WO2010018919A1 - 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법 - Google Patents

배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법 Download PDF

Info

Publication number
WO2010018919A1
WO2010018919A1 PCT/KR2009/002629 KR2009002629W WO2010018919A1 WO 2010018919 A1 WO2010018919 A1 WO 2010018919A1 KR 2009002629 W KR2009002629 W KR 2009002629W WO 2010018919 A1 WO2010018919 A1 WO 2010018919A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
resistance
voltage
weighted average
open
Prior art date
Application number
PCT/KR2009/002629
Other languages
English (en)
French (fr)
Inventor
강정수
김주영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2011522891A priority Critical patent/JP5661625B2/ja
Priority to BRPI0912595A priority patent/BRPI0912595B1/pt
Priority to CN2009801317800A priority patent/CN102124354B/zh
Priority to EP09806781.2A priority patent/EP2325658B1/en
Publication of WO2010018919A1 publication Critical patent/WO2010018919A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Definitions

  • the present invention relates to an apparatus and method for estimating a resistance characteristic of a battery, and more particularly, to an apparatus and method for estimating a resistance characteristic of a battery using an open voltage of the battery.
  • the battery resistance cannot be directly measured while charging and discharging are being performed. Therefore, in the related art, the battery resistance and charge / discharge current were measured, and the battery resistance was indirectly calculated by Ohm's law. However, since the battery voltage shows an error with the actual voltage due to the IR drop effect, and the battery current also has a measurement error, the resistance calculated by Ohm's law simply shows a significant error with the actual resistance.
  • the IR drop phenomenon refers to a phenomenon in which the voltage changes rapidly when the battery is connected to the load to start discharging or when the battery starts charging from an external power source. That is, the battery voltage drops sharply when discharge starts, and the voltage rises sharply when charging starts.
  • the present invention has been made to solve the above problems of the prior art, and an object thereof is to provide an apparatus and method for estimating battery resistance characteristics with high accuracy.
  • Battery resistance characteristic estimation apparatus using the battery voltage behavior according to the present invention for achieving the above technical problem, the battery voltage, current measured from the voltage sensing unit, the current sensing unit and the temperature sensing unit coupled to the battery at each resistance characteristic estimation time And a data storage unit for obtaining and storing temperature data.
  • An open voltage calculator configured to calculate a battery open voltage from battery voltage behavior measured in present and past;
  • a weighted average resistance calculator configured to calculate a battery resistance parameter from the difference between the battery open voltage and the battery voltage and a battery current, and calculate a weighted average resistance from current and previously calculated battery resistance parameters;
  • a weighted average resistance convergence calculation unit configured to calculate a weighted average resistance convergence value by repetitive calculation of a weighted average sequence having the weighted average resistance as an initial condition; And a resistance characteristic estimator for estimating a battery resistance from the weighted average resistance convergence value.
  • the resistance characteristic estimator estimates the weighted average resistance convergence value as the battery resistance.
  • the resistance characteristic estimator estimates battery resistance by mapping a battery resistance corresponding to the calculated weighted average resistance convergence value from a lookup table that defines battery resistance for each weighted average resistance convergence value.
  • the resistance characteristic estimator estimates the battery resistance by substituting the calculated weighted average resistance convergence value into a function having the weighted average resistance convergence value and the battery resistance as input parameters and output parameters, respectively.
  • the resistance characteristic estimator estimates the battery resistance by comparing the weighted average resistance convergence value corresponding to the battery shipment resistance with the calculated weighted average resistance convergence value relatively.
  • the resistance characteristic estimator estimates a relative ratio of the estimated battery resistance to battery shipment resistance based on the maximum allowable resistance as a parameter representing battery resistance degradation.
  • the open circuit voltage calculator is configured to calculate an open circuit voltage change amount from the stored patterns of current and past measured battery voltages by applying a mathematical model that defines a correlation between the battery voltage behavior and the open circuit voltage change amount.
  • An open voltage change calculator for estimating the open voltage change amount at a current stage by applying a correction factor corresponding to a battery temperature to the calculated open voltage change amount;
  • an open-voltage estimator for estimating the open-circuit voltage of the current stage by reflecting the estimated change of the open-circuit voltage in the estimated battery open-circuit voltage in the previous stage.
  • the open voltage estimating unit assigns a weighted average of the current and past battery voltages (weighted as the battery voltage is measured faster) and the difference between the open voltages of the previous stages to the estimated open voltages of the current stages. Add and correct the open voltage.
  • the past battery voltage may be the battery voltage of the previous stage.
  • the estimated open voltage change amount is calculated by multiplying the calculated open voltage change amount by a correction factor according to the temperature.
  • the battery voltage constituting the battery voltage behavior includes at least the battery voltages V n , V n-1 and V n-2 measured at the current stage, the previous stage and the previous stage.
  • the mathematical model is defined by a mathematical operation of a pattern function defined by the amount of battery voltage change between the current step and the past step and each voltage constituting the battery voltage change pattern.
  • the correction factor is calculated by substituting the temperature of the battery into a mathematical model using the battery temperature T as an input variable and the correction factor of the amount of change in the battery open voltage as an output variable.
  • Battery resistance characteristic estimation method using the battery voltage behavior according to the present invention for achieving the above technical problem, the battery voltage, current measured from the voltage sensing unit, the current sensing unit and the temperature sensing unit coupled to the battery at each resistance characteristic estimation time Obtaining and storing temperature data; Calculating a battery open voltage from current and past measured battery voltage behavior; Calculating a battery resistance parameter from the difference between the battery open voltage and the battery voltage and a battery current, and calculating a weighted average resistance from current and previously calculated battery resistance parameters; Calculating a weighted average resistance convergence value by iterative calculation of a weighted average sequence having the weighted average resistance as an initial condition; And estimating a battery resistance from the weighted average resistance convergence value.
  • FIG. 1 is a block diagram of an apparatus for estimating battery resistance characteristics using battery voltage behavior according to an exemplary embodiment of the present invention.
  • FIG. 2 is a block diagram of a battery resistance characteristic estimation program according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of an open voltage calculator for estimating an open voltage using battery voltage behavior in the present invention.
  • FIG. 4 is a flowchart illustrating a method of estimating battery resistance characteristics using battery voltage behavior according to an exemplary embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating an open voltage estimation method using battery voltage behavior according to an exemplary embodiment of the present invention.
  • FIG. 6 is a graph illustrating an aspect in which a battery voltage measured directly in the course of performing a charge / discharge test and an open voltage estimated according to the present invention differ due to an IR drop phenomenon.
  • FIG. 7 is a graph showing the weighted average resistance calculated according to the present invention converges to the actual resistance value over time regardless of the initial condition.
  • FIG. 8 is a table illustrating calculations of errors of actual resistance, estimated resistance, and estimated resistance based on the actual resistance of each of the 12 test target batteries.
  • FIG. 1 is a block diagram illustrating a configuration of an apparatus for estimating battery resistance characteristics using battery voltage behavior according to an exemplary embodiment of the present invention.
  • an apparatus for estimating battery resistance characteristics using battery voltage behavior is connected between a battery 100 and a load 107, and includes a voltage sensing unit 101, a temperature sensing unit 102, The current sensing unit 103, a memory unit 104, and a microcontroller 105 are included.
  • the voltage sensing unit 101 measures a battery voltage under the control of the microcontroller 105 at each time of estimating resistance characteristics and outputs the battery voltage to the microcontroller 105.
  • the measured battery voltage is different from the actual voltage of the battery by the IR drop effect.
  • the temperature sensing unit 102 measures the battery temperature under the control of the microcontroller 105 at each time of estimating the resistance characteristic and outputs the battery temperature to the microcontroller 105.
  • the current sensing unit 103 measures the battery current flowing through the current sensing resistor 108 and outputs the measured current to the microcontroller 105 under the control of the microcontroller 105 at the time of estimating the resistance characteristic.
  • the memory unit 104 may include a battery resistance characteristic estimation program for estimating resistance characteristics of a battery, various data necessary for the battery resistance characteristic estimation program to estimate battery resistance and resistance degradation, the voltage sensing unit 101, and temperature. Stores battery voltage, temperature, and current data measured by the sensing unit 102 and the current sensing unit 103, and various calculated values generated by the battery resistance characteristic estimation program in estimating battery resistance and resistance degradation. .
  • the microcontroller 105 receives battery voltage, temperature, and current data from the voltage sensing unit 101, the temperature sensing unit 102, and the current sensing unit 103 at each time of estimating resistance characteristics of the battery 100.
  • the battery resistance characteristic estimation program is read out from the memory unit 104, executed, estimated battery resistance and resistance deterioration, stored in the memory unit 104, and the estimated resistance and The resistance degradation is output to the outside through the display unit 106.
  • the type of the battery 100 is not particularly limited, and may be configured as a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydride battery, a nickel zinc battery, and the like, which can be recharged and require a state of charge.
  • the type of the load 107 is not particularly limited, and may be configured as a portable electronic device such as a video camera, a portable telephone, a portable PC, a PMP, or an MP3 player, a motor of an electric vehicle or a hybrid vehicle, a DC to DC converter, or the like. .
  • FIG. 2 is a block diagram showing the configuration of a battery resistance characteristic estimation program according to an embodiment of the present invention.
  • the battery resistance characteristic estimation program 200 is executed by the microcontroller 105, and includes a data storage unit 201, an open voltage calculator 202, and a weighted average resistance calculator. 203, a weighted average resistance convergence value calculation unit 204, and a resistance characteristic estimation unit 205.
  • the data storage unit 201 may include a battery voltage V n , a temperature T n, and a current I at the time of estimating resistance characteristics from the voltage sensing unit 101, the temperature sensing unit 102, and the current sensing unit 103 shown in FIG. 1.
  • n is received and stored in the memory unit 104.
  • n is the measurement cycle of voltage, temperature, and current, which is the same as the resistance characteristic estimation cycle.
  • the open voltage calculator 202 calculates the open voltage change amount ⁇ OCV n of the battery by using the battery voltage behavior, corrects the calculated open battery voltage change amount by applying a correction factor according to temperature, and corrects the open battery.
  • the battery open-circuit voltage OCV n at this stage is calculated by reflecting the change in voltage to the previously calculated open-circuit voltage OCV n-1 .
  • the process of the procedure for calculating the open-circuit voltage variation ⁇ n OCV, correcting the open-circuit voltage variation ⁇ OCV n by temperature will be described later.
  • the open voltage calculator 202 stores the calculated OCV n in the memory 104.
  • the weighted average resistance calculator 203 calculates the weighted average resistance R mean n using Equation 1 below.
  • R mean n (R n-1 ⁇ weight + R n ) ⁇ (weight + 1)
  • R n and R n-1 are the battery resistance parameters calculated for the n th and n-1 th times, respectively.
  • V n and V n-1 are the nth and n-1th measured battery voltages, respectively.
  • OCV n and OCV n-1 are battery open voltages estimated as the n th and n-1 th times, respectively.
  • I n and I n-1 are the battery currents measured in the nth and n-1th times, respectively.
  • n is an integer of 2 or more
  • the weight is a sufficiently large value, for example a value of 5000 or more.
  • the weighted average resistance R mean n has a characteristic of converging to the actual resistance value of the battery over time. This will be described in detail below.
  • FIG. 6 is a graph illustrating changes in OCV n periodically estimated using V n and battery voltage behavior measured periodically while charging and discharging a battery in a predetermined pattern.
  • the measured battery voltage V n shows a sharp change compared to the estimated OCV n . Since this is due to the IR drop generated during battery voltage measurement, the absolute difference between the measured voltage V n and the estimated voltage OCV n corresponds to the product of the battery current I n and the battery resistance R n . Therefore, it can be seen that the battery resistance parameter R n represents the resistance characteristic of the battery at the time when V n is measured.
  • FIG. 7 shows the weighted average resistances R mean 1 , R mean 2 , and periodically, with three different values set for the initial condition R 1 of the resistance parameter while performing charge / discharge tests on a battery that already knows the resistance.
  • graph A is the case where the resistance parameter R 1 is set to the actual resistance of the battery
  • graph B is the case where the resistance parameter R 1 is set higher than the actual resistance of the battery
  • graph C is the resistance parameter R 1 of the battery. It is set lower than actual resistance.
  • the weighted average resistance converges with the actual resistance value over time. Therefore, the convergence value of the weighted average resistance can be used as a parameter for estimating battery resistance.
  • the convergence value of the weighted average resistance can be obtained through a long time charge and discharge experiment.
  • the present invention estimates the convergence value of the weighted average resistance using the weighted average sequence having the obtained weighted average resistance as an initial condition. .
  • the weighted average resistance convergence calculation unit 204 uses the weighted average resistance R mean n calculated by the weighted average resistance calculation unit 203 as an initial condition using the following equation (2).
  • R mean n means that R mean n is a converged value.
  • R mean n k + 1 (R mean n k-1 ⁇ weight + R mean n k ) / (weight + 1)
  • R mean n 1 (R n-1 ⁇ weight + R n ) ⁇ (weight + 1)
  • k is an integer of 1 or more.
