WO2021169213A1 - 多联机空调系统及其油平衡装置和油平衡控制方法 - Google Patents

多联机空调系统及其油平衡装置和油平衡控制方法 Download PDF

Info

Publication number
WO2021169213A1
WO2021169213A1 PCT/CN2020/111985 CN2020111985W WO2021169213A1 WO 2021169213 A1 WO2021169213 A1 WO 2021169213A1 CN 2020111985 W CN2020111985 W CN 2020111985W WO 2021169213 A1 WO2021169213 A1 WO 2021169213A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
compressor
conditioning system
air conditioning
sump
Prior art date
Application number
PCT/CN2020/111985
Other languages
English (en)
French (fr)
Inventor
项宇
赵平
曾荡
韩艳春
赵岩
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020224828.6U external-priority patent/CN211739554U/zh
Priority claimed from CN202010123834.7A external-priority patent/CN113310249A/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2021169213A1 publication Critical patent/WO2021169213A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements

Definitions

  • the present disclosure relates to a multi-line air-conditioning system, and more specifically, to an oil balance device and an oil balance control method between multiple compressors of the multi-line air-conditioning system.
  • Multi-line air-conditioning system has high system energy efficiency and can meet the comprehensive energy efficiency requirements of the larger system. It is popular in the air-conditioning market and is an ideal choice for various office, factory and home multi-terminal systems.
  • Multi-line air conditioning systems usually include two or more compressors that can operate in parallel. During the operation of the multi-line air conditioning system, the load of each compressor may be different, and the lubricant distribution of each compressor may be unbalanced. Some compressors have insufficient lubricating oil, while some compressors have excessive lubricating oil. More, it is easy to cause damage to the compressor, and affect the overall energy efficiency of the multi-line air conditioning system, and even cause the multi-line system to fail to operate normally. Therefore, the lubricating oil balance between the compressors of the multi-line air-conditioning system has always been a design focus.
  • the existing multi-line air conditioning system there are two main ways to realize the lubricant balance between the compressors, one is to adopt a passive lubricant balance design, and the other is to use an active lubricant balance design.
  • oil sumps in multiple compressors are connected by oil balance pipes, and the pressure difference in different compressors is used to compress the lubricating oil from the higher internal pressure.
  • the oil sump in the machine flows through the oil balance pipe to the oil sump in the compressor with lower internal pressure, forming an oil level difference between the oil sumps of adjacent compressors.
  • This type of multi-line air conditioning system has a simple structure, but during operation, as long as there is a pressure difference between the internal pressures of the compressors connected to the oil sump, the lubricating oil will always flow from the compressor with higher internal pressure to the compressor. In a compressor with a lower internal pressure, even when the lubricant in a compressor with a higher internal pressure is insufficient, the risk of insufficient lubricant in a compressor with a higher internal pressure is greater. For the case of insufficient lubricant Cannot provide any alarm or protection.
  • each compressor is equipped with an oil level detector to detect the oil level of the lubricating oil in the oil sump in each compressor, and an oil level detector is also provided. Separator and the corresponding oil return pipeline. Once the oil level detector of a compressor detects that the oil level of the oil pool in the compressor is lower than the preset oil level, the lubricating oil will pass through the corresponding return line from the oil separator. The oil pipeline flows into the compressor.
  • This type of multi-line air-conditioning system can replenish the lubricating oil in time when the lubricating oil in the compressor is insufficient, but each compressor needs to be equipped with an oil level detector and a corresponding oil return line.
  • the system structure is more complicated. higher cost.
  • An object of the present disclosure is to solve at least one of the above-mentioned problems.
  • the multi-line air conditioning system includes a first compressor and a second compressor, and the exhaust port of the first compressor and the exhaust port of the second compressor are connected in parallel to the exhaust manifold.
  • the oil balance device includes: an oil balance pipe, which connects the oil sump in the first compressor and the oil sump in the second compressor with each other, wherein the pressure of the oil sump in the first compressor is higher than the pressure of the oil sump in the second compressor. 2.
  • the pressure of the oil sump in the compressor an oil separator, which is installed to the exhaust manifold and is configured to separate lubricating oil from the exhaust of the first compressor and the second compressor; and an oil return pipe
  • the oil return line is connected between the oil separator and the first compressor, so that the lubricating oil in the oil separator can be supplied to the first compressor through the oil return line.
  • the oil balance device further includes a sensor and a controller.
  • the sensor is installed on the first compressor and configured to communicate with the controller.
  • the controller determines the oil level state of the oil pool in the first compressor according to the detection result of the sensor, and controls the shutdown of the first compressor and the second compressor.
  • the controller is configured to: when the oil level of the oil sump of the first compressor is lower than the safe oil level, stop the second compressor; and when the second compressor is stopped for a first predetermined time, if the The oil level of the oil sump is still lower than the safe oil level, and the first compressor is stopped.
  • the controller when the oil level of the oil sump of the first compressor is lower than the safe oil level, the controller triggers the alarm device.
  • the oil balance device further includes a solenoid valve, the solenoid valve is arranged on the oil return line, and the controller is configured to selectively open or close the solenoid valve according to the detection result of the sensor to establish or interrupt the oil separator and the second Oil supply communication between a compressor.
  • the controller is configured to: when the oil level of the oil sump of the first compressor is lower than the normal oil level, the solenoid valve is opened to allow the lubricating oil in the oil separator to flow into the first compressor, where the normal oil level is higher than Safe oil level; when the oil level of the oil sump in the first compressor is higher than the normal oil level, the solenoid valve is closed so that the lubricating oil in the oil separator no longer flows into the first compressor.
  • the controller structure also causes: when the solenoid valve is in an open state and the oil level of the oil sump in the first compressor is lower than the normal oil level for a duration exceeding the second predetermined time, the oil level of the oil sump of the first compressor is determined Below the safe oil level.
  • the senor is an oil level sensor.
  • the lubricating oil in the oil separator is delivered to the intake port of the first compressor through the oil return line or directly delivered to the oil sump in the first compressor.
  • the intake port of the first compressor is connected to the intake manifold through the first intake branch pipe
  • the intake port of the second compressor is connected to the intake manifold through the second intake branch pipe.
  • the length of the fluid passage in the first intake branch pipe is smaller than the length of the fluid passage in the second intake branch pipe, and/or the pipe inner diameter of the first intake branch pipe is smaller than the pipe inner diameter of the second intake branch pipe, so that the first compressor The pressure of the oil sump inside is higher than the pressure of the oil sump inside the second compressor.
  • the multi-line air conditioning system further includes one or more additional compressors arranged in parallel with the first compressor and the second compressor, and the oil pool in the one or more additional compressors
  • the oil sump in the first compressor and the second compressor are communicated with each other through the oil balance pipe, and the pressure of the oil sump in the one or more additional compressors is lower than the oil in the first compressor The pressure of the pool.
  • Another aspect of the present disclosure is to provide a multi-line air conditioning system including the oil balance device according to the present disclosure.
  • the multi-line air conditioning system includes a first compressor and a second compressor.
  • the pressure of the oil sump in the first compressor is higher than the pressure of the oil sump in the second compressor.
  • the oil balance control method includes: using an oil separator to separate lubricating oil from the exhaust of the first compressor and the second compressor; supplying the lubricating oil in the oil separator to the first compressor through an oil return line; And the lubricating oil in the first compressor flows to the second compressor through the oil balance pipe.
  • the oil balance control method further includes detecting the oil level of the oil sump in the first compressor.
  • the second compressor is stopped. After the second compressor is stopped for the first predetermined time, if the oil level of the oil sump of the first compressor is still If the oil level is lower than the safety level, the first compressor will be stopped.
  • the oil balance control method further includes: when the oil level of the oil pool in the first compressor is higher than the normal oil level, interrupting the oil supply communication between the oil separator and the first compressor, and when the oil level in the first compressor When the oil level of the oil pool is lower than the normal oil level, the oil supply communication between the oil separator and the first compressor is established.
  • the present disclosure provides an improved oil balance device for a multi-line air conditioning system, a multi-line air conditioning system with the oil balance device, and an oil balance control method.
  • the multi-line air-conditioning system according to the present disclosure can effectively recover lubricating oil from the exhaust of the compressor, and transport the recovered lubricating oil to the compressor with the greatest risk of insufficient lubricating oil, and then rely on the compressor in the compressor.
  • the pressure difference between the pressures of the oil pool causes the lubricating oil to flow to other compressors, and the simple structure greatly reduces the risk of insufficient lubricating oil in the compressor.
  • the multi-line air conditioning system according to the present disclosure can also detect abnormal conditions of the oil level in the compressor, provide timely alarms and take protective measures to prevent the compressor from being damaged.
  • Fig. 1 shows a view of a compressor in a multi-line air conditioning system according to a first embodiment of the present disclosure
  • Fig. 2 shows a top view of multiple compressors connected to each other of the multi-line air conditioning system according to the first embodiment of the present disclosure
  • Figure 3 shows a front view of multiple compressors in Figure 2;
  • Fig. 4 shows a view of a compressor in a multi-line air conditioning system according to a second embodiment of the present disclosure
  • FIG. 5 shows a front view of multiple compressors connected to each other of the multi-line air conditioning system according to the second embodiment of the present disclosure
  • FIG. 6 shows a flowchart of an oil balance control method of a multi-line air conditioning system according to a second embodiment of the present disclosure
  • FIG. 7 shows a view of a compressor in the multi-line air conditioning system according to the third embodiment of the present disclosure
  • FIG. 8 shows a front view of a plurality of compressors connected to each other of the multi-line air conditioning system according to the third embodiment of the present disclosure
  • FIG. 9 shows a flowchart of an oil balance control method of a multi-line air conditioning system according to a third embodiment of the present disclosure.
  • the azimuthal terms related to “upper”, “lower”, “left”, and “right” used are the top, bottom, left, and right sides of the views shown in the drawings. The right position is described. In practical applications, the positional relationship of "upper”, “lower”, “left”, and “right” used in this text can be defined according to actual conditions, and these relationships can be reversed.
  • the existing active oil balance device has a complicated overall structure and high cost. For this reason, the present inventor proposes an improved oil balance device for a multi-line air conditioning system.
