WO2010018919A1 - 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법 - Google Patents
배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법 Download PDFInfo
- Publication number
- WO2010018919A1 WO2010018919A1 PCT/KR2009/002629 KR2009002629W WO2010018919A1 WO 2010018919 A1 WO2010018919 A1 WO 2010018919A1 KR 2009002629 W KR2009002629 W KR 2009002629W WO 2010018919 A1 WO2010018919 A1 WO 2010018919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- resistance
- voltage
- weighted average
- open
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
Definitions
- the present invention relates to an apparatus and method for estimating a resistance characteristic of a battery, and more particularly, to an apparatus and method for estimating a resistance characteristic of a battery using an open voltage of the battery.
- the battery resistance cannot be directly measured while charging and discharging are being performed. Therefore, in the related art, the battery resistance and charge / discharge current were measured, and the battery resistance was indirectly calculated by Ohm's law. However, since the battery voltage shows an error with the actual voltage due to the IR drop effect, and the battery current also has a measurement error, the resistance calculated by Ohm's law simply shows a significant error with the actual resistance.
- the IR drop phenomenon refers to a phenomenon in which the voltage changes rapidly when the battery is connected to the load to start discharging or when the battery starts charging from an external power source. That is, the battery voltage drops sharply when discharge starts, and the voltage rises sharply when charging starts.
- the present invention has been made to solve the above problems of the prior art, and an object thereof is to provide an apparatus and method for estimating battery resistance characteristics with high accuracy.
- Battery resistance characteristic estimation apparatus using the battery voltage behavior according to the present invention for achieving the above technical problem, the battery voltage, current measured from the voltage sensing unit, the current sensing unit and the temperature sensing unit coupled to the battery at each resistance characteristic estimation time And a data storage unit for obtaining and storing temperature data.
- An open voltage calculator configured to calculate a battery open voltage from battery voltage behavior measured in present and past;
- a weighted average resistance calculator configured to calculate a battery resistance parameter from the difference between the battery open voltage and the battery voltage and a battery current, and calculate a weighted average resistance from current and previously calculated battery resistance parameters;
- a weighted average resistance convergence calculation unit configured to calculate a weighted average resistance convergence value by repetitive calculation of a weighted average sequence having the weighted average resistance as an initial condition; And a resistance characteristic estimator for estimating a battery resistance from the weighted average resistance convergence value.
- the resistance characteristic estimator estimates the weighted average resistance convergence value as the battery resistance.
- the resistance characteristic estimator estimates battery resistance by mapping a battery resistance corresponding to the calculated weighted average resistance convergence value from a lookup table that defines battery resistance for each weighted average resistance convergence value.
- the resistance characteristic estimator estimates the battery resistance by substituting the calculated weighted average resistance convergence value into a function having the weighted average resistance convergence value and the battery resistance as input parameters and output parameters, respectively.
- the resistance characteristic estimator estimates the battery resistance by comparing the weighted average resistance convergence value corresponding to the battery shipment resistance with the calculated weighted average resistance convergence value relatively.
- the resistance characteristic estimator estimates a relative ratio of the estimated battery resistance to battery shipment resistance based on the maximum allowable resistance as a parameter representing battery resistance degradation.
- the open circuit voltage calculator is configured to calculate an open circuit voltage change amount from the stored patterns of current and past measured battery voltages by applying a mathematical model that defines a correlation between the battery voltage behavior and the open circuit voltage change amount.
- An open voltage change calculator for estimating the open voltage change amount at a current stage by applying a correction factor corresponding to a battery temperature to the calculated open voltage change amount;
- an open-voltage estimator for estimating the open-circuit voltage of the current stage by reflecting the estimated change of the open-circuit voltage in the estimated battery open-circuit voltage in the previous stage.
- the open voltage estimating unit assigns a weighted average of the current and past battery voltages (weighted as the battery voltage is measured faster) and the difference between the open voltages of the previous stages to the estimated open voltages of the current stages. Add and correct the open voltage.
- the past battery voltage may be the battery voltage of the previous stage.
- the estimated open voltage change amount is calculated by multiplying the calculated open voltage change amount by a correction factor according to the temperature.
- the battery voltage constituting the battery voltage behavior includes at least the battery voltages V n , V n-1 and V n-2 measured at the current stage, the previous stage and the previous stage.
- the mathematical model is defined by a mathematical operation of a pattern function defined by the amount of battery voltage change between the current step and the past step and each voltage constituting the battery voltage change pattern.
- the correction factor is calculated by substituting the temperature of the battery into a mathematical model using the battery temperature T as an input variable and the correction factor of the amount of change in the battery open voltage as an output variable.
- Battery resistance characteristic estimation method using the battery voltage behavior according to the present invention for achieving the above technical problem, the battery voltage, current measured from the voltage sensing unit, the current sensing unit and the temperature sensing unit coupled to the battery at each resistance characteristic estimation time Obtaining and storing temperature data; Calculating a battery open voltage from current and past measured battery voltage behavior; Calculating a battery resistance parameter from the difference between the battery open voltage and the battery voltage and a battery current, and calculating a weighted average resistance from current and previously calculated battery resistance parameters; Calculating a weighted average resistance convergence value by iterative calculation of a weighted average sequence having the weighted average resistance as an initial condition; And estimating a battery resistance from the weighted average resistance convergence value.
- FIG. 1 is a block diagram of an apparatus for estimating battery resistance characteristics using battery voltage behavior according to an exemplary embodiment of the present invention.
- FIG. 2 is a block diagram of a battery resistance characteristic estimation program according to an embodiment of the present invention.
- FIG. 3 is a block diagram of an open voltage calculator for estimating an open voltage using battery voltage behavior in the present invention.
- FIG. 4 is a flowchart illustrating a method of estimating battery resistance characteristics using battery voltage behavior according to an exemplary embodiment of the present invention.
- FIG. 5 is a flowchart illustrating an open voltage estimation method using battery voltage behavior according to an exemplary embodiment of the present invention.
- FIG. 6 is a graph illustrating an aspect in which a battery voltage measured directly in the course of performing a charge / discharge test and an open voltage estimated according to the present invention differ due to an IR drop phenomenon.
- FIG. 7 is a graph showing the weighted average resistance calculated according to the present invention converges to the actual resistance value over time regardless of the initial condition.
- FIG. 8 is a table illustrating calculations of errors of actual resistance, estimated resistance, and estimated resistance based on the actual resistance of each of the 12 test target batteries.
