WO2021186715A1 - 乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法 - Google Patents

乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法 Download PDF

Info

Publication number
WO2021186715A1
WO2021186715A1 PCT/JP2020/012457 JP2020012457W WO2021186715A1 WO 2021186715 A1 WO2021186715 A1 WO 2021186715A1 JP 2020012457 W JP2020012457 W JP 2020012457W WO 2021186715 A1 WO2021186715 A1 WO 2021186715A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
stopper
links
link
bearing
Prior art date
Application number
PCT/JP2020/012457
Other languages
English (en)
French (fr)
Inventor
一色 正彦
知至 中村
Original Assignee
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to CN202080098514.9A priority Critical patent/CN115279683B/zh
Priority to PCT/JP2020/012457 priority patent/WO2021186715A1/ja
Priority to JP2022508000A priority patent/JP7170934B2/ja
Publication of WO2021186715A1 publication Critical patent/WO2021186715A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B23/00Component parts of escalators or moving walkways
    • B66B23/08Carrying surfaces
    • B66B23/12Steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B31/00Accessories for escalators, or moving walkways, e.g. for sterilising or cleaning

Definitions

  • the present invention is a step link coupling used to rotatably support two step links instead of a step axis when performing a step link separation operation of a passenger conveyor that moves passengers such as an escalator and a moving walkway.
  • the present invention relates to a method of separating the dummy shaft for use and the step link of the step link connector.
  • a step shaft is connected to each of a step which is a plurality of tread members, and each of both ends of the plurality of step shafts is connected by an endless loop-shaped step link connecting body.
  • rollers guided by guide rails for guiding the movement of the step link coupling body are rotatably supported near both ends in the axial direction of the step link coupling body in the step shaft.
  • Patent Document 1 describes a method for exchanging step links in an escalator.
  • this replacement method one connecting portion of the step link coupling is removed in the machine room to break the track and form a chain of step links with both ends. Dummy shafts having the same length as the step shafts are attached to both ends of this chain. After that, drive the escalator, pull out one end of the chain from the machine room to the landing using the drawer rail device, replace one end of the pulled out step link with a new step link, and then drive the escalator. Return one end to its original position and connect it to the other end of the chain to form an endless loop.
  • a step shaft that rotatably supports the two step links, in order to separate the two step links in a position where the guide rails cover and protect the axially outer side of the rollers.
  • a dummy shaft shorter than the step shaft is passed through the two step links in advance to connect the two step links.
  • a roller is rotatably supported at one end of the dummy shaft. The replacement work from the step shaft to the dummy shaft is performed in a state where the roller faces the position where the side plate portion of the guide rail is not provided.
  • a retaining ring for preventing the roller from coming off is not connected to the outside of the roller so that the dummy shaft can be later pulled out from the roller in the axial direction (step arrangement side).
  • the step link connector is circulated so as to move to a position where the axially outer side of the roller is covered and protected by the side plate portion of the guide rail at the intermediate portion in the longitudinal direction of the guide rail.
  • the step link connector is circulated and moved by human power at a low speed while carefully checking the situation so that the roller does not move significantly outward in the axial direction with respect to the dummy shaft even when there is no retaining ring.
  • Patent Document 1 does not disclose means for resolving the above inconvenience.
  • the present invention is a dummy shaft for connecting step links of a passenger conveyor and a dummy thereof, which can reduce the burden on the operator when the step link is separated at a position where the axial outer side of the roller is covered and protected by the guide rail. It is an object of the present invention to provide a method of separating the step links of a step connection using an axis.
  • the step shaft is connected to each of the steps which are the plurality of tread members, and both ends of the plurality of step shafts are connected to the endless loop-shaped step link.
  • Rollers that are connected by a body and guided by a guide rail to guide the movement of the step link connecting body are rotatably supported closer to both ends in the axial direction than each of the step link connecting bodies of the step shaft.
  • a step link coupling dummy shaft used in place of at least one side end of the step shaft that rotatably supports two step links connected in a moving direction in a passenger conveyor, the two step links.
  • the first shaft that penetrates the shaft hole of the roller and the center hole of the bearing that is coupled to the inner diameter side of the roller, and the first shaft that is inserted in the axial direction so as to be screw-coupled to the first shaft, and the said first shaft by rotation.
  • the second shaft which can move forward and backward in the axial direction toward the bearing side, is coupled to the tip of the second shaft on the bearing side, and can be opened and closed by axial movement of the second shaft.
  • a stopper is provided that faces the outer surface of the bearing, and a stepped surface that faces the inner surface of the bearing is formed on the outer peripheral surface of the first shaft. It is opened or closed when it moves in the direction of being pulled in, and it is closed or opened when it moves in the direction of protruding from the first axis.
  • the method for separating the step links of the step link coupling according to the present invention is a method for separating the step links of the step link coupling using the step link coupling dummy shaft of the passenger conveyor according to the present invention.
  • the roller faces a position where the side plate portion of the guide rail is not provided, and the two step links are A first dummy shaft is passed through a step of pulling out the step shaft from the shaft hole of No. 1 and a shaft hole of the two step links from which the step shaft is pulled out, and the two step links are rotatably supported and supported.
  • a second dummy shaft is passed through the shaft holes of the two step links from which the step shafts have been pulled out to rotatably support the two step links, and the step link connector is circulated and moved by a motor.
  • the step of moving the first dummy shaft to a position where the axially outer side of the roller is covered and protected by the side plate portion of the guide rail at the intermediate portion in the longitudinal direction of the guide rail, and the second shaft are moved.
  • the stopper By moving the stopper in the pulling direction or the protruding direction with respect to the first shaft, the stopper is closed so as not to face the outer surface of the bearing, and then the bearing and the shaft holes of the two step links are used to form the first shaft.
  • 1 Includes a step of pulling out a dummy shaft inward in the axial direction to separate the two step links.
  • the step link separation work can be performed as follows. First, with the steps removed from some of the step axes, the axes of the two step links face each other of the step link connections on both sides in the step axis direction so that the rollers face the positions where the side plates of the guide rails are not present. Remove the step shaft from the hole.
  • the first dummy shaft as the step link coupling dummy shaft is passed through the shaft holes of the two step links from which the step shafts have been extracted, and the two step links are rotatably supported.
  • a bearing having a roller coupled to the outer peripheral side is fitted to one end of the first dummy shaft, and the stopper member prevents the bearing from falling off from the first dummy shaft.
  • the second dummy shaft is passed through the shaft holes of the two step links from which the step shafts have been extracted, and the two step links are rotatably supported.
  • the step link connector is circulated and moved by a motor to move the first dummy shaft to a position where the axially outer side of the roller is covered and protected by the side plate portion of the guide rail at the intermediate portion in the longitudinal direction of the guide rail. ..
  • the stopper of the first dummy shaft and the stepped surface prevent the roller from moving significantly in the axial direction with respect to the first dummy shaft. Therefore, in order to move the first dummy shaft to a position where the axial outer side of the roller is covered and protected by the guide rail, it is not necessary to manually circulate the step link connector at a low speed.
  • the stopper After moving the first dummy shaft to a position where the guide rail covers the outer side of the roller in the axial direction and protects it, the stopper is closed by moving the second shaft in the pull-in direction or the protruding direction with respect to the first shaft.
  • the two step links can be separated by pulling out the first dummy shaft inward in the axial direction from the bearing and the shaft holes of the two step links after making them non-opposed to the outer surface of the bearing. Therefore, when performing the work of separating the step link at a position where the axial outer side of the roller is covered and protected by the guide rail, it is not necessary to manually circulate and move the step link connector at a low speed, so that the operator The burden on you can be reduced.
  • the stopper is preferably an arc-shaped elastic member whose central portion is coupled to the tip of the second shaft and whose bearing side is concave.
  • the stopper opens and closes according to the amount of compression in the axial direction at the coupling portion with the second shaft and one end of the first shaft, and the second shaft moves in the direction of being pulled into the first shaft.
  • the stopper is opened and the second axis moves in a direction protruding from the first axis, the axial direction of the stopper is increased.
  • the stopper is closed.
  • the stopper has a relatively simple structure, so that the number of parts of the dummy shaft can be reduced.
  • the stopper has two bearings whose central portion is fixed to the tip of the second shaft and is connected to both ends of the chevron portion and the chevron portion. It is an elastic piece having an opposing portion, and the top of the chevron portion, which is a connecting portion with the second shaft, opens and closes according to a change in the amount of pulling into the first shaft, and the second shaft is opened and closed.
  • a bearing fixed to the top of the chevron portion and allowing relative rotation between the second shaft and the stopper is included, the stopper is restricted from rotating with respect to the first shaft, and the second shaft is the same.
  • the stopper has a relatively simple structure, so that the number of parts of the dummy shaft can be reduced.
  • the stopper is relative to the first link element fixed to the tip of the second shaft and the tip of the first shaft on the bearing side.
  • a plurality of link elements including two second link elements that are movably supported and oscillatingly connected to both ends of the first link element are formed of the first axis and the second axis. It is a link member that opens and closes according to a change in the orientation of the plurality of link elements due to the relative rotation of the above, and when the second axis moves in a direction of being pulled into the first axis, the stopper is opened or closed. When the second axis moves in a direction protruding from the first axis, the stopper is closed or opened.
  • the stopper can be composed of a plurality of rigid link elements, it is easier to prevent the rollers from shifting outward in the axial direction with respect to the dummy axis when the step link coupling is circulated and moved by the motor. .. As a result, the step link coupling can be easily circulated and moved at a higher speed, so that the work efficiency can be improved.
  • FIG. 5 is a perspective view showing a part of steps removed in an example of an escalator which is a passenger conveyor to which a dummy shaft for connecting step links according to an embodiment of the present invention is applied. It is a schematic cross-sectional view of an escalator.
  • FIG. 1 is an enlarged perspective view of a part A in FIG. 1 with a part removed. It is a perspective view which shows the coupling structure of a step and a step axis. It is a perspective view which shows the coupling structure of a step shaft and a step link, and the roller arrangement part in the part B of FIG. It is a perspective view which shows by removing a part of a step link and a roller in the connection structure of a step shaft and a step link.
  • FIG. 6A is a view seen in the direction of arrow C in FIG. 6A.
  • FIG. 6A is a cross-sectional view of FIG. 6A. It is a figure which takes out and shows the 1st shaft to which the stopper pin is connected from FIG. 6A. In FIG. 6A, it is a figure which takes out and shows the retaining member for coupling to a stopper pin.
  • FIG. 6C is a diagram showing a state in which the second shaft is moved in the protruding direction with respect to the first shaft so that the first shaft and the second shaft can be pulled out from the bearing and the roller.
  • FIG. 5 is a diagram showing a state in which two step links on both the left and right sides, from which the step shaft is removed from the state of FIG. 8, are rotatably supported by a first dummy shaft on the left side and a second dummy shaft on the right side.
  • FIG. 9 is a diagram corresponding to FIG. 5A showing a state in which the step link coupling body is circulated and moved by a motor after the state of FIG.
  • FIG. 11 is a cross-sectional view taken along the line EE of FIG.
  • FIG. 12A is a diagram showing a state in which the first dummy shaft is pulled out from the roller and the bearing. It is a figure corresponding to FIG. 6A which shows the dummy shaft (first dummy shaft) for step link coupling of another example of embodiment. It is an enlarged view seen in the direction of arrow F of FIG.
  • FIG. 13 is a diagram showing a state in which the second shaft is moved with respect to the first shaft in the pulling direction so that the first shaft and the second shaft can be pulled out from the bearing and the roller.
  • FIG. 17 is a diagram showing a state in which the first shaft and the second shaft can be pulled out from the bearing and the roller by moving the second shaft in the pulling direction or the protruding direction with respect to the first shaft.
  • the escalator 10 includes a truss 12 (FIG. 2), a transfer means 20, and a plurality of steps 30.
  • Step 30 corresponds to a tread member.
  • the truss 12 is a structural portion that supports a moving portion of the escalator 10 and a power generator, and constitutes a basic portion of the escalator 10.
  • the transfer means 20 is provided inside the truss 12 and circulates the plurality of steps 30 in one direction.
  • the balustrades 14 including the skirt guard 17 are arranged on both sides of the plurality of steps 30 in the left-right direction (the left-right direction in FIG. 1 and the front-back direction of the paper surface in FIG. 2).
  • the "left-right direction” means the left-right direction when the escalator 10 is viewed from the lower landing in the traveling direction, and corresponds to the step axis direction described later.
  • the transfer means 20 includes a motor 25 and a power transmission mechanism 21 (FIG. 3).
  • the drive of the motor 25 is controlled by a control device (not shown).