  • the oil balance device has a simple structure and can effectively recover lubricating oil from the exhaust of the compressor and recover the recovered oil.
  • the lubricating oil is first replenished to the compressor with the greatest risk of insufficient lubricating oil, and the pressure difference between the pressures of the oil pool in the compressor allows the lubricating oil to flow to other compressors through the oil balance pipe, which can significantly reduce Risk of insufficient lubricating oil in the compressor.
  • the oil balance device of the multi-line air conditioning system according to the present disclosure can also detect the oil level of the oil sump in the compressor with a simple structure, and can provide timely alarms and take corresponding measures for abnormal operating conditions of insufficient lubricating oil in the compressor. Protective measures can reduce the risk of insufficient lubricating oil in the compressor, prevent the compressor from being damaged due to insufficient lubricating oil, and extend the service life of the compressor.
  • FIG. 1 shows a view of a compressor in a multi-line air conditioning system 100.
  • the first compressor 10 has a casing 11, a top cover 12 and a base 13.
  • the housing 11 is in sealing engagement with the top cover 12 and the base 13 respectively, so as to define a sealed internal space.
  • the housing 11 is provided with an air inlet port 14 and a lubricating oil balance port 15.
  • the top cover 12 is provided with an exhaust port 16.
  • the refrigerant gas enters the internal space of the first compressor 10 from the intake port 14, is compressed by a compression mechanism (not shown), and is discharged from the exhaust port 16 of the first compressor 10.
  • An oil pool (not shown in the figure) for lubricating oil is provided at the bottom of the internal space of the first compressor 10, and the lubricating oil is supplied to various components (for example, compression mechanism, bearing housing, etc.) in the compressor for lubrication. .
  • part of the lubricating oil is returned to the oil pool, and part of the lubricating oil is brought into the compression chamber of the compression mechanism along with the refrigerant gas. After the refrigerant gas is compressed, it will pass from the exhaust port 16. discharge.
  • the multiple compressors of the outdoor unit of the multi-line air conditioning system 100 all have a similar structure to the above, that is, they are all provided with an intake port, an exhaust port, and a lubricating oil balance port.
  • FIG. 2 shows a top view of two compressors of the multi-line air conditioning system 100 connected to each other
  • FIG. 3 shows a front view of FIG. 2.
  • only the connection between two compressors of the multi-line air-conditioning system 100 is shown to schematically introduce one of the compressors of the multi-line air-conditioning system 100 according to the first embodiment of the present disclosure.
  • the intake port 14 of the first compressor 10 and the intake port 24 of the second compressor 20 of the multi-line air conditioning system 100 are connected to the intake manifold 30 in parallel.
  • the intake manifold 30 is divided into a first intake branch pipe 31 and a second intake branch pipe 33 at the first joint T1.
  • the first intake branch pipe 31 is connected to the intake port 14 of the first compressor 10, and the second intake branch pipe 33 is connected to the intake port 24 of the second compressor 20.
  • the pressure of the oil sump in the first compressor 10 is higher than the pressure of the oil sump in the second compressor 20.
  • the first joint T1 is located substantially in the middle between the intake port 14 of the first compressor 10 and the intake port 24 of the second compressor 20, and the fluid passage in the first intake branch pipe 31 is The lengths of the fluid passages in the second intake branch pipe 33 are approximately the same, but the pipe inner diameter of the first intake branch pipe 31 is smaller than the pipe inner diameter of the second intake branch pipe 33, so that the intake air in the casing 11 of the first compressor 10
  • the pressure of the pressure zone is higher than the pressure of the intake pressure zone in the casing 21 of the second compressor 20, so the pressure of the oil sump in the first compressor 10 is higher than that of the oil sump in the second compressor 20. Pressure.
  • the present disclosure is not limited to this.
  • the first intake branch pipe 31 and the second intake branch pipe 33 may be arranged to have the same pipe inner diameter, and the fluid passage in the first intake branch pipe 31 The length of is smaller than the length of the fluid passage in the second intake branch pipe 33, which can still make the internal pressure in the shell of the first compressor 10 higher than the internal pressure in the shell of the second compressor 20.
  • the pressure of the oil sump in the first compressor 10 is higher than that of the oil sump in the second compressor 20. Pressure.
  • the first compressor 10 and/or the second compressor 20 may be a fixed frequency compressor, an inverter compressor, or a variable capacity compressor.
  • the exhaust port 16 of the first compressor 10 and the exhaust port 26 of the second compressor 20 are connected to the exhaust manifold 40 in parallel.
  • the exhaust port 16 of the first compressor 10 is connected to the first exhaust branch pipe 41
  • the exhaust port 26 of the second compressor 20 is connected to the second row branch pipe 43
  • the first exhaust branch pipe 41 and the second exhaust branch pipe 43 It merges with one end of the exhaust manifold 40 at the second joint T2.
  • the oil balance device between the first compressor 10 and the second compressor 20 includes an oil balance pipe 50.
  • the oil balance pipe 50 connects the lubricating oil balance port 15 of the first compressor 10 and the lubricating oil balance port (not shown in the figure) of the second compressor 20 to each other, so that the oil pool in the first compressor 10 and the second compressor
  • the oil pools in the compressor 20 communicate with each other via an oil balance pipe 50. Due to the pressure difference between the pressures of the oil sump in the first compressor 10 and the second compressor 20, the lubricating oil in the oil sump of the first compressor 10, which has a higher pressure, flows to the pressure through the oil balance pipe 50.
  • the oil sump in the lower second compressor 20 The oil level in the oil sump in the first compressor 10 is lower than the oil level in the oil sump of the second compressor 20. Therefore, compared with the second compressor 20, the first compressor 10 is more prone to lack of lubricating oil.
  • the oil balance device between the first compressor 10 and the second compressor 20 further includes an oil separator 60 and an oil return line 70.
  • the oil separator 60 is provided on the discharge side of the compressor, and is mounted to the exhaust manifold 40. As shown in FIGS. 2 and 3, the oil separator 60 has an inlet 61, a refrigerant gas outlet 63 and a lubricating oil outlet 65.
  • the inlet 61 is connected to the exhaust manifold 40 and the lubricating oil outlet 65 is connected to the oil return line 70.
  • the exhaust gas discharged from the first compressor 10 and the second compressor 20 flows into the oil separator 60 through the exhaust manifold 40 and the inlet 61.
  • the refrigerant gas in the exhaust gas is separated from the lubricating oil in the oil separator 60, the refrigerant gas is discharged from the refrigerant gas outlet 63 of the oil separator 60, and the lubricating oil collects at the bottom of the oil separator 60 and flows from the lubricating oil outlet at the bottom.
  • 65 flows into the oil return line 70 and flows into the first compressor 10.
  • the other end of the oil return line 70 is connected to the first intake branch pipe 31, so that the lubricating oil in the oil separator 60 is delivered to the intake port 14 of the first compressor 10 through the oil return line 70, from The intake port 14 enters the first compressor 10 and then collects in the oil pool in the first compressor 10.
  • the other end of the oil return pipeline 70 can also be directly connected to the housing 11 of the first compressor 10 to directly supply the lubricating oil in the oil separator 60 to the oil pool in the first compressor 10.
  • the oil balance device includes an oil balance pipe 50 connecting the oil balance ports of each compressor to each other, and an oil separator provided at the exhaust manifold 40 of the compressor. ⁇ 60 and oil return line 70.
  • the oil separator 60 By connecting the oil separator 60 to the exhaust manifold 40 of the compressor, it is possible to efficiently recover lubricating oil from the exhaust of the compressor, and the recovered lubricating oil is first supplied to the first compressor 10 through the oil return line 70. That is, it is first supplied to the compressor that is most likely to have insufficient lubricating oil, and then, by means of the pressure difference between the pressures of the connected oil pools, the lubricating oil is removed from the oil in the first compressor 10 with a higher pressure.
  • the pool flows through the oil balance pipe 50 to the oil pool in the second compressor 20 with a lower pressure, which can significantly reduce the risk of insufficient lubricating oil in the compressor of the multi-line air conditioning system 100, and avoid damage to the compressor due to insufficient lubricating oil .
  • the oil balance device only needs to provide an oil return pipeline 70 from the oil separator 60 to the first compressor 10, and does not need to provide an oil return pipeline from the oil separator 60 to the remaining compressors, so the system can be simplified. Structure.
  • the lubricating oil flows into the first compressor 10 from the oil separator 60, and then flows into the second compressor 20. Even if the models of the first compressor 10 and the second compressor 20 are different, there is no need to perform complicated procedures.
  • the matching test can therefore shorten the test development time for the oil balance management of the multi-connected air conditioning system 100.
  • the circulation path of the lubricating oil in the multi-connected air-conditioning system 100 can be significantly shortened, and the lubricating oil can be prevented from flowing to other parts of the air-conditioning system (e.g., evaporator, condenser) In this way, sufficient lubricating oil can be kept in the compressor, and the risk of insufficient lubricating oil in the compressor can also be reduced.
  • the above describes the oil balance device between the compressors of the multi-line air conditioning system 100 according to the first embodiment of the present disclosure.
  • the oil balance device can first supply the recovered lubricating oil to the compressor with the greatest risk of insufficient lubricating oil.
  • the simple structure greatly reduces the risk of insufficient lubricating oil in the compressor of the multi-connected air conditioning system 100.
  • FIGS 4 and 5 show views of the compressor of the multi-line air conditioning system 200 and its oil balance device according to the second embodiment of the present disclosure.
  • the configuration of the compressor of the multi-line air-conditioning system 200 according to the second embodiment of the present disclosure is substantially the same as the configuration of the compressor of the multi-line air-conditioning system 100 according to the first embodiment of the present disclosure, except for the multi-line air-conditioning system 200 The installation of the first compressor 10A and the oil balance device.
  • the same components as those in the multi-line air conditioning system 100 are denoted by the same reference numerals, and the description will not be repeated. In the following, only the differences between the multi-line air conditioning system 200 and the multi-line air conditioning system 100 according to the present disclosure are explained.
  • FIG. 4 shows a view of a compressor of the multi-line air conditioning system 200.
  • the first compressor 10A includes an intake port 14, a lubricating oil balance port 15, and an exhaust port 16.
  • the first compressor 10A also includes a sensor installation port 17, which is used to install a sensor 80 (see FIG. 5).
  • the second compressor of the multi-line air conditioning system 200 is the same as the second compressor of the multi-line air conditioning system 100.
  • FIG. 5 shows the connection between the first compressor 10A and the second compressor 20 of the multi-line air-conditioning system 200, and shows the oil balance device of the multi-line air-conditioning system 200.
  • the oil balance device of the multi-line air conditioning system 200 includes an oil balance pipe 50, an oil separator 60, and an oil return pipe 70.
  • the oil balance device also includes a sensor 80 and a controller C1.
  • the sensor 80 communicates with the controller C1 to provide detection of the abnormal state of the oil level of the oil sump in the compressor, and to detect the oil level of the oil sump in the compressor. Alarm for abnormal conditions and take corresponding protective measures.
  • the sensor 80 is installed in the sensor installation port 17 of the first compressor 10A.