- FIG. 1 is a block diagram illustrating a configuration of an apparatus for estimating battery resistance characteristics using battery voltage behavior according to an exemplary embodiment of the present invention.
- an apparatus for estimating battery resistance characteristics using battery voltage behavior is connected between a battery 100 and a load 107, and includes a voltage sensing unit 101, a temperature sensing unit 102, The current sensing unit 103, a memory unit 104, and a microcontroller 105 are included.
- the voltage sensing unit 101 measures a battery voltage under the control of the microcontroller 105 at each time of estimating resistance characteristics and outputs the battery voltage to the microcontroller 105.
- the measured battery voltage is different from the actual voltage of the battery by the IR drop effect.
- the temperature sensing unit 102 measures the battery temperature under the control of the microcontroller 105 at each time of estimating the resistance characteristic and outputs the battery temperature to the microcontroller 105.
- the current sensing unit 103 measures the battery current flowing through the current sensing resistor 108 and outputs the measured current to the microcontroller 105 under the control of the microcontroller 105 at the time of estimating the resistance characteristic.
- the memory unit 104 may include a battery resistance characteristic estimation program for estimating resistance characteristics of a battery, various data necessary for the battery resistance characteristic estimation program to estimate battery resistance and resistance degradation, the voltage sensing unit 101, and temperature. Stores battery voltage, temperature, and current data measured by the sensing unit 102 and the current sensing unit 103, and various calculated values generated by the battery resistance characteristic estimation program in estimating battery resistance and resistance degradation. .
- the microcontroller 105 receives battery voltage, temperature, and current data from the voltage sensing unit 101, the temperature sensing unit 102, and the current sensing unit 103 at each time of estimating resistance characteristics of the battery 100.
- the battery resistance characteristic estimation program is read out from the memory unit 104, executed, estimated battery resistance and resistance deterioration, stored in the memory unit 104, and the estimated resistance and The resistance degradation is output to the outside through the display unit 106.
- the type of the battery 100 is not particularly limited, and may be configured as a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydride battery, a nickel zinc battery, and the like, which can be recharged and require a state of charge.
- the type of the load 107 is not particularly limited, and may be configured as a portable electronic device such as a video camera, a portable telephone, a portable PC, a PMP, or an MP3 player, a motor of an electric vehicle or a hybrid vehicle, a DC to DC converter, or the like. .
- FIG. 2 is a block diagram showing the configuration of a battery resistance characteristic estimation program according to an embodiment of the present invention.
- the battery resistance characteristic estimation program 200 is executed by the microcontroller 105, and includes a data storage unit 201, an open voltage calculator 202, and a weighted average resistance calculator. 203, a weighted average resistance convergence value calculation unit 204, and a resistance characteristic estimation unit 205.
- the data storage unit 201 may include a battery voltage V n , a temperature T n, and a current I at the time of estimating resistance characteristics from the voltage sensing unit 101, the temperature sensing unit 102, and the current sensing unit 103 shown in FIG. 1.
- n is received and stored in the memory unit 104.
- n is the measurement cycle of voltage, temperature, and current, which is the same as the resistance characteristic estimation cycle.
- the open voltage calculator 202 calculates the open voltage change amount ⁇ OCV n of the battery by using the battery voltage behavior, corrects the calculated open battery voltage change amount by applying a correction factor according to temperature, and corrects the open battery.
- the battery open-circuit voltage OCV n at this stage is calculated by reflecting the change in voltage to the previously calculated open-circuit voltage OCV n-1 .
- the process of the procedure for calculating the open-circuit voltage variation ⁇ n OCV, correcting the open-circuit voltage variation ⁇ OCV n by temperature will be described later.
- the open voltage calculator 202 stores the calculated OCV n in the memory 104.
- the weighted average resistance calculator 203 calculates the weighted average resistance R mean n using Equation 1 below.
- R mean n (R n-1 ⁇ weight + R n ) ⁇ (weight + 1)
- R n and R n-1 are the battery resistance parameters calculated for the n th and n-1 th times, respectively.
- V n and V n-1 are the nth and n-1th measured battery voltages, respectively.
- OCV n and OCV n-1 are battery open voltages estimated as the n th and n-1 th times, respectively.
- I n and I n-1 are the battery currents measured in the nth and n-1th times, respectively.
- n is an integer of 2 or more
- the weight is a sufficiently large value, for example a value of 5000 or more.
- the weighted average resistance R mean n has a characteristic of converging to the actual resistance value of the battery over time. This will be described in detail below.
- FIG. 6 is a graph illustrating changes in OCV n periodically estimated using V n and battery voltage behavior measured periodically while charging and discharging a battery in a predetermined pattern.
- the measured battery voltage V n shows a sharp change compared to the estimated OCV n . Since this is due to the IR drop generated during battery voltage measurement, the absolute difference between the measured voltage V n and the estimated voltage OCV n corresponds to the product of the battery current I n and the battery resistance R n . Therefore, it can be seen that the battery resistance parameter R n represents the resistance characteristic of the battery at the time when V n is measured.
- FIG. 7 shows the weighted average resistances R mean 1 , R mean 2 , and periodically, with three different values set for the initial condition R 1 of the resistance parameter while performing charge / discharge tests on a battery that already knows the resistance.
- graph A is the case where the resistance parameter R 1 is set to the actual resistance of the battery
- graph B is the case where the resistance parameter R 1 is set higher than the actual resistance of the battery
- graph C is the resistance parameter R 1 of the battery. It is set lower than actual resistance.
- the weighted average resistance converges with the actual resistance value over time. Therefore, the convergence value of the weighted average resistance can be used as a parameter for estimating battery resistance.
- the convergence value of the weighted average resistance can be obtained through a long time charge and discharge experiment.
- the present invention estimates the convergence value of the weighted average resistance using the weighted average sequence having the obtained weighted average resistance as an initial condition. .
- the weighted average resistance convergence calculation unit 204 uses the weighted average resistance R mean n calculated by the weighted average resistance calculation unit 203 as an initial condition using the following equation (2).
- R mean n means that R mean n is a converged value.
- R mean n k + 1 (R mean n k-1 ⁇ weight + R mean n k ) / (weight + 1)
- R mean n 1 (R n-1 ⁇ weight + R n ) ⁇ (weight + 1)
- k is an integer of 1 or more.
- the number of calculations for the weighted average sequence is set to a large number of thousands or more.
