WO2023287078A1 - 전지의 용접 상태 검사 방법 - Google Patents

전지의 용접 상태 검사 방법 Download PDF

Info

Publication number
WO2023287078A1
WO2023287078A1 PCT/KR2022/009488 KR2022009488W WO2023287078A1 WO 2023287078 A1 WO2023287078 A1 WO 2023287078A1 KR 2022009488 W KR2022009488 W KR 2022009488W WO 2023287078 A1 WO2023287078 A1 WO 2023287078A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
battery
cole
welding
state
Prior art date
Application number
PCT/KR2022/009488
Other languages
English (en)
French (fr)
Inventor
이정훈
정수택
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280008963.9A priority Critical patent/CN116686129A/zh
Priority to JP2023539195A priority patent/JP2024501308A/ja
Priority to EP22842340.6A priority patent/EP4250466A1/en
Publication of WO2023287078A1 publication Critical patent/WO2023287078A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/70Testing of connections between components and printed circuit boards
    • G01R31/71Testing of solder joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for inspecting the welding condition of a battery, and more particularly to a method for inspecting the welding condition of a battery capable of non-destructively and quickly inspecting the condition of an electrode of a battery.
  • a battery physically and electrically connects the current collector and the electrode tab by welding a current collector coated with an active material and an electrode tab for electrical connection with an external electric device. At this time, if the welding condition is poor, the battery operation efficiency is lowered, and depending on the situation, it may be connected to the damage of the battery. Therefore, it is important to accurately determine the welding state.
  • the present invention relates to a method for inspecting the welding condition of a battery, and is intended to provide a method for inspecting the welding condition of a battery capable of non-destructively and quickly inspecting the condition of an electrode of a battery.
  • a method for inspecting a welding state of a battery of the present invention includes a first impedance measuring step of measuring a first impedance by applying an AC current or an AC voltage in a set frequency band before an electrolyte is injected into the battery; preparing a first Cole-Cole plot based on the first impedance; and a first welding state determination step of determining the welding state of the battery based on an x-intercept value in the first Cole-Cole plot.
  • the method for inspecting the welding state of a battery according to the present invention is a method capable of performing an in-line total inspection during a battery production process, and can improve battery production quality and remove defective batteries in advance.
  • the welding quality inspection method of the battery of the present invention can check the welding quality in a short time.
  • the method for inspecting the welding condition of a battery according to the present invention is capable of determining the welding condition of a battery simply by measuring the impedance between the positive electrode and the negative electrode in a short time without destroying the battery during the battery manufacturing process. It may be a method for inspecting the welding condition of batteries applied to a line and capable of inspecting all batteries produced.
  • the method for inspecting the welding state of a battery according to the present invention is capable of inspecting the welding state before injection of the electrolyte, and the welding state of the battery can be inspected regardless of the state of the electrolyte injection.
  • FIG. 1 is a block diagram showing a method for inspecting a welding condition of a battery according to the present invention.
  • FIG. 3 is a graph showing a first Cole-Cole plot.
  • FIG. 4 is a block diagram showing another embodiment of a method for inspecting a welding state of a battery according to the present invention.
  • 5 is an equivalent circuit showing a battery in the second impedance measurement step.
  • 6 is a graph showing a second Cole-Cole plot.
  • FIG. 7 is a conceptual diagram illustrating 4-wire AC impedance measurement.
  • FIG. 8 is a block diagram showing another embodiment of a method for inspecting a welding state of a battery according to the present invention.
  • FIG. 9 is a block diagram showing a battery manufacturing method of the present invention.
  • a method for inspecting a welding state of a battery of the present invention includes a first impedance measuring step of measuring a first impedance by applying an AC current or an AC voltage in a set frequency band before an electrolyte is injected into the battery; preparing a first Cole-Cole plot based on the first impedance; and a first welding state determination step of determining the welding state of the battery based on an x-intercept value in the first Cole-Cole plot.
  • the welding state of the battery may be judged to be defective.
  • the second impedance is measured by applying an alternating current or an alternating current voltage in a set frequency band after the electrolyte is injected into the battery. measurement step; a second Cole-Cole plot drawing step of creating a second Cole-Cole plot based on the second impedance; and a second welding state determination step of determining the welding state of the battery based on a minimum value in the second Cole-Cole plot.
  • the battery It may be to judge the welding state of the defect.
  • the first impedance and the second impedance may be measured for each of a plurality of frequency values within a set frequency band. there is.
  • the first impedance measurement and the second impedance may be measured with a 4-wire AC impedance meter.
  • a plurality of batteries are provided, and in the first impedance measuring step or the second impedance measuring step, an alternating current or alternating current voltage is set to the plurality of batteries connected in parallel in a frequency band
  • the first impedance or the second impedance may be measured by applying from .
  • the method for inspecting the welding state of a battery of the present invention includes a steady-state impedance measuring step of measuring a steady-state impedance by applying an alternating current or an alternating current voltage in a set frequency band before an electrolyte is injected into a battery having a good welding state; a steady-state Cole-Cole plot drawing step of creating a steady-state Cole-Cole plot based on the steady-state impedance; a test frequency extraction step of extracting, as a test frequency, a frequency corresponding to a normal x-intercept value in the steady-state Cole-Cole plot; a step of measuring an impedance of a cell to be tested by applying an alternating current or an alternating voltage at the test frequency before an electrolyte is injected into the cell to be tested; and a welding state determination step of determining the welding state of the battery to be inspected based on the impedance value of the battery to be inspected.
  • the battery manufacturing method of the present invention includes an electrode assembly preparation step of preparing an electrode assembly by winding or stacking after stacking a current collector and a separator; A first welding step of first welding a tab or a current collector plate to the current collector of the electrode assembly; a second welding step of second welding a can housing or an electrode lead to the tab or the current collector plate; a first determination step of determining the first welding state and the second welding state by applying an AC current or AC voltage to the can housing or the electrode lead in a set frequency band; an electrolyte injection step of injecting an electrolyte while the electrode assembly is accommodated in a can housing or a pouch case; and a second determination step of determining the first welding state and the second welding state by applying an AC current or AC voltage to the can housing or the electrode lead in a set frequency band.
  • the first determination step of the battery manufacturing method of the present invention includes measuring a first impedance by applying an AC current or an AC voltage in a set frequency band, and a first Cole-Cole plot based on the first impedance. -cole plot), and determining that the welding state of the battery is defective when an x-intercept value in the first Cole-Cole plot is greater than or equal to a first set value.
  • the secondary determination step of the battery manufacturing method of the present invention includes measuring a second impedance by applying an AC current or an AC voltage in a set frequency band, and a first Cole-Cole plot based on the second impedance. -cole plot), and judging the welding state of the battery as defective when a value obtained by subtracting the x-intercept value from the real part value of the local minimum value in the second Cole-Cole plot is greater than or equal to a second set value It may contain.
  • 1 is a block diagram showing a method for inspecting a welding condition of a battery according to the present invention.
  • 2 is an equivalent circuit showing a battery in the first impedance measuring step (S10).
  • 3 is a graph showing a first Cole-Cole plot.
  • 4 is a block diagram showing another embodiment of a method for inspecting a welding state of a battery according to the present invention.
  • 5 is an equivalent circuit showing the battery in the second impedance measuring step (S40).
  • 6 is a graph showing a second Cole-Cole plot.
  • 7 is a conceptual diagram illustrating 4-wire AC impedance measurement.
  • 8 is a block diagram showing another embodiment of a method for inspecting a welding state of a battery according to the present invention.
  • 9 is a block diagram showing a battery manufacturing method of the present invention.
  • the method for inspecting the welding condition of a battery according to the present invention is capable of determining the welding condition of a battery simply by measuring the impedance between the positive electrode and the negative electrode in a short time without destroying the battery during the battery manufacturing process. It may be a method for inspecting the welding condition of batteries applied to a line and capable of inspecting all batteries produced.
  • the method for inspecting the welding state of a battery according to the present invention is capable of inspecting the welding state before injection of the electrolyte, and the welding state of the battery can be inspected regardless of the state of the electrolyte injection.
  • the method for inspecting the welding state of a battery of the present invention may be applicable to all battery types including a welding process among battery manufacturing processes, such as cylindrical batteries, prismatic batteries, and pouch-type batteries.
  • a tab or a current collector plate is welded to a current collector of an electrode assembly in which a current collector and a separator are wound or stacked, and the tab or the current collector plate is welded.
  • a can housing or an electrode lead may be welded to the front plate.
  • Current collectors are provided in pairs, and specifically, may be provided as a negative current collector and a positive current collector.
  • An anode active material may be coated on the anode current collector, and a cathode active material may be coated on the cathode current collector.
  • the negative current collector and the positive current collector may be provided singly or in plural depending on the battery type.
  • the separator may be laminated between the negative current collector and the positive current collector.
  • the negative current collector, the positive current collector, and the separator may be wound or stacked in a stacked state to form an electrode assembly.
  • a cylindrical battery or a prismatic battery may be an electrode assembly by winding a negative electrode current collector, a positive electrode current collector, and a separator, and a pouch-type battery may be stacked to become an electrode assembly.
  • the tab or current collector is a conductive material and may function as an intermediate bridge electrically connecting the can housing or electrode lead and the positive current collector or the negative current collector. Tabs or current collector plates may also be provided in pairs and welded to the negative current collector and the positive current collector respectively.
