WO2019151654A1 - 이차전지 안전성 평가 방법 및 장치 - Google Patents

이차전지 안전성 평가 방법 및 장치 Download PDF

Info

Publication number
WO2019151654A1
WO2019151654A1 PCT/KR2018/016687 KR2018016687W WO2019151654A1 WO 2019151654 A1 WO2019151654 A1 WO 2019151654A1 KR 2018016687 W KR2018016687 W KR 2018016687W WO 2019151654 A1 WO2019151654 A1 WO 2019151654A1
Authority
WO
WIPO (PCT)
Prior art keywords
probes
resistance
short circuit
secondary battery
safety evaluation
Prior art date
Application number
PCT/KR2018/016687
Other languages
English (en)
French (fr)
Inventor
정범영
김희민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880049506.8A priority Critical patent/CN110959122B/zh
Priority to EP18903117.2A priority patent/EP3671240B1/en
Priority to US16/621,227 priority patent/US11152650B2/en
Publication of WO2019151654A1 publication Critical patent/WO2019151654A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method and apparatus for evaluating the safety of a secondary battery, and more particularly, to a safety evaluation method and apparatus that can be utilized in a secondary battery design step.
  • This application is a priority application for the Korean Patent Application No. 10-2018-0011898 filed on January 31, 2018, and all the contents disclosed in the specification and drawings of the application are incorporated herein by reference.
  • the lithium secondary battery has a safety accident due to the risk of ignition and explosion due to the characteristics of the material used.
  • the internal pressure of the battery may rise rapidly, causing an explosion of the battery.
  • an internal short circuit of the lithium secondary battery may be caused by an impact from the outside to the battery.
  • the high electrical energy stored in each electrode is electrically challenged in the shorted anode and cathode, unlike other safety accidents such as overcharge or overdischarge, there is a high risk of explosion. Explosion can cause catastrophic damage to the user in addition to simply breaking the secondary battery, so the secondary battery designer needs to develop a secondary battery design technology in various aspects to secure safety from an explosion caused by a short circuit.
  • the safety items of the secondary battery include a crimping test that simulates an internal short circuit due to external pressure and a collision that simulates an explosion and ignition due to an internal short circuit when the battery is impacted by a rod. Similar to the test and crash test, the penetration test simulates the case where the battery penetrates due to nails and causes internal short-circuits during the shipping of the battery, and the ability of the battery to withstand the exposed temperature atmosphere when the ambient temperature rises abnormally. Thermal exposure (heating) test to evaluate.
  • 1 is a view for explaining the internal structure of the cell and the type of short circuit.
  • the short circuit (S A ) between the positive electrode current collector 10 and the negative electrode current collector 20 the short circuit (S B ) between the positive electrode current collector 10 and the negative electrode active material layer 22, the positive electrode active material layer 12 and the negative electrode active material It is a short circuit S C between the layers 22, and a short circuit S D between the positive electrode active material layer 12 and the negative electrode current collector 20.
  • the safety can be evaluated by estimating the amount of heat generated from the short-circuit resistance for each type of each of the short circuits S A , S B , S C , and S D.
  • each short-circuit resistance value used in current simulations is often simply the resistance value inherent in known materials.
  • electrode composition active material, conductive material, binder ratio, etc.
  • electrode design pierosity, thickness, etc.
  • surface characteristics of the electrode The short-circuit resistance measured by checking the voltage while applying current by contacting the two terminals to the short-circuited part may be used.
  • this is an approximate measurement value, which is insufficient for accurate simulation.
  • Contact resistance is a third resistance component generated at the contact surface. 2 is a view for explaining the definition and cause of the contact resistance.
  • a resistance change may occur because there is a difference in the electron transport path depending on the surface state of the AA material and the BB material contact surface.
  • the contact surface state of (a) has few electron transfer passages. Thus, a large resistance is generated at the contact surface.
  • the contact surface surface state of (b) has many electron transfer passages. Thus, a small resistance is generated at the contact surface.
  • the resistance change may occur because there is a difference in the electron transfer path depending on the magnitude of the force F acting between the contact surfaces. If a weak force is applied as in (c), there are few electron transfer paths. Thus, a large resistance is generated at the contact surface. On the other hand, when a strong force is applied as in (d), there are many electron transfer paths. Thus, a small resistance is generated at the contact surface.
  • the accurate short circuit resistance which is considered to be the contact resistance between the short circuit elements.
  • the resistance value such as the surface state of the contact surface and the force (final pressure) acting between the contact surfaces.
  • the present invention was devised to solve the above problems, and to provide a method for more accurately evaluating the safety of a secondary battery by accurately measuring a short circuit resistance including contact resistance between short circuit elements during a short circuit inside the secondary battery. The purpose.
  • Another object of the present invention is to provide a safety evaluation apparatus suitable for implementing such a safety evaluation method.
  • the safety evaluation method according to the present invention may further include determining whether the at least one item among the composition, porosity, thickness, and surface properties of the element is appropriate from the result of predicting the calorific value.
  • the safety evaluation method according to the present invention may further include obtaining the graph of the short circuit resistance change according to the pressure change, and simulating a short circuit resistance according to the internal pressure change of the secondary battery manufactured by including the element.
  • the jig portion for measuring the short-circuit resistance and the system portion for the measurement and calculation, the jig portion, which can cause a short circuit by contact between the included elements A mounting table on which a sample for secondary battery electrode evaluation can be placed; A pressure applying unit configured to apply a predetermined pressure to cause contact between the elements to a region set as a secondary battery internal short circuit simulation contact region with respect to the sample; And I probes provided to contact the sample, V probes separate from the I probes and capable of adjusting the spacing therebetween, wherein the system unit applies current between the I probes and the V probes A measurement recording unit for measuring and recording the potential difference between the two; And a calculator for obtaining a resistance change graph according to a change in distance between the controller and the V probes, obtaining a short circuit resistance of the region from the y-intercept of the graph, and predicting a heat generation amount of the region from the short circuit resistance.
  • the V probes may include a plurality of V probes arranged at regular intervals, and the change in the interval between the V probes may be possible by using any combination of two V probes.
  • the pressure applying unit may include a press unit, a load cell, and an indicator.
  • the press unit may include an up-down press operated by the driving unit and a press jig which can be replaced with a size suitable for the size of the region.
  • the system unit may include an electrochemical impedance spectrometer (EIS).
  • EIS electrochemical impedance spectrometer
  • the safety evaluation method of the present invention is characterized by accurately measuring and using a short circuit resistance including contact resistance between elements causing a short circuit in a short circuit resistance used as a safety evaluation item in a battery design and electrode assembly step before battery assembly. There is this.
  • the short circuit resistance is accurately measured in a state that simulates the internal short circuit condition of the secondary battery to predict the amount of heat generated during the internal short circuit, thereby realizing the actual safety of the active material and composition of the electrode and the battery design. May proceed as a prior assessment prior to cell assembly. In this way, completing the safety assessment prior to battery assembly allows the verification and revision of new design criteria. After evaluation, it is possible to change the design conditions of the secondary battery immediately, so it can be used as a useful evaluation means in the research and development stage.
  • the safety evaluation method of the present invention can provide a very accurate and useful safety evaluation means while being a preliminary evaluation rather than a post evaluation such as a crimping test, a crash test, a penetration test, and a heat exposure (heating) test.
  • safety evaluation can be performed using a sample for secondary battery electrode evaluation prepared to include any one of a positive electrode current collector and a positive electrode active material layer, and a combination of any one of the negative electrode current collector and the negative electrode active material layer. have. Unlike the conventional post evaluation method, since the secondary battery sample of the completed form is not prepared, the cost of evaluation can be reduced, and thus, the final secondary battery manufacturing cost can be lowered.
  • the resistance change component of the probe lead is obtained by obtaining a graph of resistance change according to the change of the interval between the V probes. Accurate short-circuit resistance can be measured by eliminating
  • the safety evaluation device of the present invention includes a pressure applying unit that may include a load cell, an indicator, etc., measuring the short-circuit resistance while applying a specific pressure equal to the pressure at the time of the actual short circuit inside the secondary battery to the sample can do. Therefore, it can be utilized as a safety evaluation means in a more accurate and near-real internal short circuit simulation environment.
  • the safety evaluation device of the present invention since the pressure and short-circuit resistance measurement and the calorific value prediction are simultaneously performed in one device, the time efficiency is increased and the test work efficiency is improved.
  • 1 is a view for explaining the internal structure of the cell and the type of short circuit.
  • 3 is a view for explaining the difficulty of measuring the contact resistance.
  • FIG. 4 is a flowchart of a safety evaluation method according to an embodiment of the present invention.
  • FIG. 5 illustrates an example of a graph of resistance change according to a change in interval between V probes.
  • FIG. 6 is a schematic diagram of a safety evaluation apparatus according to an embodiment of the present invention.
  • FIG. 7 illustrates preferred examples of I and V probes among the components included in the safety evaluation apparatus of FIG. 6.
  • FIG. 8 is a photograph of a jig part of a test safety evaluation device manufactured according to the present invention.
  • FIG 9 is a graph showing the resistance (R measurement ) according to the distance change according to the type of short circuit, measured with a test safety evaluation device.
  • R 0 short circuit resistance
  • FIG 11 is a graph showing the short circuit resistance R 0 according to the pressure change, measured with a test safety evaluation device.
  • R lead 12 is a graph of probe lead (R lead ) resistance according to pressure change, measured with a test safety evaluation device.
  • FIG. 13 is a graph showing the calorific value calculated from the short circuit resistance R O of FIG. 10 with respect to the short circuit area.
  • FIG. 4 is a flowchart of a safety evaluation method according to an embodiment of the present invention.
  • step S1 a sample for evaluating a secondary battery electrode is prepared.
  • a cell internal short circuit includes a short circuit (S A ) between the positive electrode current collector and the negative electrode current collector, a short circuit (S B ) between the positive electrode current collector and the negative electrode active material layer, and between the positive electrode active material layer and the negative electrode active material layer.
  • S A short circuit
  • S B short circuit
  • S C short circuit
  • S D short circuit resistance
  • the sample should be one capable of causing a short circuit by contact between the elements contained therein.
  • the sample may be prepared to include a combination of an element which is one of a positive electrode current collector and a positive electrode active material layer and an element which is one of a negative electrode current collector and a negative electrode active material layer.
  • the sample may be prepared by simply stacking a positive electrode current collector such as Al foil and a negative electrode current collector such as Cu foil. (Denoted as 'positive current collector / negative current collector').
  • the sample can be prepared in a very simple form such as a positive electrode current collector / negative electrode current collector, a positive electrode current collector / negative electrode active material layer, a positive electrode active material layer / negative electrode current collector or a positive electrode active material layer / negative electrode active material layer.
  • a very simple form such as a positive electrode current collector / negative electrode current collector, a positive electrode current collector / negative electrode active material layer, a positive electrode active material layer / negative electrode current collector or a positive electrode active material layer / negative electrode active material layer.
  • step S2 the short circuit resistance in the area
  • region is calculated
  • This step S2 may include the following detailed steps (steps S2_1 to S2_4).
  • a predetermined pressure is applied to the region to cause contact between the elements in the sample (step S2_1).
  • the resistance is measured for the sample (step S2_2).
  • I probes for current application and V probes for measuring potential difference are used.
  • Two I probes and two V probes are brought into contact with the sample to apply current between the I probes and to measure the potential difference between the V probes to calculate resistance by dividing the measured voltage by the applied current. Since V currents do not flow, there is no resistance due to the flow of current. It is not a measurement of resistance caused by I probes because it is not measuring the potential difference between I probes. Therefore, minute resistance can be measured precisely.
  • the straight slope corresponds to the resistance (R), and the resistance calculated by measuring in this way is referred to as R measurement below.
  • R measurement satisfies the following equation (1).
  • Equation 1 may be expressed as Equation 2 below.
  • the lead per R length is the V probe lead resistance along the length.
  • the lead resistance (R lead ) changes with the spacing d between the V probes, but the short circuit resistance (R short ) must be constant.
  • the resistance is measured by changing the interval between the V probes (step S2_3). Measure each resistance for at least two different intervals.
  • step S2_4 Using the results of steps S2_2 and S2_3, it is possible to obtain a graph of resistance change according to a change in interval between V probes (step S2_4).
  • FIG. 5 illustrates an example of a graph of resistance change according to a change in interval between V probes.
  • You can obtain a graph by plotting the resistance values obtained at each interval as data points and linearly fitting the graph by obtaining a straight line through these points (extrapolation or interpolation can be applied).
  • the slope of the graph is the lead per R length
  • the y intercept is the R short .
  • the lead resistance component is separated from the measurement resistance (R measurement ) so that the short circuit resistance (R short ) can be known accurately.
  • step S3 the amount of heat generated in the region is predicted from the short circuit resistance R short obtained through the previous step S2 (step S3).
  • the heat generated by the short circuit can be known according to Equation 3 below when the short circuit resistance is known.
  • R i is the cell resistance as internal resistance.
  • R e is a short resistance as external resistance.
  • V is the cell voltage and I is the current flowing in the short
  • P is the power, that is, the heat generated in the short.
  • the short-circuit resistance obtained by measuring the resistance and graph fitting in the same manner as the step S2 is measured short-circuit resistance (R O )
  • the actual short-circuit resistance (R a ) considering the short-circuit area A can be obtained from the following equation (4).
  • the calorific value predicted through these steps is the calorific value under the predetermined pressure in the region set as the secondary battery internal short circuit simulation contact region in the sample. With the magnitude of this calorific value, the safety of the secondary battery can be evaluated in various aspects.
  • suitability of at least one item among the composition, porosity, thickness, and surface characteristics of the element causing the short circuit can be determined from the result value of predicting the calorific value.
  • a positive electrode current collector / cathode current collector sample was prepared to measure a short circuit resistance against a short circuit (S A ) between the positive electrode current collector and the negative electrode current collector, to measure the short-circuit resistance at a predetermined pressure P1, and to predict the amount of heat generated.
  • S A short circuit resistance against a short circuit
  • P1 the short-circuit resistance at a predetermined pressure
  • the positive electrode current collector and the negative electrode current collector included as elements in the measurement sample are suitable as the current collector specifications such as material and thickness. If it is determined that the estimated calorific value is enough to cause thermal runaway in the secondary battery, the positive electrode collector and the negative electrode collector included as elements in the measurement sample are not suitable. Therefore, it is determined that some design conditions such as material and thickness need to be changed.
