WO2022108399A1 - 배터리 팩 진단 방법 - Google Patents

배터리 팩 진단 방법 Download PDF

Info

Publication number
WO2022108399A1
WO2022108399A1 PCT/KR2021/017119 KR2021017119W WO2022108399A1 WO 2022108399 A1 WO2022108399 A1 WO 2022108399A1 KR 2021017119 W KR2021017119 W KR 2021017119W WO 2022108399 A1 WO2022108399 A1 WO 2022108399A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
wire
bonded
battery pack
battery cell
Prior art date
Application number
PCT/KR2021/017119
Other languages
English (en)
French (fr)
Inventor
배혜윤
민경춘
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180063072.9A priority Critical patent/CN116097111A/zh
Priority to JP2023515360A priority patent/JP7404590B2/ja
Priority to US18/030,650 priority patent/US20230408594A1/en
Priority to EP21895166.3A priority patent/EP4191260A1/en
Publication of WO2022108399A1 publication Critical patent/WO2022108399A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0066Radiation pyrometry, e.g. infrared or optical thermometry for hot spots detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0096Radiation pyrometry, e.g. infrared or optical thermometry for measuring wires, electrical contacts or electronic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/10Plotting field distribution ; Measuring field distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack diagnosis method, and more particularly, to a battery pack diagnosis method capable of accurately diagnosing a bonding state between a plurality of battery cells provided in a battery pack and a plurality of wires connecting them.
  • a battery pack is manufactured by accommodating a plurality of battery cells in a housing, and connecting the plurality of battery cells with bus bars and wires. In such a battery pack, a defect may occur in a portion where a battery cell and a wire are bonded.
  • the internal resistance of the battery cell is severely changed during charging and discharging.
  • the corresponding battery cell has a voltage higher than that of the surrounding normal battery cells, and in the discharged state, the corresponding battery cell has a lower voltage than the surrounding normal battery cells.
  • the bonding state of the bonded portion should be diagnosed by performing an inspection on the bonding state of the bonded portion of the battery cell and the wire.
  • Patent Document 1 KR10-2019-0011096 A
  • Patent Document 2 KR10-2020-0056715 A
  • the present invention provides a battery pack diagnosis method capable of accurately diagnosing a bonding state between a plurality of battery cells provided in a battery pack and a plurality of wires connecting them.
  • a battery pack diagnosis method includes: a battery pack manufacturing step of manufacturing a battery pack by bonding a battery cell and a wire; a battery cell charging/discharging step of charging and discharging the battery cell through the wire; a battery pack thermal image taking step of taking a thermal image of the battery pack; a thermal image reading step of reading a bonding state of a portion where a battery cell and a wire are bonded from the photographed thermal image data; a battery pack magnetic field image photographing step of photographing a magnetic field image of the battery pack; a magnetic field image reading step of reading a bonding state of a portion where a battery cell and a wire are bonded from the photographed magnetic field image data; Poor wire bonding state that finally determines the bonding state of the portion where the battery cell and the wire are bonded by combining the thermal image reading result information generated in the thermal image reading step and the magnetic field image reading result information generated in the magnetic field image reading step It is configured to include; a judgment step.
  • the battery pack thermal image photographing step generates a thermal image by photographing a predetermined plane in which the wire is located, and the pixel size of the photographed thermal image is at least one of a thickness of the wire and a size of a portion to which the wire is bonded. It may be a predetermined pixel size set to be smaller than any one.
  • the thermal image reading step may include: extracting a predetermined outline from the photographed thermal image to generate a shape of a portion where the battery cell and the wire are bonded; A bonded portion temperature reading step of reading a temperature of a portion where a battery cell and a wire are bonded from the photographed thermal image data as either a high temperature or a low temperature; If the temperature of the portion where the battery cell and the wire are bonded is higher than a predetermined reference temperature, the bonding portion abnormal connection determination step of determining the bonding state of the portion as the abnormal connection-confirmed state; When the temperature of the portion where the battery cell and the wire are bonded is lower than the reference temperature, the bonded portion is normal connection-considered determining step of determining the bonding state of the corresponding portion as a normal connection-considered state; and a thermal image reading result information generating step of generating thermal image reading result information by matching the bonding state and positional information of the bonded portion.
  • the battery pack magnetic field image photographing step generates a magnetic field image by photographing the same predetermined plane as the plane on which the thermal image is photographed, and the pixel size of the photographed magnetic field image is determined to correspond to the pixel size of the photographed thermal image. may be a pixel size of .
  • the magnetic field image reading step may include: using the outline extracted in the thermal image reading step, generating a magnetic field image outline generating shape of a portion where the battery cell and the wire are bonded in the photographed magnetic field image; A bonded portion magnetic field strength reading step of reading the magnetic field strength of the portion where the battery cell and the wire are bonded from the photographed magnetic field image data; If the magnetic field strength of the portion where the battery cell and the wire are bonded is greater than a predetermined reference strength, the bonding portion normal connection determination step of determining the bonding state of the portion as a normal connection-confirmed state; When the magnetic field strength of the portion where the battery cell and the wire are bonded is less than the reference strength, the bonded portion is abnormal connection-considered determining step of determining the bonding state of the corresponding portion as the abnormal connection-considered state; It may be configured to include a; magnetic field image reading result information generating step of generating magnetic field image reading result information by matching the bonding state and the position information of the bonded portion.
  • the wire bonding state defect determination step compares the thermal image reading result information and the magnetic field image reading result information, and comparing the bonding state of the portion where the battery cell and the wire are bonded to one selected from among normal connection, abnormal connection, and abnormal disconnection. It may be characterized in that the final judgment is made in the state of
  • the wire bonding state failure determination step compares the thermal image reading result information and the magnetic field image reading result information. The final judgment is made on the connection state, and if the bonding state of the part where the battery cell and the wire are bonded is normal connection-confirmed, the bonding state of the part is finally judged as the normal connection state, and the bonding state of the part where the battery cell and the wire are bonded is If it is considered as normal connection- and abnormal connection-, it may be characterized in that the bonding state of the corresponding site is finally determined as an abnormal disconnection state.
  • the battery pack thermal image capturing step and the battery pack magnetic field image capturing step may be simultaneously performed.
  • the battery pack thermal image capturing step and the battery pack magnetic field image capturing step may be performed in a predetermined order with a predetermined time difference.
  • the bonding state between the battery cell provided in the battery pack and the wire connected thereto is accurately determined.
  • the bonding state between the battery cell provided in the battery pack and the wire connected thereto is accurately determined.
  • FIG. 1 is a flowchart of a method for diagnosing a battery pack according to an embodiment of the present invention.
  • FIGS. 2 and 3 are schematic diagrams each exemplarily showing a battery pack manufacturing step according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram exemplarily illustrating a battery cell charging/discharging step according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram exemplarily showing a step of taking a thermal image of a battery pack according to an embodiment of the present invention.
  • FIG. 6 is a conceptual diagram for explaining a thermal image reading step according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram exemplarily showing a battery pack magnetic field image capturing step according to an embodiment of the present invention.
  • FIG. 8 is a conceptual diagram for explaining a magnetic field image reading step according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for diagnosing a battery pack according to an embodiment of the present invention.
  • the battery pack diagnosis method includes a battery pack manufacturing step (S100), a battery cell charging/discharging step (S200), a battery pack thermal image taking step (S300), It is configured to include a thermal image reading step (S400), a battery pack magnetic field image taking step (S500), a magnetic field image reading step (S600), and a wire bonding state defect determination step (S700).
  • FIGS. 2 and 3 are schematic diagrams each exemplarily showing a battery pack manufacturing step according to an embodiment of the present invention.
  • the battery pack manufacturing step is a step of manufacturing the battery pack B by bonding the battery cell 30 and the wire W.
  • the battery pack manufacturing step may include a battery cell receiving step ( S110 ) and a wire bonding step ( S120 ).
  • the battery pack housing 10 , the battery cell holder 20 , the plurality of battery cells 30 , and the bus bar 40 are prepared. Thereafter, the battery cell holder 20 may be accommodated in the battery pack housing 10 , and the plurality of battery cells 30 may be accommodated in the battery cell holder 20 . In addition, the bus bar 40 may be seated on the plurality of battery cells 30 .
  • the battery pack housing 10 may be in the shape of a quadrangular cylinder with the inside open upward.
  • the shape of the battery pack housing 10 may vary.
  • the battery cell holder 20 may be provided in various materials and shapes satisfying the ability to fix the plurality of battery cells 30 .
  • the battery cell 30 may be a cylindrical secondary battery cell extending in the vertical direction.
  • the battery cell 30 may be a can-type secondary battery cell having various shapes.
  • the battery cells 30 may be arranged in a horizontal direction to form a predetermined arrangement.
  • a plurality of wires W are connected to a plurality of through holes H formed in the bus bar 40 to connect the plurality of battery cells 30 and the bus bar 40 .
  • wire bonding is performed to connect one end of each of the plurality of wires (W) and the plurality of battery cells (30), respectively, and by connecting the bus bar (40) and the other end of each of the plurality of wires (W) , the battery pack (B) can be manufactured.
  • one end of the wire W and the battery cell 30 may not be in normal contact. Accordingly, the area of the bonded portion may be abnormally small. In addition, the bonded portion may be completely broken.
  • FIG. 4 is a schematic diagram exemplarily illustrating a battery cell charging/discharging step according to an embodiment of the present invention.
  • the charging/discharging step of the battery cell is a step of charging/discharging the battery cell through a wire.
  • the battery cell charging/discharging step includes a step of seating the manufactured battery pack (B) on the support unit (50), and an input/output terminal (not shown) of the battery pack (B) connected to the battery cell (30) through a wire (W). time), and connecting the charger/discharger 60 to the battery pack (B) using the charger/discharger 60 to charge or discharge the battery cells 30 in the battery pack (B).
  • the charger/discharger 60 may include a predetermined charging source (not shown) and a predetermined discharge rod (not shown). While charging or discharging the battery cell 30 using the charger/discharger 60 , a current flows through the input/output terminal, the wire W, and the battery cell 30 . In this case, if the battery cell 30 and the wire (W) are damaged in the bonding portion, an abnormal current flow may be formed or the current flow may not be formed.
  • the resistance of the bonded portion may increase and an abnormal current flow may be formed.
  • the temperature of the corresponding area may be higher than that of the surrounding area while the current passes through the corresponding area.
  • the temperature of the portions is the damaged portion. may be relatively low compared to the temperature of
  • the current strength of the corresponding portions may be lower than that of the surrounding area or may be zero, and the magnetic field strength of the corresponding portions may be lower than that of the surrounding area.
  • the current strength of the portion may be relatively higher than in the above case, and thus, the magnetic field The intensity can also be relatively high.