  • the senor 80 is an oil level sensor, installed at the height of the safe oil level of the oil sump in the compressor 10A, and used to detect the oil level of the oil sump in the first compressor 10A. If the oil level of the oil sump in the compressor is lower than the safe oil level, the compressor running in this state will cause damage.
  • the controller C1 may be a separate controller dedicated to the oil balance device, or may be a control module in the overall controller of the multi-line air conditioning system 200.
  • the sensor 80 communicates with the controller C1.
  • the sensor 80 sends the detected oil level signal to the controller C1, and the controller C1 performs corresponding control based on the received oil level signal, for example, triggers an alarm signal to enable the first compressor 10A and/or the second compressor 20 stop, etc., as shown by the dashed line in Figure 5.
  • the sensor 80 may also be a sensing device for measuring other parameters of the compressor.
  • the sensor 80 sends the detected parameters to the controller C1, and the controller C1 calculates the first parameter based on the received detection parameters.
  • FIG. 6 shows a flowchart of the oil balance control method executed by the controller C1 of the multi-line air conditioning system 200.
  • step S10 the multi-connected air conditioning system 200 is turned on.
  • step S20 it is determined whether the sensor 80 detects that the oil level of the oil sump in the first compressor 10A is lower than the safe oil level. If it is detected that the oil level in the oil sump of the first compressor 10A is lower than the safe oil level, and the lubricating oil in the oil sump is insufficient, the controller C1 of the multi-line air conditioning system 200 will trigger the alarm device to issue an alarm signal.
  • the warning signal can be a visually variable light or a audible sound.
  • step S30 the compressor is checked and lubricating oil is added. If it is not detected in step S20 that the oil level of the oil sump in the first compressor 10A is lower than the safe oil level, it means that the lubricating oil in the compressor is sufficient, so in step S40, the controller C1 makes the multi-line air conditioning system 200 The first compressor 10A and the second compressor 20 operate. During the operation of the first compressor 10A and the second compressor 20, once it is detected in step S50 that the oil level of the oil pool in the first compressor 10A is lower than the safe oil level, in step S60, the controller C1 stops the compressor.
  • the controller C1 first shuts down the second compressor 20, and then after the second compressor 20 is shut down for a first predetermined time, if it is still detected that the oil level of the oil pool in the first compressor 10A is lower than the safe oil level , The first compressor 10A is also shut down. Then, the compressor is checked, and lubricating oil is added, as shown in step S30.
  • the oil balance device includes an oil balance pipe 50, an oil separator 60, an oil return pipe 70, a sensor 80, and a controller C1. Similar to the multi-line air-conditioning system 100 of the first embodiment, the oil balance device of the multi-line air-conditioning system 200 can reduce the risk of insufficient lubricating oil for the compressor with a simple structure. In addition, the oil balance device of the multi-line air conditioning system 200 can also detect the oil level of the oil sump in the first compressor 10A, and take corresponding measures based on the detection results, even if there is lubrication in the oil sump of the first compressor 10A. In the case of insufficient oil, the alarm device can also be triggered in time to issue an alarm signal, and the compressor can be stopped in time, thereby protecting the compressor from damage.
  • FIG. 7 and 8 show views of the compressor and the oil balance device of the multi-line air conditioning system 300 according to the third embodiment of the present disclosure.
  • the configuration of the compressor of the multi-line air-conditioning system 300 according to the third embodiment of the present disclosure is substantially the same as the configuration of the compressor of the multi-line air-conditioning system 100 according to the first embodiment of the present disclosure, except for the multi-line air-conditioning system 300 The installation of the first compressor 10B and the oil balance device.
  • the same components as those in the multi-line air conditioning system 100 are denoted by the same reference numerals, and the description will not be repeated. In the following, only the difference between the multi-line air conditioning system 300 and the multi-line air conditioning system 100 according to the present disclosure is explained.
  • FIG. 7 shows a view of a compressor of the multi-line air conditioning system 300.
  • the first compressor 10B includes an intake port 14, a lubricating oil balance port 15, and an exhaust port 16.
  • the first compressor 10B also includes a sensor installation port 18, which is used to install a sensor 81 (see FIG. 8).
  • the second compressor of the multi-line air conditioning system 300 is the same as the second compressor of the multi-line air conditioning system 100.
  • FIG. 8 shows the connection between the first compressor 10B and the second compressor 20 of the multi-line air conditioning system 300 and shows the oil balance device of the multi-line air conditioning system 300.
  • the oil balance device of the multi-line air conditioning system 300 includes an oil balance pipe 50, an oil separator 60, and an oil return pipe 70.
  • the oil balance device also includes a sensor 81, a solenoid valve 90, and a controller C2, which provide detection of the abnormal state of the oil level of the first compressor 10B, and alarm the abnormal state of the oil level of the compressor and take corresponding measures.
  • the sensor 81 is installed in the sensor installation port 18 of the first compressor 10B.
  • the senor 81 is an oil level sensor, installed at the height of the normal oil level of the oil sump of the first compressor 10B, and is used to detect the oil level of the oil sump of the first compressor 10B.
  • the normal oil level of the oil sump is higher than the safe oil level.
  • the solenoid valve 90 is installed in the oil return line 70 to block or conduct the oil return line 70.
  • the controller C2 may be a separate controller dedicated to the oil balance device, or may be a control module in the overall controller of the multi-line air conditioning system 300.
  • the sensor 81 communicates with the controller C2.
  • the sensor 81 sends the detected oil level signal to the controller C2, and the controller C2 performs corresponding control based on the received oil level signal, for example, triggers an alarm signal, opens or closes the solenoid valve 90, and makes the first compressor 10B And/or the second compressor 20 is stopped, etc., as shown by the dashed line in FIG. 8.
  • the sensor 81 may also be a sensing device for measuring other parameters of the compressor.
  • the sensor 81 sends the detected parameters to the controller C2, and the controller C2 calculates the first parameter based on the received detection parameters.
  • the oil level of the oil sump of the compressor 10B is a sensor that uses the oil to the oil level of the oil to the controller C2 to calculate the first parameter based on the received detection parameters.
  • FIG. 9 shows a flowchart of a control method executed by the controller C2 of the multi-line air conditioning system 300.
  • step S110 the multi-connected air conditioning system 300 is turned on.
  • step S120 it is determined whether the sensor 81 detects that the oil level of the oil sump in the first compressor 10B is lower than the normal oil level. If it is detected that the oil level of the oil sump in the first compressor 10B is lower than the normal oil level, the controller C2 of the multi-line air conditioning system 300 will trigger the alarm device to issue an alarm signal.
  • the warning signal can be a visually variable light or a audible sound.
  • step S130 the state of the compressor is checked, and lubricating oil is added.
  • step S140 If it is not detected in step S120 that the oil level of the oil sump in the first compressor 10B is lower than the normal oil level, it means that the lubricating oil in the compressor is sufficient, so in step S140, the controller C2 makes the multi-line air conditioning system The first compressor 10B and the second compressor 20 of 300 operate, and the solenoid valve 90 is opened.
  • step S150 the controller C2
  • step S160 the controller C2
  • the solenoid valve 90 is closed to block the oil return line 70, thereby blocking the oil supply communication between the oil separator 60 and the first compressor 10B, and the lubricating oil in the oil separator 60 will no longer be supplied to the first compressor 10B.
  • step S180 the controller C2 opens the solenoid valve 90 to conduct the oil return line 70, thereby separating the oil
  • the oil separator 60 is in oil supply communication with the first compressor 10B so that the lubricating oil in the oil separator 60 is supplied to the first compressor 10B. If it is detected in step S190 that the oil level of the oil sump in the first compressor 10B is lower than the normal oil level for longer than the second predetermined time, it is determined that the oil level of the oil sump in the first compressor 10B is lower than safe. Oil level, so in step S200, the controller C2 stops the compressor.
  • the controller C2 first shuts down the second compressor 20, and then after the second compressor 20 is shut down for a predetermined time, if it still detects that the oil level of the oil sump of the first compressor 10B is lower than the normal oil level, it will The first compressor 10B is also shut down. Then, check the compressor condition and replenish lubricating oil, as shown in step S130.
  • step S190 If it is detected in step S190 that the duration of the oil level of the oil sump in the first compressor 10B being lower than the normal oil level does not exceed the second predetermined time, it means that the first compressor 10B has supplemented the lubrication from the oil separator 60
  • the oil can be operated, so the first compressor 10B and the second compressor 20 are kept running, and the process returns to step S150 to always detect the oil level of the oil pool in the first compressor 10B.
  • the oil balance device includes an oil balance pipe 50, an oil separator 60, an oil return line 70, a sensor 81, a solenoid valve 90, and a controller C2. Similar to the multi-line air-conditioning system 100 of the first embodiment, the oil balance device of the multi-line air-conditioning system 300 can reduce the risk of insufficient lubricating oil of the compressor with a simple structure. In addition, the oil balance device of the multi-line air conditioning system 300 can also detect the oil level of the oil sump in the first compressor 10B, communicate with the controller C2, and control the compressor according to the oil level of the oil sump in the first compressor 10B.
  • the oil return demand of the first compressor 10B and it can be inferred whether the first compressor 10B may have insufficient lubricating oil according to the duration of the oil level of the oil sump of the first compressor 10B being lower than the normal oil level, so that even if the first compression occurs
  • the lack of lubricating oil in the oil sump of the engine 10B can also trigger the alarm device to send an alarm signal in time, and can stop the compressor in time, thereby protecting the compressor from damage.
  • the oil balance device of the multi-line air conditioning system includes an oil separator provided on the discharge header of the compressor, and the lubricating oil in the oil separator is first supplied to the lubricating oil through the oil return line.
  • the compressor with the greatest risk of insufficient oil allows the compressor with the lowest oil level to be replenished with lubricating oil first, which can reduce the risk of insufficient lubricating oil in the compressor with a simple structure.
  • the oil balance device of the multi-line air conditioning system may also be provided with an oil return line from the oil separator to other compressors.
  • the multi-line air conditioning system can include more compressors, and the oil balance device can still achieve oil balance among the multiple compressors as described above.
  • the multi-line air conditioning system may also include one or more additional compressors.
  • the oil pools in these additional compressors are connected to the first compressor and the first compressor through the oil balance pipe.
  • the oil sumps in the second compressor communicate with each other, and the pressures of the oil sumps in these additional compressors are lower than the pressures of the oil sumps in the first compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开涉及一种用于多联机空调系统的油平衡装置。该油平衡装置包括:将第一压缩机内的油池与第二压缩机内的油池彼此连通的油平衡管;安装至所述排气总管的油分离器;以及连接在油分离器与第一压缩机之间的回油管路,油分离器中的润滑油能够经回油管路被供给至所述第一压缩机。本公开还涉及具有上述油平衡装置的多联机空调系统以及油平衡控制方法。该多联机空调系统能够从排气中有效地回收润滑油,并将润滑油首先输送至存在润滑油不足风险最大的压缩机中,以简单的结构降低了压缩机出现润滑油不足的风险。该多联机空调系统还能够对压缩机中的油位异常状况进行检测,及时地提供警报并采取保护措施,防止压缩机受到损坏。