  • the power transmission mechanism 21 includes a belt 26 and a pulley 27 that transmit the power of the rotating shaft of the motor 25, a reduction mechanism 28 that decelerates and outputs the power transmitted to the pulley 27, and a reduction mechanism 28. It is formed by rotating shafts 29 and the like on both sides in the left-right direction (vertical direction in FIG. 3) connected to the output side of the above.
  • the power of the motor 25 is transmitted to a sprocket (not shown) connected to the output side of the rotating shaft 29 via the power transmission mechanism 21.
  • FIG. 3 shows only a part of the step link connector 40 in the longitudinal direction above the substantially oval annular portion that is long in the moving direction of the escalator 10.
  • the step links 41a and 41b are rotatably supported by being penetrated by both ends of the step shaft 31 on both left and right sides of the step 30.
  • the riser 34 is connected to the rear end in the traveling direction of the tread plate 33 having the tread surface on which the passenger rides, and the substantially triangular side plates 35 are connected to both ends of the tread plate 33 and the riser 34 in the left-right direction. NS.
  • a step shaft 31 extending in the left-right direction is connected through the side plates 35 at both ends in the left-right direction.
  • each of both ends of the step shaft 31 is supported by the step link connector 40.
  • each of both end portions of the step shaft 31 penetrates the overlapping portion of the longitudinal end portions of the two step links 41a and 41b in the left-right direction.
  • the step links 41a and 41b are long rigid bodies formed by a laminated body of a plurality of steel plates.
  • the two step links 41a and 41b are rotatably supported by the step shaft 31 at both ends facing each other.
  • the chain 24 is in the middle portion of the escalator 10 and meshes with the loop inner peripheral side end of the upper portion of the annular portion of the step link connecting body 40.
  • a plurality of recesses 43 having a substantially semicircular cross section are formed so as to be arranged in the longitudinal direction. Then, the plurality of recesses 43 of the step links 41a and 41b are engaged with the plurality of cylindrical portions 24a arranged at the plurality of positions in the circulation direction of the chain 24 in the intermediate portion in the thickness direction.
  • the chain 24 meshes with the loop inner peripheral end of the upper portion of the step link connecting body 40 in the intermediate portion of the escalator 10 in the moving direction.
  • FIG. 3 only the chain 24 on the left side (upper side in FIG. 3) is shown, but the chain is similarly arranged on the right side (lower side in FIG. 3).
  • the chains 24 on both sides in the left-right direction are driven by the motor 25 via the power transmission mechanism 21, so that power is transmitted from the chain 24 to the step link connecting body 40, and the step link connecting body 40 becomes one. It circulates in the direction (the direction of arrow ⁇ in FIG. 3).
  • the roller 32 is rotatably supported at both ends of each step shaft 31 in the axial direction from each of the step link connecting bodies 40.
  • the rollers 32 move along the guide rails 13a and 13b (FIG. 2) arranged vertically apart on the left and right sides of the plurality of steps 30 in the truss 12 (FIG. 2).
  • the roller 32 is guided to the guide rails 13a and 13b in order to guide the movement of the step link connecting body 40.
  • the roller 32 is supported by a bearing 72 (FIGS.
  • the upper guide rail 13a has two parallel bottom plate portions 13d and top plate portions 13e long in the moving direction of the escalator, and a side plate portion 13c connecting their outer ends. Consists of including.
  • the side plate portion 13c is formed so as to restrict the outward movement of the roller 32 in the intermediate portion in the longitudinal direction and face the outer side in the axial direction of the roller 32.
  • the side plate portion is omitted in at least a part of both ends in the longitudinal direction arranged in the lower and upper machine rooms 18 and 19.
  • the step shaft 31 can be replaced in the machine rooms 18 and 19 without being disturbed by the side plate portion.
  • the operation switch (not shown) is turned on, the motor 25 is driven, whereby the step link connector 40 circulates and moves. As a result, the escalator 10 is operated. Further, the roller 32 is guided by the guide rails 13a and 13b, so that the movement of step 30 is guided. At this time, when the escalator 10 raises the passengers from the lower floor to the upper floor in the direction of the arrow ⁇ in FIG. 2, the step 30 rises on the upper guide rail 13a side, and the lower guide Step 30 descends on the rail 13b side.
  • the two step links 41a and 41b at the position where the axially outer side of the roller 32 is covered and protected by the side plate portion 13c at the longitudinal intermediate portion of the guide rail 13a are separated. Work may be done.
  • a dummy shaft shorter than the step shaft 31 is previously passed through the two step links 41a and 41b.
  • the two step links 41a and 41b are connected. For example, as described above, the chain 24 (FIG.
  • step shaft 31 meshes with the loop inner peripheral end of the step link connecting body 40 near the intermediate portion in the longitudinal direction of the guide rail 13a, so that the chain 24 and the chain 24 are driven.
  • first dummy shaft 50 and the second dummy shaft 50 and the second dummy shaft 50 and the second dummy shaft 50 and the second dummy shaft 50 and the second dummy shaft 50 and the second are axially separable to the roller 32 and the bearing 72 coupled to the roller 32 inside the roller 32.
  • a dummy shaft 81 (FIG. 9) is used.
  • the first dummy shaft 50 which is an embodiment of the present invention, will be described with reference to FIGS. 6A to 6F. As shown in FIGS. 10 and 11 described later, the first dummy shaft 50 rotates the two step links 41a and 41b through the overlapping portion at the ends of the two connected step links 41a and 41b. Support as much as possible.
  • a roller 32 is rotatably supported by a bearing 72 at the axially outer end of the first dummy shaft 50, and an axially intermediate portion of the first dummy shaft 50.
  • Two step links 41a and 41b (FIG. 5B) are penetrated and supported in the.
  • the first dummy shaft 50 includes a first shaft 51 penetrating the two step links 41a and 41b, and a second shaft 71 inserted in the axial direction so as to be screwed to the first shaft 51.
  • the first shaft 51 is a small-diameter cylindrical portion connected to a large-diameter cylindrical portion 53 and an axially outer end of the large-diameter cylindrical portion 53 via an intermediate cylindrical portion 54. Includes 55 and.
  • the large-diameter cylindrical portion 53, the intermediate cylindrical portion 54, and the small-diameter cylindrical portion 55 are arranged on the same axis with the same central axis. The diameter decreases in the order of the large-diameter cylindrical portion 53, the intermediate cylindrical portion 54, and the small-diameter cylindrical portion 55.
  • a flat stepped surface 54a perpendicular to the axial direction is formed between the intermediate cylindrical portion 54 and the small-diameter cylindrical portion 55.
  • the bearing 72 which will be described later, is coupled to the small-diameter cylindrical portion 55 so as to penetrate the small-diameter cylindrical portion 55, and the axial inner side surface of the bearing 72 comes into contact with or approaches the stepped surface 54a.
  • the bearing 72 is shown simplified by a diagonal grid.
  • the bearing 72 has a rolling element such as a plurality of balls or needles between the inner ring and the outer ring and the inner ring and the outer ring.
  • a central hole 73 is formed in the central portion of the inner ring, which is the central portion of the bearing 72.
  • the roller 32 is attached to the axially outer end of the first shaft 51 via a bearing 72, and the two step links 41a and 41b (FIG. 5B) are penetrated and supported by the large diameter cylindrical portion 53 of the first shaft 51. Will be done. As a result, the first shaft 51 penetrates the shaft holes of the two step links 41a and 41b and the center hole 73 of the bearing 72.
  • the first shaft 51 has a shaft hole 56 having a circular cross section penetrating in the axial direction, and a female screw 57 is formed at the axially inner end of the shaft hole 56.
  • a second shaft 71 which will be described later, is screwed into the shaft hole 56.
  • through holes 58 are formed at two positions of the large-diameter cylindrical portion 53 of the first shaft 51 that are separated from each other in the axial direction and that penetrate the positions away from the shaft holes 56 in the direction parallel to the diameter direction.
  • a stopper pin 61 (FIG. 6A), which will be described later, penetrates each through hole 58.
  • the second shaft 71 includes a cylindrical shaft body 71a, a screw shaft 71b integrally connected to the axial inner end of the shaft body 71a, and an operation portion 71c formed at the axial inner end of the screw shaft 71b. And have.
  • An annular groove 71d is formed on the outer peripheral surface of the tip end portion (outer end portion in the axial direction) of the shaft body 71a, and the peripheral portion of the central hole of the stopper 76 described later is fitted and fixed to the annular groove 71d.
  • the operation unit 71c is formed of, for example, a thumbscrew that is screwed and fixed to a screw shaft 71b, and can be grasped and rotated by an operator.
  • a bolt may be used for the second shaft 71, and the head of the bolt may be used as an operation unit.
  • the second shaft 71 is inserted into the shaft hole 56 of the first shaft 51, and the screw shaft 71b thereof is coupled to the female screw 57 of the first shaft 52, and is rotated to the bearing 72 side of the first shaft 51 (FIG. 6C). It is possible to move forward and backward in the axial direction toward the left side).
  • the tip of the second shaft 71 protrudes from the axially outer end face of the first shaft 51, and the operating portion 71c is pressed at the axial inner end of the second shaft 71.
  • the included portion protrudes from the axially inner end surface of the first shaft 51.
  • a stopper 76 is coupled to the tip (outer end in the axial direction) of the second shaft 71, and the outer peripheral side of the stopper 76 is pressed against the outer end in the axial direction of the first shaft 51 to open the stopper 76. That is, the bearing 72 is deformed so as to have a large length in the radial direction.
  • the stopper 76 has an arc shape in which the central portion is coupled to the tip of the second shaft 71 and the cross section is concave on the bearing 72 side as a whole. It is a dish-shaped elastic member.
  • the stopper 76 is thinly formed of resin, metal, or the like. The stopper 76 opens and closes according to the amount of axial compression at the joint with the second shaft 71 and the outer end in the axial direction, which is one end of the first shaft 51. As shown in FIG.
  • the second shaft 71 becomes the first with respect to the first shaft 51 due to the screw connection between the female screw 57 and the screw shaft 71b. It moves in the direction protruding from the outer end of the shaft 51 in the axial direction (direction of arrow P2 in FIG. 6F).
  • the stopper 76 is deformed so as to be closed according to its own elastic force, that is, the length of the bearing 72 in the radial direction becomes smaller. Therefore, the stopper 76 is closed by the axial movement of the second shaft 71.
  • the stopper 76 When the stopper 76 is closed, the stopper 76 is not opposed to the axially outer surface of the bearing 72, so that the first shaft 51 and the second shaft 71 are axially inward together with the stopper 76 from the inside of the roller 32 and the bearing 72. It can be extracted.
  • a rod-shaped stopper pin 61 penetrates through each of the through holes 58 formed at two positions apart from the shaft hole 56 of the large diameter cylindrical portion 53 of the first shaft 51, and has a large diameter. Both ends of the stopper pin 61 project from two positions where the positions of the outer peripheral surfaces of the cylindrical portion 53 in the axial direction are different. As shown in FIG. 6A and FIG. 10 described later, the legs 62a of the retaining member 62 shown in the enlarged view in FIG. 6E penetrate through both ends of the stopper pin 61.
  • the stopper pin 61 is a fixing pin for the step links 41a and 41b through which the first shaft 51 penetrates.
  • the retaining member 62 is formed in a substantially U shape by a metal wire.
  • One leg 62a of the retaining member 62 penetrates the end of the stopper pin 61, and the semicircular portion 62c formed in the middle of the other leg 62b is one half of the outer peripheral surface of the stopper pin 61.
  • the stopper pin 61 is fitted to the stopper pin 61 to prevent the member 62 from coming off. This also prevents the stopper pin 61 from coming out of the through hole 58 of the large-diameter cylindrical portion 53. After the retaining member 62 is pulled out from the stopper pin 61, the stopper pin 61 can be pulled out from the through hole 58 of the large-diameter cylindrical portion 53. Therefore, the stopper pin 61 is detachably coupled to the first shaft 51.
  • the large-diameter cylindrical portion 53 is penetrated through the shaft holes 44a and 44b of the two step links 41a and 41b, and the two step links 41a and 41b are on the outer diameter side of the large-diameter cylindrical portion 53.
  • both ends of the two stopper pins 61 face axially both sides of the step link 41b.
  • the stopper 76 is opened and closed by moving the second shaft 71 in the axial direction with respect to the first shaft 51 by operating the operation unit 71c, and the roller 32 and the bearing are closed by closing the stopper 76. From the inside of the 72, the first shaft 51 and the second shaft 71 can be pulled out axially inward together with the stopper 76. As will be described later, the first dummy shaft 50 is moved to a position where the axially outer side of the roller 32 is covered with the side plate portion 13c (FIG. 12A) of the guide rail 13a at the intermediate portion in the longitudinal direction of the guide rail 13a and protected. ..
  • the two step links 41a and 41b can be separated by extracting from the inside in the axial direction and further extracting from the shaft holes of the two step links 41a and 41b.
  • FIG. 7 is a flowchart showing a method of separating the step links 41a and 41b of the embodiment.
  • step S10 of FIG. 7 As shown in FIG. 1, step 30 is removed from a part of the step shaft 31 at the intermediate portion of the escalator 10.
  • the escalator 10 is stopped and the operator is on the step 30 adjacent to the step to be removed, and the escalator 10 is removed from above the step to be removed by using a tool.
  • FIG. 8 is a perspective view of the state in which the step link connecting body 40 is moved from the state of FIG. 1 and the portion from which the step 30 is removed is moved to the machine room 18 with some landing parts removed and viewed from above. It is a figure.
  • the rollers 32 coupled to the step shaft 31 face each other at positions where there is no side plate portion at one end in the longitudinal direction of the guide rail 13a in each of the step link connecting bodies 40 on both sides in the step axis direction.
  • step S11 of FIG. 7 an operator enters the machine room 18 in the state of FIG. 8 and pulls out the step shaft 31 from the shaft holes 44a and 44b (FIG. 10) of the two step links 41a and 41b.
  • the operator attaches the bush (not shown) at the step mounting position to both ends of each step link connecting body 40 from the step shaft 31. Remove the opposing split retaining ring (not shown). Then, the step shaft 31 is moved from left to right, and the step shaft 31 is pulled out from the shaft holes 44a and 44b of the two step links 41a and 41b of the step link connector 40 on one side (left side in FIG. 8).