  • the safety evaluation method according to the present invention may further include obtaining the graph of the short circuit resistance change according to the pressure change, and simulating a short circuit resistance according to the internal pressure change of the secondary battery manufactured by including the element.
  • the internal pressure of the battery increases and reaches P2 due to various causes during use of the secondary battery including the same, and the amount of heat generated by a short circuit in such a situation. It is necessary to predict.
  • the safety evaluation method of the present invention is performed, and the test 2 for measuring the short circuit resistance and predicting the calorific value by using P2 as the pressure applied to the sample is performed.
  • the calorific value obtained in P1 of Test 1 is such that the calorific value does not cause thermal runaway, but it is determined that the calorific value obtained from P2 of Test 2 is sufficient to cause thermal runaway, the positive and negative current collectors included as elements in the measurement sample are included. Is not suitable after all. As described above, according to the present invention, it is possible to predict the calorific value according to the internal pressure of the battery in the actual secondary battery use environment, thereby obtaining a more accurate safety evaluation result, and ensuring the safety of the secondary battery in actual use.
  • the short circuit between the positive electrode current collector and the negative electrode active material layer (S B ), the short circuit between the positive electrode active material layer and the negative electrode active material layer (S C ), and the short circuit between the positive electrode active material layer and the negative electrode current collector (S D ) For each of them, accurate short-circuit resistance measurement at a given pressure can be made, and thus the amount of heat generated can be accurately predicted.
  • the above test 1 and / or test 2 establishes the design conditions of the positive electrode current collector and the negative electrode current collector, and as a test 3, a short circuit (S B ) between the positive electrode current collector and the negative electrode active material layer can be caused.
  • Samples of the positive electrode current collector / negative electrode active material layer are prepared to measure the short circuit resistance and predict the calorific value. If it is determined that this calorific value is a calorific value that causes thermal runaway in the secondary battery, the negative electrode active material layer included as an element in the measurement sample is not suitable. Therefore, the composition of the negative electrode active material layer, for example, the type and ratio of each of the active material, the conductive material, and the binder, or the porosity, thickness, etc. of the negative electrode active material layer may be changed to develop a more suitable negative electrode active material layer. The results are available.
  • the safety evaluation method according to the present invention described above means for applying a predetermined pressure to the sample, means for applying a current to the sample and measuring the potential difference, calculating the short-circuit resistance and the calorific value with the measured values obtained
  • a combination of the means can be used.
  • Each means herein may be all means available to the person skilled in the art such as human or known electromechanical component parts, and the safety evaluation method of the present invention may be performed by an appropriate combination thereof.
  • FIG. 6 is a schematic diagram of a safety evaluation apparatus according to an embodiment of the present invention.
  • the safety evaluation apparatus 40 includes a jig unit 100 for measuring short-circuit resistance and a system unit 200 for measurement and calculation.
  • the jig part 100 simulates a secondary battery internal short circuit with respect to the mounting base 110 and the sample 50 on which the sample 50 for evaluating the secondary battery electrode which may cause a short circuit by contact between the elements included therein.
  • the pressure applying unit 120 provided to apply a predetermined pressure to cause contact between the elements to the region set as the contact region D, and the I probes 130 provided to contact the sample 50.
  • the V probes 140 may be separated from the I probes 130 and the gaps between the probes may be adjusted.
  • the pressure applying unit 120 basically includes the press unit 125, but may further include a load cell 127 and an indicator 129.
  • the press unit 125 may include an up-down press 122 that is operated by the driving unit 121, and may include a press jig 123 that may be replaced with a size suitable for the size of the area D.
  • the load cell 127 may convert the load applied to the sample 50 by the press unit 125 into an electrical signal and display the same through the indicator 129.
  • the load cell 127 may be included in the press unit 125, may be placed on the mounting table 110, or may be included in the mounting table 110.
  • the system unit 200 is connected to the I probes 130 and the V probes 140 of the jig unit 100.
  • the system unit 200 includes a measurement recording unit 210, a control unit 220 and a calculation unit 230.
  • the measurement recording unit 210 applies a current between the I probes 130 and measures and records the potential difference between the V probes 140.
  • the measurement recording unit 210 may include at least the measurement unit 212 and the memory unit 214.
  • the controller 220 may be electrically coupled to the measurement unit 212.
  • the measuring unit 212 includes a circuit necessary for applying a current between the I probes 130 and measuring a potential difference between the V probes 140 under the control of the control unit 220, and measuring the measured results. Output to the control unit 220. Then, the control unit 220 stores the input result value in the memory unit 214.
  • the memory unit 214 is a storage medium capable of recording and erasing data electrically, magnetically, optically or quantum mechanically, and may be a RAM, a ROM, or a register as a non-limiting example.
  • the memory unit 214 may be connected to the control unit 220 through, for example, a data bus so as to be accessible by the control unit 220.
  • the memory unit 214 stores and / or updates and / or erases a program including various control logics executed by the controller 220, predefined parameters, and / or data generated when the control logic is executed. can do.
  • the memory unit 214 may be logically divided into two or more and is not limited to being included in the controller 220.
  • the calculator 230 reads the result values from the memory unit 214 to calculate the resistance, and obtains a graph of a resistance change according to a change in the interval between the V probes 140.
  • the short-circuit resistance of the region D can be obtained from the y-intercept of the graph, and it is programmed to perform various necessary operations such as predicting the amount of heat generated in the region from the short-circuit resistance.
  • the controller 220 may optionally include a processor, an application-specific integrated circuit (ASIC), another chipset, a logic circuit, a register, a communication modem, a data processing device, and the like, which are known in the art, for executing various control logics disclosed herein. It may include.
  • the control logic when the control logic is implemented in software, the controller 220 may be implemented as a set of program modules.
  • the program module may be stored in the memory unit 214 and executed by a processor.
  • the memory unit 214 may be inside or outside the processor and may be connected to the processor by various well-known means.
  • the system unit 200 may include an electrochemical impedance spectrometer (EIS). Including the electrochemical impedance spectrometer 230 facilitates the configuration of the measurement recording unit 210 and the calculation unit 230 to facilitate resistance measurement, verification, and calculation of short-circuit resistance. It is also possible to include the measurement recording unit 210 and the calculation unit 230 in the electrochemical impedance spectrometer.
  • EIS electrochemical impedance spectrometer
  • the sample 50 may be placed on the mounting table 110, and the steps S1 and S2_1 of FIG. 4 may be performed through the pressure applying unit 120.
  • the driving unit 121 may be a manual press such as a lever or a screw that is manually operated, but the system unit 200 and the driving unit 121 may be interlocked to operate automatically through a driving signal of the control unit 220 in the system unit 200. It may be configured as a motorized press to be able to.
  • Steps S2_2 and S2_3 of FIG. 4 may also be performed through the recording unit 210.
  • the calculation unit 230 calculates the resistance based on the result measured by the measurement recording unit 210. Changing the interval between the V probes 140 to perform step S2_3 may be performed manually or automatically by, for example, driving of the controller 220, depending on the device configuration itself.
  • the calculation unit 230 obtains a graph of a resistance change according to a change in the distance between the V probes 140, and obtains a short circuit resistance of the region D from the y-intercept of the graph, and performs step S2_4 of FIG. 4. . Then, the amount of heat generated in the region D is estimated from the short-circuit resistance until step S3 of FIG. 4 is performed.
  • FIG. 7 illustrates a preferred example of the I probes 130 and the V probes 140 among the components included in the safety evaluation device 40 of FIG. 6.
  • FIG. 7 also illustrates the connection relationship between the I probes 130 and the V probes 140 and the system unit 200.
  • Two I probes 130 are provided and four or more V probes 140 are provided, for example, twelve.
  • V probes 140 are arranged between two I probes 130.
  • the V probes 140 are arranged at regular intervals on both sides of the secondary battery internal short circuit simulation region D of the sample 50. If the sequential numbers from 1 to 6 are assigned from the outermost V probes 140 to the innermost V probes 140, in the first measurement for step S2_2 of FIG. 4, the I probe 130 A current is applied between the electrodes and the resistance is obtained by measuring the potential difference between the V probes 140, for example. Next, in the second measurement for step S2_3 of FIG. 4, the positions of the I probes 130 are unchanged and a current is applied between them, and for example, a resistance difference is measured by measuring a potential difference between V probes 140. Get As such, the position of each of the V probes 140 is constant, but the V probes 140 used to read the potential difference are changed. This operation can increase the spacing between the V probes for resistance measurement. On the contrary, it is also possible to reduce.
  • V probes 140 When configured as shown in FIG. 7, by using a combination of any two V probes 140 among a plurality of V probes 140, a change in interval between V probes is possible. With regard to which two V probes 140 are to be used among several V probes 140, selection of those which can cause a desired degree of change in distance may be a criterion, and the selection and use may be mechanically or controlled. The signal command of 220 may be used.
  • the safety evaluation device 40 of the present invention may accurately measure the short circuit resistance for each internal short circuit occurrence case according to the pressure in consideration of the internal short circuit occurring inside the secondary battery. By distinguishing between I and V probes, it is possible to measure minute resistance precisely. After fixing the I probes and measuring the resistance by varying the spacing between the V probes, linear fitting a graph of the resistance versus the spacing between the V probes separates the probe lead resistance for more accurate short circuit resistance. .
  • the safety evaluation device will be briefly fabricated for testing, and the application examples of the actual short-circuit resistance measurement with the positive electrode and the negative electrode designed for the 4.2V secondary battery will be described.
  • FIG. 8 is a photograph of a jig part of a test safety evaluation device manufactured according to the present invention.
  • the mounting base 110, the press unit 125, the indicator 129, the I probes 130, and the V probe 140 are identified.
  • a commercial EIS was connected to this jig and used instead of the system.
  • the indicator 129 As the indicator 129, a CAS CI-2001A model was used.
  • the CAS CI-2001A model is an industrial small indicator suitable for metrology testing and platform scale.
  • FIG 9 is a graph showing the resistance (R measurement ) according to the distance change according to the type of short circuit, measured with a test safety evaluation device.
  • the measurement resistance increases linearly with increasing distance. It is consistent with the expected resistance change over distance, indicating a reliable result.
  • R 0 short circuit resistance
  • the short circuit resistance increases in the order of the negative electrode current collector / positive electrode current collector, the negative electrode active material layer / positive current collector, and the negative electrode active material layer / positive electrode active material layer.
  • the measurement result was also in agreement. Regardless of the type, even small resistance difference can be measured stably, so that the resistance can be distinguished according to the type of short.
  • FIG 11 is a graph showing the short circuit resistance R 0 according to the pressure change, measured with a test safety evaluation device.
  • FIG. 11 shows a tendency to converge to a specific value as the pressure increases.
  • the contact resistance decreases.
  • the results in FIG. 11 are consistent with the resistance change with increasing resistance travel path with increasing pressure. Therefore, it is confirmed that reliable measurement results can be obtained.
  • the decrease in short-circuit resistance with increasing pressure shows that even small resistance change due to pressure difference was measured stably. Accordingly, it can be seen from FIG. 11 that the short circuit resistance is stably measured with high reliability regardless of the pressure change.
  • R lead 12 is a graph of probe lead (R lead ) resistance according to pressure change, measured with a test safety evaluation device.
  • the resistance of each type is almost the same, there is no change with pressure.
  • the probe lead resistance should be constant according to the type and pressure. This is because the resistance of the material itself is constant regardless of the pressing pressure. The measurement results correspond with this. Accordingly, it can be seen from FIG. 12 that reliable measurement is possible regardless of pressure change.
  • the calorific value can be calculated by substituting R e in Equation 3.
  • FIG. 13 is a graph showing the calorific value calculated from the short circuit resistance R O of FIG. 10 with respect to the short circuit area.
  • the cell resistance is as small as 3m ⁇ . Due to the small cell resistance, the thermal increase due to the short-circuit area is expected and a consistent result can be obtained.
  • the safety evaluation method of the present invention accurately measures the short-circuit resistance included in the short-circuit resistance used as one of the safety evaluation items in the battery design and electrode assembly steps prior to battery assembly, and the contact resistance between the elements causing the short circuit. It is characterized by using.
  • the short circuit resistance is accurately measured in a state that simulates the internal short circuit condition of the secondary battery to predict the amount of heat generated during the internal short circuit, thereby realizing the actual safety of the active material and composition of the electrode and the battery design. May proceed as a prior assessment prior to cell assembly. In this way, completing the safety assessment prior to battery assembly allows the verification and revision of new design criteria. After evaluation, it is possible to change the design conditions of the secondary battery immediately, so it can be used as a useful evaluation means in the research and development stage.
  • the safety evaluation method of the present invention can provide a very accurate and useful safety evaluation means while being a preliminary evaluation rather than a post evaluation such as a crimping test, a crash test, a penetration test, and a heat exposure (heating) test.
  • safety evaluation can be performed using a sample for secondary battery electrode evaluation prepared to include any one of a positive electrode current collector and a positive electrode active material layer, and a combination of any one of the negative electrode current collector and the negative electrode active material layer. have. Unlike the conventional post evaluation method, since the secondary battery sample of the completed form is not prepared, the cost of evaluation can be reduced, and thus, the final secondary battery manufacturing cost can be lowered.
  • the resistance change component of the probe lead is obtained by obtaining a graph of resistance change according to the change of the interval between the V probes. Accurate short-circuit resistance can be measured by eliminating
  • the safety evaluation device of the present invention includes a pressure applying unit that may include a load cell, an indicator, etc., measuring the short-circuit resistance while applying a specific pressure equal to the pressure at the time of the actual short circuit inside the secondary battery to the sample can do. Therefore, it can be utilized as a safety evaluation means in a more accurate and near-real internal short circuit simulation environment.
  • the safety evaluation device of the present invention since the pressure and short-circuit resistance measurement and the calorific value prediction are simultaneously performed in one device, the time efficiency is increased and the test work efficiency is improved.
  • each component may be selectively integrated with other components or each component may be divided into subcomponents for efficient execution of control logic (s).
  • control logic control logic
  • the integrated or divided components should also be interpreted as being within the scope of the present invention, provided that the functional identity can be recognized even if the components are integrated or divided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에 따른 안전성 평가 방법은, 포함된 요소 서로간의 접촉에 의해 단락을 일으킬 수 있는 이차전지 전극 평가용 샘플을 준비하는 단계; 상기 샘플에 대해 이차전지 내부 단락 모사 접촉 영역으로 설정한 영역에 상기 요소 서로간의 접촉을 일으킬 소정 압력을 인가한 상태에서, 상기 샘플에 접촉시킨 I 프로브들 사이에 전류를 인가하고 상기 I 프로브들과는 별개인 V 프로브들 사이의 전위차를 측정해 저항을 얻고, 상기 V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프를 구해, 상기 그래프의 y 절편으로부터 상기 영역의 단락 저항을 구하는 단계; 및 상기 단락 저항으로부터 상기 영역의 발열량을 예측하는 단계를 포함한다.

