WO2021179913A1 - 车辆用空调系统的操作方法 - Google Patents

车辆用空调系统的操作方法 Download PDF

Info

Publication number
WO2021179913A1
WO2021179913A1 PCT/CN2021/077931 CN2021077931W WO2021179913A1 WO 2021179913 A1 WO2021179913 A1 WO 2021179913A1 CN 2021077931 W CN2021077931 W CN 2021077931W WO 2021179913 A1 WO2021179913 A1 WO 2021179913A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
conditioning system
preset
circulation
control panel
Prior art date
Application number
PCT/CN2021/077931
Other languages
English (en)
French (fr)
Inventor
张伟利
刘海明
段福海
王淑艳
邢海洋
孟芳
许舰
吴小翠
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020294594.2U external-priority patent/CN212046778U/zh
Priority claimed from CN202010162881.2A external-priority patent/CN111284295B/zh
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP21767904.2A priority Critical patent/EP4119370A4/en
Priority to US17/910,560 priority patent/US20230150337A1/en
Publication of WO2021179913A1 publication Critical patent/WO2021179913A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00849Damper doors, e.g. position control for selectively commanding the induction of outside or inside air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00842Damper doors, e.g. position control the system comprising a plurality of damper doors; Air distribution between several outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00514Details of air conditioning housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • B60H1/00685Damper doors moved by rotation; Grilles the door being a rotating disc or cylinder or part thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00807Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a specific way of measuring or calculating an air or coolant temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00857Damper doors, e.g. position control characterised by the means connecting the initiating means, e.g. control lever, to the damper door
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00085Assembling, manufacturing or layout details of air intake