- the initial convergence value R mean 1 of the weighted average resistance may be set in advance at the time of shipment of the battery and stored in the memory unit 104 for reference.
- the resistance characteristic estimator 205 reads the weighted average resistance convergence value R mean n from the memory unit 104 and then the battery resistance. Is estimated and stored in the memory unit 104. here, Denotes the battery resistance estimated at the nth resistance estimation time point.
- the resistance characteristic estimator 205 calculates a weighted average resistance convergence value R mean n of battery resistance. It can be estimated as it is.
- the resistance characteristic estimator 205 may use the correlation between the weighted average convergence value and the battery resistance to correspond to the weighted average resistance convergence value R mean n . Can be estimated.
- the correlation may be a lookup table that defines battery resistance for each weighted average resistance convergence value.
- the correlation may be a function of weighted average resistance convergence and battery resistance as input parameters and output parameters, respectively.
- the correlation is obtained through a charge and discharge test on the battery. That is, the weighted average convergence value is calculated by performing charge / discharge experiments under the same conditions for a long time on a sufficient number of batteries having a known actual resistance in various ranges. Then, the battery resistance corresponding to the weighted average resistance convergence value obtained as a result of the experiment may be configured as a lookup table. Alternatively, the functional relationship between the weighted average resistance convergence value and the battery resistance can be obtained by numerical analysis using the weighted average resistance convergence value and the battery resistance as the input and output parameters, respectively.
- the resistance characteristic estimator 205 calculates a weighted average calculated by the weighted average resistance convergence calculator 204 based on a battery shipment resistance stored in the memory 104 and a weighted average resistance convergence value. Battery resistance by comparing resistance convergence R mean n Can also be estimated.
- the resistance characteristic estimator 205 is a battery resistance After estimating the estimated battery resistance based on the shipment resistance R initial of the battery by the following equation (3) The relative ratio of and may be calculated, and the calculated result may be stored in the memory unit 104 as SOH R n , which is a parameter representing resistance degradation of the battery.
- SOH R n is the resistance degradation of the nth estimated battery
- R limit The maximum allowable resistance the battery can be used.
- the SOH R n represents a current ratio of the current battery resistance based on the shipment resistance of the battery. Since battery resistance tends to increase as the battery usage time increases, SOH R n is a parameter for determining how much battery life remains based on the initial use of the battery. In addition, the SOH R n can be utilized to adjust the charge and discharge resistance of the battery. For example, when the SOH R n decreases, the charging capacity and the discharging capacity of the battery may be reduced in conjunction with this. In this case, it is possible to effectively prevent the battery from being overcharged or overdischarged by performing charging and discharging according to the resistance of the battery.
- the resistance characteristic estimator 205 may output the estimated SOH R n to the display unit 106.
- the display 106 is coupled with the microcontroller 105 via an interface.
- the resistance characteristic estimator 205 outputs SOH R n to the display unit 106 through an interface.
- the display unit 106 visually expresses the SOH R n to be recognized by the battery user.
- SOH R n may be directly expressed in letters or may be displayed in graph form.
- FIG. 3 is a block diagram illustrating in more detail the configuration of the open voltage calculator 202 estimating the battery open voltage using the battery voltage behavior.
- the open voltage calculator 202 includes an open voltage change calculator 2031 and an open voltage estimator 2032.
- the open voltage change calculator 2031 calculates the open voltage change amount based on the open voltage of the previous step by using the battery voltage behavior to calculate the current battery open voltage. That is, the open voltage change calculator 2031 calculates how much the battery open voltage of the current step has changed based on the open voltage of the previous step.
- the open circuit voltage change calculator 2031 may measure the battery voltage V n measured at the current resistance characteristic estimation time from the memory unit 104, the battery voltage V n-1 measured at the previous resistance characteristic estimation time, and the current.
- the battery temperature T n measured at the resistance specific estimation point is read from the memory unit 104. Then, the open voltage change amount? OCV n is estimated by the following equation (4).
- G (V) is an open voltage change calculation function that maps the battery voltage change 'V n -V n-1 ' to the open voltage change ⁇ OCV n
- F (T) is an open voltage change effect according to temperature. Is an open-voltage correction function that corrects the open-circuit change ⁇ OCV n according to the battery temperature.
- the G (V) is a function of correcting and converting an error (difference between the measured voltage and the actual voltage) of the battery voltage due to the IR drop phenomenon without converting the change amount of the battery voltage into the open voltage change amount. That is, G (V) attenuates the amount of change in battery voltage when the amount of change in battery voltage tends to be larger than before, and outputs it as the amount of change in battery open voltage. If the amount of change in battery voltage tends to remain the same as before, the change in battery voltage is kept as it is. If the amount of change in battery voltage tends to decrease than before, the amount of change in battery voltage is amplified and output as the amount of change in battery open voltage.
- G (V) can be obtained by mathematically modeling a correlation between battery voltage behavior and a corresponding amount of change in open voltage under a specific temperature condition.
- the mathematical modeling function is a battery voltage V under laboratory conditions in which the battery voltage and the battery opening voltage can be measured.
- n , V n-1 And V n-2 Change pattern and corresponding change in open voltage ⁇ OCV n It can be calculated by analyzing correlations existing between them.
- the number of battery voltages constituting the change pattern of the battery voltage can be extended to four or more.
- the G (V) can be defined by generalizing as shown in Equation 5.
- g (V n , V n-1 , V n-2 , ...) is a pattern function that defines the change behavior of the battery voltage measured at each resistance estimation time point. remind '... Symbol means that the pattern function can be defined by three or more battery voltages, including the battery voltage measured at the present time.
- the pattern function is defined by analyzing a correlation between a plurality of battery voltage variations and a battery opening voltage variation obtained experimentally.
- the function g may be defined as a relative ratio of the voltage change amount of the previous step based on the voltage change amount of the current step.
- the present invention is not limited by the specific formula of the pattern function.
- F (T) corrects the amount of change in the open voltage calculated by G (V) according to the temperature condition.
- F (T) is a function of correcting the amount of change in open voltage calculated by G (V) when the temperature of the battery is different from the temperature set as the calculation condition of G (V).
- the F (T) may be calculated by analyzing a correlation between a change in battery voltage behavior and a change in battery open voltage while changing temperature at regular intervals.