  • the number of calculations for the weighted average sequence is set to a large number of thousands or more.
  • the initial convergence value R mean 1 of the weighted average resistance may be set in advance at the time of shipment of the battery and stored in the memory unit 104 for reference.
  • the resistance characteristic estimator 205 reads the weighted average resistance convergence value R mean n from the memory unit 104 and then the battery resistance. Is estimated and stored in the memory unit 104. here, Denotes the battery resistance estimated at the nth resistance estimation time point.
  • the resistance characteristic estimator 205 calculates a weighted average resistance convergence value R mean n of battery resistance. It can be estimated as it is.
  • the resistance characteristic estimator 205 may use the correlation between the weighted average convergence value and the battery resistance to correspond to the weighted average resistance convergence value R mean n . Can be estimated.
  • the correlation may be a lookup table that defines battery resistance for each weighted average resistance convergence value.
  • the correlation may be a function of weighted average resistance convergence and battery resistance as input parameters and output parameters, respectively.
  • the correlation is obtained through a charge and discharge test on the battery. That is, the weighted average convergence value is calculated by performing charge / discharge experiments under the same conditions for a long time on a sufficient number of batteries having a known actual resistance in various ranges. Then, the battery resistance corresponding to the weighted average resistance convergence value obtained as a result of the experiment may be configured as a lookup table. Alternatively, the functional relationship between the weighted average resistance convergence value and the battery resistance can be obtained by numerical analysis using the weighted average resistance convergence value and the battery resistance as the input and output parameters, respectively.
  • the resistance characteristic estimator 205 calculates a weighted average calculated by the weighted average resistance convergence calculator 204 based on a battery shipment resistance stored in the memory 104 and a weighted average resistance convergence value. Battery resistance by comparing resistance convergence R mean n Can also be estimated.
  • the resistance characteristic estimator 205 is a battery resistance After estimating the estimated battery resistance based on the shipment resistance R initial of the battery by the following equation (3) The relative ratio of and may be calculated, and the calculated result may be stored in the memory unit 104 as SOH R n , which is a parameter representing resistance degradation of the battery.
  • SOH R n is the resistance degradation of the nth estimated battery
  • R limit The maximum allowable resistance the battery can be used.
  • the SOH R n represents a current ratio of the current battery resistance based on the shipment resistance of the battery. Since battery resistance tends to increase as the battery usage time increases, SOH R n is a parameter for determining how much battery life remains based on the initial use of the battery. In addition, the SOH R n can be utilized to adjust the charge and discharge resistance of the battery. For example, when the SOH R n decreases, the charging capacity and the discharging capacity of the battery may be reduced in conjunction with this. In this case, it is possible to effectively prevent the battery from being overcharged or overdischarged by performing charging and discharging according to the resistance of the battery.
  • the resistance characteristic estimator 205 may output the estimated SOH R n to the display unit 106.
  • the display 106 is coupled with the microcontroller 105 via an interface.
  • the resistance characteristic estimator 205 outputs SOH R n to the display unit 106 through an interface.
  • the display unit 106 visually expresses the SOH R n to be recognized by the battery user.
  • SOH R n may be directly expressed in letters or may be displayed in graph form.
  • FIG. 3 is a block diagram illustrating in more detail the configuration of the open voltage calculator 202 estimating the battery open voltage using the battery voltage behavior.
  • the open voltage calculator 202 includes an open voltage change calculator 2031 and an open voltage estimator 2032.
  • the open voltage change calculator 2031 calculates the open voltage change amount based on the open voltage of the previous step by using the battery voltage behavior to calculate the current battery open voltage. That is, the open voltage change calculator 2031 calculates how much the battery open voltage of the current step has changed based on the open voltage of the previous step.
  • the open circuit voltage change calculator 2031 may measure the battery voltage V n measured at the current resistance characteristic estimation time from the memory unit 104, the battery voltage V n-1 measured at the previous resistance characteristic estimation time, and the current.
  • the battery temperature T n measured at the resistance specific estimation point is read from the memory unit 104. Then, the open voltage change amount? OCV n is estimated by the following equation (4).
  • G (V) is an open voltage change calculation function that maps the battery voltage change 'V n -V n-1 ' to the open voltage change ⁇ OCV n
  • F (T) is an open voltage change effect according to temperature. Is an open-voltage correction function that corrects the open-circuit change ⁇ OCV n according to the battery temperature.
  • the G (V) is a function of correcting and converting an error (difference between the measured voltage and the actual voltage) of the battery voltage due to the IR drop phenomenon without converting the change amount of the battery voltage into the open voltage change amount. That is, G (V) attenuates the amount of change in battery voltage when the amount of change in battery voltage tends to be larger than before, and outputs it as the amount of change in battery open voltage. If the amount of change in battery voltage tends to remain the same as before, the change in battery voltage is kept as it is. If the amount of change in battery voltage tends to decrease than before, the amount of change in battery voltage is amplified and output as the amount of change in battery open voltage.
  • G (V) can be obtained by mathematically modeling a correlation between battery voltage behavior and a corresponding amount of change in open voltage under a specific temperature condition.
  • the mathematical modeling function is a battery voltage V under laboratory conditions in which the battery voltage and the battery opening voltage can be measured.
  • n , V n-1 And V n-2 Change pattern and corresponding change in open voltage ⁇ OCV n It can be calculated by analyzing correlations existing between them.
  • the number of battery voltages constituting the change pattern of the battery voltage can be extended to four or more.
  • the G (V) can be defined by generalizing as shown in Equation 5.
  • g (V n , V n-1 , V n-2 , ...) is a pattern function that defines the change behavior of the battery voltage measured at each resistance estimation time point. remind '... Symbol means that the pattern function can be defined by three or more battery voltages, including the battery voltage measured at the present time.
  • the pattern function is defined by analyzing a correlation between a plurality of battery voltage variations and a battery opening voltage variation obtained experimentally.
  • the function g may be defined as a relative ratio of the voltage change amount of the previous step based on the voltage change amount of the current step.
  • the present invention is not limited by the specific formula of the pattern function.
  • F (T) corrects the amount of change in the open voltage calculated by G (V) according to the temperature condition.
  • F (T) is a function of correcting the amount of change in open voltage calculated by G (V) when the temperature of the battery is different from the temperature set as the calculation condition of G (V).
  • the F (T) may be calculated by analyzing a correlation between a change in battery voltage behavior and a change in battery open voltage while changing temperature at regular intervals.
  • F (T) is the amount of change in the open-circuit voltage of the battery ⁇ OCV n based on the standard temperature while the experimental conditions are set so that the change in battery voltage behavior is the same at each measurement temperature set at a constant interval, for example, at 1 ° C interval. It can be found through the mathematical modeling, which measures the change of quantitatively and the change of temperature T and ⁇ OCV n as the input and output variables, respectively. F (T) thus obtained becomes a function of outputting a correction factor of the change amount of the battery open-circuit voltage using the temperature T of the battery as an input variable.
  • the correction factor according to each T value may be configured as a lookup table and included in the memory unit 104, and the correction factor for each temperature included in the lookup table may be referred to when calculating the amount of change in the battery open voltage.
  • the open voltage estimator 2032 reads the open voltage OCV n-1 calculated at the previous resistance characteristic estimation time from the memory unit 104, and then changes the open voltage variation estimator 2031 to OCV n-1 . and by the open-circuit voltage variation ⁇ adding the calculated OCV n calculate the open-circuit voltage OCV n in and stored in the memory unit 104.
  • the open voltage estimator 2032 calculates a weighted average V n (meanvalue) between the battery voltage V n and the battery voltage measured in the previous step through Equation 6 below.
  • V n (meanvalue) (A 1 * V 1 + A 2 * V 2 +... + A n-1 * V n-1 + A n * V n ) / A total
  • a total A 1 + A 2 + A 3 +... + A n
  • the open voltage estimator 2032 adds the difference between the calculated weighted average V n (meanvalue) and the open voltage OCV n ⁇ 1 to the calculated open voltage OCV n to perform additional correction to once again open the open voltage value. You can correct it. If the weighted average V n (meanvalue) is calculated to further correct the open voltage, the calculation error of the open voltage can be reduced even if the voltage output from the battery 100 changes abruptly.
  • the open voltage estimator 2032 stores the corrected open voltage OCV n in the memory 104 when the open voltage correction by the weighted average V n (meanvalue) is completed.
  • the open voltage OCV n stored by the open voltage estimator 2032 in the memory 140 will be referred to when calculating R n , an input parameter of the weighted average resistance.
  • FIG. 4 is a flowchart illustrating a method of estimating battery resistance characteristics using battery voltage behavior according to the present invention.
  • the performing agent of each step is the microcontroller 105 shown in FIG.
  • step S10 it is determined whether there is a request for estimation of resistance characteristics of the battery.
  • the resistance characteristic estimation request may be input from the outside or may be automatically generated by the battery resistance characteristic estimation program.
  • step S10 if there is a request for estimating the resistance characteristic of the battery, a routine for estimating the battery resistance characteristic is started. On the contrary, as a result of the determination in step S10, if there is no request to estimate the resistance characteristic of the battery, the process ends.
  • step S20 the battery resistance parameter R n-1 and the weighted average resistance convergence value R mean n-1 obtained at the previous resistance characteristic estimation time point stored in the memory unit are read.
  • step S30 V n , T n, and I n are measured using the voltage sensing unit, the temperature sensing unit, and the current sensing unit.
  • step S40 the battery opening voltage OCV n is estimated by the battery voltage behavior, and the battery resistance parameter R n is calculated from V n , I n and OCV n .
  • step S50 the initial condition R mean n 1 of the weighted average sequence is calculated from R n-1 and R n . Equation 2 is used to calculate R mean n 1 .
  • step S60 the convergence value R mean n of the weighted average resistance is obtained by iteratively calculating the weighted average sequence by a sufficient number of times using the initial sequence values R mean n 1 and R mean n-1 . Equation 2 is used to calculate R mean n .
  • the R mean n-1 may be replaced with a preset R mean 1 .
  • R mean 1 may be set as a battery shipment resistance.
  • step S70 the battery resistance from the convergence value R mean n of the weighted average resistance Estimate
  • battery resistance Can be estimated to be equal to the convergence value R mean n of the weighted average resistance.
  • the correlation may be a look-up table that defines battery resistance for each convergence value of the weighted average resistance, or a function of using the convergence value of the weighted average resistance and the battery resistance as input parameters and output parameters, respectively.
  • the battery resistance may be estimated based on the battery shipment resistance by comparing the convergence value of the weighted average resistance corresponding to the battery shipment resistance with the weighted average convergence value R mean n calculated in step S60. That is, the battery shipment resistance can be increased by the increase rate of the weighted average convergence value, and the increased value can be estimated as the battery resistance.
  • step S80 the estimated battery resistance on the basis of the battery shipping resistance R initial
  • the relative increase rate of is calculated and estimated by SOH R n based on the calculated relative increase rate and stored in the memory unit 104 or outputted to the display unit 106.
  • FIG. 5 is a flowchart illustrating a process of estimating an open voltage OCV n using battery voltage behavior in step S40 of FIG. 4.
  • the performing agent of each step is the microcontroller 105 shown in FIG.
  • step P10 it is determined whether there is a request for estimation of the battery open voltage OCV n .
  • the estimation request may be input from the outside or may be automatically generated according to a program algorithm.
  • step P10 If, in step P10, if there is no estimation request, if the open-circuit voltage, and the operation proceeds to step estimation, estimation request to the OCV n for the OCV n terminates the process.
  • step P20 the battery voltage behavior stored in the memory section is read.
  • Battery voltage behavior includes at least V n , V n-1 and V n-2 .
  • step P30 the open voltage change amount? OCV n is calculated based on the battery voltage behavior and the battery temperature.
  • the calculation method of the open circuit voltage change amount? OCV n has been described above.
  • V 1 and V 2 and OCV 1 and OCV 2 are initialized to the battery voltage of the no-load state measured immediately before the battery is connected to the load.
  • V 1 and V 2 and OCV 1 and OCV 2 are set to the battery voltage values measured at the turn-on of the car start key.
  • step P40 the current open voltage OCV n is calculated by adding the open voltage change amount? OCV n to the previous open voltage OCV n-1 .
  • step P50 may optionally be performed to calculate a weighted average of the current battery voltage V n and the previous battery voltage V n-1 , and to currently open the difference between the calculated weighted average and the previous open voltage OCV n-1 . by adding the voltage OCV n to additionally correct the open-circuit voltage OCV n.
  • the method of calculating the weighted average has already been described above.
  • step P60 the estimated open voltage OCV n is stored in the memory unit.
  • FIG. 8 is a table showing the actual resistance, the battery resistance estimated by the weighted average convergence value, and the error between the actual resistance and the estimated resistance for each of the 12 batteries.
  • the battery resistance estimated according to the present invention showed an error within 3% of the actual resistance. Accordingly, it can be seen that the present invention can estimate battery resistance with high accuracy, and also accurately estimate battery resistance degeneration, which is a parameter calculated from the battery resistance.
  • the resistance characteristics of the battery can be accurately estimated without going through complicated calculations. Accurate estimates of battery resistance also allow for a variety of applications, such as estimating battery replacement time. In addition, by accurately estimating the deterioration of the resistance to adjust the charge and discharge capacity of the battery to prevent overcharge and overdischarge can further improve the safety of the battery.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