  • the can housing or the electrode lead may be connected to an electrode terminal of an external electric device.
  • tabs or collector plates corresponding to the negative electrode and the positive electrode are welded to the can housing and the electrode lead fixed to the can housing, respectively, and in the case of a pouch-type battery, electrode leads are provided for the negative electrode and the positive electrode, respectively.
  • Welding between the current collector and the tab or current collector plate, and welding between the tab or current collector plate and the can housing or electrode lead may be laser welding, ultrasonic welding, resistance welding, or the like.
  • the method for inspecting the welding condition of the battery of the present invention As shown in FIG. 1, the method for inspecting the welding condition of the battery of the present invention,
  • It may include a first welding state determination step ( S30 ) of determining the welding state of the battery based on the x-intercept value in the first Cole-Cole plot.
  • the first impedance may be measured by being electrically connected to the can housing or electrode leads corresponding to the cathode and anode. That is, the impedance value of the battery itself into which the electrolyte solution is not injected may be the first impedance value.
  • the first impedance may be measured for each of a plurality of frequency values within a set frequency band.
  • a set of impedance values measured for a plurality of consecutive frequency values may be the first impedance. That is, the first impedance may include a plurality of impedance values.
  • the first Cole-Cole plot may be a graph in which the first impedance values are displayed on a complex number plane.
  • the first Cole-Cole plot may be created on a two-dimensional graph in which the x-axis is a real part value and the y-axis is an imaginary part value.
  • the Cole-Cole plot may be a display of a plurality of impedance values measured for each of a plurality of frequency values on a complex plane.
  • the equivalent circuit of the battery before the electrolyte is injected is the positive electrode equivalent circuit 11 and the negative electrode equivalent circuit 12 of the electrode assembly
  • the second welding may be a circuit in which the anode resistance Rp2 and the cathode resistance Rn2 are connected in series.
  • the equivalent circuit of the battery before the electrolyte is injected may be a circuit in which a capacitor Cc is connected in series between the positive electrode equivalent circuit 11 and the negative electrode equivalent circuit 12 of the electrode assembly.
  • the first Cole-Cole plot which is a Cole-Cole plot for the battery before the electrolyte is injected
  • the anode resistance (Rp1) and the cathode resistance (Rn1) by the first welding may correspond to the x-intercept value a.
  • Rpct is the positive electrode current collector resistance
  • Zpw is the positive electrode Warburg impedance
  • Cpdl is the capacitance between the positive electrode current collector and the positive electrode active material.
  • Rnct is the anode current collector resistance
  • Znw is the anode Warburg impedance
  • Cndl is the capacitance between the anode current collector and the anode active material.
  • the welding state of the battery may be determined to be defective when an x-intercept value a in the first Cole-Cole plot is greater than or equal to a first set value.
  • the first set value is calculated as a theoretical value in consideration of materials included in the battery, or set in consideration of the x-intercept value of the Cole-Cole plot value obtained by measuring a battery in which an electrolyte solution in a normal state with a good welding condition is injected. It can be.
  • the first set value may be an x-intercept value of a Cole-Cole plot for a battery in a normal state, and since the x-intercept value increases when welding is poor, a value greater than or equal to the first set value may be determined as a welding defect. there is.
  • the method may further include a second welding state determination step ( S60 ) of determining the welding state of the battery based on a minimum value in the second Cole-Cole plot.
  • the welding state inspection method of the battery of the present invention can detect defective welding more precisely by independently inspecting the welding state before and after electrolyte injection.
  • the second impedance may be measured by being electrically connected to the can housing or electrode leads corresponding to the cathode and anode. That is, the impedance value of the battery itself into which the electrolyte solution is injected may be the second impedance value.
  • the second impedance may be measured for each of a plurality of frequency values within a set frequency band.
  • a set of impedance values measured for a plurality of consecutive frequency values may be the second impedance. That is, the second impedance may include a plurality of impedance values.
  • the equivalent circuit of the battery into which the electrolyte is injected, the positive electrode equivalent circuit 11 and the negative electrode equivalent circuit 12 of the electrode assembly, the positive electrode resistance Rp1 and the negative electrode resistance Rn1 by the first welding may be a circuit in which the anode resistance Rp2 and the cathode resistance Rn2 are connected in series by the second welding.
  • the equivalent circuit of the battery injected with electrolyte may be a circuit in which a resistor Rel is connected in series between the positive electrode equivalent circuit 11 and the negative electrode equivalent circuit 12 of the electrode assembly.
  • the second Cole-Cole plot which is a Cole-Cole plot for the battery after the electrolyte is injected, the anode resistance Rp1 and the cathode resistance Rn1 by the first welding, the second Cole-Cole plot
  • the anode resistance Rp2 and the cathode resistance Rn2 due to welding may correspond to a value b obtained by subtracting the x-intercept value from the real part value of the minimum value in the second Cole-Cole plot.
  • the welding state of the battery is determined. can be judged as defective.
  • the second set value may be calculated as a theoretical value in consideration of materials included in the battery or set considering the x-intercept value of a Cole-Cole plot value obtained by measuring a battery injected with an electrolyte solution in a normal state having a good welding condition.
  • the second set value may be a value obtained by subtracting an x-intercept value from a real part value of a local minimum value of a Cole-Cole plot for a battery in a normal state, and a real number of a local minimum value of a Cole-Cole plot when welding is poor. Since a value obtained by subtracting the x-intercept value from the negative value increases, a value equal to or greater than the second set value may be determined as a welding defect.
  • the first impedance is measured and the second impedance is measured by the 4-wire AC impedance measuring instrument 15. may be measured.
  • the 4-wire AC impedance measuring instrument 15 can precisely measure an impedance value of 1 ⁇ or less by minimizing the influence of wiring resistance or contact resistance.
  • the anode probe and the cathode probe may independently include a terminal connected to the ammeter and a terminal connected to the voltmeter, respectively.
  • an alternating current or alternating current voltage is applied in a set frequency band to the plurality of batteries connected in parallel to the first impedance or the second impedance. may be what is being measured.
  • a plurality of batteries may be grouped according to the number of batteries in one inspection unit, and impedance may be measured at one time by connecting the plurality of batteries in each group in parallel.
  • the welding state is determined on a group basis, and a plurality of batteries of a group determined to be defective may be individually remeasured.
  • a welding state determination step (S150) of determining the welding state of the battery to be inspected based on the impedance value of the battery to be inspected may be included.
  • the non-defective battery may be a battery whose welding state is verified as a normal state.
  • the steady-state impedance value is determined by measuring the impedance values of a plurality of unknown batteries and then determining the welding state by another kind of welding state inspection method, such as a destructive test that samples the welded part, so that the welding state is in the normal state.
  • the impedance value measured in the phosphorus battery may be selected as the steady state impedance value.
  • the steady-state impedance may be obtained by measuring the impedance for a plurality of consecutive frequency values.
  • a measurement frequency value when the imaginary part value is 0 may be extracted as the test frequency.
  • the impedance of the battery to be tested may be measured at a fixed frequency value, the test frequency.
  • the impedance measurement time can be minimized, and the battery manufacturing time delay can be minimized even if applied to a mass production line of the battery.
  • the reference value may be set in consideration of the x-intercept value of the steady-state Cole-Cole plot prepared in the step of preparing the Cole-Cole plot (S120).
  • an electrolyte injection step (S500) of injecting an electrolyte while the electrode assembly is accommodated in a can housing or a pouch case;
  • a secondary determination step ( S600 ) of determining the first welding and the second welding states by applying an AC current or AC voltage to the can housing or the electrode lead in a set frequency band may be included.
  • the first determination step (S400) includes measuring a first impedance by applying an AC current or an AC voltage in a set frequency band, and calculating a first Cole-Cole plot based on the first impedance. and determining that the welding state of the battery is defective when an x-intercept value in the first Cole-Cole plot is equal to or greater than a first set value.
  • the first determination step (S400) includes measuring impedance by applying an AC current or AC voltage at a test frequency, and if the real part value of the measured impedance is greater than or equal to a reference value, the welding state of the battery It may include the step of determining that is defective.
  • the secondary determination step (S600) includes measuring a second impedance by applying an AC current or an AC voltage in a set frequency band, and calculating a first Cole-Cole plot based on the second impedance. And determining the welding state of the battery as defective when a value obtained by subtracting the x-intercept value from the real part value of the local minimum value in the second Cole-Cole plot is greater than or equal to a second set value.
  • the method for inspecting the welding state of a battery according to the present invention is a method capable of performing an in-line total inspection during a battery production process, and can improve battery production quality and remove defective batteries in advance.
  • the welding quality inspection method of the battery of the present invention can check the welding quality in a short time.
  • the method for inspecting the welding condition of a battery according to the present invention is capable of determining the welding condition of a battery simply by measuring the impedance between the positive electrode and the negative electrode in a short time without destroying the battery during the battery manufacturing process. It may be a method for inspecting the welding condition of batteries applied to a line and capable of inspecting all batteries produced.
  • the method for inspecting the welding state of a battery according to the present invention is capable of inspecting the welding state before injection of the electrolyte, and the welding state of the battery can be inspected regardless of the state of the electrolyte injection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명은 집전체 및 분리막이 와인딩(winding) 또는 스태킹(stacking)된 전극 조립체의 집전체에 탭(tap) 또는 집전판이 용접되고, 상기 탭 또는 상기 집전판에 캔 하우징 또는 전극 리드(lead)가 용접되는 전지의 용접 상태를 검사하는 전지의 용접 상태 검사 방법에 있어서, 상기 전지에 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제1 임피던스를 측정하는 제1 임피던스 측정 단계; 상기 제1 임피던스를 근거로 제1 콜-콜(cole-cole plot)을 작성하는 제1 콜-콜 플롯 작성 단계; 및 상기 제1 콜-콜 플롯에서 x 절편 값을 근거로 상기 전지의 용접 상태를 판단하는 용접 상태 1차 판단 단계를 포함하는 것을 특징으로 하는 전지의 용접 상태 검사 방법을 제공한다.

