WO2021184948A1 - 一种光学用纳米纤维素膜及其制备方法与应用 - Google Patents

一种光学用纳米纤维素膜及其制备方法与应用 Download PDF

Info

Publication number
WO2021184948A1
WO2021184948A1 PCT/CN2021/072463 CN2021072463W WO2021184948A1 WO 2021184948 A1 WO2021184948 A1 WO 2021184948A1 CN 2021072463 W CN2021072463 W CN 2021072463W WO 2021184948 A1 WO2021184948 A1 WO 2021184948A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnc
film
cnf
preparation
layer
Prior art date
Application number
PCT/CN2021/072463
Other languages
English (en)
French (fr)
Inventor
和铭
杨桂花
陈嘉川
薛玉
吉兴香
刘昭祥
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Publication of WO2021184948A1 publication Critical patent/WO2021184948A1/zh
Priority to ZA2021/10679A priority Critical patent/ZA202110679B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2383/00Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries

Definitions

  • the invention belongs to the technical field of nano cellulose film, and specifically relates to a nano cellulose film for optics and a preparation method and application thereof.
  • Cellulose is considered to be the most abundant renewable polymer material in the world. Pure cellulose can be extracted from various biomass sources, such as wood, rice straw, sugar beet, and bacterial cellulose. Because of its high availability, biodegradability, low cost, high mechanical strength and easy modification, cellulose is widely used in various applications in different forms. In recent years, nanocellulose, including cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) extracted from cellulose, has become a universal "green" nanomaterial.
  • CNF cellulose nanofibrils
  • CNC cellulose nanocrystals
  • CNF and CNC have been used to prepare films for food packaging, wound dressings, and energy equipment.
  • different applications place higher requirements on the target properties of nanocellulose films, such as organic solar energy.
  • the criteria for thin films in battery substrates are high optical transparency and high haze.
  • LED light emitting diode
  • a touch screen low optical haze is required.
  • the purpose of the present invention is to provide a nano cellulose film for optics and a preparation method and application thereof.
  • one or more embodiments of the present invention provide the following technical solutions:
  • the first aspect of the present invention provides a nanocellulose film for optics, which includes a PDMS layer, a first PEO layer, a CNC layer, a second PEO layer, and a CNF/CNC layer that are stacked in sequence.
  • the second aspect of the present invention provides a method for preparing a nanocellulose film for optics, including the following steps:
  • the polyethylene oxide layer functions as a binder.
  • the third aspect of the present invention provides applications of the optical nanocellulose film in sensors, batteries, conductive paper, and filter elements.
  • the suspension is prepared by mixing CNF and CNC and made into CNF/CNC film, which is convenient for dispersion (compared to a single composition, the mixed preparation of the two is easier to disperse uniformly) while improving the transparency and tensile strength of the film after formation.
  • CNF/CNC film the function of CNF is mainly to increase the strength of the film, and the function of CNC is mainly to increase the transparency of the film.
  • Coating polyethylene oxide on the surface of the PDMS can effectively make the CNC in the CNC suspension adhere to the surface of the PDMS during the leveling process, so that the CNC is evenly distributed on the surface of the PDMS.
  • Figure 1 is a process flow diagram of the present invention
  • Fig. 2 is an optical dispersion diagram of the film of the invention 1 after forming
  • Figure 3 is a contact angle diagram of the film formation of the present invention.
  • Figure 4 is a scanning electron micrograph of the present invention after film formation
  • Fig. 5 is a stress-strain curve diagram after film formation of the present invention.