- F (T) is the amount of change in the open-circuit voltage of the battery ⁇ OCV n based on the standard temperature while the experimental conditions are set so that the change in battery voltage behavior is the same at each measurement temperature set at a constant interval, for example, at 1 ° C interval. It can be found through the mathematical modeling, which measures the change of quantitatively and the change of temperature T and ⁇ OCV n as the input and output variables, respectively. F (T) thus obtained becomes a function of outputting a correction factor of the change amount of the battery open-circuit voltage using the temperature T of the battery as an input variable.
- the correction factor according to each T value may be configured as a lookup table and included in the memory unit 104, and the correction factor for each temperature included in the lookup table may be referred to when calculating the amount of change in the battery open voltage.
- the open voltage estimator 2032 reads the open voltage OCV n-1 calculated at the previous resistance characteristic estimation time from the memory unit 104, and then changes the open voltage variation estimator 2031 to OCV n-1 . and by the open-circuit voltage variation ⁇ adding the calculated OCV n calculate the open-circuit voltage OCV n in and stored in the memory unit 104.
- the open voltage estimator 2032 calculates a weighted average V n (meanvalue) between the battery voltage V n and the battery voltage measured in the previous step through Equation 6 below.
- V n (meanvalue) (A 1 * V 1 + A 2 * V 2 +... + A n-1 * V n-1 + A n * V n ) / A total
- a total A 1 + A 2 + A 3 +... + A n
- the open voltage estimator 2032 adds the difference between the calculated weighted average V n (meanvalue) and the open voltage OCV n ⁇ 1 to the calculated open voltage OCV n to perform additional correction to once again open the open voltage value. You can correct it. If the weighted average V n (meanvalue) is calculated to further correct the open voltage, the calculation error of the open voltage can be reduced even if the voltage output from the battery 100 changes abruptly.
- the open voltage estimator 2032 stores the corrected open voltage OCV n in the memory 104 when the open voltage correction by the weighted average V n (meanvalue) is completed.
- the open voltage OCV n stored by the open voltage estimator 2032 in the memory 140 will be referred to when calculating R n , an input parameter of the weighted average resistance.
- FIG. 4 is a flowchart illustrating a method of estimating battery resistance characteristics using battery voltage behavior according to the present invention.
- the performing agent of each step is the microcontroller 105 shown in FIG.
- step S10 it is determined whether there is a request for estimation of resistance characteristics of the battery.
- the resistance characteristic estimation request may be input from the outside or may be automatically generated by the battery resistance characteristic estimation program.
- step S10 if there is a request for estimating the resistance characteristic of the battery, a routine for estimating the battery resistance characteristic is started. On the contrary, as a result of the determination in step S10, if there is no request to estimate the resistance characteristic of the battery, the process ends.
- step S20 the battery resistance parameter R n-1 and the weighted average resistance convergence value R mean n-1 obtained at the previous resistance characteristic estimation time point stored in the memory unit are read.
- step S30 V n , T n, and I n are measured using the voltage sensing unit, the temperature sensing unit, and the current sensing unit.
- step S40 the battery opening voltage OCV n is estimated by the battery voltage behavior, and the battery resistance parameter R n is calculated from V n , I n and OCV n .
- step S50 the initial condition R mean n 1 of the weighted average sequence is calculated from R n-1 and R n . Equation 2 is used to calculate R mean n 1 .
- step S60 the convergence value R mean n of the weighted average resistance is obtained by iteratively calculating the weighted average sequence by a sufficient number of times using the initial sequence values R mean n 1 and R mean n-1 . Equation 2 is used to calculate R mean n .
- the R mean n-1 may be replaced with a preset R mean 1 .
- R mean 1 may be set as a battery shipment resistance.
- step S70 the battery resistance from the convergence value R mean n of the weighted average resistance Estimate
- battery resistance Can be estimated to be equal to the convergence value R mean n of the weighted average resistance.
- the correlation may be a look-up table that defines battery resistance for each convergence value of the weighted average resistance, or a function of using the convergence value of the weighted average resistance and the battery resistance as input parameters and output parameters, respectively.
- the battery resistance may be estimated based on the battery shipment resistance by comparing the convergence value of the weighted average resistance corresponding to the battery shipment resistance with the weighted average convergence value R mean n calculated in step S60. That is, the battery shipment resistance can be increased by the increase rate of the weighted average convergence value, and the increased value can be estimated as the battery resistance.
- step S80 the estimated battery resistance on the basis of the battery shipping resistance R initial
- the relative increase rate of is calculated and estimated by SOH R n based on the calculated relative increase rate and stored in the memory unit 104 or outputted to the display unit 106.
- FIG. 5 is a flowchart illustrating a process of estimating an open voltage OCV n using battery voltage behavior in step S40 of FIG. 4.
- the performing agent of each step is the microcontroller 105 shown in FIG.
- step P10 it is determined whether there is a request for estimation of the battery open voltage OCV n .
- the estimation request may be input from the outside or may be automatically generated according to a program algorithm.
- step P10 If, in step P10, if there is no estimation request, if the open-circuit voltage, and the operation proceeds to step estimation, estimation request to the OCV n for the OCV n terminates the process.
- step P20 the battery voltage behavior stored in the memory section is read.
- Battery voltage behavior includes at least V n , V n-1 and V n-2 .
- step P30 the open voltage change amount? OCV n is calculated based on the battery voltage behavior and the battery temperature.
- the calculation method of the open circuit voltage change amount? OCV n has been described above.
- V 1 and V 2 and OCV 1 and OCV 2 are initialized to the battery voltage of the no-load state measured immediately before the battery is connected to the load.
- V 1 and V 2 and OCV 1 and OCV 2 are set to the battery voltage values measured at the turn-on of the car start key.
- step P40 the current open voltage OCV n is calculated by adding the open voltage change amount? OCV n to the previous open voltage OCV n-1 .
- step P50 may optionally be performed to calculate a weighted average of the current battery voltage V n and the previous battery voltage V n-1 , and to currently open the difference between the calculated weighted average and the previous open voltage OCV n-1 . by adding the voltage OCV n to additionally correct the open-circuit voltage OCV n.
- the method of calculating the weighted average has already been described above.
- step P60 the estimated open voltage OCV n is stored in the memory unit.
- FIG. 8 is a table showing the actual resistance, the battery resistance estimated by the weighted average convergence value, and the error between the actual resistance and the estimated resistance for each of the 12 batteries.
