i-2)≫
 工程(i-2)では、前記した工程(I)で説明したように、粒子(B)を用いない場合は、粗粒分を分散媒中に分散させて塗布液とし、公知の方法で基体上に塗布する。また、粒子(B)を用いる場合は、粗粒分および粒子(B)を分散媒中に分散させて塗布液とし、公知の方法で基体上に塗布する。
 ≪工程(ii-2)≫
 工程(ii-2)では、前記した工程(I)で説明したように、バインダの前駆体を溶媒に溶解して塗布液とし、公知の方法で基体上に塗布する。
 ≪工程(iii-2)≫
 工程(iii-2)は、前記した工程(II)と同様である。
(作用効果)
 擦傷防止膜付き基体1のようなモース硬度の高いαアルミナ等の粒子を必須とする態様の擦傷防止膜付き基体では、擦傷防止膜が粒子を含むため、擦傷防止膜が高硬度である。また、膜表面に粒子が予め露出しているか、または露出していなくても膜表面が擦れた際に容易に粒子が露出することで、他の物品が擦傷防止膜に接触する際に粒子と接するため、膜表面に傷が付きにくく、優れた耐擦傷性が得られる。また、該擦傷防止膜付き基体は、より優れた耐擦傷性が得られる点から、方法(1)で製造されたものよりも方法(2)で製造されたものの方が好ましい。
 また、該擦傷防止膜付き基体では、擦傷防止膜の屈折率nを特定の範囲に制御しているため、優れた透明性も得られる。
 なお、本発明の擦傷防止膜付き基体は、前記した擦傷防止膜付き基体1には限定されない。例えば、本発明の擦傷防止膜付き基体は、基体の両面に擦傷防止膜を有するものであってもよい。
 以下、実施例によって本発明を詳細に説明するが、本発明は、以下の記載によっては限定されない。例1~4、例12~16は、実施例、例5~9は、比較例、例10および11は、参考例である。
[結晶相]
 各例で得られた焼成後粒子の結晶相は、X線回折装置(Rigaku社製、TTR-III)で同定した。
[面積含有率]
 形成された擦傷防止膜を膜表面に対して垂直方向に切断した切断面における、前記粗粒分と前記ベース分の合計面積に対する、該切断面での直径が30nm以上の粗粒分の面積含有率Vは、以下の方法で求めた。
 集束イオンビーム装置により擦傷防止膜の任意の断面を切り出し、その断面を走査型電子顕微鏡による観察した断面写真(5μm×5μm)において、直径が30nm以上の粗粒分の面積を擦傷防止膜の面積で除して算出した。
[モース硬度]
 粒子のモース硬度は、その物質の結晶が示す値とした。
[マルテンス硬度]
 各例で得られた擦傷防止膜付き基体における擦傷防止膜のマルテンス硬度(N/mm)を、インデンテーション試験装置(フィッシャー社製、ピコデンターHM500)を用いて測定した。
[ヘーズ値]
 各例で得られた擦傷防止膜付き基体について、ヘーズメーター(BYKガードナー社製、ヘイズガード プラス)を用いて、初期ヘーズ値(H)を測定した。また、テーバー試験によるヘーズ値変化(△H)を測定した。テーバー試験は、テーバー摩耗試験機(テーバーインダストリーズ社製、テーバー・アブレーザー5130)を用い、CS10F摩耗輪により、荷重500g、回転数1000回の条件で行った。
[屈折率]
 各例で得られた擦傷防止膜付き基体における擦傷防止膜の屈折率nを、反射分光膜厚評価装置(大塚電子社製、FE3000)を用いて測定した。
 粒子(A)と粒子(C)の混合物の屈折率n、粒子(B)とバインダの前駆体を焼成した焼成膜の屈折率nは、以下の方法で測定した。
 具体的には、屈折率nについては粒子(A)と粒子(C)の混合物を屈折率基準液(島津製作所社製、屈折率評価用接触液)と混合することによって分散液を作製した。ガラス基板上にこの分散液を塗布し、塗布膜のヘーズ値を測定し、ヘーズ値が最も小さくなる分散液に使用した屈折率基準液の屈折率を粒子(A)と粒子(C)の混合物の屈折率とした。
 粒子(B)とバインダの前駆体を焼成した焼成膜の屈折率nは、バインダ前駆体をガラス基板に塗布し、焼成することによって焼成膜を形成し、反射分光膜厚評価装置(大塚電子社製、FE3000)を用いることで測定した。
[膜厚]