  • the two step links 41a and 41b from which the step shaft 31 is extracted are moved from the extension line in the axial direction of the step shaft 31, and then the step shaft 31 is moved from right to left on the other side (FIG. 8).
  • the step shaft 31 is pulled out from the shaft holes of the two step links 41a and 41b of the step link connector 40 (on the right side).
  • a common cylindrical sleeve 80 (FIG. 10) is penetrated through the shaft holes 44a and 44b of the two step links 41a and 41b in the step link connecting bodies 40 on both sides, respectively. Therefore, if the step shaft 31 is simply pulled out from the shaft holes 44a and 44b, the two step links 41a and 41b are maintained in connection with the sleeve 80.
  • step S12 of FIG. 7 the operator takes out the step shaft 31 in the machine room 18, and the shafts of the two step links 41a and 41b in the step link connector 40 on the one side (left side of FIG. 8).
  • the first dummy shaft 50 is passed through the holes 44a and 44b. Then, the first dummy shaft 50 rotatably supports the two step links 41a and 41b.
  • FIG. 9 two step links 41a and 41b on both the left and right sides from which the step shaft 31 is extracted from the state of FIG. 8 are rotatably supported by the first dummy shaft 50 on the left side and the second dummy shaft 81 on the right side. It is a figure which shows the state.
  • FIG. 10 is an enlarged cross-sectional view of portion D of FIG.
  • the first dummy shaft 50 is passed through the shaft holes 44a and 44b of the two step links 41a and 41b from the outside to the inside in the axial direction.
  • the two step links 41a and 41b are rotatably supported by the first dummy shaft 50.
  • the stopper 76 is opened by rotating the second shaft 71 with respect to the first shaft 51 and moving the second shaft 71 with respect to the first shaft 51 in the pulling direction, and the roller 32 and the bearing 72 become the first. 1 Prevents the dummy shaft 50 from coming off.
  • the shaft 81 is passed through, and the second dummy shaft 81 rotatably supports the two step links 41a and 41b.
  • the second dummy shaft 81 has the same structure as the first dummy shaft 50.
  • the second dummy shaft may be configured such that the first dummy shaft 50 is not provided with the second shaft 71, and the retaining ring is locked in the annular groove on the outer peripheral surface of the outer end portion in the axial direction of the first shaft 51.
  • step S14 of FIG. 7 the step link connectors 40 on both sides in the step axial direction are circulated and moved by driving the motor 25.
  • the first dummy shaft 50 is moved to a position in the middle portion of the escalator 10 where the outer surface of the roller 32 faces the side plate portion 13c of the intermediate portion in the longitudinal direction of the guide rail 13a.
  • the second dummy shaft 81 also moves to the same position as the first dummy shaft 50 on the opposite side in the step axis direction.
  • FIG. 11 corresponds to FIG. 5A showing a state in which the step link coupling body is circulated and moved by a motor after the state of FIG. 9 and the first dummy shaft is moved to the intermediate portion in the longitudinal direction where the side plate portion of the guide rail is located. It is a figure to do.
  • 12A is a cross-sectional view taken along the line EE of FIG. After moving the first dummy shaft 50 and the second dummy shaft 81 as shown in FIGS. 11 and 12A, the step links 41a and 41b supported by the first dummy shaft 50 are chain 24 (FIG. 3). It is in a position facing the upper side of.
  • step S15 of FIG. 7 the operator rotates the second shaft 71 with respect to the first shaft 51 on the first dummy shaft 50 to move the second shaft 71 in the direction of protrusion toward the bearing 72 with respect to the first shaft 51.
  • the stopper 76 is closed, and the first dummy shaft 50 can be pulled out from the bearing 72.
  • the first dummy shaft 50 is removed from the bearing 72 and the shaft holes 44a and 44b of the two step links 41a and 41b, and then the two step links 41a and 41b are separated.
  • the operator removes the two stopper pins 61 from the state shown in FIG.
  • the two step links 41a and 41b of the step link connector 40 are separated has been described.
  • at least one end of the two step shafts 31 connecting the three step links arranged in the moving direction of the step link connecting body 40 can be replaced with two first dummy shafts 50.
  • the step link coupling 40 is circulated by the motor 25 to protect the two first dummy shafts 50 arranged in the moving direction by the guide rail 13a on the outer surface of the roller 32 in the middle of the escalator. Move to the position where it is done.
  • the first shaft 51 is pulled out from the shaft holes of the two step links in the same manner as described above, and then the sleeve 80 is pulled out from the shaft holes to separate the three step links. can do.
  • the three step links one end in the longitudinal direction of each of the two step links at both ends is connected to the remaining portion of the step link connector 40, but both ends of one intermediate step link are both ends 2. Separated from one step link. As a result, the intermediate step link can be removed from the step link connector 40. Therefore, a relatively large space after removing the step link can be formed on the upper side of the component such as the chain, so that the component can be easily removed.
  • the step link is connected.
  • the body 40 is circulated and moved by the motor 25, and the first dummy shaft 50 is moved to a position protected by the side plate portion 13c on the axially outer side of the roller 32 at the longitudinal intermediate portion of the guide rail 13a.
  • the stopper 76 coupled to the second shaft 71 of the first dummy shaft 50 and the stepped surface 77 of the first dummy shaft 50 prevent the roller 32 from moving significantly in the axial direction with respect to the first dummy shaft 50.
  • the second shaft is moved in the protruding direction with respect to the first shaft 51.
  • the first shaft 51 is pulled out from the shaft holes 44a and 44b of the bearing 72 and the two step links 41a and 41b.
  • the two step links 41a and 41b can be separated. Therefore, when the work of separating the step links 41a and 41b is performed at a position where the guide rail 13a covers and protects the axially outer side of the roller 32, it is necessary to manually circulate and move the step link connecting body 40 at a low speed. Since there is no rail, the burden on the worker can be reduced.
  • the stopper 76 since the stopper 76 has a relatively simple structure, the number of parts of the first dummy shaft 50 can be reduced.
  • the stopper 76 has a dish shape has been described, but as the stopper, a plate-shaped elastic member having an arc shape having a concave cross section on the bearing side and curved in an arch shape may be used.
  • the first dummy shaft 50a which is another example of the step link coupling dummy shaft of the embodiment, will be described with reference to FIGS. 13 to 15.
  • a concave portion 59 having a rectangular cross section is formed in the central portion of the outer end surface in the axial direction of the first shaft 51, and one end of the shaft hole 56 (the left end in FIG. 13) is formed in the central portion of the rectangular bottom portion of the concave portion 59. Is open.
  • the second shaft 71 includes a bottomed cylindrical bearing 82 rotatably supported at the tip of the shaft body 71a, and a stopper is provided at the bottom of the axially outer end (left end in FIG. 13) of the bearing 82. 83 are combined.
  • the bearing 82 is fitted to the tip of the shaft body 71a, and the annular protrusion formed at the tip of the bearing 82 is slidably fitted into the annular groove formed on the outer peripheral surface of the tip of the shaft body 71a. Is rotatably coupled to the shaft body 71a.
  • the stopper 83 is formed by bending a thin metal plate such as steel, and has a plate-shaped chevron 84 having an inverted V-shaped cross section and two plate-shaped bearings connected to both ends of the chevron 84. It is an elastic piece having an opposing portion 85.
  • the bearing facing portion 85 is inclined in the direction opposite to the inclined plate portion to which the bearing facing portion 85 is connected (the side closer to the bearing 72) of the chevron portion 84 with respect to the axial direction of the first dummy shaft 50a. .. Therefore, the stopper 83 has a zigzag shape as a whole.
  • the top of the chevron portion 84 which is the central portion, is fixed to the bottom surface of the bearing 82, which is the tip of the second shaft 71.
  • the bearing 82 allows the relative rotation between the second shaft 71 and the stopper 83.
  • the top of the chevron portion 84 of the stopper 83 fits into the recess 59 on the outer end surface of the first shaft 51 in the axial direction, so that the rotation of the stopper 83 is restricted with respect to the first shaft 51.
  • the stopper 83 opens and closes according to a change in the amount of pulling of the top of the chevron portion 84, which is the joint portion of the stopper 83 with the second shaft 71, into the recess 59 of the first shaft 51, that is, the bearing in the stopper 83.
  • the length of 72 in the radial direction changes.
  • the chevron portion 84 extends outward so that the stopper 83 is opened, that is, the length of the bearing 72 in the radial direction is increased.
  • the tip of the bearing facing portion 85 of the stopper 83 faces the axially outer surface of the bearing 72.
  • the stopper 83 Is closed, that is, the chevron portion 84 is deflated so that the length of the bearing 72 in the radial direction is reduced. With the stopper 83 closed, the stopper 83 is non-opposed to the axially outer surface of the bearing 72.
  • the stopper 83 can be opened and closed by moving the second shaft 71 in the axial direction with respect to the first shaft 51 using such a first dummy shaft 50a, and the stopper 83 is in an open state. It is possible to prevent the bearing 72 and the roller 32 from being largely displaced in the axial direction with respect to the first dummy shaft 50a.
  • the step link connector 40 (FIG. 8) is circulated and moved by the motor, and the first dummy shaft 50a penetrated through the shaft holes of the two step links 41a and 41b (FIG. 12A) is passed through the guide rail 13a (FIG. 8).
  • the stopper After moving the first dummy shaft 50a to a position where the guide rail 13a covers and protects the outer side of the roller 32 in the axial direction, the stopper is stopped by moving the second shaft 71 in the retracting direction with respect to the first shaft 51.
  • the 83 is closed so that it does not face the outer surface of the bearing 72.
  • the two step links 41a and 41b can be separated by extracting the first dummy shaft 50a inward in the axial direction from the bearing 72 and the shaft holes of the two step links 41a and 41b.
  • the stopper 83 has a relatively simple structure, the number of parts of the dummy shaft 50a can be reduced.
  • other configurations and operations are the same as those of FIGS. 1 to 12B.
  • the bearing facing portion may have a flat plate shape substantially perpendicular to the axial direction of the first dummy shaft 50a.
  • the first dummy shaft 50b which is another example of the step link coupling dummy shaft of the embodiment, will be described with reference to FIGS. 16 to 18.
  • the tip of the second shaft 71 protrudes from the axially outer end surface of the first shaft 51, and the stopper 86 is fixed to the tip of the second shaft 71.
  • the stopper 86 includes a plurality of link elements including a first link element 87 fixed to the tip of the second shaft 71 and two second link elements 88 swingably connected to both ends of the first link element 87. It is a link member formed by.
  • the first link element 87 has an elongated plate shape, and the tip of the second shaft 71 is fixed to one side of the central portion.
  • Each of the two second link elements 88 has an elongated plate shape, and a swing shaft 89 is coupled to one end thereof, and the swing shaft 89 penetrates through a hole formed at the end of the first link element 87. By doing so, the second link element 88 is swingably connected to the first link element 87.
  • Each of the link elements 87 and 88 is made of, for example, a thick metal plate or a resin plate.
  • elongated holes 90 are formed along the longitudinal direction, and the two protruding shafts 60 are fixed so as to project axially from the axially outer end surface of the first shaft 51. Is supported through the elongated hole 90 of the second link element 88. As shown in FIG.
  • each of the two second link elements 88 is relative to the tip of the first shaft 51 on the bearing 72 side in the plane direction of one end surface of the first shaft 51 (front side surface of the paper surface of FIGS. 17 and 18). It is movably supported and oscillatingly connected to both ends of the first link element 87.
  • the stopper 86 opens and closes according to a change in the orientation of the plurality of link elements 87 and 88 due to the relative rotation between the first shaft 51 and the second shaft 71. Specifically, when the second axis 71 moves in the direction of being pulled into the first axis 51 due to the relative rotation of the first axis 51 and the second axis 71, the stopper 86 is opened or closed, and the second axis 71 is opened or closed. When the shaft 71 moves in the direction of projecting from the first shaft 51 toward the bearing 72, the stopper 86 is closed or opened. With the stopper 86 open, as shown in FIG.
  • the stopper 86 spreads outward so that the length of the bearing 72 in the stopper 86 in the radial direction increases, and the second link elements 88 at both ends of the stopper 86 It faces the outer surface of the bearing 72 in the axial direction (front side surface of the paper surface of FIG. 18).
  • the stopper 86 is closed, as shown in FIG. 17, the stopper 86 is deformed to the folding side so that the length of the bearing 72 in the stopper 86 in the radial direction becomes smaller, and the stopper 86 is in the axial direction of the bearing 72. It is not opposed to the outer surface.
  • the stopper 86 can be opened and closed by moving the second shaft 71 in the axial direction with respect to the first shaft 51 using such a first dummy shaft 50b, and the stopper 86 is in an open state. It is possible to prevent the bearing 72 and the roller 32 from being largely displaced in the axial direction with respect to the first dummy shaft 50b. Also by this, the step link connecting body 40 (FIG. 8) is circulated and moved by the motor in the same manner as in each of the above examples, and the first dummy is penetrated through the shaft holes of the two step links 41a and 41b (FIG. 12A). When the shaft 50b is moved to a position protected by the side plate portion 13c (FIG.
  • the stopper 86 of the 1 dummy shaft 50b and the stepped surface 54a can prevent the roller 32 from being largely displaced in the axial direction with respect to the first dummy shaft 50b. As a result, it is not necessary to manually circulate and move the step link connecting body 40 at a low speed, so that the burden on the operator can be reduced.
  • the second shaft 71 is moved in the pulling direction or the protruding direction with respect to the first shaft 51.
  • the stopper 86 By moving the stopper 86, the stopper 86 is closed so as not to face the outer surface of the bearing 72.
  • the two step links 41a and 41b can be separated by extracting the first dummy shaft 50b inward in the axial direction from the bearing 72 and the shaft holes of the two step links 41a and 41b.
  • the stopper 86 can be composed of a plurality of rigid link elements 87 and 88, the roller 32 is more likely to shift outward in the axial direction with respect to the dummy shaft 50b when the step link connecting body 40 is circulated and moved by the motor. Easy to suppress. As a result, the step link connecting body 40 can be easily circulated and moved at a higher speed, so that the work efficiency can be improved.
  • other configurations and operations are the same as those of FIGS. 1 to 12B.