  • FIG. 5 is a schematic diagram exemplarily showing a step of taking a thermal image of a battery pack according to an embodiment of the present invention.
  • the battery pack thermal image capturing step is a step of capturing a thermal image of the battery pack (B).
  • the battery pack thermal image photographing step includes the steps of seating the battery pack B on the support part 50 and positioning the thermal image photographing means 70 on the support part 50, and using the thermal image photographing means 70 It may be configured including taking a thermal image of a predetermined plane in which the wire W is positioned, for example, a thermal image of the upper surface of the battery pack B.
  • the thermal image photographing means 70 connected to the diagnostic part 80 is connected to the battery pack. It can be moved to the upper side of (B). And by using a plurality of detection elements (not shown) forming a predetermined focal plane arrangement on the focal plane of the thermal image photographing means 70, infrared rays emitted from the upper surface of the battery pack (B) are detected, and the battery pack ( A thermal image of the upper surface of B) can be taken.
  • the pixel size of the photographed thermal image may be a predetermined pixel size determined to correspond to the size of the wire (W).
  • the pixel size of the photographed thermal image is set to be smaller than at least one of the thickness of the wire W and the size of the portion to which the wire W is bonded. It may be in pixel size.
  • the pixel size of the photographed thermal image may be a predetermined pixel size smaller than the diameter of the battery cell 30 .
  • FIG. 6 is a conceptual diagram for explaining a thermal image reading step according to an embodiment of the present invention.
  • the thermal image reading step is a step of reading a bonding state of a portion where the battery cell 30 and the wire W are bonded from the photographed thermal image data DB1 . These steps may be performed by the diagnostic unit 80 .
  • the thermal image reading step includes a thermal image contour generation step of extracting a predetermined outline from the photographed thermal image to generate a shape of a portion where the battery cell 30 and the wire W are bonded, and thermal image data ( A bonded portion temperature reading step of reading the temperature of the portion where the battery cell 30 and the wire W are bonded from DB1) to either high or low temperature, if the temperature of the portion where the battery cell and the wire are bonded is high, the corresponding Bonding that determines the bonding state of the region as abnormal connection-confirmed state It may be configured to include a determination step of determining whether the region is normally connected, and a step of generating thermal image reading result information to generate thermal image reading result information by matching the position information and bonding state of the bonded region.
  • a predetermined outline is extracted from the photographed thermal image. For example, during charging and discharging of the battery cell 30 , predetermined heat is generated in each of the battery cell 30 , the bus bar 40 , and the wire W and propagated to the surroundings. At this time, the battery cell 30 , the bus bar 40 , and the wire W may each have predetermined different sizes, materials, and properties. may occur, and an outline may be created by the temperature difference.
  • a predetermined contour is extracted from the photographed thermal image to generate a shape of a portion where the battery cell 30 and the wire W are bonded, and through this, pixels corresponding to the portion where the wire W is bonded are separated from each other. It can be distinguished from non-pixels. Accordingly, it is possible to know the portion to which the wire W is bonded in the photographed thermal image.
  • the pixels of the photographed thermal image P1 are divided according to temperature. That is, the pixels of the photographed thermal image P1 are divided into pixels A1 and A2 having a higher temperature (T 2 ) than a predetermined reference temperature and pixels having a lower temperature (T 1 ) than that.
  • the high temperature (T 2 ) and the low temperature (T 1 ) may each be determined in a predetermined temperature range.
  • the low temperature (T 1 ) lower than the reference temperature may be, for example, a predetermined temperature range
  • the high temperature (T 2 ) may be a predetermined temperature range higher than the low temperature (T 1 ).
  • the reference temperature is, for example, the range of the surface temperature of the wire W when the battery cell 30 is charged and discharged in a state in which the bus bar 40, the wire W, and the battery cell 30 are normally wire-bonded and connected.
  • the surface temperature is calculated theoretically or obtained through a predetermined experiment in which the battery cell 30 is charged and discharged at room temperature or standard temperature and the temperature of the wire W connected to the battery cell 30 is repeatedly measured.
  • a closed curve (not shown) is formed to separate the high temperature (T 2 ) pixels A1 and A2 from the low temperature pixels to surround the high temperature (T 2 ) pixels A1 and A2.
  • the location information of the portion to which the wire W located within the closed curve is bonded is acquired.
  • the location information of the portion where the wire W located in the closed curve is bonded is the installation height, installation angle, angle of view and resolution (X-Y) of the thermal image photographing means 70, and the top height and top area of the battery pack (B). can be obtained in the form of predetermined coordinates using Similarly, location information of a portion where the wire W located outside the closed curve is bonded can be obtained.
  • the bonded portion of the wire W located within the closed curve is determined as an abnormal connection-confirmed state.
  • the bonded portion of the wire (W) located outside the closed curve is determined as a normal connection-considered state.
  • FIG. 7 is a schematic diagram exemplarily showing a battery pack magnetic field image capturing step according to an embodiment of the present invention.
  • the step of capturing the magnetic field image of the battery pack is a step of capturing the magnetic field image of the battery pack (B).
  • the magnetization state of the target forms a specific angle, and the magnitude of the magnetic field generated by the current can be measured through this angle.
  • the laser light may be incident on the target, the reflected light may be collected, and the intensity may be detected, and the magnetic field intensity may be calculated based on the detected intensity of the reflected light.
  • magnetic field strength may be obtained using various magnetic sensors, and a magnetic field image may be generated therefrom.
  • the magnetic field image of the battery pack B may be photographed using the magnetic field image photographing means 80 having a predetermined magnetic sensor arrangement.
  • the battery pack magnetic field image capturing step includes positioning the magnetic field image capturing means 80 on the support 50 , and using the magnetic field image capturing unit 80 , a magnetic field of a predetermined plane in which the wire W is positioned. It may be configured including the step of taking an image.
  • the magnetic field image of the upper surface of the battery pack (B) may be photographed while scanning in the horizontal direction. That is, a magnetic field image is generated by photographing the same predetermined plane as the plane on which the thermal image is photographed.
  • the pixel size of the photographed magnetic field image may be a predetermined pixel size determined to correspond to the pixel size of the photographed thermal image.
  • the pixel size of the magnetic field image and the pixel size of the thermal image may be the same.
  • the above-described battery pack thermal imaging step and battery pack magnetic field imaging step are performed while the battery cell charging/discharging step is performed, and in this case, these steps may be performed simultaneously. Accordingly, it is possible to obtain a thermal image and a magnetic field image of the same area in the same time period.
  • the step of taking a thermal image of the battery pack and the step of taking a magnetic field image of the battery pack may be performed in a predetermined order with a predetermined time difference.
  • FIG. 8 is a conceptual diagram for explaining a magnetic field image reading step according to an embodiment of the present invention.
  • the magnetic field image reading step is a step of reading the bonding state of the portion where the battery cell and the wire are bonded from the photographed magnetic field image data DB2 , and may be performed by the diagnosis unit 80 .
  • This magnetic field image reading step includes a magnetic field image contour generation step of generating a shape of a portion where the battery cell 30 and the wire W are bonded in the photographed magnetic field image using the outline extracted in the thermal image reading step, and photographing;
  • a bonded portion magnetic field strength reading step of reading the magnetic field strength of the portion where the battery cell and the wire are bonded from the magnetic field image data DB2, if the magnetic field strength of the portion where the battery cell and the wire are bonded is greater than a predetermined reference strength, the portion Normal connection determination step of determining the bonding state of the bonded region as a normal connection-confirmed state It may be configured to include a determination step of determining whether the bonded portion is abnormal connection-considered, and a magnetic field image reading result information generating step of generating magnetic field image reading result information by matching the position information and bonding state of the bonded portion.
  • the pixels of the magnetic field image P2 photographed with a predetermined resolution XY may be expressed by being divided into different colors or brightness according to the magnetic field strength, and the magnetic field strength is greater than the reference strength in a predetermined range of strength (m 2 ). ) and a pixel corresponding to an intensity (m 1 ) in a predetermined range having a magnetic field strength smaller than a reference intensity. Accordingly, by using the outline extracted in the thermal image reading step, the shape of the portion where the battery cell 30 and the wire W are bonded is generated in the photographed magnetic field image P2, and pixels having a magnetic field strength greater than the reference strength are generated.
  • the magnetic field strength may be in units of micro tesla.
  • the reference strength may be the range of the magnetic field strength measured from the wire W while charging and discharging the battery cell 30 in a state in which the bus bar 40, the wire W, and the battery cell 30 are normally wire-bonded and connected. have.
  • the reference strength is calculated theoretically, or a predetermined value for repeatedly measuring the strength of the magnetic field generated from the wire W connected to the battery cell 30 while charging and discharging the battery cell 30 is performed at room temperature or standard temperature. It can be obtained through experimentation.
  • the bonded portion of the wire (W) located within the closed curve is determined as a normal connection-confirmed state, and the remainder is determined as an abnormal connection-considered state.
  • the wire bonding state failure determination step is performed by the diagnosis unit 80, and the battery cell and the wire are separated by combining the thermal image reading result information generated in the thermal image reading step and the magnetic field image reading result information generated in the magnetic field image reading step. This is the final determination of the bonding state of the bonded area.
  • the wire bonding state defect determination step compares the thermal image reading result information and the magnetic field image reading result information to determine the bonding state of the portion where the battery cell and the wire are bonded to one selected from among normal connection, abnormal connection, and abnormal disconnection. A final judgment can be made in the state of
  • the bonding state of the corresponding portion may be finally determined as the abnormal connection state.
  • the bonding state of the area where the battery cell and the wire are bonded is abnormal connection-confirmed, it means that the temperature of the area is high. That is, when the temperature of the area is high, regardless of the magnetic field image reading result, the area Finally, the bonding state of
  • the bonding state of the part where the battery cell and the wire are bonded is normal connection-confirmed, the bonding state of the corresponding part is finally determined as the normal connection state.
  • the bonding state of the portion where the battery cell and the wire are bonded is normal connection-confirmed means that the magnetic field strength of the portion is strong. In this case, regardless of the thermal image reading result, the bonding state of the relevant area is finally judged as the normal connection state.
  • the bonding state of the part where the battery cell and the wire are bonded is considered normal connection- and abnormal connection-, the bonding state of the corresponding part is finalized as abnormal disconnection state.
  • the bonding state of the portion where the battery cell and the wire are bonded is included in both the normal connection-considered state and the abnormal connection-considered state. It is possible to accurately determine that the state of the region is an abnormal disconnection state by checking the