 各例で得られた擦傷防止膜付き基体における擦傷防止膜の厚さを、走査型電子顕微鏡(日立ハイテック社製、S-4300)を用いて測定した。
[例1]
 容量100mLのガラス製容器に、エタノール40g、αアルミナ粒子(住友化学化学工業社製、製品名:スミコランダムAA03、モース硬度:9、平均一次粒子径:300nm、一次粒子径30nm以上の粒子の割合:100質量%)1g、およびジルコニアビーズ(粒径0.5mm)20gを入れ、ビーズミルで24時間分散させた。前記αアルミナ粒子は、凝集体となっており、平均凝集粒子径は、350nmであった。
 前記の手順で得たαアルミナ分散液(固形分濃度:2.5質量%)30g、テトラエトキシシランの硝酸部分加水分解物(SiO固形分濃度:2.5質量%)15g、およびエタノール15gを室温で混合し、塗布液-1を得た。塗布液-1に含まれる固形分100体積%に対するαアルミナ粒子の体積含有率は、53体積%とした。
 次に、厚さ3.0mmのガラス板(ソーダライムガラス、旭硝子社製)の表面を、酸化セリウムの微粒子を用いて研磨した後、表面を水洗し、乾燥した。次に、該ガラス板の表面に塗布液-1をスピンコートにより塗布した後、200℃の熱風循環式オーブンで5分乾燥し、さらに600℃のマッフル炉で60分間焼成して擦傷防止膜付き基体を得た。該擦傷防止膜付き基体における擦傷防止膜の厚さは、500nmであった。
[例2]
 エタノールの代わりにキシレンを用いた以外は例1と同様にしてαアルミナ分散液(固形分濃度:2.5質量%)を得た。
 得られたαアルミナ分散液30g、ポリシラザン溶液(AZエレクトロニックマテリアルズ社製、製品名:NL110A-20、SiO固形分濃度:20質量%)3.8g、およびキシレン26.2gを室温で混合し、塗布液-2を得た。塗布液-2に含まれる固形分100体積%に対するαアルミナ粒子の体積含有率は、36体積%とした。
 次に、塗布液-1の代わりに塗布液-2を用いた以外は、例1と同様にして擦傷防止膜付き基体を得た。
[例3]
 αアルミナ粒子(住友化学化学工業社製、製品名:AKP-53、モース硬度:9、平均一次粒子径:150nm、一次粒子径30nm以上の粒子の割合:100質量%、)を用いた以外は、例1と同様にしてαアルミナ分散液を得た。前記αアルミナ粒子は、凝集体であり、平均凝集粒子径は、200nmであった。また、該αアルミナ分散液を用いた以外は、例1と同様にして塗布液-3を得た。塗布液-3に含まれる固形分100体積%に対するαアルミナ粒子の体積含有率は、53体積%とした。
 次に、塗布液-1の代わりに塗布液-3を用いた以外は、例1と同様にして擦傷防止膜付き基体を得た。
[例4]
 αアルミナ粒子を単独で使用する代わりに、αアルミナ粒子(住友化学化学工業社製、製品名:スミコランダムAA03)0.67gとΘアルミナ粒子(大明化学工業社製、製品名:TM-100D、平均一次粒子径60nm、モース硬度:7)0.33gを合わせて用いた以外は、例1と同様にしてアルミナ分散液を得た。前記アルミナ粒子は、凝集体となっており、平均凝集粒子径は、400nmであった。また、該アルミナ分散液を用いた以外は、例1と同様にして塗布液-4を得た。塗布液-4に含まれる固形分100体積%に対するアルミナ粒子の体積含有率は、67体積%とした。
 次に、塗布液-1の代わりに塗布液-4を用いた以外は、例1と同様にして擦傷防止膜付き基体を得た。
[例5]
 容量100mLのガラス製容器に、エタノール36g、アルミナ粒子水分散液(日産化学工業社製、製品名:AS-520、モース硬度:7、平均一次粒子径30nm、一次粒子径30nm以上の粒子の割合:50質量%)5g、およびジルコニアビーズ(粒径0.5mm)20gを入れ、ビーズミルで24時間分散させた。前記アルミナ粒子は、凝集体であり、平均凝集粒子径は、50nmであった。また、該アルミナ分散液を用いた以外は、例1と同様にして塗布液-5を得た。塗布液-5に含まれる固形分100体積%に対するアルミナ粒子の体積含有率は、53体積%とした。
 次に、塗布液-1の代わりに塗布液-5を用いた以外は、例1と同様にして擦傷防止膜付き基体を得た。
