JP5078202B2 - 固体高分子型燃料電池発電システム - Google Patents

固体高分子型燃料電池発電システム Download PDF

Info

Publication number
JP5078202B2
JP5078202B2 JP2001211631A JP2001211631A JP5078202B2 JP 5078202 B2 JP5078202 B2 JP 5078202B2 JP 2001211631 A JP2001211631 A JP 2001211631A JP 2001211631 A JP2001211631 A JP 2001211631A JP 5078202 B2 JP5078202 B2 JP 5078202B2
Authority
JP
Japan
Prior art keywords
ammonia
power generation
fuel cell
hydrogen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001211631A
Other languages
English (en)
Other versions
JP2003031247A (ja
Inventor
健 田畑
規寿 神家
一裕 平井
修 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001211631A priority Critical patent/JP5078202B2/ja
Publication of JP2003031247A publication Critical patent/JP2003031247A/ja
Application granted granted Critical
Publication of JP5078202B2 publication Critical patent/JP5078202B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池(PEFC)発電システムに関し、より詳細には、窒素を含有する原燃料、もしくは原燃料と窒素を含有するガスの混合物を改質して水素リッチガスを製造し、その水素リッチガスを燃料として動作する固体高分子型燃料電池発電システムに関する。
【0002】
【従来の技術】
家庭用発電システムなどとして期待されている固体高分子型燃料電池発電システムは、4万時間〜9万時間の耐久性が要求される。
ところが、炭化水素などの原燃料を改質した水素リッチガスを燃料とする固体高分子型燃料電池発電システムにおいては、改質ガスを燃料とした場合には、1万時間の耐久性さえ確保できていないのが現状である。
【0003】
そこで、従来、固体高分子型燃料電池(PEFC)の劣化の原因として、改質ガス中のCOによる被毒が注目され、耐CO性の電極触媒の開発などが活発に行われてきた。
【0004】
【発明が解決しようとする課題】
しかしながら、長期耐久性に影響を与える要因については、これまで知見がなかった。
一方、原燃料中に窒素が含まれていると、改質触媒上で生成した水素と窒素が反応し、アンモニアが生成することがある。アンモニアなどプロトンと結合して陽イオンとなるアルカリ性物質は、プロトン導電性の電解質を用いるリン酸型燃料電池(PAFC)やPEFCでは、プロトンをトラップして電解質中の電気伝導度を低下させる被毒物質となりうる。しかし、PAFCでは、液化天然ガス(LNG)から製造される日本の都市ガス中に通常含まれる窒素から生成すると思われる0.1ppm程度のアンモニアが改質ガス中に含まれていても、4万時間程度の運転中に顕著な劣化を示さないことがわかっている。
このため、PEFCにおいても、アンモニアの影響は同程度のものであると考えられてきた。
【0005】
本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、PEFCの長期耐久性に悪影響を与える因子を取り除き、安定した改質が同時にできて、長期間安定して運転できるPEFC発電システムを提供することを目的とし、請求項2に係る発明は、アンモニアの除去負荷を極めて小さくできるようにするとともにさらに長期間安定して運転できるようにすることを目的とし、請求項3に係る発明は、アンモニアを経済的に除去できるようにすることを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記の問題に鑑み、鋭意研究を重ねた結果、改質ガス中に含まれるサブppm の極微量のアンモニアがPEFCを不可逆的に劣化させることを明らかにした。また、PEFCの場合、ppm オーダーのアンモニアが共存すると、PAFCの場合とは違って、数十時間で致命的な劣化を招くことを見出した。