Definitions

  • This application mainly relates to the field of vehicle air-conditioning, and in particular to a vehicle air conditioning system operating method for controlling the air intake ratio of internal and external circulation dampers, and an air conditioning air intake system for vehicles that controls the opening and closing of the internal and external circulation dampers separately.
  • the air conditioner is a product that provides comfort to the car occupants in the cabin.
  • the performance and functional requirements of the air conditioning system are getting higher and higher, and the structure of the air conditioning box (HVAC) is getting more and more complicated.
  • HVAC air conditioning box
  • the air intake system of the air conditioner has two independent functions: inner circulation and outer circulation.
  • the inner circulation is used for the air circulation in the passenger compartment, and the outer circulation is used for air circulation and exchange inside the vehicle.
  • the current vehicle internal and external circulation damper structure consists of four parts: inner circulation air inlet, outer circulation air inlet, circulation damper, and executive motor. This structure can meet the normal internal and external air switching of the air-conditioning system. At the same time, there are the following effects: 1) The internal circulation and external circulation can only achieve 100% fully open state, and the ratio of internal and external circulation air intake cannot be adjusted, such as the entire vehicle during rapid acceleration.
  • the air-conditioning air inlet system In winter heating conditions, in order to prevent the whole vehicle from fogging, the air-conditioning air inlet system is set to the external circulation In this state, the air-conditioning inlet in this state is the external inlet air. Due to the low inlet air temperature, the temperature rise of the heating air outlet of the passenger compartment is slow, which affects the comfort of the vehicle; 3)
  • high-pressure air heating PTC Positive temperature coefficient
  • the heating mode is external circulation, and the initial heating is rapid increase. At this time, the high-pressure air heating PTC needs to be turned on at 100% full power.
  • the general power is 3KW, which consumes the entire vehicle's power and affects the vehicle's cruising range.
  • the present application provides an operating method of an air conditioning system for a vehicle.
  • the air conditioning system includes a stepping motor, a control panel, an inner circulation damper, and an outer circulation damper, wherein the stepping motor and the control panel In a fixed connection, the control panel has an inner circulation track and an outer circulation track, the inner circulation damper and the outer circulation damper have an inner connecting shaft and an outer connecting shaft, respectively, and the inner connecting shaft and the outer connecting shaft are capable of Sliding in the inner circulation track and the outer circulation track to drive the inner circulation damper and the outer circulation damper to rotate.
  • the operation method of the air conditioning system includes: receiving a pulse signal, the pulse signal including a preset direction of rotation of a stepping motor and a preset number of steps of rotation; driving the stepping motor to rotate the preset direction according to the preset direction Set the number of steps to drive the control panel to rotate, so that the inner circulation damper rotates to a first preset angle, and the outer circulation damper rotates to a second preset angle, so that the inner air intake of the air conditioning system
  • the air intake ratio of the air intake to the external air intake is the preset first ratio.
  • the preset direction is counterclockwise, the preset number of steps is 0, so that the inner circulation damper is rotated to the first A preset angle is 0°, and the outer circulation damper is rotated to a second preset angle of 60°, so that the air intake ratio of the internal air intake and the external air intake of the air conditioning system is 0:100.
  • the preset direction is counterclockwise, the preset number of steps is 1040, so that the inner circulation damper is rotated to the first A preset angle is 45°, and the outer circulation damper is rotated to a second preset angle of 60°, so that the air intake ratio of the internal air intake and the external air intake of the air conditioning system is 25:75.
  • the method further includes: comparing the vehicle speed change amount with a first predetermined value; when the vehicle speed change amount exceeds the first predetermined value, comparing the air volume position of the blower of the air conditioning system with the first predetermined value. Two predetermined values are compared; when the air volume gear of the blower is less than the second predetermined value, it is determined whether the inner circulation damper rotates to a first preset angle of 0° and the outer circulation damper rotates to a second preset angle. Set whether the angle is 60°; if the first preset angle is 0° and the second preset angle is 60°, the second air-conditioning system operation mode is executed.
  • the preset direction is counterclockwise, the preset number of steps is 1840, so that the inner circulation damper is rotated to the first A preset angle is 75°, and the outer circulation damper is rotated to a second preset angle of 60°, so that the air intake ratio of the internal air intake and the external air intake of the air conditioning system is 35:65.
  • the preset direction is counterclockwise, the preset number of steps is 2440, so that the inner circulation damper is rotated to the first A preset angle is 75°, and the outer circulation damper is rotated to a second preset angle of 39°, so that the air intake ratio of the internal air intake and the external air intake of the air conditioning system is 55:45.
  • the preset direction is counterclockwise, the preset number of steps is 3040, so that the inner circulation damper is rotated to the first A preset angle is 75°, and the outer circulation damper is rotated to a second preset angle of 21°, so that the air intake ratio of the internal air intake and the external air intake of the air conditioning system is 80:20.
  • the preset direction is counterclockwise
  • the preset number of steps is 3840 steps, so that the inner circulation damper is rotated to the first A preset angle is 75°, and the outer circulation damper is rotated to a second preset angle of 0°, so that the air intake ratio of the internal air intake and the external air intake of the air conditioning system is 100:0.
  • it further includes: determining the temperature or speed range of the speed of the outdoor temperature T1, the engine water temperature T2, the air-conditioning set temperature T3, the indoor temperature T4, and the speed of the vehicle speed signal V1; when T1 is in the first predetermined temperature range When T2 is in the second temperature range, T3 is in the third temperature range, V1 is in the first speed range, T3 is higher than the first predetermined difference temperature of T4, and the air conditioner is in heating demand, the third air conditioning system operation mode is executed , The fourth air-conditioning system operation mode or the fifth air-conditioning system operation mode.
  • This application controls the opening and closing of the inner and outer circulation air doors respectively, so that the mixing ratio of the inner and outer air can be controlled to meet different usage conditions. For example, in the case of defrosting and ventilation of the whole vehicle, close the inner circulation damper and fully open the outer circulation air inlet. If the air conditioner is in the state where the external circulation dampers are all open, the vehicle speed suddenly increases or accelerates rapidly. At this time, it is easy to cause fluctuations in the wind speed of the air outlet of the air conditioner on the dashboard of the vehicle. Therefore, at this time, the ratio of the inlet air of the inner circulation wind and the outer circulation wind is selected as 25%:75%, which can keep the wind speed of the air outlet stable and increase the comfort of the driver.
  • the air conditioner in this application can adopt different ratios of internal and external air output mode during the rapid acceleration of the entire vehicle to prevent the entire vehicle from fogging and other working conditions, so as to improve the fuel economy of the entire vehicle. , The purpose of the cruising range of new energy vehicles and the comfort of air conditioning.
  • an air-conditioning air intake system for a vehicle including: a housing, including two housing sidewall panels, a housing connecting plate, an inner baffle, and an outer baffle, the two housing sidewalls passing through the The shell connecting plates are connected to form a hollow cavity, the inner baffle and the outer baffle are fixed in the cavity, the shell side wall plate includes a first hole and a second hole; an internal circulation damper includes The inner air door panel and two inner end panels, the two inner end panels are connected by the inner air door panel, the two inner end panels and the inner air door panel form an inner air inlet and an inner air outlet, the inner The end plate has an inner connecting shaft, which passes through the first hole, so that the inner air door panel rotates around the first hole, so that the inner air door panel abuts against or moves away from the inner baffle , The inner air inlet is closed or opened; the outer circulation air door includes an outer air door panel and two outer end plates, the two outer end plates are connected by the outer air door panel, and the two
  • the connecting arm assembly includes an inner connecting arm assembly including an inner manipulating arm and an inner driving arm.
  • the inner connecting shaft of the inner connecting shaft is fixedly connected, the other end of the inner manipulating arm is fixedly connected with one end of the inner driving arm, and the other end of the inner driving arm is fixedly connected with the manipulation plate;
  • the outer connecting arm assembly includes an outer manipulating arm and an outer driving arm. One end of the outer manipulating arm is fixedly connected to the outer connecting shaft passing through the first hole, and the other end of the outer manipulating arm is connected to the outer driving arm. One end is fixedly connected, and the other end of the outer driving arm is fixedly connected to the operating panel.
  • control panel is disk-shaped, and the inner rail and the outer rail are respectively located on two sides of the disk.
  • control panel base one side of the control panel base is attached and fixed to the control panel, and the other side is fixed to the motor, so that the control panel can be driven by the motor.
  • the base and the control panel rotate.
  • control panel base includes a through hole, and the outer drive arm passes through the through hole to be fixedly connected to the control panel.
  • the motor is a stepping motor.
  • a fresh air inlet duct is further included, and the fresh air inlet duct is in air communication with the outer air inlet.
  • the application also relates to a vehicle, including the air-conditioning air intake system as described above.
  • the mixing ratio of the internal and external air can be controlled to meet different usage conditions.
  • the air-conditioning air intake system in this application can adopt different ratios of internal and external air mixed output mode during the rapid acceleration of the entire vehicle to prevent the entire vehicle from fogging, so as to achieve the improvement of the entire vehicle.
  • Fig. 1 is an air conditioner assembly diagram of an embodiment of the present application.
  • Fig. 2 is an installation structure diagram of an inner circulation damper, an outer circulation damper, a mode control panel and a motor according to an embodiment of the present application.
  • Fig. 3 is an exploded view of an air conditioner structure according to an embodiment of the present application.
  • Fig. 4 is a left side view of an inner circulation damper and an outer circulation damper according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the inner track and the outer track of the control panel according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of Mode 1 of the inner circulation damper and the outer circulation damper according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of Mode 2 of the inner circulation damper and the outer circulation damper according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of Mode 3 of the inner circulation damper and the outer circulation damper according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of Mode 4 of the inner circulation damper and the outer circulation damper according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of Mode 5 of the inner circulation damper and the outer circulation damper according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of Mode 6 of the inner circulation damper and the outer circulation damper according to an embodiment of the present application.
  • the inner manipulating arm 711 The inner manipulating arm 711,
  • Table 1 is a statistical table of the air intake proportions and opening angles of the inner circulation damper and the outer circulation damper of different modes of the air conditioner according to an embodiment of the present application.
  • the air conditioner involved in the present application includes an inner circulation damper 1, an outer circulation damper 2, a control panel 3, a housing 4, a motor 5 and a fresh air inlet duct 6, a connecting arm assembly, and a control panel base 8.
  • the housing 4 includes two housing side wall plates 41, a housing connecting plate 42, an inner baffle 43 and an outer baffle 44.
  • the housing side wall plates 41 are located on both sides, are connected together by the housing connecting plate 42, and form a hollow cavity in the middle.
  • the hollow cavity is used for setting the inner circulation damper 1 and the outer circulation damper 2.
  • An inner baffle 43 and an outer baffle 44 are also provided in the hollow cavity. The inner baffle 43 and the outer baffle 44 are used to cooperate with the inner circulation damper 1 and the outer circulation damper 2 respectively.
  • the housing side wall plate 41 has a first hole and a second hole. Used to connect the inner and outer circulation dampers to the control panel 3.
  • the housing 4 in this embodiment also has a grid structure, which is provided to facilitate the output of internal and external circulating wind.
  • the shape of the outer shell 4 in this embodiment is as close as possible to the shapes of the inner circulation damper 1 and the outer circulation damper 2 while keeping a certain distance. In fact, the specific shape and structure of the housing 4 can be set by itself, as long as it can surround the inner and outer circulation dampers and transmit the air therein.
  • the inner circulation damper 1 is placed in a cavity formed by the outer shell 4 and includes an inner damper plate 11 and two inner end plates 12, and the two inner end plates 12 are connected by the inner damper plate 11.
  • the shape of the inner end plate 12 in this embodiment is a fan shape.
  • the two inner end plates 12 and the inner air door panel 11 form an inner air inlet 111 and an inner air outlet 112.
  • the inner air inlet is close to the inner baffle 43, and the inner air inlet is far away from the inner baffle 43.
  • one end of the inner end plate 12 also has an inner connecting shaft 121, and the inner connecting shaft 121 passes through the first hole and is fixed to the operating panel 3.
  • the inner connecting shaft 121 drives the inner air door panel 11 to rotate around the first hole, so that the inner air door panel 11 rotates, so that the inner air door panel 11 abuts against or moves away from the inner baffle 43. In this way, the closing or opening of the inner air inlet can be controlled, and the air inlet volume of the inner air inlet 111 can be further controlled.
  • the outer circulation damper 2 has a similar structure to the inner circulation damper 1 and is arranged adjacent to the inner circulation damper 1.
  • the outer circulation damper 2 includes an outer damper plate 21 and two outer end plates 22.