[例6]
 αアルミナ粒子の代わりにシリカ粒子(日産化学工業社製、製品名:KE-P30、平均粒子径300nm、モース硬度:7)を用いた以外は、例1と同様にしてシリカ分散液を得た。前記シリカ粒子は、凝集体となっており、平均凝集粒子径は、400nmであった。また、該シリカ分散液を用いた以外は、例1と同様にして塗布液-6を得た。塗布液-6に含まれる固形分100体積%に対するシリカ粒子の体積含有率は、67体積%とした。
 次に、塗布液-1の代わりに塗布液-6を用いた以外は、例1と同様にして擦傷防止膜付き基体を得た。
[例7]
 αアルミナ粒子を単独で使用する代わりに、αアルミナ粒子(住友化学化学工業社製、製品名:スミコランダムAA03)0.5gとΘアルミナ粒子(大明化学工業社製、製品名:TM-100D)0.5gを合わせて用いた以外は、例1と同様にしてアルミナ分散液を得た。前記アルミナ粒子は凝集体となっており、平均凝集粒子径は400nmであった。ここにおいて、粒子分中の高硬度のαアルミナ粒子(粒子(A))の割合Pは、50質量%である。また、該シリカ分散液を用いた以外は、例1と同様にして塗布液-7を得た。塗布液-7に含まれる固形分100体積%に対するアルミナ粒子の体積含有率は67体積%とした。
 次に、塗布液-1の代わりに塗布液-7を用いた以外は、例1と同様にして擦傷防止膜付き基体を得た。
[例8]
 アルミナ分散液を用いない以外は、例1と同様にして塗布液-8を得た。
 次に、塗布液-1の代わりに塗布液-8を用いた以外は、例1と同様にして擦傷防止膜付き基体を得た。
[例9]
 アルミナ分散液を用いず、テトラエトキシシランの硝酸部分加水分解物の代わりにポリシラザン溶液(AZエレクトロニックマテリアルズ社製、製品名:NL110A-20、SiO固形分濃度:20質量%)を用いた以外は、例1と同様にして塗布液-9を得た。
 次に、塗布液-1の代わりに塗布液-9を用いた以外は、例1と同様にして擦傷防止膜付き基体を得た。
[例10]
 参考として例1~9で使用した厚さ3.0mmのガラス板(ソーダライムガラス、旭硝子社製)について、その表面のマルテンス硬度、初期ヘーズ値およびヘーズ値変化△Hを測定した。
[例11]
 参考として厚さ1mmのサファイアガラス板について、その表面のマルテンス硬度、初期ヘーズ値およびヘーズ値変化△Hを測定した。
 擦傷防止膜の形成に用いた成分を表1、各例の評価結果を表2に示す。表1における割合Pとは、粒子分中の粒子(A)の割合であり、割合Pは、粗粒分中のαアルミナの割合である。また、割合Wとは、粗粒分とベース分の合計質量に対する粗粒分の質量の割合である。
 また、表2の例10、11におけるマルテンス硬度は、ガラス板のマルテンス硬度である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、本発明の擦傷防止膜付き基体である例1~4では、初期ヘーズ値が低く、優れた透明性が得られた。また、膜硬度が高く、ヘーズ値変化も小さく、優れた耐擦傷性が得られた。
 粒子径が小さく、モース硬度が7のアルミナ粒子を用いた例5、モース硬度が7のシリカ粒子を用いた例6、高硬度のαアルミナ粒子と低硬度のΘアルミナ粒子を半々で混合して用いた例7では、擦傷防止膜の硬度が不充分であり、ヘーズ値変化も大きく、耐擦傷性が不充分であった。また、粗粒分を用いない例8、9でも、擦傷防止膜の硬度が不充分であり、ヘーズ値変化も大きく、耐擦傷性が不充分であった。
[例12]
 アルミナ製ボート内に遷移アルミナ(大明化学工業社製、製品名:TM-100D)を4g入れ、1200℃で5時間焼成した。焼成後の粒子は、αアルミナであった。焼成後のαアルミナ粒子4gを、蒸留水40g、ジルコニアビーズ(粒径0.1mm)80gとともに容量100mLのガラス製容器に入れ、ビーズミルで160時間分散させ、塗布液を得た。前記塗布液中のαアルミナ粒子は、モース硬度が9、平均一次粒子径が40nm、一次粒子径30nm以上の粒子の割合が55質量%であった。また、前記αアルミナ粒子は、凝集体となっており、平均凝集粒子径は、50nmであった。