また、アンモニアの共存を中断すると、一時的には、性能がある程度回復するが、アンモニアが高分子膜にトラップされ、不可逆的な電圧低下が残ることを見出した。更に、高分子膜のイオン交換容量とアンモニアによる影響の定量的な関係を検討して、本発明を完成させた。
【0007】
すなわち、請求項1に係る発明は、
改質触媒の共存下水蒸気および/または空気と反応させて改質ガスを生成する改質反応器と、その改質反応器で生成された改質ガス中のCOをCO選択酸化触媒の共存下で酸素で選択的に酸化することによりCO2 に変換するCO選択酸化反応器とを少なくとも含み、窒素を含有する原燃料、もしくは原燃料と窒素を含有するガスの混合物を改質して水素リッチガスを製造する燃料改質システムを備え、その燃料改質システムで製造された水素リッチガスを燃料として固体高分子型燃料電池で発電する固体高分子型燃料電池発電システムであって、
前記CO選択酸化反応器に供給する前の水素リッチガス中に含まれる水蒸気を凝縮分離させる水蒸気凝縮分離手段を備え、水素リッチガス中の水蒸気を凝縮させ、凝縮水中に改質ガス中のアンモニアをCO2 と同時に溶解させて水素リッチガス中のアンモニアを濃度5ppb以下に除去した後、固体高分子型燃料電池に供給することを特徴としている。
請求項1に係る発明では、窒素を含有する原燃料、もしくは原燃料と窒素を含有するガスの混合物を改質して水素リッチガスを製造する燃料改質システムを備える。ここで、「窒素を含有する」とは、窒素の形態にかかわらず、原燃料、あるいは、原燃料と他のガスの混合物中に窒素が分子換算で1ppm以上含まれていることをいう。これは、原燃料中に分子として1ppmの窒素が含まれている場合に、水素リッチガス中のアンモニア濃度が5ppb以上となることがあるからである。
本発明で用いる燃料改質システムおよびPEFCは、それぞれ原燃料を改質して水素リッチガスを製造できる燃料改質システム、および、水素リッチガスを燃料として発電できる限り、特に制限はない。
また、水蒸気凝縮分離手段では、水素リッチガスと凝縮水とを接触させ、水素リッチガス中のアンモニアをCO2 と同時に凝縮水中に溶解させて除去する。炭化水素やアルコールなどを改質して得られる水素リッチガスには、CO2 が含まれている。CO2 は凝縮水に溶解し、酸性を呈するので、アンモニアを吸収するのに有利になる。
CO選択酸化反応器に供給する前に改質ガス中に含まれる水蒸気を凝縮分離させることにより、CO選択酸化反応を長期間安定して進めることができる。
上記構成による場合も、凝縮水の生成量が、アンモニアの除去に必要な上記設計の水の流量Fwとなるように凝縮温度を設定する必要がある。この構成によれば、アンモニア除去器として新たに装置を追加することなくアンモニアが除去できるので経済的である。
【0008】
請求項2に係る発明は、
請求項1に記載の固体高分子型燃料電池発電システムにおいて、
CO選択酸化反応器からの水素リッチガスを純水中にバブリングさせ、純水をガス中に蒸発させるとともにガス中のアンモニアを純水中に溶解して吸収させるバブリング槽と、 水蒸気凝縮分離手段と前記バブリング槽との間で凝縮水中に溶解したアンモニアを除去して再生するイオン交換樹脂とを備え、
水素リッチガス中のアンモニアを濃度0.5ppb以下に除去した後、固体高分子型燃料電池に供給するように構成する。
この構成による場合、水蒸気を凝縮分離させる水蒸気凝縮分離手段では、厳密に水の流量Fwを規定する必要はない。また、バブリング槽においても、バブリング槽に入る水素リッチガス中のアンモニア濃度は、水蒸気の凝縮分離により、大幅に低減されているので、アンモニアの除去負荷は極めて小さくなる。この構成は、水蒸気の凝縮温度をあまり下げられない場合やバブリング槽での水の循環量を多くとれない場合に好適である。
また、請求項3に係る発明は、
請求項2に記載の固体高分子型燃料電池発電システムにおいて、
イオン交換樹脂を出た循環水をバブリング槽に供給するように構成する。
【0009】
【発明の実施の形態】
以下、参考例、構成例、実施例、比較例を用いて本発明を詳細に説明するが、本発明は実施例に限定されるものではない。
【0010】
参考例1