Description

이차전지 안전성 평가 방법 및 장치
본 발명은 이차전지의 안전성을 평가하기 위한 방법 및 장치에 관한 것으로서, 더욱 상세하게는 이차전지 설계 단계에서 활용 가능한 안전성 평가 방법 및 장치에 관한 것이다. 본 출원은 2018년 1월 31일자로 출원된 대한민국 특허출원 번호 제10-2018-0011898호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
모바일 기기, 전기차, 하이브리드 자동차, 전력 저장 장치, 무정전 전원 장치 등에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 이차전지에 대한 많은 연구가 진행되고 있다.
이차전지에서 주요 연구 과제 중의 하나는 에너지 밀도 향상을 통한 이차전지 성능을 높이는 것 이외에 이차전지의 안전성을 향상시키는 데 있다. 특히 리튬 이차전지는 사용하는 재료의 특성상 발화 및 폭발의 위험성으로 인한 안전사고도 발생하고 있다. 리튬 이차전지는 내부 단락, 과충전, 과방전 등에 의한 발열로 인해 전해질 분해 반응과 열폭주 현상이 발생할 경우 전지 내부의 압력이 급격히 상승하여 전지의 폭발이 유발될 수 있다.
특히, 리튬 이차전지의 내부 단락은 외부로부터 전지로의 충격에 의해서 일어날 수 있다. 이 때 단락된 양극과 음극에서는 각 전극에 저장되어 있던 높은 전기 에너지가 순식간에 도전되므로 과충전이나 과방전과 같은 다른 안전 사고와 달리 폭발의 위험이 높다. 폭발은 단순히 이차전지가 파손되는 것 이외에 사용자에게 치명적인 피해를 가할 수 있으므로 이차전지 설계자는 단락에 의한 폭발 현상으로부터 안전성을 확보할 수 있도록 다양한 측면에서 이차전지 설계 기술을 개발할 필요가 있다.
이차전지의 성능을 높이는 것은 내재 에너지량을 증가하는 것이고, 그만큼 사고의 잠재 가능성이 높아지는 바, 적절한 시험 규격에 의한 전지 성능 및 안전성의 평가가 필요하다. 새로운 설계 기술이 적용되어 양산된 이차전지는 내부 단락으로 인한 폭발 방지 설계가 얼마나 잘 이루어졌는지 평가하는 안전성 평가 시험을 거치게 된다. 이차전지의 안전성 항목에는 전지가 외부 압력에 의해 내부 단락이 되었을 경우를 모의하는 압착 시험, 환봉(rod)에 의해 전지가 충격을 받았을 때 전지 내부의 단락으로 인해 폭발 및 발화되는 경우를 모의하는 충돌 시험, 충돌 시험과 마찬가지로 전지의 포장 운송시 못(nail)에 의해 전지가 관통되어 내부 단락을 일으키는 경우를 모의한 관통 시험, 주변 온도가 비정상적으로 상승하였을 때 전지가 노출된 온도 분위기를 견디는 능력을 평가하는 열노출(가열) 시험 등이 있다.
그러나, 이러한 시험들은 전지 조립 이후의 안전성 평가에 관한 것이고, 전지 조립 이전의 전지 설계 및 새로운 설계 기술을 적용한 전극 조립 단계에서의 안전성 평가를 위한 사전 평가 방법은 부족한 실정이다. 현재 전극 조립 단계에서의 안전성 평가를 위해서, 이차전지 내부에서 내부 단락이 발생될 수 있는 경우에 대해서 단위 셀 안의 각 요소(component)에 대한 저항값을 바탕으로 단락된 영역의 저항(이하, 단락 저항)을 예측하고 발열량을 모사(simulation)하고 있다.
도 1은 셀의 내부 구조와 단락의 종류를 설명하기 위한 도면이다.
도 1을 참조하면, 셀 내부 단락은 4 가지 종류가 존재한다. 그것은 양극 집전체(10)와 음극 집전체(20)간의 단락(SA), 양극 집전체(10)와 음극 활물질층(22)간의 단락(SB), 양극 활물질층(12)과 음극 활물질층(22)간의 단락(SC), 그리고 양극 활물질층(12)과 음극 집전체(20)간의 단락(SD)이다.
이러한 각 단락(SA, SB, SC, SD) 종류에 따른 단락 저항으로부터 발열량을 예측하면 안전성을 평가할 수 있다. 그러나 현재 모사에 이용되는 각 단락 저항값은 알려져 있는 재료 고유의 저항값을 단순히 더한 경우가 많다. 그렇기 때문에, 실제적으로 전극 조성(활물질, 도전재, 바인더 비율 등) 및 전극 설계(기공도, 두께 등) 그리고 전극의 표면 특성에 따라서 달라질 수 있는 접촉 저항이 전혀 고려되지 못했다. 단락을 일으킨 부위에 2개의 단자를 접촉시켜 전류를 인가하면서 전압을 체크해 측정한 단락 저항을 이용하기도 하나, 이는 대략적으로 측정한 값이라 정확한 모사를 하기에는 역부족이다. 뿐만 아니라, 접촉 저항에 영향을 주는 압력에 대한 고려가 전혀 이루어지지 않은 측정 방식이어서 한계가 있다. 이처럼 종래에는 압력까지 고려해 접촉 저항이 정확히 반영된 단락 저항을 정확히 측정하는 수단이 미비하였다.
접촉 저항이란 접촉면에서 발생하는 제3의 저항 성분이다. 도 2는 접촉 저항의 정의와 원인을 설명하기 위한 도면이다.
도 2를 참조하여, 예를 들어 AA 물질과 BB 물질을 접촉하여 접촉면 C를 구성하면서 직렬로 연결시, 측정되는 저항(RSUM)은 각 물질의 개별 저항 RAA, RBB의 합보다 높다. 즉, 접촉면 C의 저항성분 RC가 발생해, RSUM = RAA + RBB + RC가 된다. 이처럼 접촉면에서의 전자(e-)의 이동통로 제한으로 새로운 저항 성분이 발생하게 되므로, 접촉면의 전자 이동 통로 제한으로 생긴 저항을 접촉 저항이라고 정의한다. 따라서, 도 1의 단락 중 예를 들어 단락(SA) 부분의 단락 저항을 예측할 때에 단순히 양극 집전체(10)의 저항과 음극 집전체(20)의 저항 합 이외에 양극 집전체(10)와 음극 집전체(20) 접촉면의 접촉 저항이 고려되어야만 정확한 예측이 가능한 것이다.
그런데 이 접촉 저항은 다음 도 3에서와 같은 이유로 정확한 측정이 어렵다.
먼저 도 3의 (a), (b)를 보면, AA 물질과 BB 물질 접촉면 표면 상태에 따라 전자 이동 통로 차이가 있기 때문에 저항 변화가 생길 수 있다. (a)의 접촉면 표면 상태는 전자 이동 통로가 적다. 따라서, 접촉 표면에서 큰 저항이 발생된다. 반면, (b)의 접촉면 표면 상태는 전자 이동 통로가 많다. 따라서, 접촉 표면에서 작은 저항이 발생된다.
또한, 도 3의 (c), (d)에서 보는 바와 같이, 접촉면 사이에 작용하는 힘(F)의 크기에 따라서도 전자 이동 통로 차이가 있기 때문에 저항 변화가 생길 수 있다. (c)와 같이 약한 힘이 작용하면 전자 이동 통로가 적다. 따라서, 접촉 표면에서 큰 저항이 발생된다. 반면, (d)와 같이 강한 힘이 작용하면 전자 이동 통로가 많다. 따라서, 접촉 표면에서 작은 저항이 발생된다.
이처럼 이차전지의 안전성을 정확히 평가하려면 단락을 일으킨 요소들 사이의 접촉 저항까지 고려된, 정확한 단락 저항을 알 필요가 있다. 그러나, 접촉면 표면 상태나 접촉면 사이에 작용하는 힘(결국 압력) 등, 저항값에 영향을 주는 주변인자들이 다수 존재하기 때문에 종래에는 단락 저항을 정확히 측정하기 어려운 문제가 있어 안전성 평가 방법의 정확성이 떨어지는 문제가 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 이차전지 내부 단락시 단락 요소사이의 접촉 저항까지 포함된 단락 저항을 정확히 측정하여 이차전지의 안전성을 보다 정확히 평가할 수 있는 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 이러한 안전성 평가 방법을 구현하는 데에 적합한 안전성 평가 장치를 제공하는 것이다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명에 따른 안전성 평가 방법은, 포함된 요소 서로간의 접촉에 의해 단락을 일으킬 수 있는 이차전지 전극 평가용 샘플을 준비하는 단계; 상기 샘플에 대해 이차전지 내부 단락 모사 접촉 영역으로 설정한 영역에 상기 요소 서로간의 접촉을 일으킬 소정 압력을 인가한 상태에서, 상기 샘플에 접촉시킨 I 프로브들 사이에 전류를 인가하고 상기 I 프로브들과는 별개인 V 프로브들 사이의 전위차를 측정해 저항을 얻고, 상기 V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프를 구해, 상기 그래프의 y 절편으로부터 상기 영역의 단락 저항을 구하는 단계; 및 상기 단락 저항으로부터 상기 영역의 발열량을 예측하는 단계를 포함한다.
본 발명에 따른 안전성 평가 방법은, 상기 발열량을 예측한 결과값으로부터, 상기 요소의 조성, 기공도, 두께, 표면 특성 중 적어도 어느 한 항목의 적합성 여부를 판정하는 단계를 더 포함할 수 있다.
본 발명에 따른 안전성 평가 방법은, 상기 압력 변화에 따른 상기 단락 저항 변화 그래프를 구해, 상기 요소를 포함하여 제조되는 이차전지의 내부 압력 변화에 따른 단락 저항을 모사하는 단계를 더 포함할 수 있다.
상기 다른 목적을 달성하기 위한 본 발명에 따른 안전성 평가 장치는, 단락 저항 측정용 지그부와 측정 및 계산을 위한 시스템부를 포함하며, 상기 지그부는, 포함된 요소 서로간의 접촉에 의해 단락을 일으킬 수 있는 이차전지 전극 평가용 샘플을 놓을 수 있는 재치대; 상기 샘플에 대해 이차전지 내부 단락 모사 접촉 영역으로 설정한 영역에 상기 요소 서로간의 접촉을 일으킬 소정 압력을 인가할 수 있도록 구비된 압력 인가부; 및 상기 샘플에 접촉시키도록 구비된 I 프로브들, 상기 I 프로브들과는 별개이고 프로브들 사이의 간격 조절이 가능한 V 프로브들을 포함하고, 상기 시스템부는 상기 I 프로브들 사이에 전류를 인가하고 상기 V 프로브들 사이의 전위차를 측정해 기록하는 측정기록부; 제어부 및 상기 V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프를 구해, 상기 그래프의 y 절편으로부터 상기 영역의 단락 저항을 구하고, 상기 단락 저항으로부터 상기 영역의 발열량을 예측하는 계산부를 포함한다.
상기 V 프로브들은 일정한 간격으로 배열된 여러 개의 V 프로브들을 포함하고 이 중에 어느 두 V 프로브들을 선택 조합 사용함으로써 상기 V 프로브들 사이의 간격 변화가 가능한 것일 수 있다.
상기 압력 인가부는 프레스부, 로드셀(loadcell)과 인디케이터(indicator)를 포함할 수 있다. 여기서, 상기 프레스부는 구동부에 의해 동작하는 업다운 프레스 및 상기 영역의 크기에 맞는 것으로 바꾸어 낄 수 있는 프레스지그를 포함할 수 있다.
