WO2021167095A1 - 光学分割されたトロロックス中間体およびその製造方法 - Google Patents

光学分割されたトロロックス中間体およびその製造方法 Download PDF

Info

Publication number
WO2021167095A1
WO2021167095A1 PCT/JP2021/006465 JP2021006465W WO2021167095A1 WO 2021167095 A1 WO2021167095 A1 WO 2021167095A1 JP 2021006465 W JP2021006465 W JP 2021006465W WO 2021167095 A1 WO2021167095 A1 WO 2021167095A1
Authority
WO
WIPO (PCT)
Prior art keywords
amide
formula
compound
solvent
trolox
Prior art date
Application number
PCT/JP2021/006465
Other languages
English (en)
French (fr)
Inventor
貴一 黒田
潔人 澤村
信二郎 露峯
Original Assignee
大日本住友製薬株式会社
ピーティーシー セラピューティクス,インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本住友製薬株式会社, ピーティーシー セラピューティクス,インコーポレーテッド filed Critical 大日本住友製薬株式会社
Priority to CN202180015723.7A priority Critical patent/CN115066420A/zh
Priority to US17/801,237 priority patent/US20230029044A1/en
Priority to IL295785A priority patent/IL295785A/en
Priority to EP21757166.0A priority patent/EP4108658A4/en
Priority to BR112022016508A priority patent/BR112022016508A2/pt
Priority to KR1020227032224A priority patent/KR20220143897A/ko
Priority to JP2022501092A priority patent/JPWO2021167095A1/ja
Publication of WO2021167095A1 publication Critical patent/WO2021167095A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/66Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/30Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • This application provides a method for the chiral division of Trolox.
  • the application also provides compositions and methods for optical resolution of compounds, including amide-based solvents.
  • WO 2009/061744 is useful for treating and / or suppressing mitochondrial disorders and certain diffuse developmental disorders, racemic 2-hydroxy-2-methyl-4- (2,4,5-). Synthesis of trimethyl-3,6-dioxocyclohexa-1,4-dienyl) butaneamide from racemic trolocus (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid). Is described.
  • Chiral dividers can be useful in separating enantiomers.
  • a chiral splitting agent can form a solid salt with one enantiomer but cannot form a solid salt with the other enantiomer (remains in solution or as an oil). Thus, these two enantiomers can be separated by filtering the solid.
  • not all dividers are useful in separating the enantiomers of a particular compound.
  • the splitting agents differ in their ability to provide, for example, better splitting, higher yields, easier scale-up, and / or improved ease of use.
  • Racemic trolox has previously been split into its (R) and (S) -isomers using ⁇ -methylbenzylamine (MBA) and R- (+)-N-benzyl- ⁇ -phenylethylamine dividers. It has been. See, for example, U.S. Pat. Nos. 3,947,473, 4,003,919, and 4,026,907, and U.S. Patent Application Publication No. 2011/0251407.
  • (Item 1) A method for producing a solid salt of a compound of formula I, wherein an amide solvent is added to a sample containing a compound of formula I and presumed to contain a compound of formula II in the presence of an optical resolution agent. How to include: Formula I: (R) -6-Hydroxy-2,5,7,8-Tetramethylchroman-2-carboxylic acid (hereinafter, R Trolox) Formula II: (S) -6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (hereinafter, S Trolox).
  • (Item 2) The method according to item 1, wherein the optical resolution agent contains at least a portion capable of forming a salt with R trolox and S trolox and an asymmetric carbon.
  • (Item 3) The method of item 1 or 2, comprising adding the optical resolution agent to the sample.
  • (Item 4) The method according to any one of items 1 to 3, wherein the addition of the amide-based solvent comprises adding a mixture of the optical resolution agent and the amide-based solvent to the sample.
  • (Item 5) The method according to any one of items 1 to 4, wherein the sample contains a complex with an optical resolution agent.
  • (Item 6) The method according to any one of items 1 to 5, wherein the sample comprises a mixture of a compound of formula I and a compound of formula II.
  • the optical resolution agent is phenylethylamine.
  • the amide-based solvent is N-methylpyrrolidone (NMP), dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), tetramethylurea (TMU) or hexamethylphosphorus.
  • (Item 15) The method according to any one of items 1 to 14, wherein the solid salt is an amide-based solvate.
  • the amide solvent is one or more solvents selected from N-methylpyrrolidone (NMP), dimethylacetamide (DMA) or N, N-dimethylformamide (DMF).
  • NMP N-methylpyrrolidone
  • DMA dimethylacetamide
  • DMF N-dimethylformamide
  • the amide solvent is N-methylpyrrolidone.
  • the amide solvent is dimethylacetamide.
  • the amide solvent is N, N-dimethylformamide.
  • (Item 20) The method according to any one of items 1 to 19, wherein the produced solid salt of the compound of formula I has an enantiomeric excess of at least 98% or more.
  • (Item 21) The method according to any one of items 1 to 20, wherein the produced solid salt of the compound of formula I has an enantiomeric excess of at least 99% or more.
  • (Item 22) The method according to any one of items 1 to 21, further comprising the step of dissolving the phenylethylamine in toluene.