 次に、厚さ2.0mmのガラス板(ソーダライムガラス、旭硝子社製)の表面を、酸化セリウムの微粒子を用いて研磨した後、表面を水洗し、乾燥した。次に、該ガラス板の表面に前記塗布液をスピンコートにより塗布した後、150℃の熱風循環式オーブンで30分乾燥し、アルミナ付き基体を得た。
 次に、ポリシラザン溶液(AZエレクトロニックマテリアルズ社製、製品名:NL110A-20、SiO固形分濃度:20質量%)15g、およびキシレン15gを室温で混合し、オーバーコート用塗布液を得た。前記アルミナ付き基体におけるアルミナ側の表面にオーバーコート用塗布液をスピンコートにより塗布した後、150℃の熱風循環式オーブンで30分乾燥し、さらに600℃のマッフル炉で60分焼成することによって、擦傷防止膜付き基体を得た。該擦傷防止膜付き基体における擦傷防止膜の厚さは、500nmであった。また、擦傷防止膜の切断面における直径30nm以上のαアルミナ粒子(粗粒分)の面積含有率Vは、53%であった。
[例13]
 ビーズミルによる分散時間を80時間とした以外は、例12と同様にして塗布液を得た。前記塗布液中のαアルミナ粒子は、モース硬度が9、平均一次粒子径が70nm、一次粒子径30nm以上の粒子の割合が100質量%であった。また、前記αアルミナ粒子は、凝集体となっており、平均凝集粒子径は、90nmであった。また、得られた塗布液を用いた以外は、例12と同様にして擦傷防止膜付き基体を得た。
[例14]
 ビーズミルによる分散時間を40時間とした以外は、例12と同様にして塗布液を得た。前記塗布液中のαアルミナ粒子は、モース硬度が9、平均一次粒子径が150nm、一次粒子径30nm以上の粒子の割合が100質量%であった。また、前記αアルミナ粒子は、凝集体となっており、平均凝集粒子径は、180nmであった。また、得られた塗布液を用いた以外は、例12と同様にして擦傷防止膜付き基体を得た。
[例15]
 ビーズミルによる分散時間を20時間とした以外は、例12と同様にして塗布液を得た。前記塗布液中のαアルミナ粒子は、モース硬度が9、平均一次粒子径が300nm、一次粒子径30nm以上の粒子の割合が100質量%であった。また、前記αアルミナ粒子は、凝集体となっており、平均凝集粒子径は、350nmであった。また、得られた塗布液を用いた以外は、例12と同様にして擦傷防止膜付き基体を得た。
[例16]
 ビーズミルによる分散時間を10時間とした以外は、例12と同様にして塗布液を得た。前記塗布液中のαアルミナ粒子は、モース硬度が9、平均一次粒子径が500nm、一次粒子径30nm以上の粒子の割合が100質量%であった。また、前記αアルミナ粒子は凝集体となっており、平均凝集粒子径は550nmであった。また、得られた塗布液を用いた以外は、例12と同様にして擦傷防止膜付き基体を得た。
 例12~16における擦傷防止膜の評価結果を表3に示す。表3における割合Pは、粒子分中の粒子(A)の割合であり、割合Pは、粗粒分中の一次粒子径が30nm以上のαアルミナ粒子の質量割合を意味する。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明の擦傷防止膜付き基体である例12~16では、初期ヘーズ値が低く、優れた透明性が得られた。また、膜硬度が高く、ヘーズ値変化も小さく、優れた耐擦傷性が得られた。
 本発明の擦傷防止膜付き基体は、スマートフォン等の電子機器用の保護ガラス(ディスプレイの保護ガラス、背面ガラス等)、自動車等の輸送機器用の窓ガラス(リヤガラス、サイドウインドガラス、ルーフガラス等)に好適に使用できる。
 なお、2014年8月27日に出願された日本特許出願2014-173140号、および2014年12月1日に出願された日本特許出願2014-243218号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 1:擦傷防止膜付き基体、 10:基体、  12:擦傷防止膜。

Claims (16)