상기 시스템부는 전기화학 임피던스 분광기(EIS)를 포함할 수 있다.
본 발명의 안전성 평가 방법은 전지 조립 이전의 전지 설계 및 전극 조립 단계에서의 안전성 평가 항목의 하나로 이용하는 단락 저항에 있어서 단락을 일으킨 요소사이의 접촉 저항까지 포함된 단락 저항을 정확히 측정하여 이용하는 데에 특징이 있다.
본 발명의 안전성 평가 방법에 따르면, 이차전지의 내부 단락 상황을 모사한 상태에서 단락 저항을 정확히 측정해, 내부 단락시의 발열량을 예측하고 이를 통해 전극의 활물질 및 조성 그리고 전지 설계에 대한 실질적인 안전성 평가를 전지 조립 이전에 선행 평가로서 진행할 수 있다. 이와 같이 전지 조립 이전에 안전성 평가를 완료하면 새로운 설계 기준의 검증 및 수정이 가능하다. 평가 후 이차전지의 설계 조건을 즉각 변경하는 것이 가능하므로 연구 개발 단계에서 유용한 평가 수단으로 활용할 수 있다. 따라서, 본 발명의 안전성 평가 방법은 압착 시험, 충돌 시험, 관통 시험, 열노출(가열) 시험과 같은 사후 평가가 아닌 사전 평가이면서, 매우 정확하고 유용한 안전성 평가 수단을 제공할 수 있다.
본 발명의 안전성 평가 방법에 따르면, 양극 집전체와 양극 활물질층 중의 어느 하나 및 음극 집전체와 음극 활물질층 중의 어느 하나의 조합을 포함하도록 준비된 이차전지 전극 평가용 샘플을 이용하여 안전성 평가를 할 수 있다. 종래 사후 평가 방법과 달리 완성된 형태의 이차전지 샘플을 준비하지 않기 때문에 평가에 드는 비용을 절감, 이에 따라 최종 이차전지 제조원가를 낮출 수 있는 효과도 있다.
본 발명의 안전성 평가 장치에 따르면 전류 인가용 I 프로브와 전위차 측정용 V 프로브를 구별하여 사용하므로 정밀한 측정이 가능하고, V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프를 구해 프로브 도선에 의한 저항 성분을 배제시켜 정확한 단락 저항을 측정할 수 있다.
또한, 본 발명의 안전성 평가 장치에 따르면, 로드셀과 인디케이터 등을 포함할 수 있는 압력 인가부를 포함하고 있어, 실제 이차전지 내부 단락시의 압력과 같은 정도의 특정 압력을 샘플에 인가하면서 단락 저항을 측정할 수 있다. 따라서, 보다 정확하고 실제에 가까운 내부 단락 모사 환경 하에서 안전성 평가 수단으로 활용할 수 있다.
본 발명의 안전성 평가 장치에 따르면, 하나의 장치에서 압력과 단락 저항 측정 및 발열량 예측이 동시에 이루어지므로 시간 효율성이 증대되고 시험 작업 효율이 향상된다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 셀의 내부 구조와 단락의 종류를 설명하기 위한 도면이다.
도 2는 접촉 저항의 정의와 원인을 설명하기 위한 도면이다.
도 3은 접촉 저항 측정의 어려움을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 안전성 평가 방법의 순서도이다.
도 5는 V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프의 일 예를 도시한다.
도 6은 본 발명의 일 실시예에 따른 안전성 평가 장치의 개략도이다.
도 7은 도 6의 안전성 평가 장치에 포함되는 구성요소 중 I 프로브들과 V 프로브들의 바람직한 예를 도시한다.
도 8은 본 발명에 따라 제작한 시험용 안전성 평가 장치 중 지그부의 사진이다.
도 9는 시험용 안전성 평가 장치를 가지고 측정한, 단락 종류별 거리 변화에 따른 저항(R측정)을 도시한 그래프이다.
도 10은 시험용 안전성 평가 장치를 가지고 측정한, 단락 종류별 단락 저항(R0)을 비교한 그래프이다.
도 11은 시험용 안전성 평가 장치를 가지고 측정한, 압력 변화에 따른 단락 저항(R0)을 도시한 그래프이다.
도 12는 시험용 안전성 평가 장치를 가지고 측정한, 압력 변화에 따른 프로브 도선(R도선) 저항 그래프이다.
도 13은 도 10의 단락 저항(RO)으로부터 계산한 발열량을 단락 면적에 대해 도시한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 다만, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래의 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
단락 전류가 발생하면 이차전지 내부에 국부적으로 열이 발생하며 이 열이 확산된다. 발생되는 열이 이차전지 외부로 잘 방출되면 안전하겠으나, 방출되는 열보다 발생되는 열이 많으면 이차전지의 온도가 점점 올라가 열 폭주 현상이 발생할 수 있다. 내부 단락시 일어나는 발열량은 셀 저항, 단락 저항, 셀 전압으로 결정된다. 본 발명의 안전성 평가 방법 및 장치를 이용하면 단락 저항을 정확히 측정할 수 있다. 본 발명에서는 이러한 정확한 단락 저항을 바탕으로 발열량을 정확히 예측해 안전성을 평가한다.
도 4는 본 발명의 일 실시예에 따른 안전성 평가 방법의 순서도이다.
도 4를 참조하면, 먼저 이차전지 전극 평가용 샘플을 준비한다(단계 S1).
앞서 도 1을 참조하여 설명한 바와 같이, 셀 내부 단락은 양극 집전체와 음극 집전체간의 단락(SA), 양극 집전체와 음극 활물질층간의 단락(SB), 양극 활물질층과 음극 활물질층간의 단락(SC), 그리고 양극 활물질층과 음극 집전체간의 단락(SD)을 포함해 총 4가지 종류가 존재한다. 각 단락(SA, SB, SC, SD)에서의 저항인 단락 저항이 본 발명의 관심 대상이다. 따라서, 상기 샘플은 이러한 종류의 단락을 일으킬 수 있는 것으로 준비한다.
상기 샘플은, 그 안에 포함된 요소 서로간의 접촉에 의해 단락을 일으킬 수 있는 것이어야 한다. 앞에 언급한 4가지 단락 종류를 고려해 보면, 상기 샘플은 양극 집전체와 양극 활물질층 중의 어느 하나인 요소 및 음극 집전체와 음극 활물질층 중의 어느 하나인 요소의 조합을 포함하도록 준비하면 된다. 예를 들어 양극 집전체와 음극 집전체간의 단락(SA) 저항 측정이 필요한 경우, 상기 샘플은 단순히 양극 집전체, 예를 들면 Al 포일과 음극 집전체, 예를 들면 Cu 포일을 포개어 준비하면 된다('양극 집전체/음극 집전체'와 같이 표기). 이처럼 샘플은 양극 집전체/음극 집전체, 양극 집전체/음극 활물질층, 양극 활물질층/음극 집전체 또는 양극 활물질층/음극 활물질층과 같은 매우 간단한 형태의 것으로 준비할 수 있다. 종래 사후 평가 방법과 달리 완성된 형태의 이차전지 샘플을 준비하지 않기 때문에 평가에 드는 비용을 절감, 이에 따라 최종 이차전지 제조원가를 낮출 수 있는 효과도 있다.
다음으로, 이러한 샘플에 대해 이차전지 내부 단락 모사 접촉 영역으로 설정한 영역에서의 단락 저항을 구한다(단계 S2).
이 단계 S2는 다음과 같은 세부단계들(단계 S2_1 ~ 단계 S2_4)을 포함할 수 있다.
먼저, 상기 영역에 대해 상기 샘플 안의 요소 서로간의 접촉을 일으킬 소정 압력을 인가한다(단계 S2_1).
상기 압력이 인가되는 상태에서, 상기 샘플에 대해 저항을 측정한다(단계 S2_2). 특히, 전류 인가용 I 프로브들과 전위차 측정용 V 프로브들을 구별하여 사용한다. 2개의 I 프로브와 2개의 V 프로브를 상기 샘플에 접촉시켜, I 프로브들 사이에 전류를 인가하고 V 프로브들 사이의 전위차를 측정해, 측정된 전압을 인가 전류로 나누는 계산을 하여 저항을 얻는다. V 프로브들에는 전류가 흐르지 않기 때문에 전류의 흐름에 의한 저항이 없다. I 프로브들 사이의 전위차를 측정하는 것이 아니므로 I 프로브들에 의해 생긴 저항 측정이 아니다. 따라서, 미세한 저항을 정밀하게 측정할 수 있다. 인가 전류에 따른 전류(I)-전압(V) 그래프를 그리면 직선 기울기가 곧 저항(R)에 해당하고 이와 같이 측정하여 계산된 저항을 이하에서는 R측정이라고 한다.
상기 V 프로브 도선의 저항을 R도선, 상기 영역에서의 단락 저항을 R단락이라고 할 때, R측정은 다음 수학식 1을 만족한다.
Figure PCTKR2018016687-appb-M000001
그리고, d를 상기 V 프로브들 사이의 간격이라고 하면, 수학식 1은 아래 수학식 2와 같이 표현할 수 있다.
Figure PCTKR2018016687-appb-M000002
수학식 2에서 R길이당 도선은 길이에 따른 V 프로브 도선 저항이다. V 프로브들 사이의 간격(d)에 따라 도선 저항(R도선)은 변화하지만, 단락 저항(R단락)은 일정해야 한다.
다음으로, 상기 V 프로브들 사이의 간격을 변화시켜 저항을 측정한다(단계 S2_3). 적어도 서로 다른 두 개의 간격에 대해 각 저항을 측정하도록 한다.
단계 S2_2와 S2_3의 결과를 이용하면 V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프를 구할 수 있다(단계 S2_4).
도 5는 V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프의 일 예를 도시한다. 각 간격에서 얻은 저항값들을 점(data point)으로 표시하여 그래프를 얻을 수 있고 이 점들을 지나는 직선을 얻는 방법(외삽법이나 내삽법 등이 적용될 수 있음)을 통해 이 그래프를 선형 피팅(fitting)하면, 그래프의 기울기는 R길이당 도선이고, y 절편은 R단락이 된다. 이와 같이 하여, 측정 저항(R측정)으로부터 도선 저항 성분을 분리해 단락 저항(R단락)을 정확히 알 수 있게 하는 점에 특징이 있다.
다음으로, 앞의 단계 S2를 통해 구한 단락 저항(R단락)으로부터 상기 영역의 발열량을 예측한다(단계 S3).
단락에 의해 발생하는 열은 단락 저항을 알 경우 다음 수학식 3에 따라 알 수 있다.
Figure PCTKR2018016687-appb-M000003
수학식 3에서 Ri는 내부 저항(internal resistance)으로서 셀 저항이다. Re는 외부 저항(external resistance)으로서 단락 저항이다. V는 셀 전압이고, I는 단락에서 흐르는 전류일 때, P는 파워, 즉 단락에서 발생하는 열이다.
상기 단계 S2와 같은 방법으로 저항을 측정하고 그래프 피팅해 얻은 단락 저항을 측정 단락 저항(RO)라고 하면, 단락 면적 A를 고려한 실제 단락 저항(Ra)는 다음 수학식 4로부터 구할 수 있다.