  • the first aspect of the present invention provides a nanocellulose film for optics, which includes a PDMS layer, a first PEO layer, a CNC layer, a second PEO layer, and a CNF/CNC layer that are stacked in sequence.
  • the second aspect of the present invention provides a method for preparing a nanocellulose film for optics, including the following steps:
  • the PDMS film is activated in a plasma cleaner for 1-3 minutes.
  • the CNC layer is obtained by applying a CNC suspension dropwise on the surface of the PDMS and then leveling it.
  • the mass concentration of the CNC suspension is 1-2%.
  • the CNC suspension with excessive concentration is difficult to prepare due to dispersion problems.
  • the CNF/CNC film is prepared by mixing CNF and CNC according to a set ratio, and then dispersing them into a CNF/CNC suspension, and then using a doctor blade method to coat the suspension on a glass slide to form a film;
  • the coating is repeated for several times to obtain a CNF/CNC film.
  • the mass percentage of CNF and CNC is 1-3%.
  • the mass ratio of CNF and CNC is 1:1-1:4.
  • the method for drying the film is: putting the coated glass slide in a fume hood and air drying for 4-8 hours.
  • drying in a fume hood is beneficial to improve the smoothness of CNF/CNC film and reduce the possibility of pores in the film, so as to improve the optical and mechanical properties of CNF/CNC film.
  • the number of repeated coating films is 2-4 times. After experimentation, it is found that repeated coating of CNF/CNC suspension can make the dried CNF/CNC film easily peeled off the glass slide, which is beneficial to maintain the integrity of the CNF/CNC film.
  • the glass slide is cleaned by a plasma cleaning machine before coating, and the cleaning time is 1-4 min. After experimentation, it is found that the length of time the glass slide is cleaned in the plasma cleaning agent will affect the film formation quality of the doctor blade when the film is formed, and when the cleaning time is 1-4 min, the film formation quality is better.
  • the method of coating the polyethylene oxide layer is: drop 0.5-1 mL of polyethylene oxide on the surface of the activated PDMS, then level-coat 0.5-2 min at 1500-2500 rpm, and repeat 1-2 Second-rate.
  • the method for coating a CNC layer on the surface of the polyethylene oxide layer is as follows: 0.5 to 1 mL of a CNC suspension with a concentration of 1 to 2% by mass is added dropwise to the PDMS surface at 1500 to 2500 rpm. Repeat 1 to 2 times for 0.5 to 2 minutes.
  • the drying is performed in an oven, the drying temperature is 50-60° C., and the drying time is 20-60 min. Too high temperature will cause the film to wrinkle. Drying at this temperature can ensure the flatness of the film.
  • the drying efficiency can be ensured, and it is also beneficial to compound the CNC onto the CNF/CNC film, improve the integrity of the nanocellulose film, and further improve the mechanical and optical properties of the nanocellulose film. .
  • the third aspect of the present invention provides applications of the optical nanocellulose film in sensors, batteries, conductive paper, and filter elements.
  • the CNF/CNC suspension was prepared, the mass ratio of CNF and CNC was 1:1, the mass concentration of dispersion was 2%, and ultrasonic dispersion was performed for 15 minutes.
  • the film is formed by the scraper method.
  • the glass slide is cleaned in the plasma cleaner for 3 minutes.
  • the CNF and CNC mixture is coated by the scraper method on the glass slide cleaned by the plasma cleaner and then placed in a fume hood for drying , Repeat the scraper film forming method again, and remove the CNF/CNC film after drying; each time the film is formed, 15mL of CNF and CNC mixture is added dropwise to the glass slide.
  • the length of the slide is 75mm and the width is 25mm. Then, a doctor blade is used to form a film.
  • Activate the PDMS cut the PDMS to 75 ⁇ 25mm, place it on a glass slide, and place it in a plasma cleaner to activate it for 2 minutes.