Landscapes

  • Escalators And Moving Walkways (AREA)

Abstract

第1ダミー軸(50)は、2つのステップリンクの軸孔、及びローラの内径側に結合された軸受の中心孔を貫通する第1軸(51)と、第1軸にネジ結合するように軸方向に挿入され、回転によって第1軸の軸受(72)側に向かって軸方向に進退可能である第2軸(71)と、第2軸の、軸受側の先端に結合され、第2軸の軸方向移動によって開閉可能であり、開の場合に軸受の外側面と対向するストッパ(76)とを含む。第1軸の外周面には軸受の内側面と対向する段差面が形成される。ストッパは、第2軸が第1軸に引き込まれる方向に移動する場合に開または閉となり、第2軸が第1軸から突出する方向に移動する場合に閉または開となる。

Description

乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法
 本発明は、エスカレーター、動く歩道等の乗客を移動させる乗客コンベアのステップリンクの分離作業を行う際に、ステップ軸の代わりに2つのステップリンクを回動可能に支持するために用いられるステップリンク結合用ダミー軸と、ステップリンク連結体のステップリンクを分離する方法に関する。
 従来から、上記の乗客コンベアにおいて、複数の踏み面部材であるステップのそれぞれにステップ軸が連結され、複数のステップ軸の両端部のそれぞれは、無端ループ状のステップリンク連結体で連結される構造が考えられる。この構造では、ステップ軸においてステップリンク連結体のそれぞれより軸方向両端寄りには、ステップリンク連結体の移動を案内するために案内レールに案内されるローラが回転可能に支持されている。
 特許文献1には、エスカレーターにおいて、ステップリンクの交換方法が記載されている。この交換方法では、機械室でステップリンク連結体の1つの連結部を外して、無限軌道を壊して両端があるステップリンクの一本の連鎖を形成する。この連鎖の両端部には、ステップ軸と同様の長さのダミー軸が取り付けられる。その後、エスカレーターを運転して、その連鎖の一端を、引き出しレール装置を利用して機械室から乗り場に引き出し、引き出したステップリンクの一端を、新ステップリンクに交換した後、エスカレーターを運転して、一端を元の位置に戻し、無端ループを形成するように連鎖の他端と連結する。
特開平11-165973号公報
 上記の乗客コンベアにおいて、案内レールでローラの軸方向外側が覆われて保護される位置の2つのステップリンクを分離するために、2つのステップリンクを回動可能に支持するステップ軸の代わりに、予め、ステップ軸より短いダミー軸を2つのステップリンクに貫通させて、2つのステップリンクを連結する場合がある。ダミー軸の一端部にはローラが回転可能に支持される。ステップ軸からダミー軸への交換作業は、ローラが案内レールの側板部がない位置に対向した状態で行う。ダミー軸においてローラの外側には、後でダミー軸をローラから軸方向内側(ステップ配置側)に抜き取れるようにローラの外れ防止用の止め輪(外側ストッパ)を結合しない。その後、案内レールの長手方向中間部でローラの軸方向外側が案内レールの側板部で覆われて保護される位置に移動するように、ステップリンク連結体を循環移動させる。この場合、止め輪がない状態でもローラがダミー軸に対し軸方向外側に大きくずれ動かないように、人力により低速度で慎重に状況を確認しながらステップリンク連結体を循環移動させる。その後、ローラ及び2つのステップリンクからダミー軸を軸方向内側に抜き取ることで2つのステップリンクを分離する。この作業では、ステップリンク連結体を人力で循環移動させる、かなり労力を必要とする作業があるため、作業者の負担の軽減が望まれる。特許文献1には、上記の不都合を解消できる手段は開示されていない。
 本発明は、案内レールでローラの軸方向外側が覆われて保護される位置のステップリンクの分離作業を行う場合における作業者の負担を軽減できる、乗客コンベアのステップリンク結合用ダミー軸及びそのダミー軸を用いてステップ連結体のステップリンクを分離する方法を提供することを目的とする。
 本発明に係る乗客コンベアのステップリンク結合用ダミー軸は、複数の踏み面部材であるステップのそれぞれにステップ軸が連結され、複数の前記ステップ軸の両端部のそれぞれは無端ループ状のステップリンク連結体で連結され、前記ステップ軸の前記ステップリンク連結体のそれぞれより軸方向両端寄りには、前記ステップリンク連結体の移動を案内するために案内レールに案内されるローラが回転可能に支持される乗客コンベアにおいて、移動方向に連結する2つのステップリンクを回動可能に支持する前記ステップ軸の少なくとも一方側端部の代わりに使用されるステップリンク結合用ダミー軸であって、前記2つのステップリンクの軸孔、及び前記ローラの内径側に結合された軸受の中心孔を貫通する第1軸と、前記第1軸にネジ結合するように軸方向に挿入され、回転によって前記第1軸の前記軸受側に向かって軸方向に進退可能である第2軸と、前記第2軸の、前記軸受側の先端に結合され、前記第2軸の軸方向移動によって開閉可能であり、開の場合に前記軸受の外側面と対向するストッパと、を備え、前記第1軸の外周面には前記軸受の内側面と対向する段差面が形成され、前記ストッパは、前記第2軸が前記第1軸に引き込まれる方向に移動する場合に開または閉となり、前記第2軸が前記第1軸から突出する方向に移動する場合に閉または開となる。
 本発明に係るステップリンク連結体のステップリンクを分離する方法は、本発明に係る乗客コンベアのステップリンク結合用ダミー軸を用いてステップリンク連結体のステップリンクを分離する方法であって、一部の前記ステップ軸から前記ステップを取り外した状態で、ステップ軸方向両側の前記ステップリンク連結体のそれぞれにおいて、前記ローラが前記案内レールの側板部がない位置に対向した状態で、前記2つのステップリンクの軸孔から前記ステップ軸を抜き取るステップと、前記ステップ軸を抜き取った前記2つのステップリンクの軸孔に、第1ダミー軸を貫通させ、前記2つのステップリンクを回動可能に支持すると共に、前記ステップ軸を抜き取った前記2つのステップリンクの軸孔に、第2ダミー軸を貫通させ、前記2つのステップリンクを回動可能に支持するステップと、前記ステップリンク連結体をモータで循環移動させて、前記第1ダミー軸を、前記案内レールの長手方向中間部で前記ローラの軸方向外側が前記案内レールの側板部で覆われて保護される位置に移動させるステップと、前記第2軸を前記第1軸に対し引き込み方向または突出方向に移動させることにより、前記ストッパを閉として前記軸受の外側面に非対向とした後、前記軸受と、前記2つのステップリンクの軸孔とから前記第1ダミー軸を軸方向内側に抜き取って、前記2つのステップリンクを分離するステップと、を含む。
 本発明に係る乗客コンベアのステップリンク結合用ダミー軸及びステップリンクを分離する方法によれば、案内レールでローラの軸方向外側が覆われて保護される位置でステップリンクを分離する作業を行う場合における作業者の負担を軽減できる。具体的には、ステップリンクの分離作業を次のように行える。まず、一部のステップ軸からステップを取り外した状態で、ステップ軸方向両側のステップリンク連結体のそれぞれにおいて、ローラが案内レールの側板部がない位置に対向した状態で、2つのステップリンクの軸孔からステップ軸を抜き取る。次いで、ステップ軸を抜き取った2つのステップリンクの軸孔に、ステップリンク結合用ダミー軸としての第1ダミー軸を貫通させ、2つのステップリンクを回動可能に支持する。このとき、第1ダミー軸の一端部には、外周側にローラが結合された軸受が嵌合されて、ストッパ部材により第1ダミー軸からの軸受の脱落が防止される。さらに、ステップ軸を抜き取った2つのステップリンクの軸孔に第2ダミー軸を貫通させ、2つのステップリンクを回動可能に支持する。次いで、ステップリンク連結体をモータで循環移動させて、第1ダミー軸を、案内レールの長手方向中間部でローラの軸方向外側が案内レールの側板部で覆われて保護される位置に移動させる。このとき、第1ダミー軸のストッパと段差面とにより第1ダミー軸に対しローラが軸方向に大きくずれ動くことが防止される。このため、案内レールでローラの軸方向外側が覆われて保護される位置に第1ダミー軸を移動させるために、ステップリンク連結体を人力により低速度で循環移動させる必要がない。案内レールでローラの軸方向外側が覆われて保護される位置に第1ダミー軸を移動させた後には、第1軸に対し第2軸を引き込み方向または突出方向に移動させることによりストッパを閉として軸受の外側面に非対向とした後、軸受と2つのステップリンクの軸孔とから第1ダミー軸を軸方向内側に抜き取ることにより2つのステップリンクを分離できる。したがって、案内レールでローラの軸方向外側が覆われて保護される位置でステップリンクを分離する作業を行う場合に、ステップリンク連結体を人力により低速度で循環移動させる必要がないので、作業者の負担を軽減できる。
 本発明に係る乗客コンベアのステップリンク結合用ダミー軸において、好ましくは、前記ストッパは、中心部が前記第2軸の先端に結合された断面が前記軸受側が凹となる円弧形の弾性部材であり、前記第2軸との結合部と第1軸の一端とで前記ストッパが軸方向に圧縮される量に応じて開閉し、前記第2軸が前記第1軸に引き込まれる方向に移動する場合には、前記ストッパの軸方向の圧縮量が大きくなることで、前記ストッパが開となり、前記第2軸が前記第1軸から突出する方向に移動する場合には、前記ストッパの軸方向の圧縮量が小さくなることで、前記ストッパが閉となる。
 上記構成によれば、ストッパが比較的単純な構造となるので、ダミー軸の部品点数を削減できる。
 本発明に係る乗客コンベアのステップリンク結合用ダミー軸において、好ましくは、前記ストッパは、中心部が前記第2軸の先端に固定され、山形部と前記山形部の両端に連結された2つの軸受対向部とを有する弾性片であり、前記第2軸との結合部である前記山形部の頂部の、前記第1軸内への引き込み量の変化に応じて開閉し、前記第2軸は、前記山形部の頂部に固定され、前記第2軸と前記ストッパとの相対回転を許容する軸受を含んでおり、前記ストッパは、前記第1軸に対し回転が規制され、前記第2軸が前記第1軸に引き込まれる方向に移動する場合には、前記ストッパが閉となり、前記第2軸が前記第1軸から突出する方向に移動する場合には、前記ストッパが開となる。
 上記構成によれば、ストッパが比較的単純な構造となるので、ダミー軸の部品点数を削減できる。
 本発明に係る乗客コンベアのステップリンク結合用ダミー軸において、好ましくは、前記ストッパは、前記第2軸の先端に固定された第1リンク素子と、前記第1軸の前記軸受側の先端に相対移動可能に支持されると共に、前記第1リンク素子の両端に揺動可能に連結された2つの第2リンク素子とを含む複数のリンク素子により形成され、前記第1軸と前記第2軸との相対回転による前記複数のリンク素子の向きの変化に応じて開閉するリンク部材であり、前記第2軸が前記第1軸に引き込まれる方向に移動する場合には、前記ストッパが開または閉となり、前記第2軸が前記第1軸から突出する方向に移動する場合には、前記ストッパが閉または開となる。
 上記構成によれば、ストッパを複数の剛体のリンク要素から構成できるので、ステップリンク連結体をモータで循環移動させる際に、ローラがダミー軸に対し軸方向外側にずれ動くことをより抑制しやすい。これにより、ステップリンク連結体をより高速で循環移動しやすくなるので作業の効率化を図れる。
 本発明に係る乗客コンベアのステップリンク結合用ダミー軸及びステップリンクを分離する方法によれば、案内レールでローラの軸方向外側が覆われて保護される位置でステップリンクを分離する作業を行う場合における作業者の負担を軽減できる。