Figure PCTKR2018016687-appb-M000004
실제 발열량의 계산을 위해서는 실제 단락 저항 Ra를 수학식 3의 Re에 대입한다.
이와 같은 단계들을 통해 예측한 발열량은 상기 샘플에서 이차전지 내부 단락 모사 접촉 영역으로 설정한 영역에서의 상기 소정 압력 하에서의 발열량이다. 이 발열량의 크기를 가지고 다양한 측면에서 이차전지의 안전성을 평가할 수 있다.
예를 들어, 상기 발열량을 예측한 결과값으로부터, 상기 단락을 일으킨 요소의 조성, 기공도, 두께, 표면 특성 중 적어도 어느 한 항목의 적합성 여부를 판정할 수 있다. 예를 들어 테스트 1로서, 양극 집전체와 음극 집전체간의 단락(SA)에 대한 단락 저항을 측정하도록 양극 집전체/음극 집전체 샘플을 준비하여 소정 압력 P1에서 단락 저항을 측정하고 발열량을 예측한 결과, 이차전지에서 열 폭주를 일으키지는 않을 정도의 발열량이라고 판단되면 측정 샘플에 요소로서 포함된 양극 집전체와 음극 집전체는 재질이나 두께 등 그 집전체 사양으로서 적합한 것으로 판정한다. 만약 예측한 발열량이 이차전지에서 열 폭주를 일으킬 정도의 발열량이라고 판단되면 측정 샘플에 요소로서 포함된 양극 집전체와 음극 집전체는 적합하지 않은 것이다. 따라서, 재질이나 두께 등 일부 설계 조건의 변경이 필요하다고 판단한다.
본 발명에 따른 안전성 평가 방법은, 상기 압력 변화에 따른 상기 단락 저항 변화 그래프를 구해, 상기 요소를 포함하여 제조되는 이차전지의 내부 압력 변화에 따른 단락 저항을 모사하는 단계를 더 포함할 수도 있다.
예를 들어, 테스트 1에서 적합하다고 판단한 양극 집전체와 음극 집전체라도, 그것을 포함하는 이차전지의 사용 중에 다양한 원인에 의해 전지의 내부 압력이 증가해 P2에 달하고, 그 상황에서의 단락에 의한 발열량을 예측할 필요가 있다. 종래에는 이에 대한 고려가 전혀 되지 못하였지만, 본 발명 안전성 평가 방법을 수행해, 상기 샘플에 인가하는 압력을 P2로 하여 단락 저항을 측정하고 발열량을 예측하는 테스트 2를 진행한다. 테스트 1의 P1에서 얻은 발열량은 열 폭주를 일으키지 않을 정도의 발열량이지만 테스트 2의 P2에서 얻은 발열량이 열 폭주를 일으키는 정도의 발열량이라고 판단된다면, 측정 샘플에 요소로서 포함된 양극 집전체와 음극 집전체는 결국 적합하지 않은 것이다. 이와 같이 본 발명에 따르면 실제 이차전지 사용 환경에서의 전지의 내부 압력에 따른 발열량 예측이 가능해져 보다 정확한 안전성 평가 결과를 얻을 수 있고, 실제 사용시 이차전지의 안전성을 보장할 수 있게 된다.
이러한 예와 마찬가지로, 샘플을 적절히 준비하면 양극 집전체와 음극 활물질층간의 단락(SB), 양극 활물질층과 음극 활물질층간의 단락(SC), 그리고 양극 활물질층과 음극 집전체간의 단락(SD) 각각에 대하여 소정 압력에서의 정확한 단락 저항 측정이 가능하고, 이에 따른 발열량을 정확히 예측할 수 있다.
예를 들어, 앞의 테스트 1 및/또는 테스트 2 등을 통해 양극 집전체와 음극 집전체의 설계 조건을 확립하고 나서 테스트 3으로서 그 양극 집전체와 음극 활물질층간의 단락(SB)을 일으킬 수 있는 양극 집전체/음극 활물질층 샘플을 준비해 단락 저항을 측정하고 발열량을 예측해 본다. 이 발열량이 이차전지에서 열 폭주를 일으킬 정도의 발열량이라고 판단되면 측정 샘플에 요소로서 포함된 음극 활물질층은 적합하지 않은 것이다. 그렇기 때문에, 음극 활물질층의 조성, 예를 들어 활물질, 도전재, 바인더 각각의 종류나 비율을 달리 해보거나, 음극 활물질층의 기공도, 두께 등을 달리 해, 보다 적합한 음극 활물질층을 개발하는 데에 그 결과를 이용할 수 있다.
그밖에 여기에 설명하지 않은 다양한 안전성 평가 활용 형태가 전지 설계 단계에서 가능할 것이며, 본 발명 안전성 평가 방법에 따라 얻은 정확한 단락 저항과 그로부터 예측한 발열량을 이용하는 것이라면 본 발명의 범주에 포함되는 것이다.
한편, 앞서 설명한 본 발명에 따른 안전성 평가 방법은, 샘플에 대해 소정 압력을 인가하는 수단, 샘플에 대해 전류를 인가하고 전위차를 측정하는 수단, 측정하여 얻은 결과값들을 가지고 단락 저항 및 발열량을 계산하는 수단 각각의 조합을 활용하여 수행할 수 있다. 여기서의 각 수단은 사람, 혹은 공지의 전자 기계 소자 부품 등 당업자의 기술 수준 내에서 활용 가능한 모든 수단일 수 있고, 그 적절한 조합에 의해서 본 발명의 안전성 평가 방법이 수행될 수 있는 것이다.
이하에서는, 이러한 안전성 평가 방법을 구현하는 데에 적합한 본 발명에 따른 안전성 평가 장치에 관하여 설명한다.
도 6은 본 발명의 일 실시예에 따른 안전성 평가 장치의 개략도이다.
도 6을 참조하면, 안전성 평가 장치(40)는, 단락 저항 측정용 지그부(100)와 측정 및 계산을 위한 시스템부(200)를 포함한다.
지그부(100)는, 포함된 요소 서로간의 접촉에 의해 단락을 일으킬 수 있는 이차전지 전극 평가용 샘플(50)을 놓을 수 있는 재치대(110), 샘플(50)에 대해 이차전지 내부 단락 모사 접촉 영역(D)으로 설정한 영역에 상기 요소 서로간의 접촉을 일으킬 소정 압력을 인가할 수 있도록 구비된 압력 인가부(120), 및 샘플(50)에 접촉시키도록 구비된 I 프로브(130)들, 상기 I 프로브(130)들과는 별개이고 프로브들 사이의 간격 조절이 가능한 V 프로브(140)들을 포함한다.
압력 인가부(120)는 프레스부(125)를 기본적으로 포함하지만 여기에 로드셀(127) 및 인디케이터(129)를 더 포함할 수도 있다. 프레스부(125)에는 구동부(121)에 의해 동작하는 업다운 프레스(122)가 포함될 수 있고, 상기 영역(D)의 크기에 맞는 것으로 바꾸어 낄 수 있는 프레스지그(123)를 포함할 수 있다. 로드셀(127)은 프레스부(125)가 샘플(50)에 가하는 하중을 전기적 신호로 변환하여 인디케이터(129)를 통해 표시할 수 있다. 로드셀(127)은 프레스부(125) 내에 포함이 될 수도 있고, 재치대(110) 위에 놓일 수도 있으며, 재치대(110) 내부에 포함이 될 수도 있다.
시스템부(200)는 지그부(100)의 I 프로브(130)들과 V 프로브(140)들에 연결된다. 시스템부(200)는 측정기록부(210), 제어부(220) 및 계산부(230)를 포함한다.
측정기록부(210)는 I 프로브(130)들 사이에 전류를 인가하고 V 프로브(140)들 사이의 전위차를 측정해 기록한다. 측정기록부(210)는 적어도 측정부(212)와 메모리부(214)를 포함할 수 있다.
제어부(220)는 측정부(212)와 전기적으로 결합될 수 있다.
측정부(212)는 제어부(220)의 통제 하에 I 프로브(130)들 사이에 전류를 인가하고 V 프로브(140)들 사이의 전위차를 측정하기 위해 필요한 회로를 포함하고 있으며, 측정된 결과값들을 제어부(220)로 출력한다. 그러면 제어부(220)는 입력되는 결과값을 메모리부(214)에 저장한다.
메모리부(214)는, 전기적, 자기적, 광학적 또는 양자역학적으로 데이터를 기록하고 소거할 수 있는 저장매체이고, 비제한적인 예시로서, RAM, ROM 또는 레지스터일 수 있다. 바람직하게, 메모리부(214)는 제어부(220)에 의해 접근이 가능하도록 예컨대 데이터 버스 등을 통해 제어부(220)와 연결될 수 있다.
메모리부(214)는 제어부(220)에 의해 실행되는 각종 제어 로직을 포함하는 프로그램과 미리 정의된 파라미터들, 및/또는 상기 제어 로직이 실행될 때 발생되는 데이터를 저장 및/또는 갱신 및/또는 소거할 수 있다. 메모리부(214)는 논리적으로 2개 이상으로 분할 가능하고, 제어부(220) 내에 포함되는 것을 제한하지 않는다.
계산부(230)는 메모리부(214)로부터 결과값들을 읽어 저항을 계산하고, V 프로브(140)들 사이의 간격 변화에 따른 저항 변화 그래프를 구할 수 있다. 앞에서 설명한 방법에 따라, 상기 그래프의 y 절편으로부터 상기 영역(D)의 단락 저항을 구할 수 있으며, 상기 단락 저항으로부터 상기 영역의 발열량을 예측하는 등 각종 필요한 연산을 수행할 수 있도록 프로그램되어 있다.
제어부(220)는, 본 명세서에 개시된 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(Application-Specific Integrated Circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 제어부(220)는 프로그램 모듈의 집합으로 구현될 수 있다. 이 때, 프로그램 모듈은 메모리부(214)에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리부(214)는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
한편, 시스템부(200)는 전기화학 임피던스 분광기(EIS)를 포함할 수도 있다. 전기화학 임피던스 분광기(230)를 포함하면 측정기록부(210)와 계산부(230)의 구성을 도와 저항 측정, 확인 및 단락 저항 계산 등이 용이해진다. 전기화학 임피던스 분광기 안에 측정기록부(210)와 계산부(230)를 포함시키는 구성도 가능하다.
이러한 안전성 평가 장치(40)의 사용에 있어서, 재치대(110)에 샘플(50)을 놓고 압력 인가부(120)를 통해 앞서 설명한 바 있는 도 4의 단계 S1과 단계 S2_1을 수행할 수 있다.
구동부(121) 조작에 의해 업다운 프레스(122)를 하향시켜 샘플(50)에 프레스지그(123)가 닿게 하고 하중을 조절하여 압력을 인가한다. 로드셀(127)과 인디케이터(129)를 통해 표시되는 수치를 보면서 원하는 압력이 인가되는지 여부를 확인할 수 있다. 구동부(121) 조작이 레버나 나사 등 수동으로 이루어지는 수동식 프레스일 수도 있지만, 시스템부(200)와 구동부(121)를 연동하여 시스템부(200) 안의 제어부(220) 구동 신호를 통해 자동으로 조작할 수 있도록 동력식 프레스로 구성하여도 된다.