  • the two outer end plates 22 are connected together by an outer air door panel 21.
  • the two outer end plates 22 are also fan-shaped.
  • the two outer end plates 22 and the outer air door panel 21 form an outer air inlet 211 and an outer air outlet 212.
  • the one near the outer baffle 44 is an outside air outlet.
  • one end of the outer end plate 22 is also provided with an outer connecting shaft 221, and the outer connecting shaft 221 passes through the second hole and is fixed to the control panel 3.
  • the outer connecting shaft 221 drives the outer air door panel 21 to rotate around the second hole, so that the outer air door panel 21 rotates, so that the outer air door panel 21 abuts against or moves away from the outer baffle 44. In this way, the closing or opening of the external air outlet can be controlled, and the air output of the external air outlet 211 can be further controlled.
  • the air conditioner in this application further includes a fresh air inlet duct 6, and the fresh air inlet duct 6 is in air communication with the outside air outlet 211.
  • the fresh air inlet duct 6 is used to connect the air in the external environment, which can continuously provide fresh air for the air conditioner, and its specific shape can be set according to the actual use situation, and there is no restriction on this.
  • the control panel 3 in this embodiment is in the shape of a disk, and the disk includes an inner rail 31 and an outer rail 32 on both sides of the disk.
  • the inner connecting shaft 121 slides through the first hole in the inner rail 31, thereby driving the inner air door panel 11 to rotate, so that the air inlet of the inner circulation air door is opened or closed.
  • a similar outer connecting shaft 221 slides in the outer rail 32 through the second hole, so that the air outlet of the outer circulation damper opens or closes.
  • the rotation of the control panel 3 needs the motor 5 to drive.
  • the motor in this application is a stepping motor, and the number of steps of the motor is used to control the rotation of the control panel 3.
  • connection between the inner connecting shaft 121 and the outer connecting shaft 221 and the manipulation plate 3 can also be connected by a connecting arm assembly. In this way, it can rotate at more angles, and use the surface area of the control panel 3 as much as possible to form a track.
  • the connecting arm assembly includes an inner connecting arm assembly and an outer connecting arm assembly, which are used to connect the inner connecting shaft 121 and the outer connecting shaft 221, respectively.
  • the inner connecting arm assembly includes an inner manipulation arm 711 and an inner driving arm 712.
  • One end of the inner manipulating arm 711 passes through the first hole and is fixedly connected to the inner connecting shaft 121, and the other end is fixedly connected to one end of the inner driving arm 712.
  • the other end of the inner driving arm 712 is fixed to the control panel 3 to accomplish the purpose of driving the inner circulation damper 1 by the control panel 3.
  • both the inner driving arm 712 and the inner manipulating arm 711 have a broken line structure.
  • the purpose of this design is to reduce the surface area of the control plate 3 and make the control plate 3 rotate at a smaller angle, and the inner circulation damper 1 Turn a greater distance.
  • the inner driving arm is connected to the inner track on the surface of the control panel close to the inner circulation damper 1.
  • the structure of the outer connecting arm assembly is similar to that of the inner connecting arm assembly, and both include an outer operating arm 721 and an outer driving arm 722.
  • One end of the outer manipulating arm 721 passes through the second hole and is fixedly connected to the outer connecting shaft 221, and the other end is fixedly connected to one end of the outer driving arm 722.
  • the other end of the outer driving arm 722 is fixed to the control panel 3 to accomplish the purpose of driving the outer circulation damper 2 by the control panel 3.
  • both the outer drive arm 722 and the inner control arm 721 have a broken line structure.
  • the purpose of this design is to reduce the surface area of the control panel 3, and make the control panel 3 rotate at a small angle, the outer circulation damper 2 Turn a greater distance.
  • the outer driving arm is connected to the outer track on the surface of the control panel facing away from the outer circulation damper 2.
  • the application also includes a control panel base 8.
  • the control panel base 8 is fixed between the control panel 3 and the motor.
  • One side of the control panel base 8 is attached and fixed to the control panel 3, and the other side is fixed to the motor. Therefore, the rotation of the motor can drive the control panel base 8 and the control panel to rotate together.
  • the air conditioner involved in this application is driven by a motor 5 to drive the control panel 3, which in turn causes the inner circulation air door 1 and the outer circulation air door 2 to have different opening and closing angles to achieve the purpose of different internal and external air intake ratios.
  • the operation method of the vehicle air conditioning system in this application mainly includes the following steps:
  • the air-conditioning control unit receives a pulse signal, which includes the preset direction of rotation of the stepper motor and the preset number of steps of rotation;
  • the air conditioning control unit drives the stepping motor to rotate a preset number of steps in a preset direction to drive the control panel to rotate so that the inner circulation damper rotates to a first preset angle, and the outer circulation damper rotates to a second preset angle, so that the inner
  • the air intake ratio of the air volume and the external air intake volume is the preset first ratio.
  • the air conditioning control unit receives the pulse signal, the number of steps that the air conditioning control unit drives the stepping motor to rotate in the counterclockwise direction is 0, and the corresponding rotation angle is 0. That is, the stepper motor is in the original position.
  • the inner circulation damper is in the original position, and the angle is 0° at this time, and the outer circulation damper is also in the original position, and the angle is 60°.
  • the ratio of the internal air intake to the external air intake is 0:100. That is, at this time, the inner circulation damper is completely closed, and the air inlet of the outer circulation damper is completely opened, and it is in the full outer circulation mode. This mode is mainly used in the case of defrosting, defogging or ventilation of the whole vehicle.
  • the air conditioning control unit drives the stepping motor to rotate counterclockwise in 1040 steps, and the corresponding rotation angle is 52°. That is, the stepping motor rotates 52° counterclockwise at the original position.
  • the corresponding rotation angle of the inner circulation damper is 45°.
  • the outer circulation damper is in the original position and the angle is 60°.
  • the ratio of the internal air intake to the external air intake is 25:75. That is, at this time, the inner circulation damper is partially closed, and the air inlet of the outer circulation damper is fully opened.
  • This mode is mainly used in the case of a sudden increase in vehicle speed or rapid acceleration.
  • the air conditioner is in the state of full external circulation in mode 1
  • the fresh air intake of the air conditioner will increase, which will easily cause the wind of the dashboard air conditioner of the vehicle, and the wind speed of the air outlet of the air conditioner panel will be toggled. Therefore, the internal circulation panel is opened in the second part of the mode, which can slow down the adjustment of the intake air volume during the rapid acceleration of the whole vehicle, keep the air outlet wind speed stable, and increase the comfort of the driver and passengers.
  • Mode 2 can be switched from mode 1 to mode 2 through the air conditioning control unit. Details as follows:
  • the air conditioning control unit judges the vehicle speed change amount ⁇ and compares it with the first predetermined value set in advance.
  • the vehicle speed change amount ⁇ ⁇ the first predetermined value is 30km/h, and other calibration values can also be set. At this time, proceed to the next step.
  • the air-conditioning control unit judges the air volume level V of the blower. If the air volume level V ⁇ the second predetermined value, the second predetermined value in this application is 4, or other calibration values, and the next step is executed at this time.
  • the air-conditioning control unit judges whether it is in the full outer circulation mode, which is one of the modes, that is, whether the first preset angle of rotation of the inner circulation damper is 0°, and the second preset angle of rotation of the outer circulation damper is 60°. If yes, run the above-mentioned mode two.
  • the air conditioning control unit drives the stepping motor to rotate counterclockwise in 1,840 steps, and the corresponding rotation angle is 92°. That is, the stepper motor rotates 40° counterclockwise at the mode 2 position.
  • the corresponding rotation angle of the inner circulation damper is 75°.
  • the outer circulation damper is in the original position and the angle is 60°.
  • the ratio of the internal air intake to the external air intake is 35:65. That is, at this time, the inner circulation damper has more open parts than in mode 2, and the air inlet of the outer circulation damper is fully opened.
  • This mode is mainly used in the heating process of the vehicle during driving. It can quickly heat up, and it can also reduce the fogging of the front windshield during driving. This mode can quickly heat up, and at the same time, if it is matched with high-pressure air heating, the air heating power can be adjusted, so that the power of the whole vehicle can be saved at a small air heating power, and the cruising range of new energy vehicles can be increased.
  • Mode 3 can be switched by the air conditioner control unit. Details as follows:
  • the air conditioner controller respectively determines the outdoor temperature T1, the engine water temperature T2, the air conditioner set temperature T3, the indoor temperature T4, and the temperature or speed range of the vehicle speed signal V1.
  • the cooling and heating dampers are driven by the stepping motor for adjustment, the air volume of the blower is automatically adjusted according to the calibration value, and the electric vehicle air heating is synchronized with the intermediate power work.
  • the air conditioning control unit drives the stepping motor to rotate counterclockwise with 2440 steps, and the corresponding rotation angle is 122°. That is, the stepper motor rotates 30° counterclockwise at the mode three position.
  • the corresponding rotation angle of the inner circulation damper is 75°.
  • the outer circulation damper is in the original position with an angle of 39°.
  • the air intake ratio between the internal air intake and the external air intake is 55:45. That is, at this time, the inner circulation damper has more open parts than in mode three, and the air inlet of the outer circulation damper is partially closed.
  • this mode has an increased internal circulation air intake. Similar to Mode 3, it is mainly used in the heating process of vehicles. It can quickly heat up and reduce the fogging of the front windshield during driving. This mode can quickly heat up, and at the same time, if it is matched with high-pressure air heating, the air heating power can be adjusted, so that the power of the whole vehicle can be saved at a small air heating power, and the cruising range of new energy vehicles can be increased.
  • Mode 4 can be switched by the air conditioning control unit. Details as follows:
  • the air conditioner controller judges the outdoor temperature T1, the engine water temperature T2, the air conditioner set temperature T3, the indoor temperature T4, and the vehicle speed signal V1.
  • the cooling and heating dampers are driven by the stepping motor to adjust, the air volume of the blower is automatically adjusted according to the calibration value, and the electric vehicle wind and heating synchronously perform intermediate power work.
  • the air conditioning control unit drives the stepping motor to rotate counterclockwise in 3040 steps, and the corresponding rotation angle is 152°. That is, the stepper motor rotates 30° counterclockwise at the position of mode 4.
  • the corresponding rotation angle of the inner circulation damper is 75°.
  • the outer circulation damper is in the original position and the angle is 21°.
  • the ratio of the internal air intake to the external air intake is 80:20. That is, at this time, the inner circulation damper has more open parts than the mode four, and the air inlet of the outer circulation damper is partially closed.
  • this mode has an increased air intake in the internal circulation. Similar to the mode 4, it is mainly used in the heating process of the vehicle, which can quickly heat up and reduce the fogging of the front windshield during the driving process. This mode can quickly heat up, and at the same time, if it is matched with high-pressure air heating, the air heating power can be adjusted, so that the power of the vehicle can be saved at a small air heating power, and the cruising range of new energy vehicles can be increased.
  • Mode 5 can be switched by the air conditioning control unit. Details as follows:
  • the air conditioner controller judges the outdoor temperature T1, the engine water temperature T2, the air conditioner set temperature T3, the indoor temperature T4, and the vehicle speed signal V1.
  • the air conditioning control unit drives the stepping motor to rotate counterclockwise with 3840 steps, and the corresponding rotation angle is 192°. That is, the stepper motor rotates 40° counterclockwise at the position of mode five.
  • the corresponding rotation angle of the inner circulation damper is 75°.
  • the angle of the outer circulation damper is 21°.
  • the air intake ratio between the internal air intake and the external air intake is 100:0. That is, at this time, the inner circulation damper is fully opened, and the air inlet of the outer circulation damper is completely closed. At this time, it is in full internal circulation mode, which is mainly suitable for heating working conditions or working conditions with poor outside air quality.
  • the air-conditioning control unit continues to drive the stepping motor to rotate counterclockwise in 4880 steps, and the corresponding rotation angle is 244°. That is, the stepper motor rotates 52° counterclockwise at the mode six position.
  • the corresponding rotation angle of the inner circulation damper is 0°.
  • the angle of the outer circulation damper is 60°.
  • the ratio of the internal air intake to the external air intake is 0:100. That is, the outer circulation damper is fully opened at this time, and the air inlet of the inner circulation damper is completely closed. Return to the mode one state.
  • the inner and outer circulation dual air door proportional adjustment mode is added, and the vehicle speed compensation mixed wind mode is added.
  • the outer circulation air inlet ratio can be reduced, so that the wind speed of the air outlet maintains the set value and reduces Wind speed fluctuations improve the comfort of drivers and passengers.
  • Modes 3, 4, and 5 in this embodiment are aimed at new energy vehicles.
  • the internal and external circulation double air door proportional adjustment is applied to increase the air inlet temperature of the air-conditioning system.
  • the high-pressure air heating does not need to be 100% full.
  • the power is fully turned on, allowing low-power work, saving the entire vehicle's power, and increasing the cruising range of new energy models.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the application can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种车辆用空调系统及其操作方法,涉及车辆空调领域。该系统包括步进电机(5)、操纵盘(3)、内、外循环风门(1、2),电机(5)带动操纵盘(3)进而带动内、外循环风门(1、2)转动以达到内、外进气比例不同目的。该操作方法包括:接收脉冲信号,脉冲信号包括步进电机(5)转动的预设方向和转动的预设步数;驱动步进电机(5)按照预设方向转动所述预设步数,以带动操纵盘(3)旋转,从而使得内循环风门(1)转动至第一预设角度,且外循环风门(2)转动至第二预设角度,使得空调系统的内进气量和外进气量的进气比例为预设的第一比例。该系统和方法可以控制内、外空气混合的比例,以满足不同的使用情况,以达到提升整车燃油经济性、新能源车型续航里程及空调出风舒适性的目的。