  • (Item 23) The method of any one of items 1-22, comprising the step of adding a poor solvent to the sample.
  • (Item 25) The method according to any one of items 1 to 24, further comprising a step of removing the amide solvent.
  • (Item 26) A method for producing a compound according to formula IIIa, wherein a solid salt of a compound of formula I produced by the method according to any one of items 1 to 25 is converted into the compound described in formula IIIa. How to include: Formula IIIa: (R) -2-hydroxy-2-methyl-4- (2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dienyl) butaneamide.
  • Compounds according to formula IVa Equation IVa Or its solvate.
  • (Item 28) The compound according to item 27, which is an amide-based solvate.
  • (Item 29) Item 2. Solvated product.
  • (Item 30) The solvate according to item 29, wherein the amide solvent is N-methylpyrrolidone.
  • (Item 31) The solvate according to item 29, wherein the amide-based solvent is dimethylacetamide.
  • (Item 32) The solvate according to item 29, wherein the amide-based solvent is N, N-dimethylformamide.
  • (Item 33) A pharmaceutical raw material containing the compound or solvate according to any one of items 27 to 32.
  • (Item 34) A method for producing a solid salt of a compound of formula II, wherein an amide solvent is added to a sample containing a compound of formula II and presumed to contain a compound of formula I in the presence of an optical resolution agent.
  • Formula I (R) -6-Hydroxy-2,5,7,8-Tetramethylchroman-2-carboxylic acid (hereinafter, R Trolox)
  • Formula II (S) -6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (hereinafter, S Trolox).
  • the optical resolution agent comprises at least a portion capable of forming a salt with R trolox and S trolox and an asymmetric carbon.
  • the method of item 34 or 35 comprising adding the optical resolution agent to the sample.
  • (Item 40) The method according to any one of items 34 to 39, wherein the optical resolution agent is selected from phenylethylamine, N-methylglucamine, arginine, lysine, pseudoephedrine, leucinol, and aminophenylpropanol.
  • the optical resolution agent is phenylethylamine.
  • the amide solvent is one or more solvents selected from N-methylpyrrolidone (NMP), dimethylacetamide (DMA) or N, N-dimethylformamide (DMF).
  • amide solvent is one or more solvents selected from N-methylpyrrolidone (NMP), dimethylacetamide (DMA) or N, N-dimethylformamide (DMF).
  • NMP N-methylpyrrolidone
  • DMA dimethylacetamide
  • DMF N, N-dimethylformamide
  • (Item 53) The method according to any one of items 34 to 52, wherein the produced solid salt of the compound of formula II has an enantiomeric excess of at least 98% or more.
  • (Item 54) The method according to any one of items 34 to 53, wherein the produced solid salt of the compound of formula II has an enantiomeric excess of at least 99% or more.
  • (Item 55) The method according to any one of items 34 to 54, further comprising the step of dissolving the phenylethylamine in toluene.
  • (Item 56) The method of any one of items 34-55, comprising the step of adding a poor solvent to the sample. (Item 57) 56.
  • (Item 60) Compounds according to formula IVb: Equation IVb Or its solvate.
  • (Item 61) The compound according to item 60, which is an amide-based solvate.
  • (Item 62) The item according to any one of items 60 to 61, wherein the amide solvent is one or more solvents selected from NMP (N-methylpyrrolidone), DMA (dimethylacetamide) or DMF (N, N-dimethylformamide). Solvated product.
  • (Item 63) The solvate according to item 62, wherein the amide solvent is N-methylpyrrolidone.
  • (Item 64) The solvate according to item 62, wherein the amide-based solvent is dimethylacetamide.
  • (Item 65) The solvate according to item 62, wherein the amide-based solvent is N, N-dimethylformamide.
  • (Item 66) A pharmaceutical raw material containing the compound or solvate according to any one of items 60 to 65.
  • (Item 67) A composition for optically resolving a compound, which comprises an amide-based solvent.
  • the compound is a mixture of a compound of formula I and a compound of formula II: Formula I: (R) -6-Hydroxy-2,5,7,8-Tetramethylchroman-2-carboxylic acid (hereinafter, R Trolox) Formula II: (S) -6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (hereinafter, S Trolox) 67.
  • R Trolox -6-Hydroxy-2,5,7,8-Tetramethylchroman-2-carboxylic acid
  • S Trolox -6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
  • amide solvent is one or more solvents selected from N-methylpyrrolidone (NMP), dimethylacetamide (DMA) or N, N-dimethylformamide (DMF).
  • NMP N-methylpyrrolidone
  • DMA dimethylacetamide
  • DMF N, N-dimethylformamide
  • (Item 75) A method for optically resolving a compound, which comprises adding an amide solvent to the compound.
  • (Item 75A) The method of item 75, further comprising the features of any one or more of items 1-74.
  • (Item 76) Use of amide-based solvents for optical resolution of compounds.
  • (Item 76A) The use according to item 76, further comprising the features described in any one or more of items 1-75.
  • This application provides a method for stably chiral division of Trolox with high optical purity.
  • FIG. 1 shows a single crystal X-ray structure of RS-Trolox / R-PEA (racemic: R-Trolox / R-PEA / S-Trolox / R-PEA).