Description

多联机空调系统及其油平衡装置和油平衡控制方法
本申请要求以下中国专利申请的优先权:于2020年02月27日提交中国专利局的申请号为202010123834.7、发明创造名称为“多联机空调系统及其油平衡装置和油平衡控制方法”的中国专利申请;于2020年02月27日提交中国专利局的申请号为202020224828.6、发明创造名称为“多联机空调系统及其油平衡装置”的中国专利申请。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种多联机空调系统,更具体地,涉及多联机空调系统的多台压缩机之间的油平衡装置以及油平衡控制方法。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
多联机空调系统具有较高的系统能效,能够满足较大的系统综合能效要求,在空调市场广受欢迎,是各种办公场所、工厂以及家庭多末端系统的理想选择。多联机空调系统通常包括能够并联运行的两台或更多台压缩机。在多联机空调系统的运行过程中,各压缩机的负荷可能不同,可能出现各压缩机的润滑油分配不平衡的情况,有的压缩机的润滑油不足,而有的压缩机的润滑油过多,易于造成压缩机损坏,并影响多联机空调系统的整体能效,甚至导致多联机系统不能正常运行。因此,一直以来,多联机空调系统的各压缩机之间的润滑油平衡都是一个设计重点。
在现有的多联机空调系统中,各压缩机之间的润滑油平衡主要有两种实现方式,一种是采用被动式润滑油平衡设计,另一种是采用主动式润滑油平衡设计。在采用被动式润滑油平衡设计的现有多联机空调系统中,多台压缩机内的油池之间采用油平衡管连接,利用不同压缩机内的压力差,使润滑油从内部压力较大的压缩机内的油池经油平衡管流向内部压力较小的压缩机内的油池,在相邻压缩机的油池之间形成油位差。这种类型的多联机空调系统的构造简单, 但是在运行过程中,只要油池彼此连接的压缩机的内部压力之间存在压力差,则润滑油会一直从内部压力较高的压缩机内流向内部压力较低的压缩机内,甚至在内部压力较高的压缩机内的润滑油不足时也是如此,内部压力较高的压缩机内的润滑油不足的风险较大,对于润滑油不足的情况不能够提供任何警报或防护。在采用主动式润滑油平衡设计的现有多联机空调系统中,每台压缩机均设置有油位检测器用以检测各压缩机内的油池中的润滑油的油位,并且还设置有油分离器以及相应的回油管路,一旦某一压缩机的油位检测器检测到该压缩机内的油池的油位低于预设油位,则使润滑油从油分离器通过相应的回油管路流向该压缩机内。这种类型的多联机空调系统能够在压缩机内的润滑油不足时及时补充润滑油,但是每台压缩机均需设置油位检测器,并需设置相应的回油管线,系统构造较复杂,成本较高。
因此,仍存在对多联机空调系统的多台压缩机的油平衡设计进行改进的需求。
发明内容
本公开的一个目的在于解决上述问题中的至少一者。
本公开的一个方面在于提供一种用于多联机空调系统的油平衡装置。多联机空调系统包括第一压缩机和第二压缩机,第一压缩机的排气端口和第二压缩机的排气端口并联连接至排气总管。油平衡装置包括:油平衡管,油平衡管将第一压缩机内的油池与第二压缩机内的油池彼此连通,其中,第一压缩机内的油池所处的压力高于第二压缩机内的油池所处的压力;油分离器,油分离器安装至排气总管,并且构造成从第一压缩机和第二压缩机的排气中分离出润滑油;以及回油管路,回油管路连接在油分离器与第一压缩机之间,使得油分离器中的润滑油能够经回油管路被供给至第一压缩机。
在一个实施方式中,油平衡装置还包括传感器和控制器。传感器安装在第一压缩机上并且构造成与控制器通信。控制器根据传感器的检测结果确定第一压缩机内的油池的油位状态,并且控制所述第一压缩机和所述第二压缩机的停机。
控制器构造成:当第一压缩机的油池的油位低于安全油位时,使第二压缩机停机;以及当第二压缩机停机第一预定时间之后,如果第一压缩机内的油池 的油位仍低于安全油位,则使第一压缩机停机。
在一个实施方式中,当第一压缩机的油池的油位低于安全油位时,控制器触发警报装置。
在一个实施方式中,油平衡装置还包括电磁阀,电磁阀设置在回油管路上,控制器构造成根据传感器的检测结果选择性地使电磁阀打开或关闭,以建立或中断油分离器与第一压缩机之间的供油连通。
控制器构造成:当第一压缩机的油池的油位低于正常油位时,使电磁阀打开,以允许油分离器中的润滑油流入第一压缩机,其中,正常油位高于安全油位;当第一压缩机内的油池的油位高于正常油位时,使电磁阀关闭,以使油分离器中的润滑油不再流入第一压缩机。
控制器构还造成:当电磁阀处于打开状态并且第一压缩机内的油池的油位低于正常油位的持续时间超过第二预定时间时,判定第一压缩机的油池的油位低于安全油位。
在一个实施方式中,传感器是油位传感器。
油分离器中的润滑油经回油管路被输送至第一压缩机的进气端口或者直接被输送至第一压缩机内的油池。
在一个实施方式中,第一压缩机的进气端口经第一进气支管连接至进气总管,第二压缩机的进气端口经第二进气支管连接至进气总管。第一进气支管内的流体通道的长度小于第二进气支管内的流体通道的长度,并且/或者第一进气支管的管内径小于第二进气支管的管内径,使得第一压缩机内的油池所处的压力高于第二压缩机内的油池所处的压力。
在一个实施方式中,多联机空调系统还包括与第一压缩机和第二压缩机并联设置的一台或更多台附加压缩机,所述一台或更多台附加压缩机内的油池经油平衡管与第一压缩机和第二压缩机内的油池彼此连通,并且所述一台或更多台附加压缩机内的油池所处的压力低于第一压缩机内的油池所处的压力。
本公开的另一方面在于提供一种多联机空调系统,该多联机空调系统包括根据本公开的油平衡装置。
本公开的又一方面在于提供一种用于多联机空调系统的油平衡控制方法。多联机空调系统包括第一压缩机和第二压缩机,第一压缩机内的油池所处的压力高于第二压缩机内的油池所处的压力。该油平衡控制方法包括:使用油分离 器从第一压缩机和第二压缩机的排气中分离出润滑油;将油分离器中的润滑油经回油管路供给至第一压缩机中;以及使第一压缩机中的润滑油经油平衡管流向第二压缩机中。
该油平衡控制方法还包括检测第一压缩机内的油池的油位。当第一压缩机内的油池的油位低于安全油位时,使第二压缩机停机,当第二压缩机停机第一预定时间之后,如果第一压缩机的油池的油位仍低于安全油位,则使第一压缩机停机。
该油平衡控制方法还包括:当第一压缩机内的油池的油位高于正常油位时,中断油分离器与第一压缩机之间的供油连通,以及当第一压缩机内的油池的油位低于正常油位时,建立油分离器与第一压缩机之间的供油连通。
当第一压缩机内的油池的油位低于正常油位的持续时间超过第二预定时间时,判定第一压缩机内的油池的油位低于安全油位。
本公开提供了一种改进的用于多联机空调系统的油平衡装置、具有该油平衡装置的多联机空调系统以及油平衡控制方法。根据本公开的多联机空调系统能够从压缩机的排气中有效地回收润滑油,并将所回收的润滑油首先输送至存在润滑油不足风险最大的压缩机中,然后借助于压缩机内的油池所处的压力之间的压力差,使润滑油流向其他压缩机,以简单的结构大大降低了压缩机出现润滑油不足的风险。另外,根据本公开的多联机空调系统还能够对压缩机中的油位异常状况进行检测,及时地提供警报并采取保护措施,防止压缩机受到损坏。
附图说明
以下将参照附图仅以示例方式描述本公开的实施方式。在附图中,相同的特征或部件采用相同的附图标记来表示,并且附图不一定按比例绘制,并且在附图中:
图1示出了根据本公开的第一实施方式的多联机空调系统中的一台压缩机的视图;
图2示出了根据本公开的第一实施方式的多联机空调系统的彼此连接的多台压缩机的俯视图;
图3示出了图2中的多台压缩机的正视图;
图4示出了根据本公开的第二实施方式的多联机空调系统中的一台压缩机的视图;
图5示出了根据本公开的第二实施方式的多联机空调系统的彼此连接的多台压缩机的正视图;
图6示出了根据本公开的第二实施方式的多联机空调系统的油平衡控制方法的流程图;
图7示出了根据本公开的第三实施方式的多联机空调系统中的一台压缩机的视图;
图8示出了根据本公开的第三实施方式的多联机空调系统的彼此连接的多台压缩机的正视图;
图9示出了根据本公开的第三实施方式的多联机空调系统的油平衡控制方法的流程图。
具体实施方式
下文的描述本质上仅是示例性的而并非意图限制本公开、应用及用途。应当理解,在所有这些附图中,相似的附图标记指示相同的或相似的零件及特征。各个附图仅示意性地表示了本公开的实施方式的构思和原理,并不一定示出了本公开各个实施方式的具体尺寸及其比例。在特定的附图中的特定部分可能采用夸张的方式来图示本公开的实施方式的相关细节或结构。
在本公开的实施方式的描述中,所采用的与“上”、“下”、“左”、“右”相关的方位术语是以附图中所示出的视图的上、下、左、右位置来描述的。在实际应用中,本文中所使用的“上”、“下”、“左”、“右”的位置关系可以根据实际情况限定,这些关系是可以相互颠倒的。
