WO2021168828A1 - 柔性显示面板、显示装置及制备方法 - Google Patents

柔性显示面板、显示装置及制备方法 Download PDF

Info

Publication number
WO2021168828A1
WO2021168828A1 PCT/CN2020/077264 CN2020077264W WO2021168828A1 WO 2021168828 A1 WO2021168828 A1 WO 2021168828A1 CN 2020077264 W CN2020077264 W CN 2020077264W WO 2021168828 A1 WO2021168828 A1 WO 2021168828A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bending
substrate
sub
region
Prior art date
Application number
PCT/CN2020/077264
Other languages
English (en)
French (fr)
Inventor
魏玉龙
董向丹
颜俊
都蒙蒙
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/077264 priority Critical patent/WO2021168828A1/zh
Priority to US17/425,222 priority patent/US11974475B2/en
Priority to CN202080000207.2A priority patent/CN113767475B/zh
Publication of WO2021168828A1 publication Critical patent/WO2021168828A1/zh
Priority to US18/619,340 priority patent/US20240244908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of flexible display technology, in particular to a flexible display panel, a display device and a manufacturing method.
  • OLED Organic Light-Emitting Diode
  • the purpose of the embodiments of the present disclosure is to provide a flexible display panel, a display device, and a manufacturing method, so as to solve the problem that the metal wiring is easily broken when the driving part of the flexible display panel in the prior art is bent to the back of the display panel.
  • the present disclosure provides a flexible display panel, including a display area and a non-display area, wherein the non-display area includes a bending sub-region and a binding sub-region, and the bending sub-region is used to bind the The stator area is bent to a side away from the display area;
  • the display area includes a driving circuit layer disposed on a substrate, and the driving circuit layer includes a source/drain electrode layer, a flat layer disposed on the side of the source/drain electrode layer away from the substrate, and The pixel defining layer provided on the side of the flat layer away from the substrate and the touch wiring layer provided on the side of the pixel defining layer away from the substrate, and the bending sub-regions include those provided on the substrate.
  • a first organic layer, a second organic layer, and a metal wiring layer located between the first organic layer and the second organic layer, the touch control wiring layer is electrically connected to the metal wiring layer, and The orthographic projection of the touch wiring layer on the plane where the substrate is located is not located in the bending sub-region;
  • the vertical distance from the bending neutral layer of the bending sub-region to the metal wiring layer is less than a preset distance.
  • the metal wiring layer and the source/drain electrode layer are provided in the same layer.
  • the display area further includes a first electrode arranged in the pixel defining layer, a light-emitting layer arranged on a side of the first electrode away from the substrate, and a light-emitting layer arranged on the light-emitting layer away from the substrate.
  • a second electrode provided on one side of the substrate; wherein the first electrode is connected to the source/drain electrode layer through a transition metal layer, and the metal wiring layer is provided in the same layer as the transition metal layer.
  • the flat layer includes a first flat layer and a second flat layer, wherein the transition metal layer is located on the first flat layer and in the second flat layer, and the transition metal layer
  • the metal layer is connected to the source/drain electrode layer through a first via hole penetrating the first planar layer; the first electrode is connected to the switch through a second via hole penetrating the second planar layer Metal layer connection.
  • the first organic layer is closer to the substrate than the second organic layer, the first organic layer is the same layer as the first flat layer, and the second organic layer is closer to the substrate than the second organic layer.
  • the second flat layer is the same layer as the pixel defining layer.
  • the bending neutral layer overlaps the metal wiring layer.
  • the metal wiring layer is located at a position of half of the thickness of the bending sub-region.
  • a thickness adjustment layer is provided on a side of the second organic layer away from the metal wiring layer;
  • the vertical distance from the bending neutral layer of the bending sub-region to the metal wiring layer is less than a preset distance.
  • the thickness adjustment layer further extends to the display area, and is located on a side of the touch wiring layer away from the substrate.
  • the thickness adjustment layer is an organic material layer.
  • the substrate includes a first organic material, a second P organic material, and at least one inorganic layer located between the first organic material and the second organic material.
  • the bent neutral layer is located on a side of the metal wiring layer close to the substrate.
  • the preset distance is less than or equal to 5 microns.
  • the present disclosure also provides a display device, wherein the display device includes the flexible display panel as described in any one of the above.
  • a driving component is provided on the binding sub-region, and the metal wiring layer is electrically connected to the driving component;
  • the bending sub-area is bent relative to the display area, and the driving component is arranged on a side away from the display area.
  • the present disclosure also provides a manufacturing method of the flexible display panel, wherein the manufacturing method includes:
  • the non-display area includes a bending sub-area and a binding sub-area, and the bending sub-area is used to bend the binding sub-area to a side away from the display area;
  • the display area includes a driving circuit layer, the driving circuit layer includes a source/drain electrode layer, a flat layer disposed on a side of the source/drain electrode layer away from the substrate, and a flat layer on the flat layer away from the substrate.
  • the pixel defining layer provided on the bottom side and the touch wiring layer provided on the side of the pixel defining layer away from the substrate, and the bending sub-region includes a first organic layer and a second organic layer provided on the substrate. Two organic layers and a metal wiring layer located between the first organic layer and the second organic layer, the touch wiring layer is electrically connected to the metal wiring layer, and the touch wiring layer The orthographic projection of the layer on the plane where the substrate is located is not located in the bending sub-region;
  • the vertical distance from the bending neutral layer of the bending sub-region to the metal wiring layer is less than a preset distance.
  • FIG. 1 is a schematic diagram of the unfolded state of the flexible display substrate of the present disclosure
  • FIG. 2 is a schematic diagram of the bending state of the flexible display substrate of the present disclosure
  • FIG. 3 is one of the schematic cross-sectional structural diagrams in one of the embodiments of the present disclosure in which the bending sub-region is in a bent state;
  • FIG. 4 is the second schematic diagram of the cross-sectional structure of the bending sub-region in a bent state in one of the embodiments of the present disclosure
  • FIG. 5 is the third schematic diagram of the cross-sectional structure of the bending sub-region in a bent state in one of the embodiments of the present disclosure
  • FIG. 6 is a schematic diagram of a cross-sectional structure of the bending sub-region in a planar state in one of the embodiments of the present disclosure
  • FIG. 7 is the third schematic diagram of the cross-sectional structure of one of the embodiments of the present disclosure with the bending sub-region in a bent state;
  • FIG. 8 is a fourth schematic diagram of a cross-sectional structure in which the bending sub-region is in a bent state in one of the embodiments of the present disclosure
  • FIG. 9 is one of the schematic cross-sectional structure diagrams of the flexible display panel of the present disclosure.
  • FIG. 10 is the second schematic diagram of the cross-sectional structure of the flexible display panel of the present disclosure.
  • FIG. 11 is a schematic diagram of a planar structure of the flexible display panel according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional structure diagram of part I-I in FIG. 11;
  • FIG. 13 is one of the schematic cross-sectional structure diagrams of part B-B in FIG. 11;
  • Fig. 14 is a second cross-sectional structural diagram of part B-B in Fig. 11;
  • Fig. 15 is a second cross-sectional structural diagram of part B-B in Fig. 11.
  • the main purpose of the embodiments of the present disclosure is to provide a flexible display panel, a display device, and a manufacturing method, so as to solve the problem that the metal wiring is easily broken when the driving part of the flexible display panel in the prior art is bent to the back of the display panel.
  • the flexible display panel includes a display area 100 and a non-display area 200 located at one end of the display area 100.
  • the non-display area 200 includes a first transition sub-area 201, a bending sub-area 202, a second transition sub-area 203, and a binding sub-area 204 from a direction close to the display area 100 to a direction away from the display area 100.
  • the bending sub-area 202 It includes a planar state that is on the same plane as the display area 100 (as shown in FIG. 1), and a bent state that is bent relative to the display area 100 (as shown in FIG. 2).
  • the flexible display panel of the present disclosure includes a substrate 1, wherein a display function device is fabricated on the substrate 1 to realize a display function, and the display function device is formed on the substrate 1 as a display area 100; On the substrate 1, the area where the display function device is not provided is the non-display area 200, wherein the binding sub-area 204 of the non-display area 200 is provided with a driving component 300.
  • the bending subarea 202 is located between the binding subarea 204 and the display area 100, and is used to bend the binding subarea 204 to a side away from the display area 100, so that the driving assembly 300 and the display device on the binding subarea 204 are bound
  • the flexible circuit board connection is located between the binding subarea 204 and the display area 100, and is used to bend the binding subarea 204 to a side away from the display area 100, so that the driving assembly 300 and the display device on the binding subarea 204 are bound The flexible circuit board connection.
  • the substrate 1 is a flexible transparent substrate, which can realize the bending of the display panel.
  • the driving component 300 includes but is not limited to only a driving chip and a flexible circuit board, and a metal wiring layer is provided on the bending sub-region 202, which is electrically connected to the driving component 300, and can be connected through the metal wiring layer
  • the control signal on the driving component 300 is sent to the display area 100 to control the image display or touch operation of the display area 100.
  • the flexible display panel when the bending sub-region 202 is bent toward the side away from the display region 100 with respect to the display region 100, in a bent state, it can be located in the non-display region
  • the driving component 300 far away from the display area 100 on the 200 is bent to the back of the display area 100 to complete the next module assembly to reduce the display frame of the display area 100 of the flexible display panel and achieve the effect of narrow frame display.
  • the flexible display panel of the embodiment of the present disclosure as shown in FIG.
  • the vertical distance h is less than the preset distance, so that the metal wiring layer 211 is placed as close to the bending neutral layer 212 as possible, so as to reduce the stress of the metal wiring layer 211 on the bending sub-region 202 and avoid the metal wiring layer 211 from being broken. problem.
  • the preset distance is less than or equal to 5 microns.
  • the principle of setting the size of the preset distance may be: performing a bending test experiment on the bending sub-area 202, and the threshold value of the preset distance that can meet the preset test conditions is the setting of the preset distance value. It can be understood that, according to the total thickness of the bending sub-region 202, the material and thickness of each film layer on the bending sub-region 202, the size of the preset distance will have a corresponding difference.
  • the vertical distance h from the metal wiring layer 211 to the bending neutral layer 212 can be defined as the vertical distance from the center plane 2111 of the metal wiring layer 211 to the bending neutral layer 212 distance.
  • the center plane 2111 of the metal wiring layer 211 is located between the opposite first side surface 2112 and the second side surface 2113 of the metal wiring layer 211, and reaches the first side surface.
  • the vertical distance between 2112 and the second side surface 2113 is equal.
  • the metal wiring layer 211 is formed as a thinner layered structure, and the first side surface 2112 and the second side surface 2113 are the two opposite sides of the metal wiring layer 211 that form a layered structure.
  • the side surface, in any bent state, the center plane 2111 is the plane between the first side surface 2112 and the second side surface 2113 parallel to the first side surface 2112 and the second side surface 2113, and reaches the first side surface 2112.
  • the vertical distance from the second side surface 2113 is equal.
  • the vertical distance from the central plane 2111 to the bent neutral layer 212 includes the vertical distance from each point on the central plane 2111 to the bent neutral layer 212.
  • the central plane 2111 The vertical distance h from each of the above position points to the bending neutral layer 212 is less than the preset distance.
  • the metal wiring layer 211 since the metal wiring layer 211 is usually formed as a thinner layer structure, in the absence of precise requirements, the metal wiring layer 211 to the bent neutral layer 212
  • the vertical distance h may also be defined as the vertical distance from the side surface of the metal wiring layer 211 close to the bent neutral layer 212 to the bent neutral layer 212.
  • the vertical distance h between the metal wiring layer 211 and the bent neutral layer 212 may be It is defined as the distance from the second side surface 2113 of the metal wiring layer 211 to the bent neutral layer 212. It should be noted that, as shown in FIG.
  • the degree of deformation of the bending sub-region 202 is different when it is in different bending states, and the position of the bending neutral layer 212 is slightly different when the degree of deformation is different.
  • the bending subregion When the area 202 is bent toward the side away from the display area 100 in any bending state, the vertical distance h from the metal wiring layer 211 to the bending neutral layer 212 is less than the preset distance, which can effectively solve the problem of the flexible display panel.
  • the metal trace is prone to breakage.
  • the bending neutral layer 212 overlaps the metal wiring layer 211. That is, the bending neutral layer 212 is located on the metal wiring layer 211, and the distance from the metal wiring layer 211 to the bending neutral layer 212 is zero.
  • the bending neutral layer 212 on the metal wiring layer 211, the tensile or compressive stress on the metal wiring layer 211 caused by the bending of the bending sub-region 202 can be avoided, thereby effectively avoiding the metal wiring layer 211.