Description

车辆用空调系统的操作方法
本申请要求在2020年03月10日提交中国专利局、申请号为202010162881.2、名称为“车辆用空调系统的操作方法”的中国专利申请和在2020年03月10日提交中国专利局、申请号为202020294594.2、名称为“车辆用空调进风系统和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请主要涉及车辆空调领域,尤其涉及一种车辆用的控制内外循环风门进风比例的空调系统操作方法以及一种车辆用的分别控制内外循环风门开关的空调进风系统。
背景技术
随着我国整体汽车行业对排放及节能要求的日益提升,新能源汽车如纯电动汽车、混合动力汽车的普及越来越广泛。客户对汽车的舒适度和节能的要求也越来越注重。
空调是位于车厢内的给汽车乘员提供舒适性的产品。空调系统的性能及功能要求越来越高,空调箱(HVAC)的结构也越来越复杂。除满足驾乘人员采暖、降温、除霜、除雾等舒适性要求外,同时更重要的是保证整车通风性能。空调的进风系统具备内循环、外循环两个独立功能,内循环用于乘员舱车内空气循环,外循环从车辆外部进风,用于车内空气流通交换。
现车型内外循环风门结构组成包括:内循环进风口、外循环进风口、循环风门、执行电机四部分组成。此结构可满足空调系统正常内外气切换的同时,存在以下影响:1)内循环、外循环只能实现100%全开状态,无法调节内外循环进气的比例,如整车在急加速过程中,在外循环100%全开状态下,出风口风速波动,易出现风口风速增加,舒适性变差;2)在冬季采暖工况下,为防止整车起雾,空调进风系统设置为外循环状态,此状态空调进风为外部进风,由于进风温度低,乘员舱采暖出风口温升慢,影响整车舒适性;3)针对于新能源车型,采用高压风暖PTC(正温度系数)配置时,采暖工况下为外循环,采暖初期为快速提升,此时高压风暖PTC需100%全功率开启,一般功率为3KW,消耗整车电量,影响整车续航里程。
概述
有鉴于此,本申请提供了一种车辆用空调系统的操作方法,所述空调系统包括步进电机、操纵盘、内循环风门、外循环风门,其中,所述步进电机与所述操纵盘固定连接,所述操纵盘具有内循环轨道和外循环轨道,所述内循环风门和所述外循环风门分别具有内连接轴和外连接轴,所述内连接轴和 所述外连接轴分别能够在所述内循环轨道和所述外循环轨道中滑动以带动所述内循环风门和所述外循环风门旋转。
所述空调系统的操作方法包括:接收脉冲信号,所述脉冲信号包括步进电机转动的预设方向和转动的预设步数;驱动所述步进电机按照所述预设方向转动所述预设步数,以带动所述操纵盘旋转,从而使得所述内循环风门转动至第一预设角度,且所述外循环风门转动至第二预设角度,使得所述空调系统的内进气量和外进气量的进气比例为预设的第一比例。
根据本申请的一个实施方式,在预设的第一空调系统操作模式下:所述预设的方向为逆时针方向,所述预设步数为0步,使得所述内循环风门转动至第一预设角度为0°,所述外循环风门转动至第二预设角度为60°,使得所述空调系统的内进气量和外进气量的进气比例为0:100。
根据本申请的一个实施方式,在预设的第二空调系统操作模式下:所述预设的方向为逆时针方向,所述预设步数为1040步,使得所述内循环风门转动至第一预设角度为45°,所述外循环风门转动至第二预设角度为60°,使得所述空调系统的内进气量和外进气量的进气比例为25:75。
根据本申请的一个实施方式,还包括:将车速变化量与第一预定值作比较;当所述车速变化量超过所述第一预定值时,将所述空调系统的鼓风机风量档位与第二预定值作比较;当所述鼓风机风量档位小于所述第二预定值时,判断所述内循环风门转动至第一预设角度是否为0°和所述外循环风门转动至第二预设角度是否为60°;若所述第一预设角度为0°且所述第二预设角度为60°时,执行所述第二空调系统操作模式。
根据本申请的一个实施方式,在预设的第三空调系统操作模式下:所述预设的方向为逆时针方向,所述预设步数为1840步,使得所述内循环风门转动至第一预设角度为75°,所述外循环风门转动至第二预设角度为60°,使得所述空调系统的内进气量和外进气量的进气比例为35:65。
根据本申请的一个实施方式,在预设的第四空调系统操作模式下:所述预设的方向为逆时针方向,所述预设步数为2440步,使得所述内循环风门转动至第一预设角度为75°,所述外循环风门转动至第二预设角度为39°,使得所述空调系统的内进气量和外进气量的进气比例为55:45。
根据本申请的一个实施方式,在预设的第五空调系统操作模式下:所述预设的方向为逆时针方向,所述预设步数为3040步,使得所述内循环风门转动至第一预设角度为75°,所述外循环风门转动至第二预设角度为21°,使得所述空调系统的内进气量和外进气量的进气比例为80:20。
根据本申请的一个实施方式,在预设的第六空调系统操作模式下:所述预设的方向为逆时针方向,所述预设步数为3840步,使得所述内循环风门转动至第一预设角度为75°,所述外循环风门转动至第二预设角度为0°,使得所述空调系统的内进气量和外进气量的进气比例为100:0。
根据本申请的一个实施方式,还包括:判定室外温度T1、发动机水温T2、空调设定温度T3、室内温度T4和车速信号V1的速度的温度或速度区 间范围;当T1处于第一预定温度区间,T2处于第二温度区间,T3处于第三温度区间,V1处于第一速度区间,T3高于T4第一预定差值温度,且空调处于采暖需求时,则执行所述第三空调系统操作模式、第四空调系统操作模式或第五空调系统操作模式。
本申请通过分别控制内、外循环风门的开闭,使得可以控制内、外空气混合的比例,以满足不同的使用情况。如在整车除霜及换气的情况下,关闭内循环风门,外循环进风口全打开。如空调处于上述的外循环风门全部打开的状态下,车速突然增加或急加速过程,此时易造成整车仪表板空调吹面出风口风速波动的情况。所以此时选择内循环风和外循环风的进风比例为25%:75%,可以保持出风口风速保持稳定,增加驾驶员的舒适性。另外,通过不断增加内循环风的进风比例还可以适用于快速升,减少风挡玻璃起雾的情况。相比背景技术,本申请中的空调,在整车急加速过程中,防止整车起雾等工况下,均可以采用不同比例的内外空气混合输出的模式,以达到提升整车燃油经济性、新能源车型续航里程及空调出风舒适性的目的。
此外,本申请提供了一种车辆用空调进风系统,包括:外壳,包括两个外壳侧壁板、外壳连接板、内挡板和外挡板,所述两个外壳侧壁板通过所述外壳连接板相连并形成中空的腔体,所述内挡板和所述外挡板固定在所述腔体内,所述外壳侧壁板上包括第一孔和第二孔;内循环风门,包括内风门板和两个内端板,所述两个内端板通过所述内风门板相连,所述两个内端板与所述内风门板形成内进风口、内出风口,所述内端板具有内连接轴,所述内连接轴穿过所述第一孔,使得所述内风门板围绕所述第一孔旋转,以使所述内风门板抵靠或远离所述内挡板,使得所述内进风口关闭或开启;外循环风门,包括外风门板和两个外端板,所述两个外端板通过所述外风门板相连,所述两个外端板与所述外风门板形成外进风口、外出风口,所述外端板具有外连接轴,所述外连接轴穿过所述第二孔,使得所述外风门板围绕所述第二孔旋转,以使所述外风门板抵靠或远离所述外挡板,使得所述外出风口关闭或开启,且所述外出风口开启时,所述外出风口与所述内出风口空气连通;操纵盘,分别包括内轨道和外轨道,所述内连接轴穿过所述第一孔能够在所述内轨道内滑动,以带动所述内风门板旋转,使得所述内循环风门的内进风口开启或关闭,所述外连接轴穿过所述第二孔能够在所述外轨道内滑动,以带动所述外风门板旋转,使得所述外循环风门的外出风口开启或者关闭,以使所述内循环风门和所述外循环风门中的空气混合输出;电机,用于带动所述操纵盘旋转。
根据本申请的一个实施例,还包括连接臂组件,所述连接臂组件包括:内连接臂组件,包括内操纵臂和内驱动臂,所述内操纵臂的一端与穿过所述第一孔的内连接轴固定连接,所述内操纵臂的另一端与所述内驱动臂的一端固定连接,所述内驱动臂另一端与所述操纵盘固定连接;
外连接臂组件,包括外操纵臂和外驱动臂,所述外操纵臂的一端与穿过所述第一孔的外连接轴固定连接,所述外操纵臂另一端与所述外驱动臂的一 端固定连接,所述外驱动臂的另一端与所述操纵盘固定连接。
根据本申请的一个实施例,所述操纵盘为圆盘形,且所述内轨道和所述外轨道分别位于所述圆盘的两个侧面上。
根据本申请的一个实施例,还包括操纵盘基座,所述操纵盘基座的一面与所述操纵盘贴合并固定,另一面与所述电机固定,以通过所述电机带动所述操纵盘基座和所述操纵盘旋转。
根据本申请的一个实施例,所述操纵盘基座包括通孔,所述外驱动臂穿过所述通孔与所述操纵盘固定连接。