本发明人发现,在多联机空调系统中,现有的被动式油平衡装置仍不能够很好地解决压缩机润滑油不足的问题,并且也不能够对于润滑油不足的异常工况提供任何警报或防护,而现有的主动式油平衡装置则整体构造复杂,成本较高。为此,本发明人提出了一种改进的用于多联机空调系统的油平衡装置,该油平衡装置的结构简单,能够从压缩机的排气中有效地回收润滑油,并将所回收的润滑油首先补充到存在润滑油不足风险最大的压缩机中,并且通过压缩机内的油池所处的压力之间的压力差,使润滑油通过油平衡管流向其他压缩机 内,能够显著降低压缩机内润滑油不足的风险。另外,根据本公开的多联机空调系统的油平衡装置还能够以简单的结构检测压缩机内的油池的油位,能够针对压缩机内润滑油不足的异常工况及时提供警报并采取相应的防护措施,降低压缩机内润滑油不足的风险,防止压缩机因润滑油不足而损坏,延长压缩机的使用寿命。下面将结合附图说明根据本公开的多联机空调系统及其油平衡装置。
图1至图3示出了根据本公开的第一实施方式的多联机空调系统100的室外机的压缩机的视图。多联机空调系统100可以包括并联的两台或更多台压缩机,这些压缩机可以是一台室外机内的压缩机,或者是并联的多台室外机中的压缩机。图1示出了多联机空调系统100中的一台压缩机的视图。如图1所示,第一压缩机10具有壳体11、顶盖12、底座13。壳体11分别与顶盖12以及底座13密封接合,从而限定密封的内部空间。壳体11上设置有进气端口14和润滑油平衡端口15。顶盖12上设置有排气端口16。冷媒气体从进气端口14进入第一压缩机10的内部空间,经压缩机构(未示出)压缩后,从排气端口16排出第一压缩机10。第一压缩机10的内部空间的底部设置有用于润滑油的油池(图中未示出),润滑油被供给至压缩机内的各部件(例如,压缩机构、轴承座等)以进行润滑。在对压缩机内的部件进行润滑之后,一部分润滑油则返回至油池,还有一部分润滑油随着冷媒气体被带入压缩机构的压缩腔,随着冷媒气体经压缩后从排气端口16排出。多联机空调系统100的室外机的多台压缩机均具有与上述类似的结构,即,均设置有进气端口、排气端口以及润滑油平衡端口。
图2示出了多联机空调系统100的彼此连接的两台压缩机的俯视图,图3示出了图2的正视图。在附图和本示例中,仅示出了多联机空调系统100的两台压缩机之间的连接,以示意性地介绍根据本公开的第一实施方式的多联机空调系统100的压缩机之间的油平衡装置。
如图2和图3所示,多联机空调系统100的第一压缩机10的进气端口14和第二压缩机20的进气端口24并联地连接至进气总管30。进气总管30在第一接头T1处分成第一进气支管31和第二进气支管33。第一进气支管31连接至第一压缩机10的进气端口14,第二进气支管33连接至第二压缩机20的进气端口24。第一压缩机10内的油池所处的压力高于第二压缩机20内的油池 所处的压力。在本示例中,第一接头T1位于第一压缩机10的进气端口14与第二压缩机20的进气端口24之间的大体中间的位置,第一进气支管31内的流体通道与第二进气支管33内的流体通道的长度大体相等,但第一进气支管31的管内径小于第二进气支管33的管内径,使得第一压缩机10的壳体11内的进气压力区的压力高于第二压缩机20的壳体21内的进气压力区的压力,因此第一压缩机10内的油池所处的压力高于第二压缩机20内的油池所处的压力。然而,本公开不限于此,在根据本公开的其他示例中,第一进气支管31和第二进气支管33可以设置成具有相同的管内径,并且第一进气支管31内的流体通道的长度小于第二进气支管33内的流体通道的长度,仍能够使得第一压缩机10的壳体内的内部压力高于第二压缩机20的壳体内的内部压力。另外,第一压缩机10和第二压缩机20由于其压缩机类型以及参数的不同也会使得第一压缩机10内的油池所处的压力高于第二压缩机20内的油池所处的压力。第一压缩机10和/或第二压缩机20可以是定频压缩机、变频压缩机或可变容量压缩机。
第一压缩机10的排气端口16和第二压缩机20的排气端口26并联地连接至排气总管40。第一压缩机10的排气端口16连接至第一排气支管41,第二压缩机20的排气端口26连接至第二排支管43,第一排气支管41和第二排气支管43在第二接头T2处汇合至排气总管40的一端。
第一压缩机10和第二压缩机20之间的油平衡装置包括油平衡管50。油平衡管50将第一压缩机10的润滑油平衡端口15和第二压缩机20的润滑油平衡端口(图中未示出)彼此连接,使得第一压缩机10内的油池与第二压缩机20内的油池经油平衡管50彼此连通。由于第一压缩机10和第二压缩机20内的油池所处的压力之间的压力差,压力较高的第一压缩机10内的油池中的润滑油经油平衡管50流向压力较低的第二压缩机20内的油池。第一压缩机10内的油池中的油位低于第二压缩机20的油池中的油位。因此,与第二压缩机20相比,第一压缩机10更容易出现润滑油不足的情况。
第一压缩机10和第二压缩机20之间的油平衡装置还包括油分离器60和回油管路70。油分离器60设置在压缩机的排气侧,安装至排气总管40。如图2和图3所示,油分离器60具有入口61、冷媒气体出口63以及润滑油出口65。入口61连接至排气总管40,润滑油出口65连接至回油管路70。从第一 压缩机10和第二压缩机20排出的排气经排气总管40、入口61流入油分离器60中。排气中的冷媒气体与润滑油在油分离器60中分离,冷媒气体从油分离器60的冷媒气体出口63排出,而润滑油聚集在油分离器60的底部,并从底部的润滑油出口65流入回油管路70,并流入第一压缩机10内。在本示例中,回油管路70的另一端连接至第一进气支管31,使得油分离器60中的润滑油经回油管路70被输送至第一压缩机10的进气端口14,从进气端口14进入第一压缩机10内,然后聚集到第一压缩机10内的油池中。可替换地,回油管路70的另一端也可以直接连接至第一压缩机10的壳体11,以将油分离器60中的润滑油直接供给至第一压缩机10内的油池中。
在根据本公开的第一实施方式的多联机空调系统100中,油平衡装置包括将各压缩机的油平衡端口彼此连接的油平衡管50、设置在压缩机的排气总管40处的油分离器60以及回油管路70。通过将油分离器60连接至压缩机的排气总管40,能够从压缩机的排气中有效地回收润滑油,并将回收的润滑油通过回油管路70首先供给至第一压缩机10,即,首先供给至最可能出现润滑油不足的压缩机,然后,借助于彼此连接的油池所处的压力之间的压力差,使润滑油从压力较高的第一压缩机10内的油池经油平衡管50流向压力较低的第二压缩机20内的油池中,能够显著降低多联机空调系统100的压缩机出现润滑油不足的风险,避免压缩机由于润滑油不足而造成损坏。优选地,该油平衡装置仅需设置从油分离器60至第一压缩机10的回油管路70,而无需设置从油分离器60至其余各台压缩机的回油管路,因此能够简化系统的结构。另外,润滑油从油分离器60流入第一压缩机10,随后便流入第二压缩机20,即使在第一压缩机10和第二压缩机20的型号不同的情况下,也无需进行复杂的匹配测试,因此能够缩短多联机空调系统100的油平衡管理的测试开发时间。另外,通过直接从压缩机的排气总管回收润滑油,能够明显缩短润滑油在多联机空调系统100中的循环路径,避免润滑油流动到空调系统的其他部分(例如,蒸发器、冷凝器)中,能够保证充分的润滑油保持在压缩机中,也能够降低压缩机出现润滑油不足的风险。
以上介绍了根据本公开的第一实施方式的多联机空调系统100的压缩机之间的油平衡装置,该油平衡装置能够将回收的润滑油首先供给至润滑油不足风险最大的压缩机,以简单的结构大大降低了多联机空调系统100的压缩机出 现润滑油不足的风险。
图4和图5示出了根据本公开的第二实施方式的多联机空调系统200的压缩机及其油平衡装置的视图。根据本公开的第二实施方式的多联机空调系统200的压缩机的构造与根据本公开的第一实施方式的多联机空调系统100的压缩机的构造大体相同,区别仅在于多联机空调系统200的第一压缩机10A以及油平衡装置的设置。在附图中,与多联机空调系统100中的部件相同的部件用相同的附图标记表示,并且不再重复说明。在下文中,仅说明根据本公开的多联机空调系统200与多联机空调系统100之间的区别。
图4示出了多联机空调系统200的一台压缩机的视图。如图4所示,第一压缩机10A包括进气端口14、润滑油平衡端口15、排气端口16。另外,第一压缩机10A还包括传感器安装口17,传感器安装口17用于安装传感器80(请见图5)。多联机空调系统200的第二压缩机与多联机空调系统100的第二压缩机相同。
图5示出了多联机空调系统200的第一压缩机10A与第二压缩机20之间的连接,并示出了多联机空调系统200的油平衡装置。如图5所示,多联机空调系统200的油平衡装置包括油平衡管50、油分离器60、回油管路70。该油平衡装置还包括传感器80和控制器C1,传感器80与控制器C1通信,以提供对压缩机内的油池的油位的异常状态的检测,并且对压缩机内的油池的油位异常状态进行警报并采取相应的保护措施。传感器80安装在第一压缩机10A的传感器安装口17中。在本示例中,传感器80是油位传感器,安装成处于压缩机10A内的油池的安全油位的高度处,用于检测第一压缩机10A内的油池的油位。如果压缩机内的油池的油位低于安全油位,压缩机在此状态下运行将会造成损坏。控制器C1可以是专用于油平衡装置的单独控制器,也可以是多联机空调系统200的总控制器中的一个控制模块。传感器80与控制器C1通信。传感器80将检测到的油位信号发送至控制器C1,控制器C1基于所接收到的油位信号执行相应地控制,例如,触发警报信号,使第一压缩机10A和/或第二压缩机20停机等,如图5中的虚线所示。可替换地,传感器80也可以是用于测量压缩机的其他参数的感测装置,传感器80将所检测到的参数发送至控制器C1,控制器C1基于所接收到的检测参数推算出第一压缩机10A内的油池的油位。
图6示出了多联机空调系统200的控制器C1所执行的油平衡控制方法的流程图。首先,在步骤S10中,使多联机空调系统200开机。接下来,在步骤S20中,判断传感器80是否检测出第一压缩机10A内的油池的油位低于安全油位。如果检测出第一压缩机10A的油池中的油位低于安全油位,油池中的润滑油不足,多联机空调系统200的控制器C1将触发警报装置发出警报信号。警报信号可以是视觉可变的灯光,或者是听觉可辨的声音。于是,在步骤S30中,检查压缩机,并补充润滑油。如果在步骤S20中未检测出第一压缩机10A内的油池油位低于安全油位,则说明压缩机内的润滑油充足,于是在步骤S40中,控制器C1使多联机空调系统200的第一压缩机10A和第二压缩机20运行。在第一压缩机10A和第二压缩机20运行的过程中,一旦在步骤S50中检测出第一压缩机10A内的油池的油位低于安全油位,则在步骤S60中,控制器C1使压缩机停机。具体地,控制器C1先使第二压缩机20停机,然后在第二压缩机20停机第一预定时间之后,若仍检测出第一压缩机10A内的油池的油位低于安全油位,则将第一压缩机10A也停机。于是,检查压缩机,并补充润滑油,如步骤S30中所示。
在根据本公开的第二实施方式的多联机空调系统200中,油平衡装置包括油平衡管50、油分离器60、回油管路70、传感器80以及控制器C1。与第一实施方式的多联机空调系统100类似,多联机空调系统200的油平衡装置能够以简单的结构降低压缩机的润滑油不足的风险。另外,多联机空调系统200的油平衡装置还能够检测第一压缩机10A内的油池的油位,并基于检测结果采取相应的措施,即使出现第一压缩机10A内的油池中的润滑油不足的情况,也能够及时地触发警报装置发出警报信号,并且能够及时地使压缩机停机,从而保护压缩机免受损坏。
图7和图8示出了根据本公开的第三实施方式的多联机空调系统300的压缩机及其油平衡装置的视图。根据本公开的第三实施方式的多联机空调系统300的压缩机的构造与根据本公开的第一实施方式的多联机空调系统100的压缩机的构造大体相同,区别仅在于多联机空调系统300的第一压缩机10B以及油平衡装置的设置。在附图中,与多联机空调系统100中的部件相同的部件用相同的附图标记表示,并且不再重复说明。在下文中,仅说明根据本公开的多联机空调系统300与多联机空调系统100之间的区别。
图7示出了多联机空调系统300的一台压缩机的视图。如图7所示,第一压缩机10B包括进气端口14、润滑油平衡端口15、排气端口16。另外,第一压缩机10B还包括传感器安装口18,传感器安装口18用于安装传感器81(请见图8)。多联机空调系统300的第二压缩机与多联机空调系统100的第二压缩机相同。
图8示出了多联机空调系统300的第一压缩机10B与第二压缩机20之间的连接,并示出了多联机空调系统300的油平衡装置。如图8所示,多联机空调系统300的油平衡装置包括油平衡管50、油分离器60、回油管路70。该油平衡装置还包括传感器81、电磁阀90以及控制器C2,提供对第一压缩机10B的油位异常状态的检测,并且对压缩机的油位异常状态进行警报并采取相应的措施。传感器81安装在第一压缩机10B的传感器安装口18中。在本示例中,传感器81是油位传感器,安装成处于第一压缩机10B的油池的正常油位的高度处,用于检测第一压缩机10B的油池的油位。油池的正常油位高于安全油位。电磁阀90安装在回油管路70中,以阻断或导通回油管路70。控制器C2可以是专用于油平衡装置的单独控制器,也可以是多联机空调系统300的总控制器中的一个控制模块。传感器81与控制器C2通信。传感器81将检测到的油位信号发送至控制器C2,控制器C2基于所接收到的油位信号执行相应地控制,例如,触发警报信号、打开或关闭电磁阀90、使第一压缩机10B和/或第二压缩机20停机等,如图8中的虚线所示。可替换地,传感器81也可以是用于测量压缩机的其他参数的感测装置,传感器81将所检测到的参数发送至控制器C2,控制器C2基于所接收到的检测参数推算出第一压缩机10B的油池的油位。
图9示出了多联机空调系统300的控制器C2所执行的控制方法的流程图。首先,在步骤S110中,使多联机空调系统300开机。接下来,在步骤S120中,判断传感器81是否检测出第一压缩机10B内的油池的油位低于正常油位。如果检测出第一压缩机10B内的油池的油位低于正常油位,多联机空调系统300的控制器C2将触发警报装置发出警报信号。警报信号可以是视觉可变的灯光,或者是听觉可辨的声音。于是,在步骤S130中,检查压缩机的状态,并补充润滑油。如果在步骤S120中未检测出第一压缩机10B内的油池的油位低于正常油位,则说明压缩机内的润滑油充足,于是在步骤S140中,控制器 C2使多联机空调系统300的第一压缩机10B和第二压缩机20运行,并使电磁阀90打开。在第一压缩机10B和第二压缩机20运行的过程中,一旦在步骤S150中检测出第一压缩机10B内的油池的油位超过正常油位,则在步骤S160中,控制器C2使电磁阀90关闭,阻断回油管路70,从而阻断油分离器60与第一压缩机10B之间的供油连通,油分离器60中的润滑油将不再供给至第一压缩机10B。如果在步骤S170中检测出第一压缩机10B内的油池的油位低于正常油位,则在步骤S180中,控制器C2打开电磁阀90,导通回油管路70,从而使油分离器60与第一压缩机10B供油连通,使得油分离器60中的润滑油被供给至第一压缩机10B。如果在步骤S190中检测出第一压缩机10B内的油池的油位低于正常油位的持续时间超过第二预定时间,则判定第一压缩机10B内的油池的油位低于安全油位,于是在步骤S200中,控制器C2使压缩机停机。具体地,控制器C2先使第二压缩机20停机,然后在第二压缩机20停机预定时间之后,若仍检测出第一压缩机10B的油池的油位低于正常油位,则将第一压缩机10B也停机。于是,检查压缩机状况,并补充润滑油,如步骤S130中所示。如果在步骤S190中检测出第一压缩机10B内的油池的油位低于正常油位的持续时间未超过第二预定时间,则说明第一压缩机10B通过补充来自油分离器60的润滑油而可以运行,因此保持第一压缩机10B和第二压缩机20运行,并返回至步骤S150,始终检测第一压缩机10B内的油池的油位。
在根据第三实施方式的多联机空调系统300中,油平衡装置包括油平衡管50、油分离器60、回油管路70、传感器81、电磁阀90以及控制器C2。与第一实施方式的多联机空调系统100类似,多联机空调系统300的油平衡装置能够以简单的结构降低压缩机的润滑油不足的风险。另外,多联机空调系统300的油平衡装置还能够检测第一压缩机10B内的油池的油位,并与控制器C2通信,根据第一压缩机10B内的油池的油位控制压缩机的回油需求,并且能够根据第一压缩机10B的油池的油位低于正常油位的持续时间来推测出第一压缩机10B是否可能出现润滑油不足的情况,使得即使出现第一压缩机10B的油池的润滑油不足的情况,也能够及时地触发警报装置发出警报信号,并且能够及时地使压缩机停机,从而保护压缩机免受损坏。
以上示出了根据本公开的优选实施方式的多联机空调系统。在以上示出的 优选实施方式中,多联机空调系统的油平衡装置包括设置在压缩机的排放总管上的油分离器,并且通过回油管路将油分离器中的润滑油首先供给至润滑油不足风险最大的压缩机,使得油位最低的压缩机能够首先给补充润滑油,能够以简单的结构降低压缩机出现润滑油不足的风险。并且,在以上示出的多联机空调系统中,仅设置有从油分离器至润滑油不足风险最大的压缩机的回油管路,润滑油通过压缩机的内部压力之差而流向其他压缩机,能够简化系统的结构设计,降低成本,并且能够缩短油平衡管理的测试开发时间。然而,本公开不限于此,在根据本公开的其他示例中,多联机空调系统的油平衡装置也可以设置从油分离器至其他压缩机的回油管路。
以上以两台压缩机并联连接的构型为例说明了根据本公开的多联机空调系统的油平衡装置。如上所述,多联机空调系统可以包括更多台压缩机,并且油平衡装置仍能够如上所述地实现多台压缩机之间的油平衡。例如,除了第一压缩机和第二压缩机之外,多联机空调系统还可以包括一台或更多台附加压缩机,这些附加压缩机内的油池经油平衡管与第一压缩机和第二压缩机内的油池彼此连通,并且这些附加压缩机内的油池所处的压力均低于第一压缩机内的油池所处的压力。在这种构型下,仍能够实现首先将润滑油首先供给至润滑油不足风险最大的第一压缩机,并借助于压缩机内的油池所处的压力之间的压力差,使润滑油从第一压缩机流向其他的压缩机。
在此,已详细描述了本公开的示例性实施方式,但是应该理解的是,本公开并不局限于上文详细描述和示出的具体实施方式。在不偏离本公开的主旨和范围的情况下,本领域的技术人员能够对本公开进行各种变型和变体。所有这些变型和变体都落入本公开的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (15)

  1. 一种用于多联机空调系统(100、200、300)的油平衡装置,所述多联机空调系统包括第一压缩机(10、10A、10B)和第二压缩机(20),所述第一压缩机(10、10A、10B)的排气端口(16)和所述第二压缩机(20)的排气端口(26)并联连接至排气总管(40),
    其特征在于,所述油平衡装置包括:
    油平衡管(50),所述油平衡管(50)将所述第一压缩机(10、10A、10B)内的油池与所述第二压缩机(20)内的油池彼此连通,其中,所述第一压缩机(10、10A、10B)内的油池所处的压力高于所述第二压缩机(20)内的油池所处的压力;
    油分离器(60),所述油分离器(60)安装至所述排气总管(40),并且构造成从所述第一压缩机(10、10A、10B)和所述第二压缩机(20)的排气中分离出润滑油;以及
    回油管路(70),所述回油管路(70)连接在所述油分离器(60)与所述第一压缩机(10、10A、10B)之间,使得所述油分离器(60)中的润滑油能够经所述回油管路(70)被供给至所述第一压缩机(10、10A、10B)。
  2. 根据权利要求1所述的用于多联机空调系统(200、300)的油平衡装置,其中,所述油平衡装置还包括传感器(80、81)和控制器(C1、C2),所述传感器(80、81)安装在所述第一压缩机(10A、10B)上并且构造成与所述控制器(C1、C2)通信,所述控制器(C1、C2)根据所述传感器(80、81)的检测结果确定所述第一压缩机(10A、10B)内的油池的油位状态,并且控制所述第一压缩机(10A、10B)和所述第二压缩机(20)的停机。
  3. 根据权利要求2所述的用于多联机空调系统(200、300)的油平衡装置,其中,所述控制器(C1、C2)构造成:
    当所述第一压缩机(10A、10B)内的油池的油位低于安全油位时,使所述第二压缩机(20)停机;以及
    当所述第二压缩机(20)停机第一预定时间之后,如果所述第一压缩机 (10A、10B)内的油池的油位仍低于所述安全油位,则使所述第一压缩机(10A、10B)停机。
  4. 根据权利要求3所述的用于多联机空调系统(200、300)的油平衡装置,其中,当所述第一压缩机(10A、10B)内的油池的油位低于安全油位时,所述控制器(C1、C2)触发警报装置。
  5. 根据权利要求3所述的用于多联机空调系统(300)的油平衡装置,其中,所述油平衡装置还包括电磁阀(90),所述电磁阀(90)设置在所述回油管路(70)上,所述控制器(C2)构造成根据所述传感器(81)的检测结果选择性地使所述电磁阀(90)打开或关闭,以建立或中断所述油分离器(60)与所述第一压缩机(10B)之间的供油连通。
  6. 根据权利要求5所述的用于多联机空调系统(300)的油平衡装置,其中,所述控制器(C2)构造成:
    当所述第一压缩机(10B)内的油池的油位低于正常油位时,使所述电磁阀(90)打开,以允许所述油分离器(60)中的润滑油流入所述第一压缩机(10B),其中,所述正常油位高于所述安全油位;
    当所述第一压缩机(10B)内的油池的油位高于所述正常油位时,使所述电磁阀(90)关闭,以使所述油分离器(60)中的润滑油不再流入所述第一压缩机(10B)。
  7. 根据权利要求6所述的用于多联机空调系统(300)的油平衡装置,其中,所述控制器构还造成:
    当所述电磁阀(90)处于打开状态并且所述第一压缩机(10B)内的油池的油位低于所述正常油位的持续时间超过第二预定时间时,判定所述第一压缩机(10B)内的油池的油位低于所述安全油位。
  8. 根据权利要求1至7中的任一项所述的用于多联机空调系统(100、200、300)的油平衡装置,其中,所述油分离器(60)中的润滑油经所述回油管路 (70)被输送至所述第一压缩机(10、10A、10B)的进气端口(14)或者直接被输送至所述第一压缩机(10、10A、10B)内的油池。
  9. 根据权利要求1至7中的任一项所述的用于多联机空调系统(100、200、300)的油平衡装置,其中,所述第一压缩机(10、10A、10B)的进气端口(14)经第一进气支管(31)连接至进气总管(30),所述第二压缩机(20)的进气端口(24)经第二进气支管(33)连接至所述进气总管(30),
    其中,所述第一进气支管(31)内的流体通道的长度小于所述第二进气支管(33)内的流体通道的长度,并且/或者所述第一进气支管(31)的管内径小于所述第二进气支管(33)的管内径,使得所述第一压缩机(10、10A、10B)内的油池所处的压力高于所述第二压缩机(20)内的油池所处的压力。
  10. 根据权利要求1至7中的任一项所述的用于多联机空调系统(100、200、300)的油平衡装置,其中,所述多联机空调系统(100、200、300)还包括与所述第一压缩机(10、10A、10B)和所述第二压缩机(20)并联设置的一台或更多台附加压缩机,所述一台或更多台附加压缩机内的油池经所述油平衡管(50)与所述第一压缩机(10、10A、10B)和所述第二压缩机(20)内的油池彼此连通,并且所述一台或更多台附加压缩机内的油池所处的压力低于所述第一压缩机(10、10A、10B)内的油池所处的压力。
  11. 一种多联机空调系统(100、200、300),所述多联机空调系统(100、200、300)包括根据权利要求1至10中的任一项所述的油平衡装置。
  12. 一种用于多联机空调系统(100、200、300)的油平衡控制方法,所述多联机空调系统(100、200、300)包括第一压缩机(10、10A、10B)和第二压缩机(20),所述第一压缩机(10、10A、10B)内的油池所处的压力高于所述第二压缩机(20)内的油池所处的压力,
    其中,所述油平衡控制方法包括:
    使用油分离器(60)从所述第一压缩机(10、10A、10B)和所述第二压缩机(20)的排气中分离出润滑油;
    将所述油分离器(60)中的润滑油经回油管路(70)供给至所述第一压缩机(10、10A、10B)中;以及
    使所述第一压缩机(10、10A、10B)中的润滑油经油平衡管(50)流向所述第二压缩机(20)中。
  13. 根据权利要求13所述的用于多联机空调系统(200、300)的油平衡控制方法,所述油平衡控制方法还包括检测所述第一压缩机(10A、10B)内的油池的油位,
    其中,当所述第一压缩机(10A、10B)内的油池的油位低于安全油位时,使所述第二压缩机(20)停机,当所述第二压缩机(20)停机第一预定时间之后,如果所述第一压缩机(10A、10B)的油池的油位仍低于所述安全油位,则使所述第一压缩机(10A、10B)停机。
  14. 根据权利要求13所述的用于多联机空调系统(300)的油平衡控制方法,所述油平衡控制方法还包括:
    当所述第一压缩机(10B)内的油池的油位高于正常油位时,中断所述油分离器(60)与所述第一压缩机(10B)之间的供油连通,以及
    当所述第一压缩机(10B)内的油池的油位低于正常油位时,建立所述油分离器(60)与所述第一压缩机(10B)之间的供油连通。
  15. 根据权利要求14所述的用于多联机空调系统(300)的油平衡控制方法,其中,当所述第一压缩机(10B)内的油池的油位低于所述正常油位的持续时间超过第二预定时间时,判定所述第一压缩机(10B)内的油池的油位低于所述安全油位。
PCT/CN2020/111985 2020-02-27 2020-08-28 多联机空调系统及其油平衡装置和油平衡控制方法 WO2021169213A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020224828.6 2020-02-27
CN202010123834.7 2020-02-27
CN202020224828.6U CN211739554U (zh) 2020-02-27 2020-02-27 多联机空调系统及其油平衡装置
CN202010123834.7A CN113310249A (zh) 2020-02-27 2020-02-27 多联机空调系统及其油平衡装置和油平衡控制方法