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Battery Mounting, Suspending (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

본 발명은, 배터리 셀과 와이어를 본딩 연결하여 배터리 팩을 제조하는 배터리 팩 제조 단계와, 와이어를 통하여 배터리 셀을 충방전하는 배터리 셀 충방전 단계와, 배터리 팩의 열 이미지를 촬영하는 배터리 팩 열 이미지 촬영 단계와, 촬영된 열 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 판독하는 열 이미지 판독 단계와, 배터리 팩의 자기장 이미지를 촬영하는 배터리 팩 자기장 이미지 촬영 단계와, 촬영된 자기장 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 판독하는 자기장 이미지 판독 단계와, 열 이미지 판독 단계에서 생성된 열 이미지 판독 결과 정보와, 자기장 이미지 판독 단계에서 생성된 자기장 이미지 판독 결과 정보를 결합하여 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 최종판단하는 와이어 본딩 상태 불량 판단 단계를 포함하여 구성되는 배터리 팩 진단 방법으로서, 배터리 팩에 구비되어 있는 복수개의 배터리 셀 및 이들을 연결시키는 복수개의 와이어 간의 본딩 상태를 정확하게 진단할 수 있는 배터리 팩 진단 방법이 제시된다. (대표도) 도 1

Description

배터리 팩 진단 방법
본 발명은 배터리 팩 진단 방법에 관한 것으로서, 더욱 상세하게는 배터리 팩에 구비되어 있는 복수개의 배터리 셀 및 이들을 연결시키는 복수개의 와이어 간의 본딩 상태를 정확하게 진단할 수 있는 배터리 팩 진단 방법에 관한 것이다.
배터리 팩은 복수개의 배터리 셀을 하우징에 수납하고, 버스 바 및 와이어로 복수개의 배터리 셀을 연결시켜 제조한다. 이러한 배터리 팩은 배터리 셀과 와이어가 본딩된 부위에 불량이 발생하는 경우가 있다.
이처럼 배터리 셀과 와이어가 본딩된 부위에 불량이 발생하면, 해당 배터리 셀은 충방전 시에 내부 저항의 변화가 심하게 발생한다. 예컨대 충전 시 해당 배터리 셀은 그 주변의 정상 배터리 셀보다 높은 전압이 형성되고, 방전 상태에서 해당 배터리 셀은 그 주변의 정상 배터리 셀보다 낮은 전압이 형성된다.
또한, 해당 배터리 셀을 계속해서 충방전하게 되면, 배터리 팩의 전체 출력이 저하되고, 해당 배터리 셀에서 쇼트가 발생하여 발화되는 문제점이 있다. 이에, 배터리 팩의 제조 단계에서 배터리 셀과 와이어의 본딩된 부위의 본딩 상태에 대한 검사를 수행하여 본딩된 부위의 본딩 상태를 진단해야 한다.
하지만 하나의 배터리 팩 내에는 수백개 이상의 배터리 셀이 수납되고, 이들을 연결하는 와이어의 개수도 수백개 이상이 된다. 따라서, 이들이 본딩된 부위의 본딩 상태를 일일이 정확하게 검사하는 것에는 어려움이 있다.
본 발명의 배경이 되는 기술은 하기의 특허문헌에 게재되어 있다.
(특허문헌 1) KR10-2019-0011096 A
(특허문헌 2) KR10-2020-0056715 A
본 발명은 배터리 팩에 구비되어 있는 복수개의 배터리 셀 및 이들을 연결시키는 복수개의 와이어 간의 본딩 상태를 정확하게 진단할 수 있는 배터리 팩 진단 방법을 제공한다.
본 발명의 실시 형태에 따른 배터리 팩 진단 방법은, 배터리 셀과 와이어를 본딩 연결하여 배터리 팩을 제조하는 배터리 팩 제조 단계; 상기 와이어를 통하여 상기 배터리 셀을 충방전하는 배터리 셀 충방전 단계; 상기 배터리 팩의 열 이미지를 촬영하는 배터리 팩 열 이미지 촬영 단계; 촬영된 열 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 판독하는 열 이미지 판독 단계; 상기 배터리 팩의 자기장 이미지를 촬영하는 배터리 팩 자기장 이미지 촬영 단계; 촬영된 자기장 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 판독하는 자기장 이미지 판독 단계; 상기 열 이미지 판독 단계에서 생성된 열 이미지 판독 결과 정보와, 상기 자기장 이미지 판독 단계에서 생성된 자기장 이미지 판독 결과 정보를 결합하여 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 최종판단하는 와이어 본딩 상태 불량 판단 단계;를 포함하여 구성된다.
상기 배터리 팩 열 이미지 촬영 단계는, 상기 와이어가 위치하는 소정의 평면을 촬영하여 열 이미지를 생성하고, 촬영된 열 이미지의 픽셀 크기는, 상기 와이어의 굵기 및 상기 와이어가 본딩된 부위의 크기 중 적어도 어느 하나보다 작도록 정해진 소정의 픽셀 크기일 수 있다.
상기 열 이미지 판독 단계는, 촬영된 열 이미지 내에서 소정의 윤곽선을 추출하여 배터리 셀과 와이어가 본딩된 부위의 형상을 생성하는 열 이미지 윤곽선 생성 단계; 촬영된 열 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 온도를 고온 및 저온 중 어느 하나로 판독하는 본딩된 부위 온도 판독 단계; 배터리 셀과 와이어가 본딩된 부위의 온도가 소정의 기준온도보다 고온이면, 해당 부위의 본딩 상태를 비정상연결-확정 상태로 판단하는 본딩된 부위 비정상연결 판단 단계; 배터리 셀과 와이어가 본딩된 부위의 온도가 상기 기준온도보다 저온이면, 해당 부위의 본딩 상태를 정상연결-간주 상태로 판단하는 본딩된 부위 정상연결-간주 판단 단계; 본딩된 부위의 위치정보 및 본딩 상태를 매칭하여 열 이미지 판독 결과 정보를 생성하는 열 이미지 판독 결과 정보 생성 단계;를 포함하여 구성될 수 있다.
상기 배터리 팩 자기장 이미지 촬영 단계는, 상기 열 이미지를 촬영한 평면과 동일한 소정의 평면을 촬영하여 자기장 이미지를 생성하고, 촬영된 자기장 이미지의 픽셀 크기는 촬영된 열 이미지의 픽셀 크기에 대응하도록 정해진 소정의 픽셀 크기일 수 있다.
상기 자기장 이미지 판독 단계는, 상기 열 이미지 판독 단계에서 추출한 윤곽선을 이용하여, 촬영된 자기장 이미지 내에 배터리 셀과 와이어가 본딩된 부위의 형상을 생성하는 자기장 이미지 윤곽선 생성 단계; 촬영된 자기장 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 자기장 세기를 판독하는 본딩된 부위 자기장 세기 판독 단계; 배터리 셀과 와이어가 본딩된 부위의 자기장 세기가 소정의 기준세기보다 크면, 해당 부위의 본딩 상태를 정상연결-확정 상태로 판단하는 본딩된 부위 정상연결 판단 단계; 배터리 셀과 와이어가 본딩된 부위의 자기장 세기가 상기 기준세기보다 작으면, 해당 부위의 본딩 상태를 비정상연결-간주 상태로 판단하는 본딩된 부위 비정상연결-간주 판단 단계; 본딩된 부위의 위치정보 및 본딩 상태를 매칭하여 자기장 이미지 판독 결과 정보를 생성하는 자기장 이미지 판독 결과 정보 생성 단계;를 포함하여 구성될 수 있다.
상기 와이어 본딩 상태 불량 판단 단계는, 상기 열 이미지 판독 결과 정보와 상기 자기장 이미지 판독 결과 정보를 대비하여, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 정상연결, 비정상연결 및 비정상단선 중 선택된 어느 하나의 상태로 최종판단하는 것을 특징으로 할 수 있다.
상기 와이어 본딩 상태 불량 판단 단계는, 상기 열 이미지 판독 결과 정보와 상기 자기장 이미지 판독 결과 정보를 대비하여, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 비정상연결-확정이면 해당 부위의 본딩 상태를 비정상연결 상태로 최종판단하고, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 정상연결-확정이면 해당 부위의 본딩 상태를 정상연결 상태로 최종판단하고, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 정상연결-간주 및 비정상연결-간주이면 해당 부위의 본딩 상태를 비정상단선 상태로 최종판단하는 것을 특징으로 할 수 있다.