Description

전지의 용접 상태 검사 방법
본 출원은 2021.07.13. 출원된 한국특허출원 10-2021-0091698호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지의 용접 상태 검사 방법에 관한 것으로, 전지의 전극의 상태를 비파괴로 신속하게 검사 가능한 전지의 용접 상태 검사 방법에 관한 것이다.
일반적으로 전지는 활물질이 도포되는 집전체와 외부 전기 장치와 전기적 연결을 위한 전극 탭(tab)을 용접하여, 집전체와 전극 탭을 물리적 및 전기적으로 연결한다. 이때, 용접 상태가 불량하면 전지 운용 효율이 저하되고, 상황에 따라서는 전지의 파손과 연결될 수 있다. 따라서, 용접 상태를 정확하게 판단하는 것을 중요하다.
원통형 전지의 경우, 집전체와 전극 탭 간의 용접, 전극 탭과 캔과의 용접이 존재하며, 이에 대한 용접 상태를 검사하기 위해, 수작업을 통해 용접 부위를 샘플링하는 파괴검사 방법이 수행되어 왔다.
따라서, 종래의 방법으로는 용접 상태에 대한 이슈 발생 시 롯(lot) 단위의 홀드(hold) 등의 문제가 있었다.
이를 해결하기 위해, 인라인(in-line) 전수 검사가 가능한 신규 검사법이 필요하다.
본 발명은 전지의 용접 상태 검사 방법에 관한 것으로, 전지의 전극의 상태를 비파괴로 신속하게 검사 가능한 전지의 용접 상태 검사 방법을 제공하기 위한 것이다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 전지의 용접 상태 검사 방법은, 전지에 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제1 임피던스를 측정하는 제1 임피던스 측정 단계; 상기 제1 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 제1 콜-콜 플롯 작성 단계; 및 상기 제1 콜-콜 플롯에서 x 절편 값을 근거로 상기 전지의 용접 상태의 판단하는 용접 상태 1차 판단 단계를 포함하는 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법은 전지 생상 공정 중 인-라인(in-line) 전수 검사가 가능한 방법으로, 전지 생산 품질을 향상시키고, 불량 전지를 사전에 제거할 수 있다.
본 발명의 전지의 용접 상태 검사 방법은 단시간 내에 용접 품질을 확인할 수 있다.
본 발명의 전지의 용접 상태 검사 방법은, 전지 제조 과정 중에 전지를 파괴하는 것 없이, 단시간 내에 간단하게 양극과 음극 사이의 임피던스를 측정하는 것만으로 전지의 용접 상태를 판단할 수 있는 것으로, 전지 제조 라인에 적용되어, 생산되는 전지에 대해서 전수 검사가 가능한 전지의 용접 상태 검사 방법일 수 있다.
본 발명의 전지의 용접 상태 검사 방법은 전해액 주액 전에 용접 상태를 검사 가능한 것으로, 전해액 주액 상태와 상관없이 전지의 용접 상태를 검사할 수 있다.
도 1은 본 발명의 전지의 용접 상태 검사 방법을 나타내는 블록도이다.
도 2는 제1 임피던스 측정 단계에서 전지를 나타내는 등가회로이다.
도 3은 제1 콜-콜 플롯을 나타내는 그래프이다.
도 4는 본 발명의 전지의 용접 상태 검사 방법의 다른 실시 양태를 나타내는 블록도이다.
도 5는 제2 임피던스 측정 단계에서 전지를 나타내는 등가회로이다.
도 6은 제2 콜-콜 플롯을 나타내는 그래프이다.
도 7은 4선식 교류 임피던스 측정을 나타내는 개념도이다.
도 8은 본 발명의 전지의 용접 상태 검사 방법의 또 다른 실시 양태를 나타내는 블록도이다.
도 9는 본 발명의 전지 제조 방법을 나타내는 블록도이다.
본 발명의 전지의 용접 상태 검사 방법은, 전지에 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제1 임피던스를 측정하는 제1 임피던스 측정 단계; 상기 제1 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 제1 콜-콜 플롯 작성 단계; 및 상기 제1 콜-콜 플롯에서 x 절편 값을 근거로 상기 전지의 용접 상태의 판단하는 용접 상태 1차 판단 단계를 포함하는 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법의 상기 용접 상태 1차 판단 단계에서, 상기 제1 콜-콜 플롯에서 x 절편 값이 제1 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법은, 상기 용접 상태 1차 판단 단계 이후에, 상기 전지에 전해액이 주액된 후 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제2 임피던스를 측정하는 제2 임피던스 측정 단계; 상기 제2 임피던스를 근거로 제2 콜-콜 플롯(cole-cole plot)을 작성하는 제2 콜-콜 플롯 작성 단계; 및 상기 제2 콜-콜 플롯에서 극소 값을 근거로 상기 전지의 용접 상태의 판단하는 용접 상태 2차 판단 단계를 더 포함하는 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법의 상기 용접 상태 2차 판단 단계에서, 상기 제2 콜-콜 플롯에서 극소 값의 실수부 값에 x 절편 값을 차감한 값이 제2 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법의 상기 제1 임피던스 측정 단계 및 상기 제2 임피던스 측정 단계에서, 상기 제1 임피던스 및 상기 제2 임피던스는 설정 주파수 대역 내의 복수의 주파수 값 각각에 대해서 측정되는 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법의 상기 제1 임피던스 측정 단계 및 상기 제2 임피던스 측정 단계에서, 상기 제1 임피던스의 측정 및 상기 제2 임피던스는 4선식 교류 임피던스 측정기로 측정되는 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법에서 상기 전지는 복수로 마련되고, 상기 제1 임피던스 측정 단계 또는 상기 제2 임피던스 측정 단계에서, 병렬로 연결된 상기 복수의 전지에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 상기 제1 임피던스 또는 상기 제2 임피던스가 측정되는 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법은, 용접 상태가 양품인 전지에 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 정상 상태 임피던스를 측정하는 정상 상태 임피던스 측정 단계; 상기 정상 상태 임피던스를 근거로 정상 상태 콜-콜 플롯을 작성하는 정상 상태 콜-콜 플롯 작성 단계; 상기 정상 상태 콜-콜 플롯에서 정상 x 절편 값에 해당하는 주파수를 검사 주파수로서 추출하는 검사 주파수 추출 단계; 검사 대상 전지에 대해서 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 상기 검사 주파수로 인가하여 임피던스를 측정하는 검사 대상 전지 측정 단계; 및 상기 검사 대상 전지의 임피던스 값을 근거로 검사 대상 전지의 용접 상태를 판단하는 용접 상태 판단 단계를 포함하는 것일 수 있다.