본 발명은 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법을 개시한다. 본 발명에 따른 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치는, 저항 특성 추정 시점마다 배터리와 결합된 전압 센싱부, 전류 센싱부 및 온도 센싱부로부터 측정된 배터리 전압, 전류 및 온도 데이터를 획득하여 저장하는 데이터 저장부; 현재와 과거에 측정된 배터리 전압 거동으로부터 배터리 개방전압을 계산하는 개방전압 계산부; 상기 배터리 개방전압과 배터리 전압의 차이와 배터리 전류로부터 배터리 저항 파라미터를 계산하고, 현재와 이전에 계산된 배터리 저항 파라미터로부터 가중 평균 저항을 계산하는 가중 평균 저항 계산부; 상기 가중 평균 저항을 초기 조건으로 하는 가중 평균 수열의 반복 계산에 의해 가중 평균 저항 수렴치를 계산하는 가중 평균 저항 수렴치 계산부; 및 상기 가중 평균 저항 수렴치로부터 배터리 저항을 추정하는 저항 특성 추정부;를 포함한다.

Description

배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법
본 발명은 배터리의 저항 특성을 추정하는 장치 및 방법에 관한 것으로서, 보다 상세하게는 배터리의 개방전압을 이용하여 배터리의 저항 특성을 추정하는 장치 및 방법에 관한 것이다.
최근 들어, 대기 오염이 심화되고 화석연료가 고갈되면서 배터리를 사용하여 구동이 가능한 전기 자동차(예컨대, 하이브리드 자동차)가 주목 받고 있다. 배터리는 사용 시간이 증가할수록 용량이 서서히 감소한다. 그 이유는 배터리의 전기화학적 반응이 비가역성을 갖기 때문이다. 휴대폰과 같은 포터블 장치에 사용되는 배터리는 용량이 감소하더라도 기기의 동작 시간이 감소된다는 점 이외에는 특별한 문제가 없다. 하지만 전기 자동차에 사용되는 배터리는 용량이 한계 이하로 떨어지면 배터리의 수명이 다해 자동차가 갑자기 정지할 수 있다. 또한 배터리 용량이 한계 이하로 떨어진 상태에서 용량을 초과한 과충전 또는 과방전이 반복되면 배터리의 안정성에 심각한 문제(예컨대, 폭발)를 초래할 수 있다.
이에 따라, 배터리 관련 업계에서는 배터리 사용에 따른 시효(aging) 효과를 정량적으로 평가하기 위한 연구가 활발히 진행되고 있다. 배터리의 시효 효과를 정량적으로 평가하기 위해서는 배터리의 사용 시간에 따라 물성이 변화되는 전기화학적 파라미터가 필요한데, 그 중 하나로 배터리의 저항을 들 수 있다. 배터리의 저항은 배터리의 사용 시간에 따라 증가하는 경향이 있으므로 배터리의 저항을 측정하여 배터리 출하 시의 초기 저항과 비교하면 배터리의 시효 효과를 정량적으로 평가하는 것이 가능하다.
그런데 배터리 저항은 충방전이 이루어지고 있는 동안에는 직접적인 측정이 불가능하다. 따라서 종래에는 배터리의 전압과 충방전 전류를 측정하여 오옴의 법칙에 의해 배터리 저항을 간접적으로 계산하였다. 그런데 배터리 전압은 IR 드롭 효과에 의해 실제 전압과 오차를 보이고 배터리의 전류 또한 측정 오차를 가지므로 단순히 오옴의 법칙에 의해 계산된 저항은 실제 저항과 상당한 오차를 보이게 된다.
참고로, IR 드롭 현상은 배터리가 부하에 연결되어 방전이 시작되거나 외부전원으로부터 배터리의 충전이 시작될 때 전압이 급격하게 변하는 현상을 말한다. 즉, 방전이 시작될 때에는 배터리 전압이 급격하게 떨어지고, 충전이 시작될 때에는 전압이 급격하게 올라간다.
따라서 본 발명이 속한 기술분야에서는 배터리 저항을 보다 정확하게 측정할 수 있는 방법에 대한 연구가 활발하게 진행되고 있다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 창안된 것으로서, 정확도가 높은 배터리 저항 특성 추정 장치 및 방법을 제공하는 것을 목적으로 한다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치는, 저항 특성 추정 시점마다 배터리와 결합된 전압 센싱부, 전류 센싱부 및 온도 센싱부로부터 측정된 배터리 전압, 전류 및 온도 데이터를 획득하여 저장하는 데이터 저장부; 현재와 과거에 측정된 배터리 전압 거동으로부터 배터리 개방전압을 계산하는 개방전압 계산부; 상기 배터리 개방전압과 배터리 전압의 차이와 배터리 전류로부터 배터리 저항 파라미터를 계산하고, 현재와 이전에 계산된 배터리 저항 파라미터로부터 가중 평균 저항을 계산하는 가중 평균 저항 계산부; 상기 가중 평균 저항을 초기 조건으로 하는 가중 평균 수열의 반복 계산에 의해 가중 평균 저항 수렴치를 계산하는 가중 평균 저항 수렴치 계산부; 및 상기 가중 평균 저항 수렴치로부터 배터리 저항을 추정하는 저항 특성 추정부;를 포함한다.
본 발명의 일 측면에 따르면, 상기 저항 특성 추정부는 가중 평균 저항 수렴치를 배터리 저항으로 추정한다.
본 발명의 다른 측면에 따르면, 상기 저항 특성 추정부는 가중 평균 저항 수렴치 별로 배터리 저항을 정의한 룩업 테이블로부터 상기 계산된 가중 평균 저항 수렴치에 대응하는 배터리 저항을 맵핑하여 배터리 저항을 추정한다.
본 발명의 또 다른 측면에 따르면, 상기 저항 특성 추정부는 가중 평균 저항 수렴치와 배터리 저항을 각각 입력 파라미터 및 출력 파라미터로 하는 함수에 상기 계산된 가중 평균 저항 수렴치를 대입하여 배터리 저항을 추정한다.
본 발명의 또 다른 측면에 따르면, 상기 저항 특성 추정부는 배터리 출하 저항에 대응하는 가중 평균 저항 수렴치와 상기 계산된 가중 평균 저항 수렴치를 상대적으로 대비하여 배터리 저항을 추정한다.
바람직하게, 상기 저항 특성 추정부는, 허용 가능 최대 저항을 기준으로 배터리 출하 저항에 대한 상기 추정된 배터리 저항의 상대적 비율을 배터리 저항 퇴화를 나타내는 파라미터로 추정한다.
본 발명에 있어서, 상기 개방전압 계산부는, 배터리 전압 거동과 개방전압 변화량 사이의 상관 관계를 정의한 수학적 모델을 적용하여 상기 저장된 현재 및 과거에 측정된 배터리 전압들의 변화 패턴으로부터 개방전압 변화량을 계산하고, 배터리 온도에 대응하는 보정 팩터를 상기 계산된 개방전압 변화량에 반영하여 현재 단계의 개방전압 변화량을 추정하는 개방전압 변화량 계산부; 및 직전 단계에서 추정된 배터리 개방전압에 상기 추정된 개방전압 변화량을 반영하여 현재 단계의 배터리 개방전압을 추정하는 개방전압 추정부;를 포함한다.
바람직하게, 상기 개방전압 추정부는 현재 및 과거의 배터리 전압에 대한 가중평균(측정 시점이 빠른 배터리 전압일 수록 큰 가중치를 부여함)과 직전 단계의 개방전압 차분을 상기 추정된 현재 단계의 개방전압에 가산하여 개방전압을 보정한다. 이런 경우, 상기 과거의 배터리 전압은 직전 단계의 배터리 전압일 수 있다.
바람직하게, 상기 추정된 개방전압 변화량은 상기 계산된 개방전압 변화량에 상기 온도에 따른 보정 팩터를 곱셈 연산하여 산출한다.
본 발명에 따르면, 상기 배터리 전압 거동을 구성하는 배터리 전압은 적어도 현재 단계, 전 단계 및 전전단계에서 측정된 배터리 전압 Vn, Vn-1 및 Vn-2을 포함한다.
바람직하게, 상기 수학적 모델은 현재 단계와 과거 단계 사이의 배터리 전압 변화량과 배터리 전압 변화 패턴을 구성하는 각 전압에 의해 정의되는 패턴 함수의 수학적 연산에 의해 정의된다. 그리고, 상기 보정 팩터는 배터리 온도 T를 입력 변수로 하고 배터리 개방전압 변화량의 보정 팩터를 출력 변수로 하는 수학적 모델에 배터리의 온도를 대입하여 산출한다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법은, 저항 특성 추정 시점마다 배터리와 결합된 전압 센싱부, 전류 센싱부 및 온도 센싱부로부터 측정된 배터리 전압, 전류 및 온도 데이터를 획득하여 저장하는 단계; 현재와 과거에 측정된 배터리 전압 거동으로부터 배터리 개방전압을 계산하는 단계; 상기 배터리 개방전압과 배터리 전압의 차이와 배터리 전류로부터 배터리 저항 파라미터를 계산하고, 현재와 이전에 계산된 배터리 저항 파라미터로부터 가중 평균 저항을 계산하는 단계; 상기 가중 평균 저항을 초기 조건으로 하는 가중 평균 수열의 반복 계산에 의해 가중 평균 저항 수렴치를 계산하는 단계; 및 상기 가중 평균 저항 수렴치로부터 배터리 저항을 추정하는 단계;를 포함한다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되지 않아야 한다.
도 1은 본 발명의 실시예에 따른 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치의 구성도이다.
도 2는 본 발명의 실시예에 따른 배터리 저항 특성 추정 프로그램의 블록 구성도이다.
도 3은 본 발명에서 배터리 전압 거동을 이용하여 개방전압을 추정하는 개방전압 계산부의 블록 구성도이다.
도 4는 본 발명의 실시예에 따른 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법의 순서도이다.
도 5는 본 발명의 실시예에 따른 배터리 전압 거동을 이용한 개방전압 추정 방법의 순서도이다.
도 6은 충방전 시험을 수행하는 과정에서 직접 측정한 배터리 전압과 본 발명에 따라 추정된 개방 전압이 IR 드롭 현상에 의해 차이를 보이는 양상을 도시한 그래프이다.
도 7은 본 발명에 따라 계산되는 가중 평균 저항이 초기 조건에 상관 없이 시간이 지남에 따라 실제 저항 값으로 수렴하는 모습을 보여주는 그래프이다.