상기 배터리 셀 충방전 단계를 수행하는 중에, 상기 배터리 팩 열 이미지 촬영 단계와, 상기 배터리 팩 자기장 이미지 촬영 단계를 동시에 수행하는 것을 특징으로 할 수 있다.
상기 배터리 셀 충방전 단계를 수행하는 중에,상기 배터리 팩 열 이미지 촬영 단계와, 상기 배터리 팩 자기장 이미지 촬영 단계를 소정의 시차를 두고 소정의 순서로 수행하는 것을 특징으로 할 수 있다.
본 발명의 실시 형태에 따르면, 배터리 팩의 열 이미지를 판독한 결과와, 배처리 팩의 자기장 이미지를 판독한 결과를 결합함으로써, 배터리 팩에 구비되어 있는 배터리 셀 및 이에 연결된 와이어 간의 본딩 상태를 정확하게 진단할 수 있다. 따라서, 본딩 상태가 불량한 와이어가 진단 결과에서 누락되는 것을 방지할 수 있다. 즉, 열 이미지만 판독하거나, 자기장 이미지만 판독하는 경우에 비해, 본딩 상태를 정확하게 진단할 수 있다.
도 1은 본 발명의 실시 예에 따른 배터리 팩 진단 방법의 순서도이다.
도 2 및 도 3은 각각 본 발명의 실시 예에 따른 배터리 팩 제조 단계를 예시적으로 보여주는 모식도이다.
도 4는 본 발명의 실시 예에 따른 배터리 셀 충방전 단계를 예시적으로 보여주는 모식도이다.
도 5는 본 발명의 실시 예에 따른 배터리 팩 열 이미지 촬영 단계를 예시적으로 보여주는 모식도이다.
도 6은 본 발명의 실시 예에 따른 열 이미지 판독 단계를 설명하기 위한 개념도이다.
도 7은 본 발명의 실시 예에 따른 배터리 팩 자기장 이미지 촬영 단계를 예시적으로 보여주는 모식도이다.
도 8은 본 발명의 실시 예에 따른 자기장 이미지 판독 단계를 설명하기 위한 개념도이다.
이하, 첨부된 도면을 참조하여, 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니고, 서로 다른 다양한 형태로 구현될 것이다. 단지 본 발명의 실시 예는 본 발명의 개시가 완전하도록 하고, 해당 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시 예를 설명하기 위하여 도면은 과장될 수 있고, 설명과 관계없는 부분은 도면에서 생략될 수 있고, 도면상의 동일한 부호는 동일한 요소를 지칭한다.
이하, 도면을 참조하여 본 발명의 실시 예를 상세하게 설명한다.
1. 본 발명의 실시 예에 따른 배터리 팩 진단 방법
도 1은 본 발명의 실시 예에 따른 배터리 팩 진단 방법의 순서도이다.
도 1에 도시된 바와 같이, 본 발명의 실시 예에 따른 배터리 팩 진단 방법은 배터리 팩 제조 단계(S100)와, 배터리 셀 충방전 단계(S200)와, 배터리 팩 열 이미지 촬영 단계(S300)와, 열 이미지 판독 단계(S400)와, 배터리 팩 자기장 이미지 촬영 단계(S500)와, 자기장 이미지 판독 단계(S600), 및 와이어 본딩 상태 불량 판단 단계(S700)를 포함하여 구성된다.
1.1. 배터리 팩 제조 단계(S100)
도 2 및 도 3은 각각 본 발명의 실시 예에 따른 배터리 팩 제조 단계를 예시적으로 보여주는 모식도이다.
배터리 팩 제조 단계는 배터리 셀(30)과 와이어(W)를 본딩 연결하여 배터리 팩(B)을 제조하는 단계이다. 배터리 팩 제조 단계는 배터리 셀 수납 단계(S110)와, 와이어 본딩 단계(S120)를 포함하여 구성될 수 있다.
1.1.1. 배터리 셀 수납 단계(S110)
도 2를 참조하면, 배터리 셀 수납 단계에서는, 배터리 팩 하우징(10)과 배터리 셀 홀더(20)와 복수개의 배터리 셀(30) 및 버스 바(40)를 준비한다. 이후, 배터리 팩 하우징(10)에 배터리 셀 홀더(20)를 수납하고, 배터리 셀 홀더(20)에 복수개의 배터리 셀(30)을 수납할 수 있다. 또한, 복수개의 배터리 셀(30)에 버스 바(40)를 안착시킬 수 있다.
여기서, 배터리 팩 하우징(10)은 내부가 상방으로 개방된 사각통 형상일 수 있다. 물론, 배터리 팩 하우징(10)의 형상은 다양할 수 있다. 배터리 셀 홀더(20)는 복수개의 배터리 셀(30)을 고정시킬 수 있는 것을 만족하는 다양한 재질 및 형태로 마련될 수 있다. 배터리 셀(30)은 상하방향으로 연장형성된 원통형의 이차전지 셀일 수 있다. 물론, 배터리 셀(30)은 다양한 형상의 캔형 이차전지 셀일 수 있다. 배터리 셀(30)은 소정의 배열을 이루도록 수평방향으로 나열될 수 있다.
1.1.2. 와이어 본딩 단계(S120)
도 3을 참조하면, 와이어 본딩 단계에서는, 복수개의 배터리 셀(30)과 버스 바(40)를 연결시키도록 버스 바(40)에 형성된 복수개의 관통홀(H)에 복수개의 와이어(W)를 각각 배치시킨 후, 와이어 본딩을 수행하여 복수개의 와이어(W) 각각의 일단과 복수개의 배터리 셀(30)을 각각 연결시키고, 버스 바(40)와 복수개의 와이어(W) 각각의 타단을 연결시킴으로써, 배터리 팩(B)을 제조할 수 있다.
이때, 배터리 셀(30)과 와이어(W)가 본딩된 부위에 손상이 발생함에 의하여, 와이어(W)의 일단과 배터리 셀(30)이 정상적으로 접촉되지 않을 수 있다. 이에, 본딩된 부위의 면적이 비정상적으로 작을 수 있다. 또한, 본딩된 부위가 완전히 끊어질 수도 있다.
물론, 버스 바(40)와 와이어(W)의 타단이 본딩된 부위에도 손상이 발생할 수 있고, 해당 부위가 완전히 끊어질 수 있다. 이러한 경우에도 아래의 단계들을 통하여 동일한 방식으로 본딩된 부위의 본딩 상태의 불량을 판단할 수 있다.
1.2. 배터리 셀 충방전 단계(S200)
도 4는 본 발명의 실시 예에 따른 배터리 셀 충방전 단계를 예시적으로 보여주는 모식도이다.
도 4를 참조하면, 배터리 셀 충방전 단계는 와이어를 통하여 배터리 셀을 충방전하는 단계이다. 배터리 셀 충방전 단계는, 제조된 배터리 팩(B)을 지지부(50)에 안착시키는 단계와, 와이어(W)를 통하여 배터리 셀(30)과 연결되어 있는 배터리 팩(B)의 입출력 단자(미도시)에 충방전기(60)를 연결시키는 단계, 및 충방전기(60)를 이용하여 배터리 팩(B) 내의 배터리 셀(30)을 충전 또는 방전시키는 단계를 포함하여 구성될 수 있다.
여기서, 충방전기(60)는 소정의 충전원(미도시) 및 소정의 방전로드(미도시)를 내장할 수 있다. 충방전기(60)를 이용하여 배터리 셀(30)을 충전 또는 방전시키는 동안 입출력 단자와 와이어(W)와 배터리 셀(30)을 지나는 전류의 흐름이 형성된다. 이때, 배터리 셀(30)과 와이어(W)가 본딩된 부위에 손상이 있으면, 비정상적인 전류 흐름이 형성되거나, 전류 흐름이 형성되지 않을 수 있다.
예컨대 배터리 셀(30)과 와이어(W)가 본딩된 부위가 손상됨으로써 그 면적이 비정상적으로 작아진 경우, 본딩된 부위의 저항이 증가하고, 비정상적인 전류 흐름이 형성될 수 있다. 이 경우, 해당 부위에 전류가 통하는 동안 해당 부위의 온도가 주변보다 높게 형성될 수 있다.
그리고 배터리 셀(30)과 와이어(W)가 본딩된 부위가 완전히 끊어지는 경우, 전류 흐름이 형성되지 않을 수 있다.
한편, 배터리 셀(30)과 와이어(W)가 본딩된 부위가 손상되지 않았을 경우와, 배터리 셀(30)과 와이어(W)가 본딩된 부위가 완전히 끊어지는 경우, 해당 부위들의 온도는 손상된 부위의 온도에 비하여 상대적으로 낮을 수 있다.
또한, 배터리 셀(30)과 와이어(W)가 본딩된 부위가 손상되거나 완전히 끊어지면, 해당 부위들의 전류 세기는 주변보다 낮아지거나 0이 될 수 있고, 해당 부위들의 자기장 세기는 주변보다 낮아질 수 있다.