水素を燃料として、安定して700mV で運転できている外部加湿式のPEFCセルにおいて、加湿後の水素ガスにアンモニアを3.2ppmとなるように加えたところ、直ちに電圧が低下し始め、電圧低下が止まらずに約70時間後、低電圧のリミットに達したのでアンモニアの供給を停止した。電圧は675mV まで回復したが、その後 100時間純水素での運転を続けても、電圧の回復傾向は見られず、不可逆的な劣化が起こっていると考えられる。
【0011】
構成例1
図1は、固体高分子型燃料電池発電システムに用いるアンモニア除去器の構成例1を示すブロック図である。
燃料改質システム1にアンモニアを除去するアンモニア吸収塔2が接続されている。
【0012】
アンモニア吸収塔2には、排出配管3を介して純水タンク4が接続され、その純水タンク4とアンモニア吸収塔2の上部に設けたノズル5とが、循環ポンプ6と再生部としての陽イオン交換樹脂7とを介装した循環配管8を介して接続されている。
【0013】
上記構成により、燃料改質システム1からアンモニア吸収塔2に供給される改質ガスである、アンモニアを含有する水素リッチガスにノズル5から純水を散布し、改質ガス中のアンモニアを純水にCO2 と同時に溶解させるようになっている。
【0014】
アンモニア吸収塔2の上側と、PEFCのセルスタック9とがガス配管10を介して接続され、アンモニアを除去した精製水素リッチガスをセルスタック9に供給できるようになっている。
【0015】
排出配管3に、電磁操作型の第1の開閉弁11が設けられ、一方、アンモニア吸収塔2の下方側に第1の連通管12が設けられるとともに、その第1の連通管12に液面センサ13が設けられ、液面センサ13と第1の開閉弁11が連係され、アンモニア吸収塔2の下部に溜まる水量が一定に維持されるように構成されている。
【0016】
純水タンク4に、電磁操作型の第2の開閉弁14を介装した純水補給管15と、電磁操作型の第3の開閉弁16を介装した排水管17とが接続され、更に、純水タンク4の側壁に第2の連通管18が設けられるとともに、その第2の連通管18に第2の液面センサ19が設けられ、第2の液面センサ19と第2および第3の開閉弁14,16が連係され、水素リッチガスの露点とアンモニア吸収塔2の運転温度が異なることに起因する循環水量の過不足発生を防止できるように構成されている。
【0017】
上記構成のアンモニア除去器を、天然ガスを水蒸気改質して水素リッチガスを製造する燃料改質システム1と外部加湿式PEFCのセルスタック9との間に設置してPEFC発電システムを構成した。
【0018】
このPEFC発電システムにおいて、窒素を1%含有する天然ガスをS/C= 3.0で水蒸気改質し、水素リッチガスを得た。この水素リッチガス中のアンモニア濃度を分析したところ、1.2ppmのアンモニアが含まれていた。このアンモニアを含む水素リッチガスを流量約 20l/minでアンモニア除去器に供給した。
【0019】
アンモニア吸収塔2での運転速度を、水素リッチガスの露点にほぼ等しい60℃に設定し、循環水量は100ml/min とした。アンモニア吸収塔2の中には、メッシュリングを充填し、接触面積を増やした。再生部には、陽イオン交換樹脂7を100ml 充填した。この結果、アンモニア除去器を出た精製水素リッチガス中のアンモニア濃度は、0.5ppb以下となっていた。
【0020】
アンモニア除去器を出た精製水素リッチガスを、セルスタック9のアノードに導入した。セルスタックは外部加湿式で、運転温度約65℃に対し、約60℃の加湿が必要であるが、水素リッチガスの露点がほぼ等しいため、そのまま発電に供することができた。
発電試験を継続した結果、単セル電圧として、初期に十数mVの電圧の低下があったが、1000時間にわたって、700mV を保ち、安定した発電ができた。
【0021】
比較例1
上記構成例1において、アンモニア除去器を設置せず、燃料改質システムで精製した水素リッチガスを直接セルスタックに供給する以外は、構成例1と同様に発電試験を行った。
その結果、発電当初から単セル電圧が700mV を切り、 100時間以内に500mV まで低下したので、発電を中止せざるを得なかった。
【0022】
比較例2
比較例1において、天然ガス中の窒素濃度を 0.1%とする以外は、比較例1と同様にして発電試験を行った。
その結果、発電当初は単セル電圧が700mV を越えていたが、 500時間後には、620mV まで低下し、電圧低下が飽和する傾向は認められなかった。
【0023】
構成例2
図2は、固体高分子型燃料電池発電システムに用いるアンモニア除去器の構成例2を示すブロック図であり、構成例1と異なるところは次の通りである。