  • the CNC was aligned on the PDMS: 1 mL of CNC suspension with a mass concentration of 2% was dropped on the PEO layer on the surface of the PDMS, and the coating was evenly coated for 0.5 min at 1500 rpm, and repeated twice.
  • the nanocellulose film prepared in this embodiment has obvious light dispersion and refraction phenomena, as shown in FIG. 2.
  • the film is formed by the doctor blade method.
  • the glass slide is cleaned in the plasma cleaner for 2 minutes.
  • the CNF and CNC mixture is coated on the glass slide cleaned by the plasma cleaner by the doctor blade method and dried, and then the squeegee is repeated twice.
  • Film-forming method after drying, remove the CNF/CNC film; each time the film is formed, add 10 mL of CNF and CNC mixture dropwise to the glass slide, the length of the glass slide is 75mm, the width is 25mm, and then the film is formed by a doctor blade .
  • Activate PDMS Cut the PDMS to 75 ⁇ 25mm, place it on a glass slide, and place it in a plasma washing machine to activate it for 2 minutes.
  • the CNC was aligned on the PDMS: 0.5 mL of CNC suspension with a mass concentration of 2% was dropped on the surface of the PDMS, and the coating was leveled at 2000 rpm for 2 minutes, and repeated twice.
  • the contact angle of the nanocellulose film prepared in this example is shown in FIG. 3.
  • Scraper method for film formation The glass slide is cleaned in the plasma cleaner for 4 minutes.
  • the CNF and CNC mixture is coated on the glass slide cleaned by the plasma cleaner by the squeegee method to form a film and then dried, and then the squeegee is repeated three times.
  • the CNF/CNC film is removed after drying.
  • 5 mL of CNF and CNC mixture is added dropwise to a glass slide.
  • the length of the glass slide is 75mm and the width is 25mm, and then the film is formed by a doctor blade.
  • Activate PDMS Cut PDMS to 75 ⁇ 25mm, place it on a glass slide, and place it in a plasma cleaner to activate it for 2 minutes.
  • the CNC was aligned on the PDMS: 1 mL of CNC suspension with a concentration of 2% was dropped on the surface of the PDMS, and the coating was leveled at 2500 rpm for 2 minutes, and repeated twice.
  • the amount of PEO dropped on the surface of the CNF/CNC film is 0.5 to 1 mL at 1500 to 2500 rpm for 1 to 2 minutes, and then it is pressed on the PDMS and dried.
  • the drying conditions of the oven are drying at 50 ⁇ 60°C for 30 ⁇ 60min.
  • the SEM (see Figure 4) surface of the nanocellulose membrane prepared in this example has obvious structure.
  • the film is formed by the doctor blade method.
  • the glass slide is cleaned in the plasma cleaner for 1 to 4 minutes.
  • the CNF and CNC mixture is coated on the glass slide cleaned by the plasma cleaner by the doctor blade method and dried, and then repeated Doctor blade film forming method, remove CNF/CNC film after drying.
  • Activate the PDMS cut the PDMS to 75 ⁇ 25mm, place it on a glass slide, and place it in a plasma cleaner to activate it for 2 minutes.
  • the CNC is aligned on the PDMS, 0.5 to 1 mL of CNC suspension with a concentration of 1 to 2% is dropped on the surface of the PDMS at 1500 to 2500 rpm, and evenly coated for 0.5 to 2 minutes, and repeated once.
  • the stress-strain curve of the nanocellulose film prepared in this embodiment is shown in FIG. 5.
  • the film with no structure on the surface refers to the film directly formed after the CNF/CNC suspension coating film is dried.
  • the tensile resistance of the nanocellulose film prepared in this embodiment is significantly improved.
  • the nanocellulose film prepared in Examples 1-4 has both transparency and better tensile strength than the CNF/CNC film with a smooth surface, and its tensile strength can be increased several times ; Its surface structure also increases its contact angle, reaching about 60°; it has obvious dispersion and refraction ability to light, and the sub-micron structure of its surface enables it to meet the needs of loading different materials, which can enhance its application value .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