  • the wiring layer 211 is broken.
  • the bending sub-area 202 also includes a planar state on the same layer as the display area 100. In the planar state, the central plane 2111 of the metal wiring layer 211 is located in the bending sub-area. The thickness of 202 is one-half of the position.
  • the central plane 2111 of the metal wiring layer 211 in a planar state at one-half of the thickness of the bending sub-region 202, it is ensured that when the bending sub-region 202 is bending, the metal wiring layer 211 is The center plane 2111 of ⁇ can be closer to the bent neutral layer 212.
  • the total thickness of the bending sub-region 202 can be set to adjust the relative position of the metal wiring layer 211 between the first surface 2101 and the second surface 2102 of the bending sub-region 202.
  • the location method can satisfy at least one of the following implementation structures:
  • the vertical distance from the metal wiring layer 211 to the bending neutral layer 212 is less than a preset distance
  • the bent neutral layer 212 overlaps with the metal wiring layer 211;
  • the center plane 2111 of the metal wiring layer 211 is located at one-half of the thickness of the bending sub-region 202.
  • a substrate 1 is provided on one side of the bending sub-region 202 and the metal wiring layer 211, and a first organic substrate is sequentially provided on the substrate 1.
  • a thickness adjustment layer 500 is provided on the side of the second organic layer 402 away from the substrate 1;
  • the vertical distance from the metal wiring layer 211 to the bending neutral layer 212 is less than the preset distance.
  • the thickness adjustment layer 500 can be provided to adjust the total thickness of the bending subregion 202 and the metal
  • the relative position of the wiring layer 211 between the first surface 2101 and the second surface 2102 of the bending sub-region 202 ensures that the vertical distance from the metal wiring layer 211 to the bending neutral layer 212 is less than a preset distance.
  • the flexible display panel takes the flexible display panel as a top-emission OLED display panel and has a touch function as an example.
  • the flexible display panel includes a display area 100 and a non-display area. 200.
  • the non-display area 200 includes a bending sub-area 202 and a binding sub-area.
  • the binding sub-area is not shown in FIG.
  • the bending sub-area 202 is used to bend the binding sub-area to the side away from the display area 100;
  • the display area 100 includes a driver circuit layer disposed on the substrate 1.
  • the driver circuit layer includes a source/drain electrode layer 605, a flat layer 607 disposed on the side of the source/drain electrode layer 605 away from the substrate 1, and a flat layer 607 away from the substrate 1.
  • the vertical distance from the bending neutral layer of the bending sub-region 202 to the metal wiring layer is less than the preset distance.
  • the flexible display panel further includes an active layer 601, a gate insulating layer 602, a gate 603, and an interlayer insulating layer 604 which are sequentially fabricated on the substrate 1, wherein the source/drain layer 605 is fabricated on the interlayer insulation.
  • Layer 604 and further includes a light emitting device layer located between the driving circuit layer and the touch wiring layer 900, the light emitting device layer includes a first electrode 702, disposed on the side of the first electrode 702 away from the substrate 1
  • the pixel defining layer 703 is disposed on the first electrode 702, and the light-emitting layer 704 is disposed in the pixel defining layer 703.
  • the spacer layer 706 includes two opposite inorganic layers and an organic layer located between the two inorganic layers.
  • the first electrode 702 and the source/drain layer 605 are connected through the via hole of the flat layer 607, and the light-emitting device can be driven to emit light through the driving circuit layer.
  • the first electrode 702 is an anode
  • the second electrode 705 is a cathode
  • the light emitting layer 704 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer which are sequentially arranged.
  • the touch wiring layer 900 is disposed on the spacer layer 706.
  • the flexible display panel further includes an encapsulation layer 800 disposed on the touch wiring layer 900 .
  • the touch wiring layer 900 on the display area 100 is connected to the metal wiring layer 211 on the bending sub-area 202, so that the touch signal line can be transmitted to the bonding sub-area through the metal wiring layer 211.
  • the vertical distance from the bending neutral layer of the bending subregion 202 to the metal wiring layer 211 is less than a preset distance.
  • the thickness of the one organic layer 401 and/or the second organic layer 402 is adjusted to the total thickness of the bending sub-region 202, thereby adjusting the thickness of the bending neutral layer from the metal wiring layer 211 to the bending sub-region 202.
  • the positional relationship between the metal wiring layer 211 and the bending neutral layer of the bending sub-region 202 can be combined with FIG. 1 to FIG. 8 and refer to the above detailed description.
  • the display area 100 of the flexible display panel includes the driving circuit layer and the light-emitting device layer of the above-mentioned implementation structure
  • the bending sub-area 202 includes the first organic layer disposed on the substrate 1.
  • the layer 401, the second organic layer 402, and the metal wiring layer 211 between the first organic layer 401 and the second organic layer 402, and the touch wiring layer 900 and the metal wiring layer 211 are electrically connected on the basis of the arrangement structure,
  • the metal wiring layer 211 and the source/drain layer 605 are provided in the same layer, and the first organic layer 401 located between the metal wiring layer 211 and the substrate 1 may be provided in the same layer as the flat layer 607.
  • the two organic layers 402 can be arranged in the same layer as the pixel defining layer 703.
  • the substrate 1 is about 100000 angstroms.
  • the gate insulating layer 602 is about 1200 to 1400 angstroms
  • the interlayer insulating layer 604 is about 4000 to 6000 angstroms
  • the pixel defining layer 703 is usually 14000 to 16000 angstroms
  • the flat layer 607 is usually 20,000 angstroms.
  • the thickness of the bottom 1 is much greater than the thickness of each layer provided on the substrate.
  • a thickness adjusting layer 500 is further provided, and the overall thickness of the bending sub-region 202 is adjusted by the thickness adjusting layer 500.
  • the encapsulation layer 800 of the display area 100 extends to the bending sub-region 202 and is disposed on the second organic layer 402 of the bending sub-region 202 to form the thickness adjustment layer 500 of the bending sub-region 202 .
  • the encapsulation layer 800 includes a first inorganic layer, an organic layer, and a second inorganic layer that are sequentially stacked.
  • the total thickness of the substrate 1 is usually the same as the first organic layer provided above.
  • the total thickness of the metal wiring layer 211 and the second organic layer 402 is 3 times, usually the bent neutral layer 212 of the bent sub-region 202 (shown in conjunction with FIG. 1 to FIG. 8) is located on the substrate 1, or located on the metal The wiring layer 211 is far away from the side of the substrate 1.
  • the embodiment of the present disclosure by providing the thickness adjustment layer 500, the bending neutral layer 212 of the bending sub-region 202 is moved in the direction of the metal wiring layer 211. The distance from the metal wiring layer 211 is reduced to be within a preset distance. On the basis of ensuring the realization of the process, the embodiment of the present disclosure provides the thickness adjustment layer 500 so that the bending neutral layer 212 of the bending sub-region 202 is still located on the side of the metal wiring layer 211 facing the substrate 1.
  • the flexible display substrate of the above-mentioned embodiments of the present disclosure can be prepared at the same time when the driver circuit layer and the light emitting device layer are prepared in the display area of the substrate 1, and the layers of the non-display area 200 can be prepared at the same time.
  • the thickness adjustment layer 500 of the bending sub-region 202 is not limited to only being formed by extending through the encapsulation layer 800 of the display region 100.
  • the separately prepared thickness adjustment layer 500 is located on the side of the second organic layer 402 away from the substrate 1. Based on this arrangement, after the encapsulation layer 800 is prepared in the display area 100, it also includes a further layer in the non-display area 200 A step of preparing a thickness adjustment layer 500 on the second organic layer 402 farthest from the substrate 1.
  • the thickness adjustment layer 500 of the bending sub-region 202 can also extend to the display region 100 and is located on the side of the touch wiring layer 900 away from the substrate 1.
  • the thickness adjustment layer 500 is an organic material layer.
  • the thickness adjustment layer 500 is disposed on the side of the second organic layer 402 away from the metal wiring layer 211 as an example. It should be noted that the thickness adjustment layer 500 is not limited to only being disposed at this position. For example, it may also be disposed between the first organic layer 401 and the metal wiring layer 211, or between the second organic layer 402 and the metal wiring. Between layers 211.
  • a structure in which the vertical distance from the central plane of the metal wiring layer to the bent neutral layer is less than the preset distance is realized, and it is not limited to It can only be achieved by increasing the thickness adjustment layer, for example, by reasonably setting the thickness of the extension layer of each display area on the non-display area.
  • the source/drain layer of the display area extends to the non-display area, and the source/drain layer extending to the non-display area is formed as the metal wiring layer of the non-display area.
  • the flexible display panel described in the present disclosure is not limited to being only applicable to the above-mentioned implementation structure.
  • the flexible display panel is a display panel with touch function, and a touch wiring layer is provided in the display area, as shown in FIG. 11, in the display area 100
  • the touch wiring layer includes a plurality of first touch electrodes 921 arranged in a first direction and a plurality of second touch electrodes 922 arranged in a second direction.
  • the flexible display panel extends in a direction away from the edge to form a non-display area 200, from a direction close to the display area 100 to a direction away from the display area 100.
  • the display area 200 includes a first transition sub-area 201, a bending sub-area 202, a second transition sub-area 203, and a binding sub-area 204, wherein the binding sub-area 204 is provided with a driving component 300.
  • the driving assembly 300 includes a control chip 310 and a plurality of wiring terminals 320.
  • a part of the plurality of wiring terminals 320 is connected to the first touch electrodes 921 arranged along the first direction of the display area 100 through connecting wires, and is used to input touch scan signals to the first touch electrodes 921;
  • the other part of the wiring terminal 320 is connected to the second touch electrodes 922 of the display area 100 arranged in the second direction through a connecting wiring, and is used to obtain touch sensing signals on the second touch electrodes 922.
  • the first touch electrodes 921 arranged in the first direction and the second touch electrodes 922 arranged in the second direction cross each other. By inputting touch scan signals to the plurality of first touch electrodes 921 according to a preset frequency, each A sensing signal on the second touch electrode 922 can determine the touch operation position on the flexible display panel.
  • the non-display area 200 is provided with the area of the driving component 300 as the binding sub-area 204.
  • the bending sub-area 202 is located between the binding sub-area 204 and the display area 100. Through the bending sub-area 202, the binding sub-area 204 can be bent to a state opposite to the display area 100, so that the driving component 300 provided on the binding sub-area 204 is opposite to the display area 100.
  • a first barrier structure 410 and a second barrier structure 420 are further provided around the display area 100, and the first barrier structure 410 and the second barrier structure 420 are separated ,
  • the periphery of the display area 100 is formed into a ring arranged around the display area 100, which is used to prevent the organic material in the display area 100 from overflowing when the flexible display panel is prepared.
  • the portions of the first barrier structure 410 and the second barrier structure 420 surrounding the display area 100 near the edge of the bending sub-region 202 are located on the first transition sub-region 201.
  • a metal wiring layer is provided on the bending sub-region 202, and the metal wiring layer may be connected to the power line of the display area 100, the data line of the display area 100, the first touch electrode 921 or the first touch electrode 921 of the display area 100.
  • the second touch electrode 922 in the display area is connected, and the power line, the data line, and the touch line are connected to the driving assembly 300 through the metal wiring layer.
  • the thickness of each film layer in the display area is usually within a preset range, the thickness of the inorganic layer is in the range of 1000 to 6000 angstroms, and the thickness of the organic layer is in the range of 10000 to 25000 angstroms.
  • the substrate 1 is approximately 90,000 angstroms to 110,000 angstroms, such as 100,000 angstroms
  • the gate insulating layer 602 is approximately 1200 angstroms to 1,400 angstroms, such as 1300 angstroms
  • the interlayer insulating layer 604 is approximately 4,900 to 5100 angstroms.
  • the pixel defining layer 703 is usually 14000-16000, such as 15000 Angstroms
  • the flat layer 607 is usually 19000-21000 Angstroms, such as 20000 Angstroms.
  • the thickness is much larger than the thickness of each layer provided on the substrate.
  • the vertical distance from the bending neutral layer of the bending sub-region 202 to the metal wiring layer 211 is less than a preset distance, optionally, On the bending sub-region 202, the overall thickness of the bending sub-region 202 is adjusted by the thickness adjustment layer.
  • the bending sub-region 202 of the flexible display panel is provided with a thickness adjustment layer.
  • the vertical distance between the metal wiring layer and the bending neutral layer of the bending sub-region 202 is less than a preset distance. In order to avoid the problem that the metal wiring layer of the bending sub-region 202 is easily broken.
  • the display area 100 of the flexible display panel includes a substrate 1, a barrier layer 2 and a buffer layer 3 stacked on the substrate 1 in order from bottom to top.
  • a driving circuit layer is provided on the buffer layer 3, the driving circuit layer includes a plurality of thin film transistors TFTs, and the plurality of TFTs includes a first gate insulating layer 6021, which is sequentially stacked and arranged on the buffer layer 3 from bottom to top.