한편, 배터리 셀(30)과 와이어(W)가 본딩된 부위가 손상되지 않았을 경우에는 해당 부위에 전류가 흐르는 동안, 해당 부위의 전류 세기가 위의 경우에 비하여 상대적으로 높을 수 있고, 따라서, 자기장 세기도 상대적으로 높을 수 있다.
1.3. 배터리 팩 열 이미지 촬영 단계(S300)
도 5는 본 발명의 실시 예에 따른 배터리 팩 열 이미지 촬영 단계를 예시적으로 보여주는 모식도이다.
배터리 팩 열 이미지 촬영 단계는 배터리 팩(B)의 열 이미지를 촬영하는 단계이다. 배터리 팩 열 이미지 촬영 단계는, 배터리 팩(B)을 지지부(50)에 안착시키고 지지부(50) 상에 열 이미지 촬영수단(70)을 위치시키는 단계와, 열 이미지 촬영수단(70)을 이용하여 와이어(W)가 위치하는 소정의 평면의 열 이미지 예컨대 배터리 팩(B)의 상면의 열 이미지를 촬영하는 단계를 포함하여 구성될 수 있다.
예컨대 배터리 팩(B)을 지지할 수 있는 상면을 구비하는 지지부(50) 상에 배터리 팩(B)을 안착시킨 후, 진단부(80)와 연결되어 있는 열 이미지 촬영수단(70)을 배터리 팩(B)의 상측으로 이동시킬 수 있다. 그리고 열 이미지 촬영수단(70)의 초점 면에 소정의 초점 면 배열을 이루고 있는 복수개의 검출 소자(미도시)를 이용하여, 배터리 팩(B)의 상면으로부터 방출되는 적외선을 검출하여, 배터리 팩(B)의 상면의 열 이미지를 촬영할 수 있다.
이때, 촬영된 열 이미지의 픽셀 크기는 와이어(W)의 크기에 대응하도록 정해진 소정의 픽셀 크기일 수 있다. 예컨대 촬영된 열 이미지에서 와이어(W)를 구분할 수 있도록, 촬영된 열 이미지의 픽셀 크기는 와이어(W)의 굵기 및 와이어(W)가 본딩된 부위의 크기 중 적어도 어느 하나보다 작도록 정해진 소정의 픽셀 크기일 수 있다.
물론, 촬영된 열 이미지의 픽셀 크기는 배터리 셀(30)의 직경보다 작은 소정의 픽셀 크기일 수도 있다.
1.4. 열 이미지 판독 단계(S400)
도 6은 본 발명의 실시 예에 따른 열 이미지 판독 단계를 설명하기 위한 개념도이다.
열 이미지 판독 단계는 촬영된 열 이미지 데이터(DB1)로부터 배터리 셀(30)과 와이어(W)가 본딩된 부위의 본딩 상태를 판독하는 단계이다. 이러한 단계는 진단부(80)에서 수행할 수 있다.
여기서, 열 이미지 판독 단계는, 촬영된 열 이미지 내에서 소정의 윤곽선을 추출하여 배터리 셀(30)과 와이어(W)가 본딩된 부위의 형상을 생성하는 열 이미지 윤곽선 생성 단계와, 열 이미지 데이터(DB1)로부터 배터리 셀(30)과 와이어(W)가 본딩된 부위의 온도를 고온 및 저온 중 어느 하나로 판독하는 본딩된 부위 온도 판독 단계, 배터리 셀과 와이어가 본딩된 부위의 온도가 고온이면, 해당 부위의 본딩 상태를 비정상연결-확정 상태로 판단하는 본딩된 부위 비정상연결 판단 단계, 배터리 셀과 와이어가 본딩된 부위의 온도가 저온이면, 해당 부위의 본딩 상태를 정상연결-간주 상태로 판단하는 본딩된 부위 정상연결-간주 판단 단계, 및 본딩된 부위의 위치정보 및 본딩 상태를 매칭하여 열 이미지 판독 결과 정보를 생성하는 열 이미지 판독 결과 정보 생성 단계를 포함하여 구성될 수 있다.
더욱 구체적으로, 촬영된 열 이미지 내에서 소정의 윤곽선을 추출한다. 예컨대 배터리 셀(30)을 충방전하는 동안, 소정의 열이 배터리 셀(30), 버스 바(40) 및 와이어(W)에서 각각 생성되어 주변으로 전파된다. 이때, 배터리 셀(30), 버스 바(40) 및 와이어(W)는 각각 소정의 서로 다른 크기와 재질 및 물성을 가질 수 있고, 이들을 촬영하여 열 이미지를 보면, 그 경계에서 미세한 온도의 차이가 발생할 수 있고, 온도 차이에 의한 윤곽선이 생성될 수 있다.
이에, 촬영된 열 이미지 내에서 소정의 윤곽선을 추출하여 배터리 셀(30)과 와이어(W)가 본딩된 부위의 형상을 생성하고, 이를 통해 와이어(W)가 본딩된 부위에 해당하는 픽셀들을 그렇지 않은 픽셀들과 구분할 수 있다. 이에, 촬영한 열 이미지 내에서 와이어(W)가 본딩된 부위를 알 수 있다.
이후, 촬영된 열 이미지(P1)의 픽셀들을 온도에 따라 나누어 준다. 즉, 촬영된 열 이미지(P1)의 픽셀들을 소정의 기준온도보다 고온(T2)인 픽셀(A1, A2) 및 그보다 저온(T1)인 픽셀로 나눠준다. 고온(T2) 및 저온(T1)은 각각 소정의 온도 범위로 정해질 수 있다. 예컨대 기준온도보다 낮은 저온(T1)은 예컨대 소정의 온도 범위일 수 있고, 고온(T2)은 저온(T1)보다 높은 소정의 온도 범위일 수 있다.
기준온도는 예컨대 버스 바(40)와 와이어(W)와 배터리 셀(30)이 정상적으로 와이어 본딩되어 연결된 상태에서, 배터리 셀(30)을 충방전하였을 때의 와이어(W)의 표면온도의 범위일 수 있다. 이때, 이러한 표면온도는 이론적으로 계산하거나, 상온 혹은 표준 온도하에서 배터리 셀(30)의 충방전을 수행하며 배터리 셀(30)과 연결된 와이어(W)의 온도를 반복 측정하는 소정의 실험을 통하여 구할 수 있다.
이후, 고온(T2) 픽셀(A1, A2)을 저온 픽셀과 구분하여 고온(T2) 픽셀(A1, A2)을 감싸도록 폐곡선(미도시)을 형성한다. 이후, 폐곡선 내에 와이어(W)가 위치하는지를 확인한다. 즉, 와이어(W)가 본딩된 부위에 해당하는 픽셀들을 그렇지 않은 픽셀들과 구분하도록 열 이미지(P1) 내에서 추출된 윤곽선과, 고온(T2) 픽셀(A1, A2)을 감싸도록 형성된 폐곡선이 중첩되는지를 보고, 이들이 중첩이 되면 폐곡선 내에 와이어(W)가 위치하는 것을 확인할 수 있다.
이후, 폐곡선 내에 위치하는 와이어(W)가 본딩된 부위의 위치정보를 획득한다. 예컨대 폐곡선 내에 위치하는 와이어(W)가 본딩된 부위의 위치정보는 열 이미지 촬영수단(70)의 설치 높이, 설치 각도, 화각 및 해상도(X-Y)와, 배터리 팩(B)의 상면 높이 및 상면 면적을 이용하여 소정의 좌표의 형태로 구할 수 있다. 이와 마찬가지로 폐곡선 바깥에 위치하는 와이어(W)가 본딩된 부위의 위치정보도 획득할 수 있다.
이후, 폐곡선 내에 위치하는 와이어(W)의 본딩된 부위를 비정상연결-확정 상태로 판단한다. 또한, 폐곡선 바깥에 위치하는 와이어(W)의 본딩된 부위를 정상연결-간주 상태로 판단한다.
1.5. 배터리 팩 자기장 이미지 촬영 단계(S500)
도 7은 본 발명의 실시 예에 따른 배터리 팩 자기장 이미지 촬영 단계를 예시적으로 보여주는 모식도이다.
도 7을 참조하면, 배터리 팩 자기장 이미지 촬영 단계는 배터리 팩(B)의 자기장 이미지를 촬영하는 단계이다.
타겟에 전류 및 자기장을 동시 인가하면 타겟의 자화 상태가 특정 각도를 형성하고, 이 각도를 통해 전류가 발생시키는 자기장 크기를 측정할 수 있다. 또한, 타겟에 레이저 광을 입사시켜 그 반사광의 수집하여 세기를 검출하고, 검출된 반사광의 세기에 기초하여 자기장 세기를 산출할 수 있다. 이 외에도 각종 자기 센서를 이용하여 자기장 세기를 구할 수 있고, 이로부터 자기장 이미지를 생성할 수 있다.
예컨대 배터리 팩(B)의 자기장 이미지는 소정의 자기 센서 배열을 구비하는 자기장 이미지 촬영수단(80)을 이용하여 촬영할 수 있다. 이러한 배터리 팩 자기장 이미지 촬영 단계는, 지지부(50) 상에 자기장 이미지 촬영수단(80)을 위치시키는 단계와, 자기장 이미지 촬영수단(80)을 이용하여 와이어(W)가 위치하는 소정의 평면의 자기장 이미지를 촬영하는 단계를 포함하여 구성될 수 있다.
예컨대 자기장 이미지 촬영수단(80)을 배터리 팩(B)의 상면에 위치시킨 후, 수평방향으로 스캔하면서 배터리 팩(B)의 상면의 자기장 이미지를 촬영할 수 있다. 즉, 열 이미지를 촬영한 평면과 동일한 소정의 평면을 촬영하여 자기장 이미지를 생성한다. 이때, 촬영된 자기장 이미지의 픽셀 크기는 촬영된 열 이미지의 픽셀 크기에 대응하도록 정해진 소정의 픽셀 크기일 수 있다. 구체적으로, 자기장 이미지의 픽셀 크기와 열 이미지의 픽셀 크기가 같을 수 있다.