本発明の実施形態のステップリンク結合用ダミー軸を適用する乗客コンベアであるエスカレーターの1例において、一部のステップを取り外して示す斜視図である。 エスカレーターの概略断面図である。 図1のA部において、一部を取り外した状態での拡大斜視図である。 ステップ及びステップ軸の結合構造を示す斜視図である。 図3のB部において、ステップ軸及びステップリンクの結合構造と、ローラ配置部分を示す斜視図である。 ステップ軸及びステップリンクの結合構造において、一部のステップリンク及びローラを取り外して示す斜視図である。 実施形態のステップリンク結合用ダミー軸(第1ダミー軸)にローラが結合された状態の斜視図である。 図6Aの矢印C方向に見た図である。 図6Aの断面図である。 図6Aからストッパピンが結合された第1軸を取り出して示す図である。 図6Aにおいて、ストッパピンに結合するための抜け止め部材を取り出して示す図である。 図6Cにおいて、第2軸を第1軸に対し突出方向に移動させて第1軸及び第2軸を軸受及びローラから抜き取り可能とした状態を示す図である。 本発明の実施形態のステップリンクを分離する方法を示すフローチャートである。 図1の状態からステップリンク連結体を移動して、ステップが取り外された部分を機械室に移動させた状態を、一部の乗り場部品を取り外して上側から見た斜視図である。 図8の状態からステップ軸を抜き取った左右両側の2つのステップリンクを、左側の第1ダミー軸と右側の第2ダミー軸とで回動可能に支持させた状態を示す図である。 図9のD部の拡大断面図である。 図9の状態の後に、ステップリンク連結体をモータで循環移動して、第1ダミー軸を案内レールの側板部がある長手方向中間部に移動させた状態を示す図5Aに対応する図である。 図11のE-E断面図である。 図12Aにおいて、第1ダミー軸をローラ及び軸受から抜き取る状態を示す図である。 実施形態の別例のステップリンク結合用ダミー軸(第1ダミー軸)を示す図6Aに対応する図である。 図13の矢印F方向に見た拡大図である。 図13において、第2軸を第1軸に対し引き込み方向に移動させて第1軸及び第2軸を軸受及びローラから抜き取り可能とした状態を示す図である。 実施形態の別例のステップリンク結合用ダミー軸(第1ダミー軸)を示す図6Aに対応する図である。 図15の矢印G方向に見た拡大図である。 図17において、第2軸を第1軸に対し引き込み方向または突出方向に移動させて第1軸及び第2軸を軸受及びローラから抜き取り可能とした状態を示す図である。
 以下において、図面を用いて本発明に係る実施の形態につき詳細に説明する。以下で説明する形状、材料、個数などは説明のための例示であって、ダミー軸または乗客コンベアの仕様により変更が可能である。以下では同様の構成には同一の符号を付して説明する。また、以下では乗客コンベアがエスカレーターである場合を説明するが、乗客コンベアが、乗客の足下で複数のステップの踏み面が段差なく連続して移動する動く歩道である場合にも本発明は適用可能である。
 図1から図5を用いて一般的なエスカレーターにおける基本構造を説明する。エスカレーター10は、トラス12(図2)と、移送手段20と、複数のステップ30とを含んで構成される。ステップ30は、踏み面部材に相当する。トラス12は、エスカレーター10の移動部分及び動力発生装置を支持する構造部分であり、エスカレーター10の基礎部分を構成する。移送手段20はトラス12の内部に設けられ、複数のステップ30を一方向に循環移動させる。複数のステップ30の左右方向(図1の左右方向、図2の紙面の表裏方向)両側には、スカートガード17を含む欄干14が配置される。ここで、「左右方向」は、エスカレーター10を下側の乗り場から進行方向に見た場合における左右方向を意味し、後述のステップ軸方向に相当する。
 移送手段20は、モータ25と、動力伝達機構21(図3)とを含んで構成される。モータ25の駆動は、制御装置(図示せず)により制御される。図3に示すように、動力伝達機構21は、モータ25の回転軸の動力を伝動するベルト26及びプーリ27や、プーリ27に伝達された動力を減速して出力する減速機構28、減速機構28の出力側に連結された左右方向(図3の上下方向)両側の回転軸29等により形成される。モータ25の動力は、動力伝達機構21を介して、回転軸29の出力側に連結されたスプロケット(図示せず)に伝達される。スプロケットには長円形の無端ループ状のチェーン24がかけられており、スプロケットの回転によりチェーン24が一方向(図3の矢印α方向)に循環移動する。図3では、スカートガード17の一部を取り外して示している。チェーン24の上側には、チェーン24よりかなり大きい無端ループ状のステップリンク連結体40が噛み合っている。ステップリンク連結体40は、複数のステップリンク41a、41bを無端ループ状に連結して形成される。図3では、ステップリンク連結体40のうち、エスカレーター10の移動方向に長い略長円形の環状部分の上側の長手方向一部のみを示している。図4に示すように、ステップリンク41a、41bは、ステップ30の左右方向両側で、ステップ軸31の両端部によって貫通されて回動可能に支持される。
 図4に示すように、ステップ30は、乗客が乗る踏み面を有する踏板33の進行方向後端にライザー34が連結され、踏板33及びライザー34の左右方向両端に略三角形の側板35が連結される。
 各ステップ30には、左右方向に延びるステップ軸31が、左右方向両端の側板35を貫通して連結されている。各ステップ30について、ステップ軸31の両端部のそれぞれがステップリンク連結体40に支持される。このとき、ステップ軸31の両端部のそれぞれは、2つのステップリンク41a、41bの長手方向端部の重ね合わせ部を左右方向に貫通する。
 図5A、図5Bに示すように、各ステップリンク41a、41bは、複数の鋼板の積層体により形成される長尺な剛体である。2つのステップリンク41a、41bが、対向する両端部でステップ軸31に回動可能に支持される。
 図3に示すように、チェーン24は、エスカレーター10の中間部で、ステップリンク連結体40のうち、環状部分の上側部分のループ内周側端と噛み合っている。具体的には、各ステップリンク41a、41bのループ内周側端には、長手方向に並んで断面が略半円形の複数の凹部43が形成される。そして、チェーン24の循環方向複数位置の厚み方向中間部に配置される複数の円筒部24aに、ステップリンク41a、41bの複数の凹部43が係合する。これにより、チェーン24は、エスカレーター10の中間部で、ステップリンク連結体40のうち、環状部分の上側部分のループ内周側端と移動方向の一部で噛み合う。図3では、左側(図3の上側)のチェーン24のみを示しているが、右側(図3の下側)にも同様にチェーンが配置される。これにより、左右方向の両側のチェーン24が、動力伝達機構21を介して、モータ25によって駆動されることにより、チェーン24からステップリンク連結体40に動力が伝達され、ステップリンク連結体40が一方向(図3の矢印β方向)に循環移動する。
 さらに、図4、図5Bに示すように、各ステップ軸31の、ステップリンク連結体40のそれぞれより軸方向両端寄りには、ローラ32が回転可能に支持される。ローラ32は、トラス12(図2)において、複数のステップ30の左右両側で上下に離れて配置された案内レール13a、13b(図2)に沿って移動する。これによって、ローラ32は、ステップリンク連結体40の移動を案内するために、案内レール13a、13bに案内される。ステップ軸31において、ローラ32は軸受72により支持され(図6A~図6C)軸方向外側には略C字形の止め輪(図示せず)が係止され、その止め輪によってステップ軸31に対しローラ32が軸方向外側にずれ動くことが防止される。さらに、後述の図12Aに示すように、上側の案内レール13aは、エスカレーターの移動方向に長い上下2つの平行な底板部13d及び天板部13eとそれらの外端を連結する側板部13cとを含んで構成される。この上側の案内レール13aでは、側板部13cが、長手方向中間部においてローラ32の外側への移動を規制し、ローラ32の軸方向外側に対向するように形成される。一方、案内レール13aのうち、下部及び上部の機械室18,19に配置される長手方向両端部の少なくとも一部では、側板部が省略されている。これにより、機械室18,19内では側板部に邪魔されずに、ステップ軸31の交換が可能である。
 運転スイッチ(図示せず)がオンされると、モータ25が駆動され、それによってステップリンク連結体40が循環移動する。これによって、エスカレーター10が運転される。また、ローラ32が案内レール13a、13bによって案内されることで、ステップ30の移動が案内される。このとき、エスカレーター10が下の階から上の階に、進行方向として図2の矢印γ方向に乗客を上昇させる場合には、上側の案内レール13a側でステップ30は上昇し、下側の案内レール13b側でステップ30は下降する。
 上記のエスカレーター10において、図5Aに示すように案内レール13aの長手方向中間部でローラ32の軸方向外側が側板部13cで覆われて保護される位置の2つのステップリンク41a、41bを分離する作業を行う場合がある。この場合に、実施形態では、2つのステップリンク41a、41bを回動可能に支持するステップ軸31の代わりに、予め、ステップ軸31より短いダミー軸を2つのステップリンク41a、41bに貫通させて、2つのステップリンク41a、41bを連結する。例えば、上記のように案内レール13aの長手方向中間部の近くで、ステップリンク連結体40のループ内周側端にはチェーン24(図3)が噛み合っているので、チェーン24やチェーン24を駆動する駆動機構を修理、交換する際には、チェーン24の上側で邪魔となる2つ以上のステップリンク41a、41bを分離する必要がある。このように案内レール13aでローラ32の軸方向外側が覆われるステップ軸31に対応する位置のステップリンク41a、41bの分離作業における作業者の負担を軽減するために、実施形態では、ステップ軸31の代わりに、後述の図6A~図6C、図9に示すように、ローラ32及びその内側でローラ32に結合された軸受72に対し、軸方向に分離可能な第1ダミー軸50及び第2ダミー軸81(図9)を使用する。
 図6Aから図6Fを用いて、本発明の実施形態である第1ダミー軸50を説明する。第1ダミー軸50は、後述の図10、図11に示すように、連結される2つのステップリンク41a、41bの端部における重ね合わせ部を貫通して2つのステップリンク41a、41bを回動可能に支持する。
 図6A、図6B、図6Cに示すように、第1ダミー軸50の軸方向外端部にはローラ32が軸受72により回転可能に支持されており、第1ダミー軸50の軸方向中間部には2つのステップリンク41a、41b(図5B)が貫通されて支持される。具体的には、第1ダミー軸50は、2つのステップリンク41a、41bを貫通する第1軸51と、第1軸51にネジ結合するように軸方向に挿入された第2軸71と、第2軸71の先端に結合されたストッパ76とを含む。
 図6A、図6Cに示すように、第1軸51は、大径円柱部53と、大径円柱部53の軸方向外側の端部に、中間円柱部54を介して連結された小径円柱部55とを含む。大径円柱部53、中間円柱部54、及び小径円柱部55は、中心軸が一致する同軸上に配置される。大径円柱部53、中間円柱部54、小径円柱部55の順に、直径が小さくなっている。これにより中間円柱部54と小径円柱部55との間には、軸方向に対し直角な平面の段差面54aが形成される。後述の軸受72は、小径円柱部55に貫通されるように小径円柱部55に結合され、その軸受72の軸方向内側面が段差面54aに接触または近接対向する。図6Cでは軸受72を、斜格子で簡略化して示している。軸受72は、内輪及び外輪と、内輪及び外輪の間の複数の玉またはニードル等の転動体を有する。軸受72の中心部である内輪の中心部には中心孔73が形成される。
 ローラ32は第1軸51の軸方向外側の端部に軸受72を介して取り付けられ、2つのステップリンク41a、41b(図5B)は第1軸51の大径円柱部53に貫通されて支持される。これにより、第1軸51は、2つのステップリンク41a、41bの軸孔、及び軸受72の中心孔73を貫通する。
 さらに、第1軸51は、軸方向に貫通する断面が円形の軸孔56を有し、軸孔56の軸方向内側端部には雌ネジ57が形成される。この軸孔56には後述の第2軸71がネジ結合された状態で挿通される。さらに、第1軸51の大径円柱部53の軸方向に離れた2つの位置には、軸孔56から離れた位置を直径方向と平行な方向に貫通する貫通孔58が形成される。各貫通孔58には後述のストッパピン61(図6A)が貫通する。
 第2軸71は、円柱状の軸本体71aと、軸本体71aの軸方向内側端部に一体に結合されたネジ軸71bと、ネジ軸71bの軸方向内側端部に形成された操作部71cとを有する。軸本体71aの先端部(軸方向外側端部)外周面には、円環溝71dが形成され、この円環溝71dに後述のストッパ76の中心孔周縁部が嵌め込まれて固定される。操作部71cは、例えば、ネジ軸71bにネジ結合されて固定された蝶ネジにより形成され、作業者が掴んで回転させることができる。なお、第2軸71にボルトを用いて、そのボルトの頭部を操作部としてもよい。第2軸71は、第1軸51の軸孔56に挿入され、かつそのネジ軸71bが第1軸52の雌ネジ57と結合され、回転によって第1軸51の軸受72側(図6Cの左側)に向かって軸方向に進退可能である。第2軸71が第1軸51に挿入された状態で、第2軸71の先端は第1軸51の軸方向外側端面から突出し、第2軸71の軸方向内側端部で操作部71cを含む部分は、第1軸51の軸方向内側端面から突出する。このため、作業者が操作部71cを図6Cのように、第1方向に回転させれば雌ネジ57とネジ軸71bとのネジ結合によって、第2軸71が第1軸51に対し引き込み方向(図6Cの矢印P1方向)に移動する。
 さらに、第2軸71の先端(軸方向外端)にはストッパ76が結合され、そのストッパ76の外周側が第1軸51の軸方向外側端に押し付けられることで、ストッパ76が開となる、すなわち軸受72の直径方向における長さが大きくなるように変形する。
 具体的には、図6A~図6C、図6Fに示すように、ストッパ76は、中心部が第2軸71の先端に結合された、断面が軸受72側が凹となる円弧形で全体が皿状の弾性部材である。ストッパ76は、樹脂または金属等により薄肉に形成される。ストッパ76は、第2軸71との結合部と第1軸51の一端である軸方向外端とで軸方向に圧縮される量に応じて開閉する。図6Cのように、第2軸71が第1軸51に引き込まれる方向に移動する場合には、ストッパ76の軸方向の圧縮量が大きくなることで、ストッパ76が外側に延びるように変形して開となる。そして、ストッパ76が開の状態で、ストッパ76の外周側端部は軸受72の軸方向外側面に対向するので、軸受72が第1軸51に対し軸方向外側に大きく移動することが防止される。
 一方、作業者が操作部71cを図6Fのように、第2方向に回転させれば雌ネジ57とネジ軸71bとのネジ結合によって、第2軸71が第1軸51に対し、第1軸51の軸方向外端から突出する方向(図6Fの矢印P2方向)に移動する。この場合には、ストッパ76の軸方向の圧縮量が小さくなることで、ストッパ76が自身の弾性力にしたがって閉となる、すなわち軸受72の直径方向における長さが小さくなるように変形する。このため、ストッパ76は、第2軸71の軸方向移動によって閉となる。ストッパ76が閉の状態で、ストッパ76は軸受72の軸方向外側面に非対向となるので、ローラ32及び軸受72の内側から第1軸51及び第2軸71をストッパ76と共に軸方向内側に抜き取ることが可能となる。
 さらに図6Dに示すように、第1軸51の大径円柱部53の軸孔56から離れた2つの位置に形成された貫通孔58のそれぞれには棒状のストッパピン61が貫通し、大径円柱部53の外周面の軸方向の位置が異なる2つの位置からストッパピン61の両端部が突出する。図6A及び後述の図10に示すように、ストッパピン61の両端部には、図6Eに拡大図で示す抜け止め部材62の脚部62aが貫通する。ストッパピン61は、第1軸51が貫通するステップリンク41a、41bの固定ピンとなる。抜け止め部材62は、金属線により略U字形に形成される。抜け止め部材62の一方の脚部62aがストッパピン61の端部に貫通し、他方の脚部62bの中間部に形成された半円部62cが、ストッパピン61の外周面の一方側半部に嵌合することによりストッパピン61からの抜け止め部材62の抜け防止を図っている。これによって、ストッパピン61が大径円柱部53の貫通孔58から抜け出ることも防止される。ストッパピン61から抜け止め部材62を引き抜いた後では、大径円柱部53の貫通孔58からストッパピン61を抜き取ることが可能である。このため、ストッパピン61は、第1軸51に対し取り外し可能に結合される。
 後述の図10に示すように、大径円柱部53が2つのステップリンク41a、41bの軸孔44a、44bに貫通されて、大径円柱部53の外径側に2つのステップリンク41a、41bが配置される場合に、2つのストッパピン61の両端部はステップリンク41bの軸方向の両側面に対向する。
 上記のように第1ダミー軸50では、操作部71cの操作により第2軸71を第1軸51に対し軸方向に移動させることでストッパ76を開閉し、ストッパ76の閉によりローラ32及び軸受72の内側から第1軸51及び第2軸71をストッパ76と共に軸方向内側に抜き取ることが可能となる。後述するように、第1ダミー軸50は、案内レール13aの長手方向中間部でローラ32の軸方向外側が案内レール13aの側板部13c(図12A)で覆われて保護される位置に移動させる。その後に、第2軸71を第1軸51に対し軸方向に移動させることによりストッパ76を閉とした状態で、第1軸51及び第2軸71をストッパ76と共に、ローラ32及び軸受72の内側から軸方向内側に抜き取り、さらに2つのステップリンク41a、41bの軸孔からも抜き取ることにより2つのステップリンク41a、41bを分離できる。
 次に、上記の第1ダミー軸50を用いて、ステップリンク連結体40のステップリンク41a、41bを分離する方法を説明する。図7は、実施形態のステップリンク41a、41bを分離する方法を示すフローチャートである。
 ステップリンク41a、41bの分離を行う場合、まず、図7のステップS10において、図1に示すように、エスカレーター10の中間部で一部のステップ軸31からステップ30を取り外す。この作業では、エスカレーター10を停止させ作業者が取り外し対象のステップに隣接するステップ30に乗った状態で、取り外し対象のステップの上側から工具を使って取り外す。
 次に、モータ25を駆動してステップ軸方向両側のステップリンク連結体40を循環移動して、図8に示すように、ステップ軸31からステップ30が取り外された部分を下部の機械室18に移動させる。図8は、図1の状態からステップリンク連結体40を移動して、ステップ30が取り外された部分を機械室18に移動させた状態を、一部の乗り場部品を取り外して上側から見た斜視図である。機械室18では、ステップ軸方向両側のステップリンク連結体40のそれぞれにおいて、案内レール13aの長手方向一端部の側板部がない位置に、ステップ軸31に結合されたローラ32が対向する。
 次いで、図7のステップS11において、図8の状態で、作業者が機械室18に入り込み、2つのステップリンク41a、41bの軸孔44a、44b(図10)からステップ軸31を抜き取る。このとき、作業者は、ステップが取り外されたステップ軸31の両端からローラ32を取り外した後、ステップ軸31からステップ取付位置にあるブッシュ(図示せず)と各ステップリンク連結体40の両端に対向する分割止め輪(図示せず)とを取り外す。そして、ステップ軸31を左から右へ移動させ、一方側(図8の左側)のステップリンク連結体40の2つのステップリンク41a、41bの軸孔44a、44bからステップ軸31を抜き取る。その後、ステップ軸31の軸方向の延長線上から、ステップ軸31が抜き取られた2つのステップリンク41a、41bを移動させた後、ステップ軸31を右から左へ移動させ、他方側(図8の右側)のステップリンク連結体40の2つのステップリンク41a、41bの軸孔からステップ軸31を抜き取る。このとき、両側のステップリンク連結体40のそれぞれで2つのステップリンク41a、41bの軸孔44a、44bには共通の円筒状のスリーブ80(図10)が貫通されている。このため、軸孔44a、44bからステップ軸31を抜き取っただけでは、2つのステップリンク41a、41bはスリーブ80により連結が維持される。
 次に、図7のステップS12において、作業者が、機械室18内で、ステップ軸31を抜き取った一方側(図8の左側)のステップリンク連結体40における2つのステップリンク41a、41bの軸孔44a、44bに第1ダミー軸50を貫通させる。そして、第1ダミー軸50で2つのステップリンク41a、41bを回動可能に支持する。
 図9は、図8の状態からステップ軸31を抜き取った左右両側の2つのステップリンク41a、41bを、左側の第1ダミー軸50と右側の第2ダミー軸81とで回動可能に支持させた状態を示す図である。図10は、図9のD部の拡大断面図である。第1ダミー軸50で2つのステップリンク41a、41bを支持する場合、図10に示すように、第1ダミー軸50の軸方向外側端部にローラ32及び軸受72を取り付けて、ストッパ76を開とした状態で、2つのステップリンク41a、41bの軸孔44a、44bに、第1ダミー軸50を軸方向外側から内側に貫通させる。これにより2つのステップリンク41a、41bが第1ダミー軸50により回動可能に支持される。このとき、第1ダミー軸50において、第2軸71を第1軸51に対し回転させて第1軸51に対し引き込み方向に移動させることによりストッパ76を開として、ローラ32及び軸受72の第1ダミー軸50からの外れを防止する。
 次に、図7のステップS13において、図9に示すように、他方側(図9の右側)のステップリンク連結体40において、2つのステップリンク41a、41bの軸孔44a、44bに第2ダミー軸81を貫通させ、第2ダミー軸81で2つのステップリンク41a、41bを回動可能に支持する。このとき、第2ダミー軸81は、第1ダミー軸50と同様の構造である。なお、第2ダミー軸は、第1ダミー軸50において第2軸71を設けず、第1軸51の軸方向外側端部外周面の環状溝に止め輪が係止された構成としてもよい。この場合には、案内レール13aの側板部13cによってローラ32の外側面が覆われて保護される位置で第2ダミー軸をステップリンク41a、41bの軸孔から軸方向内側に抜き取ることは、ローラ32及び軸受72で邪魔されるのでできない。このため、その場合の第2ダミー軸は、左右両側のステップリンク連結体40のうち、ステップリンク41a、41bを分離しない側でのみ使用する。一方、第2ダミー軸81を第1ダミー軸50と同様の構造とした場合には、一方側のステップリンク連結体40で2つのステップリンク41a、41bを分離する場合と同様に、他方側のステップリンク連結体40でも2つのステップリンクを分離することが可能となる。なお、図7のステップS12と、ステップS13とは順序を逆にしてもよい。
 その後、図7のステップS14において、ステップ軸方向両側のステップリンク連結体40をモータ25の駆動によって循環移動させる。この循環移動によって、第1ダミー軸50を、エスカレーター10の中間部の、ローラ32の外側面が案内レール13aの長手方向中間部の側板部13cに対向する位置に移動させる。このとき、第2ダミー軸81も、ステップ軸方向反対側で第1ダミー軸50と同様の位置に移動する。
 図11は、図9の状態の後に、ステップリンク連結体をモータで循環移動して、第1ダミー軸を案内レールの側板部がある長手方向中間部に移動させた状態を示す図5Aに対応する図である。図12Aは、図11のE-E断面図である。図11、図12Aのように第1ダミー軸50及び第2ダミー軸81を移動させた後の状態で、第1ダミー軸50で支持されたステップリンク41a、41bは、チェーン24(図3)の上側に対向する位置にある。
 この状態では、ローラ32の軸方向外側が側板部13cで覆われて保護される。そして、図7のステップS15において、作業者が、第1ダミー軸50において、第2軸71を第1軸51に対し回転させて第1軸51に対し軸受72側への突出方向に移動させることによりストッパ76を閉として、軸受72からの第1ダミー軸50の抜き取りを可能とする。この状態で、第1ダミー軸50を、軸受72と、2つのステップリンク41a、41bの軸孔44a、44bとから抜き取った後、2つのステップリンク41a、41bを分離する。具体的には、作業者が、図12Aの状態から2つのストッパピン61を第1ダミー軸50の外側に取り外す。その後で、図12Bに示すように、第1軸51に対し第2軸71を第2方向に回転させることにより、第2軸71を軸受72側に突出する方向に移動させる。この状態で、ストッパ76が閉となり、軸受72の軸方向外側面と非対向となる。この状態で、軸受72から第1ダミー軸50を軸方向内側(図12Bの矢印Q方向)に引き抜いた後、2つのステップリンク41a、41bの軸孔44a、44bからも第1ダミー軸50を軸方向内側に引き抜く。その後に、軸孔44a、44bからスリーブ80を抜き取ることにより、2つのステップリンク41a、41bを分離できる。
 上記ではステップリンク連結体40の2つのステップリンク41a、41bを分離する場合を説明した。一方、ステップリンク連結体40の移動方向に並ぶ3つのステップリンクを連結する2つのステップ軸31の少なくとも一方側端部を2つの第1ダミー軸50に交換することもできる。その交換後、モータ25でステップリンク連結体40を循環移動させることにより、移動方向に並んだ2つの第1ダミー軸50を、エスカレーターの中間部の、ローラ32の外側面が案内レール13aで保護される位置に移動させる。そして、2つの第1ダミー軸50のそれぞれで、上記と同様に第1軸51を2つのステップリンクの軸孔から抜き取った後、軸孔からスリーブ80を抜き取ることにより、3つのステップリンクを分離することができる。この際、3つのステップリンクのうち、両端2つのステップリンクにおけるそれぞれの長手方向一端は、ステップリンク連結体40の残りの部分に連結されるが、中間の1つのステップリンクの両端は、両端2つのステップリンクから分離される。これにより、中間のステップリンクをステップリンク連結体40から取り外すことができる。このため、チェーン等の部品の上側に、ステップリンクを取り外した後の比較的大きい空間を形成できることにより、部品を取り外しやすくなる。
 上記の第1ダミー軸50及び第1ダミー軸50を用いたステップリンク41a、41bの分離方法によれば、ステップ軸31の一方側端部を第1ダミー軸50に交換した後、ステップリンク連結体40をモータ25で循環移動させて、第1ダミー軸50を、案内レール13aの長手方向中間部でローラ32の軸方向外側が側板部13cで覆われて保護される位置に移動させる。このとき、第1ダミー軸50の第2軸71に結合したストッパ76と第1ダミー軸50の段差面77とにより第1ダミー軸50に対しローラ32が軸方向に大きくずれ動くことが防止される。そして、案内レール13aでローラ32の軸方向外側が覆われて保護される位置に第1ダミー軸50を移動させた後には、第1軸51に対し第2軸を突出方向に移動させることによりストッパ76を閉とした後、第1軸51を軸受72及び2つのステップリンク41a、41bの軸孔44a、44bから抜き取る。これにより2つのステップリンク41a、41bを分離できる。したがって、案内レール13aでローラ32の軸方向外側が覆われて保護される位置でステップリンク41a、41bを分離する作業を行う場合に、ステップリンク連結体40を人力により低速度で循環移動させる必要がないので、作業者の負担を軽減できる。
 さらに、本例の構成によれば、ストッパ76が比較的単純な構造となるので、第1ダミー軸50の部品点数を削減できる。なお、上記の構成では、ストッパ76が皿状である場合を説明したが、ストッパとして、断面が軸受側が凹となる円弧形で、弓形に湾曲した板状の弾性部材を用いてもよい。
 図13から図15を用いて、実施形態の別例のステップリンク結合用ダミー軸である第1ダミー軸50aを説明する。本例の場合、第1軸51の軸方向外端面の中心部に断面矩形の凹部59が形成され、その凹部59の矩形状の底部の中心部に軸孔56の一端(図13の左端)が開口している。さらに、第2軸71は、軸本体71aの先端に回転可能に支持された有底円筒状の軸受82を含んでおり、その軸受82の軸方向外端(図13の左端)の底部にストッパ83が結合されている。軸受82は、軸本体71aの先端に嵌合されると共に、軸受82の先端等に形成された環状突部が軸本体71aの先端外周面に形成された環状溝に摺動可能に嵌められる等により、軸本体71aに対し回転可能に結合される。
 ストッパ83は、例えば鋼等の薄肉の金属板を曲げ形成してなるもので、断面が逆V字形の板状の山形部84と、山形部84の両端に連結された2つの板状の軸受対向部85とを有する弾性片である。軸受対向部85は、山形部84のうち、軸受対向部85が連結される傾斜板部とは逆方向(軸受72に近づく側)に、第1ダミー軸50aの軸方向に対し傾斜している。このため、ストッパ83は、全体の断面形状がジグザグ状となっている。ストッパ83は、中心部である山形部84の頂部が第2軸71の先端である軸受82の底面に固定される。この状態で、軸受82は、第2軸71とストッパ83との相対回転を許容する。さらに、ストッパ83の山形部84の頂部が第1軸51の軸方向外端面の凹部59内に嵌りこむことで、第1軸51に対しストッパ83の回転が規制される。
 ストッパ83の第2軸71との結合部である山形部84の頂部の、第1軸51の凹部59内への引き込み量の変化に応じて、ストッパ83は開閉する、すなわち、ストッパ83における軸受72の直径方向の長さが変化する。図13のように、第2軸71の第1軸51に対する回転により第2軸71が第1軸51から軸受72側に突出する方向(図13の矢印P2方向)に移動する場合には、ストッパ83が開となる、すなわち軸受72の直径方向の長さが大きくなるように山形部84が外側に広がる。ストッパ83が開の状態で、ストッパ83の軸受対向部85の先端が軸受72の軸方向外側面に対向する。
 一方、図15のように、第2軸71の第1軸51に対する回転により第2軸71が第1軸51に引き込まれる方向(図15の矢印P1方向)に移動する場合には、ストッパ83が閉となる、すなわち軸受72の直径方向の長さが小さくなるように山形部84がしぼむ。ストッパ83が閉の状態で、ストッパ83は軸受72の軸方向外側面に非対向となる。
 本例の場合、このような第1ダミー軸50aを用いて第2軸71を第1軸51に対して軸方向に移動させることによりストッパ83が開閉可能であり、ストッパ83が開の状態で第1ダミー軸50aに対し軸受72及びローラ32が大きく軸方向にずれ動くことを防止できる。これにより、ステップリンク連結体40(図8)をモータで循環移動させて、2つのステップリンク41a、41b(図12A)の軸孔に貫通させた第1ダミー軸50aを、案内レール13a(図12A)の長手方向中間部でローラ32の軸方向外側が案内レール13aの側板部13c(図12A)で覆われて保護される位置に移動させるときに、第1ダミー軸50aのストッパ83と段差面54aとにより、第1ダミー軸50aに対しローラ32が軸方向に大きくずれ動くことを防止できる。これにより、ステップリンク連結体40を人力により低速度で循環移動させる必要がないので、作業者の負担を軽減できる。
 案内レール13aでローラ32の軸方向外側が覆われて保護される位置に第1ダミー軸50aを移動させた後には、第1軸51に対し第2軸71を引き込み方向に移動させることによりストッパ83を閉として軸受72の外側面に非対向とする。その後、軸受72と2つのステップリンク41a、41bの軸孔とから第1ダミー軸50aを軸方向内側に抜き取ることにより2つのステップリンク41a、41bを分離できる。
 さらに、ストッパ83が比較的単純な構造となるので、ダミー軸50aの部品点数を削減できる。本例において、その他の構成及び作用は、図1~図12Bの構成と同様である。なお、本例では、ストッパ83の両端の軸受対向部85を第1ダミー軸50aの軸方向に対し傾斜させて、ストッパ83の全体を断面ジグザグ形とした場合を説明したが、ストッパの両端の軸受対向部は、第1ダミー軸50aの軸方向に対し略直角な平板状としてもよい。
 図16から図18を用いて、実施形態の別例のステップリンク結合用ダミー軸である第1ダミー軸50bを説明する。本例の場合、第2軸71の先端が第1軸51の軸方向外端面から突出しており、その第2軸71の先端にストッパ86が固定されている。ストッパ86は、第2軸71の先端に固定された第1リンク素子87と、第1リンク素子87の両端に揺動可能に連結された2つの第2リンク素子88とを含む複数のリンク素子により形成されるリンク部材である。具体的には、第1リンク素子87は、長細の板状であり、中心部の片面に第2軸71の先端が固定される。2つの第2リンク素子88のそれぞれは、長細の板状であり、一端に揺動軸89が結合され、その揺動軸89が第1リンク素子87の端部に形成された孔に貫通されることにより、第2リンク素子88が第1リンク素子87に揺動可能に連結される。各リンク素子87,88は、例えば厚肉の金属板製または樹脂板製である。2つの第2リンク素子88の他端には、長手方向に沿った長孔90が形成され、第1軸51の軸方向外端面から軸方向に突出するように固定された2つの突出軸60が、第2リンク素子88の長孔90に貫通支持される。図17に示すように、2つの突出軸60と第2軸71とは1つの直線L上に配置される。これにより、2つの第2リンク素子88のそれぞれは、第1軸51の軸受72側の先端に、第1軸51の一端面(図17、図18の紙面の表側面)の面方向に相対移動可能に支持されると共に、第1リンク素子87の両端に揺動可能に連結される。
 さらに、ストッパ86は、第1軸51と第2軸71との相対回転による複数のリンク素子87,88の向きの変化に応じて開閉する。具体的には、第1軸51と第2軸71との相対回転により、第2軸71が第1軸51に引き込まれる方向に移動する場合には、ストッパ86が開または閉となり、第2軸71が第1軸51から軸受72側に突出する方向に移動する場合には、ストッパ86が閉または開となる。ストッパ86が開の状態で、図18のように、ストッパ86における軸受72の直径方向の長さが大きくなるようにストッパ86が外側に広がって、ストッパ86の両端である第2リンク素子88が軸受72の軸方向外側面(図18の紙面の表側面)に対向する。一方、ストッパ86が閉の状態では、図17のように、ストッパ86における軸受72の直径方向の長さが小さくなるようにストッパ86が折り畳み側に変形して、ストッパ86が軸受72の軸方向外側面に非対向となる。
 本例の場合、このような第1ダミー軸50bを用いて第2軸71を第1軸51に対して軸方向に移動させることによりストッパ86が開閉可能であり、ストッパ86が開の状態で第1ダミー軸50bに対し軸受72及びローラ32が大きく軸方向にずれ動くことを防止できる。これによっても、上記の各例と同様に、ステップリンク連結体40(図8)をモータで循環移動させて、2つのステップリンク41a、41b(図12A)の軸孔に貫通させた第1ダミー軸50bを、案内レール13a(図12A)の長手方向中間部でローラ32の軸方向外側が案内レール13aの側板部13c(図12A)で覆われて保護される位置に移動させるときに、第1ダミー軸50bのストッパ86と段差面54aとにより、第1ダミー軸50bに対しローラ32が軸方向に大きくずれ動くことを防止できる。これにより、ステップリンク連結体40を人力により低速度で循環移動させる必要がないので、作業者の負担を軽減できる。
 さらに、案内レール13aでローラ32の軸方向外側が覆われて保護される位置に第1ダミー軸50bを移動させた後には、第1軸51に対し第2軸71を引き込み方向または突出方向に移動させることによりストッパ86を閉として軸受72の外側面に非対向とする。その後、軸受72と2つのステップリンク41a、41bの軸孔とから第1ダミー軸50bを軸方向内側に抜き取ることにより2つのステップリンク41a、41bを分離できる。
 さらに、ストッパ86を複数の剛体のリンク要素87,88から構成できるので、ステップリンク連結体40をモータで循環移動させる際に、ローラ32がダミー軸50bに対し軸方向外側にずれ動くことをより抑制しやすい。これにより、ステップリンク連結体40をより高速で循環移動しやすくなるので作業の効率化を図れる。本例において、その他の構成及び作用は、図1~図12Bの構成と同様である。
 10 エスカレーター、12 トラス、13a,13b 案内レール、13c 側板部、14 欄干、17 スカートガード、18,19 機械室、20 移送手段、21 動力伝達機構、24 チェーン、25 モータ、26 ベルト、27 プーリ、28 減速機構、29 回転軸、30 ステップ、31 ステップ軸、32 ローラ、33 踏板、34 ライザー、40 ステップリンク連結体、41a,41b ステップリンク、43 凹部、44a,44b 軸孔、50,50a,50b 第1ダミー軸、51 第1軸、53 大径円柱部、54 中間円柱部、55 小径円柱部、56 軸孔、57 雌ネジ、58 貫通孔、59 凹部、60 突出軸、61 ストッパピン、62 抜け止め部材、71 第2軸、72 軸受、73 中心孔、76 ストッパ、80 スリーブ、81 第2ダミー軸、82 軸受、83 ストッパ、84 山形部、85 軸受対向部、86 ストッパ、87 第1リンク素子、88 第2リンク素子。