- the battery resistance estimated according to the present invention showed an error within 3% of the actual resistance. Accordingly, it can be seen that the present invention can estimate battery resistance with high accuracy, and also accurately estimate battery resistance degeneration, which is a parameter calculated from the battery resistance.
- the resistance characteristics of the battery can be accurately estimated without going through complicated calculations. Accurate estimates of battery resistance also allow for a variety of applications, such as estimating battery replacement time. In addition, by accurately estimating the deterioration of the resistance to adjust the charge and discharge capacity of the battery to prevent overcharge and overdischarge can further improve the safety of the battery.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
Claims (30)
- 저항 특성 추정 시점마다 배터리와 결합된 전압 센싱부, 전류 센싱부 및 온도 센싱부로부터 측정된 배터리 전압, 전류 및 온도 데이터를 획득하여 저장하는 데이터 저장부;현재와 과거에 측정된 배터리 전압 거동으로부터 배터리 개방전압을 계산하는 개방전압 계산부;상기 배터리 개방전압과 배터리 전압의 차이와 배터리 전류로부터 배터리 저항 파라미터를 계산하고, 현재와 이전에 계산된 배터리 저항 파라미터로부터 가중 평균 저항을 계산하는 가중 평균 저항 계산부;상기 가중 평균 저항을 초기 조건으로 하는 가중 평균 수열의 반복 계산에 의해 가중 평균 저항 수렴치를 계산하는 가중 평균 저항 수렴치 계산부; 및상기 가중 평균 저항 수렴치로부터 배터리 저항을 추정하는 저항 특성 추정부;를 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제1항에 있어서,상기 저항 특성 추정부는 가중 평균 저항 수렴치를 배터리 저항으로 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제1항에 있어서,상기 저항 특성 추정부는 가중 평균 저항 수렴치 별로 배터리 저항을 정의한 룩업 테이블로부터 상기 계산된 가중 평균 저항 수렴치에 대응하는 배터리 저항을 맵핑하여 배터리 저항을 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제1항에 있어서,상기 저항 특성 추정부는 가중 평균 저항 수렴치와 배터리 저항을 각각 입력 파라미터 및 출력 파라미터로 하는 함수에 상기 계산된 가중 평균 저항 수렴치를 대입하여 배터리 저항을 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제1항에 있어서,상기 저항 특성 추정부는 배터리 출하 저항에 대응하는 가중 평균 저항 수렴치와 상기 계산된 가중 평균 저항 수렴치를 상대적으로 대비하여 배터리 저항을 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제1항에 있어서,상기 가중 평균 저항 계산부는,Rmean n = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)Rn-1 = |Vn-1 - OCVn-1|÷|In-1|Rn = |Vn - OCVn|÷|In|(여기서, Rn와 Rn-1은 각각 n번째 및 n-1번째로 계산한 배터리 저항 파라미터,Vn 와 Vn-1은 각각 n번째 및 n-1번째로 측정한 배터리 전압,OCVn 및 OCVn-1은 각각 n번째 및 n-1번째로 추정한 배터리 개방전압,In와 In-1은 각각 n번째 및 n-1번째로 측정한 배터리 전류이다)에 의해 가중 평균 저항 Rmean n을 계산하는 것을 특징으로 하는 배터리 개방 전압을 이용한 배터리 저항 특성 추정 장치.
- 제1항에 있어서,상기 가중 평균 저항 수렴치 계산부는 하기 가중 평균 수열(k는 1이상),Rmean n k+1 = (Rmean n k-1 × 가중치 + Rmean n k)/(가중치 + 1)에 의해 가중 평균 저항 수렴치 Rmean n 을 계산하고,상기 가중 평균 수열의 초기 값 Rmean n 1은 하기 조건,Rmean n 1 = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)에 의해 설정하고,Rmean n 0은 이전 단계의 가중 평균 저항 수렴치 또는 배터리 출하 저항 값으로 설정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제1항에 있어서,상기 저항 특성 추정부는, 허용 가능 최대 저항을 기준으로 배터리 출하 저항에 대한 상기 추정된 배터리 저항의 상대적 비율을 배터리 저항 퇴화를 나타내는 파라미터로 추정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제1항에 있어서,상기 개방전압 계산부는, 배터리 전압 거동과 개방전압 변화량 사이의 상관 관계를 정의한 수학적 모델을 적용하여 상기 저장된 현재 및 과거에 측정된 배터리 전압들의 변화 패턴으로부터 개방전압 변화량을 계산하고, 배터리 온도에 대응하는 보정 팩터를 상기 계산된 개방전압 변화량에 반영하여 현재 단계의 개방전압 변화량을 추정하는 개방전압 변화량 계산부; 및직전 단계에서 추정된 배터리 개방전압에 상기 추정된 개방전압 변화량을 반영하여 현재 단계의 배터리 개방전압을 추정하는 개방전압 추정부;를 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제9항에 있어서,상기 개방전압 추정부는 현재 및 과거의 배터리 전압에 대한 가중평균(측정 시점이 빠른 배터리 전압일 수록 큰 가중치를 부여함)과 직전 단계의 개방전압 차분을 상기 추정된 현재 단계의 개방전압에 가산하여 개방전압을 보정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제10항에 있어서,상기 과거의 배터리 전압은 직전 단계의 배터리 전압인 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 퇴화 추정 장치.
- 제9항에 있어서,상기 추정된 개방전압 변화량은 상기 계산된 개방전압 변화량에 상기 온도에따른 보정 팩터를 곱셈 연산하여 산출하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 퇴화 추정 장치.
- 제9항에 있어서,상기 배터리 전압 거동을 구성하는 배터리 전압은 적어도 현재 단계, 전 단계 및 전전단계에서 측정된 배터리 전압 Vn, Vn-1 및 Vn-2을 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제9항에 있어서,상기 수학적 모델은 현재 단계와 과거 단계 사이의 배터리 전압 변화량과, 배터리 전압 변화 패턴을 구성하는 각 전압에 의해 정의되는 패턴 함수의 수학적 연산에 의해 정의되는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- 제9항에 있어서,상기 보정 팩터는 배터리 온도 T를 입력 변수로 하고 배터리 개방전압 변화량의 보정 팩터를 출력 변수로 하는 수학적 모델에 배터리의 온도를 대입하여 산출하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치.
- (a) 저항 특성 추정 시점마다 배터리와 결합된 전압 센싱부, 전류 센싱부 및 온도 센싱부로부터 측정된 배터리 전압, 전류 및 온도 데이터를 획득하여 저장하는 단계;(b) 현재와 과거에 측정된 배터리 전압 거동으로부터 배터리 개방전압을 계산하는 단계;(c) 상기 배터리 개방전압과 배터리 전압의 차이와 배터리 전류로부터 배터리 저항 파라미터를 계산하고, 현재와 이전에 계산된 배터리 저항 파라미터로부터 가중 평균 저항을 계산하는 단계;(d) 상기 가중 평균 저항을 초기 조건으로 하는 가중 평균 수열의 반복 계산에 의해 가중 평균 저항 수렴치를 계산하는 단계; 및(e) 상기 가중 평균 저항 수렴치로부터 배터리 저항을 추정하는 단계;를 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제16항에 있어서,상기 (e) 단계는, 가중 평균 저항 수렴치를 배터리 저항으로 추정하는 단계임을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제16항에 있어서,상기 (e) 단계는, 가중 평균 저항 수렴치 별로 배터리 저항을 정의한 룩업 테이블로부터 상기 계산된 가중 평균 저항 수렴치에 대응하는 배터리 저항을 맵핑하여 배터리 저항을 추정하는 단계임을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제16항에 있어서,상기 (e) 단계는, 가중 평균 저항 수렴치와 배터리 저항을 각각 입력 파라미터 및 출력 파라미터로 하는 함수에 상기 계산된 가중 평균 저항 수렴치를 대입하여 배터리 저항을 추정하는 단계임을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제16항에 있어서,상기 (e) 단계는, 배터리 출하 저항에 대응하는 가중 평균 저항 수렴치와 상기 계산된 가중 평균 저항 수렴치를 상대적으로 대비하여 배터리 저항을 추정하는 단계임을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제16항에 있어서,상기 (c) 단계는, 하기 수학식;Rmean n = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)Rn-1 = |Vn-1 - OCVn-1|÷|In-1|Rn = |Vn - OCVn|÷|In|(여기서, Rn와 Rn-1은 각각 n번째 및 n-1번째로 계산한 배터리 저항 파라미터,Vn 와 Vn-1은 각각 n번째 및 n-1번째로 측정한 배터리 전압,OCVn 및 OCVn-1은 각각 n번째 및 n-1번째로 추정한 배터리 개방전압,In와 In-1은 각각 n번째 및 n-1번째로 측정한 배터리 전류이다)에 의해 가중 평균 저항 Rmean n을 계산하는 단계임을 특징으로 하는 배터리 개방 전압을 이용한 배터리 저항 특성 추정 방법.
- 제16항에 있어서,상기 (d) 단계는, 하기 가중 평균 수열(k는 1이상);Rmean n k+1 = (Rmean n k-1 × 가중치 + Rmean n k)/(가중치 + 1)에 의해 가중 평균 저항 수렴치 Rmean n 을 계산하는 단계이고,상기 가중 평균 수열의 초기 값 Rmean n 1은 하기 조건,Rmean n 1 = (Rn-1 × 가중치 + Rn) ÷ (가중치 + 1)에 의해 설정하고,Rmean n 0은 이전 단계의 가중 평균 저항 수렴치 또는 배터리 출하 저항 값으로 설정하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제16항에 있어서,허용 가능 최대 저항을 기준으로 배터리 출하 저항에 대한 상기 추정된 배터리 저항의 상대적 비율을 배터리 저항 퇴화를 나타내는 파라미터로 추정하는 단계를 더 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제16항에 있어서,상기 (b) 단계는, 배터리 전압 거동과 개방전압 변화량 사이의 상관 관계를 정의한 수학적 모델을 적용하여 상기 저장된 현재 및 과거에 측정된 배터리 전압들의 변화 패턴으로부터 개방전압 변화량을 계산하고, 배터리 온도에 대응하는 보정 팩터를 상기 계산된 개방전압 변화량에 반영하여 보정된 개방전압 변화량을 계산하는 단계; 및직전 단계에서 추정된 배터리 개방전압에 상기 추정된 개방전압 변화량을 반영하여 현재 단계의 배터리 개방전압을 추정하는 단계;를 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제24항에 있어서,현재 및 과거의 배터리 전압에 대한 가중평균(측정 시점이 빠른 배터리 전압일 수록 큰 가중치를 부여함)과 직전 단계의 개방전압 차분을 상기 추정된 현재 단계의 개방전압에 가산하여 개방전압을 보정하는 단계를 더 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제25항에 있어서,상기 과거의 배터리 전압은 직전 단계의 배터리 전압인 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 퇴화 추정 방법.
- 제24항에 있어서,상기 보정된 개방전압 변화량은 상기 계산된 개방전압 변화량에 상기 온도에따른 보정 팩터를 곱셈 연산하여 산출하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 퇴화 추정 방법.
- 제24항에 있어서,상기 배터리 전압 거동을 구성하는 배터리 전압은 적어도 현재 단계, 전 단계 및 전전단계에서 측정된 배터리 전압 Vn, Vn-1 및 Vn-2을 포함하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제24항에 있어서,상기 수학적 모델은 현재 단계와 과거 단계 사이의 배터리 전압 변화량과, 배터리 전압 변화 패턴을 구성하는 각 전압에 의해 정의되는 패턴 함수의 수학적 연산에 의해 정의되는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
- 제24항에 있어서,상기 보정 팩터는 배터리 온도 T를 입력 변수로 하고 배터리 개방전압 변화량의 보정 팩터를 출력 변수로 하는 수학적 모델에 배터리의 온도를 대입하여 산출하는 것을 특징으로 하는 배터리 전압 거동을 이용한 배터리 저항 특성 추정 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011522891A JP5661625B2 (ja) | 2008-08-14 | 2009-05-19 | バッテリー電圧変化パターンにより推定された開回路電圧に基づいたバッテリーの抵抗特性推定装置及び方法 |
BRPI0912595A BRPI0912595B1 (pt) | 2008-08-14 | 2009-05-19 | aparelho e método para estimar característica de resistência para estimar uma resistência de uma bateria |
CN2009801317800A CN102124354B (zh) | 2008-08-14 | 2009-05-19 | 使用电池电压行为估计电池电阻特性的装置及方法 |
EP09806781.2A EP2325658B1 (en) | 2008-08-14 | 2009-05-19 | Device and method for estimating battery resistance characteristics using battery voltage behaviour |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0080122 | 2008-08-14 | ||
KR1020080080122A KR100927541B1 (ko) | 2008-08-14 | 2008-08-14 | 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010018919A1 true WO2010018919A1 (ko) | 2010-02-18 |
Family
ID=41605200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/002629 WO2010018919A1 (ko) | 2008-08-14 | 2009-05-19 | 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법 |
Country Status (8)
Country | Link |
---|---|
US (2) | US7996167B2 (ko) |
EP (1) | EP2325658B1 (ko) |
JP (1) | JP5661625B2 (ko) |
KR (1) | KR100927541B1 (ko) |
CN (1) | CN102124354B (ko) |
BR (1) | BRPI0912595B1 (ko) |
TW (1) | TWI384246B (ko) |
WO (1) | WO2010018919A1 (ko) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100927541B1 (ko) * | 2008-08-14 | 2009-11-17 | 주식회사 엘지화학 | 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및방법 |
CN102822046B (zh) * | 2010-02-26 | 2015-06-17 | 塞格威股份有限公司 | 车辆控制的装置和方法 |
FR2968769B1 (fr) * | 2010-12-10 | 2012-12-14 | Peugeot Citroen Automobiles Sa | Procede de determination de l'etat de sante d'une batterie pour l'alimentation d'un vehicule electrique |
US8449998B2 (en) * | 2011-04-25 | 2013-05-28 | Lg Chem, Ltd. | Battery system and method for increasing an operational life of a battery cell |
CN103197115A (zh) * | 2012-01-05 | 2013-07-10 | 新普科技股份有限公司 | 充电电池组的电压校正方法 |
US8937838B2 (en) * | 2012-01-10 | 2015-01-20 | Sk Hynix Memory Solutions Inc. | Finding optimal read thresholds and related voltages for solid state memory |
KR101454828B1 (ko) * | 2012-06-13 | 2014-10-28 | 주식회사 엘지화학 | 혼합 양극재를 포함하는 이차 전지의 전압 추정 장치 및 방법 |
US20140019789A1 (en) * | 2012-07-10 | 2014-01-16 | Apple Inc. | Monitoring a battery in an electronic device |
KR102084288B1 (ko) * | 2012-11-05 | 2020-03-03 | 유니버시티 오브 플로리다 리서치 파운데이션, 아이엔씨. | 디스플레이의 휘도 보상 |
KR101983392B1 (ko) * | 2012-11-27 | 2019-05-29 | 에스케이이노베이션 주식회사 | 배터리 충전 상태 추정 장치 및 그 방법 |
US20170110869A1 (en) * | 2014-01-08 | 2017-04-20 | Electricite De France | Electrical measuring device for measuring the resistance of an earth connection of an electrical facility |
CN105866551B (zh) * | 2016-06-27 | 2018-11-27 | 上海电气钠硫储能技术有限公司 | 一种钠硫电池内阻检测方法 |
KR102579538B1 (ko) * | 2016-10-05 | 2023-09-18 | 삼성전자주식회사 | 배터리 충전 제어 방법 및 장치 |
KR102182691B1 (ko) * | 2017-10-20 | 2020-11-24 | 주식회사 엘지화학 | 배터리 저항 추정 장치 및 방법 |
KR102296993B1 (ko) * | 2017-11-17 | 2021-09-01 | 주식회사 엘지에너지솔루션 | 배터리 저항 추정 장치 및 방법 |
KR102055850B1 (ko) * | 2017-12-21 | 2019-12-13 | 주식회사 엘지화학 | 전류 센서 진단 장치 및 방법 |
KR102416548B1 (ko) | 2018-02-01 | 2022-07-01 | 주식회사 엘지에너지솔루션 | 배터리를 위한 등가 회로 모델의 파라미터 추정 방법 및 배터리 관리 시스템 |
WO2019192670A1 (en) | 2018-04-06 | 2019-10-10 | Volvo Truck Corporation | A method and system for estimating battery properties in a vehicle drive system |
DE112019003484T5 (de) * | 2018-07-10 | 2021-04-08 | Sumitomo Electric Industries, Ltd. | Sekundärbatterieparameter-Schätzungsvorrichtung, Sekundärbatterieparameter-Schätzungsverfahren und Programm |
CN112909361B (zh) * | 2018-10-16 | 2023-03-31 | 宁德时代新能源科技股份有限公司 | 电芯电压修正方法、装置、设备和介质 |
KR102521576B1 (ko) * | 2019-03-18 | 2023-04-12 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 |
KR102520673B1 (ko) * | 2019-03-18 | 2023-04-10 | 주식회사 엘지에너지솔루션 | 배터리 상태 추정 장치 |
KR102493232B1 (ko) * | 2019-03-18 | 2023-01-27 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 |
KR102521577B1 (ko) * | 2019-03-18 | 2023-04-12 | 주식회사 엘지에너지솔루션 | 배터리 상태 추정 장치 |
CN112630538B (zh) | 2019-09-24 | 2024-04-16 | 台达电子工业股份有限公司 | 制动电阻的估测方法 |
KR20220139755A (ko) * | 2021-04-08 | 2022-10-17 | 주식회사 엘지에너지솔루션 | 배터리 진단 장치 및 방법 |
WO2024063575A1 (ko) * | 2022-09-21 | 2024-03-28 | 주식회사 엘지에너지솔루션 | 배터리 상태 진단 장치 및 방법 |
CN115327419B (zh) * | 2022-10-18 | 2023-04-28 | 长兴太湖能谷科技有限公司 | 一种蓄电池内阻参数的在线辨识方法 |
KR102698009B1 (ko) * | 2022-10-26 | 2024-08-21 | 주식회사 엘지에너지솔루션 | 배터리 진단 장치 및 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002189066A (ja) * | 2000-12-22 | 2002-07-05 | Hitachi Ltd | 二次電池残量推定法 |
US6832171B2 (en) * | 2002-12-29 | 2004-12-14 | Texas Instruments Incorporated | Circuit and method for determining battery impedance increase with aging |