한편, 상술한 배터리 팩 열 이미지 촬영 단계와 배터리 팩 자기장 이미지 촬영 단계는 배터리 셀 충방전 단계를 수행하는 중에 수행되는데, 이때, 이들 단계는 동시에 수행될 수 있다. 이에, 동일한 시간대의 동일한 면적의 열 이미지와 자기장 이미지를 얻을 수 있다. 물론, 배터리 팩 열 이미지 촬영 단계와, 배터리 팩 자기장 이미지 촬영 단계는 소정의 시차를 두고 소정의 순서로 수행할 수도 있다.
1.6. 자기장 이미지 판독 단계(S600)
도 8은 본 발명의 실시 예에 따른 자기장 이미지 판독 단계를 설명하기 위한 개념도이다.
도 8을 참조하면, 자기장 이미지 판독 단계는 촬영된 자기장 이미지 데이터(DB2)로부터 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 판독하는 단계로서, 진단부(80)에서 수행할 수 있다.
이러한 자기장 이미지 판독 단계는, 열 이미지 판독 단계에서 추출한 윤곽선을 이용하여, 촬영된 자기장 이미지 내에 배터리 셀(30)과 와이어(W)가 본딩된 부위의 형상을 생성하는 자기장 이미지 윤곽선 생성 단계와, 촬영된 자기장 이미지 데이터(DB2)로부터 배터리 셀과 와이어가 본딩된 부위의 자기장 세기를 판독하는 본딩된 부위 자기장 세기 판독 단계, 배터리 셀과 와이어가 본딩된 부위의 자기장 세기가 소정의 기준세기보다 크면 해당 부위의 본딩 상태를 정상연결-확정 상태로 판단하는 본딩된 부위 정상연결 판단 단계, 배터리 셀과 와이어가 본딩된 부위의 자기장 세기가 상술한 기준세기보다 작으면 해당 부위의 본딩 상태를 비정상연결-간주 상태로 판단하는 본딩된 부위 비정상연결-간주 판단 단계, 및 본딩된 부위의 위치정보 및 본딩 상태를 매칭하여 자기장 이미지 판독 결과 정보를 생성하는 자기장 이미지 판독 결과 정보 생성 단계를 포함하여 구성될 수 있다.
즉, 소정의 해상도(X-Y)로 촬영된 자기장 이미지(P2)의 픽셀들은 자기장 세기에 따라서 서로 다른 색 혹은 명도로 구분되어 표현될 수 있고, 자기장 세기가 기준세기보다 큰 소정 범위의 세기(m2)에 해당하는 픽셀과 자기장 세기가 기준세기보다 작은 소정 범위의 세기(m1)에 해당하는 픽셀으로 구분할 수 있다. 이에, 열 이미지 판독 단계에서 추출한 윤곽선을 이용하여, 촬영된 자기장 이미지(P2) 내에 배터리 셀(30)과 와이어(W)가 본딩된 부위의 형상을 생성하고, 자기장 세기가 기준세기보다 큰 픽셀들을 둘러싸는 폐곡선(미도시)을 생성하고, 폐곡선 내에 와이어(W)의 본딩된 부위가 위치하는지를 확인하고, 폐곡선 내의 와이어(W)의 위치정보와 그 바깥의 외이어(W)의 위치정보를 획득한다. 자기장 세기는 마이크로 테슬라의 단위일 수 있다. 기준세기는 버스 바(40)와 와이어(W)와 배터리 셀(30)이 정상적으로 와이어 본딩되어 연결된 상태에서, 배터리 셀(30)을 충방전하면서 와이어(W)로부터 측정한 자기장 세기의 범위일 수 있다. 이때, 이러한 기준세기는 이론적으로 계산하거나, 상온 혹은 표준 온도하에서 배터리 셀(30)의 충방전을 수행하며 배터리 셀(30)과 연결된 와이어(W)로부터 생성되는 자기장의 세기를 반복 측정하는 소정의 실험을 통하여 구할 수 있다.
그리고, 폐곡선 내에 위치하는 와이어(W)의 본딩된 부위를 정상연결-확정 상태로 판단하고, 그 나머지를 비정상연결-간주 상태로 판단한다.
1.7. 와이어 본딩 상태 불량 판단 단계(S700)
와이어 본딩 상태 불량 판단 단계는 진단부(80)에서 수행되는데, 열 이미지 판독 단계에서 생성된 열 이미지 판독 결과 정보와, 자기장 이미지 판독 단계에서 생성된 자기장 이미지 판독 결과 정보를 결합하여 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 최종판단하는 단계이다.
구체적으로, 와이어 본딩 상태 불량 판단 단계는, 열 이미지 판독 결과 정보와 자기장 이미지 판독 결과 정보를 대비하여, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 정상연결, 비정상연결 및 비정상단선 중 선택된 어느 하나의 상태로 최종판단할 수 있다.
즉, 열 이미지 판독 결과 정보와 자기장 이미지 판독 결과 정보를 대비하여, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 비정상연결-확정이면 해당 부위의 본딩 상태를 비정상연결 상태로 최종판단할 수 있다.
예컨대 배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 비정상연결-확정인 것은, 해당 부위의 온도가 고온인 것을 의미한다, 즉, 해당 부위의 온도가 고온일 때에는 자기장 이미지 판독 결과와 상관없이 해당 부위의 본딩 상태를 비정상연결 상태로 최종판단한다.
또한, 열 이미지 판독 결과 정보와 자기장 이미지 판독 결과 정보를 대비하여, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 정상연결-확정이면 해당 부위의 본딩 상태를 정상연결 상태로 최종판단한다.
예컨대 배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 정상연결-확정이라는 것은 해당 부위의 자기장 세기가 강함인 것을 의미한다. 이 때에는 열 이미지 판독 결과와 상관없이 해당 부위의 본딩 상태를 정상연결 상태로 최종판단한다.
한편, 열 이미지 판독 결과 정보와 자기장 이미지 판독 결과 정보를 대비하여, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 정상연결-간주 및 비정상연결-간주이면 해당 부위의 본딩 상태를 비정상단선 상태로 최종판단할 수 있다.
즉, 배터리 셀과 와이어가 본딩된 부위가 완전히 끊어진 경우, 온도의 차이만으로 그 상태를 확정하기 어렵고, 자기장 이미지 만으로도 그 상태를 확정하기 어렵다.
예를 들어 본딩된 부위가 완전히 끊어진 부분과, 본딩된 부위가 정상인 부분은 발열이 없거나, 발열의 정도가 상대적으로 작은 부분이고, 그 온도가 상온에 크게 영향을 받기 때문에 이들을 온도적으로 구분하기 어렵다.
또한, 본딩된 부위가 손상된 부분의 자기장 세기와 본딩된 부위가 완전히 끊어진 부분의 자기장 세기는 그 크기가 작기 때문에 이들을 정확히 구분하기 어렵다.
하지만 본 발명의 실시 예와 같이, 열 이미지 판독 결과 정보와 자기장 이미지 판독 결과 정보를 대비하여, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 정상연결-간주 상태 및 비정상연결-간주 상태에 모두 포함하는 것을 확인함으로써, 이를테면 이들 상태를 열적으로 및 자기장 세기적으로 교차 검증함으로써, 해당 부위의 상태가 비정상단선 상태인 것을 정확하게 최종판단할 수 있다.
본 발명의 상기 실시 예는 본 발명의 설명을 위한 것이고, 본 발명의 제한을 위한 것이 아니다. 본 발명의 상기 실시 예에 개시된 구성과 방식은 서로 결합하거나 교차하여 다양한 형태로 조합 및 변형될 것이고, 이에 의한 변형 예들도 본 발명의 범주로 볼 수 있음을 주지해야 한다. 즉, 본 발명은 청구범위 및 이와 균등한 기술적 사상의 범위 내에서 서로 다른 다양한 형태로 구현될 것이며, 본 발명이 해당하는 기술 분야에서의 업자는 본 발명의 기술적 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
(부호의 설명)
10: 배터리 팩 하우징
20: 배터리 셀 홀더
30: 배터리 셀
40: 버스 바
50: 지지부
60: 열 이미지 촬영수단
70: 자기장 이미지 촬영수단
80: 진단부
H: 홀
W: 와이어
DB1: 촬영된 열 이미지 데이터
DB2: 촬영된 자기장 이미지 데이터
P1: 촬영된 열 이미지
P2: 촬영된 자기장 이미지