본 발명의 전지 제조 방법은, 집전체 및 분리막을 적층한 후 와인딩(winding) 또는 스태킹(stacking)하여 전극 조립체를 준비하는 전극 조립체 준비 단계; 상기 전극 조립체의 집전체에 탭(tap) 또는 집전판을 제1 용접하는 제1 용접 단계; 상기 탭 또는 상기 집전판에 캔 하우징 또는 전극 리드(lead)를 제2 용접하는 제2 용접 단계; 상기 캔 하우징 또는 상기 전극 리드에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 상기 제1 용접 및 상기 제2 용접 상태를 판단하는 1차 판단 단계; 상기 전극 조립체가 캔 하우징 또는 파우치 케이스에 수용된 상태에서 전해액을 주액하는 전해액 주액 단계; 및 상기 캔 하우징 또는 상기 전극 리드에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 상기 제1 용접 및 상기 제2 용접 상태를 판단하는 2차 판단 단계를 포함하는 것일 수 있다.
본 발명의 전지 제조 방법의 상기 1차 판단 단계는, 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제1 임피던스를 측정하는 단계와, 상기 제1 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 단계와, 상기 제1 콜-콜 플롯에서 x 절편 값이 제1 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 단계를 포함하는 것일 수 있다.
본 발명의 전지 제조 방법의 상기 2차 판단 단계는, 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제2 임피던스를 측정하는 단계와, 상기 제2 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 단계와, 상기 제2 콜-콜 플롯에서 극소 값의 실수부 값에 x 절편 값을 차감한 값이 제2 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 단계를 포함하는 것일 수 있다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다.
도 1은 본 발명의 전지의 용접 상태 검사 방법을 나타내는 블록도이다. 도 2는 제1 임피던스 측정 단계(S10)에서 전지를 나타내는 등가회로이다. 도 3은 제1 콜-콜 플롯을 나타내는 그래프이다. 도 4는 본 발명의 전지의 용접 상태 검사 방법의 다른 실시 양태를 나타내는 블록도이다. 도 5는 제2 임피던스 측정 단계(S40)에서 전지를 나타내는 등가회로이다. 도 6은 제2 콜-콜 플롯을 나타내는 그래프이다. 도 7은 4선식 교류 임피던스 측정을 나타내는 개념도이다. 도 8은 본 발명의 전지의 용접 상태 검사 방법의 또 다른 실시 양태를 나타내는 블록도이다. 도 9는 본 발명의 전지 제조 방법을 나타내는 블록도이다.
이하, 도 1 내지 도 8을 참조하여, 본 발명의 전지의 용접 상태 검사 방법에 대해서 상세히 설명한다.
본 발명의 전지의 용접 상태 검사 방법은, 전지 제조 과정 중에 전지를 파괴하는 것 없이, 단시간 내에 간단하게 양극과 음극 사이의 임피던스를 측정하는 것만으로 전지의 용접 상태를 판단할 수 있는 것으로, 전지 제조 라인에 적용되어, 생산되는 전지에 대해서 전수 검사가 가능한 전지의 용접 상태 검사 방법일 수 있다.
본 발명의 전지의 용접 상태 검사 방법은 전해액 주액 전에 용접 상태를 검사 가능한 것으로, 전해액 주액 상태와 상관없이 전지의 용접 상태를 검사할 수 있다.
본 발명의 전지의 용접 상태 검사 방법은 원통형 전지, 각형 전지, 파우치형 전지 등 전지 제조 공정 중 용접 공정을 포함하는 모든 전지 타입에 대해서 적용 가능한 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법이 적용되는 전지는 집전체 및 분리막이 와인딩(winding) 또는 스태킹(stacking)된 전극 조립체의 집전체에 탭(tap) 또는 집전판이 용접되고, 상기 탭 또는 상기 집전판에 캔 하우징 또는 전극 리드(lead)가 용접되는 것일 수 있다.
집전체는 쌍으로 마련되며, 구체적으로 음극 집전체와 양극 집전체로 마련될 수 있다. 음극 집전체에는 음극 활물질이 도포되며, 양극 집전체에는 양극 활물질이 도포되는 것일 수 있다. 음극 집전체 및 양극 집전체는 전지 타입에 따라 단일 또는 복수로 마련될 수 있다. 분리막은 음극 집전체와 양극 집전체 사이에 적층되는 것일 수 있다.
음극 집전체, 양극 집전체 및 분리막은 적층된 상태로 와인딩 또는 스태킹되어 전극 조립체가 될 수 있다. 예를 들어, 원통형 전지 또는 각형 전지는 음극 집전체, 양극 집전체 및 분리막이 와인딩되어 전극 조립체가 되고, 파우치 형 전지는 스태킹되어 전극 조립체가 될 수 있다.
탭 또는 집전판은 도전성 소재로 캔 하우징 또는 전극 리드와 양극 집전체 또는 음극 집전체를 전기적으로 연결하는 중간 다리 기능을 할 수 있다. 탭 또는 집전판 또한 쌍으로 마련되어, 음극 집전체 및 양극 집전체에 대해서 각각 용접될 수 있다.
캔 하우징 또는 전극 리드는 외부 전기 장치의 전극 단자와 연결되는 것일 수 있다. 원통형 전지 또는 각형 전지는 캔 하우징 및 캔 하우징에 고정되는 전극 리드에 각각 음극과 양극에 해당하는 탭 또는 집전판 이 각각 용접되고, 파우치형 전지의 경우 전극 리드가 음극 및 양극에 각각에 대해서 마련될 수 있다.
집전체와 탭 또는 집전판 간의 용접, 및 탭 또는 집전판과 캔 하우징 또는 전극 리드 간의 용접은 레이저 용접, 초음파 용접 및 저항 용접 등일 수 있다.
도 1에 도시된 바와 같이, 본 발명의 전지의 용접 상태 검사 방법은,
상기 전지에 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제1 임피던스를 측정하는 제1 임피던스 측정 단계(S10);
상기 제1 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 제1 콜-콜 플롯 작성 단계(S20); 및
상기 제1 콜-콜 플롯에서 x 절편 값을 근거로 상기 전지의 용접 상태의 판단하는 용접 상태 1차 판단 단계(S30)를 포함하는 것일 수 있다.