  • FIG. 2 shows a single crystal X-ray structure of R-Trolox, R-PEA, and NMP.
  • FIG. 3 shows the results of powder X-ray diffraction (XRPD) of RS-Trolox / R-PEA (racemic), R-Trolox / R-PEA, and R-Trolox / R-PEA / NMP (solvate). show. The value at the left end on the horizontal axis of FIG. 3 is "5".
  • references to "about” with respect to a value or parameter herein include variations relating to the value or parameter itself. Unless otherwise specified, for example, “about X” includes “X” itself and a value that allows an error of ⁇ 10% thereof.
  • Trox refers to 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid.
  • the R body is called R Trolox
  • the S body is called S Trolox.
  • Trollox uses synthetic methods well known to those of skill in the art, such as US Pat. No. 3,947,473, US Pat. No. 4,003,919, and US Pat. No. 4,026,907. It can be produced by the method described in.
  • optical resolution agent refers to an optically active reagent useful for separating a racemic mixture into enantiomers, that is, optically active substances.
  • the optical resolution agent may contain at least a portion capable of forming a salt with R trolox and S trolox and an asymmetric carbon.
  • the optical resolution agent may contain a base moiety.
  • the base moiety may include an amine moiety.
  • the optical resolution agent include optically active substances such as phenylethylamine, N-methylglucamine, arginine, lysine, pseudoephedrine, leucinol, and aminophenylpropanol.
  • the "portion capable of forming a salt with R trolox and S trolox” means a portion containing a functional group contained in R trolox and S trolox and a functional group capable of forming a salt.
  • the "portion capable of forming a salt with R trolox and S trolox” can be a moiety containing a base capable of forming a salt with a carboxyl group.
  • the "portion that can form a salt with R trolox and S trolox" in the optical resolution agent may or may not overlap with the asymmetric carbon in the optical resolution agent.
  • the asymmetric carbon functions effectively when the optical resolution agent forms a salt with R trolox and S trolox or after the salt is formed (behaves differently from the asymmetric carbon of other conformations). Shown).
  • the "portion capable of forming a salt with R-trolox and S-trolox" include an amino group, an imino group, a guanidyl group, and a heterocyclic group (nitrogen-containing heterocyclic group such as pyridine, imidazole, indole, and purine). The part to be included is mentioned.
  • Examples of the compound containing asymmetric carbon include tartrate acid, phenylethylamine, N-methylglucamine, amino acids (arginine, lysine, etc.), pseudoephedrine, leucinol, aminophenylpropanol, and the like, which have the same skeleton as such compounds. Phenethylamine can be used.
  • the "amide-based solvent” refers to a solvent of a compound containing an amide group (acid amide group).
  • the amide group include a carboxylic acid amide and a phosphoric acid amide group.
  • Amide solvents include N-methylpyrrolidone (NMP), dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), tetramethylurea (TMU) and hexamethylphosphoryl.
  • NMP N-methylpyrrolidone
  • DMA dimethylacetamide
  • DMF N-dimethylformamide
  • DEF N-diethylformamide
  • TNU tetramethylurea
  • HMPA Acid triamide
  • the "poor solvent” means a solvent having an ability to dissolve a solute (target substance) but having a limited solubility (a solvent having a small ability to dissolve a solute).
  • Examples of the poor solvent in the present disclosure include ethyl acetate and toluene.
  • salt refers to a compound produced by a neutralization reaction between an acid and a base, which is composed of a negative component of the acid and a positive component of the base.
  • Trolox has a carboxylic acid group and can form salts with basic substances.
  • solid salt refers to a salt in a solid state, which is one of the three states (gas, liquid, and solid) of a substance.
  • sample means that the matter is sufficiently predicted, although it has not been confirmed. The matter does not have to exist after the actual confirmation.
  • a sample containing a compound of formula I and presumed to contain a compound of formula II is a compound of formula I, although it has not been confirmed that it contains a compound of formula I and contains a compound of formula II.
  • the term "mixture” refers to a mixture of two or more types.
  • the mixing ratio may be arbitrary. For example, in the case of a mixture of two kinds, 50:50, 45:55, 40:60, 35:65, 30:70, 25:75, 20:80, 15:85, 10:90, 5:95. , 1:99, 0.1: 99.9, and the like.
  • the "enantiomeric excess” is a measure indicating the mixing ratio of the right enantiomer and the left enantiomer, and is abbreviated as ee.
  • a method for producing a solid salt of a compound of formula I which comprises the compound of formula I and is presumed to contain the compound of formula II, in the presence of an optical resolution agent.
  • R Trolox -6-Hydroxy-2,5,7,8-Tetramethylchroman-2-carboxylic acid
  • S Trolox -6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
  • the solid salt of the compound of formula I can be a salt of the compound of formula I and the optical resolution agent.
  • the solid salt of the compound of formula I can be a solvate of the compound of formula I, the salt of the optical resolution agent, and the amide solvent.
  • the optical resolution agent may contain at least a portion capable of forming a salt with R trolox and S trolox and an asymmetric carbon.