  • the active layer 601 is polarized as a conductive body, which is respectively connected to the source and drain of the thin film transistor TFT to enhance the control sensitivity of the thin film transistor TFT.
  • the driving circuit layer may further include an inorganic insulating layer covering the source/drain layer 605, such as silicon nitride or silicon oxide, for protecting the source/drain layer 605 from Corroded by water and oxygen.
  • first electrode plates 122 and second electrode plates 124 are respectively provided for forming storage capacitors.
  • the flexible display panel of the present disclosure further includes a light emitting device layer located on the driving layer, wherein a transition metal layer 140 is provided between the light emitting device layer and the driving layer.
  • a first flat layer 141, a transit metal layer 140, and a second flat layer 142 are sequentially fabricated from bottom to top; wherein the first flat layer 141 is provided with via holes
  • the transfer metal layer 140 penetrates the via hole and is electrically connected to the source or drain of the thin film transistor TFT.
  • the transit metal layer 140 can be made of the same material as the source/drain layer 605, and the flexible display panel can also include an inorganic passivation layer PVX covering the transit metal layer 140, such as silicon nitride. Or silicon oxide, etc., used to protect the transfer metal layer 140 from being corroded by water and oxygen.
  • an inorganic passivation layer PVX covering the transit metal layer 140, such as silicon nitride. Or silicon oxide, etc., used to protect the transfer metal layer 140 from being corroded by water and oxygen.
  • the light-emitting device layer includes:
  • the first pixel defining layer 7031 and the second pixel defining layer 7032 are sequentially disposed on the second flat layer 142;
  • the second electrode 705 is disposed on the second pixel defining layer 7032.
  • the flexible display panel is provided with a spacer layer 706 on the light-emitting device layer.
  • the spacer layer 706 includes at least three sub-layers.
  • the flexible display panel further includes a touch wiring layer 900 on the spacer layer 706.
  • the touch wiring layer 900 includes an insulating layer 910 and a first organic layer 920 on the insulating layer 910.
  • a plurality of first touch electrodes 921 and second touch electrodes 922 are fabricated in the first organic layer 920.
  • a touch wiring layer 900 is further fabricated above the light-emitting device layer to realize the touch function of the flexible display panel.
  • first touch electrode 921 and the second touch electrode 922 on the touch wiring layer 900 may be transparent electrode blocks or a metal mesh structure.
  • first touch electrode 921 and the second touch electrode 922 are electrode blocks respectively, one of the first touch electrode 921 and the second touch electrode 922 and one light emitting layer 704 of the light emitting device layer
  • one electrode block corresponds to multiple light-emitting layers 704, which can be adjusted by those skilled in the art according to the touch accuracy, which is not limited in the present disclosure.
  • FIG. 11 only schematically shows the correspondence between the first touch electrode 921 and the second touch electrode 922 and the light-emitting layer 704.
  • the non-display area 200 includes the display area 100 in the direction of the edge of the flexible display panel.
  • the first transition sub-region 201, the bending sub-region 202, the second transition sub-region 203 and the binding sub-region 204 are provided.
  • the first transition sub-region 201 includes the substrate 1, the barrier layer 2, and the buffer layer of the same layer as the substrate 1, the barrier layer 2, and the buffer layer 3 of the display area 100, respectively. 3.
  • the barrier layer 2 and the buffer layer 3 are respectively inorganic layers, made of silicon nitride or silicon oxide materials.
  • the first transition sub-region 201 further includes at least two insulating layers located on the buffer layer 3, and the at least two insulating layers are respectively the same layer as the first gate insulating layer 6021 and the second gate insulating layer 6022 of the display area 100
  • Each insulating layer is provided with a plurality of arrays of signal lines 4, for example, to transmit data signals, and the plurality of signal lines 4 are respectively insulated by the insulating layer.
  • the signal lines 4 can be connected to the gate in the display area.
  • the metal layer is set in the same layer.
  • a power metal line 5 is also provided, and a first barrier structure 410 and a second barrier structure 420 are fabricated on the power metal line 5.
  • the first barrier structure 410 and the second barrier structure 420 respectively include a third flat layer 411, a third pixel defining layer 412, and an encapsulation layer 413 covering the barrier structure, which are sequentially stacked from bottom to top.
  • the second barrier structure 420 includes two stacked third flat layers 411 to increase the height of the second barrier structure 420.
  • the third planarization layer 411 in the first barrier structure 410 and the second barrier structure 420 is provided in the same layer as the first planar layer 141 or the second planar layer 142 of the display area 100;
  • the third pixel defining layer 412 in the barrier structure 410 and the second barrier structure 420 and the first pixel defining layer 7031 in the display area 100 are arranged in the same layer;
  • the encapsulation layer 413 in the first barrier structure 410 and the second barrier structure 420 is the same
  • the spacer layer 706 of the zone 100 is arranged in the same layer.
  • the first transition sub-region 201 further includes a buffer layer 430 located on the first barrier structure 410 and the second barrier structure 420, a touch wiring layer 900 located on the buffer layer 430, and a touch trace layer 900 located on the touch The second organic layer 501 on the wiring layer 900.
  • the buffer layer 430 may be an inorganic layer, or a structure in which an inorganic layer is superimposed on an organic layer.
  • the touch wiring layer 900 includes a first touch wiring 901, an insulating layer 902, and a second touch wiring 903 arranged in sequence.
  • One of the first touch circuit 901 and the second touch circuit 903 is connected to the first touch electrode 921 of the display area 100, and the other of the first touch circuit 901 and the second touch circuit 903 is connected to the display The second touch electrode 922 of the area 100 is connected.
  • one of the first touch lines 901 and one of the second touch lines 903 are in a group, and they are connected in parallel or directly overlapped through vias in a direction perpendicular to the substrate 1 to reduce Trace resistance.
  • the first touch circuit 901 and the second touch circuit 903 connected as a group are respectively connected to the touch electrode and the sensing electrode of the display area 100 in a one-to-one correspondence.
  • the second organic layer 501 of the first transition sub-region 201 and the first organic layer 920 of the display region 100 are provided in the same layer.
  • the bending sub-region 202 includes: a substrate 1 and a fourth flat layer 213, a metal wiring layer 211, a fifth flat layer 214, and a fourth pixel defining layer 215 sequentially located on the substrate 1. , The spacer layer 216 and the second organic layer 501.
  • the fourth flat layer 213 of the bending sub-region 202 and the first flat layer 141 of the display region 100 are provided in the same layer, and the metal wiring layer 211 of the bending sub-region 202 and the transit metal layer 140 of the display region 100 are provided.
  • the metal wiring layer 211 is connected to the second touch line 902 of the first transition sub-area 201; the fifth flat layer 214 of the bending sub-area 202 is provided in the same layer as the second flat layer 142 of the display area 100
  • the fourth pixel defining layer 215 of the bending sub-area 202 and the first pixel defining layer 7031 or the second pixel defining layer 7032 of the display area 100 are arranged in the same layer; the spacer layer 216 of the bending sub-area 202 and the second pixel defining layer 7032 of the display area 100
  • the pixel defining layer 7032 is provided in the same layer;
  • the second organic layer 501 of the bending sub-region 202 is an extension layer of the second organic layer 510 of the first transition sub-region 201 and is provided in the same layer as the first organic layer 920 of the display region 100.
  • the metal wiring layer 211 is a transfer metal layer for inputting touch signals to the second touch circuit 902.
  • the second organic layer 501 is disposed on the bending sub-region 202 away from the substrate 1, the second organic layer 501 is formed as a thickness adjustment layer of the bending sub-region 202. As shown in FIG.
  • the second organic layer 501 The setting can make the vertical distance h between the central plane 2111 of the metal wiring layer 211 and the bending neutral layer 212 be less than the preset distance, ensuring that the metal wiring layer 211 is arranged as close to the bending neutral layer 212 as possible to reduce bending
  • the stress of the metal wiring layer 211 on the folder region 202 prevents the metal wiring layer 211 from being broken.
  • the binding sub-region 204 includes a substrate 1, a barrier layer 2, and a buffer extending from the display region 100, the first transition sub-region 201, and the bending sub-region 202 corresponding to the same layer.
  • Layer 3 at least two insulating layers, power metal wires 5, metal wiring layer 211, second planar layer 142, buffer layer 225, first touch circuit 901, isolation layer 902, and second touch circuit 902.
  • the touch circuit is routed by a double layer.
  • the metal wiring layer is changed.
  • the bonding sub-area continues to use double-layer touch circuit routing.
  • the substrate 1 can also be set as a thickness adjustment layer, so that the substrate 1 includes a layer structure of at least four layers. As shown in FIG.
  • the substrate 1 may include a first PI material 11, The second PI material 12 and the at least two inorganic layers 13 between the first PI material and the second PI material.
  • the overall thickness of the bending sub-region 202 can be adjusted to adjust the metal The purpose of the position of the wiring layer 211 relative to the bending neutral layer 212.
  • the thickness adjustment layer (the second organic layer 501) on the bending sub-region 202 may extend to the display region 100 and cover the side of the touch wiring layer away from the substrate.
  • a second organic layer 501 is provided on the bending sub-region 202 for adjusting the overall thickness of the bending sub-region 202.
  • the second organic layer 501 is In addition to extending to the first transition sub-region 201, it can also extend to the second transition sub-region 203 and the binding sub-region 204, covering the second transition sub-region 203 and the binding sub-region 204 at the same time on the surface away from the substrate 1. .
  • the bending sub-region 202 is not limited to only being able to adjust the thickness by setting the thickness on the outermost surface away from the substrate 1.
  • the bending sub-region 202 can also pass between the first organic layer and the metal wiring layer, or between A thickness adjustment layer is provided between the organic layer and the metal wiring layer to adjust the position of the metal wiring layer 211 relative to the bent neutral layer 212.
  • the structure of the flexible display panel in the non-display region is as shown in FIG. 15.
  • the different film layers mentioned are the same layer, which means that the two film layers are made by the same patterning process, or are prepared on the same film layer.
  • One of the embodiments of the present disclosure further provides a display device, wherein the display device includes the flexible display panel described above.
  • a driving component is provided on a side of the bending sub-region away from the display area, and the metal wiring layer is electrically connected to the driving component;
  • the bending sub-area is bent relative to the display area, and the driving component is arranged on a side away from the display area.
  • the driving component includes a driving chip and a flexible circuit board. As shown in FIG. The driving component 300 far away from the display area 100 on the 200 is bent to the back of the display area 100 to complete the next module assembly, which can reduce the display frame of the display area 100 of the flexible display panel and realize the effect of narrow frame display.
  • the vertical distance h from the metal wiring layer to the bending neutral layer is made smaller than the preset distance, so that the metal wiring layer is arranged as close to the bending neutral layer as possible to achieve The stress of the metal wiring layer on the bending sub-area is reduced, the metal wiring layer is prevented from being broken, and the yield effect of the bending sub-area is improved.
  • Another aspect of the present disclosure also provides a method for manufacturing the flexible display panel as described in any one of the above, wherein the manufacturing method includes:
  • the non-display area includes a bending sub-area and a binding sub-area, and the bending sub-area is used to bend the binding sub-area to a side away from the display area;
  • the display area includes a driving circuit layer, the driving circuit layer includes a source/drain electrode layer, a flat layer disposed on a side of the source/drain electrode layer away from the substrate, and a flat layer on the flat layer away from the substrate.
  • the pixel defining layer provided on the bottom side and the touch wiring layer provided on the side of the pixel defining layer away from the substrate, and the bending sub-region includes a first organic layer and a second organic layer provided on the substrate. Two organic layers and a metal wiring layer located between the first organic layer and the second organic layer, the touch wiring layer is electrically connected to the metal wiring layer, and the touch wiring layer The orthographic projection of the layer on the plane where the substrate is located is not located in the bending sub-region;
  • the vertical distance from the bending neutral layer of the bending sub-region to the metal wiring layer is less than a preset distance.
  • the metal wiring layer and the source/drain electrode layer are provided in the same layer.
  • the display area when manufacturing the display area and the non-display area, the display area further includes a first electrode arranged in the pixel defining layer, a light emitting layer arranged on a side of the first electrode away from the substrate, and A second electrode provided on the side of the light-emitting layer away from the substrate; wherein the first electrode is connected to the source/drain electrode layer through a transition metal layer, and the metal wiring layer is connected to the The transfer metal layer is set in the same layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性显示面板、显示装置及制备方法,其中柔性显示面板包括显示区(100)和非显示区(200),非显示区(200)包括弯折子区(202)和绑定子区(204),弯折子区(202)用于将绑定子区(204)弯折至背离显示区(100)的一侧;显示区(100)包括设置在衬底(1)上的驱动电路层,驱动电路层包括源/漏电极层(605)、在源/漏电极层(605)远离衬底(1)一侧设置的平坦层(607)、在平坦层(607)远离衬底(1)一侧设置的像素限定层(703)和在像素限定层(703)远离衬底(1)一侧设置的触控走线层(900),弯折子区(202)包括设置于衬底(1)上的第一有机层(401)、第二有机层(402)和位于第一有机层(401)与第二有机层(402)之间的金属走线层(211),触控走线层(900)与金属走线层(211)电连接,且触控走线层(900)在衬底(1)所在平面的正投影不位于弯折子区(202);其中,弯折子区(202)在弯折状态时,弯折子区(202)的弯折中性层(212)到金属走线层(211)的垂直距离小于预设距离。