상기 제1 임피던스 측정 단계(S10)에서, 음극 및 양극에 해당하는 캔 하우징 또는 전극 리드에 전기적으로 연결되어 제1 임피던스를 측정할 수 있다. 즉, 전해액이 주입되지 않은 전지 자체의 임피던스 값이 제1 임피던스 값일 수 있다.
상기 제1 임피던스 측정 단계(S10)에서, 상기 제1 임피던스는 설정 주파수 대역 내의 복수의 주파수 값 각각에 대해서 측정되는 것일 수 있다. 연속적인 복수의 주파수 값에 대해서 측정된 임피던스 값의 집합이 제1 임피던스일 수 있다. 즉, 제1 임피던스는 복수의 임피던스 값을 포함할 수 있다.
제1 콜-콜 플롯 작성 단계(S20)에서, 제1 콜-콜 플롯은 제1 임피던스 값을 복소 평면(complex number plane) 상에 표시한 그래프일 수 있다. 제1 콜-콜 플롯은 x축이 실수부 값, y축이 허수부 값으로 표시되는 2차원 그래프 상에 작성될 수 있다. 콜-콜 플롯는 복수의 주파수 값마다 측정되는 복수의 임피던스 값을 복소 평면에 표시한 것일 수 있다.
전극 조립체의 집전체와 탭(tap) 또는 집전판 간의 용접을 제1 용접이라 하고, 탭 또는 집전판과 캔 하우징 또는 전극 리드(lead) 간의 용접을 제2 용접이라 할 때, 도 2에 도시된 바와 같이, 전해액이 주입되기 전의 전지의 등가회로는 전극 조립체의 양극 등가회로(11)와 음극 등가회로(12), 제1 용접에 의한 양극 저항(Rp1)과 음극 저항(Rn1), 제2 용접에 의한 양극 저항(Rp2)과 음극 저항(Rn2)이 직렬로 연결되는 회로일 수 있다. 이때, 전해액이 주입되기 전의 전지의 등가회로는 전극 조립체의 양극 등가회로(11)와 음극 등가회로(12)의 사이에 캐피시터(Cc)가 직렬로 연결되는 회로일 수 있다.
따라서, 도 3에 도시된 바와 같이, 전해액이 주입되기 전의 전지에 대한 콜-콜 플롯인, 제1 콜-콜 플롯 상에서 제1 용접에 의한 양극 저항(Rp1)과 음극 저항(Rn1), 제2 용접에 의한 양극 저항(Rp2)과 음극 저항(Rn2)은 x 절편 값인 a와 대응할 수 있다.
전극 조립체의 양극 등가회로(11)에서 Rpct는 양극 집전체 저항이고, Zpw는 양극 와버그 임피던스(Warburg Impedance)이며, Cpdl은 양극 집전체와 양극 활물질 사이의 캐패시턴스이다. 전극 조립체의 음극 등가회로(12)에서 Rnct는 음극 집전체 저항이고, Znw는 음극 와버그 임피던스이며, Cndl은 음극 집전체와 음극 활물질 사이의 캐패시턴스이다.
상기 용접 상태 1차 판단 단계(S30)에서, 상기 제1 콜-콜 플롯에서 x 절편 값 a가 제1 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 것일 수 있다. 제1 설정 값은 전지에 포함되는 재료를 고려하여 이론 값으로 산출되거나, 용접 상태가 양호한 정상 상태의 전해액이 미주액된 전지를 측정하여 획득되는 콜-콜 플롯 값의 x 절편 값을 고려하여 설정될 수 있다. 예를 들어, 제1 설정 값은 정상 상태의 전지에 대한 콜-콜 플롯의 x 절편 값일 수 있고, 용접이 불량하면 x 절편 값은 증가하기 때문에 제1 설정 값 이상의 값을 용접 불량으로 판단할 수 있다.
도 4에 도시된 바와 같이, 본 발명의 전지의 용접 상태 검사 방법은,
상기 용접 상태 1차 판단 단계(S30) 이후에, 상기 전지에 전해액이 주액된 후 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제2 임피던스를 측정하는 제2 임피던스 측정 단계(S40);
상기 제2 임피던스를 근거로 제2 콜-콜 플롯(cole-cole plot)을 작성하는 제2 콜-콜 플롯 작성 단계(S50); 및
상기 제2 콜-콜 플롯에서 극소 값을 근거로 상기 전지의 용접 상태의 판단하는 용접 상태 2차 판단 단계(S60)를 더 포함하는 것일 수 있다.
본 발명의 전지의 용접 상태 검사 방법은 전해액 주액 전 및 주액 후 각각에 대해서 독립적으로 용접 상태를 검사함으로써, 불량 용접을 더 정밀하게 검출할 수 있다.
상기 제2 임피던스 측정 단계(S40)에서, 음극 및 양극에 해당하는 캔 하우징 또는 전극 리드에 전기적으로 연결되어 제2 임피던스를 측정할 수 있다. 즉, 전해액이 주입된 전지 자체의 임피던스 값이 제2 임피던스 값일 수 있다.
상기 제2 임피던스 측정 단계(S40)에서, 상기 제2 임피던스는 설정 주파수 대역 내의 복수의 주파수 값 각각에 대해서 측정되는 것일 수 있다. 연속적인 복수의 주파수 값에 대해서 측정된 임피던스 값의 집합이 제2 임피던스일 수 있다. 즉, 제2 임피던스는 복수의 임피던스 값을 포함할 수 있다.
도 5에 도시된 바와 같이, 전해액이 주입된 전지의 등가회로 또한 전극 조립체의 양극 등가회로(11)와 음극 등가회로(12), 제1 용접에 의한 양극 저항(Rp1)과 음극 저항(Rn1), 제2 용접에 의한 양극 저항(Rp2)과 음극 저항(Rn2)이 직렬로 연결되는 회로일 수 있다. 이때, 전해액이 주입된 전지의 등가회로는 전극 조립체의 양극 등가회로(11)와 음극 등가회로(12)의 사이에 저항(Rel)이 직렬로 연결되는 회로일 수 있다.
따라서, 도 6에 도시된 바와 같이, 전해액이 주입된 후의 전지에 대한 콜-콜 플롯인, 제2 콜-콜 플롯 상에서 제1 용접에 의한 양극 저항(Rp1)과 음극 저항(Rn1), 제2 용접에 의한 양극 저항(Rp2)과 음극 저항(Rn2)은 제2 콜-콜 플롯에서 극소 값의 실수부 값에 x 절편 값을 차감한 값 b와 대응할 수 있다.
따라서, 상기 용접 상태 2차 판단 단계(S60)에서, 상기 제2 콜-콜 플롯에서 극소 값의 실수부 값에 x 절편 값을 차감한 값 b가 제2 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단할 수 있다. 제2 설정 값은 전지에 포함되는 재료를 고려하여 이론 값으로 산출되거나, 용접 상태가 양호한 정상 상태의 전해액이 주액된 전지를 측정하여 획득되는 콜-콜 플롯 값의 x 절편 값을 고려하여 설정될 수 있다. 예를 들어, 제2 설정 값은 정상 상태의 전지에 대한 콜-콜 플롯의 극소 값의 실수부 값에 x 절편 값을 차감한 값일 수 있고, 용접이 불량하면 콜-콜 플롯의 극소 값의 실수부 값에 x 절편 값을 차감한 값은 증가하기 때문에 제2 설정 값 이상의 값을 용접 불량으로 판단할 수 있다.
도 7에 도시된 바와 같이, 상기 제1 임피던스 측정 단계(S10) 및 상기 제2 임피던스 측정 단계(S40)에서, 상기 제1 임피던스의 측정 및 상기 제2 임피던스는 4선식 교류 임피던스 측정기(15)로 측정되는 것일 수 있다. 4선식 교류 임피던스 측정기(15)는 위해 배선저항 또는 접촉저항의 영향을 최소화하여 1Ω 이하 크기의 임피던스 값을 정밀하게 측정 가능할 수 있다.