도 8은 12개의 실험 대상 배터리 각각에 대한 실제 저항, 추정 저항, 그리고 실제 저항을 기준으로 한 추정 저항의 오차를 계산하여 표로 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 실시예에 따른 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치의 구성을 도시한 블록 구성도이다.
도 1을 참조하면, 본 발명에 따른 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치는, 배터리(100)와 부하(107) 사이에 연결되며, 전압 센싱부(101), 온도 센싱부(102), 전류 센싱부(103), 메모리부(104) 및 마이크로컨트롤러(105)를 포함한다.
상기 전압 센싱부(101)는 저항 특성 추정 시점마다 마이크로컨트롤러(105)의 제어에 의해 배터리 전압을 측정하여 마이크로컨트롤러(105)로 출력한다. 상기 측정된 배터리 전압은 IR 드롭 효과에 의해 배터리의 실제 전압과 차이를 가진다.
상기 온도 센싱부(102)는 저항 특성 추정 시점마다 마이크로컨트롤러(105)의 제어에 의해 배터리 온도를 측정하여 마이크로컨트롤러(105)로 출력한다.
상기 전류 센싱부(103)는 저항 특성 추정 시점마다 마이크로컨트롤러(105)의 제어에 의해 전류 센싱 저항(108)을 통해 흐르는 배터리 전류를 측정하여 마이크로컨트롤러(105)로 출력한다.
상기 메모리부(104)는 배터리의 저항 특성을 추정하는 배터리 저항 특성 추정 프로그램, 상기 배터리 저항 특성 추정 프로그램이 배터리 저항과 저항 퇴화 추정을 위해 사전에 필요한 각종 데이터, 상기 전압 센싱부(101), 온도 센싱부(102) 및 전류 센싱부(103)에 의해 측정된 배터리 전압, 온도 및 전류 데이터, 및 상기 배터리 저항 특성 추정 프로그램이 배터리 저항과 저항 퇴화를 추정하는 과정에서 발생되는 각종 계산 값을 저장한다.
상기 마이크로컨트롤러(105)는 배터리(100)의 저항 특성 추정 시점마다 전압 센싱부(101), 온도 센싱부(102) 및 전류 센싱부(103)로부터 배터리 전압, 온도 및 전류 데이터를 입력 받아 상기 메모리부(104)에 저장하고, 상기 배터리 저항 특성 추정 프로그램을 메모리부(104)로부터 리드하여 실행하고, 배터리 저항과 저항 퇴화를 추정하여 메모리부(104)에 저장하고, 필요에 따라 추정된 저항과 저항 퇴화를 표시부(106)를 통해 외부로 출력한다.
상기 배터리(100)의 종류는 특별히 한정되지 않으며, 재충전이 가능하고 충전상태를 고려해야 하는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드늄 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성할 수 있다.
상기 부하(107)의 종류는 특별히 한정되지 않으며, 비디오 카메라, 휴대용 전화기, 휴대용 PC, PMP, MP3플레이어 등과 같은 휴대용 전자기기, 전기 자동차나 하이브리드 자동차의 모터, DC to DC 컨버터 등으로 구성할 수 있다.
도 2는 본 발명의 실시예에 따른 배터리 저항 특성 추정 프로그램의 구성을 도시한 블록 구성도이다.
도 2를 참조하면, 본 발명에 따른 배터리 저항 특성 추정 프로그램(200)은 마이크로컨트롤러(105)에 의해 실행되는 것으로서, 데이터 저장부(201), 개방전압 계산부(202), 가중 평균 저항 계산부(203), 가중 평균 저항 수렴치 계산부(204) 및 저항 특성 추정부(205)를 포함한다.
상기 데이터 저장부(201)는 도 1에 도시된 전압 센싱부(101), 온도 센싱부(102) 및 전류 센싱부(103)로부터 저항 특성 추정 시점마다 배터리 전압 Vn, 온도 Tn 및 전류 In을 입력 받아 메모리부(104)에 저장한다. 여기서, n은 전압, 온도 및 전류의 측정 회차로서 저항 특성 추정 회차와 동일하다.
상기 개방전압 계산부(202)는 배터리 전압 거동을 이용하여 배터리의 개방전압 변화량 △OCVn을 계산하고, 온도에 따른 보정 팩터를 적용하여 상기 계산된 배터리 개방전압 변화량을 보정하고, 보정된 배터리 개방전압 변화량을 이전에 산출한 개방전압 OCVn-1에 반영하여 현 단계의 배터리 개방전압 OCVn을 산출한다. 상기 개방전압 변화량 △OCVn 을 산출하는 과정과, 온도에 의해 개방전압 변화량 △OCVn 을 보정하는 과정은 이후에 설명하기로 한다. 상기 개방전압 계산부(202)는 산출한 OCVn을 메모리부(104)에 저장한다.
상기 가중 평균 저항 계산부(203)는 다음 수학식 1을 이용하여 가중 평균 저항 Rmean n 을 계산한다.
[수학식 1]
Rmean n = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)
Rn-1 = |Vn-1 - OCVn-1|÷|In-1|
Rn = |Vn - OCVn|÷|In|
상기 수학식 1에서,
Rn와 Rn-1은 각각 n번째 및 n-1번째로 계산한 배터리 저항 파라미터이고,
Vn 와 Vn-1은 각각 n번째 및 n-1번째로 측정한 배터리 전압이고,
OCVn 및 OCVn-1은 각각 n번째 및 n-1번째로 추정한 배터리 개방전압이고,
In와 In-1은 각각 n번째 및 n-1번째로 측정한 배터리 전류이고,
n은 2 이상의 정수이고,
가중치는 충분히 큰 값으로, 예컨대 5000 이상의 값을 가진다.
상기 가중 평균 저항 Rmean n 은 시간이 경과함에 따라 배터리의 실제 저항 값으로 수렴하는 특성이 있다. 이하에서는 이에 대해 구체적으로 설명하기로 한다.
도 6은 배터리를 일정한 패턴으로 충방전시키면서 주기적으로 측정한 Vn과 배터리 전압거동을 이용하여 주기적으로 추정한 OCVn의 변화 모습을 나타낸 그래프이다.
도면을 참조하면, 측정된 배터리 전압 Vn은 추정된 OCVn에 비해 급격한 변화를 보임을 알 수 있다. 이는 배터리 전압 측정 시 발생되는 IR 드롭 현상에서 비롯된 것이므로, 측정 전압 Vn과 추정 전압 OCVn의 절대 차이는 배터리 전류 In과 배터리 저항 Rn의 곱에 해당한다. 따라서 배터리 저항 파라미터 Rn은 Vn을 측정한 시점에서 배터리의 저항 특성을 나타낸다고 볼 수 있다.
도 7은 저항을 이미 알고 있는 배터리에 대해 충방전 시험을 수행하면서 저항 파라미터의 초기 조건 R1에 대해 3가지의 서로 다른 값을 설정한 상태에서 주기적으로 가중 평균 저항 Rmean 1, Rmean 2, Rmean 3, Rmean 4, Rmean 5 … 를 계산하고 시간에 따른 가중 평균 저항의 변화 양상을 저항 파라미터 R1의 조건 별로 나타낸 그래프이다.
도면에서, 그래프 A는 저항 파라미터 R1을 배터리의 실제 저항으로 설정한 경우이고, 그래프 B는 저항 파라미터 R1을 배터리의 실제 저항보다 높게 설정한 경우이고, 그래프 C는 저항 파라미터 R1을 배터리의 실제 저항보다 낮게 설정한 경우이다.
도면을 참조하면, 가중 평균 저항의 입력 파라미터인 Rn의 초기값 R1을 다르게 설정하더라도 시간이 지남에 따라 가중 평균 저항은 실제 저항 값으로 수렴해 가는 것을 알 수 있다. 따라서 가중 평균 저항의 수렴치는 배터리 저항을 추정할 수 있는 파라미터로 사용이 가능하다.
한편 가중 평균 저항의 수렴치는 장시간에 걸친 충방전 실험을 통하여 얻을 수 있다. 하지만 배터리의 실제 사용 환경에서는 특정 시점에서 가중 평균 저항을 얻었을 때 그 가중 평균 저항이 장차 어떠한 값으로 수렴할 것인지 알 수 없다. 따라서 본 발명은 임의의 시점에서 저항 파라미터 Rn-1 와 Rn 에 의해 가중 평균 저항을 얻었을 때 상기 얻은 가중 평균 저항을 초기 조건으로 하는 가중 평균 수열을 이용하여 가중 평균 저항의 수렴치를 추정한다.
보다 구체적으로, 상기 가중 평균 저항 수렴치 계산부(204)는 다음 수학식 2를 이용하여 상기 가중 평균 저항 계산부(203)가 산출한 가중 평균 저항 Rmean n을 초기 조건으로 하는 가중 평균 수열에 의해 가중 평균 저항의 계산 과정을 충분히 큰 회수 p만큼 반복 계산함으로써 가중 평균 저항의 수렴치 Rmean n 를 구하여 메모리부(104)에 저장한다. 여기서, Rmean n 은 Rmean n이 수렴된 값임을 의미한다.
[수학식 2]
가중 평균 수열
Rmean n k+1 = (Rmean n k-1 × 가중치 + Rmean n k)/(가중치 + 1)
가중 평균 수열 초기 조건
Rmean n 1 = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)
상기 수학식에서, k는 1 이상의 정수이다. 가중 평균 수열의 계산 회수는 수천 이상의 큰 수로 설정한다. 가중 평균 저항의 초기 수렴치 Rmean 1 은 배터리의 출하 시 미리 그 값을 설정하여 메모리부(104)에 저장하여 참조할 수 있다.
상기 가중 평균 저항 Rmean n은 도 7에서 본 바와 같이 저항 파라미터의 초기 조건 R1에 의존하지 않고 실제 저항 값으로 수렴하는 특성이 있다. 따라서 상기 수학식 2에 따른 가중 평균 수열에서 k=1일 때의 수열 초기값 Rmean n 0을 임의로 설정할 수도 있으나, 그런 경우 가중 평균 저항이 일정한 값으로 수렴될 때까지의 계산 회수가 과도하게 증가하므로 가중 평균 저항의 수열 초기 값 Rmean n 0 은 이전 단계에서 구한 가중 평균 저항의 수렴치 Rmean n-1 또는 배터리 출하 시의 배터리 저항 값으로 설정하는 것이 바람직하다. 이런 경우 가중 평균 저항이 실제 저항 값으로 수렴할 때까지의 수열 계산 회수를 줄일 수 있으므로, 가중 평균 저항을 실제 저항 값으로 빠르게 수렴시킬 수 있다.