この構成例2では、構成例1で用いた燃料改質システムを用いることを前提とし、約75℃で運転する外部加湿式セルスタックを用いて構成される。
アンモニア吸収塔2に代えてバブリング槽21が用いられ、アンモニアを含有する水素リッチガスをバブリング槽21の純水中にバブリングさせ、純水をガス中に蒸発させるとともに、ガス中のアンモニアとCO2 とを同時に純水中に溶解して吸収させるようになっている。
【0024】
セルスタック9と純水タンク4とにわたって、冷却用循環ポンプ22を介装した冷却用循環配管23が設けられ、純水タンク4がセルスタック9の冷却水タンクに兼用構成されている。更に、純水タンク4に空気系排ガスの配管24が接続され、純水タンク4が、空気系排ガスからドレンを回収するドレントラップに兼用構成されている。他の構成は構成例1と同じであり、同一図番を付すことによりその説明は省略する。
【0025】
この構成例2の構成によれば、アノードガスを加湿するアノードガス加湿器とアンモニア除去器とが兼用構成され、構成が簡略化できている。
また、バブリング槽21内の純水の温度は、純水の蒸発に伴って低下するが、この実施例2の構成によれば、セルスタック9の排熱を回収した冷却用循環水の顕熱を利用して温度を維持できる。すなわち、純水タンク4の水温は約74℃で、バブリング槽21への純水を300ml/min 循環させることにより、バブリング温度を約70℃に保つことができる。
【0026】
この構成例2において、構成例1と同様にして発電試験を行った。バブリング槽21の出口での精製水素リッチガス中のアンモニア濃度は0.5ppb以下となっており、発電を安定して継続することができた。
【0027】
実施例
図3は、本発明に係る固体高分子型燃料電池発電システムの実施例の構成を示すブロック図であり、燃料改質システムが、主に脱硫器31、改質反応器32、CO変成器33、COを除去するCO選択酸化反応器34から成る天然ガスの水蒸気改質システムであって、CO変成器33とCO選択酸化反応器34との間で選択酸化用空気42を導入する前に、CO変成器33の出口からのガス中の水蒸気を凝縮分離する機構が備えられ、CO選択酸化反応器34の後段に、内部加湿・潜熱冷却式セルスタック9を接続して構成されている。
【0028】
CO変成器33を出たガスが、水蒸気凝縮用冷却水の給水管35を備えた水蒸気凝縮器36に供給され、改質ガス中の水蒸気を凝縮させ、ドレントラップ37で気液分離した後、CO選択酸化反応器34に供給されるようになっている。
【0029】
ドレントラップ37には、電磁操作型の第4の開閉弁38を介装した排水管39が接続され、更に、ドレントラップ37の側壁に第3の連通管40が設けられるとともに、その第3の連通管40に第3の液面センサ41が設けられ、第3の液面センサ41と第4の開閉弁38が連係され、ドレントラップ37に溜まったドレンを適宜排出できるように構成されている。
【0030】
この実施例によれば、水蒸気を凝縮分離する機構とアンモニア除去器とが兼用構成されている。
すなわち、アンモニアを含んだ、CO変成器33の出口のガスは、水蒸気凝縮器36で発生した水にCO2 とともに溶解される。アンモニアを除去された改質ガスは、CO選択酸化反応器34に供給され、CO濃度を低減した後、加湿器を経ずに内部加湿・潜熱冷却式セルスタック9に供給される。
【0031】
このPEFC発電システムにおいて、窒素を 0.5%含有する天然ガスをS/C=3.0で水蒸気改質し、CO変成器33の出口の改質ガスのアンモニア濃度を分析したところ、0.65ppm のアンモニアが含まれていた。
アンモニア除去器を兼ねた水蒸気凝縮器36でCO変成器33を経たガスを25℃まで冷却したところ、ドレンが3.2ml/min 凝縮した。水蒸気凝縮器36の出口の改質ガスのアンモニア濃度は、約1ppbとなっていた。
この実施例の発電システムを用いて発電したところ、単セル電圧が700mV を越えた状態で、発電を安定して継続することができた。
発電試験を継続した結果、として、初期に十数mVの電圧の低下があったが、1000時間にわたって、700mV を保ち、安定した発電ができた。
【0032】
実施例
図4は、本発明に係る固体高分子型燃料電池発電システムの実施例の構成を示すブロック図であり、実施例の燃料改質システムと、構成例2のアンモニア除去器を兼ねた加湿器・セルスタック(外部加湿式)システムを組み合わせ、更に、冷却水から排熱を回収する貯湯槽51を設けてPEFCコージェネレーションシステムが構成されている。
【0033】