4선식 교류 임피던스 측정기(15)에서 양극 프로브 및 음극 프로브는 각각 전류계와 연결되는 단자와 전압계와 연결되는 단자를 독립적으로 포함할 수 있다.
상기 제1 임피던스 측정 단계(S10) 또는 상기 제2 임피던스 측정 단계(S40)에서, 병렬로 연결된 상기 복수의 전지에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 상기 제1 임피던스 또는 상기 제2 임피던스가 측정되는 것일 수 있다. 복수의 전지에 대해서 1회 검사단위의 전지 개수로 복수의 전지를 그룹화하고, 각 그룹의 복수의 전지에 대해서 병렬 연결하여 한번에 임피던스를 측정할 수 있다. 그룹 단위로 용접 상태를 판단하고, 불량으로 판단되는 그룹의 복수의 전지에 대해서는 개별적으로 재측정될 수 있다.
도 8에 도시된 바와 같이, 다른 실시 양태로서, 본 발명의 전지의 용접 상태 검사 방법은,
용접 상태가 양품인 전지에 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 정상 상태 임피던스를 측정하는 정상 상태 임피던스 측정 단계(S110);
상기 정상 상태 임피던스를 근거로 정상 상태 콜-콜 플롯을 작성하는 정상 상태 콜-콜 플롯 작성 단계(S120);
상기 정상 상태 콜-콜 플롯에서 정상 x 절편 값에 해당하는 주파수를 검사 주파수로서 추출하는 검사 주파수 추출 단계(S130);
검사 대상 전지에 대해서 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 상기 검사 주파수로 인가하여 임피던스를 측정하는 검사 대상 전지 측정 단계(S140); 및
상기 검사 대상 전지의 임피던스 값을 근거로 검사 대상 전지의 용접 상태를 판단하는 용접 상태 판단 단계(S150)를 포함하는 것일 수 있다.
정상 상태 임피던스 측정 단계(S110)에서 양품 전지는 용접 상태가 정상 상태로 검증된 전지일 수 있다. 예를 들어, 정상 상태 임피던스 값은 복수의 미지의 전지에 대해서 임피던스 값을 측정한 후, 용접 부위를 샘플링하는 파괴 검사 등 다른 종류의 용접 상태 검사 방법으로 용접 상태를 판단하여, 용접 상태가 정상 상태인 전지에서 측정되었던 임피던스 값을 정상 상태 임피던스 값으로 선택할 수 있다.
정상 상태 임피던스 측정 단계(S110)에서, 연속적인 복수의 주파수 값에 대해서 임피던스를 측정하여 정상 상태 임피던스가 획득될 수 있다.
상기 검사 주파수 추출 단계(S130)에서, 허수부 값이 0일 때의 측정 주파수 값을 검사 주파수로 추출할 수 있다.
상기 검사 대상 전지 측정 단계(S140)에서, 고정된 주파수 값인 상기 검사 주파수로 검사 대상 전지의 임피던스를 측정할 수 있다. 주파수 대역이 아닌 단일 주파수 값으로 전지를 검사함으로써, 임피던스 측정 시간을 최소화할 수 있고, 전지의 양산라인에 적용되더라도 전지 제조 시간 지연을 최소화할 수 있다.
상기 용접 상태 판단 단계(S150), 상기 검사 대상 전지의 임피던스 값이 기준 값보다 클 경우 용접 불량으로 판단할 수 있다. 기준 값은 정상 상태 콜-콜 플롯 작성 단계(S120)에서 작성된 정상 상태 콜-콜 플롯의 x 절편 값을 고려하여 설정될 수 있다.
도 9에 도시된 바와 같이, 본 발명의 전지 제조 방법은,
집전체 및 분리막을 적층한 후 와인딩(winding) 또는 스태킹(stacking)하여 전극 조립체를 준비하는 전극 조립체 준비 단계(S100);
상기 전극 조립체의 집전체에 탭(tap) 또는 집전판을 제1 용접하는 제1 용접 단계(S200);
상기 탭 또는 상기 집전판에 캔 하우징 또는 전극 리드(lead)를 제2 용접하는 제2 용접 단계(S300);
상기 캔 하우징 또는 상기 전극 리드에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 상기 제1 용접 및 상기 제2 용접 상태를 판단하는 1차 판단 단계(S400);
상기 전극 조립체가 캔 하우징 또는 파우치 케이스에 수용된 상태에서 전해액을 주액하는 전해액 주액 단계(S500); 및
상기 캔 하우징 또는 상기 전극 리드에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 상기 제1 용접 및 상기 제2 용접 상태를 판단하는 2차 판단 단계(S600)를 포함하는 것일 수 있다.
상기 1차 판단 단계(S400)는, 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제1 임피던스를 측정하는 단계와, 상기 제1 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 단계와, 상기 제1 콜-콜 플롯에서 x 절편 값이 제1 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 단계를 포함하는 것일 수 있다.
다른 실시 양태로, 상기 1차 판단 단계(S400)는, 교류 전류 또는 교류 전압을 검사 주파수로 인가하여 임피던스를 측정하는 단계와, 측정된 임피던스의 실수부 값이 기준 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 단계를 포함하는 것일 수 있다.
상기 2차 판단 단계(S600)는, 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제2 임피던스를 측정하는 단계와, 상기 제2 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 단계와, 상기 제2 콜-콜 플롯에서 극소 값의 실수부 값에 x 절편 값을 차감한 값이 제2 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 단계를 포함하는 것일 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.
본 발명의 전지의 용접 상태 검사 방법은 전지 생상 공정 중 인-라인(in-line) 전수 검사가 가능한 방법으로, 전지 생산 품질을 향상시키고, 불량 전지를 사전에 제거할 수 있다.
본 발명의 전지의 용접 상태 검사 방법은 단시간 내에 용접 품질을 확인할 수 있다.
본 발명의 전지의 용접 상태 검사 방법은, 전지 제조 과정 중에 전지를 파괴하는 것 없이, 단시간 내에 간단하게 양극과 음극 사이의 임피던스를 측정하는 것만으로 전지의 용접 상태를 판단할 수 있는 것으로, 전지 제조 라인에 적용되어, 생산되는 전지에 대해서 전수 검사가 가능한 전지의 용접 상태 검사 방법일 수 있다.
본 발명의 전지의 용접 상태 검사 방법은 전해액 주액 전에 용접 상태를 검사 가능한 것으로, 전해액 주액 상태와 상관없이 전지의 용접 상태를 검사할 수 있다.