  • the chiral resolution agent may include a base moiety that forms a salt with the carboxylic acid.
  • the base moiety can be an amine.
  • R-phenylethylamine R-trolox and R-phenylethylamine are as follows. Can form salts such as.
  • the salt of R trolox and R-phenylethylamine is solvated with N-methylpyrrolidone
  • the optical resolution agent contains an amine moiety such as N-methylglucamine, arginine, lysine, pseudoephedrine, leucinol, aminophenylpropanol, a salt in which the amine moiety is ammonium can be formed.
  • an amine moiety such as N-methylglucamine, arginine, lysine, pseudoephedrine, leucinol, aminophenylpropanol, a salt in which the amine moiety is ammonium can be formed.
  • the method of the present disclosure may include adding an optical resolution agent to the sample.
  • the addition of the amide-based solvent may be achieved by adding a mixture of the optical resolution agent and the amide-based solvent to the sample.
  • the optical resolution agent and / or the amide solvent may already be present in the sample (hence, the addition of a new amide solvent may or may not be present).
  • the optical resolution agent is added and the amide solvent is added, they may be added at the same time or separately.
  • the sample may contain a complex with an optical resolution agent.
  • the sample may contain a mixture of a compound of formula I and a compound of formula II.
  • the optical resolution agent can be selected from phenylethylamine, N-methylglucamine, arginine, lysine, pseudoephedrine, leucinol, aminophenylpropanol.
  • Optical dividers include R-phenylethylamine, S-phenylethylamine, N-methyl-D-glucamine, N-methyl-L-glucamine, D-arginine, L-arginine, D-lysine, L-lysine, (1S, 2S)-(+)-psoid efedrin, (1R, 2R)-(-)-psoid efedrin, (R)-(-)-leucinol, (S)-(+)-leucinol, (S)-(-)-2 It can be -amino-3-phenyl-1-propanol, (R)-(+) -2-amino-3-phenyl-1-propanol.
  • the optical resolution agent may be phenylethylamine.
  • the amide solvent is N-methylpyrrolidone (NMP), dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), tetramethylurea (TMU).
  • NMP N-methylpyrrolidone
  • DMA dimethylacetamide
  • DMF N-dimethylformamide
  • DEF N-diethylformamide
  • TMU tetramethylurea
  • it may be one or more solvents selected from hexamethylphosphoric acid triamide (HMPA).
  • the amide solvent may be N-methylpyrrolidone.
  • the amide solvent may be dimethylacetamide.
  • the amide solvent may be N, N-dimethylformamide.
  • the phenylethylamine can be (R) -phenylethylamine.
  • the solid salt may be an R-phenylethylamine salt.
  • the solid salt may be an amide-based solvate.
  • the amide solvent may be one or more solvents selected from N-methylpyrrolidone (NMP), dimethylacetamide (DMA) or N, N-dimethylformamide (DMF).
  • NMP N-methylpyrrolidone
  • DMA dimethylacetamide
  • DMF N, N-dimethylformamide
  • the amide solvent may be N-methylpyrrolidone.
  • the amide solvent may be dimethylacetamide.
  • the amide solvent may be N, N-dimethylformamide.
  • the enantiomeric excess of the produced solid salt of the compound of formula I can be at least 98% or more.
  • the enantiomeric excess of the produced solid salt of the compound of formula I can be at least 99% or more.
  • the present disclosure may further include the step of dissolving the phenylethylamine in toluene.
  • the present disclosure may include the step of adding a poor solvent to the sample.
  • the merit of using a poor solvent is to improve the filterability.
  • the addition of a poor solvent can reduce the viscosity of the amide solvent and improve its practicality, but the present disclosure is not limited to this.
  • Optical purity can also be slightly improved by adding a poor solvent.
  • the poor solvent may be toluene or ethyl acetate.
  • the present disclosure may further include the step of removing the amide solvent.
  • a method for producing a compound of formula IIIa comprising converting a solid salt of a compound of formula I produced by the above method into a compound of formula IIIa.
  • the compound of formula IVa Equation IVa
  • a solvate thereof is provided.
  • the compound may be an amide solvate.
  • the amide solvent can be one or more solvents selected from NMP (N-methylpyrrolidone), DMA (dimethylacetamide) or DMF (N, N-dimethylformamide).
  • the amide solvent may be N-methylpyrrolidone.
  • the amide solvent may be dimethylacetamide.
  • the amide solvent may be N, N-dimethylformamide.
  • a method for producing a solid salt of a compound of formula II, in the presence of an optical resolution agent, in a sample containing the compound of formula II and presumed to contain the compound of formula I is provided.
  • Formula II (S) -6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (hereinafter, S Trolox).
  • R Trolox -6-Hydroxy-2,5,7,8-Tetramethylchroman-2-carboxylic acid
  • S Trolox -6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
  • the solid salt of the compound of formula II can be a salt of the compound of formula II and the optical resolution agent.
  • the solid salt of the compound of formula II can be a solvate of the compound of formula II, the salt of the optical resolution agent, and the amide solvent.