この実施例の構成によれば、貯湯槽51を出た水は、水蒸気凝縮器36で改質ガスの凝縮熱を回収した後、純水タンク4の熱を回収して貯湯槽51の頂部に戻り、貯湯槽51内に温水として熱が蓄えられる。
【0034】
水蒸気凝縮器36の上流側に、改質ガス中の顕熱を冷却する改質ガス冷却器52が設けられ、イオン交換樹脂7を出た循環水を改質ガス冷却器52の冷却水として通すことにより、その熱交換によって加熱してからバブリング槽21に供給するように構成されている。他の構成は構成例2および実施例と同じであり、同一図番を付すことによりその説明は省略する。
【0035】
このPEFCコージェネレーションシステムにおいて、窒素を1%含有する天然ガスをS/C= 2.5で水蒸気改質し、CO変成器33の出口の改質ガス中のアンモニア濃度を分析したところ、1.5ppmのアンモニアが含まれていた。
アンモニア除去器を兼ねた水蒸気凝縮器36でCO変成器33を経たガスを25℃まで冷却したところ、ドレンが1.5ml/min 凝縮した。水蒸気凝縮器36の出口の改質ガス中のアンモニア濃度は、10ppb となっていた。
純水タンク4の純水の温度は約74℃で、循環水を約100ml/min 循環させると、改質ガス冷却器52の出口では82℃まで上昇してバブリング槽21に供給され、結果として、バブリング温度は約70℃に保たれる。
バブリング槽21を出た精製水素リッチガス中のアンモニア濃度は0.5ppb以下に低減されており、発電を安定して継続することができた。
【0036】
実施例
原燃料として、窒素を15%含む天然ガスを用いる以外は実施例と同様にして発電試験を行った。
CO変成器33の出口の改質ガス中のアンモニア濃度は13ppm であり、アンモニア除去器を兼ねた水蒸気凝縮器36の出口の改質ガス中のアンモニア濃度は、0.75ppm となっていた。しかし、バブリング槽21を出た精製水素リッチガス中のアンモニア濃度は0.5ppb以下に低減されており、発電を安定して継続することができた。
【0037】
【発明の効果】
以上の説明から明らかなように、請求項1に係る発明の固体高分子型燃料電池発電システムによれば、原燃料を改質して得られる水素リッチガス中のアンモニアを水蒸気凝縮手段で濃度5ppb以下に除去しているので、窒素を含む原燃料を用いて、固体高分子型燃料電池を不可逆的に劣化させるアンモニアが改質反応で生成した場合でも、現在使われている通常のPEFCでは、悪影響を与えることなく、4万時間以上安定して発電することができる。
また、水素リッチガス中のアンモニアをCO2 と同時に水中に溶解させて除去するから、炭化水素やアルコールなどを改質して得られる水素リッチガスに含まれているCO2 が水に溶解して酸性を呈し、アンモニアを吸収するので、簡便かつ効果的にアンモニアを除去することができる。
また、過剰の水蒸気を凝縮分離することができるので、改質ガスのライン上に水蒸気が凝縮して閉塞するトラブルを防止することができ、発電を安定して継続することができる。
更に、アンモニア除去器として新たに装置を追加することなくアンモニアが除去できるので経済性を向上できる。
【0038】
また、請求項2に係る発明の固体高分子型燃料電池発電システムによれば、水素リッチガス中のアンモニアを濃度0.5ppb以下まで除去しているので、コストダウンのため膜厚を薄くしたPEFCや電極触媒を低減したPEFCにおいても、9万時間以上安定して発電することができる。
また、バブリング槽に入る水素リッチガス中のアンモニア濃度が、水蒸気の凝縮分離により、大幅に低減されているので、アンモニアの除去負荷を極めて小さくでき、水蒸気の凝縮温度をあまり下げられない場合やバブリング槽での水の循環量を多くとれない場合に良好に適用できる。
また、請求項3に係る発明の固体高分子型燃料電池発電システムによれば、アンモニアを吸収した水からアンモニアを除去し、その水をアンモニア除去に再利用するから、経済的である。
【図面の簡単な説明】
【図1】 体高分子型燃料電池発電システムに用いるアンモニア除去器の構成例1を示すブロック図である。
【図2】 体高分子型燃料電池発電システムに用いるアンモニア除去器の構成例2を示すブロック図である。
【図3】 本発明に係る固体高分子型燃料電池発電システムの実施例の構成を示すブロック図である。
【図4】 本発明に係る固体高分子型燃料電池発電システムの実施例の構成を示すブロック図である。
【符号の説明】
1…燃料改質システム
2…アンモニア吸収塔(吸収部)
7…イオン交換樹脂(再生部)
21…バブリング槽
32…改質反応器
34…CO選択酸化反応器
36…水蒸気凝縮器(水蒸気凝縮分離手段)