Claims (11)

  1. 집전체 및 분리막이 와인딩(winding) 또는 스태킹(stacking)된 전극 조립체의 집전체에 탭(tap) 또는 집전판이 용접되고, 상기 탭 또는 상기 집전판에 캔 하우징 또는 전극 리드(lead)가 용접되는 전지의 용접 상태를 검사하는 전지의 용접 상태 검사 방법에 있어서,
    상기 전지에 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제1 임피던스를 측정하는 제1 임피던스 측정 단계;
    상기 제1 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 제1 콜-콜 플롯 작성 단계; 및
    상기 제1 콜-콜 플롯에서 x 절편 값을 근거로 상기 전지의 용접 상태의 판단하는 용접 상태 1차 판단 단계를 포함하는 것인 전지의 용접 상태 검사 방법.
  2. 제1항에 있어서,
    상기 용접 상태 1차 판단 단계에서,
    상기 제1 콜-콜 플롯에서 x 절편 값이 제1 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 것인 전지의 용접 상태 검사 방법.
  3. 제1항에 있어서,
    상기 용접 상태 1차 판단 단계 이후에,
    상기 전지에 전해액이 주액된 후 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제2 임피던스를 측정하는 제2 임피던스 측정 단계;
    상기 제2 임피던스를 근거로 제2 콜-콜 플롯(cole-cole plot)을 작성하는 제2 콜-콜 플롯 작성 단계; 및
    상기 제2 콜-콜 플롯에서 극소 값을 근거로 상기 전지의 용접 상태의 판단하는 용접 상태 2차 판단 단계를 더 포함하는 것인 전지의 용접 상태 검사 방법.
  4. 제3항에 있어서,
    상기 용접 상태 2차 판단 단계에서,
    상기 제2 콜-콜 플롯에서 극소 값의 실수부 값에 x 절편 값을 차감한 값이 제2 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 것인 전지의 용접 상태 검사 방법.
  5. 제3항에 있어서,
    상기 제1 임피던스 측정 단계 및 상기 제2 임피던스 측정 단계에서,
    상기 제1 임피던스 및 상기 제2 임피던스는 설정 주파수 대역 내의 복수의 주파수 값 각각에 대해서 측정되는 것인 전지의 용접 상태 검사 방법.
  6. 제3항에 있어서,
    상기 제1 임피던스 측정 단계 및 상기 제2 임피던스 측정 단계에서,
    상기 제1 임피던스의 측정 및 상기 제2 임피던스는 4선식 교류 임피던스 측정기로 측정되는 것인 전지의 용접 상태 검사 방법.
  7. 제3항에 있어서,
    상기 전지는 복수로 마련되고,
    상기 제1 임피던스 측정 단계 또는 상기 제2 임피던스 측정 단계에서,
    병렬로 연결된 상기 복수의 전지에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 상기 제1 임피던스 또는 상기 제2 임피던스가 측정되는 것인 전지의 용접 상태 검사 방법.
  8. 용접 상태가 양품인 전지에 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 정상 상태 임피던스를 측정하는 정상 상태 임피던스 측정 단계;
    상기 정상 상태 임피던스를 근거로 정상 상태 콜-콜 플롯을 작성하는 정상 상태 콜-콜 플롯 작성 단계;
    상기 정상 상태 콜-콜 플롯에서 정상 x 절편 값에 해당하는 주파수를 검사 주파수로서 추출하는 검사 주파수 추출 단계;
    검사 대상 전지에 대해서 전해액이 주액되기 전에 교류 전류 또는 교류 전압을 상기 검사 주파수로 인가하여 임피던스를 측정하는 검사 대상 전지 측정 단계; 및
    상기 검사 대상 전지의 임피던스 값을 근거로 검사 대상 전지의 용접 상태를 판단하는 용접 상태 판단 단계를 포함하는 것인 전지의 용접 상태 검사 방법.
  9. 집전체 및 분리막을 적층한 후 와인딩(winding) 또는 스태킹(stacking)하여 전극 조립체를 준비하는 전극 조립체 준비 단계;
    상기 전극 조립체의 집전체에 탭(tap) 또는 집전판을 제1 용접하는 제1 용접 단계;
    상기 탭 또는 상기 집전판에 캔 하우징 또는 전극 리드(lead)를 제2 용접하는 제2 용접 단계;
    상기 캔 하우징 또는 상기 전극 리드에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 상기 제1 용접 및 상기 제2 용접 상태를 판단하는 1차 판단 단계;
    상기 전극 조립체가 캔 하우징 또는 파우치 케이스에 수용된 상태에서 전해액을 주액하는 전해액 주액 단계; 및
    상기 캔 하우징 또는 상기 전극 리드에 교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 상기 제1 용접 및 상기 제2 용접 상태를 판단하는 2차 판단 단계를 포함하는 것인 전지 제조 방법.
  10. 제9항 있어서,
    상기 1차 판단 단계는,
    교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제1 임피던스를 측정하는 단계와,
    상기 제1 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 단계와,
    상기 제1 콜-콜 플롯에서 x 절편 값이 제1 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 단계를 포함하는 것인 전지 제조 방법.
  11. 제9항에 있어서,
    상기 2차 판단 단계는,
    교류 전류 또는 교류 전압을 설정 주파수 대역에서 인가하여 제2 임피던스를 측정하는 단계와,
    상기 제2 임피던스를 근거로 제1 콜-콜 플롯(cole-cole plot)을 작성하는 단계와,
    상기 제2 콜-콜 플롯에서 극소 값의 실수부 값에 x 절편 값을 차감한 값이 제2 설정 값 이상일 경우 상기 전지의 용접 상태를 불량으로 판단하는 단계를 포함하는 것인 전지 제조 방법.
PCT/KR2022/009488 2021-07-13 2022-07-01 전지의 용접 상태 검사 방법 WO2023287078A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280008963.9A CN116686129A (zh) 2021-07-13 2022-07-01 检查电池中焊接点的状态的方法
JP2023539195A JP2024501308A (ja) 2021-07-13 2022-07-01 電池の溶接状態検査方法
EP22842340.6A EP4250466A1 (en) 2021-07-13 2022-07-01 Method for inspecting state of welds in battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0091698 2021-07-13
KR1020210091698A KR20230011096A (ko) 2021-07-13 2021-07-13 전지의 용접 상태 검사 방법