根据本申请的一个实施例,所述电机为步进式电机。
根据本申请的一个实施例,还包括新风进风管道,所述新风进风管道与所述外进风口空气连通。
本申请还涉及一种车辆,包括如上所述的空调进风系统。
本申请通过设置内、外两个循环风门,并分别控制两个循环风门的开闭,使得可以控制内、外空气混合的比例,以满足不同的使用情况。相比背景技术,本申请中的空调进风系统,在整车急加速过程中,防止整车起雾等工况下,均可以采用不同比例的内外空气混合输出的模式,以达到提升整车燃油经济性、新能源车型续航里程及空调出风舒适性的目的。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图简述
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
下面结合附图说明本申请的具体实施方式。说明书附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1是本申请一实施例的空调总装图。
图2是本申请一实施例的内循环风门、外循环风门、模式操纵盘和电机的安装结构图。
图3是本申请一实施例的空调结构爆炸图。
图4是本申请一实施例的内循环风门和外循环风门的左视图。
图5是本申请一实施例的操纵盘的内轨道和外轨道的示意图。
图6是本申请一实施例的内循环风门和外循环风门的模式一的示意图。
图7是本申请一实施例的内循环风门和外循环风门的模式二的示意图。
图8是本申请一实施例的内循环风门和外循环风门的模式三的示意图。
图9是本申请一实施例的内循环风门和外循环风门的模式四的示意图。
图10是本申请一实施例的内循环风门和外循环风门的模式五的示意图。
图11是本申请一实施例的内循环风门和外循环风门的模式六的示意图。
附图标记说明
内循环风门1,
内风门板11,
内进风口111,
内出风口112,
内端板12,
内连接轴121,
外循环风门2,
外风门板21,
外进风口211,
外出风口212,
外端板22,
外连接轴221,
操纵盘3,
内轨道31,
外轨道32,
外壳4,
外壳侧壁板41,
外壳连接板42,
内挡板43,
外挡板44,
电机5,
新风进风管道6,
内操纵臂711,
内驱动臂712,
外操纵臂721,
外驱动臂722,
操纵盘基座8。
详细描述
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可 认识到的那样,在不脱离本申请的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本申请的描述中,需要理解的是,术语“长度”、“横向”、“纵向”、“上”、“下”、“前”、“后”、“左”、“右”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
表格1是本申请一实施例的空调不同模式的内循环风门和外循环风门进风比例和打开角度统计表。
表格1
Figure PCTCN2021077931-appb-000001
空调结构实施例
如图1所示,本申请涉及的空调包括内循环风门1,外循环风门2,操纵盘3,外壳4,电机5和新风进风管道6,连接臂组件,操纵盘基座8。
如图1、图3和图4所示,外壳4包括两个外壳侧壁板41,外壳连接板42,内挡板43和外挡板44。外壳侧壁板41位于两侧,通过外壳连接板42相连在一起,并在中间形成中空的腔体。该中空腔体用于设置内循环风门1和外循环风门2。在该中空腔体内还具有内挡板43和外挡板44。内挡板43和外挡板44分别用于和内循环风门1、外循环风门2配合使用。
在本实施例中,外壳侧壁板41上具有第一孔和第二孔。用于使内、外循环风门与操纵盘3相连。本实施例中的外壳4还具有栅格结构,这是为了方便输出内、外循环风而设置。本实施例中的外壳4的形状在保持一定距离 下,尽量与内循环风门1和外循环风门2的形状相贴合。实际上外壳4的具体形状结构可以自行设置,只要其能将内、外循环风门包围、并使其中的空气传送出即可。
如图2、图3和图4所示,内循环风门1放置于外壳4形成的腔体内,包括内风门板11和两内端板12,两个内端板12通过内风门板11相连。在本实施例中的内端板12形状为扇形。如图4所示两内端板12和内风门板11形成了内进风口111,内出风口112。靠近内挡板43的为内进风口,远离内挡板43的为内进风口。如图2所示,在内端板12的一端还具有内连接轴121,内连接轴121穿过第一孔与操纵盘3相固定。内连接轴121带动内风门板11绕着第一孔旋转,使得内风门板11旋转,也就使得内风门板11抵靠或者远离内挡板43。以此控制内进风口的关闭或开启,更进一步地可控制内进风口111的进风量。
如图2、图3和图4所示,外循环风门2与内循环风门1结构类似,且邻近内循环风门1设置。外循环风门2包括外风门板21和两个外端板22。两个外端板22通过外风门板21相连接在一起。两个外端板22同样呈扇形形状。且两个外端板22与外风门板21形成了外进风口211和外出风口212。其中靠近外挡板44的为外出风口。如图2所示,在外端板22的一端还具有外连接轴221,外连接轴221穿过第二孔与操纵盘3相固定。外连接轴221带动外风门板21绕着第二孔旋转,使得外风门板21旋转,也就使得外风门板21抵靠或者远离外挡板44。以此控制外出风口的关闭或开启,更进一步地可控制外出风口211的出风量。
由图1和图4所示,本申请中的空调还包括新风进风管道6,新风进风管道6与外出风口211空气连通。新风进风管道6用于连接外界环境中的空气,其可为空调源源不断提供新鲜的空气,其具体形状可以根据实际的使用情况自行设置,对此不作限制。
由图2、图3和图5所示,本实施例中的操纵盘3为一圆盘形状,在圆盘的两面包括有内轨道31和外轨道32。内连接轴121穿过第一孔在内轨道31内滑动,进而带动内风门板11旋转,使得内循环风门的进风口开启或者关闭。类似的外连接轴221穿过第二孔在外轨道32内滑动,使得外循环风门的出风口开启或关闭。通过调整内连接轴121和外连接轴221在轨道内滑动的轨迹,可以调整内、外循环风门的开启角度,进而达到内循环风门1和外循环风门2中的空气混合出风的目的。
操纵盘3的旋转需要电机5带动。本申请中的电机选用步进电机,利用电机步数,控制操纵盘3的旋转。
如图3所示,内连接轴121和外连接轴221与操纵盘3的连接还可以通过连接臂组件进行连接。这样可以更多角度旋转,且尽量多的利用操纵盘3的表面积形成轨道。连接臂组件包括内连接臂组件和外连接臂组件,分别用以连接内连接轴121和外连接轴221。
内连接臂组件包括内操纵臂711和内驱动臂712。内操纵臂711一端穿 过第一孔与内连接轴121固定连接,另一端与内驱动臂712的一端固定连接。内驱动臂712的另一端与操纵盘3固定,以此完成将内循环风门1被操纵盘3带动的目的。
需注意的是,内驱动臂712和内操纵臂711均具有折线形结构,这样设计的目的是可使操纵盘3的表面积减少,且使得操纵盘3转动较小的角度时,内循环风门1转动较大的距离。且在本实施例中内驱动臂连接在操纵盘靠近内循环风门1的表面内轨道上。
外连接臂组件与内连接臂组件的结构类似,均包括,包括外操纵臂721和外驱动臂722。外操纵臂721一端穿过第二孔与外连接轴221固定连接,另一端与外驱动臂722的一端固定连接。外驱动臂722的另一端与操纵盘3固定,以此完成将外循环风门2被操纵盘3带动的目的。
需注意的是,外驱动臂722和内操纵臂721均具有折线形结构,这样设计的目的是可使操纵盘3的表面积减少,且使得操纵盘3转动较小的角度时,外循环风门2转动较大的距离。但与上述内连接臂组件不同的是,在本实施例中外驱动臂连接在操纵盘背离外循环风门2的表面外轨道上。
本申请还包括操纵盘基座8。操纵盘基座8固定在操纵盘3与电机之间。操纵盘基座8的一面与操纵盘3贴合固定,另一面与电机固定,因此电机的旋转可以一起带动操纵盘基座8和操纵盘一起旋转。
空调系统操作方法实施例
如图1所示,本申请中涉及的空调是由电机5带动操纵盘3,进而引起内循环风门1和外循环风门2不同的开合角度,以达到不同内外进风比例的目的。
如图1所示,本申请中的车辆用空调系统操作方法,主要包括以下步骤:
1)空调控制单元接收脉冲信号,该脉冲信号中包括步进电机转动的预设方向和转动的预设步数;
2)空调控制单元驱动步进电机按照预设方向转动预设步数,以带动操纵盘旋转使得内循环风门转动至第一预设角度,外循环风门转动至第二预设角度,使得内进气量和外进气量的进气比例为预设的第一比例。
根据如上的步骤,本申请中列出了六种运行模式以适用于不同的车辆运行状况,下面将分别进行介绍。
模式一:
如表格1和图6和图5所示,此时空调控制单元接收脉冲信号后,空调控制单元驱动步进电机按照逆时针方向转动的步数为0,相应转动的角度为0。即步进电机处于原位置。内循环风门处于原位置,此时角度为0°,外循环风门也处于原位置,角度为60°。此时内进气量和外进气量的进气比例为0:100。即此时内循环风门完全关闭,外循环风门进风口完全打开,处于全外循环模式。此模式主要应用于整车的除霜、除雾或换气的情况下。
模式二:
如表格1和图7和图5所示,此时空调控制单元接收脉冲信号后,空调控制单元驱动步进电机按照逆时针方向转动的步数为1040步,相应转动的角度为52°。即步进电机在原位置处逆时针转动52°。内循环风门相应转动角度为45°。外循环风门处于原位置,角度为60°。此时内进气量和外进气量的进气比例为25:75。即此时内循环风门部分关闭,外循环风门进风口完全打开。
此模式主要应用于车速突然增加或急加速过程的情况下。此时空调如果处于模式一中全外循环的状态下,空调新风进风量增加,极易造成整车仪表板空调风动,且空调面板的出风口风速拨动。因此模式二部分打开内循环面板,可减缓因整车急加速过程中的进风风量拨动,使出风口风速保持稳定,增加驾乘人员的舒适性。
模式二可通过空调控制单元自行进行模式一至模式二的切换。具体如下:
1)空调控制单元判断车速变化量△,并与提前设定的第一预定值作比较。
2)若车速变化量△≥第一预定值,本申请中第一预定值为30km/h,也可设置其他标定值,此时执行下一步。
3)空调控制单元判断鼓风机风量档位V,若风量档位V≤第二预定值,本申请中第二预定值为4,或者其他标定值,此时执行下一步。
4)空调控制单元判断是否处于模式一种的全外循环模式,即内循环风门转动的第一预设角度是否为0°,外循环风门转动的第二预设角度是否为60°。若是,则运行上述的模式二。
当车速达到稳定后,可以恢复至前模式状态,即模式一。
模式三:
如表格1和图8和图5所示,此时空调控制单元接收脉冲信号后,空调控制单元驱动步进电机按照逆时针方向转动的步数为1840步,相应转动的角度为92°。即步进电机在模式二位置处逆时针转动40°。内循环风门相应转动角度为75°。外循环风门处于原位置,角度为60°。此时内进气量和外进气量的进气比例为35:65。即此时内循环风门相比模式二打开部分更多,外循环风门进风口完全打开。
此模式主要应用于车辆行车采暖过程中,可快速升温的同时,也可减少行车过程中前挡风玻璃起雾的情况。该模式可快速升温,同时若匹配高压风暖,可对风暖功率进行调节,使在小的风暖功率下,节省整车的电量,增加新能源车型续航里程。
模式三可通过空调控制单元自行进行切换。具体如下:
1)空调控制器分别判定室外温度T1,发动机水温T2,空调设定温度T3,室内温度T4,车速信号V1的温度或速度区间范围。
2)若室外温度T1≤-10℃或-10<T1≤10℃(第一温度区间),发动机水温60℃<T2≤90℃(第二温度区间),空调设定温度23℃≤T3<28℃(第三温度区间),且车速信号80<V1≤120km/h(第一速度区间),空调设定温度T3高于室内温度T4的差值温度△T=T3-lT4I≤5℃(第一预定差值温度),则此 时执行上述的模式三。
此时处于低档内循环混风比例进风,冷暖风门被步进电机带动,进行调节,鼓风机风量依据标定值自动调节,电动车风暖同步进行中间功率工作。
需指出的是,当室外温度T1≥20℃,则不执行模式三。
模式四:
如表格1和图9和图5所示,此时空调控制单元接收脉冲信号后,空调控制单元驱动步进电机按照逆时针方向转动的步数为2440步,相应转动的角度为122°。即步进电机在模式三位置处逆时针转动30°。内循环风门相应转动角度为75°。外循环风门处于原位置,角度为39°。此时内进气量和外进气量的进气比例为55:45。即此时内循环风门相比模式三打开部分更多,外循环风门进风口部分关闭。
此模式相比模式三内循环进风量增加,与模式三类似,主要应用于车辆行车采暖过程中,可快速升温的同时,也可减少行车过程中前挡风玻璃起雾的情况。该模式可快速升温,同时若匹配高压风暖,可对风暖功率进行调节,使在小的风暖功率下,节省整车的电量,增加新能源车型续航里程。
模式四可通过空调控制单元自行进行切换。具体如下:
1)空调控制器判断室外温度T1,发动机水温T2,空调设定温度T3,室内温度T4,车速信号V1。
2)若室外温度T1≤-10℃或-10<T1≤10℃,发动机水温40℃<T2≤60℃,空调设定温度28℃≤T3<33℃,且车速信号0<V1≤80km/h,空调设定温度T3高于室内温度T4的差值温度△T=T3-lT4I,5℃≤△T<10℃,则此时执行上述的模式四。
还存在另外一种情况,若室外温度T1≥10℃,发动机水温40℃<T2≤60℃,空调设定温度23℃≤T3<33℃,且车速信号0<V1≤120km/h,空调设定温度T3高于室内温度T4的差值温度△T=T3-lT4I,△T<5℃,则此时执行上述的模式四。
此时处于中档内循环混风比例进风,冷暖风门被步进电机带动,进行调节,鼓风机风量依据标定值自动调节,电动车风暖同步进行中间功率工作。
需指出的是,当室外温度T1≥20℃,则不执行模式四。
模式五:
如表格1和图10和图5所示,此时空调控制单元接收脉冲信号后,空调控制单元驱动步进电机按照逆时针方向转动的步数为3040步,相应转动的角度为152°。即步进电机在模式四位置处逆时针转动30°。内循环风门相应转动角度为75°。外循环风门处于原位置,角度为21°。此时内进气量和外进气量的进气比例为80:20。即此时内循环风门相比模式四打开部分更多,外循环风门进风口部分关闭。
此模式相比模式四内循环进风量增加,与模式四类似,主要应用于车辆行车采暖过程中,可快速升温的同时,也可减少行车过程中前挡风玻璃起雾的情况。该模式可快速升温,同时若匹配高压风暖,可对风暖功率进行调节, 使在小的风暖功率下,节省整车的电量,增加新能源车型续航里程。
模式五可通过空调控制单元自行进行切换。具体如下:
1)空调控制器判断室外温度T1,发动机水温T2,空调设定温度T3,室内温度T4,车速信号V1。
2)若室外温度T1≤-10℃或-10<T1≤10℃时,发动机水温T2≤40℃,空调设定温度T3≥33℃,且车速信号为怠速状态,即发动机空转不作功的状态,空调设定温度T3高于室内温度T4的差值温度△T=T3-lT4I,△T≥10℃,则此时执行上述的模式五。
还存在另外一种情况,若室外温度T1≥10℃时,发动机水温T2≤40℃,空调设定温度T3≥33℃,且车速信号为怠速状态,即发动机空转不作功的状态,空调设定温度T3高于室内温度T4的差值温度△T=T3-lT4I,△T≥5℃,则此时同样执行上述的模式五。
此时处于最大档内循环混风比例进风,可快速提升进风温度,冷暖风门被步进电机带动,进行调节处于暖端最大档,鼓风机风量依据标定值自动调节,电动车风暖同步进行最大功率工作。
需指出的是,当室外温度T1≥20℃,则不执行模式五。
模式六:
如表格1和图11和图5所示,此时空调控制单元接收脉冲信号后,空调控制单元驱动步进电机按照逆时针方向转动的步数为3840步,相应转动的角度为192°。即步进电机在模式五位置处逆时针转动40°。内循环风门相应转动角度为75°。外循环风门角度为21°。此时内进气量和外进气量的进气比例为100:0。即此时内循环风门完全打开,外循环风门进风口完全关闭。此时处于全内循环模式,主要适用于采暖工况,或外界空气质量较差的工况下。
如表格1和图5所示,若此时空调控制单元持续接收脉冲信号,则空调控制单元继续驱动步进电机按照逆时针方向转动的步数为4880步,相应转动的角度为244°。即步进电机在模式六位置处逆时针转动52°。内循环风门相应转动角度为0°。外循环风门角度为60°。此时内进气量和外进气量的进气比例为0:100。即此时外循环风门完全打开,内循环风门进风口完全关闭。回到模式一状态。
本实施例中的模式二中内外循环双风门比例调节模式,增加车速补偿混风模式,在整车急加速过程中,可减小外循环进风比例,使出风口风速保持设定值,减少风速波动,提升驾乘人员舒适性。
本实施例中的模式三、四、五中,针对于新能源车型,在冬季行车采暖过程中,应用内外循环双风门比例调节,提升空调系统进风温度,此时高压风暖无需100%全功率全开,可进行低功率工作,节省整车电量,增加新能源车型续航里程。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明 的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (25)