Description

柔性显示面板、显示装置及制备方法 技术领域
本公开涉及柔性显示技术领域,尤其是指一种柔性显示面板、显示装置及制备方法。
背景技术
有机电致发光显示(Organic Light-Emitting Diode,简称OLED)作为一种新型的显示技术,由于具有主动发光、发光亮度高、宽视角、响应速度快、低能耗以及可柔性化等特点,受到了越来越多的关注,成为可能取代液晶显示的下一代显示技术。
柔性OLED显示技术不断成熟,柔性显示产品种类不断多样化;无边框显示产品已成为市场主流,为节省驱动部分的占用空间,提高屏占比,达到全面屏显示效果,目前柔性OLED显示面板在进行模组组装时,需要将显示面板的驱动区域的一部分弯折到显示面板背面。然而,在对弯折区进行弯折的过程中,弯折区的金属走线会因为应力作用而易发生断线,从而造成线类不良。
发明内容
本公开实施例的目的是提供一种柔性显示面板、显示装置及制备方法,解决现有技术柔性显示面板的驱动部分弯折至显示面板背面时,金属走线容易发生断裂的问题。
为了达到上述目的,本公开提供一种柔性显示面板,包括显示区和非显示区,其中,所述非显示区包括弯折子区和绑定子区,所述弯折子区用于将所述绑定子区弯折至背离所述显示区的一侧;
所述显示区包括设置在衬底上的驱动电路层,所述驱动电路层包括源/漏电极层、在所述源/漏电极层远离所述衬底一侧设置的平坦层、在所述平坦层远离所述衬底一侧设置的像素限定层和在所述像素限定层远离所述衬底一侧设置的触控走线层,所述弯折子区包括设置于所述衬底上的第一有机层、第二 有机层和位于所述第一有机层与所述第二有机层之间的金属走线层,所述触控走线层与所述金属走线层电连接,且所述触控走线层在所述衬底所在平面的正投影不位于所述弯折子区;
其中,所述弯折子区在弯折状态时,所述弯折子区的弯折中性层到所述金属走线层的垂直距离小于预设距离。
可选地,所述金属走线层与所述源/漏电极层同层设置。
可选地,所述显示区还包括在所述像素限定层内设置的第一电极、在所述第一电极远离所述衬底的一侧设置的发光层和在所述发光层远离所述衬底的一侧设置的第二电极;其中,所述第一电极通过转接金属层与所述源/漏电极层连接,所述金属走线层与所述转接金属层同层设置。
可选地,所述平坦层包括第一平坦层与第二平坦层,其中所述转接金属层位于所述第一平坦层上,且位于所述第二平坦层之内,所述转接金属层通过穿透所述第一平坦层的第一过孔与所述源/漏电极层连接;所述第一电极通过穿透所述第二平坦层的第二过孔与所述转接金属层连接。
可选地,所述第一有机层相较于所述第二有机层靠近所述衬底,所述第一有机层与所述第一平坦层同层,所述第二有机层与所述第二平坦层和所述像素限定层同层。
可选地,所述弯折子区在弯折状态时,所述弯折中性层与所述金属走线层重叠。
可选地,所述弯折子区未在弯折状态时,所述金属走线层位于所述弯折子区厚度的二分之一位置。
可选地,在所述弯折子区,所述第二有机层的远离所述金属走线层的一侧设置有厚度调节层;
通过所述厚度调节层,所述弯折子区在弯折状态时,所述弯折子区的弯折中性层到所述金属走线层的垂直距离小于预设距离。
可选地,所述厚度调节层还延伸至所述显示区,且位于所述触控走线层的远离所述衬底的一侧。
可选地,所述厚度调节层为有机材料层。
可选地,所述衬底包括第一有机材料、第二P有机材料和位于所述第一有 机材料和所述第二有机材料之间的至少一层无机层。
可选地,所述弯折中性层位于所述金属走线层的靠近所述衬底的一侧。
可选地,所述预设距离小于或等于5微米。
本公开还提供一种显示装置,其中,所述显示装置包括如上任一项所述的柔性显示面板。
可选地,在所述非显示区上,所述绑定子区上设置有驱动组件,所述金属走线层与所述驱动组件电连接;
所述弯折子区相对于所述显示区弯折,所述驱动组件设置于背离所述显示区的一侧。
本公开还提供一种所述柔性显示面板的制备方法,其中,所述制备方法包括:
提供衬底;
在所述衬底上制作显示区和非显示区;
其中,所述非显示区包括弯折子区和绑定子区,所述弯折子区用于将所述绑定子区弯折至背离所述显示区的一侧;
所述显示区包括驱动电路层,所述驱动电路层包括源/漏电极层、在所述源/漏电极层远离所述衬底一侧设置的平坦层、在所述平坦层远离所述衬底一侧设置的像素限定层和在所述像素限定层远离所述衬底一侧设置的触控走线层,所述弯折子区包括设置于所述衬底上的第一有机层、第二有机层和位于所述第一有机层与所述第二有机层之间的金属走线层,所述触控走线层与所述金属走线层电连接,且所述触控走线层在所述衬底所在平面的正投影不位于所述弯折子区;
其中,所述弯折子区在弯折状态时,所述弯折子区的弯折中性层到所述金属走线层的垂直距离小于预设距离。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开所述柔性显示基板的展开状态示意图;
图2为本公开所述柔性显示基板的弯曲状态示意图;
图3为本公开其中一实施方式中,弯折子区呈弯曲状态的剖面结构示意图之一;
图4为本公开其中一实施方式中,弯折子区呈弯曲状态的剖面结构示意图之二;
图5为本公开其中一实施方式中,弯折子区呈弯曲状态的剖面结构示意图之三;
图6为本公开其中一实施方式中,弯折子区呈平面状态的剖面结构示意图;
图7为本公开其中一实施方式中,弯折子区呈弯曲状态的剖面结构示意图之三;
图8为本公开其中一实施方式中,弯折子区呈弯曲状态的剖面结构示意图之四;
图9为本公开所述柔性显示面板的剖面结构示意图之一;
图10为本公开所述柔性显示面板的剖面结构示意图之二;
图11为本公开另一实施方式,所述柔性显示面板的平面结构示意图;
图12为图11中的I-I部分的剖面结构示意图;
图13为图11中的B-B部分的剖面结构示意图之一;
图14为图11中的B-B部分的剖面结构示意图之二;
图15为图11中的B-B部分的剖面结构示意图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例的主要目的是提供一种柔性显示面板、显示装置及制备方法,解决现有技术柔性显示面板的驱动部分弯折至显示面板背面时,金属走线容易 发生断裂的问题。
本公开实施例所述柔性显示面板,如图1和图2所示,包括显示区100和位于显示区100的一端的非显示区200。其中,从靠近显示区100至远离显示区100的方向,非显示区200包括第一过渡子区201、弯折子区202、第二过渡子区203和绑定子区204,该弯折子区202包括与显示区100位于同一平面的平面状态(如图1所示),以及相对于显示区100弯折的弯折状态(如图2所示)。
本公开所述柔性显示面板,包括衬底1,其中衬底1上制作有显示功能器件,用于实现显示功能,该显示功能器件在衬底1上设置的区域对应形成为显示区100;在衬底1上,未设置显示功能器件的区域为非显示区200,其中,非显示区200的绑定子区204上设置有驱动组件300。弯折子区202位于绑定子区204与显示区100之间,用于将绑定子区204弯折至背离显示区100的一侧,使绑定子区204上的驱动组件300与显示装置的柔性线路板连接。
需要说明的是,本公开实施例中,衬底1为柔性透明衬底,能够实现显示面板的弯曲。
本公开实施例中,驱动组件300包括并不限于仅能够包括驱动芯片和柔性线路板,且弯折子区202上设置有金属走线层,与驱动组件300电连接,通过金属走线层能够将驱动组件300上的控制信号发送至显示区100,控制显示区100的图像显示或触控操作。
结合图2所示,本公开实施例所述柔性显示面板,当使弯折子区202相对于显示区100朝背离显示区100的一侧弯折,呈弯折状态时,能够使位于非显示区200上远离显示区100的驱动组件300弯折至显示区100的背面,以完成下一步的模组组装,达到减小柔性显示面板的显示区100的显示边框,实现窄边框显示的效果。
为解决在使柔性显示面板进行上述过程的模组组装,对弯折子区202进行弯折时,弯折子区202产生较大应力,导致弯折子区202的金属走线层上应力集中,造成金属走线层容易产生断裂的问题,本公开实施例所述柔性显示面板,如图3所示,弯折子区202处于弯折状态时,通过使金属走线层211到弯折中性层212的垂直距离h小于预设距离,使金属走线层211尽可能靠近弯折中性 层212设置,达到减小弯折子区202上金属走线层211的应力,避免金属走线层211产生断裂的问题。
可选地,预设距离小于或等于5微米。
需要说明的是,该预设距离的大小设定原则可以为:对弯折子区202进行弯折测试实验,能够满足预设测试条件的该预设距离的临界值为该预设距离的设定值。可以理解的是,根据弯折子区202的总厚度、弯折子区202上各膜层的材料及厚度的不同,该预设距离的大小会存在相应的差别。
本公开其中一实施方式,如图3所示,金属走线层211到弯折中性层212的垂直距离h可以定义为金属走线层211的中心平面2111到弯折中性层212的垂直距离。
本公开实施方式中,如图3所示,金属走线层211的中心平面2111位于金属走线层211的相对的第一侧表面2112和第二侧表面2113之间,且到第一侧表面2112与第二侧表面2113的垂直距离相等。
具体地,可以理解的是,金属走线层211形成为较薄的层状结构,第一侧表面2112与第二侧表面2113也即为金属走线层211的相对两个构成层状结构的侧面,在任一弯折状态时,中心平面2111为第一侧表面2112与第二侧表面2113之间的平行于第一侧表面2112和第二侧表面2113的平面,且到第一侧表面2112与第二侧表面2113的垂直距离相等。
本公开实施方式中,中心平面2111到弯折中性层212的垂直距离,包括中心平面2111上每一位置点到弯折中性层212的垂直距离,所述柔性显示面板中,中心平面2111上每一位置点到弯折中性层212的垂直距离h均小于预设距离。
本公开另一实施方式,如图4所示,由于金属走线层211通常形成为较薄的层状结构,在没有精确要求的情况下,金属走线层211到弯折中性层212的垂直距离h也可以定义为金属走线层211的靠近弯折中性层212的侧表面到弯折中性层212的垂直距离。例如,弯折中性层212到金属走线层211的第二侧表面2113的距离小于到第一侧表面2112的距离时,金属走线层211到弯折中性层212的垂直距离h可以定义为金属走线层211的第二侧表面2113到弯折中性层212的距离。需要说明的,结合图2、图3和图4所示,弯折子区202 在呈弯曲状态时,第一表面2101产生压应力,相对的第二表面2102会产生拉压力,基于此在弯折子区202的横截面上,从第一表面2101至第二表面2102方向的每一位置点,逐次由压应力过渡为拉压力,因此必然会存在既不承受压应力也不承受拉应力的位置点,该多个位置点所在平面即为弯折中性层212。在弯折子区202呈弯曲状态时,该弯折中性层212不会产生弯曲变形。
进一步,弯折子区202处于不同弯折状态时的变形程度不同,其中不同变形程度时的弯折中性层212的位置会稍有不同,本公开实施方式所述的柔性显示面板中,弯折子区202在朝背离显示区100一侧弯折的任一弯折状态时,金属走线层211到弯折中性层212的垂直距离h均小于预设距离,以能够有效解决当柔性显示面板的弯折子区202弯折至显示面板背面时,金属走线容易发生断裂的问题。本公开其中一实施方式中,如图5所示,在弯折子区202处于弯折状态时,弯折中性层212与金属走线层211重叠。也即,弯折中性层212位于金属走线层211,金属走线层211到弯折中性层212的距离为零。
具体地,通过使弯折中性层212位于金属走线层211上,以能够避免弯折子区202在弯折时造成的金属走线层211上的拉应力或压应力,从而能够有效避免金属走线层211产生断裂。
本公开其中一实施方式,如图1和图6所示,弯折子区202还包括与显示区100同层的平面状态,在平面状态时,金属走线层211的中心平面2111位于弯折子区202厚度的二分之一位置。
结合图7所示,通过使平面状态时,金属走线层211的中心平面2111位于弯折子区202厚度的二分之一位置,保证当弯折子区202在弯折时,金属走线层211的中心平面2111能够更接近于弯折中性层212。