상기 저항 특성 추정부(205)는 메모리부(104)로부터 가중 평균 저항 수렴치 Rmean n 을 리드한 후 배터리 저항
Figure PCTKR2009002629-appb-I000001
을 추정하여 메모리부(104)에 저장한다. 여기서,
Figure PCTKR2009002629-appb-I000002
는 n번째 저항 추정 시점에서 추정된 배터리 저항을 의미한다.
일 예로, 상기 저항 특성 추정부(205)는 가중 평균 저항 수렴치 Rmean n 을 배터리 저항
Figure PCTKR2009002629-appb-I000003
으로 그대로 추정할 수 있다.
다른 예로, 상기 저항 특성 추정부(205)는 가중 평균 저항 수렴치와 배터리 저항 간의 상관 관계를 사용하여 가중 평균 저항 수렴치 Rmean n 에 대응하는 배터리 저항
Figure PCTKR2009002629-appb-I000004
을 추정할 수 있다.
상기 상관 관계는 가중 평균 저항 수렴치 별로 배터리 저항을 정의한 룩업 테이블일 수 있다. 대안적으로, 상기 상관 관계는 가중 평균 저항 수렴치와 배터리 저항을 각각 입력 파라미터 및 출력 파라미터로 하는 함수일 수 있다.
상기 상관 관계는 배터리에 대한 충방전 시험을 통하여 얻는다. 즉 다양한 범위에서 실제 저항을 알고 있는 충분히 많은 수의 배터리에 장시간 동안 동일한 조건의 충방전 실험을 수행하면서 가중 평균 저항 수렴치를 계산한다. 그런 다음, 실험 결과로 얻은 가중 평균 저항 수렴치에 대응하는 배터리 저항을 룩업 테이블로 구성할 수 있다. 또는 실험 결과로 얻은 가중 평균 저항 수렴치와 배터리 저항을 각각 입력 파라미터 및 출력 파라미터로 하는 수치 해석을 통해 가중 평균 저항의 수렴치와 배터리 저항 간의 함수 관계를 구할 수 있다.
또 다른 대안으로, 상기 저항 특성 추정부(205)는 메모리부(104)에 저장된 배터리 출하 시의 저항과 가중 평균 저항 수렴치를 기준으로 상기 가중 평균 저항 수렴치 계산부(204)가 산출한 가중 평균 저항 수렴치 Rmean n 를 상대적으로 비교하여 배터리 저항
Figure PCTKR2009002629-appb-I000005
을 추정할 수도 있다.
상기 저항 특성 추정부(205)는 배터리 저항
Figure PCTKR2009002629-appb-I000006
을 추정한 후 하기 수학식 3 에 의해 배터리의 출하 저항 Rinitial을 기준으로 상기 추정된 배터리 저항
Figure PCTKR2009002629-appb-I000007
의 상대적 비율을 계산하고, 계산된 결과를 배터리의 저항 퇴화를 나타내는 파라미터인 SOHR n로서 메모리부(104)에 저장할 수 있다.
[수학식 3]
SOHR n = [(Rlimit -
Figure PCTKR2009002629-appb-I000008
)÷(Rlimit - Rinitial)] ×100
상기 수학식 3에서,
SOHR n : n번째로 추정된 배터리의 저항 퇴화이고,
Figure PCTKR2009002629-appb-I000009
: n번째로 추정된 배터리 저항이고,
Rinitial: 배터리의 출하 저항이고,
Rlimit: 배터리가 사용될 수 있는 허용 가능 최대 저항이다.
상기 SOHR n은 배터리의 출하 저항을 기준으로 현재의 배터리 저항을 상대적인 비율로 나타내 준다. 배터리 저항은 배터리의 사용 시간이 증가할수록 증가하는 경향이 있으므로, SOHR n은 배터리의 초기 사용 시를 기준으로 배터리의 수명이 어느 정도 남아 있는지를 판단할 수 있는 파라미터가 된다. 또한 상기 SOHR n는 배터리의 충방전 저항을 조절하는데 활용 가능하다. 예를 들어, 상기 SOHR n이 감소하면 이와 연동하여 배터리의 충전 용량과 방전 용량을 감소시킬 수 있다. 이런 경우, 배터리의 저항에 맞게 충전과 방전을 수행함으로써 배터리가 과충전되거나 과방전되는 현상을 효과적으로 방지할 수 있다.
상기 저항 특성 추정부(205)는 추정된 SOHR n을 표시부(106)에 출력할 수 있다. 이런 경우, 상기 표시부(106)는 인터페이스를 통해 마이크로컨트롤러(105)와 결합된다. 그리고 상기 저항 특성 추정부(205)는 인터페이스를 통해 표시부(106)로 SOHR n를 출력한다. 그러면 표시부(106)는 배터리 사용자가 인식 가능하도록 SOHR n을 시각적으로 표출한다. SOHR n은 문자로 직접 표시될 수도 있고, 그래프 형태로 표시될 수도 있다.
도 3은 본 발명에서 배터리 전압 거동을 이용하여 배터리 개방전압을 추정하는 개방전압 계산부(202)의 구성을 보다 구체적으로 도시한 블록 구성도이다.
도 3을 참조하면, 상기 개방전압 계산부(202)는, 개방전압 변화량 계산부(2031) 및 개방전압 추정부(2032)를 포함한다.
상기 개방전압 변화량 계산부(2031)는 현재의 배터리 개방전압을 계산하기 위해 배터리 전압 거동을 이용하여 이전 단계의 개방전압을 기준으로 개방전압 변화량을 계산한다. 즉 상기 개방전압 변화량 계산부(2031)는 이전 단계의 개방전압을 기준으로 현재 단계의 배터리 개방전압이 어느 정도 변화되었을 것인지를 계산한다.
구체적으로, 상기 개방전압 변화량 계산부(2031)는 상기 메모리부(104)로부터 현재의 저항 특성 추정 시점에서 측정된 배터리 전압 Vn, 이전 저항 특성 추정 시점에서 측정된 배터리 전압 Vn-1 그리고 현재 저항 특정 추정 시점에서 측정된 배터리 온도 Tn을 메모리부(104)로부터 리드한다. 그런 다음, 하기 수학식4에 의해 개방전압 변화량 △OCVn 을 추정한다.
[수학식 4]
△OCVn = OCVn - OCVn-1 = G(V)×F(T)
상기 수학식에서, G(V)는 배터리 전압 변화량 'Vn-Vn-1'을 개방전압 변화량 △OCVn 로 맵핑하는 개방전압 변화량 연산 함수이고, F(T)는 온도에 따른 개방전압 변동 효과를 반영하여 배터리 온도에 따라 개방전압 변화량 △OCVn 을 보정하는 개방전압 보정 함수이다.
상기 G(V)는 배터리 전압의 변화량을 개방전압 변화량으로 그대로 환산하지 않고 IR 드롭 현상에 의한 배터리 전압의 오차(측정 전압과 실제 전압의 차이)를 보정하여 환산하는 함수이다. 즉 G(V)는 배터리 전압 변화량이 이전 보다 커지는 경향이 있으면 배터리 전압의 변화량을 감쇄시켜 배터리 개방전압 변화량으로 출력하고, 배터리 전압 변화량이 이전과 동일하게 유지되는 경향이 있으면 배터리 전압의 변화량을 그대로 배터리 개방전압 변화량으로 출력하고, 배터리 전압의 변화량이 이전보다 감소하는 경향이 있으면 배터리 전압 변화량을 조금 증폭시켜 배터리 개방전압 변화량으로 출력한다.
G(V)는 특정한 온도 조건에서 배터리 전압 거동과 이에 대응되는 개방전압 변화량 사이의 상관관계를 수학적으로 모델링하여 얻을 수 있다. 일 실시예로, 상기 수학적 모델링 함수는 배터리 전압과 배터리 개방전압이 측정 가능한 실험실 조건에서 배터리 전압 Vn, Vn-1 및 Vn-2의 변화 패턴과 이에 대응하는 개방전압 변화량 △OCVn 사이에 존재하는 상관 관계를 분석하여 산출할 수 있다. 물론, 배터리 전압의 변화 패턴을 구성하는 배터리 전압의 수는 4개 이상으로 확장 가능하다.
상기 G(V)는 다음 수학식 5와 같이 일반화하여 정의할 수 있다.
[수학식 5]
G(V) = (Vn-Vn-1)×g(Vn, Vn-1, Vn-2, …)
여기서, g(Vn, Vn-1, Vn-2 , …)는 각 저항 추정 시점에서 측정된 배터리 전압의변화 거동을 정의하는 패턴 함수이다. 상기 '…' 기호는 현재 시점에서 측정된 배터리 전압을 포함하여 3개 이상의 배터리 전압에 의해 패턴 함수가 정의될 수 있다는 것을 의미한다. 상기 패턴 함수는 실험적으로 얻은 다수의 배터리 전압 변화량과 배터리 개방전압 변화량 사이의 상관 관계를 분석하여 정의한다. 일 예로, 함수 g는 현재 단계의 전압 변화량을 기준으로 전 단계의 전압 변화량의 상대적 비율로 정의할 수 있다. 물론, 본 발명은 패턴 함수의 구체적인 수식에 의해 한정되지 않음은 물론이다.
한편 배터리 저항은 온도에 따라 변화한다. 배터리의 저항이 변하면 충전 또는 방전조건이 동일하여도 배터리 전압 거동과 배터리 개방전압 변화량이 달라지게 된다. 이러한 점을 감안하여, 상기 F(T)는 G(V)에 의해 계산된 개방전압 변화량을 온도 조건에 따라 보정한다. 다시 말해, F(T)는 배터리의 온도가 G(V)의 산출 조건으로 설정한 온도와 차이가 있는 경우 G(V)에 의해 계산된 개방전압 변화량을 보정하는 함수이다. 상기 F(T)는 온도를 일정한 간격으로 변화시키면서 배터리 전압의 거동 변화와 배터리 개방전압 변화량의 상관 관계를 분석하여 산출할 수 있다. 즉 F(T)는 일정한 간격, 예컨대 1℃ 간격으로 설정한 각각의 측정 온도에서 배터리 전압의 거동 변화가 동일하게 되도록 실험 조건을 설정한 상태에서 표준 온도를 기준으로 배터리의 개방전압 변화량 △OCVn의 변화폭을 정량적으로 측정하고 온도 T와 △OCVn의 변화폭을 각각 입력 변수와 출력 변수로 하는 수학적 모델링을 통해 구할 수 있다. 이렇게 얻어진 F(T)는 배터리의 온도 T를 입력 변수로 하여 배터리 개방전압 변화량의 보정 팩터를 출력하는 함수가 된다. 계산의 단순화를 위해 각 T 값에 따른 보정 팩터는 룩업 테이블로 구성하여 메모리부(104)에 수록하고 배터리 개방전압 변화량을 계산할 때 상기 룩업 테이블에 수록된 온도 별 보정 팩터를 참조할 수 있다.