  • the optical resolution agent may contain at least a portion capable of forming a salt with R trolox and S trolox and an asymmetric carbon. Since Trolox contains a carboxylic acid moiety, the chiral resolution agent may include a base moiety that forms a salt with the carboxylic acid.
  • the base moiety can be an amine.
  • the optical resolution agent is S-phenylethylamine, S-trolox and S-phenylethylamine can form a salt having a mirror image relationship with the R-form.
  • the method of the present disclosure may include adding an optical resolution agent to the sample.
  • the addition of the amide-based solvent may be achieved by adding a mixture of the optical resolution agent and the amide-based solvent to the sample.
  • the optical resolution agent and / or the amide solvent may already be present in the sample (hence, the addition of a new amide solvent may or may not be present).
  • the optical resolution agent is added and the amide solvent is added, they may be added at the same time or separately.
  • the sample may contain a complex with an optical resolution agent.
  • the sample may contain a mixture of a compound of formula I and a compound of formula II.
  • the optical resolution agent can be selected from phenylethylamine, N-methylglucamine, arginine, lysine, pseudoephedrine, leucinol, aminophenylpropanol.
  • Optical dividers include R-phenylethylamine, S-phenylethylamine, N-methyl-D-glucamine, N-methyl-L-glucamine, D-arginine, L-arginine, D-lysine, L-lysine, (1S, 2S)-(+)-psoid efedrin, (1R, 2R)-(-)-psoid efedrin, (R)-(-)-leucinol, (S)-(+)-leucinol, (S)-(-)-2 It can be -amino-3-phenyl-1-propanol, (R)-(+) -2-amino-3-phenyl-1-propanol.
  • the optical resolution agent may be phenylethylamine.
  • the amide solvent may be one or more solvents selected from N-methylpyrrolidone (NMP), dimethylacetamide (DMA) or N, N-dimethylformamide (DMF).
  • NMP N-methylpyrrolidone
  • DMA dimethylacetamide
  • DMF N, N-dimethylformamide
  • the amide solvent may be N-methylpyrrolidone.
  • the amide solvent may be dimethylacetamide.
  • the amide solvent may be N, N-dimethylformamide.
  • the phenylethylamine can be (R) -phenylethylamine.
  • the solid salt may be an S-phenylethylamine salt.
  • the solid salt may be an amide-based solvate.
  • the amide solvent may be one or more solvents selected from N-methylpyrrolidone (NMP), dimethylacetamide (DMA) or N, N-dimethylformamide (DMF).
  • NMP N-methylpyrrolidone
  • DMA dimethylacetamide
  • DMF N, N-dimethylformamide
  • the amide solvent may be N-methylpyrrolidone.
  • the amide solvent may be dimethylacetamide.
  • the amide solvent may be N, N-dimethylformamide.
  • the enantiomeric excess of the produced solid salt of the compound of formula II can be at least 98% or more.
  • the enantiomeric excess of the produced solid salt of the compound of formula II can be at least 99% or more.
  • the present disclosure may further include the step of dissolving the phenylethylamine in toluene.
  • the present disclosure may include the step of adding a poor solvent to the sample.
  • the merit of using a poor solvent is to improve the filterability.
  • the addition of a poor solvent can reduce the viscosity of the amide solvent and improve its practicality, but the present disclosure is not limited to this.
  • Optical purity can also be slightly improved by adding a poor solvent.
  • the poor solvent may be toluene or ethyl acetate.
  • the present disclosure may further include the step of removing the amide solvent.
  • a method of producing a compound of formula IIIb comprising converting a solid salt of a compound of formula II produced by the method described above into a compound of formula IIIb.
  • the compound of formula IVb Equation IVb
  • a solvate thereof is provided.
  • it may be an amide-based solvate.
  • the amide solvent can be one or more solvents selected from NMP (N-methylpyrrolidone), DMA (dimethylacetamide) or DMF (N, N-dimethylformamide).
  • the amide solvent may be N-methylpyrrolidone.
  • the amide solvent may be dimethylacetamide.
  • the amide solvent may be N, N-dimethylformamide.
  • composition for optically resolving a compound, which comprises an amide-based solvent is provided.
  • the compound is a mixture of a compound of formula I and a compound of formula II:
  • Formula I (R) -6-Hydroxy-2,5,7,8-Tetramethylchroman-2-carboxylic acid (hereinafter, R Trolox)
  • R Trolox -6-Hydroxy-2,5,7,8-Tetramethylchroman-2-carboxylic acid
  • S Trolox -6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
  • composition can be used with other optical resolution agents.
  • the other optical resolution agent may itself have optical activity.
  • the amide solvent may be one or more solvents selected from N-methylpyrrolidone (NMP), dimethylacetamide (DMA) or N, N-dimethylformamide (DMF).
  • NMP N-methylpyrrolidone
  • DMA dimethylacetamide
  • DMF N, N-dimethylformamide
  • the amide solvent may be N-methylpyrrolidone.
  • the amide solvent may be dimethylacetamide.
  • the amide solvent may be N, N-dimethylformamide.
  • a method for optically resolving a compound comprising adding an amide solvent to the compound.
  • an amide-based solvent for optical resolution of a compound is provided.