  1.  基体上に、粒子分とバインダとを含有する擦傷防止膜を形成する、擦傷防止膜付き基体の製造方法であって、
     前記粒子分および前記バインダの前駆体を含む塗布液を前記基体上に塗布する工程(I)と、前記塗布液を塗布した前記基体を焼成して前記基体上に前記擦傷防止膜を形成する工程(II)とを有し、
     前記粒子分は、平均一次粒子径が1nm以上の粒子からなり、かつ一次粒子径が30nm以上である粗粒分を含み、
     前記粗粒分は、モース硬度が8以上の粒子(A)を含み、
     前記粒子分中の前記粒子(A)の割合が60質量%以上であり、
     前記粒子分中の粗粒分の屈折率と、前記粒子分中の一次粒子径が30nm未満である粒子(B)および前記バインダの前駆体の混合物を焼成した焼成物の屈折率との差が0.4以下である、擦傷防止膜付き基体の製造方法。
  2.  基体上に、粒子分とバインダとを含有する擦傷防止膜を形成する、擦傷防止膜付き基体の製造方法であって、
     前記粒子分を含む塗布液および前記バインダの前駆体を含む塗布液をそれぞれ前記基体上に塗布する工程(I)と、前記塗布液を塗布した前記基体を焼成して前記基体上に前記擦傷防止膜を形成する工程(II)とを有し、
     前記粒子分は、平均一次粒子径が1nm以上の粒子からなり、かつ一次粒子径が30nm以上である粗粒分を含み、
     前記粗粒分は、モース硬度が8以上の粒子(A)を含み、
     前記粒子分中の前記粒子(A)の割合が60質量%以上であり、
     前記粒子分中の粗粒分の屈折率と、前記粒子分中の一次粒子径が30nm未満である粒子(B)および前記バインダの前駆体の混合物を焼成した焼成物の屈折率との差が0.4以下である、擦傷防止膜付き基体の製造方法。
  3.  前記粒子(A)がαアルミナ粒子を含む、請求項1または2に記載の擦傷防止膜付き基体の製造方法。
  4.  前記バインダが、シリカ、アルミナおよびジルコニアからなる群から選ばれる少なくとも1種を含む、請求項1~3のいずれか一項に記載の擦傷防止膜付き基体の製造方法。
  5.  前記工程(II)における焼成温度が150~700℃である、請求項1~4のいずれか一項に記載の擦傷防止膜付き基体の製造方法。
  6.  基体と擦傷防止膜とを有する擦傷防止膜付き基体であって、
     前記擦傷防止膜は、粗粒分とベース分とを含有し、
     前記粗粒分は、一次粒子径が30nm以上の粒子からなり、かつαアルミナ粒子を含み、
     前記粗粒分中の前記αアルミナ粒子の割合が60質量%以上であり、
     前記ベース分は、バインダ、またはバインダおよび一次粒子径が30nm未満の粒子(B)を含み、
     前記擦傷防止膜を膜表面に対して垂直方向に切断した切断面の総面積に対する、該切断面での直径が30nm以上のαアルミナ粒子の面積含有率をV(%)としたとき、前記擦傷防止膜の屈折率nが下式(1)の条件を満たす、擦傷防止膜付き基体。
      0.37×V/100+1.35≦n≦0.22×V/100+1.50 ・・・(1)
  7.  基体と擦傷防止膜とを有する擦傷防止膜付き基体であって、
     前記擦傷防止膜は、粗粒分とベース分とを含有し、
     前記粗粒分は、一次粒子径が30nm以上の粒子からなり、
     前記ベース分は、バインダ、またはバインダおよび一次粒子径が30nm未満の粒子(B)を含み、
     前記粗粒分の屈折率と前記擦傷防止膜の屈折率との差が0.3以下であり、
     前記擦傷防止膜のマルテンス硬度が3800N/mm以上である、擦傷防止膜付き基体。
  8.  前記粗粒分は、αアルミナ粒子を含み、
     前記粗粒分中の前記αアルミナ粒子の割合が60質量%以上である、請求項7に記載の擦傷防止膜付き基体。
  9.  前記基体がガラス基体である、請求項6~8のいずれか一項に記載の擦傷防止膜付き基体。
  10.  前記粗粒分と前記ベース分の合計質量に対する前記粗粒分の質量の割合が30~90質量%である、請求項6~9のいずれか一項に記載の擦傷防止膜付き基体。