상기 개방전압 추정부(2032)는 상기 메모리부(104)로부터 이전의 저항 특성추정 시점에서 계산한 개방전압 OCVn-1을 리드한 후, OCVn-1에 상기 개방전압 변화량 추정부(2031)에서 계산한 개방전압 변화량 △OCVn 을 가산하여 개방전압 OCVn을 계산하고 메모리부(104)에 저장한다.
바람직하게, 상기 개방전압 추정부(2032)는 배터리 전압 Vn과 이전 단계에서 측정된 배터리 전압 사이의 가중평균 Vn (meanvalue)을 하기 수학식 6을 통해서 산출한다.
[수학식 6]
Vn (meanvalue) = (A1*V1+A2*V2+…+An-1*Vn-1 + An*Vn)/Atotal
Atotal = A1 + A2 + A3 + … + An
상기 수학식에서, Ak는 k 값이 증가할수록 감소한다. 예를 들어 n=100인 경우, Ak 값은 100으로부터 시작하여 1씩 감소하는 값을 가질 수 있다. 대안적인 예에서, 상기 수학식 6에서 A1*V1+A2*V2+…+Ak-2*Vk-2(3 ≤ k ≤ n)는 생략하여도 무방하다. 이런 경우도 Ak 값의 경향성은 상기한 바와 동일하게 유지된다. 예를 들어 k = n인 경우 A1*V1+A2*V2+…+An-2*Vn-2은 0으로 간주하고 An보다 An-1에 상대적으로 큰 값을 부여할 수 있다. 예를 들어 An-1과 An에 각각 90 및 10의 값을 부여할 수 있다.
상기 개방전압 추정부(2032)는 상기 산출된 가중평균 Vn (meanvalue)과 개방전압 OCVn-1의 차분을 상기 계산된 개방전압 OCVn에 가산하여 추가적인 보정을 수행하여 개방전압 값을 다시 한번 보정할 수 있다. 가중평균 Vn (meanvalue)을 산출하여 개방전압에 추가적인 보정을 행하면, 배터리(100)로부터 출력되는 전압이 급격하게 변화되더라도 개방전압의 계산 오차를 줄일 수 있다. 상기 개방전압 추정부(2032)는 가중평균 Vn (meanvalue)에 의한 개방전압의 보정이 완료되면 보정된 개방전압 OCVn을 메모리부(104)에 저장한다.
상기 개방전압 추정부(2032)가 메모리부(140)에 저장하는 개방전압 OCVn은 가중 평균 저항의 입력 파라미터인 Rn의 계산 시 참조될 것임은 자명하다.
그러면 이하에서는 전술한 구성을 바탕으로 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법을 구체적으로 설명한다.
도 4는 본 발명에 따른 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법의 흐름을 도시한 순서도이다. 도 4에서, 각 단계의 수행 주체는 도 1에 도시된 마이크로컨트롤러(105)이다.
단계 S10에서, 배터리의 저항 특성 추정 요청이 있는지 판단한다. 저항 특성추정 요청은 외부로부터 입력될 수도 있고 배터리 저항 특성 추정 프로그램에 의해 자동 발생될 수도 있다.
단계 S10의 판단 결과, 배터리의 저항 특성 추정 요청이 있으면 배터리 저항 특성을 추정하기 위한 루틴을 시작한다. 반대로, 단계 S10의 판단 결과, 배터리의 저항 특성 추정 요청이 없으면 프로세스를 종료한다.
단계 S20에서, 메모리부에 수록된 이전 저항 특성 추정 시점에서 구한 배터리 저항 파라미터 Rn-1과 가중 평균 저항 수렴치 Rmean n-1 을 리드한다.
이어서, 단계 S30에서, 전압 센싱부, 온도 센싱부, 전류 센싱부를 이용하여Vn, Tn 및 In을 측정한다.
다음으로, 단계 S40에서, 배터리 전압 거동에 의해 배터리 개방전압 OCVn을추정하고, Vn, In 및 OCVn으로부터 배터리 저항 파라미터 Rn을 산출한다.
다음으로, 단계 S50에서, Rn-1과 Rn으로부터 가중 평균 수열의 초기 조건 Rmean n 1을 구한다. Rmean n 1의 계산시에는 수학식 2를 이용한다.
그런 다음, 단계 S60에서, 초기 수열 값 Rmean n 1와 Rmean n-1 를 이용하여 가중 평균 수열을 충분한 회수만큼 반복 계산함으로써 가중 평균 저항의 수렴치 Rmean n 을 구한다. Rmean n 의 계산시에는 수학식 2를 이용한다. 상기 Rmean n-1 은 미리 설정한 Rmean 1 으로 대체 가능하다. 여기서, Rmean 1 은 배터리 출하 저항으로 설정할 수 있다.
그러고 나서, 단계 S70에서, 가중 평균 저항의 수렴치 Rmean n 로부터 배터리 저항
Figure PCTKR2009002629-appb-I000010
을 추정한다. 일 예로, 배터리 저항
Figure PCTKR2009002629-appb-I000011
은 가중 평균 저항의 수렴치 Rmean n 와 동일한 값으로 추정할 수 있다. 다른 예로, 가중 평균 저항의 수렴치와 배터리 저항 간의 상관 관계를 이용하여 가중 평균 저항의 수렴치 Rmean n 에 대응하는 배터리 저항
Figure PCTKR2009002629-appb-I000012
을 추정할 수 있다. 상기 상관 관계는 가중 평균 저항의 수렴치 별로 배터리 저항을 정의한 룩업 테이블 또는 가중 평균 저항의 수렴치와 배터리 저항을 각각 입력 파라미터와 출력 파라미터로 하는 함수일 수 있다. 또 다른 예로, 배터리 출하 저항에 대응하는 가중 평균 저항의 수렴치와 S60단계에서 산출한 가중 평균 수렴치 Rmean n 를 상대적으로 비교함으로써 배터리 출하 저항을 기준으로 배터리 저항을 추정할 수 있다. 즉 가중 평균 수렴치의 증가 비율만큼 배터리 출하 저항을 증가시키고 증가된 값을 배터리 저항으로 추정할 수 있다.
그런 다음, S80 단계에서, 배터리 출하 저항 Rinitial을 기준으로 상기 추정된 배터리 저항
Figure PCTKR2009002629-appb-I000013
의 상대적 증가 비율을 계산하고 계산된 상대적 증가 비율에 의해 SOHR n로 추정하여 메모리부(104)에 저장하거나 표시부(106)로 출력한다. 이 때, 수학식 3에 따라 허용 가능한 최대 저항 Rlimit을 기준으로 상대적 증가 비율을 산출하는 것이 바람직하다.
상기와 같은 각 단계의 진행이 완료되면, 배터리의 저항 특성을 추정하기 위한 절차가 모두 완료된다.
도 5는 도 4의 S40 단계에서 배터리 전압 거동을 이용하여 개방전압 OCVn을 추정하는 과정을 도시한 순서도이다. 도 5에서, 각 단계의 수행 주체는 도 1에 도시된 마이크로컨트롤러(105)이다.
도 5를 참조하면, 먼저, 단계 P10에서, 배터리 개방전압 OCVn에 대한 추정 요청이 있는지 판단한다. 상기 추정 요청은 외부로부터 입력될 수도 있고, 프로그램 알고리즘에 따라 자동 발생될 수도 있다.
만약, 단계 P10에서, OCVn에 대한 추정 요청이 있으면 개방전압 추정 단계로 이행하고, OCVn에 대한 추정 요청이 없으면 프로세스를 종료한다.
단계 P20에서, 메모리부에 저장된 배터리 전압 거동을 리드한다. 배터리 전압 거동은 적어도 Vn, Vn-1 및 Vn-2를 포함한다. 그런 후, 단계 P30에서, 배터리 전압 거동과 배터리 온도에 의해 개방전압 변화량 △OCVn을 계산한다. 여기서, 개방전압 변화량 △OCVn의 계산 방법은 상술한 바 있다.
한편, 본 발명에서, V1 및 V2와 OCV1 및 OCV2는 배터리가 부하에 연결되기 직전에 측정한 무부하 상태의 배터리 전압으로 초기화시킨다. 예를 들어, 배터리가 전기 구동 자동차에 사용될 경우 자동차 시동 키의 턴 온 시 측정한 배터리 전압 값으로 V1 및 V2와 OCV1 및 OCV2를 설정한다.
다음으로, 단계 P40에서, 이전 개방전압 OCVn-1에 개방전압 변화량 △OCVn을 가산하여 현재의 개방전압 OCVn을 계산한다.
이어서, 단계 P50은 선택적으로 진행할 수 있는 단계로서, 현재 배터리 전압 Vn과 이전 배터리 전압 Vn-1의 가중평균을 산출하고, 산출된 가중평균과 이전 개방전압 OCVn-1의 차분을 현재 개방전압 OCVn에 가산하여 개방전압 OCVn을 추가적으로 보정한다. 가중평균의 계산 방법은 이미 상술한 바 있다.
마지막으로, 단계 P60에서, 추정된 개방전압 OCVn을 메모리부에 저장한다.
<실험예>
이하에서는 실험예에 의하여 본 발명의 효과를 설명한다. 그러나, 하기 실험예는 일 예시에 불과할 뿐, 본 발명의 범위가 실험예에 의해 한정되는 것은 아니다.
본 실험에서는 먼저 실제 저항을 알고 있는 12개의 배터리를 준비하였다. 12개의 배터리 중 5번 배터리는 초기 출하 시의 저항을 가지고 있다. 그런 다음 각 배터리를 동일한 충방전 조건에서 충방전 시험을 수행하면서 충방전 시험이 시작된 후 1시간이 경과된 시점에서 본 발명에 따라 가중 평균 저항의 수렴치를 구하고, 가중 평균 저항의 수렴치를 배터리 저항으로 추정하였다.
도 8은 12개의 배터리 각각에 대한 실제 저항, 가중 평균 수렴치에 의해 추정된 배터리 저항, 실제 저항과 추정 저항의 오차를 표로 나타낸 도면이다.
도 8을 참조하면, 본 발명에 따라 추정된 배터리 저항은 실제 저항과 대비하여 3% 이내의 오차를 보였다. 따라서 본 발명은 높은 정확도로 배터리 저항을 추정할 수 있으며, 배터리 저항으로부터 계산되는 파라미터인 배터리 저항 퇴화 또한 정확하게 추정할 수 있음을 알 수 있다.
본 발명에 따르면, 복잡한 계산을 거치지 않고도 배터리의 저항 특성을 정확하게 추정할 수 있다. 또한 정확한 배터리 저항의 추정으로 배터리 교체 시기 추정 등 다양한 응용이 가능하다. 나아가 저항의 퇴화를 정확하게 추정하여 배터리의 충방전 용량을 조절함으로써 과충전과 과방전을 방지하여 배터리의 안전성을 보다 향상시킬 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (30)