Claims (3)

  1. 改質触媒の共存下水蒸気および/または空気と反応させて改質ガスを生成する改質反応器と、その改質反応器で生成された改質ガス中のCOをCO選択酸化触媒の共存下で酸素で選択的に酸化することによりCO2 に変換するCO選択酸化反応器とを少なくとも含み、窒素を含有する原燃料、もしくは原燃料と窒素を含有するガスの混合物を改質して水素リッチガスを製造する燃料改質システムを備え、その燃料改質システムで製造された水素リッチガスを燃料として固体高分子型燃料電池で発電する固体高分子型燃料電池発電システムであって、
    前記CO選択酸化反応器に供給する前の水素リッチガス中に含まれる水蒸気を凝縮分離させる水蒸気凝縮分離手段を備え、水素リッチガス中の水蒸気を凝縮させ、凝縮水中に改質ガス中のアンモニアをCO2 と同時に溶解させて水素リッチガス中のアンモニアを濃度5ppb以下に除去した後、固体高分子型燃料電池に供給することを特徴とする固体高分子型燃料電池発電システム。
  2. 請求項1に記載の固体高分子型燃料電池発電システムにおいて、
    CO選択酸化反応器からの水素リッチガスを純水中にバブリングさせ、純水をガス中に蒸発させるとともにガス中のアンモニアを純水中に溶解して吸収させるバブリング槽と、 水蒸気凝縮分離手段と前記バブリング槽との間で凝縮水中に溶解したアンモニアを除去して再生するイオン交換樹脂とを備え、
    水素リッチガス中のアンモニアを濃度0.5ppb以下に除去した後、固体高分子型燃料電池に供給するものである固体高分子型燃料電池発電システム。
  3. 請求項2に記載の固体高分子型燃料電池発電システムにおいて、
    イオン交換樹脂を出た循環水をバブリング槽に供給するように構成してある固体高分子型燃料電池発電システム。
JP2001211631A 2001-07-12 2001-07-12 固体高分子型燃料電池発電システム Expired - Lifetime JP5078202B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001211631A JP5078202B2 (ja) 2001-07-12 2001-07-12 固体高分子型燃料電池発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001211631A JP5078202B2 (ja) 2001-07-12 2001-07-12 固体高分子型燃料電池発電システム