  11.  前記擦傷防止膜を膜表面に対して垂直方向に切断した切断面における、前記粗粒分と前記ベース分の合計面積に対する、該切断面での直径が30nm以上の粗粒分の面積含有率が19~83%である、請求項6~10のいずれか一項に記載の擦傷防止膜付き基体。
  12.  前記バインダが、シリカ、アルミナおよびジルコニアからなる群から選ばれる少なくとも1種を含む、請求項6~11のいずれか一項に記載の擦傷防止膜付き基体。
  13.  前記擦傷防止膜の厚さが100~3000nmである、請求項6~12のいずれか一項に記載の擦傷防止膜付き基体。
  14.  請求項6~13のいずれか一項に記載の擦傷防止膜付き基体の製造方法であって、下記工程(i-1)および(ii-1)を有する擦傷防止膜付き基体の製造方法。
     (i-1)前記粗粒分および前記バインダの前駆体を含む塗布液、または前記粗粒分、前記バインダの前駆体および前記粒子(B)を含む塗布液を前記基体上に塗布する工程。
     (ii-1)前記塗布液を塗布した基体を焼成して前記基体上に前記擦傷防止膜を形成する工程。
  15.  請求項6~13のいずれか一項に記載の擦傷防止膜付き基体の製造方法であって、下記工程(i-2)、(ii-2)および(iii-2)を有する擦傷防止膜付き基体の製造方法。
     (i-2)前記粗粒分を含む塗布液、または前記粗粒分および前記粒子(B)を含む塗布液を前記基体上に塗布する工程。
     (ii-2)前記工程(i-2)の後、前記バインダの前駆体を含む塗布液を前記基体上に塗布する工程。
     (iii-2)前記工程(ii-2)後の塗布液を塗布した基体を焼成して前記基体上に前記擦傷防止膜を形成する工程。
  16.  前記の塗布液を塗布した基体を焼成するときの焼成温度が150~700℃である、請求項14または15に記載の擦傷防止膜付き基体の製造方法。
PCT/JP2015/073754 2014-08-27 2015-08-24 擦傷防止膜付き基体およびその製造方法 WO2016031780A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014173140 2014-08-27
JP2014-173140 2014-08-27
JP2014-243218 2014-12-01
JP2014243218A JP2017186176A (ja) 2014-08-27 2014-12-01 擦傷防止膜付き基体およびその製造方法

Publications (1)

Publication Number Publication Date
WO2016031780A1 true WO2016031780A1 (ja) 2016-03-03

Family

ID=55399670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073754 WO2016031780A1 (ja) 2014-08-27 2015-08-24 擦傷防止膜付き基体およびその製造方法

Country Status (1)

Country Link
WO (1) WO2016031780A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051958A1 (ja) * 2016-09-16 2018-03-22 旭硝子株式会社 防汚性物品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131408A (ja) * 1986-11-21 1988-06-03 触媒化成工業株式会社 透明導電性塗布液組成物及び透明基材
JPH08102227A (ja) * 1994-09-30 1996-04-16 Mitsubishi Materials Corp 透明導電膜およびその形成方法
JP2004352524A (ja) * 2003-05-27 2004-12-16 Central Glass Co Ltd 低反射物品及びその製法