  1. 저항 특성 추정 시점마다 배터리와 결합된 전압 센싱부, 전류 센싱부 및 온도 센싱부로부터 측정된 배터리 전압, 전류 및 온도 데이터를 획득하여 저장하는 데이터 저장부;
    현재와 과거에 측정된 배터리 전압 거동으로부터 배터리 개방전압을 계산하는 개방전압 계산부;
    상기 배터리 개방전압과 배터리 전압의 차이와 배터리 전류로부터 배터리 저항 파라미터를 계산하고, 현재와 이전에 계산된 배터리 저항 파라미터로부터 가중 평균 저항을 계산하는 가중 평균 저항 계산부;
    상기 가중 평균 저항을 초기 조건으로 하는 가중 평균 수열의 반복 계산에 의해 가중 평균 저항 수렴치를 계산하는 가중 평균 저항 수렴치 계산부; 및
    상기 가중 평균 저항 수렴치로부터 배터리 저항을 추정하는 저항 특성 추정부;를 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  2. 제1항에 있어서,
    상기 저항 특성 추정부는 가중 평균 저항 수렴치를 배터리 저항으로 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  3. 제1항에 있어서,
    상기 저항 특성 추정부는 가중 평균 저항 수렴치 별로 배터리 저항을 정의한 룩업 테이블로부터 상기 계산된 가중 평균 저항 수렴치에 대응하는 배터리 저항을 맵핑하여 배터리 저항을 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  4. 제1항에 있어서,
    상기 저항 특성 추정부는 가중 평균 저항 수렴치와 배터리 저항을 각각 입력 파라미터 및 출력 파라미터로 하는 함수에 상기 계산된 가중 평균 저항 수렴치를 대입하여 배터리 저항을 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  5. 제1항에 있어서,
    상기 저항 특성 추정부는 배터리 출하 저항에 대응하는 가중 평균 저항 수렴치와 상기 계산된 가중 평균 저항 수렴치를 상대적으로 대비하여 배터리 저항을 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  6. 제1항에 있어서,
    상기 가중 평균 저항 계산부는,
    Rmean n = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)
    Rn-1 = |Vn-1 - OCVn-1|÷|In-1|
    Rn = |Vn - OCVn|÷|In|
    (여기서, Rn와 Rn-1은 각각 n번째 및 n-1번째로 계산한 배터리 저항 파라미터,
    Vn 와 Vn-1은 각각 n번째 및 n-1번째로 측정한 배터리 전압,
    OCVn 및 OCVn-1은 각각 n번째 및 n-1번째로 추정한 배터리 개방전압,
    In와 In-1은 각각 n번째 및 n-1번째로 측정한 배터리 전류이다)
    에 의해 가중 평균 저항 Rmean n을 계산하는 것을 특징으로 하는 배터리 개방 전압을 이용한 배터리 저항 특성 추정 장치.
  7. 제1항에 있어서,
    상기 가중 평균 저항 수렴치 계산부는 하기 가중 평균 수열(k는 1이상),
    Rmean n k+1 = (Rmean n k-1 × 가중치 + Rmean n k)/(가중치 + 1)
    에 의해 가중 평균 저항 수렴치 Rmean n 을 계산하고,
    상기 가중 평균 수열의 초기 값 Rmean n 1은 하기 조건,
    Rmean n 1 = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)
    에 의해 설정하고,
    Rmean n 0은 이전 단계의 가중 평균 저항 수렴치 또는 배터리 출하 저항 값으로 설정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  8. 제1항에 있어서,
    상기 저항 특성 추정부는, 허용 가능 최대 저항을 기준으로 배터리 출하 저항에 대한 상기 추정된 배터리 저항의 상대적 비율을 배터리 저항 퇴화를 나타내는 파라미터로 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  9. 제1항에 있어서,
    상기 개방전압 계산부는, 배터리 전압 거동과 개방전압 변화량 사이의 상관 관계를 정의한 수학적 모델을 적용하여 상기 저장된 현재 및 과거에 측정된 배터리 전압들의 변화 패턴으로부터 개방전압 변화량을 계산하고, 배터리 온도에 대응하는 보정 팩터를 상기 계산된 개방전압 변화량에 반영하여 현재 단계의 개방전압 변화량을 추정하는 개방전압 변화량 계산부; 및
    직전 단계에서 추정된 배터리 개방전압에 상기 추정된 개방전압 변화량을 반영하여 현재 단계의 배터리 개방전압을 추정하는 개방전압 추정부;를 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  10. 제9항에 있어서,
    상기 개방전압 추정부는 현재 및 과거의 배터리 전압에 대한 가중평균(측정 시점이 빠른 배터리 전압일 수록 큰 가중치를 부여함)과 직전 단계의 개방전압 차분을 상기 추정된 현재 단계의 개방전압에 가산하여 개방전압을 보정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  11. 제10항에 있어서,
    상기 과거의 배터리 전압은 직전 단계의 배터리 전압인 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 퇴화 추정 장치.
  12. 제9항에 있어서,
    상기 추정된 개방전압 변화량은 상기 계산된 개방전압 변화량에 상기 온도에따른 보정 팩터를 곱셈 연산하여 산출하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 퇴화 추정 장치.
  13. 제9항에 있어서,
    상기 배터리 전압 거동을 구성하는 배터리 전압은 적어도 현재 단계, 전 단계 및 전전단계에서 측정된 배터리 전압 Vn, Vn-1 및 Vn-2을 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  14. 제9항에 있어서,
    상기 수학적 모델은 현재 단계와 과거 단계 사이의 배터리 전압 변화량과, 배터리 전압 변화 패턴을 구성하는 각 전압에 의해 정의되는 패턴 함수의 수학적 연산에 의해 정의되는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  15. 제9항에 있어서,
    상기 보정 팩터는 배터리 온도 T를 입력 변수로 하고 배터리 개방전압 변화량의 보정 팩터를 출력 변수로 하는 수학적 모델에 배터리의 온도를 대입하여 산출하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
  16. (a) 저항 특성 추정 시점마다 배터리와 결합된 전압 센싱부, 전류 센싱부 및 온도 센싱부로부터 측정된 배터리 전압, 전류 및 온도 데이터를 획득하여 저장하는 단계;
    (b) 현재와 과거에 측정된 배터리 전압 거동으로부터 배터리 개방전압을 계산하는 단계;
    (c) 상기 배터리 개방전압과 배터리 전압의 차이와 배터리 전류로부터 배터리 저항 파라미터를 계산하고, 현재와 이전에 계산된 배터리 저항 파라미터로부터 가중 평균 저항을 계산하는 단계;
    (d) 상기 가중 평균 저항을 초기 조건으로 하는 가중 평균 수열의 반복 계산에 의해 가중 평균 저항 수렴치를 계산하는 단계; 및
    (e) 상기 가중 평균 저항 수렴치로부터 배터리 저항을 추정하는 단계;를 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  17. 제16항에 있어서,
    상기 (e) 단계는, 가중 평균 저항 수렴치를 배터리 저항으로 추정하는 단계임을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  18. 제16항에 있어서,
    상기 (e) 단계는, 가중 평균 저항 수렴치 별로 배터리 저항을 정의한 룩업 테이블로부터 상기 계산된 가중 평균 저항 수렴치에 대응하는 배터리 저항을 맵핑하여 배터리 저항을 추정하는 단계임을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  19. 제16항에 있어서,
    상기 (e) 단계는, 가중 평균 저항 수렴치와 배터리 저항을 각각 입력 파라미터 및 출력 파라미터로 하는 함수에 상기 계산된 가중 평균 저항 수렴치를 대입하여 배터리 저항을 추정하는 단계임을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  20. 제16항에 있어서,
    상기 (e) 단계는, 배터리 출하 저항에 대응하는 가중 평균 저항 수렴치와 상기 계산된 가중 평균 저항 수렴치를 상대적으로 대비하여 배터리 저항을 추정하는 단계임을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  21. 제16항에 있어서,
    상기 (c) 단계는, 하기 수학식;
    Rmean n = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)
    Rn-1 = |Vn-1 - OCVn-1|÷|In-1|
    Rn = |Vn - OCVn|÷|In|
    (여기서, Rn와 Rn-1은 각각 n번째 및 n-1번째로 계산한 배터리 저항 파라미터,
    Vn 와 Vn-1은 각각 n번째 및 n-1번째로 측정한 배터리 전압,
    OCVn 및 OCVn-1은 각각 n번째 및 n-1번째로 추정한 배터리 개방전압,
    In와 In-1은 각각 n번째 및 n-1번째로 측정한 배터리 전류이다)
    에 의해 가중 평균 저항 Rmean n을 계산하는 단계임을 특징으로 하는 배터리 개방 전압을 이용한 배터리 저항 특성 추정 방법.
  22. 제16항에 있어서,
    상기 (d) 단계는, 하기 가중 평균 수열(k는 1이상);
    Rmean n k+1 = (Rmean n k-1 × 가중치 + Rmean n k)/(가중치 + 1)
    에 의해 가중 평균 저항 수렴치 Rmean n 을 계산하는 단계이고,
    상기 가중 평균 수열의 초기 값 Rmean n 1은 하기 조건,
    Rmean n 1 = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)
    에 의해 설정하고,
    Rmean n 0은 이전 단계의 가중 평균 저항 수렴치 또는 배터리 출하 저항 값으로 설정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  23. 제16항에 있어서,
    허용 가능 최대 저항을 기준으로 배터리 출하 저항에 대한 상기 추정된 배터리 저항의 상대적 비율을 배터리 저항 퇴화를 나타내는 파라미터로 추정하는 단계를 더 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  24. 제16항에 있어서,
    상기 (b) 단계는, 배터리 전압 거동과 개방전압 변화량 사이의 상관 관계를 정의한 수학적 모델을 적용하여 상기 저장된 현재 및 과거에 측정된 배터리 전압들의 변화 패턴으로부터 개방전압 변화량을 계산하고, 배터리 온도에 대응하는 보정 팩터를 상기 계산된 개방전압 변화량에 반영하여 보정된 개방전압 변화량을 계산하는 단계; 및
    직전 단계에서 추정된 배터리 개방전압에 상기 추정된 개방전압 변화량을 반영하여 현재 단계의 배터리 개방전압을 추정하는 단계;를 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  25. 제24항에 있어서,
    현재 및 과거의 배터리 전압에 대한 가중평균(측정 시점이 빠른 배터리 전압일 수록 큰 가중치를 부여함)과 직전 단계의 개방전압 차분을 상기 추정된 현재 단계의 개방전압에 가산하여 개방전압을 보정하는 단계를 더 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  26. 제25항에 있어서,
    상기 과거의 배터리 전압은 직전 단계의 배터리 전압인 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 퇴화 추정 방법.
  27. 제24항에 있어서,
    상기 보정된 개방전압 변화량은 상기 계산된 개방전압 변화량에 상기 온도에따른 보정 팩터를 곱셈 연산하여 산출하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 퇴화 추정 방법.
  28. 제24항에 있어서,
    상기 배터리 전압 거동을 구성하는 배터리 전압은 적어도 현재 단계, 전 단계 및 전전단계에서 측정된 배터리 전압 Vn, Vn-1 및 Vn-2을 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  29. 제24항에 있어서,
    상기 수학적 모델은 현재 단계와 과거 단계 사이의 배터리 전압 변화량과, 배터리 전압 변화 패턴을 구성하는 각 전압에 의해 정의되는 패턴 함수의 수학적 연산에 의해 정의되는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
  30. 제24항에 있어서,
    상기 보정 팩터는 배터리 온도 T를 입력 변수로 하고 배터리 개방전압 변화량의 보정 팩터를 출력 변수로 하는 수학적 모델에 배터리의 온도를 대입하여 산출하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
PCT/KR2009/002629 2008-08-14 2009-05-19 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법 WO2010018919A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011522891A JP5661625B2 (ja) 2008-08-14 2009-05-19 バッテリー電圧変化パターンにより推定された開回路電圧に基づいたバッテリーの抵抗特性推定装置及び方法
BRPI0912595A BRPI0912595B1 (pt) 2008-08-14 2009-05-19 aparelho e método para estimar característica de resistência para estimar uma resistência de uma bateria
CN2009801317800A CN102124354B (zh) 2008-08-14 2009-05-19 使用电池电压行为估计电池电阻特性的装置及方法
EP09806781.2A EP2325658B1 (en) 2008-08-14 2009-05-19 Device and method for estimating battery resistance characteristics using battery voltage behaviour