一种光学用纳米纤维素膜及其制备方法与应用,包括如下步骤:在激活后的PDMS膜表面涂覆聚环氧乙烷层,然后在聚环氧乙烷层涂覆CNC层;在CNF/CNC薄膜表面涂覆聚环氧乙烷层,然后将聚环氧乙烷面与CNC层相对压合;经干燥后即得纳米纤维素膜。采用CNF与CNC混合配制悬浮液并制成CNF/CNC膜,便于分散的同时提高成膜后的透明度及拉伸强度。

Description

一种光学用纳米纤维素膜及其制备方法与应用
本申请要求于2020年03月16日提交中国专利局、申请号为202010181501.X、发明名称为“一种光学用纳米纤维素膜及其制备方法与应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于纳米纤维素膜技术领域,具体涉及一种光学用纳米纤维素膜及其制备方法与应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
纤维素被认为是世界上最丰富的可再生聚合材料。纯纤维素可以从各种生物质源中提取,例如木材、稻草、甜菜和细菌纤维素。纤维素因其高可用性、生物降解性、低成本、高机械强度和易改性等优点,在各种应用中以不同的形式得到广泛应用。近年来,纳米纤维素包括纤维素纳米纤丝(CNF)和从纤维素中提取的纤维素纳米晶体(CNC),已经成为通用的“绿色”纳米材料。
在许多应用中,CNF和CNC已被用于制备薄膜,用于食品包装、伤口敷料和能源设备等领域,但是不同的应用对纳米纤维素薄膜的目标特性提出了更高要求,例如,有机太阳能电池基板中薄膜的标准是高光学透明度和高雾度。但是,当将纳米纤维素膜应用于发光二极管(LED)或触摸屏时,需要低光学雾度。
发明内容
为了解决现有技术中存在的技术问题,本发明的目的是提供一种光学用纳米纤维素膜及其制备方法与应用。
为了解决以上技术问题,本发明的一个或多个实施例中提供了如下技术方案:
本发明的第一方面提供了一种光学用纳米纤维素膜,包括依次叠加设置的PDMS层、第一PEO层、CNC层、第二PEO层和CNF/CNC层。
本发明的第二方面提供了一种光学用纳米纤维素膜的制备方法,包括如下步骤:
在激活后的PDMS膜表面涂覆聚环氧乙烷层,然后在聚环氧乙烷层涂覆CNC层;
在CNF/CNC薄膜表面涂覆聚环氧乙烷层,然后将聚环氧乙烷面与CNC层相对压合;
经干燥后即得纳米纤维素膜。
在本发明中,所述聚环氧乙烷层起粘结剂的作用。
本发明的第三个方面,提供所述光学用纳米纤维素膜在传感器、电池、导电纸、滤光元件中的应用。
与现有技术相比,本发的以上一个或多个实施例的有益效果为:
(1)采用CNF与CNC混合配制悬浮液并制成CNF/CNC膜,便于分散(相对于单一组成,两者的混合配制更容易分散均匀)的同时提高成膜后的透明度及拉伸强度。CNF/CNC膜中,CNF的作用主要是提高膜的强度,CNC的作用主要是提高膜的透明度。
(2)采用涂有CNC的PDMS为膜表面创造亚微米及结构,同时使膜具有特殊光学性能,能够对光形成折射,形成类似彩虹颜色,滤光性能显著提升。
(3)在PDMS表面涂覆聚环氧乙烷,能够有效使CNC悬浮液中的CNC在匀涂过程中附着在PDMS表面,使CNC在PDMS表面分布均匀。
(4)本申请的操作方法简单、成本低、具有普适性,易于规模化生产。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明的工艺流程图;
图2为本发明1的成膜后光学的色散图;
图3为本发明的成膜的接触角图;
图4为本发明的成膜后的扫描电镜图;
图5为本发明的成膜后的应力应变曲线图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明的一个或多个实施例中提供了如下技术方案:
本发明的第一方面提供了一种光学用纳米纤维素膜,包括依次叠加设置的PDMS层、第一PEO层、CNC层、第二PEO层和CNF/CNC层。
本发明的第二方面提供了一种光学用纳米纤维素膜的制备方法,包括如下步骤:
在激活后的PDMS膜表面涂覆聚环氧乙烷层,然后在聚环氧乙烷层涂覆CNC层;
在CNF/CNC膜表面涂覆聚环氧乙烷层,然后将聚环氧乙烷面与CNC层相对压合;
经干燥后即得纳米纤维素膜。
在一些实施例中,PDMS膜在等离子清洗机中激活1-3min。
在一些实施例中,所述CNC层为CNC悬浮液滴加在PDMS表面后匀涂而得。
进一步的,所述CNC悬浮液的质量浓度为1-2%。浓度过大的CNC悬浮液因分散问题难以制备,即便制备出来也会成糊状难以匀涂。
在一些实施例中,CNF/CNC膜的制备方法为:将CNF和CNC按设定比例混合后,分散成CNF/CNC悬浮液,然后采用刮刀法将悬浮液在载玻片上涂成膜;
将膜干燥后,重复涂膜,重复数次后得到CNF/CNC膜。
进一步的,所述CNF/CNC悬浮液中,CNF和CNC的质量百分数为1-3%。
进一步的,所述CNF/CNC悬浮液中,CNF和CNC的质量比为1:1-1:4。
经过试验发现,CNF和CNC以不同比例混合时,在配制悬浮液的过程中两者均匀混合的难易程度不同。当CNF和CNC的质量比为1:1-1:4时,更容易实现两者的均匀混合。
进一步的,将膜干燥的方法为:将涂膜后的载玻片放入通风橱中风干4-8h。经过试验证明,在通风橱中干燥有利于提高CNF/CNC膜的平滑性,并降低膜内部出现气孔的可能性,以提高CNF/CNC膜的光学及力学性能。
进一步的,重复涂膜的次数为2-4次。经过试验发现,将CNF/CNC悬浮液重复涂膜,可以使干燥后的CNF/CNC膜能够较容易地从载玻片上揭下来,有利于保持CNF/CNC膜的完整性。
再进一步的,所述载玻片在涂膜之前采用等离子清洗机进行清洗,清洗的时间为1-4min。经过试验发现,载玻片在等离子清洗剂中清洗的时间长短会影响刮刀成膜时的成膜质量,而清洗时间为1-4min时,成膜质量较好。
在一些实施例中,涂覆聚环氧乙烷层的方法为:在激活后的PDMS表面滴上0.5~1mL聚环氧乙烷后在1500~2500rpm下匀涂0.5~2min,重复1~2次。
在一些实施例中,在聚环氧乙烷层表面涂覆CNC层的方法为:取浓度为质量百分数为1~2%的CNC悬浮液0.5~1mL滴加在PDMS表面1500~2500rpm下匀涂0.5~2min,重复1~2次。
在一些实施例中,所述干燥在烘箱中进行,所述干燥的温度为50-60℃,干燥时间为20-60min。温度过高会使膜起褶皱,在该温度下进行干燥,可以保证膜的平整性。
经过试验发现,在该干燥温度下,既可以保证干燥效率,又有利于将CNC复合到CNF/CNC膜上,提高纳米纤维素膜的整体性,进一步提高纳米纤维素膜的力学性能和光学性能。
本发明的第三个方面,提供所述光学用纳米纤维素膜在传感器、电池、导电纸、滤光元件中的应用。
实施例1
配制CNF/CNC悬浮液,CNF与CNC的质量配比为1:1,分散的质量浓度为2%,超声分散15min。
刮刀法成膜,载玻片在等离子清洗机清洁的时间为3min,采用刮刀法将CNF和CNC混合液,在经等离子清洗机清洁的载玻片上涂成膜后,放入通风橱中进行干燥,再重复一次刮刀成膜法,干燥后取下CNF/CNC薄膜;每次成膜时,将CNF和CNC混合液15mL滴加到载玻片上,载玻片的长为75mm,宽为25mm,然后进行刮刀成膜。
激活PDMS,将PDMS裁剪至75×25mm后放在载玻片上,放入等离子清洗机激活2min。
将PEO匀涂于PDMS上:在PDMS表面滴上0.5mL聚环氧乙烷后在2500rpm下匀涂2min,重复2次。
使CNC定向排列于PDMS上:将质量浓度为2%的CNC悬浮液1mL滴加在PDMS表面的PEO层上,1500rpm下匀涂0.5min,重复2次。
制备表面有CNC定向排列的膜:在CNF/CNC膜表面滴加1mL PEO,在2000rpm下匀涂1min,之后压在PDMS表面的CNC层上,放入烘箱进行干燥。烘箱干燥条件为在60℃下干燥40min。
本实施例制得的纳米纤维素膜具有明显的光的色散与折射现象,如图2所示。
实施例2