Claims (9)

  1. 배터리 셀과 와이어를 본딩 연결하여 배터리 팩을 제조하는 배터리 팩 제조 단계;
    상기 와이어를 통하여 상기 배터리 셀을 충방전하는 배터리 셀 충방전 단계;
    상기 배터리 팩의 열 이미지를 촬영하는 배터리 팩 열 이미지 촬영 단계;
    촬영된 열 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 판독하는 열 이미지 판독 단계;
    상기 배터리 팩의 자기장 이미지를 촬영하는 배터리 팩 자기장 이미지 촬영 단계;
    촬영된 자기장 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 판독하는 자기장 이미지 판독 단계;
    상기 열 이미지 판독 단계에서 생성된 열 이미지 판독 결과 정보와, 상기 자기장 이미지 판독 단계에서 생성된 자기장 이미지 판독 결과 정보를 결합하여 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 최종판단하는 와이어 본딩 상태 불량 판단 단계;를 포함하여 구성되는 배터리 팩 진단 방법.
  2. 청구항 1에 있어서,
    상기 배터리 팩 열 이미지 촬영 단계는,
    상기 와이어가 위치하는 소정의 평면을 촬영하여 열 이미지를 생성하고,
    촬영된 열 이미지의 픽셀 크기는, 상기 와이어의 굵기 및 상기 와이어가 본딩된 부위의 크기 중 적어도 어느 하나보다 작도록 정해진 소정의 픽셀 크기인 배터리 팩 진단 방법.
  3. 청구항 1에 있어서,
    상기 열 이미지 판독 단계는,
    촬영된 열 이미지 내에서 소정의 윤곽선을 추출하여 배터리 셀과 와이어가 본딩된 부위의 형상을 생성하는 열 이미지 윤곽선 생성 단계;
    촬영된 열 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 온도를 고온 및 저온 중 어느 하나로 판독하는 본딩된 부위 온도 판독 단계;
    배터리 셀과 와이어가 본딩된 부위의 온도가 소정의 기준온도보다 고온이면, 해당 부위의 본딩 상태를 비정상연결-확정 상태로 판단하는 본딩된 부위 비정상연결 판단 단계;
    배터리 셀과 와이어가 본딩된 부위의 온도가 상기 기준온도보다 저온이면, 해당 부위의 본딩 상태를 정상연결-간주 상태로 판단하는 본딩된 부위 정상연결-간주 판단 단계;
    본딩된 부위의 위치정보 및 본딩 상태를 매칭하여 열 이미지 판독 결과 정보를 생성하는 열 이미지 판독 결과 정보 생성 단계;를 포함하여 구성되는 배터리 팩 진단 방법.
  4. 청구항 2에 있어서,
    상기 배터리 팩 자기장 이미지 촬영 단계는,
    상기 열 이미지를 촬영한 평면과 동일한 소정의 평면을 촬영하여 자기장 이미지를 생성하고,
    촬영된 자기장 이미지의 픽셀 크기는 촬영된 열 이미지의 픽셀 크기에 대응하도록 정해진 소정의 픽셀 크기인 배터리 팩 진단 방법.
  5. 청구항 3에 있어서,
    상기 자기장 이미지 판독 단계는,
    상기 열 이미지 판독 단계에서 추출한 윤곽선을 이용하여, 촬영된 자기장 이미지 내에 배터리 셀과 와이어가 본딩된 부위의 형상을 생성하는 자기장 이미지 윤곽선 생성 단계;
    촬영된 자기장 이미지 데이터로부터 배터리 셀과 와이어가 본딩된 부위의 자기장 세기를 판독하는 본딩된 부위 자기장 세기 판독 단계;
    배터리 셀과 와이어가 본딩된 부위의 자기장 세기가 소정의 기준세기보다 크면, 해당 부위의 본딩 상태를 정상연결-확정 상태로 판단하는 본딩된 부위 정상연결 판단 단계;
    배터리 셀과 와이어가 본딩된 부위의 자기장 세기가 상기 기준세기보다 작으면, 해당 부위의 본딩 상태를 비정상연결-간주 상태로 판단하는 본딩된 부위 비정상연결-간주 판단 단계;
    본딩된 부위의 위치정보 및 본딩 상태를 매칭하여 자기장 이미지 판독 결과 정보를 생성하는 자기장 이미지 판독 결과 정보 생성 단계;를 포함하여 구성되는 배터리 팩 진단 방법.
  6. 청구항 5에 있어서,
    상기 와이어 본딩 상태 불량 판단 단계는,
    상기 열 이미지 판독 결과 정보와 상기 자기장 이미지 판독 결과 정보를 대비하여, 배터리 셀과 와이어가 본딩된 부위의 본딩 상태를 정상연결, 비정상연결 및 비정상단선 중 선택된 어느 하나의 상태로 최종판단하는 것을 특징으로 하는 배터리 팩 진단 방법.
  7. 청구항 6에 있어서,
    상기 와이어 본딩 상태 불량 판단 단계는,
    상기 열 이미지 판독 결과 정보와 상기 자기장 이미지 판독 결과 정보를 대비하여,
    배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 비정상연결-확정이면 해당 부위의 본딩 상태를 비정상연결 상태로 최종판단하고,
    배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 정상연결-확정이면 해당 부위의 본딩 상태를 정상연결 상태로 최종판단하고,
    배터리 셀과 와이어가 본딩된 부위의 본딩 상태가 정상연결-간주 및 비정상연결-간주이면 해당 부위의 본딩 상태를 비정상단선 상태로 최종판단하는 것을 특징으로 하는 배터리 팩 진단 방법.
  8. 청구항 1에 있어서,
    상기 배터리 셀 충방전 단계를 수행하는 중에,
    상기 배터리 팩 열 이미지 촬영 단계와, 상기 배터리 팩 자기장 이미지 촬영 단계를 동시에 수행하는 것을 특징으로 하는 배터리 팩 진단 방법.
  9. 청구항 1에 있어서,
    상기 배터리 셀 충방전 단계를 수행하는 중에,
    상기 배터리 팩 열 이미지 촬영 단계와, 상기 배터리 팩 자기장 이미지 촬영 단계를 소정의 시차를 두고 소정의 순서로 수행하는 것을 특징으로 하는 배터리 팩 진단 방법.
PCT/KR2021/017119 2020-11-23 2021-11-19 배터리 팩 진단 방법 WO2022108399A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180063072.9A CN116097111A (zh) 2020-11-23 2021-11-19 电池组的判断方法
JP2023515360A JP7404590B2 (ja) 2020-11-23 2021-11-19 バッテリーパックの診断方法
US18/030,650 US20230408594A1 (en) 2020-11-23 2021-11-19 Method for diagnosing battery pack
EP21895166.3A EP4191260A1 (en) 2020-11-23 2021-11-19 Method for diagnosing battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0158167 2020-11-23
KR1020200158167A KR20220071007A (ko) 2020-11-23 2020-11-23 배터리 팩 진단 방법