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0080122 2008-08-14
KR1020080080122A KR100927541B1 (ko) 2008-08-14 2008-08-14 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및방법

Publications (1)

Publication Number Publication Date
WO2010018919A1 true WO2010018919A1 (ko) 2010-02-18

Family

ID=41605200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002629 WO2010018919A1 (ko) 2008-08-14 2009-05-19 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법

Country Status (8)

Country Link
US (2) US7996167B2 (ko)
EP (1) EP2325658B1 (ko)
JP (1) JP5661625B2 (ko)
KR (1) KR100927541B1 (ko)
CN (1) CN102124354B (ko)
BR (1) BRPI0912595B1 (ko)
TW (1) TWI384246B (ko)
WO (1) WO2010018919A1 (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927541B1 (ko) * 2008-08-14 2009-11-17 주식회사 엘지화학 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및방법
CN102822046B (zh) * 2010-02-26 2015-06-17 塞格威股份有限公司 车辆控制的装置和方法
FR2968769B1 (fr) * 2010-12-10 2012-12-14 Peugeot Citroen Automobiles Sa Procede de determination de l'etat de sante d'une batterie pour l'alimentation d'un vehicule electrique
US8449998B2 (en) * 2011-04-25 2013-05-28 Lg Chem, Ltd. Battery system and method for increasing an operational life of a battery cell
CN103197115A (zh) * 2012-01-05 2013-07-10 新普科技股份有限公司 充电电池组的电压校正方法
US8937838B2 (en) * 2012-01-10 2015-01-20 Sk Hynix Memory Solutions Inc. Finding optimal read thresholds and related voltages for solid state memory
KR101454828B1 (ko) * 2012-06-13 2014-10-28 주식회사 엘지화학 혼합 양극재를 포함하는 이차 전지의 전압 추정 장치 및 방법
US20140019789A1 (en) * 2012-07-10 2014-01-16 Apple Inc. Monitoring a battery in an electronic device
KR102084288B1 (ko) * 2012-11-05 2020-03-03 유니버시티 오브 플로리다 리서치 파운데이션, 아이엔씨. 디스플레이의 휘도 보상
KR101983392B1 (ko) * 2012-11-27 2019-05-29 에스케이이노베이션 주식회사 배터리 충전 상태 추정 장치 및 그 방법
US20170110869A1 (en) * 2014-01-08 2017-04-20 Electricite De France Electrical measuring device for measuring the resistance of an earth connection of an electrical facility
CN105866551B (zh) * 2016-06-27 2018-11-27 上海电气钠硫储能技术有限公司 一种钠硫电池内阻检测方法
KR102579538B1 (ko) * 2016-10-05 2023-09-18 삼성전자주식회사 배터리 충전 제어 방법 및 장치
KR102182691B1 (ko) * 2017-10-20 2020-11-24 주식회사 엘지화학 배터리 저항 추정 장치 및 방법
KR102296993B1 (ko) * 2017-11-17 2021-09-01 주식회사 엘지에너지솔루션 배터리 저항 추정 장치 및 방법
KR102055850B1 (ko) * 2017-12-21 2019-12-13 주식회사 엘지화학 전류 센서 진단 장치 및 방법
KR102416548B1 (ko) 2018-02-01 2022-07-01 주식회사 엘지에너지솔루션 배터리를 위한 등가 회로 모델의 파라미터 추정 방법 및 배터리 관리 시스템
WO2019192670A1 (en) 2018-04-06 2019-10-10 Volvo Truck Corporation A method and system for estimating battery properties in a vehicle drive system
DE112019003484T5 (de) * 2018-07-10 2021-04-08 Sumitomo Electric Industries, Ltd. Sekundärbatterieparameter-Schätzungsvorrichtung, Sekundärbatterieparameter-Schätzungsverfahren und Programm
CN112909361B (zh) * 2018-10-16 2023-03-31 宁德时代新能源科技股份有限公司 电芯电压修正方法、装置、设备和介质
KR102521576B1 (ko) * 2019-03-18 2023-04-12 주식회사 엘지에너지솔루션 배터리 관리 장치
KR102520673B1 (ko) * 2019-03-18 2023-04-10 주식회사 엘지에너지솔루션 배터리 상태 추정 장치
KR102493232B1 (ko) * 2019-03-18 2023-01-27 주식회사 엘지에너지솔루션 배터리 관리 장치
KR102521577B1 (ko) * 2019-03-18 2023-04-12 주식회사 엘지에너지솔루션 배터리 상태 추정 장치
CN112630538B (zh) 2019-09-24 2024-04-16 台达电子工业股份有限公司 制动电阻的估测方法
KR20220139755A (ko) * 2021-04-08 2022-10-17 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법
WO2024063575A1 (ko) * 2022-09-21 2024-03-28 주식회사 엘지에너지솔루션 배터리 상태 진단 장치 및 방법
CN115327419B (zh) * 2022-10-18 2023-04-28 长兴太湖能谷科技有限公司 一种蓄电池内阻参数的在线辨识方法
KR102698009B1 (ko) * 2022-10-26 2024-08-21 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189066A (ja) * 2000-12-22 2002-07-05 Hitachi Ltd 二次電池残量推定法
US6832171B2 (en) * 2002-12-29 2004-12-14 Texas Instruments Incorporated Circuit and method for determining battery impedance increase with aging
JP2006215001A (ja) * 2005-02-07 2006-08-17 Fuji Heavy Ind Ltd バッテリの管理装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540437B2 (ja) * 1995-06-05 2004-07-07 本田技研工業株式会社 電池状態判別装置
DE10106508A1 (de) * 2001-02-13 2002-08-29 Bosch Gmbh Robert Verfahren und Anordnung zur Bestimmung der Leistungsfähigkeit einer Batterie
JP4682509B2 (ja) * 2003-11-26 2011-05-11 日産自動車株式会社 バッテリの開放電圧演算方法および充電量演算方法
TWI267647B (en) * 2004-08-19 2006-12-01 Nat Huwei Institue Of Technolo Battery aging level measurement device and method
US7612532B2 (en) * 2005-06-21 2009-11-03 Gm Global Technology Operations, Inc. Method for controlling and monitoring using a state estimator having variable forgetting factors
JP5170851B2 (ja) 2005-07-15 2013-03-27 古河電気工業株式会社 蓄電池充電状態検知方法および蓄電池充電状態検知装置
JP4690223B2 (ja) * 2006-02-24 2011-06-01 株式会社デンソー バッテリの状態量演算装置
US7521895B2 (en) * 2006-03-02 2009-04-21 Lg Chem, Ltd. System and method for determining both an estimated battery state vector and an estimated battery parameter vector
KR100804698B1 (ko) * 2006-06-26 2008-02-18 삼성에스디아이 주식회사 배터리 soc 추정 방법 및 이를 이용하는 배터리 관리시스템 및 구동 방법
KR100970841B1 (ko) * 2008-08-08 2010-07-16 주식회사 엘지화학 배터리 전압 거동을 이용한 배터리 용량 퇴화 추정 장치 및방법
KR100927541B1 (ko) * 2008-08-14 2009-11-17 주식회사 엘지화학 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189066A (ja) * 2000-12-22 2002-07-05 Hitachi Ltd 二次電池残量推定法
US6832171B2 (en) * 2002-12-29 2004-12-14 Texas Instruments Incorporated Circuit and method for determining battery impedance increase with aging
JP2006215001A (ja) * 2005-02-07 2006-08-17 Fuji Heavy Ind Ltd バッテリの管理装置

Also Published As

Publication number Publication date
CN102124354B (zh) 2013-09-18
US8185332B2 (en) 2012-05-22
US20100042345A1 (en) 2010-02-18
TWI384246B (zh) 2013-02-01
TW201007191A (en) 2010-02-16
JP5661625B2 (ja) 2015-01-28
JP2011530709A (ja) 2011-12-22
EP2325658A4 (en) 2013-11-13
KR100927541B1 (ko) 2009-11-17
BRPI0912595B1 (pt) 2020-02-04
BRPI0912595A2 (pt) 2015-10-13
EP2325658A1 (en) 2011-05-25
EP2325658B1 (en) 2015-01-07
CN102124354A (zh) 2011-07-13
US7996167B2 (en) 2011-08-09
US20110256434A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
WO2010018919A1 (ko) 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법
WO2010016647A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2019050330A1 (ko) 배터리 충전 상태 추정 장치 및 방법
KR100985667B1 (ko) 배터리 개방전압 추정장치, 이를 이용한 배터리 충전상태추정장치 및 그 제어 방법
WO2010016661A2 (ko) 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법
US10408887B2 (en) Method for estimating degradation of rechargeable battery, degradation estimation circuit, electronic apparatus and vehicle including same
WO2019098722A1 (ko) 배터리 저항 추정 장치 및 방법
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2019199058A1 (ko) 배터리 진단 장치 및 방법
US11675015B1 (en) Battery cell analyzer
US7683581B2 (en) Measuring apparatus and method for measuring remaining coulombs of electrical energy storage device and electronic device
WO2018038383A1 (ko) 배터리 셀의 성능 테스트 장치 및 방법
WO2016052900A1 (ko) 이차 전지의 방전 출력 추정 방법 및 장치
WO2012148070A1 (ko) 배터리 용량 퇴화 추정 장치 및 방법
WO2019156377A1 (ko) 배터리를 위한 등가 회로 모델의 파라미터를 추정하기 위한 방법 및 배터리 관리 시스템
WO2013151355A1 (ko) 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 자가 진단 방법
KR20090082374A (ko) 배터리가 평형에 있지 않을 때 배터리의 충전 상태를 결정하기 위한 장치 및 방법
WO2019074221A1 (ko) 이차 전지의 충전 상태를 추정하기 위한 장치 및 그 방법
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2019088492A1 (ko) 배터리 등가 회로 모델의 파라미터 추정 방법, 장치 및 기록매체
WO2020153637A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2020162675A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2019151654A1 (ko) 이차전지 안전성 평가 방법 및 장치
WO2019151679A1 (ko) 배터리를 위한 등가 회로 모델의 파라미터 추정 방법 및 배터리 관리 시스템
WO2019098576A1 (ko) 배터리 여유 용량 추정 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131780.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011522891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1693/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009806781

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0912595

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110214