WO2012086806A1 (ja) * 2010-12-24 2012-06-28 旭硝子株式会社 低反射膜を有する物品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131408A (ja) * 1986-11-21 1988-06-03 触媒化成工業株式会社 透明導電性塗布液組成物及び透明基材
JPH08102227A (ja) * 1994-09-30 1996-04-16 Mitsubishi Materials Corp 透明導電膜およびその形成方法
JP2004352524A (ja) * 2003-05-27 2004-12-16 Central Glass Co Ltd 低反射物品及びその製法
WO2012086806A1 (ja) * 2010-12-24 2012-06-28 旭硝子株式会社 低反射膜を有する物品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051958A1 (ja) * 2016-09-16 2018-03-22 旭硝子株式会社 防汚性物品

Similar Documents

Publication Publication Date Title
WO2015041257A1 (ja) 低反射膜付き強化ガラス板およびその製造方法
CN107533161B (zh) 带膜的弯曲基材及其制造方法以及图像显示装置
CN107924003B (zh) 透光性结构体
EP3179280B1 (en) Translucent structure
US8048511B2 (en) Titanium oxide coating agent and titanium oxide film forming method
KR101884961B1 (ko) 저반사막을 구비한 유리판
JP6586897B2 (ja) 防眩膜付き基材、膜形成用塗布液およびその製造方法
JP2020044841A (ja) 防曇膜つき透明物品
JP6696486B2 (ja) 防眩膜付基体、防眩膜形成用液状組成物及び防眩膜付基体の製造方法
WO2004070436A1 (ja) 低反射処理物品の製造方法、低反射層形成用溶液および低反射処理物品
WO2015186753A1 (ja) 機能膜付き化学強化ガラス板、その製造方法および物品
JP5157143B2 (ja) 反射防止膜付き基体
TW201606357A (zh) 附防眩膜之基材及物品
JP2008512747A (ja) 防眩コーティングおよび物品
JP2008511071A (ja) 防眩性のコーティングおよび物品
JP5761346B2 (ja) 無機親水性コート液、それから得られる親水性被膜及びこれを用いた部材
JP6599666B2 (ja) 光散乱性被膜を有する透明スクリーン及び光散乱性被膜形成用塗布液
WO2015115492A1 (ja) 太陽電池用防眩機能付きガラス板
JP2016041481A (ja) 防眩性反射防止膜付き透明基材および物品
WO2015163330A1 (ja) アンチグレア層付き基材および物品
WO2017007014A1 (ja) 機能性ガラス物品およびその製造方法
JP6491934B2 (ja) 反射防止物品の製造方法、及び反射防止物品
US20200055771A1 (en) Film-attached glass substrate, article, and method for producing film-attached glass substrate
CN101050064A (zh) 涂敷有红外屏蔽膜的玻璃板及其制造方法
WO2016031780A1 (ja) 擦傷防止膜付き基体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15835682

Country of ref document: EP

Kind code of ref document: A1