압력이 인가되는 상태에서, I 프로브(130)들과 V 프로브(140)들을 샘플(50)에 접촉시키고 I 프로브(130)들과 V 프로브(140)들을 시스템부(200)와 연결시키면, 측정기록부(210)를 통해 도 4의 단계 S2_2와 단계 S2_3도 수행할 수 있다. 측정기록부(210)에서 측정한 결과를 가지고 계산부(230)는 저항을 계산한다. 단계 S2_3을 수행하기 위해 V 프로브(140)들 사이의 간격을 변화시키는 단계가 수동으로, 혹은 장치 구성 자체에 따라, 예를 들어 제어부(220)의 구동에 의해 자동으로 수행될 수 있다.
다음으로 계산부(230)에서는 V 프로브(140)들 사이의 간격 변화에 따른 저항 변화 그래프를 구해, 상기 그래프의 y 절편으로부터 상기 영역(D)의 단락 저항을 구해 도 4의 단계 S2_4를 수행한다. 그리고, 상기 단락 저항으로부터 상기 영역(D)의 발열량을 예측해 상기 도 4의 단계 S3까지 수행한다.
도 7은 도 6의 안전성 평가 장치(40)에 포함되는 구성요소 중 I 프로브(130)들과 V 프로브(140)들의 바람직한 예를 도시한다. 도 7에는 I 프로브(130)들 및 V 프로브(140)들과 시스템부(200) 사이의 연결 관계에 대한 도시도 포함되어 있다.
I 프로브(130)들은 2개 마련하고 V 프로브(140)들은 4개 이상, 예를 들면 도시한 바와 같이 12개 마련한다.
2개의 I 프로브(130)들 사이에 V 프로브(140)들이 배열된다. 샘플(50)의 이차전지 내부 단락 모사 영역(D)을 기준으로 V 프로브(140)들은 양측으로 일정한 간격으로 배열된다. 가장 바깥쪽에 있는 V 프로브(140)들부터 가장 안쪽에 있는 V 프로브(140)들까지 1부터 6까지의 순차 번호를 부여한다면, 도 4의 단계 S2_2를 위한 1차 측정시, I 프로브(130)들 사이에 전류를 인가하고 예를 들어 6번 V 프로브(140)들 사이의 전위차를 측정해 저항을 얻는다. 다음으로 도 4의 단계 S2_3을 위한 2차 측정시, I 프로브(130)들의 위치는 불변이며 이들 사이에 전류를 인가하고 예를 들어 5번 V 프로브(140)들 사이의 전위차를 측정해 저항을 얻는다. 이와 같이 각 V 프로브들(140)들의 위치는 불변이지만 전위차를 읽기 위해 사용되는 V 프로브(140)들이 변경된다. 이러한 조작에 의해 저항 측정을 위한 V 프로브들 사이의 간격을 증가시킬 수 있다. 그 반대로, 감소시키는 것도 가능하다.
도 7과 같이 구성하면, 여러 개의 V 프로브(140)들 중에 어느 두 V 프로브(140)들을 선택 조합 사용함으로써 V 프로브들 사이의 간격 변화가 가능해진다. 여러 개의 V 프로브(140)들 중에 어느 두 V 프로브(140)들을 사용할 것인지에 대해서는 원하는 정도의 간격 변화를 일으킬 수 있는 것들의 선택이 하나의 기준이 될 수 있으며, 선택 및 사용은 기계적으로, 또는 제어부(220)의 신호 명령에 의할 수 있다.
이와 같이, 본 발명의 안전성 평가 장치(40)는 이차전지 내부의 내부 단락 발생을 고려하여, 압력에 따른 내부 단락 발생 케이스별 단락 저항을 정밀하게 측정할 수 있도록 한다. I 프로브들과 V 프로브들을 구분하고 있으므로 미세한 저항을 정밀하게 측정할 수 있다. I 프로브들은 고정하고, V 프로브들 사이의 간격을 변경하면서 저항을 측정한 이후, V 프로브들 사이의 간격 대비 저항 그래프를 선형 피팅하면 프로브 도선 저항을 분리해 내 더욱 정확한 단락 저항을 얻을 수 있도록 한다.
이하에서는 안전성 평가 장치를 시험용으로 간이 제작해, 4.2V 이차전지를 위해 설계된 양극 및 음극을 가지고 실제 단락 저항 측정에 이용한 적용예들을 설명하기로 한다.
도 8은 본 발명에 따라 제작한 시험용 안전성 평가 장치 중 지그부의 사진이다.
도 8을 참조하면 재치대(110), 프레스부(125), 인디케이터(129) 및 I 프로브(130)들과 V 프로브(140)들이 확인된다. 이러한 지그부에 상용 EIS를 연결해 시스템부 대신으로 사용하였다.
인디케이터(129)로는 CAS CI-2001A 모델을 사용하였다. CAS CI-2001A 모델은 계측 시험 및 플랫폼 스케일에 적합한 산업용 소형 인디케이터이다.
시험에 사용한 간이 제작 지그부 및 EIS 사양은 하기 표 1 및 표 2와 같다.
Figure PCTKR2018016687-appb-T000001
Figure PCTKR2018016687-appb-T000002
도 9는 시험용 안전성 평가 장치를 가지고 측정한, 단락 종류별 거리 변화에 따른 저항(R측정)을 도시한 그래프이다.
V 프로브들 사이의 간격이 증가해 거리가 늘어남에 따라 측정 저항이 선형적으로 증가하는 것을 확인할 수 있다. 거리에 따른 예상된 저항 변화 경향과 일치하므로 신뢰성 있는 결과임을 알 수 있다.
도 10은 시험용 안전성 평가 장치를 가지고 측정한, 단락 종류별 단락 저항(R0)을 비교한 그래프이다. 인가 압력은 10 Kgf/cm2이었다.
재료의 특성상 단락 저항은 음극 집전체/양극 집전체, 음극 활물질층/양극 집전체, 음극 활물질층/양극 활물질층 순으로 증가한다. 측정 결과도 이와 일치하였다. 종류에 상관없이 작은 저항 차이도 안정적으로 측정하므로 단락 종류에 따라 저항 구별이 가능하다는 것은 안정적 측정이 가능하다는 결과를 보여준다.
도 9 및 도 10으로부터, 단락 종류에 상관없이 높은 신뢰성을 가지고 안정적으로 저항과 단락 저항이 측정됨을 확인할 수 있다.
도 11은 시험용 안전성 평가 장치를 가지고 측정한, 압력 변화에 따른 단락 저항(R0)을 도시한 그래프이다.
도 11을 참조하면 압력 증가에 따라 특정 값으로 수렴하는 경향을 보인다. 도 3을 참조하여 설명한 바와 같이, 압력이 증가하면 접촉 저항이 감소한다. 도 11의 결과는 압력 증가에 따른 저항 이동 경로 증가에 따른 저항 변화와 일치한다. 따라서, 신뢰성 있는 측정 결과를 얻을 수 있음이 확인된다. 또한, 압력 증가에 따른 단락 저항 감소는 압력의 차이에 의한 작은 저항 변화도 안정적으로 측정되었다는 것을 보여준다. 따라서, 도 11로부터는 압력 변화에 상관없이 높은 신뢰성을 가지고 단락 저항이 안정적으로 측정됨을 확인할 수 있다.
도 12는 시험용 안전성 평가 장치를 가지고 측정한, 압력 변화에 따른 프로브 도선(R도선) 저항 그래프이다.
도 12를 참조하면, 종류별 저항이 거의 동일하고, 압력에 따른 변화가 없다. 종류별, 압력별로 프로브 도선 저항은 일정해야 함을 앞의 수학식 3 부분에서 언급한 바 있다. 누르는 압력과 관계없이 물질 자체의 저항은 일정하기 때문이다. 측정 결과는 이것과 부합된다. 따라서, 도 12를 통해서도 압력 변화에 상관없이 신뢰성있는 측정이 가능하다는 것을 알 수 있다.
도 10의 단락 저항(RO)을 수학식 4에 따라 단락 면적을 고려한 단락 실 저항으로 변환 후, 수학식 3의 Re에 대입해 발열량을 계산할 수 있다.
도 13은 도 10의 단락 저항(RO)으로부터 계산한 발열량을 단락 면적에 대해 도시한 그래프이다. 4.2V 이차전지에서 셀 저항은 3mΩ으로 작다. 셀 저항이 작은 관계로 단락 면적에 따른 열 증가가 예상되며 이에 일치되는 결과를 얻을 수 있다.
이상 설명한 바와 같이, 본 발명의 안전성 평가 방법은 전지 조립 이전의 전지 설계 및 전극 조립 단계에서의 안전성 평가 항목의 하나로 이용하는 단락 저항에 있어서 단락을 일으킨 요소사이의 접촉 저항까지 포함된 단락 저항을 정확히 측정하여 이용하는 데에 특징이 있다.
본 발명의 안전성 평가 방법에 따르면, 이차전지의 내부 단락 상황을 모사한 상태에서 단락 저항을 정확히 측정해, 내부 단락시의 발열량을 예측하고 이를 통해 전극의 활물질 및 조성 그리고 전지 설계에 대한 실질적인 안전성 평가를 전지 조립 이전에 선행 평가로서 진행할 수 있다. 이와 같이 전지 조립 이전에 안전성 평가를 완료하면 새로운 설계 기준의 검증 및 수정이 가능하다. 평가 후 이차전지의 설계 조건을 즉각 변경하는 것이 가능하므로 연구 개발 단계에서 유용한 평가 수단으로 활용할 수 있다. 따라서, 본 발명의 안전성 평가 방법은 압착 시험, 충돌 시험, 관통 시험, 열노출(가열) 시험과 같은 사후 평가가 아닌 사전 평가이면서, 매우 정확하고 유용한 안전성 평가 수단을 제공할 수 있다.
본 발명의 안전성 평가 방법에 따르면, 양극 집전체와 양극 활물질층 중의 어느 하나 및 음극 집전체와 음극 활물질층 중의 어느 하나의 조합을 포함하도록 준비된 이차전지 전극 평가용 샘플을 이용하여 안전성 평가를 할 수 있다. 종래 사후 평가 방법과 달리 완성된 형태의 이차전지 샘플을 준비하지 않기 때문에 평가에 드는 비용을 절감, 이에 따라 최종 이차전지 제조원가를 낮출 수 있는 효과도 있다.
본 발명의 안전성 평가 장치에 따르면 전류 인가용 I 프로브와 전위차 측정용 V 프로브를 구별하여 사용하므로 정밀한 측정이 가능하고, V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프를 구해 프로브 도선에 의한 저항 성분을 배제시켜 정확한 단락 저항을 측정할 수 있다.
또한, 본 발명의 안전성 평가 장치에 따르면, 로드셀과 인디케이터 등을 포함할 수 있는 압력 인가부를 포함하고 있어, 실제 이차전지 내부 단락시의 압력과 같은 정도의 특정 압력을 샘플에 인가하면서 단락 저항을 측정할 수 있다. 따라서, 보다 정확하고 실제에 가까운 내부 단락 모사 환경 하에서 안전성 평가 수단으로 활용할 수 있다.
본 발명의 안전성 평가 장치에 따르면, 하나의 장치에서 압력과 단락 저항 측정 및 발열량 예측이 동시에 이루어지므로 시간 효율성이 증대되고 시험 작업 효율이 향상된다.
본 발명의 다양한 실시 양태를 설명함에 있어서, '~부'라고 명명된 구성 요소들은 물리적으로 구분되는 요소들이라고 하기 보다 기능적으로 구분되는 요소들로 이해되어야 한다. 따라서 각각의 구성요소는 다른 구성요소와 선택적으로 통합되거나 각각의 구성요소가 제어 로직(들)의 효율적인 실행을 위해 서브 구성요소들로 분할될 수 있다. 하지만 구성요소들이 통합 또는 분할되더라도 기능의 동일성이 인정될 수 있다면 통합 또는 분할된 구성요소들도 본 발명의 범위 내에 있다고 해석되어야 함은 당업자에게 자명하다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (8)