Publications (1)

Publication Number Publication Date
WO2022108399A1 true WO2022108399A1 (ko) 2022-05-27

Family

ID=81709502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017119 WO2022108399A1 (ko) 2020-11-23 2021-11-19 배터리 팩 진단 방법

Country Status (6)

Country Link
US (1) US20230408594A1 (ko)
EP (1) EP4191260A1 (ko)
JP (1) JP7404590B2 (ko)
KR (1) KR20220071007A (ko)
CN (1) CN116097111A (ko)
WO (1) WO2022108399A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240003181A (ko) 2022-06-30 2024-01-08 현대모비스 주식회사 배터리 불량 셀 검출 방법
KR20240031658A (ko) 2022-09-01 2024-03-08 현대모비스 주식회사 배터리 모듈

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172772A (ja) * 1991-12-25 1993-07-09 Shuji Nakada 電子部品の接合部検査方法
JP2013036975A (ja) * 2011-08-10 2013-02-21 O2 Micro Inc バッテリセルと外部回路とを接続するワイヤの断線の検出
KR20160059803A (ko) * 2014-11-19 2016-05-27 현대오트론 주식회사 배터리 관리 시스템의 단선 진단 장치 및 방법
JP2017511000A (ja) * 2014-03-10 2017-04-13 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 部品配列におけるボンディング接続の判定方法および検査機器
KR20170079580A (ko) * 2015-12-30 2017-07-10 조선대학교산학협력단 적외선 열화상 영상을 이용한 리튬 이온 배터리 결함 검사 방법
KR20190011096A (ko) 2017-07-24 2019-02-01 주식회사 엘지화학 측면 와이어 본딩 가능한 전지팩, 전지모듈 및 전지모듈 제조 방법
KR20200056715A (ko) 2018-11-15 2020-05-25 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175766B2 (ja) 1998-09-28 2001-06-11 日本電気株式会社 非破壊検査装置および非破壊検査方法
WO2018074161A1 (ja) 2016-10-18 2018-04-26 日産自動車株式会社 溶接品質検査方法及び溶接品質検査装置
KR102497448B1 (ko) 2019-02-14 2023-02-08 주식회사 엘지에너지솔루션 배터리 셀 이상 판단 장치 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172772A (ja) * 1991-12-25 1993-07-09 Shuji Nakada 電子部品の接合部検査方法
JP2013036975A (ja) * 2011-08-10 2013-02-21 O2 Micro Inc バッテリセルと外部回路とを接続するワイヤの断線の検出
JP2017511000A (ja) * 2014-03-10 2017-04-13 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 部品配列におけるボンディング接続の判定方法および検査機器
KR20160059803A (ko) * 2014-11-19 2016-05-27 현대오트론 주식회사 배터리 관리 시스템의 단선 진단 장치 및 방법
KR20170079580A (ko) * 2015-12-30 2017-07-10 조선대학교산학협력단 적외선 열화상 영상을 이용한 리튬 이온 배터리 결함 검사 방법
KR20190011096A (ko) 2017-07-24 2019-02-01 주식회사 엘지화학 측면 와이어 본딩 가능한 전지팩, 전지모듈 및 전지모듈 제조 방법
KR20200056715A (ko) 2018-11-15 2020-05-25 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩

Also Published As

Publication number Publication date
US20230408594A1 (en) 2023-12-21
KR20220071007A (ko) 2022-05-31
JP7404590B2 (ja) 2023-12-25
CN116097111A (zh) 2023-05-09
EP4191260A1 (en) 2023-06-07
JP2023541582A (ja) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2022108399A1 (ko) 배터리 팩 진단 방법
WO2020009337A1 (ko) 파우치형 2차전지의 전극 손상 검사방법 및 파우치형 2차전지의 전극 손상 검사장치
WO2020145488A1 (ko) 빅데이터를 이용한 태양광 패널 불량 검출 시스템
WO2020251127A1 (ko) 이차전지 검사설비 및 검사방법
WO2020171426A1 (ko) 배터리 셀 연결용 버스 바, 배터리 팩 및 이의 제조 방법
WO2022154360A1 (ko) 전지셀의 외관 검사 시스템
WO2021034178A1 (ko) 크랙 검출력이 향상된 와전류 센서 및 이를 포함하는 와전류 검사 장치
WO2021107407A1 (ko) 열화상 감지를 이용한 용접부 검사방법
WO2022014954A1 (ko) 전극리드의 절곡 및 용접 장치 및 이를 이용한 전극리드의 용접 방법
WO2021112481A1 (ko) 전극조립체 제조방법 및 제조장치, 그를 포함한 이차전지 제조방법
WO2023167558A1 (ko) X선 검사 장치 및 x선 검사 방법
WO2020166840A1 (ko) 배터리 셀 이상 판단 장치 및 방법
WO2023136439A1 (ko) 테스트 핀
WO2023287078A1 (ko) 전지의 용접 상태 검사 방법
WO2024063530A1 (ko) 전지셀 용접부 검사 장치 및 이를 이용한 전지셀 용접부 검사 방법
WO2023080756A1 (ko) 용접 검사 장치
WO2023136584A1 (ko) 모니터링 장치 및 그것의 동작 방법
WO2023022383A1 (ko) 비파괴 방식을 이용한 와이어 본딩 검사 방법
WO2020040468A1 (ko) 유기발광소자의 혼색 불량 검출장치 및 검출방법
WO2023158190A1 (ko) 단위셀용 적재장치 및 적재방법
WO2024039240A1 (ko) 배터리 외관 검사 설비
WO2023033522A1 (ko) Tdr을 이용한 전지셀의 내부 결함 검출장치 및 방법
WO2023075273A1 (ko) 전지셀의 전극 탭 단선 검사장치
WO2023224222A1 (ko) 광간섭 단층촬영 기반 이차전지 정렬상태 검사 방법 및 시스템
TW515018B (en) Pattern inspection method, pattern inspection apparatus, and recording medium which records pattern inspection program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21895166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023515360

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021895166

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE