WO2021177569A1 - 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편 - Google Patents

박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편 Download PDF

Info

Publication number
WO2021177569A1
WO2021177569A1 PCT/KR2020/019049 KR2020019049W WO2021177569A1 WO 2021177569 A1 WO2021177569 A1 WO 2021177569A1 KR 2020019049 W KR2020019049 W KR 2020019049W WO 2021177569 A1 WO2021177569 A1 WO 2021177569A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film specimen
speckle pattern
specimen
range
Prior art date
Application number
PCT/KR2020/019049
Other languages
English (en)
French (fr)
Inventor
이한솔
최지순
최용석
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/774,288 priority Critical patent/US20220390337A1/en
Priority to CN202080078016.8A priority patent/CN114729862A/zh
Priority to EP20922682.8A priority patent/EP4036551A4/en
Publication of WO2021177569A1 publication Critical patent/WO2021177569A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0268Dumb-bell specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0652Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors using contrasting ink, painting, staining
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for evaluating physical properties of a thin film specimen and a thin film specimen for a tensile test test, and more particularly, to a method for evaluating physical properties of a thin film specimen using digital image correlation analysis and a thin film specimen for a tensile test test.
  • a lithium secondary battery is widely used as an energy source for various electronic products as well as various mobile devices in that it has high energy density and operating voltage and excellent preservation and lifespan characteristics.
  • secondary batteries are attracting attention as an energy source for electric vehicles or hybrid electric vehicles, which have been proposed as a solution to air pollution, such as conventional gasoline and diesel vehicles using fossil fuels.
  • high-power batteries are required.
  • Such a secondary battery is being developed as a model capable of realizing high voltage and high capacity according to the needs of consumers. An optimization process of the electrolyte is required.
  • the electrode current collector of the secondary battery is a thin film material of a micrometer level is used. Since a mechanical/environmental load is applied to the electrode current collector in the secondary battery manufacturing process, the electrode current collector is sampled in the form of a specimen after each specific step process and the mechanical performance (physical properties) is evaluated to determine the mechanical performance of the secondary battery, which is the final product. Check for occurrence.
  • a uniaxial tensile test method is widely used to evaluate the mechanical performance of the electrode current collector. Specifically, a tensile test is performed by preparing a tensile specimen for the electrode current collector in the form of a metal thin film tensile test standard (ASTM E345) (FIG. 1(a)).
  • ASTM E345 metal thin film tensile test standard
  • FIG. 1(b) there is a problem that abnormal material breakage occurs frequently at locations other than the gage point distance due to the characteristics of the thin film current collector specimen having a thickness of ⁇ m during the tensile test. This not only reduces the reliability of the measurement properties, but also causes an increase in the number of tests for spec in/out evaluation, thereby increasing the inspection cost and process time.
  • Patent Document 1 Japanese Patent No. 4560079
  • the present invention is to solve the above problems, and it is possible to suppress abnormal breakage during a tensile test of a thin film specimen, and a method for evaluating physical properties of a thin film specimen and a tensile test using a digital image correlation analysis that can increase the reliability of measured physical properties
  • An object of the present invention is to provide a thin film specimen for testing.
  • the method for evaluating the properties of a thin film specimen includes measuring the tensile strength of the thin film specimen by applying tensile forces in opposite directions while fixing the grip portion of the thin film specimen having a speckle pattern formed thereon, analyzing the strain rate of the speckle pattern while applying a tensile force to the specimen, wherein the thin film specimen on which the speckle pattern is formed has the length of the width (a) of the parallel part and the width (b) of the grip part
  • the ratio (a: b) is in the range of 1: 2 to 6
  • the length ratio (c: d) of the gage length (c) to the total length (d) of the thin film specimen is in the range of 1: 4 to 7.
  • analyzing the strain rate of the speckle pattern may include: continuously or sequentially photographing the surface of the thin film specimen with a camera; and analyzing the strain rate of the speckle pattern using a digital image correlation analysis (DIC) technique by comparing the images before and after imaging.
  • DIC digital image correlation analysis
  • the step of analyzing the strain of the speckle pattern by the digital image correlation analysis technique measures the length strain (L/D) with respect to the diameter of the speckle pattern.
  • the step of analyzing the strain rate of the speckle pattern by the digital image correlation analysis technique is to divide the area in the thin film specimen, and determine the length strain (L/D) for the area of the speckle pattern for each area. By comparison, the fracture site of the thin-film specimen is predicted.
  • the average width of the parallel portion of the thin film specimen is in the range of 8 to 12 mm, and the gage distance of the thin film specimen is in the average range of 50 to 70 mm.
  • the thin film specimen includes first and second shoulder portions each having curvatures formed on the outer and inner surfaces between the parallel portion and the grip portion, and the first and second shoulder portions are expressed by Equation 1 below. Satisfies:
  • R 1 represents the radius of curvature of the first shoulder and ranges from 23 to 27 mm
  • R 2 represents the radius of curvature of the second shoulder, and ranges from 23 to 27 mm.
  • the grip portion of the thin film specimen includes an anti-slip protrusion, and the number of dots of the speckle pattern formed on the thin film specimen may be in the range of 50 to 300 pieces/cm 2 .
  • the method further comprises forming a speckle pattern on the surface of the thin-film specimen, wherein the forming of the speckle pattern on the surface of the thin-film specimen includes applying paint contrasting with the color of the thin-film specimen on the surface of the thin-film specimen. spray with a spray
  • the speckle pattern has fluidity. Specifically, after forming a pattern by spraying paint on the surface of the thin film specimen, a tensile test may be performed within 3 to 10 minutes.
  • the thin film specimen may be an electrode, a current collector, or a separator of a secondary battery.
  • the present invention provides a thin film specimen for a tensile test test.
  • the length ratio (a:b) of the width (a) of the parallel part and the width (b) of the grip part is 1: 2 to 6
  • the parallel part of the thin film specimen is The width is in the range of 8 to 12 mm on average
  • the length ratio (c: d) of the gage length (c) to the total length (d) of the thin film specimen is 1: 4 to 7
  • the gage distance of the thin film specimen is 50 to 70 mm on average. range
  • a speckle pattern is formed on the surface.
  • the thin film specimen includes first and second shoulder portions each having curvatures formed on the outer and inner surfaces between the parallel portion and the grip portion, wherein the first and second shoulder portions are expressed by Equation 1 below. Satisfies:
  • R 1 represents the radius of curvature of the first shoulder and ranges from 23 to 27 mm
  • R 2 represents the radius of curvature of the second shoulder, and ranges from 23 to 27 mm.
  • the speckle pattern formed on the surface of the thin film specimen is characterized in that it has fluidity.
  • the strain of the speckle pattern formed on the thin film specimen is analyzed using a digital image correlation analysis technique, and the reliability of the measured physical properties can be increased, and it has the effect of suppressing abnormal breakage of thin-film specimens.
  • FIG. 1 is a view showing a conventional ASTM E345 standard specimen for a thin metal film.
  • FIG. 2 is a photograph showing that abnormal failure occurred when a tensile test was performed using the ASTM E345 standard specimen shown in FIG. 1 .
  • FIG 3 is a schematic view showing a thin film specimen according to an embodiment of the present invention.
  • Example 4 is a view showing the specifications of the thin film specimen prepared in Example 1.
  • Example 5 is a photograph showing a portion where fracture occurred when the thin film specimen of Example 1 was subjected to a tensile test with a tensile tester.
  • FIG. 6 is a schematic view of a speckle pattern in a photograph taken just before the fracture of the thin film specimen.
  • FIG. 7 is a photograph showing a fractured portion when the thin film specimen of Comparative Example 1 was subjected to a tensile test using a tensile tester.
  • FIG. 8 is a diagram schematically illustrating a speckle pattern in a photograph taken just before the fracture of the thin film specimen.
  • “under” another part this includes not only cases where it is “directly under” another part, but also cases where another part is in between.
  • “on” may include the case of being disposed not only on the upper part but also on the lower part.
  • the present invention relates to a method for evaluating physical properties of a thin film specimen using digital image correlation analysis and a thin film specimen for a tensile test test.
  • the strain with respect to the diameter of the speckle pattern formed on the specimen is measured using a digital image correlation analysis (DIC) technique, and the fracture site of the thin film specimen can be predicted using this.
  • the digital image correlation analysis is a method that can evaluate the displacement and strain generated in the specimen in the entire area, and by analyzing digital image information using randomly distributed speckle patterns, before and after deformation of the specimen Digital image correlation can be identified using mathematically well-defined functions. Accordingly, it is possible to evaluate the entire area of interest of the deformable body.
  • the digital image correlation analysis can obtain a speckle pattern of the surface of a specimen as a digital image by a CCD camera, it is much simpler than a typical visual measurement, so that automatic and non-contact measurement is possible.
  • the strain of the speckle pattern formed on the thin film specimen is analyzed by digital image correlation analysis (DIC). , Digital Image Correlation) technique, it is possible to increase the reliability of the measured properties and to suppress abnormal breakage of thin film specimens.
  • DIC digital image correlation analysis
  • the method for evaluating the physical properties of a thin film specimen using digital image correlation analysis comprises the steps of measuring the tensile strength of a thin film specimen by applying tensile forces in opposite directions while fixing the grip part of the thin film specimen having a speckle pattern formed thereon. performing, but analyzing the strain rate of the speckle pattern while applying a tensile force to the thin film specimen.
  • the method for evaluating physical properties of a thin film specimen of the present invention further includes forming a speckle pattern on the surface of the thin film specimen.
  • forming a speckle pattern means forming a dot pattern such as a small spot on a thin film specimen, and forming a pigment such as paint by spraying.
  • a method of forming the speckle pattern will be described in detail.
  • the thin film specimen may be a thin metal thin film specimen having a thickness of 0.5-30 ⁇ m, and may be an electrode of the secondary battery, a current collector, or a metal thin film made of a separator material.