配制CNF/CNC悬浮液,CNF与CNC的质量配比为1:1,分散的质量浓度为2%,超声分散10min。
刮刀法成膜,载玻片在等离子清洗机清洁的时间为2min,采用刮刀法将CNF和CNC混合液在经等离子清洗机清洁的载玻片上涂成膜后进行干燥后,再重复两次刮刀成膜法,干燥后取下CNF/CNC薄膜;每次成膜时,将CNF和CNC混合液10mL滴加到载玻片上,载玻片的长为75mm,宽为25mm,然后进行刮刀成膜。
激活PDMS:将PDMS裁剪至75×25mm后放在载玻片上,放入等离 子清洗机中激活2min。
将PEO匀涂于PDMS上,在PDMS表面滴入0.7mL聚环氧乙烷后在2000rpm下匀涂1min,重复2次。
使CNC定向排列于PDMS上:将质量浓度为2%的CNC悬浮液0.5mL滴加在PDMS表面,在2000rpm下匀涂2min,重复2次。
制备表面有CNC定向排列的膜:在CNF/CNC薄膜表面滴1mL PEO,2500rpm下匀涂2min,之后压在PDMS表面的CNC层上,放入烘箱中进行干燥。烘箱干燥条件为在55℃下干燥30min。
本实施例制得的纳米纤维素膜的接触角,如图3所示。
实施例3
配制CNF/CNC悬浮液:CNF与CNC的质量比为1:2,分散在溶剂中的质量浓度为1.5%,超声分散25min。
刮刀法成膜:载玻片在等离子清洗机清洁的时间为4min,采用刮刀法将CNF和CNC混合液在经等离子清洗机清洁的载玻片上涂成膜后进行干燥后,再重复三次刮刀成膜法,干燥后取下CNF/CNC薄膜,每次成膜时,将CNF和CNC混合液5mL滴加到载玻片上,载玻片的长为75mm,宽为25mm,然后进行刮刀成膜。
激活PDMS:将PDMS裁剪至75×25mm后放在载玻片上,放入等离子清洗机激活2min。
将PEO匀涂于PDMS上,在PDMS表面滴加1mL聚环氧乙烷后在2000rpm下匀涂1min,重复2次。
使CNC定向排列于PDMS上:将1mL浓度为2%的CNC悬浮液滴加在PDMS表面,在2500rpm下匀涂2min,重复2次。
制备表面有CNC定向排列的膜,CNF/CNC薄膜表面滴入的PEO量在0.5~1mL,1500~2500rpm下匀涂1~2min,之后压在PDMS上,进行干燥。烘箱干燥条件为在50~60℃下干燥30~60min。
本实例制得的纳米纤维素膜的SEM(见附图4)表面具有明显的结构。
实施例4
配制CNF/CNC悬浮液,CNF与CNC的配比为1:1,分散的质量浓 度在2~3%,超声分散20~30min。
刮刀法成膜,载玻片在等离子清洗机清洁的时间为1~4min,采用刮刀法将CNF和CNC混合液在经等离子清洗机清洁的载玻片上涂成膜后进行干燥后,再重复一次刮刀成膜法,干燥后取下CNF/CNC薄膜。
激活PDMS,将PDMS裁剪至75×25mm后放在载玻片上,放入等离子清洗机激活2min。
将PEO匀涂于PDMS上,PDMS表面滴入0.5~1mL聚环氧乙烷后在1500~2500rpm下匀涂0.5~2min,重复1次。
使CNC定向排列于PDMS上,浓度为1~2%的CNC悬浮液0.5~1mL滴加在PDMS表面1500~2500rpm下匀涂0.5~2min,重复1次。
制备表面有CNC定向排列的膜:在CNF/CNC薄膜表面滴加1mLPEO,
2000rpm下匀涂1min,然后将其压在PDMS表面的CNC层上,放入烘箱进行干燥。烘箱干燥条件为在50℃下干燥25min。
本实施例制得的纳米纤维素膜的应力应变曲线,如图5所示,图5中,表面无结构的膜是指CNF/CNC悬浮液涂膜干燥后直接形成的膜。本实施例制得的纳米纤维素膜的抗拉伸能力明显提高。
结果:实施例1-4中制得的纳米纤维素膜,在兼具透明度的同时相较于表面平滑的CNF/CNC膜具有较好的抗张强度,其抗拉伸能力能提高了数倍;其表面的结构也提高其接触角,达到了60°左右;对光具有明显的色散与折射能力,同时其表面的亚微米级结构使其能够满足负载不同材料的需要,可以提升其应用价值。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种光学用纳米纤维素膜,其特征在于:包括依次叠加设置的PDMS层、第一PEO层、CNC层、第二PEO层和CNF/CNC层。