本公开所述柔性显示面板的其中一实施方式,可以通过设定弯折子区202的总厚度,调整金属走线层211在弯折子区202的第一表面2101和第二表面2102之间的相对位置的方式,以能够满足以下的至少一实施结构:
金属走线层211到弯折中性层212的垂直距离小于预设距离;
弯折中性层212与金属走线层211相重叠;
在平面状态时,金属走线层211的中心平面2111位于弯折子区202厚度的二分之一位置。
本公开所述柔性显示面板的其中一实施方式,如图8所示,在弯折子区202,金属走线层211的一侧设置有衬底1,在衬底1上依次设置有第一有机层401、金属走线层211和第二有机层402,另外在第二有机层402远离衬底1的一侧还设置有厚度调节层500;
通过厚度调节层500,在弯折状态时,金属走线层211到弯折中性层212的垂直距离小于预设距离。
具体地,在弯折子区202设置第一有机层401、金属走线层211和第二有机层402的基础上,通过设置厚度调节层500,以能够调整弯折子区202的总厚度,以及金属走线层211在弯折子区202的第一表面2101和第二表面2102之间的相对位置,保证金属走线层211到弯折中性层212的垂直距离小于预设距离。
以下结合具体实施方式,对本发明实施例所述柔性显示面板的具体实施结构进行详细说明。
本公开其中一实施方式所述柔性显示面板,如图9所示,以柔性显示面板为顶发射型OLED显示面板,且具备触控功能为例,该柔性显示面板包括显示区100和非显示区200,其中,非显示区200包括弯折子区202和绑定子区,其中绑定子区在图9中未显示,结合图1,绑定子区位于弯折子区202的远离显示区100的一侧,弯折子区202用于将绑定子区弯折至背离显示区100的一侧;
显示区100包括设置在衬底1上的驱动电路层,驱动电路层包括源/漏电极层605、在源/漏电极层605远离衬底1一侧设置的平坦层607、在平坦层607远离衬底1一侧设置的像素限定层703和在像素限定层703远离衬底1一侧设置的触控走线层900,弯折子区202包括设置于衬底1上的第一有机层401、第二有机层402和位于第一有机层401与第二有机层402之间的金属走线层211,触控走线层900与金属走线层211电连接,且触控走线层900在衬底1所在平面的正投影不位于弯折子区202;
其中,弯折子区202在弯折状态时,弯折子区202的弯折中性层到金属走线层的垂直距离小于预设距离。
进一步,具体地,柔性显示面板还包括依次制作于衬底1上的有源层601、栅绝缘层602、栅极603、层间绝缘层604,其中源/漏极层605制作于层间绝 缘层604上;以及还进一步包括位于驱动电路层与触控走线层900之间的发光器件层,该发光器件层包括第一电极702、在第一电极702远离衬底1的一侧设置的发光层704和在发光层704远离衬底1的一侧设置的第二电极705;可选地,第二电极705上还设置有隔垫层706。其中,像素限定层703设置于第一电极702上,发光层704设置于像素限定层703中。可选地,该隔垫层706包括相对的两个无机层和位于该两个无机层之间的有机层。
其中,第一电极702与源/漏极层605通过平坦层607的过孔连接,通过驱动电路层能够驱动发光器件发光。
本公开实施方式中,可选地,第一电极702为阳极,第二电极705为阴极。发光层704包括依次设置的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。本公开实施方式中,可选地,触控走线层900设置于隔垫层706上,可选地,所述柔性显示面板还包括设置于所述触控走线层900上的封装层800。
该实施方式中,显示区100上的触控走线层900通过与弯折子区202上的金属走线层211相连接,能够将触控信号线通过金属走线层211传输至绑定子区上的驱动组件。
本公开实施方式中,为了保证弯折子区202在弯折状态时,弯折子区202的弯折中性层到金属走线层211的垂直距离小于预设距离,可选地,可以通过调整第一有机层401和/或第二有机层402的厚度,调整弯折子区202的总厚度,从而调整金属走线层211到弯折子区202的弯折中性层的厚度。
具体地,金属走线层211与弯折子区202的弯折中性层之间的位置关系,可以结合图1至图8并参阅以上的详细描述。
本公开另一实施方式,参阅图10,在所述柔性显示面板的显示区100包括上述实施结构的驱动电路层和发光器件层,以及弯折子区202包括设置于衬底1上的第一有机层401、第二有机层402和位于第一有机层401与第二有机层402之间的金属走线层211,触控走线层900与金属走线层211电连接的设置结构基础上,在弯折子区202,金属走线层211与源/漏极层605同层设置,位于金属走线层211与衬底1之间的第一有机层401可以与平坦层607同层设置,第二有机层402可以与像素限定层703同层设置。
基于上述实施方式,由于在显示装置制作中,层间绝缘层604、栅绝缘层602、像素限定层703和平坦层607的厚度通常为位于预设范围,举例说明,衬底1约为100000埃米,栅绝缘层602约为1200至1400埃米,层间绝缘层604约为4000至6000埃米,像素限定层703通常为14000至16000埃米,平坦层607通常为20000埃米,由于衬底1的厚度远大于在衬底上设置各层的厚度,为了保证在弯折子区202,弯折子区202的弯折中性层到金属走线层211的垂直距离小于预设距离,可选地,在弯折子区202上,在第二有机层402上,远离衬底1还设置有厚度调节层500,通过厚度调节层500调整弯折子区202的整体厚度。
本公开其中一实施方式,可选地,显示区100的封装层800延伸至弯折子区202,设置于弯折子区202的第二有机层402上,形成为弯折子区202的厚度调节层500。
可选地,封装层800包括依次叠加的第一无机层、有机层和第二无机层。该实施方式中,当弯折子区202的第一有机层401和第二有机层402分别与显示区100相应层同层时,由于衬底1的总厚度通常为上方所设置的第一有机层401、金属走线层211和第二有机层402总厚度的3倍,通常弯折子区202的弯折中性层212(结合图1至图8所示)位于衬底1上,或者位于金属走线层211靠近衬底1一侧的较远距离,本公开实施方式中,通过设置厚度调节层500,使弯折子区202的弯折中性层212朝金属走线层211的方向移动,与金属走线层211之间的距离减小至位于预设距离之内。在保证工艺实现基础上,本公开实施方式通过设置厚度调节层500,使弯折子区202的弯折中性层212仍位于金属走线层211的朝向衬底1的一侧。
本公开上述实施方式的柔性显示基板,在制备时,在衬底1的显示区制备驱动电路层和发光器件层时,可以同时制备完成非显示区200的各层。
另外,本公开实施方式中,弯折子区202的厚度调节层500不限于仅能够为通过显示区100的封装层800延伸形成。例如,也可以通过在弯折子区202单独制备厚度调节层500的方式,调整弯折子区202的总体厚度,使金属走线层211靠近弯折子区202的弯折中性层212。
可选地,单独制备的厚度调节层500位于第二有机层402远离衬底1的一侧, 基于该设置方式,当在显示区100制备封装层800后,还包括进一步在非显示区200的与衬底1最远的第二有机层402上制备厚度调节层500的步骤。
可选地,弯折子区202的厚度调节层500还可以延伸至显示区100,位于触控走线层900远离衬底1的一侧。
其中一实施方式,厚度调节层500为有机材料层。
本公开上述实施方式中,以在弯折子区202,厚度调节层500设置于第二有机层402远离金属走线层211的一侧为例进行了说明。需要说明的是,厚度调节层500不限于仅能够设置于该位置,例如,也可以设置于第一有机层401与金属走线层211之间,或者设置于第二有机层402与金属走线层211之间。
本公开所述柔性显示基板的另一实施方式,根据显示区和非显示区的具体结构,实现金属走线层的中心平面到弯折中性层的垂直距离小于预设距离的结构,不限于仅能够通过增加厚度调节层的方式,例如还可以通过合理设定非显示区上各个显示区延伸层厚度的方式实现。
本公开上述实施方式,以显示区的源/漏极层延伸至非显示区,延伸至该非显示区的源/漏极层形成为非显示区的金属走线层,通过设置厚度调节层,使在非显示区的该金属走线层的中心平面到弯折中性层的垂直距离小于预设距离为例,对本公开所述柔性显示基板的具体实施结构进行了说明。
进一步地,本公开所述柔性显示面板,不限于仅能够应用于上述实施结构。
例如,本公开所述柔性显示面板的另一实施方式,所述柔性显示面板为具备触控功能的显示面板,在显示区设置有触控走线层,如图11所示,在显示区100,触控走线层包括沿第一方向排列的多个第一触控电极921和沿第二方向排列的多个第二触控电极922。
根据图11,本公开实施方式中,在显示区100的其中一边缘,柔性显示面板朝远离该边缘的方向延伸形成为非显示区200,从靠近显示区100至远离显示区100的方向,非显示区200包括第一过渡子区201、弯折子区202、第二过渡子区203和绑定子区204,其中绑定子区204上设置有驱动组件300。
可选地,该驱动组件300包括控制芯片310和多个线路接线端320。该多个线路接线端320的其中一部分通过连接线路与显示区100的沿第一方向排列的第一触控电极921连接,用于向第一触控电极921输入触控扫描信号;该多个线 路接线端320的另一部分通过连接线路与显示区100的沿第二方向排列的第二触控电极922连接,用于获取第二触控电极922上的触控感应信号。沿第一方向排列的第一触控电极921与沿第二方向排列的第二触控电极922相互交叉,通过依据预设频率向多个第一触控电极921输入触控扫描信号,获取每一第二触控电极922上的感应信号,即能够确定柔性显示面板上的触控操作位置。
本公开实施方式中,非显示区200设置驱动组件300的区域为绑定子区204,在非显示区200上,弯折子区202位于绑定子区204与显示区100之间。通过该弯折子区202,绑定子区204能够弯折至与显示区100相背的状态,使绑定子区204上所设置的驱动组件300与显示区100相背。
本公开实施方式,如图11所示,在非显示区200,围绕显示区100还设置有第一阻挡结构410和第二阻挡结构420,该第一阻挡结构410与第二阻挡结构420相分离,在显示区100的外围均形成为环绕显示区100设置的环形,用于柔性显示面板制备时,防止显示区100内的有机材料外溢。
进一步地,在非显示区200上,第一阻挡结构410与第二阻挡结构420的环绕显示区100靠近弯折子区202的边缘的部分,位于第一过渡子区201上。
其中一实施方式中,弯折子区202上设置有金属走线层,该金属走线层可以与显示区100的电源线、显示区100的数据线、显示区100的第一触控电极921或显示区的第二触控电极922连接,通过金属走线层实现电源线、数据线和触控走线连接至驱动组件300的转接。
由于在显示装置制作中,显示区各膜层的厚度通常为位于预设范围,无机层的厚度范围为1000至6000埃米,有机层的厚度范围为10000至25000埃米,举例说明,在显示装置中,衬底1约为90000埃米~110000埃米,例如100000埃米,栅绝缘层602约为1200埃米~1400埃米,例如1300埃米,层间绝缘层604约为4900~5100埃米,例如5000埃米,像素限定层703通常为14000~16000,例如15000埃米,平坦层607通常为19000~21000埃米,例如20000埃米,在弯折子区202,由于衬底1的厚度远大于在衬底上设置各层的厚度,为了保证在弯折子区202,弯折子区202的弯折中性层到金属走线层211的垂直距离小于预设距离,可选地,在弯折子区202上,通过厚度调节层调整弯折子区202的整体厚度。
因此,所述柔性显示面板的弯折子区202上设置有厚度调节层,通过设置厚度调节层,使金属走线层与弯折子区202的弯折中性层之间的垂直距离小于预设距离,以避免弯折子区202的该金属走线层容易产生断裂的问题。