  1. 一种车辆用空调系统的操作方法,其特征在于,所述空调系统包括步进电机、操纵盘、内循环风门、外循环风门,其中,所述步进电机与所述操纵盘固定连接,所述操纵盘具有内循环轨道和外循环轨道,所述内循环风门和所述外循环风门分别具有内连接轴和外连接轴,所述内连接轴和所述外连接轴分别能够在所述内循环轨道和所述外循环轨道中滑动以带动所述内循环风门和所述外循环风门旋转,所述空调系统的操作方法包括:
    接收脉冲信号,所述脉冲信号包括步进电机转动的预设方向和转动的预设步数;
    驱动所述步进电机按照所述预设方向转动所述预设步数,以带动所述操纵盘旋转,从而使得所述内循环风门转动至第一预设角度,且所述外循环风门转动至第二预设角度,使得所述空调系统的内进气量和外进气量的进气比例为预设的第一比例。
  2. 如权利要求1所述的空调系统操作方法,其特征在于,在预设的第一空调系统操作模式下:
    所述预设的方向为逆时针方向,所述预设步数为0步,使得所述内循环风门转动至第一预设角度为0°,所述外循环风门转动至第二预设角度为60°,使得所述空调系统的内进气量和外进气量的进气比例为0:100。
  3. 如权利要求1所述的空调系统操作方法,其特征在于,在预设的第二空调系统操作模式下:
    所述预设的方向为逆时针方向,所述预设步数为1040步,使得所述内循环风门转动至第一预设角度为45°,所述外循环风门转动至第二预设角度为60°,使得所述空调系统的内进气量和外进气量的进气比例为25:75。
  4. 如权利要求3所述的空调系统操作方法,其特征在于,还包括:
    将车速变化量与第一预定值作比较;
    当所述车速变化量超过所述第一预定值时,将所述空调系统的鼓风机风量档位与第二预定值作比较;
    当所述鼓风机风量档位小于所述第二预定值时,判断所述内循环风门转动至第一预设角度是否为0°和所述外循环风门转动至第二预设角度是否为60°;
    若所述第一预设角度为0°且所述第二预设角度为60°时,执行所述第二空调系统操作模式。
  5. 如权利要求1所述的空调系统操作方法,其特征在于,在预设的第三空调系统操作模式下:
    所述预设的方向为逆时针方向,所述预设步数为1840步,使得所述内循环风门转动至第一预设角度为75°,所述外循环风门转动至第二预设角度为60°,使得所述空调系统的内进气量和外进气量的进气比例为35:65。
  6. 如权利要求1所述的空调系统操作方法,其特征在于,在预设的第四空调系统操作模式下:
    所述预设的方向为逆时针方向,所述预设步数为2440步,使得所述内循环风门转动至第一预设角度为75°,所述外循环风门转动至第二预设角度为39°,使得所述空调系统的内进气量和外进气量的进气比例为55:45。
  7. 如权利要求1所述的空调系统操作方法,其特征在于,在预设的第五空调系统操作模式下:
    所述预设的方向为逆时针方向,所述预设步数为3040步,使得所述内循环风门转动至第一预设角度为75°,所述外循环风门转动至第二预设角度为21°,使得所述空调系统的内进气量和外进气量的进气比例为80:20。
  8. 如权利要求1所述的空调系统操作方法,其特征在于,在预设的第六空调系统操作模式下:
    所述预设的方向为逆时针方向,所述预设步数为3840步,使得所述内循环风门转动至第一预设角度为75°,所述外循环风门转动至第二预设角度为0°,使得所述空调系统的内进气量和外进气量的进气比例为100:0。
  9. 如权利要求6所述的空调系统操作方法,其特征在于,还包括:
    判定室外温度T1、发动机水温T2、空调设定温度T3、室内温度T4和车速信号V1的速度的温度或速度区间范围;
    当T1处于第一预定温度区间,T2处于第二温度区间,T3处于第三温度区间,V1处于第一速度区间,T3高于T4第一预定差值温度,且空调处于采暖需求时,则执行所述第三空调系统操作模式、第四空调系统操作模式或第五空调系统操作模式。
  10. 如权利要求7-8任一项所述的空调系统操作方法,其特征在于,还包括:
    判定室外温度T1、发动机水温T2、空调设定温度T3、室内温度T4和车速信号V1的速度的温度或速度区间范围;
    当T1处于第一预定温度区间,T2处于第二温度区间,T3处于第三温度区间,V1处于第一速度区间,T3高于T4第一预定差值温度,且空调处于采暖需求时,则执行所述第三空调系统操作模式、第四空调系统操作模式或第五空调系统操作模式。
  11. 如权利要求1所述的空调系统操作方法,其特征在于,所述空调系统还包括:
    外壳,包括两个外壳侧壁板、外壳连接板、内挡板和外挡板,所述两个外壳侧壁板通过所述外壳连接板相连并形成中空的腔体,所述内挡板和所述外挡板固定在所述腔体内,所述外壳侧壁板上包括第一孔和第二孔;
    所述内循环风门包括内风门板和两个内端板,所述两个内端板通过所述内风门板相连,所述两个内端板与所述内风门板形成内进风口、内出风口,所述内端板包括所述内连接轴,所述内连接轴穿过所述第一孔,使得所述内风门板围绕所述第一孔旋转,以使所述内风门板抵靠或远离所述内挡板,使得所述内进风口关闭或开启;
    所述外循环风门包括外风门板和两个外端板,所述两个外端板通过所述 外风门板相连,所述两个外端板与所述外风门板形成外进风口、外出风口,所述外端板包括所述外连接轴,所述外连接轴穿过所述第二孔,使得所述外风门板围绕所述第二孔旋转,以使所述外风门板抵靠或远离所述外挡板,使得所述外出风口关闭或开启,且所述外出风口开启时,所述外出风口与所述内出风口空气连通;
    其中,所述内连接轴穿过所述第一孔能够在所述内轨道内滑动,以带动所述内风门板旋转,使得所述内循环风门的内进风口开启或关闭,所述外连接轴穿过所述第二孔能够在所述外轨道内滑动,以带动所述外风门板旋转,使得所述外循环风门的外出风口开启或者关闭,以使所述内循环风门和所述外循环风门中的空气混合输出。
  12. 如权利要求11所述的空调系统操作方法,其特征在于,所述的空调进风系统还包括连接臂组件,所述连接臂组件包括:
    内连接臂组件,包括内操纵臂和内驱动臂,所述内操纵臂的一端与穿过所述第一孔的内连接轴固定连接,所述内操纵臂的另一端与所述内驱动臂的一端固定连接,所述内驱动臂另一端与所述操纵盘固定连接;
    外连接臂组件,包括外操纵臂和外驱动臂,所述外操纵臂的一端与穿过所述第一孔的外连接轴固定连接,所述外操纵臂另一端与所述外驱动臂的一端固定连接,所述外驱动臂的另一端与所述操纵盘固定连接。
  13. 如权利要求11所述的空调系统操作方法,其特征在于,所述操纵盘为圆盘形,且所述内轨道和所述外轨道分别位于所述圆盘的两个侧面上。
  14. 如权利要求11所述的空调系统操作方法,其特征在于,所述空调进风系统还包括操纵盘基座,所述操纵盘基座的一面与所述操纵盘贴合并固定,另一面与所述电机固定,以通过所述电机带动所述操纵盘基座和所述操纵盘旋转。
  15. 如权利要求14所述的空调系统操作方法,其特征在于,所述操纵盘基座包括通孔,所述外驱动臂穿过所述通孔与所述操纵盘固定连接。
  16. 如权利要求11所述的空调系统操作方法,其特征在于,所述电机为步进式电机。
  17. 如权利要求11所述的空调系统操作方法,其特征在于,所述空调进风系统还包括新风进风管道,所述新风进风管道与所述外进风口空气连通。
  18. 一种车辆用空调进风系统,其特征在于,包括:
    外壳,包括两个外壳侧壁板、外壳连接板、内挡板和外挡板,所述两个外壳侧壁板通过所述外壳连接板相连并形成中空的腔体,所述内挡板和所述外挡板固定在所述腔体内,所述外壳侧壁板上包括第一孔和第二孔;
    内循环风门,包括内风门板和两个内端板,所述两个内端板通过所述内风门板相连,所述两个内端板与所述内风门板形成内进风口、内出风口,所述内端板具有内连接轴,所述内连接轴穿过所述第一孔,使得所述内风门板围绕所述第一孔旋转,以使所述内风门板抵靠或远离所述内挡板,使得所述内进风口关闭或开启;
    外循环风门,包括外风门板和两个外端板,所述两个外端板通过所述外风门板相连,所述两个外端板与所述外风门板形成外进风口、外出风口,所述外端板具有外连接轴,所述外连接轴穿过所述第二孔,使得所述外风门板围绕所述第二孔旋转,以使所述外风门板抵靠或远离所述外挡板,使得所述外出风口关闭或开启,且所述外出风口开启时,所述外出风口与所述内出风口空气连通;
    操纵盘,分别包括内轨道和外轨道,所述内连接轴穿过所述第一孔能够在所述内轨道内滑动,以带动所述内风门板旋转,使得所述内循环风门的内进风口开启或关闭,所述外连接轴穿过所述第二孔能够在所述外轨道内滑动,以带动所述外风门板旋转,使得所述外循环风门的外出风口开启或者关闭,以使所述内循环风门和所述外循环风门中的空气混合输出;
    电机,用于带动所述操纵盘旋转。
  19. 如权利要求18所述的空调进风系统,其特征在于,还包括连接臂组件,所述连接臂组件包括:
    内连接臂组件,包括内操纵臂和内驱动臂,所述内操纵臂的一端与穿过所述第一孔的内连接轴固定连接,所述内操纵臂的另一端与所述内驱动臂的一端固定连接,所述内驱动臂另一端与所述操纵盘固定连接;
    外连接臂组件,包括外操纵臂和外驱动臂,所述外操纵臂的一端与穿过所述第一孔的外连接轴固定连接,所述外操纵臂另一端与所述外驱动臂的一端固定连接,所述外驱动臂的另一端与所述操纵盘固定连接。
  20. 如权利要求18所述的空调进风系统,其特征在于,所述操纵盘为圆盘形,且所述内轨道和所述外轨道分别位于所述圆盘的两个侧面上。
  21. 如权利要求18所述的空调进风系统,其特征在于,还包括操纵盘基座,所述操纵盘基座的一面与所述操纵盘贴合并固定,另一面与所述电机固定,以通过所述电机带动所述操纵盘基座和所述操纵盘旋转。
  22. 如权利要求21所述的空调进风系统,其特征在于,所述操纵盘基座包括通孔,所述外驱动臂穿过所述通孔与所述操纵盘固定连接。
  23. 如权利要求18所述的空调进风系统,其特征在于,所述电机为步进式电机。
  24. 如权利要求18所述的空调进风系统,其特征在于,还包括新风进风管道,所述新风进风管道与所述外进风口空气连通。
  25. 一种车辆,其特征在于,包括如权利要求18-24任一项所述的空调进风系统。
PCT/CN2021/077931 2020-03-10 2021-02-25 车辆用空调系统的操作方法 WO2021179913A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21767904.2A EP4119370A4 (en) 2020-03-10 2021-02-25 METHOD FOR OPERATING AN AIR CONDITIONING SYSTEM FOR VEHICLE
US17/910,560 US20230150337A1 (en) 2020-03-10 2021-02-25 Operating method for air conditioning system for vehicle, and air-intake system thereof, and vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020294594.2U CN212046778U (zh) 2020-03-10 2020-03-10 车辆用空调进风系统和车辆
CN202010162881.2 2020-03-10
CN202020294594.2 2020-03-10
CN202010162881.2A CN111284295B (zh) 2020-03-10 2020-03-10 车辆用空调系统的操作方法