Publications (2)

Publication Number Publication Date
JP2003031247A JP2003031247A (ja) 2003-01-31
JP5078202B2 true JP5078202B2 (ja) 2012-11-21

Family

ID=19046907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001211631A Expired - Lifetime JP5078202B2 (ja) 2001-07-12 2001-07-12 固体高分子型燃料電池発電システム

Country Status (1)

Country Link
JP (1) JP5078202B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298249A (ja) * 2004-04-08 2005-10-27 T Rad Co Ltd 改質ガス供給装置および供給方法
JP2006244873A (ja) * 2005-03-03 2006-09-14 Cosmo Oil Co Ltd 燃料電池用水素の製造方法
US8652224B2 (en) 2006-01-13 2014-02-18 Panasonic Corporation Hydrogen generator, fuel cell system and their operating methods
CN101953006B (zh) * 2008-03-31 2014-07-23 罗姆股份有限公司 燃料电池及其制造方法
JP5396749B2 (ja) * 2008-06-11 2014-01-22 株式会社Ihi グリセリン改質装置および改質方法
FR2933239B1 (fr) * 2008-06-27 2011-01-21 Peugeot Citroen Automobiles Sa Culasse de distribution d'une pile a combustible
WO2011111400A1 (ja) 2010-03-11 2011-09-15 パナソニック株式会社 燃料電池システムおよび燃料電池システムの運転方法
US20130084508A1 (en) 2010-06-15 2013-04-04 Panasonic Corporation Operation method of fuel cell system
EP2835346B1 (en) * 2012-04-06 2018-06-20 Panasonic Intellectual Property Management Co., Ltd. Hydrogen purifier, hydrogen generation apparatus, and fuel cell system
FR2991506B1 (fr) * 2012-05-29 2015-03-20 Commissariat Energie Atomique Procede de la mesure de la reproductibilite de n assemblages unitaires membrane echangeuse d'ions/electrodes par introduction d'agent polluant
JP2014107215A (ja) * 2012-11-29 2014-06-09 Tokyo Gas Co Ltd 燃料電池システムの運用方法
WO2019043875A1 (ja) * 2017-08-31 2019-03-07 日揮株式会社 高窒素含有天然ガスを用いたアンモニアの製造方法
EP3804849A4 (en) 2018-05-23 2021-07-14 Tanaka Kikinzoku Kogyo K.K. STEAM REFORMING CATALYST
JPWO2021186879A1 (ja) * 2020-03-16 2021-09-23

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816040A (en) * 1987-10-15 1989-03-28 International Fuel Cells Corporation Removal of ammonia and carbon dioxide from fuel cell stack water system by steam stripping
JPH09259914A (ja) * 1996-03-22 1997-10-03 Toshiba Corp リン酸型燃料電池発電プラント
US6156084A (en) * 1998-06-24 2000-12-05 International Fuel Cells, Llc System for desulfurizing a fuel for use in a fuel cell power plant
JP2001023677A (ja) * 1999-07-13 2001-01-26 Ebara Corp 燃料電池発電方法及び燃料電池発電システム
JP2001068135A (ja) * 1999-08-25 2001-03-16 Daikin Ind Ltd 燃料電池用改質システム
US6376114B1 (en) * 2000-05-30 2002-04-23 Utc Fuel Cells, Llc Reformate fuel treatment system for a fuel cell power plant

Also Published As

Publication number Publication date
JP2003031247A (ja) 2003-01-31

Similar Documents

Publication Publication Date Title
US7258946B2 (en) Fuel cells and fuel cell systems containing non-aqueous electrolytes
JP5078202B2 (ja) 固体高分子型燃料電池発電システム
US6451466B1 (en) Functional integration of multiple components for a fuel cell power plant
JP4624670B2 (ja) 燃料電池発電装置の多数の構成部品の機能の統合化
US6572994B1 (en) Polymer electrolyte fuel cell system
US20130017458A1 (en) Fuel cell system and operation method thereof
KR20060060603A (ko) 연료 전지 시스템과 그의 운전 방법
WO2002015315A1 (fr) Systeme de pile a combustible
EP2639869B1 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP4036607B2 (ja) 燃料ガス改質装置及び燃料電池システム
JP2009104814A (ja) 燃料電池発電システム
JP2002231282A (ja) 固体高分子電解質型燃料電池発電装置
JP2007157508A (ja) 気液分離装置および気液分離装置を備えた燃料電池発電システム
JP2009064619A (ja) 燃料電池システム
JP5292865B2 (ja) 燃料電池発電装置の水回収方法及び燃料電池発電装置
JP2009170131A (ja) 燃料電池発電システムおよびその運転方法
JPH11339820A (ja) ハイブリッド型燃料電池システム
KR102526672B1 (ko) 수소 품질을 안정적으로 유지할 수 있는 수전해 시스템의 운전 방법
JP2000021431A (ja) 燃料電池用改質設備の停止方法
JP6847900B2 (ja) 二酸化炭素回収型燃料電池発電システム
JP2013027288A (ja) 燃料電池を搭載した車両、および、車両に搭載される燃料電池システム
JP2002042847A (ja) 固体高分子型燃料電池システム
JP7117191B2 (ja) 二酸化炭素回収型燃料電池発電システム
JP4066173B2 (ja) 改質システム及びこれを含む燃料電池システム
JP2003252605A (ja) 水素生成装置および燃料電池発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term