  1. 포함된 요소 서로간의 접촉에 의해 단락을 일으킬 수 있는 이차전지 전극 평가용 샘플을 준비하는 단계;
    상기 샘플에 대해 이차전지 내부 단락 모사 접촉 영역으로 설정한 영역에 상기 요소 서로간의 접촉을 일으킬 소정 압력을 인가한 상태에서, 상기 샘플에 접촉시킨 I 프로브들 사이에 전류를 인가하고 상기 I 프로브들과는 별개인 V 프로브들 사이의 전위차를 측정해 저항을 얻고, 상기 V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프를 구해, 상기 그래프의 y 절편으로부터 상기 영역의 단락 저항을 구하는 단계; 및
    상기 단락 저항으로부터 상기 영역의 발열량을 예측하는 단계를 포함하는 안전성 평가 방법.
  2. 제1항에 있어서, 상기 발열량을 예측한 결과값으로부터, 상기 요소의 조성, 기공도, 두께, 표면 특성 중 적어도 어느 한 항목의 적합성 여부를 판정하는 단계를 더 포함하는 것을 특징으로 하는 안전성 평가 방법.
  3. 제1항에 있어서, 상기 압력 변화에 따른 상기 단락 저항 변화 그래프를 구해, 상기 요소를 포함하여 제조되는 이차전지의 내부 압력 변화에 따른 단락 저항을 모사하는 단계를 더 포함하는 것을 특징으로 하는 안전성 평가 방법.
  4. 단락 저항 측정용 지그부와 측정 및 계산을 위한 시스템부를 포함하며,
    상기 지그부는,
    포함된 요소 서로간의 접촉에 의해 단락을 일으킬 수 있는 이차전지 전극 평가용 샘플을 놓을 수 있는 재치대;
    상기 샘플에 대해 이차전지 내부 단락 모사 접촉 영역으로 설정한 영역에 상기 요소 서로간의 접촉을 일으킬 소정 압력을 인가할 수 있도록 구비된 압력 인가부; 및
    상기 샘플에 접촉시키도록 구비된 I 프로브들, 상기 I 프로브들과는 별개이고 프로브들 사이의 간격 조절이 가능한 V 프로브들을 포함하고,
    상기 시스템부는,
    상기 I 프로브들 사이에 전류를 인가하고 상기 V 프로브들 사이의 전위차를 측정해 기록하는 측정기록부;
    제어부; 및
    상기 V 프로브들 사이의 간격 변화에 따른 저항 변화 그래프를 구해, 상기 그래프의 y 절편으로부터 상기 영역의 단락 저항을 구하고, 상기 단락 저항으로부터 상기 영역의 발열량을 예측하는 계산부를 포함하는 안전성 평가 장치.
  5. 제4항에 있어서, 상기 V 프로브들은 일정한 간격으로 배열된 여러 개의 V 프로브들을 포함하고 이 중에 어느 두 V 프로브들을 선택 조합 사용함으로써 상기 V 프로브들 사이의 간격 변화가 가능한 것을 특징으로 하는 안전성 평가 장치.
  6. 제4항에 있어서, 상기 압력 인가부는 프레스부, 로드셀과 인디케이터를 포함하는 것을 특징으로 하는 안전성 평가 장치.
  7. 제6항에 있어서, 상기 프레스부는 구동부에 의해 동작하는 업다운 프레스 및 상기 영역의 크기에 맞는 것으로 바꾸어 낄 수 있는 프레스지그를 포함하는 것을 특징으로 하는 안전성 평가 장치.
  8. 제4항에 있어서, 상기 시스템부는 전기화학 임피던스 분광기(EIS)를 포함하는 것을 특징으로 하는 안전성 평가 장치.
PCT/KR2018/016687 2018-01-31 2018-12-26 이차전지 안전성 평가 방법 및 장치 WO2019151654A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880049506.8A CN110959122B (zh) 2018-01-31 2018-12-26 二次电池的安全性评估方法和设备
EP18903117.2A EP3671240B1 (en) 2018-01-31 2018-12-26 Secondary battery safety evaluation method and device
US16/621,227 US11152650B2 (en) 2018-01-31 2018-12-26 Secondary battery safety evaluation method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180011898A KR102204699B1 (ko) 2018-01-31 2018-01-31 이차전지 안전성 평가 방법 및 장치
KR10-2018-0011898 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151654A1 true WO2019151654A1 (ko) 2019-08-08