Publications (1)

Publication Number Publication Date
WO2023287078A1 true WO2023287078A1 (ko) 2023-01-19

Family

ID=84920428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009488 WO2023287078A1 (ko) 2021-07-13 2022-07-01 전지의 용접 상태 검사 방법

Country Status (5)

Country Link
EP (1) EP4250466A1 (ko)
JP (1) JP2024501308A (ko)
KR (1) KR20230011096A (ko)
CN (1) CN116686129A (ko)
WO (1) WO2023287078A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102640999B1 (ko) * 2023-09-18 2024-02-28 영일엔지니어링(주) 배터리팩 상부커버용 회로기판 검사기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070107921A (ko) * 2006-05-04 2007-11-08 삼성에스디아이 주식회사 리튬 이차전지 및 그 제조방법
KR101889592B1 (ko) * 2015-01-16 2018-08-17 주식회사 엘지화학 비딩부를 포함하지 않는 원통형 전지 및 이의 제조 방법
US10274448B2 (en) * 2016-05-06 2019-04-30 GM Global Technology Operations LLC Method and apparatus for evaluating a weld junction between a terminal and an electrode element of a battery cell
KR20190053014A (ko) * 2017-11-09 2019-05-17 주식회사 엘지화학 전극 성능 평가시스템 및 전극 성능 평가방법
CN111693573A (zh) * 2020-05-12 2020-09-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 电池极耳焊接质量评估方法及装置
KR20210091698A (ko) 2018-09-20 2021-07-22 파세비오 파마수티컬스 인코포레이티드 티카그렐러 활성을 반전시키는 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070107921A (ko) * 2006-05-04 2007-11-08 삼성에스디아이 주식회사 리튬 이차전지 및 그 제조방법
KR101889592B1 (ko) * 2015-01-16 2018-08-17 주식회사 엘지화학 비딩부를 포함하지 않는 원통형 전지 및 이의 제조 방법
US10274448B2 (en) * 2016-05-06 2019-04-30 GM Global Technology Operations LLC Method and apparatus for evaluating a weld junction between a terminal and an electrode element of a battery cell
KR20190053014A (ko) * 2017-11-09 2019-05-17 주식회사 엘지화학 전극 성능 평가시스템 및 전극 성능 평가방법
KR20210091698A (ko) 2018-09-20 2021-07-22 파세비오 파마수티컬스 인코포레이티드 티카그렐러 활성을 반전시키는 방법
CN111693573A (zh) * 2020-05-12 2020-09-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 电池极耳焊接质量评估方法及装置

Also Published As

Publication number Publication date
EP4250466A1 (en) 2023-09-27
CN116686129A (zh) 2023-09-01
JP2024501308A (ja) 2024-01-11
KR20230011096A (ko) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2020009337A1 (ko) 파우치형 2차전지의 전극 손상 검사방법 및 파우치형 2차전지의 전극 손상 검사장치
WO2017095066A1 (ko) 언노운 방전 전류에 의한 배터리 셀의 불량 검출 장치 및 방법
WO2020071848A1 (ko) 이차전지 셀의 저전압 진단 방법 및 장치
WO2020171426A1 (ko) 배터리 셀 연결용 버스 바, 배터리 팩 및 이의 제조 방법
WO2023287078A1 (ko) 전지의 용접 상태 검사 방법
CN208239566U (zh) 一种电芯壳体的绝缘检测系统
WO2022086097A1 (ko) 배터리 검사 장치
WO2015046702A1 (ko) 충방전기의 충전 전류 정밀도 검출 장치
WO2020231054A1 (ko) 전극 조립체 및 이의 검사 방법
WO2022257991A1 (zh) 电芯内短路点位置确定方法
WO2018147586A2 (ko) 초음파를 이용한 알루미늄 파우치 실링을 위한 비파괴검사 판정시스템
WO2023013961A1 (ko) 배터리 검사 장치 및 배터리 검사 시스템
WO2023282575A1 (ko) 전지의 용접 상태 검사 방법
WO2023121069A1 (ko) 저전압 전지 셀의 이물 위치 검출 장치 및 이를 이용한 분석 방법
CN113552495B (zh) 一种电力电源系统蓄电池漏液在线检测方法及装置
WO2022173173A1 (ko) 전해액 주액 전의 전극 조립체 불량 검사장치 및 불량 검사방법
WO2014129855A1 (ko) 절연저항 측정부를 구비하는 전지케이스, 이를 포함하는 파우치형 전지 및 절연저항 측정 시스템
WO2022097991A1 (ko) 전지 셀의 균열 검사를 위한 와전류 센서 및 이를 포함하는 전지 셀의 균열 검출 시스템
WO2021153922A1 (ko) 이차전지 및 이차전지의 제조 방법
WO2023191473A1 (ko) 절연성 검사 방법 및 장치
WO2023014056A1 (ko) 전지 셀의 전극 탭 단선 검사장치 및 단선 검사방법
WO2023033467A1 (ko) 전지모듈의 용접 검사 장치
WO2024090724A1 (ko) 전지 불량 고속 검사 방법
WO2022215879A1 (ko) 전극셀 검사장치 및 검사방법
WO2023033522A1 (ko) Tdr을 이용한 전지셀의 내부 결함 검출장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842340

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269516

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023539195

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280008963.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022842340

Country of ref document: EP

Effective date: 20230620

NENP Non-entry into the national phase

Ref country code: DE