WO2021186879A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2021186879A1
WO2021186879A1 PCT/JP2021/001568 JP2021001568W WO2021186879A1 WO 2021186879 A1 WO2021186879 A1 WO 2021186879A1 JP 2021001568 W JP2021001568 W JP 2021001568W WO 2021186879 A1 WO2021186879 A1 WO 2021186879A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
carbon monoxide
hydrogen
gas
cell system
Prior art date
Application number
PCT/JP2021/001568
Other languages
English (en)
French (fr)
Inventor
佳央 田村
健 苅野
尾関 正高
憲有 武田
田口 清
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021545675A priority Critical patent/JPWO2021186879A1/ja
Priority to EP21766094.3A priority patent/EP4122877A4/en
Priority to CN202180002536.5A priority patent/CN113692663A/zh
Publication of WO2021186879A1 publication Critical patent/WO2021186879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0455Purification by non-catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell system including a fuel cell that generates electricity using a hydrogen-containing gas.
  • Patent Document 1 a hydrogen-containing gas containing hydrogen, nitrogen, carbon monoxide, and ammonia is generated from a raw material containing nitrogen by a reformer, and the hydrogen-containing gas (hereinafter, also referred to as raw material hydrogen) is used.
  • the concentration of carbon monoxide contained is reduced by a shift reaction with a metabolizer, ammonia contained in the hydrogen-containing gas is removed with an ammonia remover, and carbon monoxide is removed by an oxidation reaction with a carbon monoxide remover.
  • a fuel cell system that generates a hydrogen-containing gas and uses the hydrogen-containing gas to generate power with a fuel cell.
  • This fuel cell system includes a transformer, an ammonia remover, a carbon monoxide remover, and a fuel cell.
  • the present disclosure provides a compact fuel cell system capable of generating electricity using raw material hydrogen containing hydrogen, nitrogen and carbon monoxide.
  • raw material hydrogen containing hydrogen, nitrogen and carbon monoxide and having a nitrogen concentration of more than 25% is supplied, and a part of carbon monoxide contained in the raw material hydrogen is removed to produce a hydrogen-containing gas. It is provided with a carbon monoxide removing unit for discharging hydrogen and a first fuel cell for generating electricity using a hydrogen-containing gas.
  • the fuel cell system in the present disclosure does not generate ammonia when generating electricity. Therefore, the ammonia remover can be made smaller. Therefore, the fuel cell system can be compactly configured.
  • FIG. 1 is a block diagram of the fuel cell system according to the first embodiment.
  • FIG. 2 is a block diagram of the fuel cell system according to the second embodiment.
  • FIG. 3 is a block diagram of the fuel cell system according to the third embodiment.
  • FIG. 4 is a block diagram of the fuel cell system according to another embodiment.
  • the technology of the fuel cell system was to convert hydrogen, nitrogen and monoxide from a raw material containing nitrogen, which is mainly composed of city gas, by a reforming reaction in a reformer.
  • a hydrogen-containing gas containing carbon and ammonia is generated, and the concentration of carbon monoxide contained in the hydrogen-containing gas (hereinafter, also referred to as raw material hydrogen) is reduced by a shift reaction with a transformer, and then ammonia is removed.
  • Ammonia contained in the hydrogen-containing gas was removed by the vessel, and the hydrogen-containing gas from which carbon monoxide was removed by the oxidation reaction was used in the carbon monoxide remover to generate power in the fuel cell.
  • raw material hydrogen a gas containing hydrogen as a main component and containing more than 25% of nitrogen
  • nitrogen and hydrogen are mixed in the reforming part. Reacts and changes to ammonia, which may poison the fuel cell and deteriorate it.
  • Ammonia must be removed to prevent deterioration of the fuel cell. At this time, there is a problem that the higher the concentration of nitrogen contained in the raw material hydrogen, the larger the ammonia remover.
  • the present disclosure provides a compact fuel cell system that can prevent the production of ammonia and make the ammonia remover smaller even if the raw material hydrogen contains more than 25% nitrogen.
  • FIG. 1 is a block diagram of the fuel cell system 100 according to the first embodiment.
  • the fuel cell system 100 of the present embodiment includes a transformer 1, a carbon monoxide remover 2, a first fuel cell 3, and a combustor 4.
  • the transformer 1 removes a part of carbon monoxide contained in the raw material hydrogen by a transformation reaction.
  • the raw material hydrogen contains hydrogen, nitrogen and carbon monoxide, and the concentration of nitrogen exceeds 25%.
  • the carbon monoxide remover 2 removes carbon monoxide by an oxidation reaction. Air is supplied to the carbon monoxide remover 2 as a gas containing oxygen for the oxidation reaction.
  • the first fuel cell 3 uses hydrogen-containing gas to generate electricity. Further, the first fuel cell 3 has an electrolyte membrane-electrode assembly in which both main surfaces of the electrolyte membrane are sandwiched between an anode and a cathode. The first fuel cell 3 generates electricity by supplying a hydrogen-containing gas to the anode and air containing oxygen to the cathode.
  • the combustor 4 heats the transformer 1 and the carbon monoxide remover 2 that constitute the carbon monoxide remover by burning the primary off-gas.
  • the primary off-gas is a hydrogen-containing gas supplied to the first fuel cell 3 that has passed through the first fuel cell 3 without being used for power generation in the first fuel cell 3 (hydrogen-containing gas). be.
  • the raw material hydrogen is supplied to the transformer 1 in order to remove a part of the carbon monoxide contained in the raw material hydrogen containing hydrogen, nitrogen and carbon monoxide.
  • the concentration of carbon monoxide contained in the raw material hydrogen can be reduced in the transformer 1.
  • the hydrogen-containing gas that has passed through the transformer 1 is supplied to the first fuel cell 3
  • the concentration of carbon monoxide contained in the hydrogen-containing gas that has passed through the transformer 1 is high, that is, the carbon monoxide concentration is sufficient. It is not reduced and may poison the first fuel cell 3.
  • the hydrogen-containing gas discharged from the metamorphic device 1 is supplied to the carbon monoxide remover 2, and the carbon monoxide concentration of the hydrogen-containing gas supplied to the first fuel cell 3 is further reduced.
  • the hydrogen-containing gas having a reduced carbon monoxide concentration is supplied to the first fuel cell 3 in this way, it is possible to generate electricity using the hydrogen contained in the hydrogen-containing gas in the first fuel cell 3. ..
  • the first fuel cell 3 cannot use all the hydrogen contained in the hydrogen-containing gas for power generation.
  • the hydrogen-containing gas containing hydrogen that has not been used up in the first fuel cell 3 is discharged from the first fuel cell 3 as a primary off gas. If this primary off-gas is discarded, that is, if it is discharged to the outside of the fuel cell system 100, hydrogen will be wasted. Therefore, the primary off-gas is supplied to the combustor 4 for combustion. As a result, energy can be extracted as heat in the combustor 4.
  • the transformer 1 and the carbon monoxide remover 2 constituting the carbon monoxide removing unit can maintain the ability to remove carbon monoxide by maintaining the respective temperatures at a high temperature of 100 ° C. or higher.
  • Both the metamorphic device 1 and the carbon monoxide remover 2 are exothermic reactions, but the temperature decrease due to heat dissipation is relatively larger than the temperature increase due to the exothermic reaction, and it is difficult to maintain the temperature. Therefore, the transformer 1 and the carbon monoxide remover 2 are heated by using the heat generated by the combustor 4. As a result, the temperatures of the transformer 1 and the carbon monoxide remover 2 can be maintained at appropriate temperatures for the reaction. Therefore, the transformer 1 and the carbon monoxide remover 2 can maintain the ability to remove carbon monoxide. As a result, the fuel cell system 100 can generate electricity in a stable manner.
  • the fuel cell system 100 of the present embodiment is a carbon monoxide removing unit that removes a part of carbon monoxide contained in the raw material hydrogen having a nitrogen concentration of more than 25% and discharges the hydrogen-containing gas. And a first fuel cell 3 that generates power using the hydrogen-containing gas.
  • the fuel cell system 100 does not generate ammonia when generating electricity. Therefore, when the raw material hydrogen does not contain ammonia, the ammonia remover can be eliminated and the fuel cell system can be made compact.
  • the carbon monoxide removing unit removes a part of carbon monoxide contained in the raw material hydrogen by a transformation reaction and carbon monoxide contained in the hydrogen-containing gas discharged from the transformation device 1 by an oxidation reaction. It has a carbon monoxide remover 2 and a carbon monoxide remover 2.
  • the metabolizer 1 and the carbon monoxide remover 2 are provided as the carbon monoxide removing unit, and the carbon monoxide concentration of the hydrogen-containing gas supplied to the first fuel cell 3 is set to the first. If the fuel cell 3 can be reduced to the extent that the problem of poisoning does not occur, only one of the metamorphic device 1 and the carbon monoxide remover 2 may be provided.
  • the carbon monoxide removing portion can be appropriately provided according to the concentration of carbon monoxide contained in the raw material hydrogen. Therefore, unnecessary equipment can be eliminated from the fuel cell system, and the fuel cell system can be made compact.
  • the carbon monoxide removing portion is heated by using the primary off-gas which is the gas that has passed through the first fuel cell 3 without being used for power generation among the hydrogen-containing gas.
  • the combustor 4 is provided.
  • the combustor 4 heats both the metabolizer 1 and the carbon monoxide remover 2, but the carbon monoxide concentration of the hydrogen-containing gas supplied to the first fuel cell 3 is determined. If the problem of poisoning does not occur in the first fuel cell 3, only one of the metamorphic device 1 and the carbon monoxide remover 2 is configured to be heated by the combustor 4. It doesn't matter.
  • the combustor 4 can appropriately heat the carbon monoxide removing portion according to the concentration of carbon monoxide contained in the raw material hydrogen, and by eliminating an unnecessary heating configuration, the fuel cell system can be made compact. can do.
  • FIG. 2 is a block diagram of the fuel cell system 200 according to the second embodiment.
  • the fuel cell system 200 of the present embodiment includes a transformer 1, a carbon monoxide remover 2, a first fuel cell 3, a combustor 4, and a second fuel cell 5. And a sulfur removing unit 6.
  • the same components as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the second fuel cell 5 generates electricity using the primary off-gas.
  • the primary off-gas is a hydrogen-containing gas supplied to the first fuel cell 3 that has passed through the first fuel cell 3 without being used for power generation in the first fuel cell 3.
  • the amount of hydrogen contained in the primary off-gas discharged from the first fuel cell 3 and supplied to the second fuel cell 5 is smaller than the amount of hydrogen contained in the hydrogen-containing gas supplied to the first fuel cell 3. .. Therefore, the power generation output of the second fuel cell 5 is configured to be smaller than the power generation output of the first fuel cell 3.
  • the sulfur removing unit 6 removes the sulfur component contained in the raw material hydrogen with an adsorbent.
  • an adsorbent that adsorbs and removes sulfur is used.
  • the raw material hydrogen may contain a sulfur component in addition to hydrogen, nitrogen and carbon monoxide. In order to remove this sulfur component, raw material hydrogen is supplied to the sulfur removing unit 6.
  • the raw material hydrogen whose sulfur concentration has been reduced by the carbon monoxide removing unit 6 is supplied to the metabolizer 1 and the carbon monoxide removing device 2 constituting the carbon monoxide removing unit, and is a hydrogen-containing gas having a reduced carbon monoxide concentration. become.
  • the first fuel cell 3 generates electricity using this hydrogen-containing gas.
  • the first fuel cell 3 cannot use all the hydrogen-containing gas supplied to the first fuel cell 3 for power generation, and is the first of the hydrogen-containing gases supplied to the first fuel cell 3.
  • the gas not used for power generation in the fuel cell 3 is discharged from the first fuel cell 3 as the primary off gas.
  • the primary off-gas discharged from the first fuel cell 3 is supplied to the second fuel cell 5.
  • the second fuel cell 5 generates electricity using the primary off-gas.
  • the fuel cell system 200 can generate electric power that cannot be obtained only by the first fuel cell 3.
  • the amount of hydrogen contained in the hydrogen-containing gas supplied to the first fuel cell 3 is larger than the amount of hydrogen contained in the primary off-gas discharged from the first fuel cell 3 and supplied to the second fuel cell 5. .. Therefore, the power generation output of the first fuel cell 3 may be configured to be larger than the power generation output of the second fuel cell 5.
  • the second fuel cell 5 cannot use all the primary off-gas supplied to the second fuel cell 5 for power generation. Of the primary off-gas supplied to the second fuel cell 5, the gas not used for power generation in the second fuel cell 5 is discharged from the second fuel cell 5 as the secondary off-gas.
  • the secondary off-gas is supplied to the combustor 4 for combustion, and the energy possessed by the secondary off-gas is taken out as heat energy to heat the metamorphic device 1 and the carbon monoxide remover 2 that constitute the carbon monoxide removing unit. Used for.
  • the fuel cell system 200 of the present embodiment is a carbon monoxide removing unit that removes a part of carbon monoxide contained in the raw material hydrogen having a nitrogen concentration of more than 25% and discharges the hydrogen-containing gas. And a first fuel cell 3 that generates power using the hydrogen-containing gas.
  • the carbon monoxide removing unit removes a part of carbon monoxide contained in the raw material hydrogen by a transformation reaction and carbon monoxide contained in the hydrogen-containing gas discharged from the transformation device 1 by an oxidation reaction. It has a carbon monoxide remover 2 and a carbon monoxide remover 2.
  • the fuel cell system 200 of the present embodiment uses the primary off-gas, which is a hydrogen-containing gas that has passed through the first fuel cell 3 without being used for power generation, to generate power.
  • the power generation output of the second fuel cell 5 is smaller than the power generation output of the first fuel cell 3.
  • the second fuel cell 5 can generate electricity by using the primary off gas discharged from the first fuel cell 3. Therefore, the fuel cell system 200 can use the hydrogen contained in the raw material hydrogen without waste.
  • the fuel cell system 200 of the present embodiment heats the carbon monoxide removing portion by using the secondary off-gas which is the gas that has passed through the second fuel cell 5 without being used for power generation among the primary off-gas.
  • a combustor 4 is provided.
  • the fuel cell system 200 of the present embodiment can heat the carbon monoxide removing portion by using the secondary off gas discharged from the second fuel cell 5. Therefore, the fuel cell system 200 can use the raw material hydrogen without waste.
  • the fuel cell system 200 of the present embodiment includes a sulfur removing unit 6 that removes sulfur from the raw material hydrogen supplied to the carbon monoxide removing unit.
  • the sulfur component contained in the raw material hydrogen supplied to the transformer 1 can be removed by the sulfur removing unit 6. Therefore, the fuel cell system 200 can stably generate electricity even if the raw material hydrogen contains a sulfur component.
  • the sulfur removing unit 6 in the present embodiment is not limited to removing sulfur by an adsorbent, and a hydrogenated desulfurization unit that removes sulfur by hydrogenation desulfurization may be used as the sulfur removing unit 6.
  • a hydrogenated desulfurization unit that removes sulfur by hydrogenation desulfurization may be used as the sulfur removing unit 6.
  • the sulfur component can be reduced to a lower concentration by using the hydrogen contained in the raw material hydrogen.
  • the hydrodesulfurized portion can be used as the hydrodesulfurized portion, the modifier 1, the carbon monoxide remover 2, or the combustor 4. You may heat with.
  • the sulfur component contained in the raw material hydrogen can be reduced to a lower concentration. Therefore, it is possible to further prevent poisoning of the transformer 1, the carbon monoxide remover 2, the first fuel cell 3, and the second fuel cell 5.
  • FIG. 3 is a block diagram of the fuel cell system 300 according to the third embodiment.
  • the fuel cell system 300 of the present embodiment includes a metabolizer 1, a carbon monoxide remover 2, a first fuel cell 3, a combustor 4, and a second fuel cell 5.
  • a third fuel cell 7 and an ammonia remover 8 are provided.
  • the same components as those of the first embodiment or the second embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the third fuel cell 7 generates electricity using the secondary off-gas.
  • the secondary off-gas is a gas among the primary off-gas supplied to the second fuel cell 5 that has passed through the second fuel cell 5 without being used for power generation in the second fuel cell 5.
  • the amount of hydrogen contained in the secondary off-gas discharged from the second fuel cell 5 and supplied to the third fuel cell 7 is smaller than the amount of hydrogen contained in the primary off-gas supplied to the second fuel cell 5. .. Therefore, the power generation output of the third fuel cell 7 may be smaller than the power generation output of the second fuel cell 5. In this case, the power generation output of the second fuel cell 5 is smaller than the power generation output of the first fuel cell 3, and the power generation output of the third fuel cell 7 is smaller than the power generation output of the second fuel cell 5.
  • the ammonia remover 8 removes ammonia contained in the hydrogen-containing gas supplied to the first fuel cell 3.
  • the ammonia remover 8 reduces the concentration of ammonia contained in the hydrogen-containing gas to a concentration that does not poison the first fuel cell 3.
  • the raw material hydrogen may contain ammonia in addition to hydrogen, nitrogen and carbon monoxide.
  • a hydrogen-containing gas having a reduced carbon monoxide concentration passing through the metabolizer 1 and the carbon monoxide remover 2 constituting the carbon monoxide remover is supplied to the ammonia remover 8. Will be done.
  • the ammonia remover 8 reduces the concentration of ammonia contained in the hydrogen-containing gas to a concentration that does not poison the first fuel cell 3.
  • the hydrogen-containing gas having a reduced ammonia concentration is supplied to the first fuel cell 3.
  • the first fuel cell 3 generates electricity using a hydrogen-containing gas whose ammonia concentration has been reduced by the ammonia remover 8.
  • the first fuel cell 3 cannot use all the hydrogen-containing gas supplied to the first fuel cell 3 for power generation.
  • the hydrogen-containing gas supplied to the first fuel cell 3 the gas not used for power generation in the first fuel cell 3 is discharged from the first fuel cell 3 as a primary off gas. This primary off-gas is supplied to the second fuel cell 5.
  • the second fuel cell 5 cannot use all the primary off-gas supplied to the second fuel cell 5 for power generation, and the second of the primary off-gas supplied to the second fuel cell 5 cannot be used for power generation.
  • the gas not used for power generation in the fuel cell 5 of the above is discharged from the second fuel cell 5 as a secondary off gas. This secondary off-gas is supplied to the third fuel cell 7.
  • the third fuel cell 7 cannot use all the secondary off-gas supplied to the third fuel cell 7 for power generation, and the third of the secondary off-gas supplied to the third fuel cell 7 cannot be used for power generation.
  • the gas not used for power generation in the fuel cell 7 is discharged from the third fuel cell 7 as a tertiary off gas. This tertiary off-gas is supplied to the combustor 4.
  • the combustor 4 burns the tertiary off-gas to heat the transformer 1 and the carbon monoxide remover 2 that constitute the carbon monoxide remover.
  • the fuel cell system 300 of the present embodiment is a carbon monoxide removing unit that removes a part of carbon monoxide contained in the raw material hydrogen having a nitrogen concentration of more than 25% and discharges the hydrogen-containing gas. And a first fuel cell 3 that generates power using the hydrogen-containing gas.
  • the carbon monoxide removing unit removes a part of carbon monoxide contained in the raw material hydrogen by a transformation reaction and carbon monoxide contained in the hydrogen-containing gas discharged from the transformation device 1 by an oxidation reaction. It has a carbon monoxide remover 2 and a carbon monoxide remover 2.
  • the fuel cell system 300 of the present embodiment uses the primary off-gas, which is a gas that has passed through the first fuel cell 3 without being used for power generation, among the hydrogen-containing gases, to generate power.
  • a third fuel cell 7 that generates power by using the secondary off gas, which is a gas that has passed through the second fuel cell 5 without being used for power generation among the primary off gas.
  • the power generation output of the second fuel cell 5 is smaller than the power generation output of the first fuel cell 3, and the power generation output of the third fuel cell 7 is smaller than the power generation output of the second fuel cell 5.
  • the second fuel cell 5 can generate electricity using the primary off gas discharged from the first fuel cell 3, and the third fuel cell 7 However, power can be generated using the secondary off-gas discharged from the second fuel cell 5. Therefore, the fuel cell system 300 can use the hydrogen contained in the raw material hydrogen without waste.
  • the fuel cell system 300 of the present embodiment heats the carbon monoxide removing portion by using the tertiary off-gas which is the gas that has passed through the third fuel cell 7 without being used for power generation among the secondary off-gas.
  • a combustor 4 is provided.
  • the fuel cell system 300 of the present embodiment can heat the carbon monoxide removing portion by using the tertiary off gas discharged from the third fuel cell 7. Therefore, the fuel cell system 300 can use the raw material hydrogen without waste.
  • the fuel cell system 300 of the present embodiment includes an ammonia remover 8 that removes ammonia upstream of the first fuel cell 3.
  • the fuel cell system 300 can remove the ammonia contained in the hydrogen-containing gas supplied to the first fuel cell 3 with the ammonia remover 8. Therefore, the fuel cell system 300 can stably generate electricity even if the raw material hydrogen contains ammonia.
  • Embodiments 1 to 3 have been described as examples of the techniques disclosed in the present application.
  • the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first to third embodiments to form a new embodiment.
  • the transformer 1, the carbon monoxide remover 2, the first fuel cell 3, the second fuel cell 5, and the combustor 4 are connected one by one in series.
  • the present invention is not limited to this configuration, and as in the fuel cell system 400 shown in FIG. 4, the transformers 1a, 1b, 1c, the carbon monoxide remover 2a, 2b, 2c and the first fuel cell 3a, 3b, 3c And the second fuel cells 5a, 5b and the combustors 4a, 4b, 4c may be configured to have a plurality of fuel cells, respectively.
  • the second fuel cell 5a is larger than the total power generation output of the plurality of first fuel cells 3a, 3b, 3c.
  • the power generation output of the second fuel cells 5a and 5b is larger than the total power generation output of the first fuel cells 3a, 3b and 3c.
  • the total power generation output can be reduced.
  • both the transformer 1 and the carbon monoxide remover 2 are used as the carbon monoxide removing unit, but the present invention is not limited to this, and the transformer 1 and the carbon monoxide remover are not limited to this. Only one of the remover 2 may be used. The combination of the transformer 1 and the carbon monoxide remover 2 may be changed depending on the concentration of carbon monoxide contained in the raw material hydrogen, the concentration of carbon monoxide that poisons the first fuel cell 3, and the like.
  • the transformer 1 When the concentration of carbon monoxide contained in the raw material hydrogen is high, the transformer 1 may be used to reduce carbon monoxide. When the concentration of carbon monoxide contained in the raw material hydrogen is low, carbon monoxide may be reduced only by the carbon monoxide remover 2. If the carbon monoxide concentration of the hydrogen-containing gas supplied to the first fuel cell 3 is not suppressed to a low concentration, the first fuel cell 3 may be poisoned by carbon monoxide. A carbon monoxide remover 2 may be used.
  • ammonia may be contained as the raw material hydrogen in addition to hydrogen, nitrogen and carbon monoxide.
  • the ammonia remover 8 may be provided as in the third embodiment. Further, if the concentration of ammonia contained in the raw material hydrogen is low and the ammonia contained in the hydrogen-containing gas does not poison the first fuel cell 3, it is not necessary to install the ammonia remover 8.
  • the ammonia remover 8 is arranged between the carbon monoxide remover 2 and the first fuel cell 3, but the location where the ammonia remover 8 is installed is upstream of the first fuel cell 3. On the side, it does not have to be between the carbon monoxide remover 2 and the first fuel cell 3.
  • the ammonia remover 8 may be installed on the upstream side of the transformer 1, the ammonia remover 8 may remove ammonia from the raw material hydrogen, and the transformer 1 may be supplied with the raw material hydrogen from which the ammonia has been removed. Further, the ammonia remover 8 may be provided between the transformer 1 and the carbon monoxide remover 2.
  • This disclosure is applicable to a fuel cell system that generates electricity using a raw material hydrogen containing hydrogen, nitrogen, and carbon monoxide. Specifically, the present disclosure is applicable to power generation using a gas containing excess hydrogen emitted in the industrial field.
  • Fuel cell system 1,1a, 1b, 1c Transformer 2,2a, 2b, 2c Carbon monoxide remover 3,3a, 3b, 3c First fuel cell 4,4a, 4b, 4c Combustor 5,5a, 5b Second Fuel cell 6 Sulfur remover 7 Third fuel cell 8 Ammonia remover 100 Fuel cell system 200 Fuel cell system 300 Fuel cell system 400 Fuel cell system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本開示の燃料電池システム(100)は、水素と窒素と一酸化炭素とを含んだ原料水素が、外部から供給される燃料電池システム(100)であって、原料水素に含まれる一酸化炭素の一部を除去して水素含有ガスを排出する一酸化炭素除去部(1,2)と、水素含有ガスを用いて発電する第一の燃料電池(3)と、を備える。原料水素に含まれる窒素の濃度は25%を上回るように構成されている。

Description

燃料電池システム
 本開示は、水素含有ガスを用いて発電する燃料電池を備える、燃料電池システムに関する。
 特許文献1は、窒素が含まれる原料から、改質器にて水素と窒素と一酸化炭素とアンモニアとを含んだ水素含有ガスを生成し、その水素含有ガス(以下、原料水素ともいう)に含まれる一酸化炭素の濃度を、変成器にてシフト反応により低減し、アンモニア除去器にて水素含有ガスに含まれるアンモニアを除去し、一酸化炭素除去器にて一酸化炭素を酸化反応により除去した水素含有ガスを生成し、その水素含有ガスを用いて燃料電池で発電する燃料電池システムを開示する。
 この燃料電池システムは、変成器と、アンモニア除去器と、一酸化炭素除去器と、燃料電池と、を備える。
特開2012-46395号公報
 本開示は、水素と窒素と一酸化炭素とを含んだ原料水素を用いて発電できるコンパクトな燃料電池システムを提供する。
 本開示における燃料電池システムは、水素と窒素と一酸化炭素とを含み窒素の濃度が25%を上回る原料水素が供給され、原料水素に含まれる一酸化炭素の一部を除去して水素含有ガスを排出する一酸化炭素除去部と、水素含有ガスを用いて発電する第一の燃料電池と、を備える。
 本開示における燃料電池システムは、発電する際に、アンモニアを生成しない。そのため、アンモニア除去器を小さくすることができる。このため、燃料電池システムをコンパクトに構成することができる。
図1は、実施の形態1における燃料電池システムのブロック図である。 図2は、実施の形態2における燃料電池システムのブロック図である。 図3は、実施の形態3における燃料電池システムのブロック図である。 図4は、他の実施の形態における燃料電池システムのブロック図である。
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、燃料電池システムという技術は、都市ガスが主成分となる窒素が含まれる原料から、改質器にて改質反応により水素と窒素と一酸化炭素とアンモニアとを含んだ水素含有ガスを生成し、その水素含有ガス(以下、原料水素ともいう)に含まれる一酸化炭素の濃度を、変成器にてシフト反応により低減した上で、アンモニア除去器にて水素含有ガスに含まれるアンモニアを除去し、一酸化炭素除去器にて一酸化炭素を酸化反応により除去した水素含有ガスを用いて、燃料電池で発電するという状況であった。
 なお、天然ガスが直接原料として供給されることが想定されており、原料に含まれる窒素の濃度は、例えば、欧州では最大でも25%であった。
 そうした状況において、天然ガス由来ではなく、水素を主成分とし、窒素を25%より多く含んだガス(以下、原料水素ともいう)を原料として用いた場合、改質部にて、窒素と水素とが反応してアンモニアに変わることにより、アンモニアが燃料電池を被毒し、劣化させてしまう虞があった。
 燃料電池の劣化を防止するためには、アンモニアを除去する必要がある。このとき、原料水素に含まれる窒素の濃度が高いほど、アンモニア除去器が大きくなるという課題を有していた。
 そこで、本開示は、原料水素に窒素が25%よりも多く含まれていても、アンモニアの生成を防止し、アンモニア除去器を小さくできるコンパクトな燃料電池システムを提供する。
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。
 (実施の形態1)
 以下、図1を用いて、実施の形態1を説明する。図1は、実施の形態1における燃料電池システム100のブロック図である。
 [1-1.構成]
 図1に示すように、本実施の形態の燃料電池システム100は、変成器1と、一酸化炭素除去器2と、第一の燃料電池3と、燃焼器4と、を備える。
 変成器1は、原料水素に含まれる一酸化炭素の一部を変成反応により除去する。本実施の形態において、原料水素は、水素と窒素と一酸化炭素を含んでおり、窒素の濃度は25%を上回る。
 一酸化炭素除去器2は、一酸化炭素を酸化反応により除去する。一酸化炭素除去器2には、酸化反応のために、酸素を含んだガスとして空気が供給される。
 第一の燃料電池3は、水素含有ガスを用いて発電する。また、第一の燃料電池3は、電解質膜の両主面をアノードとカソードとで挟んだ電解質膜‐電極接合体を有する。アノードに水素含有ガスが供給され、カソードに酸素を含んだ空気が供給されることにより、第一の燃料電池3は発電する。
 燃焼器4は、1次オフガスを燃焼させることによって、一酸化炭素除去部を構成する変成器1と一酸化炭素除去器2とを加熱する。1次オフガスは、第一の燃料電池3に供給された水素含有ガスのうち第一の燃料電池3での発電に使用されずに第一の燃料電池3を通過したガス(水素含有ガス)である。
 [1-2.動作]
 以上のように構成された本実施の形態の燃料電池システム100について、以下その動作と作用を説明する。
 まず、図1に基づいて、燃料電池システム100における原料水素を用いて発電する動作を説明する。
 水素と窒素と一酸化炭素とを含んだ原料水素に含まれる一酸化炭素の一部を除去するために、原料水素が変成器1に供給される。これにより、変成器1にて原料水素に含まれる一酸化炭素の濃度を低減することができる。しかし、変成器1を通過した水素含有ガスを第一の燃料電池3に供給する場合、変成器1を通過した水素含有ガスに含まれる一酸化炭素濃度は高い、すなわち一酸化炭素濃度が十分に低減されておらず、第一の燃料電池3を被毒する可能性がある。
 そこで、変成器1から排出された水素含有ガスを一酸化炭素除去器2に供給して、第一の燃料電池3に供給される水素含有ガスの一酸化炭素濃度をさらに低減する。このように、一酸化炭素濃度を低減した水素含有ガスを第一の燃料電池3に供給することにより、第一の燃料電池3にて水素含有ガスに含まれる水素を用いて発電することができる。
 ここで、第一の燃料電池3は、水素含有ガスに含まれる全ての水素を発電に使うことはできない。第一の燃料電池3で使い切れなかった水素を含んだ水素含有ガスは、1次オフガスとして第一の燃料電池3から排出される。この1次オフガスを捨ててしまうと、すなわち燃料電池システム100の外部に排出してしまうと、水素が無駄になってしまう。そこで、1次オフガスを燃焼器4に供給して、燃焼させる。これにより、燃焼器4において、熱としてエネルギーを取り出すことができる。
 一酸化炭素除去部を構成する変成器1と一酸化炭素除去器2とは、それぞれの温度を100℃以上の高温に維持することにより、一酸化炭素を除去する能力を維持することができる。変成器1と一酸化炭素除去器2とは、どちらも発熱反応ではあるが、発熱反応による温度上昇よりも、放熱による温度低下の方が相対的に大きく、温度を維持することが難しい。そこで、燃焼器4で発生する熱を用いて、変成器1と一酸化炭素除去器2とを加熱する。これにより、変成器1と一酸化炭素除去器2とのそれぞれの温度を反応に適切な温度に維持することができる。したがって、変成器1と一酸化炭素除去器2とは、一酸化炭素を除去する能力を維持することが可能となる。これにより、燃料電池システム100にて安定して発電することができる。
 [1-3.効果等]
 以上のように、本実施の形態の燃料電池システム100は、窒素の濃度が25%を上回る原料水素に含まれる一酸化炭素の一部を除去して水素含有ガスを排出する一酸化炭素除去部と、その水素含有ガスを用いて発電する第一の燃料電池3と、を備える。
 これにより、燃料電池システム100は、発電する際にアンモニアを生成しない。そのため、原料水素にアンモニアが含まれない場合には、アンモニア除去器を不要とすることができ、燃料電池システムをコンパクトにすることができる。
 一酸化炭素除去部は、原料水素に含まれる一酸化炭素の一部を変成反応により除去する変成器1と、変成器1から排出される水素含有ガスに含まれる一酸化炭素を酸化反応により除去する一酸化炭素除去器2と、を有する。
 本実施の形態では、一酸化炭素除去部として、変成器1と一酸化炭素除去器2とを備えるが、第一の燃料電池3に供給される水素含有ガスの一酸化炭素濃度を、第一の燃料電池3において被毒の問題が起こらない程度に低減できるのであれば、変成器1と一酸化炭素除去器2とのどちらか一方だけを備えるようにしてもよい。
 これにより、原料水素に含まれる一酸化炭素の濃度に応じて、適切に一酸化炭素除去部を設けることができる。そのため、燃料電池システムから不要な機器を無くすことができ、コンパクトにすることができる。
 また、本実施の形態の燃料電池システム100は、水素含有ガスのうち発電に使用されずに第一の燃料電池3を通過したガスである1次オフガスを用いて、一酸化炭素除去部を加熱する燃焼器4を備える。
 本実施の形態では、燃焼器4が、変成器1と一酸化炭素除去器2の両方を加熱しているが、第一の燃料電池3に供給される水素含有ガスの一酸化炭素濃度を、第一の燃料電池3において被毒の問題が起こらない程度に低減できるのであれば、変成器1と一酸化炭素除去器2のうちのどちらか一方だけを、燃焼器4で加熱するように構成しても構わない。
 これにより、原料水素に含まれる一酸化炭素の濃度に応じて、燃焼器4が一酸化炭素除去部を適切に加熱することができ、不要な加熱構成を無くすことで、燃料電池システムをコンパクトにすることができる。
 (実施の形態2)
 以下、図2を用いて、実施の形態2を説明する。図2は、実施の形態2における燃料電池システム200のブロック図である。
 [2-1.構成]
 図2に示すように、本実施の形態の燃料電池システム200は、変成器1と、一酸化炭素除去器2と、第一の燃料電池3と、燃焼器4と、第二の燃料電池5と、硫黄除去部6と、を備える。
 本実施の形態の燃料電池システム200において、実施の形態1と同一の構成要素には同一符号を付与して、その説明は省略する。
 第二の燃料電池5は、1次オフガスを用いて発電する。1次オフガスは、第一の燃料電池3に供給された水素含有ガスのうち第一の燃料電池3での発電に使用されずに第一の燃料電池3を通過したガスである。
 第一の燃料電池3に供給される水素含有ガスに含まれる水素量よりも、第一の燃料電池3から排出され第二の燃料電池5に供給される1次オフガスに含まれる水素量は少ない。したがって、第一の燃料電池3の発電出力よりも、第二の燃料電池5の発電出力が小さくなるように構成される。
 硫黄除去部6は、原料水素に含まれる硫黄成分を吸着材により除去する。硫黄成分が変成器1、一酸化炭素除去器2、第一の燃料電池3、および第二の燃料電池5に供給されると、それぞれの機器が被毒される。したがって、変成器1の上流側に硫黄除去部6を設けることにより、それぞれの機器の硫黄成分による被毒を抑制することができる。硫黄除去部6としては、例えば、硫黄を吸着除去する吸着材が用いられる。
 [2-2.動作]
 以上のように構成された本実施の形態の燃料電池システム200について、以下その動作と作用を説明する。
 まず、図2に基づいて、燃料電池システム200における原料水素を用いて発電する動作を説明する。
 原料水素は水素と窒素と一酸化炭素とに加え、硫黄成分を含むことがある。この硫黄成分を除去するために、原料水素が硫黄除去部6に供給される。硫黄除去部6により硫黄濃度が低減された原料水素は、一酸化炭素除去部を構成する変成器1と一酸化炭素除去器2とに供給されて、一酸化炭素濃度が低減された水素含有ガスになる。
 この水素含有ガスを用いて、第一の燃料電池3は発電する。第一の燃料電池3は、第一の燃料電池3に供給された全ての水素含有ガスを発電に使用することができず、第一の燃料電池3に供給された水素含有ガスのうち第一の燃料電池3での発電に使用されなかったガスが、1次オフガスとして第一の燃料電池3から排出される。
 第一の燃料電池3から排出された1次オフガスは、第二の燃料電池5に供給される。第二の燃料電池5は、1次オフガスを用いて発電する。これにより、燃料電池システム200は、第一の燃料電池3のみでは得られない電力を生み出すことができる。
 第一の燃料電池3に供給される水素含有ガスに含まれる水素量は、第一の燃料電池3から排出され第二の燃料電池5に供給される1次オフガスに含まれる水素量よりも多い。したがって、第一の燃料電池3の発電出力が第二の燃料電池5の発電出力よりも大きくなるように構成してもよい。
 第二の燃料電池5は、第二の燃料電池5に供給された全ての1次オフガスを発電に使用することができない。第二の燃料電池5に供給された1次オフガスのうち第二の燃料電池5での発電に使用されなかったガスは、2次オフガスとして第二の燃料電池5から排出される。
 この2次オフガスを燃料電池システム200で利用せずに排気した場合、2次オフガスに含まれるエネルギーを無駄にしてしまう。そこで、2次オフガスを燃焼器4に供給して燃焼させ、2次オフガスが保有するエネルギーを熱エネルギーとして取り出し、一酸化炭素除去部を構成する変成器1と一酸化炭素除去器2との加熱に用いる。
 [2-3.効果等]
 以上のように、本実施の形態の燃料電池システム200は、窒素の濃度が25%を上回る原料水素に含まれる一酸化炭素の一部を除去して水素含有ガスを排出する一酸化炭素除去部と、その水素含有ガスを用いて発電する第一の燃料電池3と、を備える。
 一酸化炭素除去部は、原料水素に含まれる一酸化炭素の一部を変成反応により除去する変成器1と、変成器1から排出される水素含有ガスに含まれる一酸化炭素を酸化反応により除去する一酸化炭素除去器2と、を有する。
 また、本実施の形態の燃料電池システム200は、水素含有ガスのうち発電に使用されずに第一の燃料電池3を通過したガスである1次オフガスを用いて発電する第二の燃料電池5を備える。第二の燃料電池5の発電出力は、第一の燃料電池3の発電出力よりも小さい。
 これにより、本実施の形態の燃料電池システム200は、第二の燃料電池5が、第一の燃料電池3から排出される1次オフガスを用いて発電することができる。そのため、燃料電池システム200は原料水素に含まれる水素を無駄なく使用することができる。
 また、本実施の形態の燃料電池システム200は、1次オフガスのうち発電に使用されずに第二の燃料電池5を通過したガスである2次オフガスを用いて一酸化炭素除去部を加熱する燃焼器4を備える。
 これにより、本実施の形態の燃料電池システム200は、第二の燃料電池5から排出される2次オフガスを用いて一酸化炭素除去部を加熱することができる。そのため、燃料電池システム200は原料水素を無駄なく使用することができる。
 また、本実施の形態の燃料電池システム200は、一酸化炭素除去部に供給する原料水素から硫黄を除去する硫黄除去部6を備える。
 これにより、本実施の形態の燃料電池システム200は、変成器1に供給される原料水素に含まれる硫黄成分を、硫黄除去部6で除去することができる。そのため、燃料電池システム200は、原料水素中に硫黄成分が含まれていても、安定して発電することができる。
 なお、本実施の形態における硫黄除去部6は、吸着材による硫黄の除去に限らず、硫黄除去部6として、水添脱硫により硫黄を除去する水添脱硫部を用いてもよい。水添脱硫部を用いた場合は、原料水素に含まれる水素を用いることで硫黄成分をより低濃度にまで低減することができる。
 また、水添脱硫部に適した温度帯と変成器1と一酸化炭素除去器2との温度帯が近いため、水添脱硫部を、変成器1や一酸化炭素除去器2や燃焼器4で加熱してもよい。
 これにより、原料水素に含まれる硫黄成分をより低濃度に低減することができる。そのため、変成器1や一酸化炭素除去器2や第一の燃料電池3や第二の燃料電池5の被毒をより防止することができる。
 (実施の形態3)
 以下、図3を用いて、実施の形態3を説明する。図3は、実施の形態3における燃料電池システム300のブロック図である。
 [3-1.構成]
 図3に示すように、本実施の形態の燃料電池システム300は、変成器1と、一酸化炭素除去器2と、第一の燃料電池3と、燃焼器4と、第二の燃料電池5と、第三の燃料電池7と、アンモニア除去器8と、を備える。
 本実施の形態の燃料電池システム300において、実施の形態1または実施の形態2と同一の構成要素には同一符号を付与し、その説明は省略する。
 第三の燃料電池7は、2次オフガスを用いて発電する。2次オフガスは、第二の燃料電池5に供給された1次オフガスのうち第二の燃料電池5での発電に使用されずに第二の燃料電池5を通過したガスである。
 第二の燃料電池5に供給される1次オフガスに含まれる水素量よりも、第二の燃料電池5から排出され第三の燃料電池7に供給される2次オフガスに含まれる水素量は少ない。したがって、第二の燃料電池5の発電出力よりも、第三の燃料電池7の発電出力が小さくなるように構成してもよい。この場合、第一の燃料電池3の発電出力よりも第二の燃料電池5の発電出力が小さく、第二の燃料電池5の発電出力よりも第三の燃料電池7の発電出力が小さくなる。
 アンモニア除去器8は、第一の燃料電池3に供給される水素含有ガスに含まれるアンモニアを除去する。アンモニア除去器8にて、水素含有ガスに含まれるアンモニアの濃度を第一の燃料電池3を被毒しない濃度にまで低減する。
 [3-2.動作]
 以上のように構成された燃料電池システム300について、以下その動作、作用を説明する。
 まず、図3に基づいて、燃料電池システム300における原料水素を用いて発電する動作を説明する。
 原料水素は水素と窒素と一酸化炭素とに加え、アンモニアを含むことがある。このアンモニアを除去するために、一酸化炭素除去部を構成する変成器1と一酸化炭素除去器2とを通過して一酸化炭素濃度が低減された水素含有ガスが、アンモニア除去器8に供給される。
 アンモニア除去器8は、水素含有ガスに含まれるアンモニアの濃度を第一の燃料電池3を被毒しない濃度にまで低減する。アンモニア濃度が低減された水素含有ガスは、第一の燃料電池3に供給される。
 第一の燃料電池3は、アンモニア除去器8によってアンモニア濃度が低減された水素含有ガスを用いて発電する。第一の燃料電池3は、第一の燃料電池3に供給された全ての水素含有ガスを発電に使用することができない。第一の燃料電池3に供給された水素含有ガスのうち第一の燃料電池3での発電に使用されなかったガスは、1次オフガスとして、第一の燃料電池3から排出される。この1次オフガスは、第二の燃料電池5に供給される。
 第二の燃料電池5は、第二の燃料電池5に供給された全ての1次オフガスを発電に使用することができず、第二の燃料電池5に供給された1次オフガスのうち第二の燃料電池5での発電に使用されなかったガスは、2次オフガスとして、第二の燃料電池5から排出される。この2次オフガスは、第三の燃料電池7に供給される。
 第三の燃料電池7は、第三の燃料電池7に供給された全ての2次オフガスを発電に使用することができず、第三の燃料電池7に供給された2次オフガスのうち第三の燃料電池7での発電に使用されなかったガスは、3次オフガスとして、第三の燃料電池7から排出される。この3次オフガスは、燃焼器4に供給される。
 燃焼器4は、3次オフガスを燃焼して、一酸化炭素除去部を構成する変成器1と一酸化炭素除去器2とを加熱する。
 [3-3.効果等]
 以上のように、本実施の形態の燃料電池システム300は、窒素の濃度が25%を上回る原料水素に含まれる一酸化炭素の一部を除去して水素含有ガスを排出する一酸化炭素除去部と、その水素含有ガスを用いて発電する第一の燃料電池3と、を備える。
 一酸化炭素除去部は、原料水素に含まれる一酸化炭素の一部を変成反応により除去する変成器1と、変成器1から排出される水素含有ガスに含まれる一酸化炭素を酸化反応により除去する一酸化炭素除去器2と、を有する。
 また、本実施の形態の燃料電池システム300は、水素含有ガスのうち発電に使用されずに第一の燃料電池3を通過したガスである1次オフガスを用いて発電する第二の燃料電池5と、1次オフガスのうち発電に使用されずに第二の燃料電池5を通過したガスである2次オフガスを用いて発電する第三の燃料電池7と、を備える。
 第二の燃料電池5の発電出力は、第一の燃料電池3の発電出力よりも小さく、第三の燃料電池7の発電出力は、第二の燃料電池5の発電出力よりも小さい。
 これにより、本実施の形態の燃料電池システム300は、第二の燃料電池5が、第一の燃料電池3から排出される1次オフガスを用いて発電することができ、第三の燃料電池7が、第二の燃料電池5から排出される2次オフガスを用いて発電することができる。そのため、燃料電池システム300は、原料水素に含まれる水素を無駄なく使用することができる。
 また、本実施の形態の燃料電池システム300は、2次オフガスのうち発電に使用されずに第三の燃料電池7を通過したガスである3次オフガスを用いて一酸化炭素除去部を加熱する燃焼器4を備える。
 これにより、本実施の形態の燃料電池システム300は、第三の燃料電池7から排出される3次オフガスを用いて一酸化炭素除去部を加熱することができる。そのため、燃料電池システム300は原料水素を無駄なく使用することができる。
 また、本実施の形態の燃料電池システム300は、第一の燃料電池3の上流にアンモニアを除去するアンモニア除去器8を備える。
 これにより、燃料電池システム300は、第一の燃料電池3に供給される水素含有ガスに含まれるアンモニアをアンモニア除去器8で除去することができる。そのため、燃料電池システム300は、原料水素にアンモニアが含まれていても、安定して発電することができる。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1から実施の形態3を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1から実施の形態3で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
 実施の形態2では、変成器1と一酸化炭素除去器2と第一の燃料電池3と第二の燃料電池5と燃焼器4とが直列に一台ずつ接続された構成について説明した。しかし、この構成に限ることなく、図4に示す燃料電池システム400のように、変成器1a,1b,1cと一酸化炭素除去器2a,2b,2cと第一の燃料電池3a,3b,3cと第二の燃料電池5a,5bと燃焼器4a,4b,4cとを、それぞれ複数台有するように構成してもよい。
 図4に示す燃料電池システム400のように、機器を並列に複数台配置する場合においては、第一の燃料電池3a,3b,3cの複数台の総和の発電出力よりも第二の燃料電池5a,5bの複数台の総和の発電出力を小さくすることにより、原料水素に含まれる水素を無駄なく使用することができる。
 また、図4に示すように、第一の燃料電池3a,3b,3cの台数よりも第二の燃料電池5a,5bの台数を少なくすることにより、第一の燃料電池3a,3b,3cの各々が第二の燃料電池5a,5bの各々と同じ発電出力の装置であったとしても、第一の燃料電池3a,3b,3cの総和の発電出力よりも第二の燃料電池5a,5bの総和の発電出力を小さくすることができる。
 また、実施の形態1から実施の形態3では、一酸化炭素除去部として、変成器1と一酸化炭素除去器2との両方を用いたが、これに限らず、変成器1と一酸化炭素除去器2とのどちらか一方のみであってもよい。原料水素に含まれる一酸化炭素の濃度および第一の燃料電池3を被毒する一酸化炭素の濃度などにより、変成器1と一酸化炭素除去器2との組み合わせを変更してもよい。
 原料水素に含まれる一酸化炭素の濃度が高い場合には、変成器1を用いて一酸化炭素を低減してもよい。原料水素に含まれる一酸化炭素の濃度が低い場合には、一酸化炭素除去器2のみで一酸化炭素を低減してもよい。また、第一の燃料電池3に供給される水素含有ガスの一酸化炭素濃度を低濃度に抑えない場合に第一の燃料電池3が一酸化炭素で被毒する可能性がある場合には、一酸化炭素除去器2を用いてもよい。
 実施の形態1から実施の形態3では、原料水素として、水素と窒素と一酸化炭素とに加え、アンモニアが含まれる場合がある。
 原料水素のアンモニア濃度が高く、アンモニアが第一の燃料電池3を被毒する可能性がある場合には、実施の形態3のように、アンモニア除去器8を設けてもよい。また、原料水素に含まれるアンモニアの濃度が低く、水素含有ガスに含まれるアンモニアが第一の燃料電池3を被毒しない場合には、アンモニア除去器8を設置しなくてもよい。
 実施の形態3では、アンモニア除去器8を、一酸化炭素除去器2と第一の燃料電池3との間に配置したが、アンモニア除去器8の設置個所は、第一の燃料電池3の上流側であれば、一酸化炭素除去器2と第一の燃料電池3との間でなくてもよい。例えば、アンモニア除去器8を変成器1の上流側に設置して、アンモニア除去器8で原料水素からアンモニアを除去して、変成器1にアンモニアを除去した原料水素を供給してもよい。また、変成器1と一酸化炭素除去器2との間にアンモニア除去器8を設けてもよい。
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、水素と窒素と一酸化炭素を含んだ原料水素を用いて発電する燃料電池システムに適用可能である。具体的には、産業分野で排出される余剰な水素を含んだガスを用いた発電などに本開示は適用可能である。
 1,1a,1b,1c 変成器
 2,2a,2b,2c 一酸化炭素除去器
 3,3a,3b,3c 第一の燃料電池
 4,4a,4b,4c 燃焼器
 5,5a,5b 第二の燃料電池
 6 硫黄除去部
 7 第三の燃料電池
 8 アンモニア除去器
 100 燃料電池システム
 200 燃料電池システム
 300 燃料電池システム
 400 燃料電池システム

Claims (11)

  1.  水素と窒素と一酸化炭素とを含んだ原料水素が、外部から供給される燃料電池システムであって、
     前記原料水素に含まれる一酸化炭素の一部を除去して水素含有ガスを排出する一酸化炭素除去部と、前記水素含有ガスを用いて発電する第一の燃料電池と、を備え、
     前記原料水素に含まれる窒素の濃度が25%を上回る、
     燃料電池システム。
  2.  前記一酸化炭素除去部が、前記原料水素に含まれる一酸化炭素の一部を変成反応により除去する変成器と、前記原料水素に含まれる一酸化炭素を酸化反応により除去する一酸化炭素除去器との少なくとも一方を有する、
     請求項1記載の燃料電池システム。
  3.  前記水素含有ガスのうち発電に使用されずに前記第一の燃料電池を通過したガスである1次オフガスを用いて発電する第二の燃料電池をさらに備え、
     前記第二の燃料電池の発電出力が、前記第一の燃料電池の発電出力よりも小さい、
     請求項1または2に記載の燃料電池システム。
  4.  前記水素含有ガスのうち発電に使用されずに前記第一の燃料電池を通過したガスである1次オフガスを用いて前記一酸化炭素除去部を加熱する燃焼器をさらに備えた、
     請求項1または2に記載の燃料電池システム。
  5.  前記1次オフガスのうち発電に使用されずに前記第二の燃料電池を通過したガスである2次オフガスを用いて前記一酸化炭素除去部を加熱する燃焼器を備えた、
     請求項3に記載の燃料電池システム。
  6.  前記第一の燃料電池は、複数の第一の燃料電池のうちの1つであり、
     前記第二の燃料電池は、複数の第二の燃料電池のうちの1つであり、
     前記複数の第一の燃料電池は、並列に配置され、
     前記複数の第二の燃料電池は、並列に配置され、
     前記複数の第一の燃料電池の発電出力の総和よりも前記複数の第二の燃料電池の発電出力の総和の方が小さい、
     請求項3または5に記載の燃料電池システム。
  7.  前記一酸化炭素除去部は、複数の一酸化炭素除去部のうちの1つであり、
     前記複数の一酸化炭素除去部は、並列に配置される、
     請求項1から6のいずれか1項に記載の燃料電池システム。
  8.  前記1次オフガスのうち発電に使用されずに前記第二の燃料電池を通過したガスである2次オフガスを用いて発電する第三の燃料電池をさらに備え、
     前記第三の燃料電池の発電出力が、前記第二の燃料電池の発電出力よりも小さい、
     請求項3に記載の燃料電池システム。
  9.  前記第一の燃料電池の上流にアンモニアを除去するアンモニア除去器をさらに備えた、
     請求項1から8のいずれかに記載の燃料電池システム。
  10.  前記一酸化炭素除去部に供給する前記原料水素から硫黄を除去する硫黄除去部をさらに備えた、
     請求項1から9のいずれかに記載の燃料電池システム。
  11.  前記硫黄除去部が水添脱硫により硫黄を除去する水添脱硫部である、
     請求項10に記載の燃料電池システム。
PCT/JP2021/001568 2020-03-16 2021-01-19 燃料電池システム WO2021186879A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021545675A JPWO2021186879A1 (ja) 2020-03-16 2021-01-19
EP21766094.3A EP4122877A4 (en) 2020-03-16 2021-01-19 FUEL CELL SYSTEM
CN202180002536.5A CN113692663A (zh) 2020-03-16 2021-01-19 燃料电池系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-044871 2020-03-16
JP2020044871 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021186879A1 true WO2021186879A1 (ja) 2021-09-23

Family

ID=77770754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001568 WO2021186879A1 (ja) 2020-03-16 2021-01-19 燃料電池システム

Country Status (4)

Country Link
EP (1) EP4122877A4 (ja)
JP (1) JPWO2021186879A1 (ja)
CN (1) CN113692663A (ja)
WO (1) WO2021186879A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081016A1 (ja) * 2006-01-13 2007-07-19 Matsushita Electric Industrial Co., Ltd. 水素生成装置、燃料電池システム及びそれらの運転方法
JP2012046395A (ja) 2010-08-30 2012-03-08 Panasonic Corp 水素生成装置および燃料電池システム
JP2015099803A (ja) * 2009-06-30 2015-05-28 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ 高温燃料電池システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078202B2 (ja) * 2001-07-12 2012-11-21 大阪瓦斯株式会社 固体高分子型燃料電池発電システム
US6838062B2 (en) * 2001-11-19 2005-01-04 General Motors Corporation Integrated fuel processor for rapid start and operational control
JP5077614B2 (ja) * 2005-02-08 2012-11-21 カシオ計算機株式会社 電源システム及び電源システムの制御方法
JP5065605B2 (ja) * 2006-03-02 2012-11-07 Jx日鉱日石エネルギー株式会社 水素製造装置および燃料電池システム並びにその運転方法
KR102554935B1 (ko) * 2018-03-14 2023-07-12 현대자동차주식회사 연료전지의 수소 농도 제어방법 및 제어시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081016A1 (ja) * 2006-01-13 2007-07-19 Matsushita Electric Industrial Co., Ltd. 水素生成装置、燃料電池システム及びそれらの運転方法
JP2015099803A (ja) * 2009-06-30 2015-05-28 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ 高温燃料電池システム
JP2012046395A (ja) 2010-08-30 2012-03-08 Panasonic Corp 水素生成装置および燃料電池システム

Also Published As

Publication number Publication date
EP4122877A4 (en) 2023-09-27
EP4122877A1 (en) 2023-01-25
JPWO2021186879A1 (ja) 2021-09-23
CN113692663A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
US20200014046A1 (en) Solid-oxide fuel cell systems
EP1557897A1 (en) Fuel cell power generation system
JP2005506659A (ja) 有機燃料から作られた不活性ガスで燃料電池システムをパージする方法
WO2014115502A1 (ja) 燃料電池システム
KR101563455B1 (ko) 고온 연료 전지 시스템에 대한 재순환을 이용하는 방법 및 어레인지먼트
JP4945598B2 (ja) 固体酸化物燃料電池の燃料改質のための統合反応器
JP6064782B2 (ja) 燃料電池装置
KR20030044063A (ko) 애노드 측면 하류에 접속된 배기 가스 촉매 컨버터를 갖는pem 연료 전지 시스템
WO2021186879A1 (ja) 燃料電池システム
JP2003272691A (ja) 燃料電池発電装置および燃料電池発電装置の運転方法
JPH02302302A (ja) 燃料電池発電システム
JP2001023670A (ja) 燃料電池発電装置
JP2004299939A (ja) 燃料改質器および燃料電池発電装置
JP2009026510A (ja) 燃料電池発電システムおよび燃料電池発電システムの燃料改質方法
JP4753506B2 (ja) 水素含有ガス生成装置及びその運転方法
JP6582572B2 (ja) 燃料電池システム
JPS622432B2 (ja)
JP5395168B2 (ja) 水素生成装置および燃料電池システム
JP2001325981A (ja) 被処理ガス改質機構と固体高分子型燃料電池システム並びに被処理ガス改質方法
JP2015191692A (ja) 燃料電池システムの停止方法、及び、燃料電池システム
JP6800367B1 (ja) 燃料電池システム
JP2001189162A (ja) 燃料電池システム
JP2001202982A (ja) 固体高分子型燃料電池システム
JP2003178790A (ja) 燃料電池発電システム
JP4467924B2 (ja) 燃料電池発電システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545675

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021766094

Country of ref document: EP

Effective date: 20221017