JP2006215001A (ja) * | 2005-02-07 | 2006-08-17 | Fuji Heavy Ind Ltd | バッテリの管理装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3540437B2 (ja) * | 1995-06-05 | 2004-07-07 | 本田技研工業株式会社 | 電池状態判別装置 |
DE10106508A1 (de) * | 2001-02-13 | 2002-08-29 | Bosch Gmbh Robert | Verfahren und Anordnung zur Bestimmung der Leistungsfähigkeit einer Batterie |
JP4682509B2 (ja) * | 2003-11-26 | 2011-05-11 | 日産自動車株式会社 | バッテリの開放電圧演算方法および充電量演算方法 |
TWI267647B (en) * | 2004-08-19 | 2006-12-01 | Nat Huwei Institue Of Technolo | Battery aging level measurement device and method |
US7612532B2 (en) * | 2005-06-21 | 2009-11-03 | Gm Global Technology Operations, Inc. | Method for controlling and monitoring using a state estimator having variable forgetting factors |
JP5170851B2 (ja) | 2005-07-15 | 2013-03-27 | 古河電気工業株式会社 | 蓄電池充電状態検知方法および蓄電池充電状態検知装置 |
JP4690223B2 (ja) * | 2006-02-24 | 2011-06-01 | 株式会社デンソー | バッテリの状態量演算装置 |
US7521895B2 (en) * | 2006-03-02 | 2009-04-21 | Lg Chem, Ltd. | System and method for determining both an estimated battery state vector and an estimated battery parameter vector |
KR100804698B1 (ko) * | 2006-06-26 | 2008-02-18 | 삼성에스디아이 주식회사 | 배터리 soc 추정 방법 및 이를 이용하는 배터리 관리시스템 및 구동 방법 |
KR100970841B1 (ko) * | 2008-08-08 | 2010-07-16 | 주식회사 엘지화학 | 배터리 전압 거동을 이용한 배터리 용량 퇴화 추정 장치 및방법 |
KR100927541B1 (ko) * | 2008-08-14 | 2009-11-17 | 주식회사 엘지화학 | 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및방법 |
-
2008
- 2008-08-14 KR KR1020080080122A patent/KR100927541B1/ko active IP Right Grant
-
2009
- 2009-05-19 EP EP09806781.2A patent/EP2325658B1/en active Active
- 2009-05-19 CN CN2009801317800A patent/CN102124354B/zh active Active
- 2009-05-19 BR BRPI0912595A patent/BRPI0912595B1/pt active IP Right Grant
- 2009-05-19 JP JP2011522891A patent/JP5661625B2/ja active Active
- 2009-05-19 WO PCT/KR2009/002629 patent/WO2010018919A1/ko active Application Filing
- 2009-06-15 TW TW098119902A patent/TWI384246B/zh active
- 2009-06-15 US US12/484,434 patent/US7996167B2/en active Active
-
2011
- 2011-06-30 US US13/172,922 patent/US8185332B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002189066A (ja) * | 2000-12-22 | 2002-07-05 | Hitachi Ltd | 二次電池残量推定法 |
US6832171B2 (en) * | 2002-12-29 | 2004-12-14 | Texas Instruments Incorporated | Circuit and method for determining battery impedance increase with aging |
JP2006215001A (ja) * | 2005-02-07 | 2006-08-17 | Fuji Heavy Ind Ltd | バッテリの管理装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102124354B (zh) | 2013-09-18 |
US8185332B2 (en) | 2012-05-22 |
US20100042345A1 (en) | 2010-02-18 |
TWI384246B (zh) | 2013-02-01 |
TW201007191A (en) | 2010-02-16 |
JP5661625B2 (ja) | 2015-01-28 |
JP2011530709A (ja) | 2011-12-22 |
EP2325658A4 (en) | 2013-11-13 |
KR100927541B1 (ko) | 2009-11-17 |
BRPI0912595B1 (pt) | 2020-02-04 |
BRPI0912595A2 (pt) | 2015-10-13 |
EP2325658A1 (en) | 2011-05-25 |
EP2325658B1 (en) | 2015-01-07 |
CN102124354A (zh) | 2011-07-13 |
US7996167B2 (en) | 2011-08-09 |
US20110256434A1 (en) | 2011-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010018919A1 (ko) | 배터리 전압 거동을 이용한 배터리 저항 특성 추정 장치 및 방법 | |
WO2010016647A1 (en) | Apparatus and method for estimating state of health of battery based on battery voltage variation pattern | |
WO2019050330A1 (ko) | 배터리 충전 상태 추정 장치 및 방법 | |
KR100985667B1 (ko) | 배터리 개방전압 추정장치, 이를 이용한 배터리 충전상태추정장치 및 그 제어 방법 | |
WO2010016661A2 (ko) | 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법 | |
US10408887B2 (en) | Method for estimating degradation of rechargeable battery, degradation estimation circuit, electronic apparatus and vehicle including same | |
WO2019098722A1 (ko) | 배터리 저항 추정 장치 및 방법 | |
WO2022055080A1 (ko) | 배터리의 충전상태를 추정하는 방법 | |
WO2019199058A1 (ko) | 배터리 진단 장치 및 방법 | |
US11675015B1 (en) | Battery cell analyzer | |
US7683581B2 (en) | Measuring apparatus and method for measuring remaining coulombs of electrical energy storage device and electronic device | |
WO2018038383A1 (ko) | 배터리 셀의 성능 테스트 장치 및 방법 | |
WO2016052900A1 (ko) | 이차 전지의 방전 출력 추정 방법 및 장치 | |
WO2012148070A1 (ko) | 배터리 용량 퇴화 추정 장치 및 방법 | |
WO2019156377A1 (ko) | 배터리를 위한 등가 회로 모델의 파라미터를 추정하기 위한 방법 및 배터리 관리 시스템 | |
WO2013151355A1 (ko) | 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 자가 진단 방법 | |
KR20090082374A (ko) | 배터리가 평형에 있지 않을 때 배터리의 충전 상태를 결정하기 위한 장치 및 방법 | |
WO2019074221A1 (ko) | 이차 전지의 충전 상태를 추정하기 위한 장치 및 그 방법 | |
WO2022265357A1 (ko) | 배터리 soh 추정 장치 및 방법 | |
WO2019088492A1 (ko) | 배터리 등가 회로 모델의 파라미터 추정 방법, 장치 및 기록매체 | |
WO2020153637A1 (ko) | 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩 | |
WO2020162675A1 (ko) | 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩 | |
WO2019151654A1 (ko) | 이차전지 안전성 평가 방법 및 장치 | |
WO2019151679A1 (ko) | 배터리를 위한 등가 회로 모델의 파라미터 추정 방법 및 배터리 관리 시스템 | |
WO2019098576A1 (ko) | 배터리 여유 용량 추정 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980131780.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09806781 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011522891 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1693/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009806781 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0912595 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110214 |