  • the metal thin film is sampled in the form of a specimen, and mechanical performance (physical properties) is evaluated to examine whether a problem occurs in the mechanical performance of the secondary battery, which is the final product.
  • the electrode may be a specimen to which a double-sided coating is applied. For example, it may refer to an electrode having a coating layer/current collector/coating layer structure.
  • the step of forming the speckle pattern on the surface of the thin film specimen is to form a speckle pattern by dots on the surface of the thin film specimen, and paint such as an oil paint may be sprayed.
  • paint such as an oil paint
  • the paint sprayed on the thin film specimen is a color contrasting with the color of the thin film specimen.
  • white paint may be sprayed on the black electrode (electrode coating layer), and black paint may be sprayed on the white separator.
  • a speckle pattern can be formed by spraying white paint on a current collector such as aluminum or an aluminum alloy to uniformly apply it to the surface of the specimen, drying it completely, and then spraying black paint again.
  • the paint for forming the speckle pattern is preferably scattered so that the pattern can be recognized in the digital image correlation analysis to be described later, rather than being applied entirely to the specimen, and the speckle pattern may be irregularly formed. .
  • the speckle pattern irregularly forms dots having a diameter of 1 to 10 ⁇ m on the thin film specimen.
  • the dot size of the speckle pattern is uniform.
  • the dot number of the speckle pattern may be more per unit area of 50 to 300 / cm 2, or from 100 to 200 / cm 2. If the number of dots of the speckle pattern is less than 50/cm 2 or more than 300/cm 2 per unit area, it may be difficult to recognize the pattern before/after deformation, so the number of dots of the speckle pattern per unit area 50 to 300 pieces/cm 2 are preferred.
  • the speckle pattern formed on the thin film specimen has fluidity. This is to measure the length strain (L/D) with respect to the diameter of the speckle pattern in the digital image correlation analysis step, which will be described later.
  • L/D length strain
  • a tensile test can be performed within 3 to 10 minutes after forming a pattern by spraying paint on the surface of the thin film specimen.
  • a step of measuring the tensile strength of the thin film specimen is performed by applying tensile forces in opposite directions while fixing the grip portion of the thin film specimen having a speckle pattern formed thereon, and while applying the tensile force to the thin film specimen, speckle and analyzing the strain rate of the pattern.
  • the steps of measuring the tensile strength of the thin film specimen, photographing the surface of the thin film specimen with a camera, and digital image correlation analysis by comparing images before and after photographing were classified into stages, but these processes are can be performed simultaneously.
  • the surface of the thin film specimen is continuously photographed with a camera, and at the same time, digital image analysis is possible.
  • the grip portion of the thin film specimen is fastened to a tensile tester.
  • an adhesive such as a double-sided tape may be applied to the surface of the grip part, and then the thin film specimen may be fastened to the tensile tester.
  • the tensile test can be performed by setting the load speed to 1 mm/min or less.
  • the tensile strength of the thin film specimen can be measured using a micro tensile tester (instron 5943) equipped with a 1 kN class load cell.
  • the step of analyzing the strain rate of the speckle pattern may include: continuously or sequentially photographing the surface of the thin film specimen with a camera; and analyzing the strain rate of the speckle pattern using a digital image correlation analysis (DIC) technique by comparing the images before and after imaging.
  • DIC digital image correlation analysis
  • an image may be obtained by continuously photographing the surface of the specimen thin film while measuring the tensile strength.
  • a method of obtaining an image may use a photographing apparatus such as a digital camera, a high-speed camera, a camcorder, an optical microscope, or a scanning electron microscope.
  • a photographing apparatus such as a digital camera, a high-speed camera, a camcorder, an optical microscope, or a scanning electron microscope.
  • it may be a CCD camera capable of continuously photographing the surface of the thin film specimen.
  • the speckle pattern formed on the thin film specimen must have fluidity, as described above, it is preferable to perform a tensile test within 3 to 10 minutes after forming the pattern by spraying paint on the surface of the thin film specimen. do. Specifically, a tensile test can be performed within 3 minutes to 10 minutes, 4 minutes to 9 minutes, 5 minutes to 8 minutes, or 6 minutes to 7 minutes after forming a pattern by spraying paint on the surface of the thin film specimen. have.
  • the tensile test is performed less than 3 minutes after forming the speckle pattern, although the formed speckle pattern has fluidity, a problem of flowing down in the direction of gravity during the tensile test may occur, and the speckle pattern may be formed If the tensile test is performed at a time exceeding 10 minutes after completion of the test, the length of the speckle pattern does not change even though the formed speckle pattern is dried and a tensile force is applied to the thin-film specimen, which will be described later. There is a problem in that it is difficult to measure the strain (L/D).
  • the thin film specimen on which the speckle pattern is formed using the digital image correlation analysis is photographed with a CCD camera, and the strain and displacement are measured by comparing and analyzing the motion before and after deformation of the speckle pattern in a certain area.
  • the digital image correlation analysis may analyze the strain rate of the speckle pattern using a conventional digital image correlation analysis.
  • the initial estimated value for the displacement of each point from the speckle pattern of the image data is selected by selecting the corresponding pattern for the reference image data in each load state.
  • the displacement in the x-axis direction and the displacement in the y-axis direction can be evaluated by obtaining the optimal matching state of the subset pixel in the reference state and the subset pixel in the load state from the initial estimate. The best match is obtained by minimizing the error function given by the gray level term representing the subset.
  • This method analyzes the randomly distributed gray level intensity and optimizes the gray level intensity between digital images at different times of transformation.
  • the digital image correlation analysis according to the present invention is characterized by measuring the length strain (L/D) with respect to the diameter of the speckle pattern formed on the thin film specimen.
  • the diameter of the speckle pattern having fluidity is deformed according to the tensile direction, and in particular, the strain (L/D) may be large in the portion where the stress is concentrated.
  • the step of analyzing the strain of the speckle pattern by the digital image correlation analysis technique is to classify regions in the thin film specimen, and compare the length strain (L/D) with respect to the area of the speckle pattern for each region.
  • the fracture site of the thin film specimen is predicted.
  • the portion where the stress of the thin film specimen is concentrated may have a large length strain (L/D) with respect to the diameter of the speckle pattern, and The fracture of the thin-film specimen may occur where the length strain (L/D) is greatest. That is, by dividing the region of the thin film specimen and comparing the strain (L/D) of the speckle pattern for each region, the fracture site of the thin film specimen can be predicted. Accordingly, the reliability of the physical properties of the thin film specimen can be improved.
  • the length ratio (a:b) of the width (a) of the parallel part and the width (b) of the grip part is in the range of 1: 2 to 6 and the length ratio (c: d) of the gage length (c) and the total length (d) of the thin film specimen is in the range of 1: 4 to 7.
  • the length ratio (a:b) of the width (a) of the parallel portion and the width (b) of the grip portion may be in the range of 1:2 to 6, or in the range of 1:3 to 5.
  • a length ratio (a:b) of the width (a) of the parallel portion and the width (b) of the grip portion may be 1:4. If the width (b) of the grip part is less than 2 compared to the width (a) of the parallel part, the length of the width (b) of the grip part compared to the width (a) of the parallel part is too narrow.
  • the applied stress may be concentrated and breakage may occur in a part other than the gage distance of the thin film specimen.
  • the width (b) of the grip portion exceeds 6 compared to the width (a) of the parallel portion, the difference in length between the width of the parallel portion and the grip portion of the thin film specimen is large, and as described above, damage at a portion other than the gage point distance of the thin film specimen This can happen.
  • the width (a) of the parallel portion of the thin film specimen may be in the range of 8 to 12 mm on average, in the range of 8.5 to 11.5 mm, in the range of 9 to 11 mm, in the range of 9.5 to 10.5 mm, or in the range of 10 mm.
  • the width b of the grip portion may be in the range of 16 to 72 mm, 18 to 66 mm, 20 to 60 mm, 30 to 50 mm, 35 to 45 mm, or 40 mm.
  • the width (a) of the parallel portion of the thin film specimen may be 10 mm
  • the width (b) of the grip portion may be 40 mm.
  • the length ratio (c: d) of the gage length (c) and the total length (d) of the thin film specimen may be in the range of 1: 4 to 7, or in the range of 1: 4.5 to 6.5, or 1: It may range from 5 to 6.
  • the length ratio (c:d) of the gage length (c) and the total length (d) of the thin film specimen may be 1:5. If the total length (d) of the thin film specimen is less than 4 or more than 7 compared to the gage distance (c), the stress applied to the grip part of the specimen during the tensile test is concentrated in the portion other than the gage distance of the thin film specimen. damage may occur.
  • the gage point distance c of the thin film specimen may be in the range of 50 to 70 mm, on average, in the range of 53 to 67 mm, in the range of 55 to 65 mm, in the range of 58 to 62 mm, or in the range of 60 mm.
  • the total length (d) of the thin film specimen may be in the range of 200 to 500 mm, in the range of 230 to 450 mm, in the range of 260 to 400 mm, in the range of 280 to 350 mm, or 300 mm.
  • the gage point distance c of the thin film specimen may be about 60 mm, and the total length d of the thin film specimen may be about 300 mm.
  • the ratio of the width (a) to the gage distance (c) of the parallel portion of the thin film specimen may be in the range of 1: 5 to 7, in the range of 1: 5.3 to 6.7, or in the range of 1: 5.6 to 6.3. .
  • the ratio of the width (a) of the parallel part of the thin film specimen to the gage distance (c) may be 1:6. If the gage distance (c) of the thin film specimen is less than 5 or more than 7 compared to the width (a) of the parallel part, the gage distance (c) compared to the width (a) of the parallel part is too short or too long, so a tensile test is performed. can be difficult to perform. Therefore, the ratio of the width (a) of the parallel part of the thin film specimen to the gage distance (c) is preferably in the above-mentioned range.
  • the thin film specimen includes a first shoulder portion (R 1 ) and a second shoulder portion (R 2 ) each having curvatures formed on the outer and inner surfaces between the parallel portion and the grip portion, and the first , 2
  • the shoulder portion is characterized in that the following formula 1 is satisfied.
  • R 1 represents the radius of curvature of the first shoulder and ranges from 23 to 27 mm
  • R 2 represents the radius of curvature of the second shoulder, and ranges from 23 to 27 mm.
  • Equation 1 it is possible to uniformly distribute the stress of the parallel portion in the thin film specimen, and accordingly, it is possible to suppress abnormal breakage during the tensile test of the thin film specimen.
  • the radius of curvature of the first shoulder portion may be in the range of 23 to 27 mm, and may be in the range of 24 to 26 mm or 25 mm.
  • the radius of curvature of the second shoulder may be in the range of 23 to 27 mm, and may be in the range of 24 to 26 mm or 25 mm. If the radius of curvature of the first shoulder and the second shoulder is less than 23 mm, stress may be concentrated in the grip portion, and fracture may occur in the grip portion rather than the parallel portion during the tensile test of the thin film specimen.
  • the radius of curvature of the first shoulder portion and the second shoulder portion exceeds 27 mm, the area of the grip portion may be enlarged or reduced, so that stress may be concentrated on the grip portion. Accordingly, it is preferable that the first shoulder and the second shoulder have a radius of curvature in the above-mentioned range.
  • Equation 1 is the stress in the parallel part of the case is outside the values of R 1 and R means 2 is very small radius of curvature difference and the expression 1, the difference between R 1 and R 2, the radius of curvature occurs A problem of difficulty in uniformly dispersing may occur. Therefore, it is preferable that R 1 and R 2 satisfy Formula 1.
  • the grip portion of the thin film specimen of the present invention may include an anti-slip protrusion on the surface.
  • the anti-slip protrusion is for easily fastening the grip part of the thin film specimen to the tensile tester, and is to prevent the thin film specimen from being detached from the tensile tester during the tensile test.
  • the anti-slip protrusion may be formed on the grip portion in a direction perpendicular to the tensile direction.
  • an adhesive such as double-sided tape may be applied to the surface of the grip portion.
  • the present invention provides a thin film specimen for a tensile test test.
  • the length ratio (a:b) of the width (a) of the parallel part and the width (b) of the grip part is in the range of 1: 3 to 6
  • the width of the parallel part of the thin film specimen is The average range is 8 to 12 mm
  • the length ratio (c: d) of the gage length (c) to the total length (d) of the thin film specimen is in the range of 1: 4 to 7
  • the gage distance of the thin film specimen is in the range of 50 to 70 mm on average.
  • a speckle pattern is formed on the surface.
  • the length ratio (a:b) of the width (a) of the parallel portion and the width (b) of the grip portion may be in the range of 1:2 to 6, or in the range of 1:3 to 5.
  • a length ratio (a:b) of the width (a) of the parallel portion and the width (b) of the grip portion may be 1:4. If the width (b) of the grip part is less than 2 compared to the width (a) of the parallel part, the length of the width (b) of the grip part compared to the width (a) of the parallel part is too narrow.
  • the applied stress may be concentrated and breakage may occur in a part other than the gage distance of the thin film specimen.
  • the width (b) of the grip portion exceeds 6 compared to the width (a) of the parallel portion, the difference in length between the width of the parallel portion and the grip portion of the thin film specimen is large, and as described above, damage at a portion other than the gage point distance of the thin film specimen This can happen.
  • the width (a) of the parallel portion of the thin film specimen may be in the range of 8 to 12 mm, on average, in the range of 8.5 to 11.5 mm, in the range of 9 to 11 mm, in the range of 9.5 to 10.5 mm, or in the range of 10 mm.
  • the width b of the grip portion may be in the range of 16 to 72 mm, in the range of 18 to 66 mm, in the range of 20 to 60 mm, in the range of 30 to 50 mm, in the range of 35 to 45 mm, or in the range of 40 mm.
  • the width (a) of the parallel portion of the thin film specimen may be 10 mm
  • the width (b) of the grip portion may be 40 mm.
  • the length ratio (c: d) of the gage length (c) and the total length (d) of the thin film specimen may be in the range of 1: 4 to 7, or in the range of 1: 4.5 to 6.5, or 1: 5 It may range from 6 to 6.
  • the length ratio (c:d) of the gage length (c) and the total length (d) of the thin film specimen may be 1:5. If the total length (d) of the thin film specimen is less than 4 or more than 7 compared to the gage distance (c), the stress applied to the grip part of the specimen during the tensile test is concentrated in the portion other than the gage distance of the thin film specimen. damage may occur.
  • the gage point distance c of the thin film specimen may be in the range of 50 to 70 mm, on average, in the range of 53 to 67 mm, in the range of 55 to 65 mm, in the range of 58 to 62 mm, or in the range of 60 mm.
  • the total length (d) of the thin film specimen may be in the range of 200 to 500 mm, 230 to 450 mm, 260 to 400 mm, 280 to 350 mm, or 300 mm.
  • the gage point distance c of the thin film specimen may be about 60 mm, and the total length d of the thin film specimen may be about 300 mm.
  • the ratio of the width (a) to the gage distance (c) of the parallel portion of the thin film specimen may be in the range of 1: 5 to 7, in the range of 1: 5.3 to 6.7, or in the range of 1: 5.6 to 6.3. .
  • the ratio of the width (a) of the parallel part of the thin film specimen to the gage distance (c) may be 1:6. If the gage distance (c) of the thin film specimen is less than 5 or more than 7 compared to the width (a) of the parallel part, the gage distance (c) compared to the width (a) of the parallel part is too short or too long, so a tensile test is performed. can be difficult to perform. Therefore, the ratio of the width (a) of the parallel part of the thin film specimen to the gage distance (c) is preferably in the above-mentioned range.
  • the thin film specimen includes a first shoulder portion (R 1 ) and a second shoulder portion (R 2 ) each having curvatures formed on the outer and inner surfaces between the parallel portion and the grip portion, and the first , 2
  • the shoulder portion is characterized in that the following formula 1 is satisfied.
  • R 1 represents the radius of curvature of the first shoulder and ranges from 23 to 27 mm
  • R 2 represents the radius of curvature of the second shoulder, and ranges from 23 to 27 mm.
  • Equation 1 it is possible to uniformly distribute the stress of the parallel portion in the thin film specimen, and accordingly, it is possible to suppress abnormal breakage during the tensile test of the thin film specimen.
  • the radius of curvature of the first shoulder portion may be in the range of 23 to 27 mm, and may be in the range of 24 to 26 mm or 25 mm.
  • the radius of curvature of the second shoulder may be in the range of 23 to 27 mm, and may be in the range of 24 to 26 mm or 25 mm. If the radius of curvature of the first shoulder and the second shoulder is less than 23 mm, stress may be concentrated in the grip portion, and fracture may occur in the grip portion rather than the parallel portion during the tensile test of the thin film specimen.
  • the radius of curvature of the first shoulder and the second shoulder exceeds 27 mm, the area of the grip portion may be enlarged or reduced, so that stress may be concentrated on the grip portion. Accordingly, it is preferable that the first shoulder and the second shoulder have a radius of curvature in the above-mentioned range.
  • the thin film specimen grip portion of the present invention may include an anti-slip protrusion on the surface.
  • the anti-slip protrusion is for easily fastening the grip part of the thin film specimen to the tensile tester, and is to prevent the thin film specimen from being detached from the tensile tester during the tensile test.
  • the anti-slip protrusion may be formed on the grip portion in a direction perpendicular to the tensile direction.
  • an adhesive such as double-sided tape may be applied to the surface of the grip portion.
  • the speckle pattern formed on the surface of the thin film specimen has fluidity when the physical property evaluation is applied.
  • the length strain (L/D) of the speckle pattern is measured.
  • the diameter of the speckle pattern before deformation can be deformed. have.
  • a thin film specimen was prepared by cutting an aluminum alloy having a thickness of about 20 ⁇ m using a press cutter. At this time, the thin film specimen was cut under the following conditions (see FIG. 4 ).
  • OHP films were attached to both sides of the grip part of the thin film specimen. And, the center mark line perpendicular to the horizontal part of the specimen was marked. This is to align the sample with the grip of the tensile tester. Then, a double-sided tape was attached to the grip portion of the thin film specimen. The double-sided tape was attached to the front and back surfaces of the grip part.
  • a white pigment was sprayed on the front surface of the thin film specimen from a certain distance, uniformly applied to the surface of the test piece, dried completely, and a black speckle pattern was formed again using black paint.
  • a thin film specimen was prepared by cutting a polyethylene substrate having a thickness of about 15 ⁇ m to the same size as in Example 1 using a press cutter.
  • a speckle pattern was formed in the same manner as in Example 1.
  • a black speckle pattern was formed by directly using black paint without applying a white pigment to the thin film specimen.
  • a thin film in which graphite was applied on both sides of a copper thin film having a thickness of about 10 ⁇ m was prepared. Then, a thin film specimen was prepared by cutting it to the same size as in Example 1. At this time, the thickness of the thin film specimen was about 20 ⁇ m.
  • Example 2 a speckle pattern was formed in the same manner as in Example 1. However, white paint was directly sprayed on the thin film specimen to form a white speckle pattern.
  • a thin film specimen was prepared by cutting an aluminum alloy having a thickness of about 0.5 ⁇ m using a press cutter. At this time, the thin film specimen was cut with ASTM E345 standard specimen for metal thin film, and the specific conditions were cut under the following conditions (see FIG. 1).
  • Example 1 and Comparative Example 1 were installed in a micro tensile tester (Instron 5943), respectively, and the tensile strength of the thin film specimens was measured.
  • the thin film specimen was fastened to a tensile tester, and a speckle pattern was formed on the thin film specimen and fastened 5 minutes later.
  • the load was set to "0", and it was performed at room temperature by controlling a speed of 1 mm/min or less in the tensile direction.
  • deformed images of the speckle pattern were continuously taken with a CCD camera, and the strain of the speckle pattern was analyzed using a DIC analysis program.
  • FIG. 5 is a photograph showing a portion where fracture occurred when the thin film specimen of Example 1 was subjected to a tensile test with a tensile tester
  • FIG. 6 is a schematic view of a speckle pattern in a photograph taken immediately before fracture of the thin film specimen.
  • Example 1 it can be confirmed that fracture occurred within the gage distance of the thin film specimen, and referring to FIG. 6 , it can be confirmed that the speckle factor of the thin film specimen of Example 1 was deformed.
  • L/D length strain with respect to the diameter of the speckle pattern formed at the fracture site is greater than that of the speckle pattern formed on the grip portion.
  • FIG. 7 is a photograph showing a portion where fracture occurred when the thin film specimen of Comparative Example 1 was subjected to a tensile test with a tensile tester, and FIG. Referring to FIG. 7 , in Comparative Example 1, it can be confirmed that the fracture occurred at the grip portion outside the gage point. In addition, referring to FIG. 8 , it can be seen that the length strain (L/D) with respect to the diameter of the speckle pattern is large in the grip part where the fracture occurs.

Abstract

본 발명은 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편에 관한 것으로, 박막 시편의 인장시험 시, 박막 시편에 형성된 스펙클 패턴의 변형률을 디지털 이미지 상관분석 기법으로 분석함으로써, 측정되는 물성의 신뢰성을 높일 수 있으며, 금속 박막 시편의 비정상 파손을 억제할 수 있는 효과가 있다.

Description

박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편
본 출원은 2020.03.04.자 한국 특허 출원 제10-2020-0027190호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편에 관한 것으로, 보다 상세하게는 디지털 이미지 상관분석을 이용한 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요의 증가로, 이차전지의 수요 또한 급격히 증가하고 있다. 그 중에서도, 리튬 이차전지는 에너지 밀도와 작동전압이 높고 보존과 수명 특성이 우수하다는 점에서, 각종 모바일 기기는 물론 다양한 전자 제품들의 에너지원으로 널리 사용되고 있다.
또한, 이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차 또는 하이브리드 전기자동차 등의 에너지원으로 주목받고 있다. 전기자동차의 에너지원으로 적용하기 위해서는 고출력의 전지가 필요하다.
이러한 이차전지는, 소비자의 요구에 의해 고전압 및 고용량을 구현할 수 있는 모델로 개발이 진행되고 있는데, 고용량을 구현하기 위해서는, 제한된 공간 내에 이차전지의 4대 요소인 양극재, 음극재, 분리막, 및 전해액의 최적화 공정이 요구된다.
한편, 이차전지의 전극 집전체는 마이크로미터 수준의 얇은 박막 재료가 이용된다. 이차전지 제조 공정에서 기계적/환경적 하중이 전극 집전체에 인가되므로, 특정 단계 공정 이후마다 전극 집전체를 시편 형태로 샘플링하고, 기계적 성능(물성)을 평가하여 최종 제품인 이차전지의 기계적 성능의 문제 발생 여부를 검토한다.
통상적으로, 상기 전극 집전체의 기계적 성능을 평가하기 위하여 단축인장시험법이 널리 이용되고 있다. 구체적으로, 전극 집전체를 금속 박막 인장시험규격(ASTM E345) 형태로 인장시편을 제작하여 인장시험을 실시한다(도 1(a)). 그러나, 인장 시험시 ㎛ 두께의 박막 집전체 시편의 특성으로 인하여 표점거리 외 위치에서 비정상적인 재료 파손이 빈번하게 발생하는 문제가 있다. 이는 측정 물성의 신뢰성 감소뿐만 아니라, spec in/out 평가를 위한 시험 횟수 증가를 유발하여 검사 비용 및 공정 시간을 증가 시키는 문제를 발생시킨다(도 1(b)).
따라서, 집전체 시편의 인장시험시 비정상 파손을 억제할 수 있는 시편 개발과 집전체의 물성을 용이하게 평가할 수 있는 방법 등이 필요한 실정이다.
[선행기술문헌]
(특허문헌 1) 일본 등록특허 제4560079호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 박막 시편의 인장시험시 비정상 파손을 억제할 수 있으며, 측정 물성의 신뢰성을 높일 수 있는 디지털 이미지 상관분석을 이용한 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편을 제공하는 것을 목적으로 한다.
본 발명에 따른 박막 시편의 물성 평가방법은, 스펙클 패턴(speckle pattern)이 형성된 박막 시편의 그립부를 고정한 상태에서 서로 반대 방향으로 인장력을 가하여 박막 시편의 인장강도를 측정하는 단계를 수행하되, 박막 시편에 인장력을 가하는 동안, 스펙클 패턴의 변형률을 분석하는 단계;를 수행하며, 상기 스펙클 패턴(speckle pattern)이 형성된 박막 시편은, 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b) 가 1 : 2 내지 6 범위이며, 박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d) 가 1 : 4 내지 7 범위이다.
하나의 예에서, 스펙클 패턴의 변형률을 분석하는 단계는, 박막 시편의 표면을 카메라로 연속적으로 또는 순차적으로 촬영하는 단계; 및 촬영전과 촬영후의 이미지를 비교하여 스펙클 패턴의 변형률을 디지털 이미지 상관분석(DIC, Digital Image Correlation) 기법으로 분석하는 단계를 통해 수행한다.
다른 하나의 예에서, 스펙클 패턴의 변형률을 디지털 이미지 상관분석 기법으로 분석하는 단계는, 스펙클 패턴의 직경에 대한 길이 변형률(L/D)을 측정한다.
또 다른 하나의 예에서, 스펙클 패턴의 변형률을 디지털 이미지 상관분석 기법으로 분석하는 단계는, 박막 시편에서 영역을 구분하고, 각 영역별로 스펙클 패턴의 면적에 대한 길이 변형률(L/D)을 비교하여, 박막 시편의 파단 부위를 예측한다.
한편, 상기 박막 시편의 평행부 폭은 평균 8 내지 12 mm 범위이며, 박막 시편의 표점 거리는 평균 50 내지 70 mm 범위이다.
다른 하나의 예에서, 상기 박막 시편은 평행부와 그립부 사이에 바깥면과 안쪽면에 각각 곡률이 형성된 제1 어깨부 및 제2 어깨부를 포함하며, 상기 제1, 2 어깨부는, 하기 식 1을 만족한다:
[식 1]
|R 1/R 2| ≤ 0.1
식 1에서, R 1 은 제1 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위 이고, R 2 는 제2 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이다.
아울러, 상기 박막 시편의 그립부는, 미끄럼 방지 돌기를 포함하며, 상기 박막 시편에 형성된 스펙클 패턴의 도트(dot) 개수는, 50 내지 300 개/cm 2 범위를 포함할 수 있다.
하나의 예에서, 상기 박막 시편 표면에 스펙클 패턴을 형성하는 단계를 더 포함하며, 상기 박막 시편 표면에 스펙클 패턴을 형성하는 단계는, 박막 시편의 표면에 박막 시편의 색상과 대비되는 페인트를 스프레이로 분사한다.
다른 하나의 예에서, 상기 스펙클 패턴은 유동성을 갖는다. 구체적으로, 상기 박막 시편의 표면에 페인트를 스프레이로 분사하여 패턴을 형성한 후 3분 내지 10분 이내에 인장시험을 수행할 수 있다.
하나의 예에서, 상기 박막 시편은, 이차전지의 전극, 집전체 또는 분리막일 수 있다.
아울러, 본 발명은 인장시험 테스트용 박막 시편을 제공한다. 하나의 예에서, 본 발명에 따른 인장시험 테스트용 박막 시편은 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b) 가 1 : 2 내지 6 이며, 박막 시편의 평행부의 폭은 평균 8 내지 12 mm 범위이고, 박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d) 가 1 : 4 내지 7 이고, 박막 시편의 표점 거리는 평균 50 내지 70 mm 범위이며, 표면에 스펙클 패턴이 형성된 것을 특징으로 한다.
다른 하나의 예에서, 박막 시편은, 평행부와 그립부 사이에 바깥면과 안쪽면에 각각 곡률이 형성된 제1 어깨부 및 제2 어깨부를 포함하며, 상기 제1, 2 어깨부는, 하기 식 1을 만족한다:
[식 1]
|R 1/R 2| ≤0.1
식 1에서, R 1 은 제1 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이고, R 2 는 제2 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이다.
또 다른 하나의 예에서, 상기 물성 평가 적용시 박막 시편의 표면에 형성된 스펙클 패턴은 유동성을 갖는 상태인 것을 특징으로 한다.
본 발명의 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편에 따르면, 박막 시편의 인장시험 시, 박막 시편에 형성된 스펙클 패턴의 변형률을 디지털 이미지 상관분석 기법으로 분석함으로써, 측정되는 물성의 신뢰성을 높일 수 있으며, 박막 시편 시편의 비정상 파손을 억제할 수 있는 효과가 있다.
도 1은 종래에 금속 박막용 ASTM E345 표준 시편을 나타내는 도면이다.
도 2는 도 1에 도시된 ASTM E345 표준 시편을 이용하여 인장시험을 진행하였을 때, 비정상 파손을 발생한 것을 보여주는 사진이다.
도 3은 본 발명의 일 실시예에 따른 박막 시편을 나타낸 모식도이다.
도 4는 실시예 1 에서 제조한 박막 시편의 스펙을 보여주는 도면이다.
도 5는 실시예 1의 박막 시편을 인장시험기로 인장시험 하였을 때, 파단이 발생된 부위를 보여주는 사진이다.
도 6은 상기 박막 시편의 파단 직전 촬영한 사진에서 스펙클 패턴을 도식화한 도면이다.
도 7은 비교예 1의 박막 시편을 인장시험기로 인장시험 하였을 대, 파단이 발생된 부위를 보여주는 사진이다.
도 8은 상기 박막 시편의 파단 직전 촬영한 사진에서 스펙클 패턴을 도식화한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부뿐 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
본 발명은 디지털 이미지 상관분석을 이용한 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편에 관한 것이다.
본 발명은 디지털 이미지 상관분석(DIC, Digital Image Correlation) 기법을 사용하여 시편에 형성된 스펙클 패턴의 직경에 대한 변형률을 측정하고, 이를 이용하여 박막 시편의 파단 부위를 예측할 수 있다. 보다 구체적으로, 상기 디지털 이미지 상관분석은 시편에서 발생되는 변위 및 변형률을 전 영역에서 평가할 수 있는 방법으로, 무작위로 분포되어 있는 스펙클 패턴을 이용하여 디지털 이미지정보를 분석함으로써, 시편의 변형 전과 후의 디지털 이미지 상관관계를 수학적으로 정의가 명확한 함수를 사용하여 규명할 수 있다. 이에 따라, 변형체의 관심 있는 전 영역에서 평가가 가능하다.
아울러, 상기 디지털 이미지 상관분석은 디지털 이미지로 시편 표면의 스펙클 패턴을 CCD 카메라에 의하여 얻을 수 있기 때문에 전형적인 시각적 측정과 비교하여 볼 때 훨씬 간편하여 자동적이고 비접촉 측정이 가능한 이점이 있다.
특히, 본 발명의 디지털 이미지 상관분석을 이용한 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편에 따르면, 박막 시편의 인장시험 시, 박막 시편에 형성된 스펙클 패턴의 변형률을 디지털 이미지 상관분석(DIC, Digital Image Correlation) 기법으로 분석함으로써, 측정되는 물성의 신뢰성을 높일 수 있으며, 박막 시편의 비정상 파손을 억제할 수 있는 효과가 있다.
이하, 본 발명의 디지털 이미지 상관분석을 이용한 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편을 상세하게 설명한다.
본 발명에 따른 디지털 이미지 상관분석을 이용한 박막 시편의 물성 평가방법은 스펙클 패턴(speckle pattern)이 형성된 박막 시편의 그립부를 고정한 상태에서 서로 반대 방향으로 인장력을 가하여 박막 시편의 인장강도를 측정하는 단계를 수행하되, 박막 시편에 인장력을 가하는 동안, 스펙클 패턴의 변형률을 분석하는 단계를 포함한다.
하나의 예에서, 본 발명의 박막 시편의 물성 평가방법은 박막 시편 표면에 스펙클 패턴을 형성하는 단계를 더 포함한다.
본 발명에서 "스펙클 패턴(speckle pattern)을 형성한다 함은" 박막 시편에 작은 반점과 같은 도트(dot) 무늬를 형성하는 것으로, 페인트와 같은 안료를 스프레이 분사에 의해서 형성하는 것을 의미한다. 이하, 스펙클 패턴의 형성 방법에 대해서는 상세하게 설명하도록 한다.
상기 박막 시편은 0.5-30 ㎛ 두께의 얇은 금속 박막 시편일 수 있으며, 상기 이차전지의 전극, 집전체 또는 분리막 재료의 금속 박막일 수 있다. 통상적으로, 이차전지 제조 공정에서, 특정 단계 공정 이후마다 금속 박막은 시편 형태로 샘플링하고, 기계적 성능(물성)을 평가하여 최종 제품인 이차전지의 기계적 성능의 문제 발생 여부를 검토하게 된다. 이에, 본 발명은 이차전지의 전극, 집전체 또는 분리막을 박막 시편으로 제조하고, 상기 박막 시편을 이용하여 기계적 성능을 평가함으로써, 이차전지의 기계적 성능의 문제 발생 여부를 평가할 수 있다. 상기 전극은 양면 코팅이 적용된 시편일 수 있다. 예를 들면, 코팅층/집전체/코팅층 구조의 전극을 의미할 수 있다.
상기 박막 시편 표면에 스펙클 패턴을 형성하는 단계는 박막 시편의 표면에 도트(dot)에 의한 스펙클 패턴(speckle pattern)을 형성하기 위한 것으로, 유성도료 등의 페인트를 스프레이로 분사할 수 있다. 이때, 박막 시편에 분사되는 페인트는 박막 시편의 색상과 대비되는 색상인 것이 바람직하다. 예를 들어, 검정색의 전극(전극 코팅층)에는 흰색의 페인트를 분사 처리할 수 있으며, 흰색의 분리막에는 검정색의 페인트를 분사 처리할 수 있다. 아울러, 알루미늄 또는 알루미늄 합금 등의 집전체에는 흰색 페인트를 분사하여 시편 표면에 균일하게 도포하고, 완전히 건조 후 다시 검은색의 페인트를 분사 처리함으로써 스펙클 패턴을 형성할 수 있다.
나아가, 스펙클 패턴을 형성하기 위한 페인트는 시편에 전체 도포하는 것이 아니라, 후술하게 되는 디지털 이미지 상관분석에서 패턴을 인식할 수 있도록 흩뿌리는 것이 바람직하며, 스펙클 패턴은 불규칙하게 형성될 수 있다.
하나의 예에서, 스펙클 패턴은 1 내지 10 ㎛ 지름의 도트를 불규칙적으로 박막 시편에 형성한다. 이때, 상기 스펙클 패턴의 도트 크기는 균일한 것이 바람직하다. 다른 하나의 예에서, 상기 스펙클 패턴의 도트 개수는 단위 면적당 50 내지 300 개/cm 2, 또는 100 내지 200 개/cm 2 를 포함할 수 있다. 만일, 상기 스펙클 패턴의 도트 개수가 단위 면적당 50 개/cm 2 미만 또는 300 개/cm 2 를 초과하는 경우에는 변형 전/후의 패턴을 인식하기 어려울 수 있으므로, 스펙클 패턴의 도트 개수는 단위 면적당 50 내지 300 개/cm 2 가 바람직하다.
다른 하나의 예에서, 박막 시편에 형성되는 스펙클 패턴은 유동성을 갖는다. 이는 후술하게 되는 디지털 이미지 상관분석 단계에서 스펙클 패턴의 직경에 대한 길이 변형률(L/D)을 측정하게 되는데, 상기 스펙클 패턴이 유동성을 갖고 있어야, 변형전의 스펙클 패턴의 지름이 변형될 수 있다.
따라서, 상기 박막 시편의 표면에 페인트를 스프레이로 분사하여 패턴을 형성하고, 상기 스펙클 패턴이 건조되기 이전에 인장시험을 수행하는 것이 바람직하다. 구체적으로, 박막 시편의 표면에 페인트를 스프레이로 분사하여 패턴을 형성한 후 3분 내지 10분 이내에 인장시험을 수행할 수 있다.
다음으로, 스펙클 패턴(speckle pattern)이 형성된 박막 시편의 그립부를 고정한 상태에서 서로 반대 방향으로 인장력을 가하여 박막 시편의 인장강도를 측정하는 단계를 수행하되, 박막 시편에 인장력을 가하는 동안, 스펙클 패턴의 변형률을 분석하는 단계를 포함한다.
본 발명에서, 박막 시편의 인장강도를 측정하는 단계, 박막 시편의 표면을 카메라로 촬영하는 단계, 촬영전과 촬영 후의 이미지를 비교하여 디지털 이미지 상관분석 하는 단계를 각 단계별로 분류 하였으나, 이들의 과정은 동시에 수행될 수 있다. 하나의 예에서, 박막 시편의 인장시험을 수행하는 동시에 상기 박막 시편의 표면을 카메라로 연속적으로 촬영하고, 이와 동시에 디지털 이미지 분석이 가능하다.
하나의 예에서, 인장시험기에 박막 시편의 그립부를 체결한다. 이때, 박막 시편의 그립부와 인장시험기의 용이한 체결을 위하여, 양편 테이프와 같은 접착제를 그립부의 표면에 도포한 후에 박막 시편을 인장시험기에 체결할 수 있다. 그리고, 인장시험기의 하중을 제로(zero)로 세팅을 한 후, 하중속도를 1 mm/min 이하로 세팅하여 인장시험을 수행할 수 있다. 예를 들면, 1kN 급 로드셀이 장착된 micro 인장시험기 (instron 5943) 를 이용하여 상기 박막 시편의 인장강도를 측정할 수 있다.
한편, 상기 스펙클 패턴의 변형률을 분석하는 단계는, 박막 시편의 표면을 카메라로 연속적으로 또는 순차적으로 촬영하는 단계; 및 촬영전과 촬영후의 이미지를 비교하여 스펙클 패턴의 변형률을 디지털 이미지 상관분석(DIC, Digital Image Correlation) 기법으로 분석하는 단계를 통해 수행한다.
하나의 예에서, 인장강도를 측정하면서 동시에 시편 박막의 표면을 연속적으로 촬영하여 이미지를 얻을 수 있다. 하나의 예에서, 이미지를 얻는 방법은 디지털 카메라, 고속 카메라, 캠코터, 광학현미경, 주사전자 현미경 등의 촬영 장치를 이용할 수 있다. 바람직하게는 박막 시편의 표면을 연속적으로 촬영할 수 있는 CCD 카메라일 수 있다.
한편, 상기 박막 시편에 형성된 스펙클 패턴은 유동성이 있어야 하므로, 상술한 바와 같이, 박막 시편의 표면에 페인트를 스프레이로 분사하여 패턴을 형성한 후 3분 내지 10분 이내에 인장시험을 수행하는 것이 바람직하다. 구체적으로, 박막 시편의 표면에 페인트를 스프레이로 분사하여 패턴을 형성한 후 3분 내지 10분, 4분 내지 9분, 5분 내지 8분, 또는 6분 내지 7분 이내에 인장시험을 수행할 수 있다. 만일, 스펙클 패턴을 형성한 후 3분 미만의 시간에 인장시험을 수행하는 경우, 형성된 스펙클 패턴이 유동성은 있으나, 인장시험시 중력 방향으로 흘러내리는 문제가 발생할 수 있으며, 스펙클 패턴을 형성한 후 10분을 초과한 시간에 인장시험을 수행하는 경우, 형성된 스펙클 패턴이 건조되어 박막 시편에 인장력을 가하더라도 스펙클 패턴의 길이가 변하지 않아, 후술하게 되는 스펙클 패턴의 직경에 대한 길이 변형률(L/D) 을 측정하기 어려운 문제가 있다.
하나의 예에서, 상기 디지털 이미지 상관분석을 이용하여 스펙클 패턴이 형성된 박막 시편을 CCD 카메라로 촬영하여 일정 영역의 스펙클 패턴의 변형 전과 후의 움직임을 비교 및 분석하여 변형률과 변위를 측정한다. 상기 디지털 이미지 상관분석은 통상적인 디지털 이미지 상관분석을 이용하여 스펙클 패턴의 변형률을 분석할 수 있다. 구체적으로, 영상데이터의 스펙클 패턴으로부터 각 포인트의 변위에 대한 초기 추측치가 각 하중상태에서의 기준 영상데이터에 대한 대응 패턴을 선택하여 선정한다. 초기 추측치로부터 기준 상태의 서브셋 pixel 과 하중상태의 서브셋 pixel 의 최적 매치상태를 얻음으로써 x축 방향의 변위와 y축 방향의 변위를 평가할 수 있다. 최적매치는 서브셋을 나타내는 그레이 수준항으로 주어진 에러함수를 최소화되도록 조성함으로써 얻어진다. 이러한 방법은 임의로 분포되어 있는 그레이레벨 세기를 분석하여, 변형이 진행된 다른 시간대의 디지털 이미지 사이의 그레이레벨 강도를 최적화하는 것이다.
하나의 예에서, 본 발명에 따른 디지털 이미지 상관분석은 박막 시편에 형성된 스펙클 패턴의 직경에 대한 길이 변형률(L/D) 을 측정하는 것을 특징으로 한다.
상기 박막 시편의 인장시험을 수행할 때, 유동성이 있는 스펙클 패턴은 인장방향에 따라 직경이 변형되며, 특히, 응력이 집중되는 부분은 상기 변형률(L/D)이 클 수 있다.
다른 하나의 예에서, 스펙클 패턴의 변형률을 디지털 이미지 상관분석 기법으로 분석하는 단계는, 박막 시편에서 영역을 구분하고, 각 영역별로 스펙클 패턴의 면적에 대한 길이 변형률(L/D)을 비교하여, 박막 시편의 파단 부위를 예측한다. 상술한 바와 같이, 박막 시편의 인장시험을 진행할 때, 박막 시편의 응력이 집중되는 부분은 스펙클 패턴의 직경에 대한 길이 변형률(L/D)이 클 수 있으며, 상기 스펙클 패턴의 직경에 대한 길이 변형률(L/D)이 가장 큰 곳에서 박막 시편의 파단이 발생할 수 있다. 즉, 박막 시편의 영역을 구분하고, 각 영역별로 스펙클 패턴의 변형률(L/D) 를 비교하여, 박막 시편의 파단 부위를 예측할 수 있다. 이에 따라, 박막 시편의 물성의 신뢰성을 높일 수 있다.
도 3은 본 발명의 일 실시예에 따른 박막 시편을 나타낸 모식도이다. 도 3에 도시된 바와 같이, 상기 스펙클 패턴(speckle pattern)이 형성된 박막 시편은, 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b) 가 1 : 2 내지 6 범위이며, 박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d) 가 1 : 4 내지 7 범위이다.
하나의 예에서, 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b) 는 1 : 2 내지 6 범위일 수 있으며, 또는 1 : 3 내지 5 범위이다. 예를 들면, 상기 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b)는 1 : 4 일 수 있다. 만일, 상기 그립부의 폭(b) 이 평행부의 폭(a) 대비 2 미만인 경우, 상기 평행부의 폭(a) 대비 그립부의 폭(b)의 길이가 너무 좁아, 인장 시험 시에 박막 시편의 그립부에 부하되는 응력이 집중되어 박막 시편의 표점 거리가 아닌 부분에서 파손이 발생할 수 있다. 아울러, 그립부의 폭(b) 이 평행부의 폭(a) 대비 6을 초과하는 경우에는 박막 시편의 평행부와 그립부의 폭의 길이 차이가 커서 상술한 바와 같이 박막 시편의 표점 거리가 아닌 부분에서 파손이 발생할 수 있다.
하나의 예에서, 상기 박막 시편의 평행부의 폭(a)은 평균 8 내지 12 mm 범위일 수 있으며, 8.5 내지 11.5 mm 범위, 9 내지 11 mm 범위, 9.5 내지 10.5 mm 범위 또는 10 mm 일 수 있다. 나아가, 그립부의 폭(b)은 16 내지 72 mm 범위, 18 내지 66 mm, 20 내지 60 mm 범위, 30 내지 50 mm 범위, 35 내지 45 mm 범위 또는 40 mm 일 수 있다. 예를 들면, 박막 시편의 평행부의 폭(a)은 10 mm 이며, 그립부의 폭(b)은 40 mm 일 수 있다.
다른 하나의 예에서, 박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d) 가 1 : 4 내지 7 범위일 수 있으며, 또는 1 : 4.5 내지 6.5 범위, 또는 1 : 5 내지 6 범위일 수 있다. 예를 들면, 박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d)는 1 : 5 일 수 있다. 만일, 상기 박막 시편의 전체 길이(d)가 표점 거리(c) 대비 4 미만 또는 7을 초과하는 경우에는 인장 시험 시에 시편의 그립부에 부하되는 응력이 집중되어 박막 시편의 표점 거리가 아닌 부분에서 파손이 발생할 수 있다.
하나의 예에서, 상기 박막 시편의 표점 거리(c)는 평균 50 내지 70 mm 범위일 수 있으며, 53 내지 67 mm 범위, 55 내지 65 mm 범위, 58 내지 62 mm 범위 또는 60 mm 일 수 있다. 나아가, 박막 시편의 전체 길이(d)는 200 내지 500 mm 범위, 230 내지 450 mm 범위, 260 내지 400 mm 범위, 280 내지 350 mm 범위, 또는 300 mm 일 수 있다. 예를 들면, 박막 시편의 표점 거리(c)는 약 60 mm 이며, 박막 시편의 전체 길이(d) 는 약 300 mm 일 수 있다.
다른 하나의 예에서, 박막 시편의 평행부의 폭(a)과 표점 거리(c) 비는 1 : 5 내지 7 범위일 수 있으며, 1 : 5.3 내지 6.7 범위, 또는 1 : 5.6 내지 6.3 범위일 수 있다. 예를 들면, 박막 시편의 평행부의 폭(a)과 표점 거리(c) 비는 1 : 6 일 수 있다. 만일, 상기 박막 시편의 표점 거리(c) 가 평행부의 폭(a) 대비 5 미만 또는 7을 초과하는 경우에는 평행부의 폭(a) 대비 표점 거리가(c) 가 너무 짧거나, 길어서 인장시험을 수행하기 어려울 수 있다. 따라서, 박막 시편의 평행부의 폭(a)과 표점 거리(c) 비는 상술한 범위가 바람직하다.
또 다른 하나의 예에서, 박막 시편은 평행부와 그립부 사이에 바깥면과 안쪽면에 각각 곡률이 형성된 제1 어깨부(R 1) 및 제2 어깨부(R 2)를 포함하며, 상기 제1, 2 어깨부는, 하기 식 1을 만족하는 것을 특징으로 한다.
[식 1]
|R 1/R 2| ≤0.1
식 1에서, R 1 은 제1 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이고, R 2 는 제2 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이다.
여기서, 제1 어깨부 및 제2 어깨부가 식 1을 만족함으로써, 박막 시편에서 평행부의 응력을 균일하게 분산시킬 수 있으며, 이에 따라 박막 시편의 인장시험시 비정상 파손을 억제할 수 있다.
상기 제1 어깨부의 곡률 반경은 23 내지 27 mm 범위일 수 있으며, 24 내지 26 mm 범위 또는 25 mm 일 수 있다. 아울러, 제2 어깨부의 곡률 반경은 23 내지 27 mm 범위일 수 있으며, 24 내지 26 mm 범위 또는 25 mm 일 수 있다. 만일, 제1 어깨부 및 제2 어깨부의 곡률 반경이 23 mm 미만인 경우에는 그립부에 응력이 집중될 수 있어, 박막 시편의 인장시험시 평행부가 아닌 그립부 부분에 파단이 발생할 수 있다. 아울러, 제1 어깨부 및 제2 어깨부의 곡률 반경이 27 mm 를 초과하는 경우, 그립부의 면적이 넓어지거나 작아져 응력이 그립부에 집중될 수 있다. 따라서, 제1 어깨부 및 제2 어깨부는 상술한 범위의 곡률 반경을 갖는 것이 바람직하다.
나아가, [식 1] 은 R 1과 R 2 의 곡률 반경 차이가 매우 적다는 것을 의미하며, 상기 식 1의 수치를 벗어나는 경우, R 1과 R 2 곡률 반경의 차이가 발생하여 평행부에 응력을 균일하게 분산시키기 어려운 문제가 발생할 수 있다. 따라서, R 1과 R 2 는 식 1을 만족하는 것이 바람직하다.
다른 하나의 예에서, 본 발명의 박막 시편 그립부는 표면에 미끄럼 방지 돌기를 포함할 수 있다. 상기 미끄럼 방지 돌기는 박막 시편 그립부를 인장시험기에 용이하게 체결하기 위한 것이며, 박막 시편이 인장시험시 인장시험기로부터 탈거되는 것을 방지하기 위함이다. 하나의 예에서, 상기 미끄럼 방지 돌기는 인장방향과 수직방향으로 그립부에 형성될 수 있다. 다른 하나의 예에서, 그립부의 표면에 양면테이프와 같은 접착제가 도포될 수 있다.
아울러, 본 발명은 인장시험 테스트용 박막 시편을 제공한다.
하나의 예에서, 상기 인장시험 테스트용 박막 시편은 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b) 가 1 : 3 내지 6 범위이며, 박막 시편의 평행부의 폭은 평균 8 내지 12 mm 범위이고, 박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d) 가 1 : 4 내지 7 범위이고, 박막 시편의 표점 거리는 평균 50 내지 70 mm 범위이며, 표면에 스펙클 패턴이 형성된 것을 특징으로 한다.
하나의 예에서, 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b) 는 1 : 2 내지 6 범위일 수 있으며, 또는 1 : 3 내지 5 범위이다. 예를 들면, 상기 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b)는 1 : 4 일 수 있다. 만일, 상기 그립부의 폭(b) 이 평행부의 폭(a) 대비 2 미만인 경우, 상기 평행부의 폭(a) 대비 그립부의 폭(b)의 길이가 너무 좁아, 인장 시험 시에 박막 시편의 그립부에 부하되는 응력이 집중되어 박막 시편의 표점 거리가 아닌 부분에서 파손이 발생할 수 있다. 아울러, 그립부의 폭(b) 이 평행부의 폭(a) 대비 6을 초과하는 경우에는 박막 시편의 평행부와 그립부의 폭의 길이 차이가 커서 상술한 바와 같이 박막 시편의 표점 거리가 아닌 부분에서 파손이 발생할 수 있다.
다른 하나의 예에서, 상기 박막 시편의 평행부의 폭(a)은 평균 8 내지 12 mm 범위일 수 있으며, 8.5 내지 11.5 mm 범위, 9 내지 11 mm 범위, 9.5 내지 10.5 mm 범위 또는 10 mm 일 수 있다. 나아가, 그립부의 폭(b)은 16 내지 72 mm 범위, 18 내지 66 mm 범위, 20 내지 60 mm 범위, 30 내지 50 mm 범위, 35 내지 45 mm 범위 또는 40 mm 일 수 있다. 예를 들면, 박막 시편의 평행부의 폭(a)은 10 mm 이며, 그립부의 폭(b)은 40 mm 일 수 있다.
하나의 예에서, 박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d) 가 1 : 4 내지 7 범위일 수 있으며, 또는 1 : 4.5 내지 6.5 범위, 또는 1 : 5 내지 6 범위일 수 있다. 예를 들면, 박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d)는 1 : 5 일 수 있다. 만일, 상기 박막 시편의 전체 길이(d)가 표점 거리(c) 대비 4 미만 또는 7을 초과하는 경우에는 인장 시험 시에 시편의 그립부에 부하되는 응력이 집중되어 박막 시편의 표점 거리가 아닌 부분에서 파손이 발생할 수 있다.
하나의 예에서, 상기 박막 시편의 표점 거리(c)는 평균 50 내지 70 mm 범위일 수 있으며, 53 내지 67 mm 범위, 55 내지 65 mm 범위, 58 내지 62 mm 범위 또는 60 mm 일 수 있다. 나아가, 박막 시편의 전체 길이(d)는 200 내지 500 mm 범위, 230 내지 450 mm, 260 내지 400 mm 범위, 280 내지 350 mm 범위, 또는 300 mm 일 수 있다. 예를 들면, 박막 시편의 표점 거리(c)는 약 60 mm 이며, 박막 시편의 전체 길이(d) 는 약 300 mm 일 수 있다.
다른 하나의 예에서, 박막 시편의 평행부의 폭(a)과 표점 거리(c) 비는 1 : 5 내지 7 범위일 수 있으며, 1 : 5.3 내지 6.7 범위, 또는 1 : 5.6 내지 6.3 범위일 수 있다. 예를 들면, 박막 시편의 평행부의 폭(a)과 표점 거리(c) 비는 1 : 6 일 수 있다. 만일, 상기 박막 시편의 표점 거리(c) 가 평행부의 폭(a) 대비 5 미만 또는 7을 초과하는 경우에는 평행부의 폭(a) 대비 표점 거리가(c) 가 너무 짧거나, 길어서 인장시험을 수행하기 어려울 수 있다. 따라서, 박막 시편의 평행부의 폭(a)과 표점 거리(c) 비는 상술한 범위가 바람직하다.
또 다른 하나의 예에서, 박막 시편은 평행부와 그립부 사이에 바깥면과 안쪽면에 각각 곡률이 형성된 제1 어깨부(R 1) 및 제2 어깨부(R 2)를 포함하며, 상기 제1, 2 어깨부는, 하기 식 1을 만족하는 것을 특징으로 한다.
[식 1]
|R 1/R 2| ≤ 0.1
식 1에서, R 1 은 제1 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이고, R 2 는 제2 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이다.
여기서, 제1 어깨부 및 제2 어깨부가 식 1을 만족함으로써, 박막 시편에서 평행부의 응력을 균일하게 분산시킬 수 있으며, 이에 따라 박막 시편의 인장시험시 비정상 파손을 억제할 수 있다.
상기 제1 어깨부의 곡률 반경은 23 내지 27 mm 범위일 수 있으며, 24 내지 26 mm 범위 또는 25 mm 일 수 있다. 아울러, 제2 어깨부의 곡률 반경은 23 내지 27 mm 범위일 수 있으며, 24 내지 26 mm 범위 또는 25 mm 일 수 있다. 만일, 제1 어깨부 및 제2 어깨부의 곡률 반경이 23 mm 미만인 경우에는 그립부에 응력이 집중될 수 있어, 박막 시편의 인장시험시 평행부가 아닌 그립부 부분에 파단이 발생할 수 있다. 아울러, 1 어깨부 및 제2 어깨부의 곡률 반경이 27 mm 를 초과하는 경우, 그립부의 면적이 넓어지거나 작아져 응력이 그립부에 집중될 수 있다. 따라서, 제1 어깨부 및 제2 어깨부는 상술한 범위의 곡률 반경을 갖는 것이 바람직하다.
나아가, 본 발명의 박막 시편 그립부는 표면에 미끄럼 방지 돌기를 포함할 수 있다. 상기 미끄럼 방지 돌기는 박막 시편 그립부를 인장시험기에 용이하게 체결하기 위한 것이며, 박막 시편이 인장시험시 인장시험기로부터 탈거되는 것을 방지하기 위함이다. 하나의 예에서, 상기 미끄럼 방지 돌기는 인장방향과 수직방향으로 그립부에 형성될 수 있다. 다른 하나의 예에서, 그립부의 표면에 양면테이프와 같은 접착제가 도포될 수 있다.
다른 하나의 예에서, 물성 평가 적용시 박막 시편의 표면에 형성된 스펙클 패턴은 유동성을 갖는다. 이는 상술한 바와 같이 디지털 이미지 상관분석시 스펙클 패턴의 직경에 대한 길이 변형률(L/D)을 측정하게 되는데, 상기 스펙클 패턴이 유동성을 갖고 있어야, 변형전의 스펙클 패턴의 지름이 변형될 수 있다.
이하에서는 실시예와 도면을 통해 본 발명의 내용을 상술하지만, 하기 실시예 내지 도면은 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예>
실시예 1
박막 시편 제조
프레스 커터(press cutter) 를 이용하여 약 20 ㎛ 두께의 알루미늄 합금을 커팅하여 박막 시편을 준비하였다. 이때, 박막 시편은 다음과 같은 조건으로 커팅하였다(도 4 참조).
- 평행부의 폭(a): 10 mm
- 그립부의 폭(b): 40 mm
- 박막 시편의 표점거리(c)): 60 mm
- 박막 시편의 전체 길이(d): 300 mm
- 제1 어깨부(R 1), 제2 어깨부의 곡률반경(R 1, R 2): 25 mm
스펙클 패턴 형성
박막 시편의 그립부 양면에 OHP 필름을 부착하였다. 그리고, 시편의 수평부와 수직한 중앙표시선을 표기하였다. 이는 인장시험기의 그립과 시료 정렬을 위함이다. 그리고, 박막 시편의 그립부에 양면 테이프를 부착하였다. 상기 양면 테이프는 그립부의 앞면과 뒷면에 부착하였다.
그 후, 상기 박막 시편의 앞쪽면에 흰색의 안료를 일정거리에서 분사하여 시험편 표면에 균일하게 도포하고, 완전히 건조 후 다시 검정색의 페인트를 이용하여 흑색의 스펙클 패턴을 형성하였다.
실시예 2
프레스 커터(press cutter) 를 이용하여 약 15 ㎛ 두께의 폴리에틸렌 기재를 실시예 1과 동일한 크기로 커팅하여 박막 시편을 준비하였다.
그리고, 실시예 1과 동일한 방법으로 스펙클 패턴을 형성하였다. 다만, 상기 박막 시편에 흰색 안료를 도포하지 않고, 바로 검정색의 페인트를 이용하여 흑색의 스펙클 패턴을 형성하였다.
실시예 3
두께가 약 10 ㎛ 두께의 구리 박막의 양면에 흑연이 도포된 박막을 준비하였다. 그리고, 실시예 1 과 동일한 크기로 커팅하여 박막 시편을 준비하였다. 이때, 박막 시편의 두께는 약 20 ㎛ 였다.
그리고, 실시예 1과 동일한 방법으로 스펙클 패턴을 형성하였다. 다만, 흰색의 페인트를 바로 박막 시편에 분사하여 흰색의 스펙클 패턴을 형성하였다.
<비교예>
프레스 커터(press cutter) 를 이용하여 약 0.5 ㎛ 두께의 알루미늄 합금을 커팅하여 박막 시편을 준비하였다. 이때, 박막 시편은 금속 박막용 ASTM E345 표준 시편으로 커팅하였으며, 구체적인 조건은 다음과 같은 조건으로 커팅하였다(도 1 참조).
- 평행부의 폭(a): 12.5 mm
- 그립부의 폭(b): 20 mm
- 박막 시편의 표점거리(c)): 60 mm
- 박막 시편의 전체 길이(d): 200 mm
- 어깨부의 곡률반경(R 2): 19 mm
<실험예>
실시예 1, 비교예 1에서 제조된 박막 시편을 각각 마이크로 인장시험기(Instron 5943) 에 설치하고, 박막 시편의 인장강도를 측정하였다. 한편, 실시예 1의 그립부에 부착한 양면테이프의 이형지는 제거한 후, 박막 시편을 인장시험기에 체결하였으며, 박막 시편에 스펙클 패턴을 형성하고 5분 후에 체결하였다. 그리고, 하중을 "0"으로 세팅하고, 인장 방향으로 1 mm/min 이하의 속도로 제어하여 상온에서 수행하였다. 이와 동시에 CCD 카메라로 스펠클 패턴의 변형영상을 연속적으로 촬영하였으며, 상기 스펙클 패턴의 변형률을 DIC 해석 프로그램을 이용하여 분석하였다.
그리고, 그 결과를 도 5 내지 도 8에 나타내었다.
도 5는 실시예 1의 박막 시편을 인장시험기로 인장시험 하였을 때, 파단이 발생된 부위를 보여주는 사진이며, 도 6은 상기 박막 시편의 파단 직전 촬영한 사진에서 스펙클 패턴을 도식화한 도면이다.
도 5를 참조하면, 실시예 1은 박막 시편의 표점거리 내에서 파단이 발생한 것을 확인할 수 있으며, 도 6을 참조하면, 실시예 1의 박막 시편의 스펙클 펙터의 변형이 일어난 것을 확인할 수 있다. 특히, 그립부에 형성된 스펙클 패턴 보다 파단 부위에 형성된 스펙클 패턴의 직경에 대한 길이 변형률(L/D)이 큰 것을 확인할 수 있다.
도 7은 비교예 1의 박막 시편을 인장시험기로 인장시험 하였을 대, 파단이 발생된 부위를 보여주는 사진이며, 도 8은 상기 박막 시편의 파단 직전 촬영한 사진에서 스펙클 패턴을 도식화한 도면이다. 도 7을 참조하면, 비교예 1은 표점 거리 밖인 그립부에서 파단이 발생한 것을 확인할 수 있다. 아울러, 도 8을 참조하면, 파단이 일어난 그립부에서 스펙클 패턴의 직경에 대한 길이 변형률(L/D)이 크게 나타난 것을 확인할 수 있다.
이상, 도면과 실시예 등을 통해 본 발명을 보다 상세히 설명하였다. 그러나, 본 명세서에 기재된 도면 또는 실시예 등에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.

Claims (15)

  1. 스펙클 패턴(speckle pattern)이 형성된 박막 시편의 그립부를 고정한 상태에서 서로 반대 방향으로 인장력을 가하여 박막 시편의 인장강도를 측정하는 단계를 수행하되,
    박막 시편에 인장력을 가하는 동안, 스펙클 패턴의 변형률을 분석하는 단계;를 수행하며,
    상기 스펙클 패턴(speckle pattern)이 형성된 박막 시편은, 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b) 가 1 : 2 내지 6 범위이며, 박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d) 가 1 : 4 내지 7 범위인 박막 시편의 물성 평가방법.
  2. 제 1 항에 있어서,
    스펙클 패턴의 변형률을 분석하는 단계는,
    박막 시편의 표면을 카메라로 연속적으로 또는 순차적으로 촬영하는 단계; 및
    촬영전과 촬영후의 이미지를 비교하여 스펙클 패턴의 변형률을 디지털 이미지 상관분석(DIC, Digital Image Correlation) 기법으로 분석하는 단계를 통해 수행하는 것을 특징으로 하는 박막 시편의 물성 평가방법.
  3. 제 2 항에 있어서,
    스펙클 패턴의 변형률을 디지털 이미지 상관분석 기법으로 분석하는 단계는,
    스펙클 패턴의 직경에 대한 길이 변형률(L/D)을 측정하는 것을 특징으로 하는 박막 시편의 물성 평가방법.
  4. 제 2 항에 있어서,
    스펙클 패턴의 변형률을 디지털 이미지 상관분석 기법으로 분석하는 단계는,
    박막 시편에서 영역을 구분하고, 각 영역별로 스펙클 패턴의 면적에 대한 길이 변형률(L/D)을 비교하여, 박막 시편의 파단 부위를 예측하는 것을 특징으로 하는 박막 시편의 물성 평가방법.
  5. 제 1 항에 있어서,
    박막 시편의 평행부의 폭은 평균 8 내지 12 mm 범위이며, 박막 시편의 표점 거리는 평균 50 내지 70 mm 범위인 것을 특징으로 하는 박막 시편의 물성 평가방법.
  6. 제 1 항에 있어서,
    박막 시편은 평행부와 그립부 사이에 바깥면과 안쪽면에 각각 곡률이 형성된 제1 어깨부 및 제2 어깨부를 포함하며,
    상기 제1, 2 어깨부는, 하기 식 1을 만족하는 것을 특징으로 하는 박막 시편의 물성 평가방법:
    [식 1]
    |R 1/R 2| ≤ 0.1
    식 1에서, R 1 은 제1 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위 이고, R 2 는 제2 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이다.
  7. 제 1 항에 있어서,
    박막 시편의 그립부는, 미끄럼 방지 돌기를 포함하는 것을 특징으로 하는 박막 시편의 물성 평가방법.
  8. 제 1 항에 있어서,
    박막 시편에 형성된 스펙클 패턴의 도트(dot) 개수는, 50 내지 300 개/cm 2 범위인 것을 특징으로 하는 박막 시편의 물성 평가방법.
  9. 제 1 항에 있어서,
    박막 시편의 표면에 스펙클 패턴을 형성하는 단계를 더 포함하며,
    상기 박막 시편의 표면에 스펙클 패턴을 형성하는 단계는, 박막 시편의 표면에 박막 시편의 색상과 대비되는 페인트를 스프레이로 분사하는 것을 특징으로 하는 박막 시편의 물성 평가방법.
  10. 제 9 항에 있어서,
    박막 시편에 형성된 스펙클 패턴은 유동성을 갖는 것을 특징으로 하는 박막 시편의 물성 평가방법.
  11. 제 10 항에 있어서,
    박막 시편의 표면에 페인트를 스프레이로 분사하여 패턴을 형성한 후 3분 내지 10분 이내에 박막 시편의 인장강도를 측정하는 것을 특징으로 하는 박막 시편의 물성 평가방법.
  12. 제 1 항에 있어서,
    박막 시편은, 이차전지의 전극, 집전체 또는 분리막인 것을 특징으로 하는 박막 시편의 물성 평가방법.
  13. 평행부의 폭(a)과 그립부의 폭(b)의 길이비(a : b) 가 1 : 2 내지 6 이며, 박막 시편의 평행부의 폭은 평균 8 내지 12 mm 범위이고,
    박막 시편의 표점 거리(c)와 전체 길이(d)의 길이비(c : d) 가 1 : 4 내지 7 이고, 박막 시편의 표점 거리는 평균 50 내지 70 mm 범위이며,
    표면에 스펙클 패턴이 형성된 것을 특징으로 하는 인장시험 테스트용 박막 시편.
  14. 제 13 항에 있어서,
    박막 시편은, 평행부와 그립부 사이에 바깥면과 안쪽면에 각각 곡률이 형성된 제1 어깨부 및 제2 어깨부를 포함하며,
    상기 제1, 2 어깨부는, 하기 식 1을 만족하는 것을 특징으로 하는 인장시험 테스트용 박막 시편:
    [식 1]
    |R 1/R 2| ≤ 0.1
    식 1에서, R 1 은 제1 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이고, R 2 는 제2 어깨부의 곡률 반경을 나타내며, 23 내지 27 mm 범위이다.
  15. 제 13 항에 있어서,
    물성 평가 적용시 박막 시편의 표면에 형성된 스펙클 패턴은 유동성을 갖는 상태인 것을 특징으로 하는 인장시험 테스트용 박막 시편.
PCT/KR2020/019049 2020-03-04 2020-12-24 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편 WO2021177569A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/774,288 US20220390337A1 (en) 2020-03-04 2020-12-24 Thin film specimen for tensile test and physical property evaluation method for thin film specimen
CN202080078016.8A CN114729862A (zh) 2020-03-04 2020-12-24 用于拉伸试验的薄膜样品及用于薄膜样品的物理性质评估方法
EP20922682.8A EP4036551A4 (en) 2020-03-04 2020-12-24 THIN FILM SPECIMEN FOR TENSILE TESTING AND PHYSICAL PROPERTY EVALUATION METHOD FOR THIN FILM SPECIMEN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200027190A KR20210112079A (ko) 2020-03-04 2020-03-04 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편
KR10-2020-0027190 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021177569A1 true WO2021177569A1 (ko) 2021-09-10

Family

ID=77612656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019049 WO2021177569A1 (ko) 2020-03-04 2020-12-24 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편

Country Status (5)

Country Link
US (1) US20220390337A1 (ko)
EP (1) EP4036551A4 (ko)
KR (1) KR20210112079A (ko)
CN (1) CN114729862A (ko)
WO (1) WO2021177569A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116037433A (zh) * 2023-01-09 2023-05-02 合肥工业大学 用于柔性显示屏应变分析的散斑覆膜制备方法及dic测试方法
CN117051366B (zh) * 2023-08-14 2024-04-09 东莞理工学院 一种用于芯片微纳米尺度应变分析的hr-dic散斑制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603537A (ja) * 1983-06-20 1985-01-09 Sumitomo Chem Co Ltd ゴム・プラスチック用引張試験機
JPH09101249A (ja) * 1995-10-04 1997-04-15 Shimadzu Corp 材料試験機
KR100742546B1 (ko) * 2001-04-27 2007-07-25 키시모토 산교 가부시키가이샤 시험편 신장측정방법 및 장치
JP4560079B2 (ja) 2007-08-09 2010-10-13 パナソニック株式会社 非水電解質二次電池用正極の製造方法
US20120287248A1 (en) * 2011-05-12 2012-11-15 Erdman Iii Donald L Material mechanical characterization method for multiple strains and strain rates
KR20160077704A (ko) * 2014-12-24 2016-07-04 포항공과대학교 산학협력단 인장시험에서 디지털 이미지 해석 기법을 이용하여 고 변형 구간에서 재료의 진응력-진변형률 곡선을 추출하는 방법
KR20200027190A (ko) 2018-09-04 2020-03-12 (주)베스큐 변기 소음 저감 기구

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603537A (ja) * 1983-06-20 1985-01-09 Sumitomo Chem Co Ltd ゴム・プラスチック用引張試験機
JPH09101249A (ja) * 1995-10-04 1997-04-15 Shimadzu Corp 材料試験機
KR100742546B1 (ko) * 2001-04-27 2007-07-25 키시모토 산교 가부시키가이샤 시험편 신장측정방법 및 장치
JP4560079B2 (ja) 2007-08-09 2010-10-13 パナソニック株式会社 非水電解質二次電池用正極の製造方法
US20120287248A1 (en) * 2011-05-12 2012-11-15 Erdman Iii Donald L Material mechanical characterization method for multiple strains and strain rates
KR20160077704A (ko) * 2014-12-24 2016-07-04 포항공과대학교 산학협력단 인장시험에서 디지털 이미지 해석 기법을 이용하여 고 변형 구간에서 재료의 진응력-진변형률 곡선을 추출하는 방법
KR20200027190A (ko) 2018-09-04 2020-03-12 (주)베스큐 변기 소음 저감 기구

Also Published As

Publication number Publication date
EP4036551A4 (en) 2022-12-28
KR20210112079A (ko) 2021-09-14
CN114729862A (zh) 2022-07-08
US20220390337A1 (en) 2022-12-08
EP4036551A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2021177569A1 (ko) 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편
WO2016006756A1 (ko) 초저주파 탄델타의 측정 데이터를 이용한 전력 케이블의 상태 진단 및 잔존 수명 측정 장치 및 그 방법
WO2019151654A1 (ko) 이차전지 안전성 평가 방법 및 장치
WO2019231096A1 (ko) 이차전지용 노칭장치 및 방법
WO2018143506A1 (ko) 반도체 또는 디스플레이 시스템 분야에서 사용되는 이송 위치 측정용 테스트 더미 및 상기 반도체 또는 디스플레이 시스템 분야에서 사용되는 이송 위치 측정용 테스트 더미를 이용한 정밀 이송 측정 방법
WO2014181998A1 (ko) 전극 밀도 및 전극 공극률의 측정 방법
WO2022203252A1 (ko) 전극 코팅공정의 롤맵, 롤맵 작성방법 및 롤맵 작성 시스템
WO2021112481A1 (ko) 전극조립체 제조방법 및 제조장치, 그를 포함한 이차전지 제조방법
WO2019169957A1 (zh) 高频线缆的性能检测方法、装置以及可读存储介质
WO2018093219A1 (ko) 카메라 모듈
WO2022145905A1 (ko) 전극시트의 불량 검출 시스템
WO2022108399A1 (ko) 배터리 팩 진단 방법
WO2023219448A1 (ko) 광을 이용한 롤러 갭 측정시스템 및 이를 이용한 롤러 갭 측정방법
WO2017195979A1 (ko) 이차전지용 활물질의 평가방법
WO2023167558A1 (ko) X선 검사 장치 및 x선 검사 방법
WO2024043403A1 (ko) 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법
WO2020085774A1 (ko) 플렉시블 배터리의 성능 평가를 위한 방법
WO2023008637A1 (ko) 원형 배터리 검사장치
WO2020159114A1 (ko) 줄자용 블레이드
WO2022114665A1 (ko) 태양전지 셀에 대한 이미지 분류 방법 및 장치
WO2014209043A1 (ko) 이미지 획득 방법 및 이를 이용한 이미지 획득 장치
WO2023101394A1 (ko) 탭 가이드 및 탭 가이드를 포함하는 탭 가이드 장치
WO2023033522A1 (ko) Tdr을 이용한 전지셀의 내부 결함 검출장치 및 방법
WO2017065445A1 (ko) 웨이퍼 검사 및 분석 방법
WO2022014895A1 (ko) 이차전지, 이차전지용 초음파 용접장치 및 용접방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020922682

Country of ref document: EP

Effective date: 20220426

NENP Non-entry into the national phase

Ref country code: DE