结合图11,并参阅图12和图13所示,所述柔性显示面板的显示区100包括衬底1、由下至上依次层叠位于衬底1上的阻挡层2和缓冲层3。
其中,在缓冲层3上设置有驱动电路层,该驱动电路层包括多个薄膜晶体管TFT,该多个TFT包括由下至上依次层叠设置于缓冲层3上的第一栅绝缘层6021、有源层601、第二栅绝缘层6022、栅极603、层间绝缘层604、源/漏极层605。进一步,该实施方式中,有源层601被极化为导电体,分别与薄膜晶体管TFT的源极和漏极连接以增强薄膜晶体管TFT控制的灵敏度。
本选地,本公开实施方式中,驱动电路层还可以包括覆盖在源/漏极层605上的无机绝缘层,如为氮化硅或氧化硅等,用于保护源/漏极层605不受水氧侵蚀。
该实施方式中,可选地,在第二栅绝缘层6022和层间绝缘层604内,还分别设置有相对的第一极板122和第二极板124,用于形成存储电容。
进一步,本公开所述柔性显示面板还包括位于驱动层上的发光器件层,其中发光器件层与驱动层之间设置有转接金属层140。具体地,如图12所示,在薄膜晶体管TFT上,由下至上依次制作有第一平坦层141、转接金属层140和第二平坦层142;其中,第一平坦层141设置有过孔,转接金属层140贯穿该过孔与薄膜晶体管TFT的源极或漏极电连接。
可选地,转接金属层140可以采用与源/漏极层605的相同材料制作,且柔性显示面板也可以包括覆盖于转接金属层140上的无机钝化层PVX,如为氮化硅或氧化硅等,用于保护转接金属层140不受水氧侵蚀。
另外,发光器件层包括:
依次设置于第二平坦层142上的第一像素限定层7031和第二像素限定层7032;
设置于该第一像素限定层7031和第二像素限定层7032中的第一电极702和发光层704;
设置于第二像素限定层7032上的第二电极705。
进一步,所述柔性显示面板,在发光器件层上设置有隔垫层706,可选地,该隔垫层706包括至少三个的子层。
结合图12所示,所述柔性显示面板还包括位于隔垫层706上的触控走线层900,该触控走线层900包括绝缘层910和位于绝缘层910上的第一有机层920,其中该第一有机层920内制作有多个第一触控电极921和第二触控电极922。
上述实施结构的柔性显示面板,通过在发光器件层的上方还制作有触控走线层900,用于实现柔性显示面板的触控功能。
需要说明的是,触控走线层900上的第一触控电极921和第二触控电极922可以为透明的电极块,也可以为金属网格结构。另外,当第一触控电极921和第二触控电极922分别为电极块时,该第一触控电极921和第二触控电极922中的一个电极块与发光器件层的一个发光层704一一对应,或者一个电极块对应多个的发光层704,依据触控精度,本领域技术人员可以进行调整,本公开不做限定。图11仅为示意性的表示第一触控电极921和第二触控电极922与发光层704的对应关系。结合图11和图13所示,基于上述实施方式中柔性显示面板的显示区100的结构,该实施方式的柔性显示面板中,非显示区200包括由显示区100向柔性显示面板的边缘方向依次设置的第一过渡子区201、弯折子区202、第二过渡子区203和绑定子区204。
参阅图13所示,本公开实施例中,第一过渡子区201包括与显示区100的衬底1、阻挡层2和缓冲层3分别对应同层的衬底1、阻挡层2和缓冲层3。可选地,阻挡层2和缓冲层3分别为无机层,采用氮化硅或氧化硅材料制成。
进一步,该第一过渡子区201还包括位于缓冲层3上的至少两个绝缘层,该至少两个绝缘层分别与显示区100的第一栅绝缘层6021和第二栅绝缘层6022同层,每一绝缘层内分别设置有多个阵列的信号线4,例如传输数据信号,且多个信号线4分别通过绝缘层相绝缘,具体实施时,信号线4可以与显示区域中的栅极金属层同层设置。
此外,在第一过渡子区201的设置信号线4的上方,还设置有电源金属线5,电源金属线5上制作有第一阻挡结构410和第二阻挡结构420。其中该第一阻挡结构410与第二阻挡结构420分别包括由下至上依次层叠设置的第三平坦层411、第三像素限定层412和覆盖阻挡结构的封装层413。其中,相较于更靠近显示区 100的第一阻挡结构410,第二阻挡结构420包括两个层叠的第三平坦层411,以增大第二阻挡结构420的高度。
可选地,本公开实施方式中,第一阻挡结构410和第二阻挡结构420中的第三平坦层411与显示区100的第一平坦层141或第二平坦层142同层设置;第一阻挡结构410和第二阻挡结构420中的第三像素限定层412与显示区100的第一像素限定层7031同层设置;第一阻挡结构410和第二阻挡结构420中的封装层413与显示区100的隔垫层706同层设置。
进一步,可选地,在第一过渡子区201还包括依次位于第一阻挡结构410和第二阻挡结构420上的缓冲层430、位于缓冲层430上的触控走线层900和位于触控走线层900上的第二有机层501。可选地,缓冲层430可以为无机层,也可以为无机层叠加有机层的结构。
其中,可选地,触控走线层900包括依次设置的第一触控线路901、绝缘层902和第二触控线路903。该第一触控线路901和第二触控线路903的其中之一与显示区100的第一触控电极921连接,第一触控线路901和第二触控线路903的其中另一个与显示区100的第二触控电极922连接。
本公开实施方式中,可选地,其中一第一触控线路901与其中一第二触控线路903为一组,在垂直于衬底1的方向通过过孔并联或直接搭接,以降低走线电阻。其中连接为一组的第一触控线路901与第二触控线路903分别与显示区100的触控电极与感应电极一一对应连接。
可选地,第一过渡子区201的第二有机层501与显示区100的第一有机层920同层设置。
进一步地,本公开实施方式中,弯折子区202包括:衬底1和依次位于衬底1上的第四平坦层213、金属走线层211、第五平坦层214、第四像素限定层215、隔垫层216和第二有机层501。
其中,可选地,弯折子区202的第四平坦层213与显示区100的第一平坦层141同层设置,弯折子区202的金属走线层211与显示区100的转接金属层140同层设置,且该金属走线层211与第一过渡子区201的第二触控线路902连接;弯折子区202的第五平坦层214与显示区100的第二平坦层142同层设置;弯折子区202的第四像素限定层215与显示区100的第一像素限定层7031或第二像素限定 层7032同层设置;弯折子区202的隔垫层216与显示区100的第二像素限定层7032同层设置;弯折子区202的第二有机层501为第一过渡子区201的第二有机层510的延伸层,且与显示区100的第一有机层920同层设置。
本公开实施方式的上述实施结构,金属走线层211为用于向第二触控线路902输入触控信号的转接金属层。另外,由于在弯折子区202上远离衬底1设置有第二有机层501,该第二有机层501形成为弯折子区202的厚度调节层,结合图3所示,该第二有机层501的设置能够使金属走线层211的中心平面2111到弯折中性层212的垂直距离h小于预设距离,保证金属走线层211尽可能靠近弯折中性层212设置,达到减小弯折子区202上金属走线层211的应力,避免金属走线层211产生断裂的问题。
进一步,结合图13,本公开实施方式中,绑定子区204包括分别由显示区100、第一过渡子区201和弯折子区202对应同层延伸出的衬底1、阻挡层2、缓冲层3、至少两个绝缘层、电源金属线5、金属走线层211、第二平坦层142、缓冲层225、第一触控线路901、隔离层902和第二触控线路902。
基于上述实施方式,在衬底上,从靠近显示区的周边区到弯折子区,触控线路由双层走线,在弯折子区通过金属走线层换层,经过弯折子区之后,在绑定子区继续采用双层触控线路走线。本公开实施方式所述柔性显示面板,除通过在弯折子区202上设置第二有机层501形成为弯折子区202的厚度调节层,使金属走线层211尽可能靠近弯折中性层212设置的方式之外,还可以将衬底1设置为厚度调节层,使衬底1包括至少四层的层结构,如图11所示,衬底1可以包括相对设置的第一PI材料11、第二PI材料12和位于第一PI材料和第二PI材料之间的至少两层无机层13,通过改变衬底1的结构构成和厚度,可以调节弯折子区202的总体厚度,达到调节金属走线层211相对于弯折中性层212位置的目的。
本公开其中一实施方式,如图13所示,弯折子区202上的厚度调节层(第二有机层501)可以延伸至显示区100,覆盖于触控走线层远离衬底的一侧。
本公开上述实施方式的柔性显示面板,弯折子区202上设置第二有机层501,用于调整弯折子区202的总体厚度,其中一实施方式,如图14所示,该第二有机层501除可以延伸至第一过渡子区201外,还可以延伸至第二过渡子区203和绑定子区204,在远离衬底1的表面同时覆盖第二过渡子区203和绑定子区204。
本公开所述柔性显示面板的另一实施方式,可选地,根据上述柔性显示面板的各实施方式的描述,弯折子区202不限于仅能够通过在远离衬底1的最外表面设置厚度调节层,以调节金属走线层211相对于弯折中性层212的位置,结合图8所示,弯折子区202也可以通过在第一有机层与金属走线层之间,或者在第二有机层与金属走线层之间设置厚度调节层,实现金属走线层211相对于弯折中性层212的位置调节。
基于该实施方式,当弯折子区202远离衬底1的表面无需设置厚度调节层,也即不设置第二有机层501时,柔性显示面板在非显示区的结构为图15所示。
需要说明的是,本公开中,所提及的不同膜层为同层,即指该两个膜层为采用同一构图工艺制成,或者制备于同一个膜层之上。
本公开其中一实施方式还提供一种显示装置,其中,所述显示装置包括如上任一项所述的柔性显示面板。
本公开所述实施方式中,在所述非显示区上,所述弯折子区远离所述显示区的一侧设置有驱动组件,所述金属走线层与所述驱动组件电连接;
所述弯折子区相对于所述显示区弯折,所述驱动组件设置于背离所述显示区的一侧。
可选地,所述驱动组件包括驱动芯片和柔性线路板,结合图2所示,通过使弯折子区202相对于显示区100朝背离显示区100的一侧弯折,能够使位于非显示区200上远离显示区100的驱动组件300弯折至显示区100的背面,以完成下一步的模组组装,能够达到减小柔性显示面板的显示区100的显示边框,实现窄边框显示的效果。
本公开实施例所述柔性显示面板和显示装置,通过使金属走线层到弯折中性层的垂直距离h小于预设距离,使金属走线层尽可能靠近弯折中性层设置,达到减小弯折子区上金属走线层的应力,避免金属走线层产生断裂,提高弯折子区的良率的效果。
进一步地,通过在弯折子区的远离衬底的位置设置厚度调节层,实现使金属走线层到弯折中性层的垂直距离h小于预设距离的结构,该实施结构制备工艺简单,易于实现。
本公开另一方面还提供一种如上任一项所述柔性显示面板的制备方法,其 中,所述制备方法包括:
提供衬底;
在所述衬底上制作显示区和非显示区;
其中,所述非显示区包括弯折子区和绑定子区,所述弯折子区用于将所述绑定子区弯折至背离所述显示区的一侧;
所述显示区包括驱动电路层,所述驱动电路层包括源/漏电极层、在所述源/漏电极层远离所述衬底一侧设置的平坦层、在所述平坦层远离所述衬底一侧设置的像素限定层和在所述像素限定层远离所述衬底一侧设置的触控走线层,所述弯折子区包括设置于所述衬底上的第一有机层、第二有机层和位于所述第一有机层与所述第二有机层之间的金属走线层,所述触控走线层与所述金属走线层电连接,且所述触控走线层在所述衬底所在平面的正投影不位于所述弯折子区;
其中,所述弯折子区在弯折状态时,所述弯折子区的弯折中性层到所述金属走线层的垂直距离小于预设距离。
可选地,在制作显示区和非显示区时,金属走线层与源/漏电极层同层设置。
可选地,在制作显示区和非显示区时,显示区还包括在所述像素限定层内设置的第一电极、在所述第一电极远离所述衬底的一侧设置的发光层和在所述发光层远离所述衬底的一侧设置的第二电极;其中,所述第一电极通过转接金属层与所述源/漏电极层连接,所述金属走线层与所述转接金属层同层设置。
以上所述是本公开的一些实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (16)