  2. 根据权利要求1所述的光学用纳米纤维素膜,其特征在于:所述CNF/CNC层中CNF和CNC的质量比为1:1~1:4。
  3. 一种光学用纳米纤维素膜的制备方法,其特征在于:包括如下步骤:
    在激活后的PDMS膜表面涂覆聚环氧乙烷层,然后在聚环氧乙烷层表面涂覆CNC层;
    在CNF/CNC膜表面涂覆聚环氧乙烷层,然后将聚环氧乙烷面与CNC层相对压合;
    经干燥后即得纳米纤维素膜。
  4. 根据权利要求3所述的制备方法,其特征在于:PDMS膜在等离子清洗机中激活1~3min。
  5. 根据权利要求3所述的制备方法,其特征在于:所述CNC层为CNC悬浮液滴加在PDMS表面后匀涂而得。
  6. 根据权利要求3所述的制备方法,其特征在于:所述CNC悬浮液的质量浓度为1~2%。
  7. 根据权利要求3所述的制备方法,其特征在于:所述CNF/CNC膜的制备方法为:将CNF和CNC按设定比例混合后,分散成CNF/CNC悬浮液,然后采用刮刀法将悬浮液在载玻片上涂成膜;
    将膜干燥后,重复涂膜,重复数次后得到CNF/CNC膜。
  8. 根据权利要求7所述的制备方法,其特征在于:所述CNF/CNC悬浮液中,CNF和CNC的质量百分数为1~3%。
  9. 根据权利要求7或8所述的制备方法,其特征在于:所述CNF/CNC悬浮液中,CNF和CNC的质量比为1:1~1:4。
  10. 根据权利要求7所述的制备方法,其特征在于:将膜干燥的方法为:将涂膜后的载玻片放入通风橱中风干4~8h。
  11. 根据权利要求7所述的制备方法,其特征在于:重复涂膜的次数为2-4次。
  12. 根据权利要求7所述的制备方法,其特征在于:所述载玻片在涂 膜之前采用等离子清洗机进行清洗,清洗的时间为1-4min。
  13. 根据权利要求3所述的制备方法,其特征在于:在激活后的PDMS膜表面涂覆聚环氧乙烷层的方法为:在激活后的PDMS表面滴上0.5~1mL聚环氧乙烷后在1500~2500rpm下匀涂0.5~2min,重复1~2次。
  14. 根据权利要求3所述的制备方法,其特征在于:在聚环氧乙烷层表面涂覆CNC层的方法为:取浓度为质量百分数为1~2%的CNC悬浮液0.5~1mL滴加在PDMS表面1500~2500rpm下匀涂0.5~2min,重复1~2次。
  15. 根据权利要求3所述的制备方法,其特征在于:所述干燥在烘箱中进行,所述干燥的温度为50-60℃,干燥时间为20-60min。
  16. 权利要求1~2任一项所述光学用纳米纤维素膜或权利要求3~15任意一项所述制备方法得到的纳米纤维素膜在传感器、电池、导电纸、滤光元件中的应用。
PCT/CN2021/072463 2020-03-16 2021-01-18 一种光学用纳米纤维素膜及其制备方法与应用 WO2021184948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/10679A ZA202110679B (en) 2020-03-16 2021-12-20 Optical nanocellulose film, and preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010181501.X 2020-03-16
CN202010181501.XA CN111300918B (zh) 2020-03-16 2020-03-16 一种光学用纳米纤维素膜及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021184948A1 true WO2021184948A1 (zh) 2021-09-23