Publications (1)

Publication Number Publication Date
WO2021179913A1 true WO2021179913A1 (zh) 2021-09-16

Family

ID=77671218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077931 WO2021179913A1 (zh) 2020-03-10 2021-02-25 车辆用空调系统的操作方法

Country Status (3)

Country Link
US (1) US20230150337A1 (zh)
EP (1) EP4119370A4 (zh)
WO (1) WO2021179913A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506191A (zh) * 2022-01-26 2022-05-17 武汉格罗夫氢能汽车有限公司 氢能汽车的智能换气控制方法、终端设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403524A (zh) * 2008-11-17 2009-04-08 上海德科电子仪表有限公司 空调控制系统
JP2012218634A (ja) * 2011-04-12 2012-11-12 Honda Motor Co Ltd 車両用空調装置
CN106274352A (zh) * 2015-05-15 2017-01-04 杭州三花研究院有限公司 空调系统的进风装置、空调系统及空调系统的控制方法
WO2018047463A1 (ja) * 2016-09-08 2018-03-15 株式会社デンソー 車両用空調装置
CN110103664A (zh) * 2019-04-23 2019-08-09 浙江合众新能源汽车有限公司 一种汽车空调的节能控制方法及装置
CN209305298U (zh) * 2019-01-04 2019-08-27 重庆三电汽车空调有限公司 车用热泵空调双风门结构
CN212046778U (zh) * 2020-03-10 2020-12-01 长城汽车股份有限公司 车辆用空调进风系统和车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206826357U (zh) * 2017-06-07 2018-01-02 东风贝洱热系统有限公司 一种汽车空调内外循环进气机构
CN207257295U (zh) * 2017-10-16 2018-04-20 南方英特空调有限公司 一种汽车空调的进风箱
CN108749509B (zh) * 2018-04-23 2022-03-08 重庆长安汽车股份有限公司 提升汽车空调采暖性能的方法
CN209972117U (zh) * 2019-04-12 2020-01-21 空调国际(上海)有限公司 进风箱混风模式下的防窜风结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403524A (zh) * 2008-11-17 2009-04-08 上海德科电子仪表有限公司 空调控制系统
JP2012218634A (ja) * 2011-04-12 2012-11-12 Honda Motor Co Ltd 車両用空調装置
CN106274352A (zh) * 2015-05-15 2017-01-04 杭州三花研究院有限公司 空调系统的进风装置、空调系统及空调系统的控制方法
WO2018047463A1 (ja) * 2016-09-08 2018-03-15 株式会社デンソー 車両用空調装置
CN209305298U (zh) * 2019-01-04 2019-08-27 重庆三电汽车空调有限公司 车用热泵空调双风门结构
CN110103664A (zh) * 2019-04-23 2019-08-09 浙江合众新能源汽车有限公司 一种汽车空调的节能控制方法及装置
CN212046778U (zh) * 2020-03-10 2020-12-01 长城汽车股份有限公司 车辆用空调进风系统和车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506191A (zh) * 2022-01-26 2022-05-17 武汉格罗夫氢能汽车有限公司 氢能汽车的智能换气控制方法、终端设备及存储介质
CN114506191B (zh) * 2022-01-26 2023-08-08 武汉格罗夫氢能汽车有限公司 氢能汽车的智能换气控制方法、终端设备及存储介质

Also Published As

Publication number Publication date
EP4119370A1 (en) 2023-01-18
EP4119370A4 (en) 2023-09-06
US20230150337A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
CN111284295B (zh) 车辆用空调系统的操作方法
JPH05229333A (ja) 車両用ヒートポンプ式冷暖房装置
CN1900613A (zh) 回风调温轿车空调
CN108749509B (zh) 提升汽车空调采暖性能的方法
US5706667A (en) Air conditioning apparatus
WO2021179913A1 (zh) 车辆用空调系统的操作方法
CN110116602B (zh) 一种用于新能源汽车的暖通空调箱
CN212046778U (zh) 车辆用空调进风系统和车辆
CN105882352B (zh) 一种汽车空调进风系统
CN110962543A (zh) 一种汽车空调机构
CN111981571B (zh) 壁挂式空调室内机、空调器及其送风方法
CN210821732U (zh) 一种微型纯电动客车用内置空调系统
CN211641760U (zh) 汽车空调
KR20100010144A (ko) 차량용 공기조화기의 내외기 제어장치 및 그 방법
CN110329040A (zh) 一种车载空调进风箱风门结构
JPS602965Y2 (ja) 自動車用空調装置
JPS6317109A (ja) 自動車用空調装置
JP3571852B2 (ja) 自動車用空調装置
KR20120062384A (ko) 차량용 공조장치
JPH10109516A (ja) 車両後席用空調装置
CN217553634U (zh) 一种进风箱
CN214746090U (zh) 一种导风组件及空调器
CN221090422U (zh) Hvac系统及车辆
JPH06219135A (ja) 車両用冷暖房装置
KR101578103B1 (ko) 차량용 전후석 공조장치의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767904

Country of ref document: EP

Effective date: 20221010