  • the powder X-ray diffraction (XRPD) of RS-Trolox R-PEA is 8.54 °, 12.55 °, 13.45 °, 15.41 °, 17.11 °, 18.87 °, 21.00 °. , 22.19 ° and 23.83 ° show peaks of 2 ⁇ , but are not limited to this, and an appropriate number (1, 2, 3, 4, 4) selected from those having a large Gross Intensity shown in Table 6 is shown. It may have 5, 6, 7, 8, 9, 10 or more peaks).
  • 2 ⁇ may have an error in the range of ⁇ 0.2 ° with respect to the indicated value with respect to the attribution of powder X-ray diffraction (XRPD).
  • powder X-ray diffraction (XRPD) of R-Trolox ⁇ R-PEA is 6.75 °, 7.19 °, 9.86 °, 13.49 °, 14.37 °, 14.67 °, 15.29 °, 21.51 °, 2 ⁇ peaks are shown at 22.71 °, 23.31 °, 27.10 °, and 28.03 °, but the number is not limited to this, and an appropriate number (1, 2, It may have peaks of 3, 4, 5, 6, 7, 8, 9, 10 or more).
  • the characteristic 2 ⁇ in powder X-ray diffraction (XRPD) of R-Trolox, R-PEA, NMP (solvate) is 5.30 °, 7.69 °, 8.94 °, 10.55 °. , 12.78 °, 14.41 °, 15.04 °, 15.35 °, 15.83 °, 17.86 °, 19.56 °, 22.34 °, 25.43 °, 26.48 °, 27.47 ° show peaks of 2 ⁇ , but are not limited to this and are shown in Table 6. An appropriate number (1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10 or more) selected from those having a large Gross Intensity to be described. It may have a peak (an integer value of).
  • Crystals show various structures, shapes, sizes, agglutinated states, etc. depending on the crystallization conditions.
  • a solvate in which a solvent is incorporated into a crystal is sometimes referred to as a pseudo-crystal polymorph to distinguish it from a crystal polymorph in a strict sense.
  • the physicochemical properties of the crystal can be largely dominated by the solvent's contribution to crystal lattice formation and its interaction with the crystallized molecule.
  • Various factors such as solvent properties, supersaturation, and temperature that affect the crystallization conditions can determine the properties of the crystal.
  • Trolox can be stably chirally resolved with high optical purity by appropriately selecting an optical resolution agent and a solvent.
  • the method of the present disclosure utilizes an optical resolution agent to separate the (R)-and (S) -trolox enantiomers, which are among the (R) -trolox and (S) -trolox. It forms a solid salt with one and substantially no solid salt with the other under certain reaction conditions. In some embodiments, when the fission agent forms a solid salt with the trolox enantiomer, at least about 50% of the trolox enantiomer forms the solid salt with the trolox enantiomer under certain reaction conditions.
  • the splitting agent when the splitting agent forms a solid salt with the trolox enantiomer, at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90% of the trolox enantiomer. At least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% form a splitting agent and a solid salt under certain reaction conditions.
  • “Substantially not forming solid salts” means that less than about 10% of the (non-solid salt forming) Trolox enantiomers form a splitting agent and a solid salt under certain reaction conditions.
  • substantially non-solid salt forming means less than about 9%, less than about 8%, less than about 7%, less than about 6% of (non-solid salt forming) Trolox enantiomers. Less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5%, or less than about 0.1% are splitting agents and solids under certain reaction conditions. Indicates that it forms a salt.
  • the solid salt can be a solvate with an amide solvent.
  • Yield indicates the percentage of Trolox enantiomer obtained relative to the amount of starting material. For example, if 100 g of a 50/50 racemic mixture of (R) / (S) -Trolox is divided and 50 g of (S) -Trolox is recovered, the yield is 50%. If 30 g of (S) -Trolox is recovered, the yield is 30%. For trolox salt recovery, yields are calculated assuming that only trolox is present, not salt counterions. For example, 100 g of a 50/50 racemic mixture of (R) / (S) -Trolox is divided and 40 g of (S) -Tlolox salt is recovered and contained in the salt (S) -Tlolox. If the theoretical weight of is 30 g, the yield is 30%. When both (R) -trolox and (S) -trolox are divided and 50 g each is recovered, the yield is 100%.
  • the salt of the compound comprises a pharmaceutically acceptable salt.
  • a pharmaceutically acceptable salt can be administered to humans and / or animals as a drug or pharmaceutical, and upon administration, at least some of the biological activity of the free compound (neutral or non-salt compound). Is a salt that retains.
  • the desired salt of the basic compound can be prepared by a method known to those skilled in the art by treating the compound with an acid.
  • inorganic acids include, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, and phosphoric acid.
  • organic acids include, but are not limited to, formic acid, acetic acid, propionic acid, glycolic acid, pyruvate, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, silicic acid. , Mandelic acid, succinic acid, and salicylic acid. Salts of basic compounds with amino acids, such as aspartates and glutamate salts, can also be prepared.
  • the desired salt of the acidic compound can be prepared by a method known to those skilled in the art by treating the compound with a base.