Family

ID=67478864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016687 WO2019151654A1 (ko) 2018-01-31 2018-12-26 이차전지 안전성 평가 방법 및 장치

Country Status (5)

Country Link
US (1) US11152650B2 (ko)
EP (1) EP3671240B1 (ko)
KR (1) KR102204699B1 (ko)
CN (1) CN110959122B (ko)
WO (1) WO2019151654A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210072313A (ko) 2019-12-09 2021-06-17 주식회사 엘지에너지솔루션 전극 합제층 내 바인더 분산성 평가 방법 및 평가 장치
CN111123132A (zh) * 2019-12-30 2020-05-08 国联汽车动力电池研究院有限责任公司 一种电池接触电阻的测量方法
US11616626B2 (en) * 2020-02-12 2023-03-28 Qualcomm Incorporated Transport block size determination for sidelink communications
CN111736091B (zh) * 2020-05-27 2022-11-29 湖南省湘电试验研究院有限公司 基于rtds平台的非稳定性高阻接地故障仿真电路及其应用方法
CN112924878B (zh) * 2021-01-26 2021-11-09 同济大学 一种基于弛豫电压曲线的电池安全性诊断方法
CN113049971A (zh) * 2021-03-24 2021-06-29 国联汽车动力电池研究院有限责任公司 用于动力电池的内短路电流测试方法及系统
CN113533966B (zh) * 2021-07-21 2024-04-09 欣旺达动力科技股份有限公司 电池内短路阻值的测量方法、装置与计算机可读存储介质
US20230100761A1 (en) * 2021-09-27 2023-03-30 Lenovo (United States) Inc. Thermal runaway pin-point heating test
CN116859269B (zh) * 2023-09-04 2023-11-28 中国汽车技术研究中心有限公司 一种动力电池安全性综合评估方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120068919A (ko) * 2009-09-24 2012-06-27 도요타지도샤가부시키가이샤 2차 전지의 제조 방법
KR101410166B1 (ko) * 2011-03-01 2014-06-20 파나소닉 주식회사 2차 전지 및 2차 전지의 시험 방법
KR20170030356A (ko) * 2015-09-09 2017-03-17 주식회사 엘지화학 이차 전지의 못 관통 시험 장치 및 방법
KR20170078365A (ko) * 2015-12-29 2017-07-07 에이치엘그린파워 주식회사 배터리 모듈 단위 단락 구조 및 이의 제조 방법
WO2017185311A1 (zh) * 2016-04-28 2017-11-02 华为技术有限公司 防短路检测装置及用户终端
KR20180011898A (ko) 2016-07-25 2018-02-05 (주)엔시엘코리아 리튬 디실리케이트를 이용한 치과용 세라믹 잉곳 및 그 제조방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666712B2 (ja) * 2000-02-22 2011-04-06 パナソニック株式会社 電池の短絡検査方法
JP4408058B2 (ja) 2004-05-14 2010-02-03 パナソニック株式会社 電池評価装置
JP2007178318A (ja) * 2005-12-28 2007-07-12 Nidec-Read Corp 基板検査装置及び方法
US8163409B2 (en) 2006-12-15 2012-04-24 Panasonic Corporation Evaluation method for safety upon battery internal short circuit, evaluation device for safety upon battery internal short circuit, battery, battery pack, and manufacturing method for battery and battery pack
JP2008192497A (ja) 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd 内部短絡安全性評価方法及び内部短絡安全性評価装置並びに電池及び電池パック
JP5209896B2 (ja) 2007-04-24 2013-06-12 パナソニック株式会社 電池の内部短絡安全性評価方法
KR100902316B1 (ko) 2007-12-11 2009-06-12 한국에너지기술연구원 연료전지에서 쓰이는 기체확산층의 압력에 따른 길이,저항, 차압 등을 측정하는 물성평가장치
CN102077107B (zh) * 2009-01-19 2013-07-24 松下电器产业株式会社 电池的内部短路评价装置
JP2011085415A (ja) * 2009-10-13 2011-04-28 Kobelco Kaken:Kk 安全性評価試験装置
KR101199597B1 (ko) * 2009-12-14 2012-11-12 삼성에스디아이 주식회사 리튬 이차 전지 및 이의 단락 저항 제어 방법
JP5429306B2 (ja) * 2009-12-16 2014-02-26 トヨタ自動車株式会社 燃料電池の制御
EP2755274A4 (en) * 2011-09-05 2015-06-03 Nihon Micronics Kk APPARATUS AND METHOD FOR ASSESSING SHEET BATTERY
KR20130049399A (ko) * 2011-11-04 2013-05-14 현대모비스 주식회사 차량 배터리의 전류 측정 장치 및 전류 측정용 저항부재
US9416458B2 (en) 2012-12-31 2016-08-16 Alcoa Inc. Methods for determining green electrode electrical resistivity and methods for making electrodes
DE102013226885A1 (de) * 2013-06-03 2014-12-04 Kyoshin Electric Co., Ltd I-U-Kennlinien-Messverfahren und I-U-Kennlinien-Messvorrichtung für Solarzellen sowie Programm für I-U-Kennlinien-Messvorrichtung
JP6377959B2 (ja) 2014-06-02 2018-08-22 株式会社Soken 二次電池の制御装置
KR101783921B1 (ko) 2014-10-31 2017-10-10 주식회사 엘지화학 전지 평가 장치
JP6380254B2 (ja) * 2015-06-23 2018-08-29 トヨタ自動車株式会社 全固体電池の製造方法
US10141611B2 (en) * 2015-12-17 2018-11-27 Robert Bosch Gmbh Internal short detection and mitigation in batteries
CN105845595B (zh) * 2016-03-28 2018-07-17 苏州腾晖光伏技术有限公司 太阳能电池浆料的性能测试方法
KR101705738B1 (ko) 2016-06-29 2017-02-13 교통안전공단 배터리 테스트용 가압 장비

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120068919A (ko) * 2009-09-24 2012-06-27 도요타지도샤가부시키가이샤 2차 전지의 제조 방법
KR101410166B1 (ko) * 2011-03-01 2014-06-20 파나소닉 주식회사 2차 전지 및 2차 전지의 시험 방법
KR20170030356A (ko) * 2015-09-09 2017-03-17 주식회사 엘지화학 이차 전지의 못 관통 시험 장치 및 방법
KR20170078365A (ko) * 2015-12-29 2017-07-07 에이치엘그린파워 주식회사 배터리 모듈 단위 단락 구조 및 이의 제조 방법
WO2017185311A1 (zh) * 2016-04-28 2017-11-02 华为技术有限公司 防短路检测装置及用户终端
KR20180011898A (ko) 2016-07-25 2018-02-05 (주)엔시엘코리아 리튬 디실리케이트를 이용한 치과용 세라믹 잉곳 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3671240A4

Also Published As

Publication number Publication date
EP3671240B1 (en) 2021-08-18
EP3671240A1 (en) 2020-06-24
KR20190092767A (ko) 2019-08-08
CN110959122B (zh) 2022-11-29
CN110959122A (zh) 2020-04-03
US20200166580A1 (en) 2020-05-28
KR102204699B1 (ko) 2021-01-18
EP3671240A4 (en) 2020-12-02
US11152650B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2019151654A1 (ko) 이차전지 안전성 평가 방법 및 장치
WO2013151355A1 (ko) 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 자가 진단 방법
WO2010018919A1 (ko) 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법
WO2016052900A1 (ko) 이차 전지의 방전 출력 추정 방법 및 장치
WO2010016647A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2020085722A1 (ko) 중대형 셀 모듈의 폭발 압력 예측 시스템 및 이를 이용한 중대형 셀 모듈의 폭발 압력 예측 방법
WO2019098722A1 (ko) 배터리 저항 추정 장치 및 방법
WO2020262789A1 (ko) 이상 배터리 셀 검출 방법
WO2020009343A1 (ko) 이차전지 내부단락 시험 방법과 장치 및 이에 이용되는 내부단락 시험용 이차전지
WO2020262787A1 (ko) 내부 단락 셀 검출 방법
WO2022108111A1 (ko) 배터리 진단 장치 및 방법
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
US20230140632A1 (en) Power supply device and failure detection method for battery
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2022145830A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 전기 차량
WO2021230642A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2021025295A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2020153625A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2020166840A1 (ko) 배터리 셀 이상 판단 장치 및 방법
WO2022030751A1 (ko) 배터리 팩의 시뮬레이션 방법
WO2022108344A1 (ko) 배터리 관리 장치 및 방법
WO2022114873A1 (ko) 배터리 관리 장치 및 방법
WO2024096583A1 (ko) 배터리 진단 장치 및 방법
WO2022203367A1 (ko) 배터리 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018903117

Country of ref document: EP

Effective date: 20200318

NENP Non-entry into the national phase

Ref country code: DE