  1. 一种柔性显示面板,包括显示区和非显示区,其中,所述非显示区包括弯折子区和绑定子区,所述弯折子区用于将所述绑定子区弯折至背离所述显示区的一侧;
    所述显示区包括设置在衬底上的驱动电路层,所述驱动电路层包括源/漏电极层、在所述源/漏电极层远离所述衬底一侧设置的平坦层、在所述平坦层远离所述衬底一侧设置的像素限定层和在所述像素限定层远离所述衬底一侧设置的触控走线层,所述弯折子区包括设置于所述衬底上的第一有机层、第二有机层和位于所述第一有机层与所述第二有机层之间的金属走线层,所述触控走线层与所述金属走线层电连接,且所述触控走线层在所述衬底所在平面的正投影不位于所述弯折子区;
    其中,所述弯折子区在弯折状态时,所述弯折子区的弯折中性层到所述金属走线层的垂直距离小于预设距离。
  2. 根据权利要求1所述的柔性显示面板,其中,所述金属走线层与所述源/漏电极层同层设置。
  3. 根据权利要求1所述的柔性显示面板,其中,所述显示区还包括在所述像素限定层内设置的第一电极、在所述第一电极远离所述衬底的一侧设置的发光层和在所述发光层远离所述衬底的一侧设置的第二电极;其中,所述第一电极通过转接金属层与所述源/漏电极层连接,所述金属走线层与所述转接金属层同层设置。
  4. 根据权利要求3所述的柔性显示面板,其中,所述平坦层包括第一平坦层与第二平坦层,其中所述转接金属层位于所述第一平坦层上,且位于所述第二平坦层之内,所述转接金属层通过穿透所述第一平坦层的第一过孔与所述源/漏电极层连接;所述第一电极通过穿透所述第二平坦层的第二过孔与所述转接金属层连接。
  5. 根据权利要求4所述的柔性显示面板,其中,所述第一有机层相较于所述第二有机层靠近所述衬底,所述第一有机层与所述第一平坦层同层,所述第二有机层与所述第二平坦层和所述像素限定层同层。
  6. 根据权利要求1所述的柔性显示面板,其中,所述弯折子区在弯折状态 时,所述弯折中性层与所述金属走线层重叠。
  7. 根据权利要求1所述的柔性显示面板,其中,所述弯折子区未在弯折状态时,所述金属走线层位于所述弯折子区厚度的二分之一位置。
  8. 根据权利要求1至7任一项所述的柔性显示面板,其中,在所述弯折子区,所述第二有机层的远离所述金属走线层的一侧设置有厚度调节层;
    通过所述厚度调节层,所述弯折子区在弯折状态时,所述弯折子区的弯折中性层到所述金属走线层的垂直距离小于预设距离。
  9. 根据权利要求8所述的柔性显示面板,其特征在于,所述厚度调节层还延伸至所述显示区,且位于所述触控走线层的远离所述衬底的一侧。
  10. 根据权利要求8所述的柔性显示面板,其中,所述厚度调节层为有机材料层。
  11. 根据权利要求1所述的柔性显示面板,其中,所述衬底包括第一有机材料、第二P有机材料和位于所述第一有机材料和所述第二有机材料之间的至少一层无机层。
  12. 根据权利要求1所述的柔性显示面板,其中,所述弯折中性层位于所述金属走线层的靠近所述衬底的一侧。
  13. 根据权利要求1所述的柔性显示面板,其中,所述预设距离小于或等于5微米。
  14. 一种显示装置,其中,所述显示装置包括权利要求1至13任一项所述的柔性显示面板。
  15. 根据权利要求14所述的显示装置,其中,在所述非显示区上,所述绑定子区上设置有驱动组件,所述金属走线层与所述驱动组件电连接;
    所述弯折子区相对于所述显示区弯折,所述驱动组件设置于背离所述显示区的一侧。
  16. 一种如权利要求1至13任一项所述柔性显示面板的制备方法,其特征在于,所述制备方法包括:
    提供衬底;
    在所述衬底上制作显示区和非显示区;
    其中,所述非显示区包括弯折子区和绑定子区,所述弯折子区用于将所述绑定子区弯折至背离所述显示区的一侧;
    所述显示区包括驱动电路层,所述驱动电路层包括源/漏电极层、在所述源/漏电极层远离所述衬底一侧设置的平坦层、在所述平坦层远离所述衬底一侧设置的像素限定层和在所述像素限定层远离所述衬底一侧设置的触控走线层,所述弯折子区包括设置于所述衬底上的第一有机层、第二有机层和位于所述第一有机层与所述第二有机层之间的金属走线层,所述触控走线层与所述金属走线层电连接,且所述触控走线层在所述衬底所在平面的正投影不位于所述弯折子区;
    其中,所述弯折子区在弯折状态时,所述弯折子区的弯折中性层到所述金属走线层的垂直距离小于预设距离。
PCT/CN2020/077264 2020-02-28 2020-02-28 柔性显示面板、显示装置及制备方法 WO2021168828A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/077264 WO2021168828A1 (zh) 2020-02-28 2020-02-28 柔性显示面板、显示装置及制备方法
US17/425,222 US11974475B2 (en) 2020-02-28 2020-02-28 Flexible display panel, display device and forming method
CN202080000207.2A CN113767475B (zh) 2020-02-28 2020-02-28 柔性显示面板、显示装置及制备方法
US18/619,340 US20240244908A1 (en) 2020-02-28 2024-03-28 Flexible display panel, display device and forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077264 WO2021168828A1 (zh) 2020-02-28 2020-02-28 柔性显示面板、显示装置及制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/425,222 A-371-Of-International US11974475B2 (en) 2020-02-28 2020-02-28 Flexible display panel, display device and forming method
US18/619,340 Continuation US20240244908A1 (en) 2020-02-28 2024-03-28 Flexible display panel, display device and forming method