  • inorganic salts of acid compounds include, but are not limited to, alkali metal and alkaline earth salts such as sodium salts, potassium salts, magnesium salts, and calcium salts; ammonium salts; and aluminum salts.
  • organic salts of acid compounds include, but are not limited to, salts of procaine, dibenzylamine, N-ethylpiperidin, N, N-dibenzylethylenediamine, and triethylamine. Salts of acidic compounds with amino acids, such as lysine salts, can also be prepared. Additional salts particularly useful for pharmaceutical preparations are described in Berge SM et al., "Pharmaceutical salts", 1. Pharma. Sci., January 1977; Vol. 66 (No. 1): pp. 1-19. ing.
  • the compounds produced by the methods of the present disclosure are useful as pharmaceutical raw materials. It can be used as an intermediate to make optically active pharmaceuticals.
  • solvent used for the synthesis of the compounds and compositions of the present disclosure examples include water, acetonitrile (“ACN”), diethyl ether, 2-methyl-tetrahydrofuran (“2-Methyl”), ethyl acetate (“2-Methyl”).
  • EtOAc ethanol
  • EtOH isopropyl alcohol
  • IPAc isopropyl acetate
  • MeOH methanol
  • q.s. (appropriate amount) means adding an amount sufficient, for example, to bring the solution to the desired volume (ie, 100%) to achieve the stated function. ..
  • Trolox Trolox, 6-Hydroxy-2,5,7,8-Tetramethylchroman-2-carboxylic Acid
  • R-Tlox R-Trolox, R-6-Hydroxy-2,5,7,8-Tetramethyl Chroman-2-carboxylic acid
  • S-Trolox S-trolox, S-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
  • RS-Trolox RS-trolox, RS-6- Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (racemi)
  • PEA 1-Phenylethylamine
  • R-PEA R-1-Phenylethylamine
  • S-PEA S-1-Phenylethylamine
  • EtOAc Ethyl acetate i PrOAc: Isopropyl
  • the S-Trolox used in the examples was purchased from Sigma-Aldrich.
  • the RS-Trolox used in the examples was purchased from D-STONE.
  • the method for producing a compound of the present disclosure using a seed crystal is carried out by using a small amount of a product produced without using a seed crystal as the next seed crystal when the compound is produced for the first time. obtain.
  • the measurement of optical purity is calculated by comparing each peak area by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • Example 1 Solvent study (other than amide type) At room temperature, S-Trolox (0.67 g), R-PEA (0.11 g) and a solvent are added to R-Trolox / R-PEA (1.0 g) and reslurried. After keeping the temperature at 30 ° C. for 3 hours, the mixture was cooled to 5 ° C. and stirred overnight. After stirring at 5 ° C. overnight, the crystals were filtered off and the optical purity of the crystals was measured.
  • Example 3 Method for obtaining R-Trolox / R-PEA / NMP (solvate) from RS-Trolox / R-PEA (racemic) (NMP / DMA mixed solvent)
  • NMP (10.0 g) DMA (10.0 g)
  • RS-Trolox (2.00 g) were added to raise the temperature to 50 ° C., then cooled to 25 ° C., and R-Trolox / R-PEA. (0.01 g) Seed crystals were inoculated and kept warm for 1 hour. After cooling to 10 ° C. and keeping warm overnight, the precipitate was collected by filtration.
  • Example 4 Method for obtaining R-Trolox / R-PEA / NMP (solvate) from RS-Trolox / R-PEA (racemic) (NMP solvent) RS-Trolox ⁇ R-PEA (100 mg) was dissolved in NMP (1 mL), stirred for 3 hours, and the precipitated crystals were filtered off (optical purity: 98.7% ee).
  • Example 7 Twice crystallization using NMP solvent to improve optical purity (first step: optical resolution, second step: recrystallization)
  • NMP 490.4 g
  • R-PEA 28.90 g
  • Trolox 70.0 g
  • NMP 140.59 g
  • NMP 140.59 g
  • seed crystals were inoculated and kept warm for 3 hours. After cooling to 10 ° C. and keeping warm overnight, the precipitate was collected by filtration.
  • Example 8 Twice crystallization using NMP / toluene mixed solvent to improve optical purity and filterability (first step: optical resolution, second step: recrystallization)
  • NMP (1440 g) and toluene (5760 g) were added to Trolox (800 g) to raise the temperature to 50 ° C., and the mixture was washed with an NMP / toluene mixed solvent (160 g / 640 g) for dust removal filtration.
  • R-PEA 232 g was added at 50 ° C., the mixture was cooled to 45 ° C., and then inoculated with R-Trolox / R-PEA (0.8 g) seed crystals and kept warm for 2 hours.
  • R-PEA (97 g) was added dropwise over 1 hour and then kept warm for 30 minutes. After cooling to 0 ° C. and keeping warm overnight, the precipitate was collected by filtration. The precipitate was washed twice with an NMP / toluene mixed solvent (320 g / 1280 g), washed with toluene (1600 g), and then dried to obtain an amide solvate of R-Trolox / R-PEA (yield:). 624 g, yield 41.5%, optical purity: 96.8% ee).