Publications (1)

Publication Number Publication Date
WO2021169213A1 true WO2021169213A1 (zh) 2021-09-02

Family

ID=77489842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111985 WO2021169213A1 (zh) 2020-02-27 2020-08-28 多联机空调系统及其油平衡装置和油平衡控制方法

Country Status (1)

Country Link
WO (1) WO2021169213A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272477A (ja) * 1992-03-26 1993-10-19 Daikin Ind Ltd 連結形圧縮装置の運転制御方法
CN1318145A (zh) * 1999-07-21 2001-10-17 大金工业株式会社 制冷装置
CN201116804Y (zh) * 2007-08-14 2008-09-17 浙江盾安人工环境设备股份有限公司 多机并联智能油路平衡系统
CN102628628A (zh) * 2012-03-19 2012-08-08 广东美的暖通设备有限公司 用于多联机的油均衡装置及其控制方法
CN104315756A (zh) * 2014-09-30 2015-01-28 广东志高暖通设备股份有限公司 一种多联机空调系统及其油平衡装置和控制方法
CN104641116A (zh) * 2012-07-31 2015-05-20 比策尔制冷机械制造有限公司 用于多压缩机系统中的油管理的吸入头部装置
CN207920875U (zh) * 2017-12-28 2018-09-28 艾默生环境优化技术(苏州)有限公司 用于压缩机系统的进气管道及压缩机系统
CN109973392A (zh) * 2017-12-28 2019-07-05 艾默生环境优化技术(苏州)有限公司 用于压缩机系统的进气管道及压缩机系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272477A (ja) * 1992-03-26 1993-10-19 Daikin Ind Ltd 連結形圧縮装置の運転制御方法
CN1318145A (zh) * 1999-07-21 2001-10-17 大金工业株式会社 制冷装置
CN201116804Y (zh) * 2007-08-14 2008-09-17 浙江盾安人工环境设备股份有限公司 多机并联智能油路平衡系统
CN102628628A (zh) * 2012-03-19 2012-08-08 广东美的暖通设备有限公司 用于多联机的油均衡装置及其控制方法
CN104641116A (zh) * 2012-07-31 2015-05-20 比策尔制冷机械制造有限公司 用于多压缩机系统中的油管理的吸入头部装置
CN104315756A (zh) * 2014-09-30 2015-01-28 广东志高暖通设备股份有限公司 一种多联机空调系统及其油平衡装置和控制方法
CN207920875U (zh) * 2017-12-28 2018-09-28 艾默生环境优化技术(苏州)有限公司 用于压缩机系统的进气管道及压缩机系统
CN109973392A (zh) * 2017-12-28 2019-07-05 艾默生环境优化技术(苏州)有限公司 用于压缩机系统的进气管道及压缩机系统

Similar Documents

Publication Publication Date Title
US11441813B2 (en) Indoor unit of refrigeration apparatus
CN109140829B (zh) 压缩机回油结构、制冷机组及空调系统
US20050126190A1 (en) Loss of refrigerant charge and expansion valve malfunction detection
CN104729151B (zh) 空调系统的压缩机回油管路故障的处理方法及系统
CN211739554U (zh) 多联机空调系统及其油平衡装置
CN107314579B (zh) 空调
CN113310249A (zh) 多联机空调系统及其油平衡装置和油平衡控制方法
KR101629666B1 (ko) 멀티형 공기조화기 및 그 제어방법
KR100556773B1 (ko) 공기조화기의 어큐뮬레이터의 오일회수장치 및 그오일회수방법
WO2021169213A1 (zh) 多联机空调系统及其油平衡装置和油平衡控制方法
JP2011202817A (ja) 冷凍サイクル装置
JP2016118317A (ja) 圧縮機用ユニット、圧縮機、及び冷媒回路
TWI671467B (zh) 給液式氣體壓縮機
KR101222472B1 (ko) 공기 압축 장치
CN217636299U (zh) 汽液分离器及空调
CN107642921A (zh) 油平衡系统及具有其的多螺杆压缩机并联制冷机组
JP5132232B2 (ja) 油だめの油面検知方法、油供給制御方法、これらを備えた気体圧縮装置、及びこの気体圧縮装置を備えた空気調和装置
KR200460731Y1 (ko) 전력 제어용 공기압축기 시스템
JPH0217190Y2 (zh)
JP5309105B2 (ja) 冷凍装置
US11391496B2 (en) Refrigerating cycle apparatus
CN209623154U (zh) 压缩机控油系统及空调器
JP4448390B2 (ja) 冷凍装置
KR101572208B1 (ko) 오토 드레인 시스템
JP6273573B2 (ja) 冷凍回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921678

Country of ref document: EP

Kind code of ref document: A1