Publications (1)

Publication Number Publication Date
WO2021168828A1 true WO2021168828A1 (zh) 2021-09-02

Family

ID=77490608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077264 WO2021168828A1 (zh) 2020-02-28 2020-02-28 柔性显示面板、显示装置及制备方法

Country Status (3)

Country Link
US (2) US11974475B2 (zh)
CN (1) CN113767475B (zh)
WO (1) WO2021168828A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023103030A1 (zh) * 2021-12-09 2023-06-15 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
WO2023246261A1 (zh) * 2022-06-23 2023-12-28 京东方科技集团股份有限公司 显示面板及显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230072104A1 (en) * 2021-09-06 2023-03-09 Samsung Display Co., Ltd. Display device and method for fabricating electronic device by using the same
CN114666997B (zh) * 2022-03-29 2024-08-13 京东方科技集团股份有限公司 显示模组的制作方法、制作显示模组的设备及显示模组
CN114975829A (zh) * 2022-05-24 2022-08-30 京东方科技集团股份有限公司 显示基板和显示装置
CN117501853A (zh) * 2022-06-01 2024-02-02 京东方科技集团股份有限公司 触控显示面板及显示装置
KR20240050553A (ko) * 2022-10-11 2024-04-19 삼성디스플레이 주식회사 표시 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140240985A1 (en) * 2013-02-27 2014-08-28 Apple Inc. Electronic Device With Reduced-Stress Flexible Display
US20180331319A1 (en) * 2017-05-15 2018-11-15 Japan Display Inc. Display device
CN109560109A (zh) * 2017-09-26 2019-04-02 三星显示有限公司 显示装置
CN109585494A (zh) * 2017-09-28 2019-04-05 乐金显示有限公司 有机发光显示设备
CN109755256A (zh) * 2017-11-01 2019-05-14 京东方科技集团股份有限公司 柔性显示面板及制备方法、柔性显示装置
CN109817675A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 柔性阵列基板、显示面板及制备方法
CN110197845A (zh) * 2019-06-20 2019-09-03 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN110515499A (zh) * 2019-08-30 2019-11-29 京东方科技集团股份有限公司 一种触控面板及触控显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740908B (zh) * 2016-03-11 2021-10-01 南韓商三星顯示器有限公司 顯示設備

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140240985A1 (en) * 2013-02-27 2014-08-28 Apple Inc. Electronic Device With Reduced-Stress Flexible Display
US20180331319A1 (en) * 2017-05-15 2018-11-15 Japan Display Inc. Display device
CN109560109A (zh) * 2017-09-26 2019-04-02 三星显示有限公司 显示装置
CN109585494A (zh) * 2017-09-28 2019-04-05 乐金显示有限公司 有机发光显示设备
CN109755256A (zh) * 2017-11-01 2019-05-14 京东方科技集团股份有限公司 柔性显示面板及制备方法、柔性显示装置
CN109817675A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 柔性阵列基板、显示面板及制备方法
CN110197845A (zh) * 2019-06-20 2019-09-03 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN110515499A (zh) * 2019-08-30 2019-11-29 京东方科技集团股份有限公司 一种触控面板及触控显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023103030A1 (zh) * 2021-12-09 2023-06-15 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
WO2023246261A1 (zh) * 2022-06-23 2023-12-28 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US11974475B2 (en) 2024-04-30
CN113767475A (zh) 2021-12-07
US20220320239A1 (en) 2022-10-06
CN113767475B (zh) 2023-04-04
US20240244908A1 (en) 2024-07-18

Similar Documents

Publication Publication Date Title
WO2021168828A1 (zh) 柔性显示面板、显示装置及制备方法
US20240065060A1 (en) Display device
WO2020192556A1 (zh) 柔性显示基板、显示面板、显示装置及制作方法
WO2020151257A1 (zh) 一种显示基板、拼接屏及其制作方法
US20190326359A1 (en) Oled touch display panel, method for manufacturing the same and touch display device
JP7457717B2 (ja) ディスプレイパネル及び表示装置
CN107808892B (zh) 显示设备
US10897019B2 (en) Display device
WO2021254319A1 (zh) 显示基板及显示装置
US11309339B2 (en) TFT array substrate, preparation method thereof and display panel
US11552152B2 (en) Display device including a power supply voltage wiring having openings
WO2021218395A1 (zh) 显示面板及显示装置
TWI671572B (zh) 顯示面板及其製造方法
US20160204184A1 (en) Display device
WO2022213582A1 (zh) 显示面板和显示装置
WO2020143024A1 (zh) 阵列基板及其制作方法、显示面板
CN110797352B (zh) 显示面板及其制作方法、显示装置
US11171194B2 (en) Display apparatus
CN112071206B (zh) 显示面板及显示装置
KR102427516B1 (ko) 전계 발광 표시 장치
WO2019041954A1 (zh) 显示面板及其制备方法、显示装置
CN114023771A (zh) 显示基板及显示装置
WO2021051846A1 (zh) 一种显示面板及显示装置
WO2018220683A1 (ja) 表示装置及び表示装置の製造方法
WO2022099507A1 (zh) 显示面板的制作方法及显示基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921292

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20921292

Country of ref document: EP

Kind code of ref document: A1