Claims (5)

  1.  複数の踏み面部材であるステップのそれぞれにステップ軸が連結され、複数の前記ステップ軸の両端部のそれぞれは無端ループ状のステップリンク連結体で連結され、前記ステップ軸の前記ステップリンク連結体のそれぞれより軸方向両端寄りには、前記ステップリンク連結体の移動を案内するために案内レールに案内されるローラが回転可能に支持される乗客コンベアにおいて、移動方向に連結する2つのステップリンクを回動可能に支持する前記ステップ軸の少なくとも一方側端部の代わりに使用されるステップリンク結合用ダミー軸であって、
     前記2つのステップリンクの軸孔、及び前記ローラの内径側に結合された軸受の中心孔を貫通する第1軸と、
     前記第1軸にネジ結合するように軸方向に挿入され、回転によって前記第1軸の前記軸受側に向かって軸方向に進退可能である第2軸と、
     前記第2軸の、前記軸受側の先端に結合され、前記第2軸の軸方向移動によって開閉可能であり、開の場合に前記軸受の外側面と対向するストッパと、を備え、
     前記第1軸の外周面には前記軸受の内側面と対向する段差面が形成され、
     前記ストッパは、前記第2軸が前記第1軸に引き込まれる方向に移動する場合に開または閉となり、前記第2軸が前記第1軸から突出する方向に移動する場合に閉または開となる、
     乗客コンベアのステップリンク結合用ダミー軸。
  2.  請求項1に記載の乗客コンベアのステップリンク結合用ダミー軸において、
     前記ストッパは、中心部が前記第2軸の先端に結合された断面が前記軸受側が凹となる円弧形の弾性部材であり、前記第2軸との結合部と前記第1軸の一端とで前記ストッパが軸方向に圧縮される量に応じて開閉し、
     前記第2軸が前記第1軸に引き込まれる方向に移動する場合には、前記ストッパの軸方向の圧縮量が大きくなることで、前記ストッパが開となり、前記第2軸が前記第1軸から突出する方向に移動する場合には、前記ストッパの軸方向の圧縮量が小さくなることで、前記ストッパが閉となる、
     乗客コンベアのステップリンク結合用ダミー軸。
  3.  請求項1に記載の乗客コンベアのステップリンク結合用ダミー軸において、
     前記ストッパは、中心部が前記第2軸の先端に固定され、山形部と前記山形部の両端に連結された2つの軸受対向部とを有する弾性片であり、前記第2軸との結合部である前記山形部の頂部の、前記第1軸内への引き込み量の変化に応じて開閉し、
     前記第2軸は、前記山形部の頂部に固定され、前記第2軸と前記ストッパとの相対回転を許容する軸受を含んでおり、
     前記ストッパは、前記第1軸に対し回転が規制され、
     前記第2軸が前記第1軸に引き込まれる方向に移動する場合には、前記ストッパが閉となり、前記第2軸が前記第1軸から突出する方向に移動する場合には、前記ストッパが開となる、
     乗客コンベアのステップリンク結合用ダミー軸。
  4.  請求項1に記載の乗客コンベアのステップリンク結合用ダミー軸において、
     前記ストッパは、前記第2軸の先端に固定された第1リンク素子と、前記第1軸の前記軸受側の先端に相対移動可能に支持されると共に、前記第1リンク素子の両端に揺動可能に連結された2つの第2リンク素子とを含む複数のリンク素子により形成され、前記第1軸と前記第2軸との相対回転による前記複数のリンク素子の向きの変化に応じて開閉するリンク部材であり、
     前記第2軸が前記第1軸に引き込まれる方向に移動する場合には、前記ストッパが開または閉となり、前記第2軸が前記第1軸から突出する方向に移動する場合には、前記ストッパが閉または開となる、
     乗客コンベアのステップリンク結合用ダミー軸。
  5.  請求項1に記載の乗客コンベアのステップリンク結合用ダミー軸を用いてステップリンク連結体のステップリンクを分離する方法であって、
     一部の前記ステップ軸から前記ステップを取り外した状態で、ステップ軸方向両側の前記ステップリンク連結体のそれぞれにおいて、前記ローラが前記案内レールの側板部がない位置に対向した状態で、前記2つのステップリンクの軸孔から前記ステップ軸を抜き取るステップと、
     前記ステップ軸を抜き取った前記2つのステップリンクの軸孔に、第1ダミー軸を貫通させ、前記2つのステップリンクを回動可能に支持すると共に、前記ステップ軸を抜き取った前記2つのステップリンクの軸孔に、第2ダミー軸を貫通させ、前記2つのステップリンクを回動可能に支持するステップと、
     前記ステップリンク連結体をモータで循環移動させて、前記第1ダミー軸を、前記案内レールの長手方向中間部で前記ローラの軸方向外側が前記案内レールの側板部で覆われて保護される位置に移動させるステップと、
     前記第2軸を前記第1軸に対し引き込み方向または突出方向に移動させることにより、前記ストッパを閉として前記軸受の外側面に非対向とした後、前記軸受と、前記2つのステップリンクの軸孔とから前記第1ダミー軸を軸方向内側に抜き取って、前記2つのステップリンクを分離するステップと、
     を含む、
     ステップリンク連結体のステップリンクを分離する方法。
PCT/JP2020/012457 2020-03-19 2020-03-19 乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法 WO2021186715A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080098514.9A CN115279683B (zh) 2020-03-19 2020-03-19 乘客输送机的梯级连杆结合用假轴和将梯级连杆连结体的梯级连杆分离的方法
PCT/JP2020/012457 WO2021186715A1 (ja) 2020-03-19 2020-03-19 乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法
JP2022508000A JP7170934B2 (ja) 2020-03-19 2020-03-19 乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012457 WO2021186715A1 (ja) 2020-03-19 2020-03-19 乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法

Publications (1)

Publication Number Publication Date
WO2021186715A1 true WO2021186715A1 (ja) 2021-09-23

Family

ID=77768150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012457 WO2021186715A1 (ja) 2020-03-19 2020-03-19 乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法

Country Status (3)

Country Link
JP (1) JP7170934B2 (ja)
CN (1) CN115279683B (ja)
WO (1) WO2021186715A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371488A (en) * 1976-12-06 1978-06-24 Westinghouse Electric Corp Apparatus for transportation
US4232783A (en) * 1979-03-19 1980-11-11 Westinghouse Electric Corp. Step link for transportation apparatus
JPS5836874A (ja) * 1981-08-14 1983-03-03 ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン エスカレータの駆動ユニット位置決め方法および装置
JPS6036280A (ja) * 1983-05-12 1985-02-25 インヴェンツィオ・アクチェンゲゼルシャフト コンベア・ベルト
JPS60167884A (ja) * 1983-10-31 1985-08-31 インヴェンツィオ・アクチェンゲゼルシャフト ロ−ラ組立体
JPH03115084A (ja) * 1989-08-10 1991-05-16 Otis Elevator Co エスカレータ装置及びそのステップチェーン装置
JPH11165973A (ja) * 1997-12-01 1999-06-22 Mitsubishi Electric Building Techno Service Co Ltd エスカレータステップリンクの交換方法およびそれに用いる引出レール装置
JP2006160494A (ja) * 2004-12-09 2006-06-22 Mitsubishi Electric Corp 乗客コンベヤの駆動装置
JP2017222447A (ja) * 2016-06-14 2017-12-21 東芝エレベータ株式会社 乗客コンベア
CN107580584A (zh) * 2015-05-06 2018-01-12 奥的斯电梯公司 包括悬臂的用于人员输送机的踏板元件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115084B2 (ja) 1992-03-16 2000-12-04 パイオニア株式会社 Gps受信機における発振器の初期オフセット設定方法
JPH10291761A (ja) * 1997-04-18 1998-11-04 Toshiba Elevator Kk 乗客コンベア装置及びその改修方法
JP2001316066A (ja) * 2000-02-28 2001-11-13 Nakanishi Nobuo 乗客搬送コンベア装置
JP5371488B2 (ja) 2009-03-05 2013-12-18 三菱重工印刷紙工機械株式会社 折機並びに印刷機及び印刷方法
JP5836874B2 (ja) 2012-04-20 2015-12-24 株式会社東芝 原子炉用蒸気乾燥器及びその据付方法
JP5950809B2 (ja) * 2012-12-12 2016-07-13 株式会社日立製作所 乗客コンベア
JP6036280B2 (ja) 2012-12-26 2016-11-30 大日本印刷株式会社 着色シート、着色ラベル及び着色転写シート

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371488A (en) * 1976-12-06 1978-06-24 Westinghouse Electric Corp Apparatus for transportation
US4232783A (en) * 1979-03-19 1980-11-11 Westinghouse Electric Corp. Step link for transportation apparatus
JPS5836874A (ja) * 1981-08-14 1983-03-03 ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン エスカレータの駆動ユニット位置決め方法および装置
JPS6036280A (ja) * 1983-05-12 1985-02-25 インヴェンツィオ・アクチェンゲゼルシャフト コンベア・ベルト
JPS60167884A (ja) * 1983-10-31 1985-08-31 インヴェンツィオ・アクチェンゲゼルシャフト ロ−ラ組立体
JPH03115084A (ja) * 1989-08-10 1991-05-16 Otis Elevator Co エスカレータ装置及びそのステップチェーン装置
JPH11165973A (ja) * 1997-12-01 1999-06-22 Mitsubishi Electric Building Techno Service Co Ltd エスカレータステップリンクの交換方法およびそれに用いる引出レール装置
JP2006160494A (ja) * 2004-12-09 2006-06-22 Mitsubishi Electric Corp 乗客コンベヤの駆動装置
CN107580584A (zh) * 2015-05-06 2018-01-12 奥的斯电梯公司 包括悬臂的用于人员输送机的踏板元件
JP2017222447A (ja) * 2016-06-14 2017-12-21 東芝エレベータ株式会社 乗客コンベア

Also Published As

Publication number Publication date
JPWO2021186715A1 (ja) 2021-09-23
CN115279683A (zh) 2022-11-01
CN115279683B (zh) 2023-08-08
JP7170934B2 (ja) 2022-11-14

Similar Documents

Publication Publication Date Title
KR100933099B1 (ko) 컨베이어 장치
US6457573B1 (en) Belt drive back up device for escalator drive
TW200302201A (en) Belt drive assembly for a passenger conveyor
JPS6320727B2 (ja)
TWI611962B (zh) 門懸吊裝置
CN101027504B (zh) 推拉式链条和致动器
WO2021186715A1 (ja) 乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法
JP6824437B1 (ja) 乗客コンベアのステップリンク結合用ダミー軸及びステップリンク連結体のステップリンクを分離する方法
US4025120A (en) Feed system of a coal getting combine
WO2017085779A1 (ja) 乗客コンベヤ
US5338264A (en) Compliant sheave
SK110495A3 (en) Rotary escalator driving mechanism
JP6834934B2 (ja) 洗車機
JPH0262470B2 (ja)
JP3878548B2 (ja) 搬送システム
US7070038B2 (en) Escalator chain drive mechanism
US6659897B2 (en) Chain drive assembly
EP1841674A1 (de) Gelenkige schienenverbindung für schienenstösse von profillaufschienen
JP5783820B2 (ja) マンコンベアおよびその踏み段ガイド装置並びにその運転方法
JP4118066B2 (ja) 移動体使用の搬送設備
JP6818856B1 (ja) 乗客コンベア用非常制動装置
JP2006264872A (ja) 乗客コンベア
JP3814578B2 (ja) 搬送システム
WO2004071860A1 (en) Auxiliary brake system for passenger conveyor systems
JP2011051730A (ja) コンベア装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925354

Country of ref document: EP

Kind code of ref document: A1