Family

ID=71153310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072463 WO2021184948A1 (zh) 2020-03-16 2021-01-18 一种光学用纳米纤维素膜及其制备方法与应用

Country Status (3)

Country Link
CN (1) CN111300918B (zh)
WO (1) WO2021184948A1 (zh)
ZA (1) ZA202110679B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111300918B (zh) * 2020-03-16 2022-04-19 齐鲁工业大学 一种光学用纳米纤维素膜及其制备方法与应用
CN113152150A (zh) * 2021-04-09 2021-07-23 阿尔诺维根斯(衢州)特种纸有限公司 一种高透明高阻隔纤维素纸的制备方法
CN114619730B (zh) * 2022-02-16 2022-12-13 华南理工大学 一种包装膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116873A2 (en) * 2008-05-07 2009-11-11 SKC Haas Display Films Co., Ltd. Optical diffuser film with linear domains of varying diffusion
CN103387685A (zh) * 2013-08-19 2013-11-13 南京林业大学 一种纤维素纳米纤维/聚乙烯醇复合膜的制备方法
CN105037760A (zh) * 2013-04-27 2015-11-11 湖州展望天明药业有限公司 一种纤维素纳米纤维柔性透明膜的制备方法
CN109054061A (zh) * 2018-07-12 2018-12-21 南京林业大学 一种聚二甲基硅氧烷/纳米纤维素复合膜及其制备方法
CN109251365A (zh) * 2018-07-27 2019-01-22 华南理工大学 一种新型柔性有机太阳能电池基底材料的制备及应用
US10280204B2 (en) * 2006-11-03 2019-05-07 Tufts University Electroactive biopolymer optical and electro-optical devices and method of manufacturing the same
CN110053334A (zh) * 2018-01-19 2019-07-26 中国石油化工股份有限公司 一种纳米纤维复合膜及其制备方法和应用
CN209258748U (zh) * 2018-05-31 2019-08-16 美罗迪亚有限公司 多层物品
CN111300918A (zh) * 2020-03-16 2020-06-19 齐鲁工业大学 一种光学用纳米纤维素膜及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558639B (zh) * 2015-01-15 2017-02-22 四川大学 一种再生纤维素纳米颗粒及其制备方法
CN106633160A (zh) * 2016-10-12 2017-05-10 南京林业大学 一种玻璃纸/聚乳酸/纳米纤维素复合膜的制备方法
AU2018100727A4 (en) * 2018-05-31 2018-07-05 Melodea Ltd. Multilayered articles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280204B2 (en) * 2006-11-03 2019-05-07 Tufts University Electroactive biopolymer optical and electro-optical devices and method of manufacturing the same
EP2116873A2 (en) * 2008-05-07 2009-11-11 SKC Haas Display Films Co., Ltd. Optical diffuser film with linear domains of varying diffusion
CN105037760A (zh) * 2013-04-27 2015-11-11 湖州展望天明药业有限公司 一种纤维素纳米纤维柔性透明膜的制备方法
CN103387685A (zh) * 2013-08-19 2013-11-13 南京林业大学 一种纤维素纳米纤维/聚乙烯醇复合膜的制备方法
CN110053334A (zh) * 2018-01-19 2019-07-26 中国石油化工股份有限公司 一种纳米纤维复合膜及其制备方法和应用
CN209258748U (zh) * 2018-05-31 2019-08-16 美罗迪亚有限公司 多层物品
CN109054061A (zh) * 2018-07-12 2018-12-21 南京林业大学 一种聚二甲基硅氧烷/纳米纤维素复合膜及其制备方法
CN109251365A (zh) * 2018-07-27 2019-01-22 华南理工大学 一种新型柔性有机太阳能电池基底材料的制备及应用
CN111300918A (zh) * 2020-03-16 2020-06-19 齐鲁工业大学 一种光学用纳米纤维素膜及其制备方法与应用

Also Published As

Publication number Publication date
CN111300918A (zh) 2020-06-19
ZA202110679B (en) 2022-04-28
CN111300918B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2021184948A1 (zh) 一种光学用纳米纤维素膜及其制备方法与应用
CN202904046U (zh) 一种光学扩散膜片
EP1870439A3 (en) Conductive tin oxide sol and process for producing same
CN104882225B (zh) 一种抗老化透明导电薄膜的制备方法
JP2009120835A (ja) 透明基材の可視光及び太陽光の透光率が低下しない透明アクアベースナノゾル・ゲルコーティング剤組成物およびそのコーティング方法
CN113025087B (zh) 一种硅溶胶掺杂的防眩光增透镀膜溶液、制备方法及应用
CN111014719A (zh) 一种高纯度银纳米线及其制备方法和银纳米线导电薄膜
CN113759627A (zh) 光阀装置、光控粒子及其制备方法
CN101759374B (zh) 一种基于三维纳米银树枝状结构的可见光频段左手超材料的制备方法
WO2024146375A1 (zh) 一种用于oled的光调节封装组合物、封装薄膜及其制备方法
CN112708170A (zh) 一种光致变色生物质基柔性凝胶膜
CN108399964B (zh) 基于纳米微晶纤维素衬底的石墨烯导电薄膜的制备方法
WO2024109809A1 (zh) 一种导电材料组合物、导电浆料及其制备方法和应用
CN108919389B (zh) 一种防蓝光复合灯罩
CN107768023A (zh) 基于石墨烯具有高附着力的复合结构导电膜及其制备方法
CN101362917B (zh) 有机/无机杂化纳米级多孔防反射涂层及其制备方法
KR20120098165A (ko) 반사방지필름 및 그의 제조방법
CN113113542B (zh) 一种可贴合型高透明发光太阳能集中器及其制备方法
CN113284646B (zh) 一种柔性透明导电膜及其制备方法
CN112457455B (zh) 一种氟碳树脂的制备方法以及氟碳树脂、应用
CN113461985B (zh) 高亮度高附着性低角度依赖的结构色薄膜制备方法
CN112010258B (zh) 具有微纳结构阵列的复合薄膜的制备方法
CN115011927A (zh) 一种真空蒸镀的镀膜材料及其制备方法和应用
CN114874476A (zh) 一种疏水改性的淀粉/pbat复合薄膜及其制备方法
CN106966606A (zh) 一种太阳能玻璃表面增透膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770724

Country of ref document: EP

Kind code of ref document: A1