  • Example 9 Twice crystallization using NMP / ethyl acetate mixed solvent to improve optical purity and filterability (first step: optical resolution, second step: recrystallization)
  • NMP (10.80 kg) and ethyl acetate (43.20 kg) were added to Trolox (6.00 kg) to raise the temperature to 50 ° C., and after dust removal filtration, an NMP / ethyl acetate mixed solvent (1. It was washed with 20 kg / 4.80 kg).
  • R-PEA (1.74 kg) was added at 50 ° C.
  • R-Trolox / R-PEA / NMP (6.04 g) was inoculated as a seed crystal and kept warm for 2 hours.
  • R-PEA (0.73 kg) was added dropwise over 1 hour and then kept warm for 30 minutes. After cooling to 5 ° C. and keeping warm overnight, the precipitate was collected by filtration.
  • Example 10 Single crystal X-ray structure analysis of RS-Trolox / R-PEA (racemic) and R-Trolox / R-PEA / NMP (solvate) RS-Trolox / R-PEA (racemic) and R-Trolox / R -A single crystal X-ray structure analysis of PEA / NMP (solvate) was performed. It is shown in FIGS. 1 and 2.
  • Measuring device Single crystal X-ray diffractometer manufactured by Rigaku (model number: VariMax RAPID RA-Micro7). Measurement temperature: -170 ° C.
  • Analysis program Crystal Structure crystallographic software package.
  • RS-Tlorox / R-PEA (racemic form) was measured as follows. (Data collection) Colorless prism crystals of C 22 H 29 NO 4 with approximate dimensions of 0.200 x 0.110 x 0.090 mm were placed on fiberglass. All measurements were made with a Rigaku R-AXIS RAPID diffractometer using a multi-layer film monochromator Mo-K ⁇ radiation.
  • the distance between the crystal and the detector was 127.40 mm.
  • the line absorption coefficient ⁇ is 0.875 cm -1 .
  • An empirical absorption correction was applied that produced a transmittance in the range of 0.958 to 0.992. Data were corrected for Lorentz and polarization effects.
  • the goodness of fit was 1.06.
  • the goodness of fit is defined as follows: [ ⁇ w (Fo 2 -Fc 2 ) 2 / (No-Nv)] 1/2
  • No Number of observations
  • Nv Number of variables We used unit weights.
  • Final Black parameter (Parsons, S. and Flack, H. (2004), Acta Cryst. A60, s61) is 0.11 (11), indicating that the absolute structure present is correct (Flack, HD and Bernardinelli (2000), J. Appl. Cryst. 33, 114-1148).
  • Neutral atom scattering factors were taken from the International Table of Crystallography (IT), Vol. C, Table 6.1.1.4 (International Tables for Crystallography, Vol.C (1992). Ed. AJC Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572).
  • the anomalous dispersion effect was included in Fcalc (Ibers, JA & Hamilton, WC; Acta Crystallogr., 17, 781 (1964)); the values of ⁇ f'and ⁇ f'' were those of Creagh and McAuley (Creagh, JA & Hamilton, WC; Acta Crystallogr., 17, 781 (1964)).
  • the crystal data were as follows.
  • the intensity measurements were as follows.
  • Structural analysis and refinement are as follows.
  • Example 11 Powder X-ray diffraction (XRPD) of RS-Tolox / R-PEA (racemic), R-Trolox / R-PEA, and R-Trolox / R-PEA / NMP (solvate) Powder X-ray diffraction (XRPD) of RS-Tolox / R-PEA (racemic), R-Trolox / R-PEA, and R-Trolox / R-PEA / NMP (solvate) was performed. The results are shown in FIGS. 3 and 6.
  • Powder X-ray diffraction is made by Bruker AXS D 8 Using ADVANCE, measurement was performed at room temperature under the conditions of Cu K ⁇ ray, X-ray tube current 40 mA, voltage 40 kilovolt step 0.015 °, and measurement time 48 seconds / step in the range of diffraction angle 2 ⁇ 5 ° to 40 °.
  • Example 12 Twice crystallization using DMP / toluene mixed solvent (1st step: optical resolution, 2nd step: recrystallization)
  • DMP 50.0 g
  • toluene 200.0 g
  • R-PEA 7.26 g
  • R-Trolox / R-PEA 0.03 g
  • seed crystals were inoculated and kept warm for 2 hours.
  • R-PEA (3.03 g) was added dropwise over 20 minutes and then kept warm for 40 minutes. After cooling to 5 ° C., the precipitate was collected by filtration.
  • Example 13 Optical resolution to obtain S-Trolox / S-PEA / NMP
  • NMP 50.00 g
  • toluene 200.0 g
  • Trolox 25.00 g
  • S-Trolox ⁇ S-PEA (0.03 g) was inoculated with seed crystals and kept warm for 2 hours.
  • S-PEA (3.03 g) was added dropwise over 30 minutes and then kept warm for 2 hours. After cooling to 0 ° C. and keeping warm overnight, the precipitate was collected by filtration.
  • the present disclosure is useful for the production of optically active pharmaceuticals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Psychiatry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

トロロックスのキラル分割のための方法を提供すること。本開示は、式Iの化合物の固体塩を製造する方法であって、式Iの化合物を含み、式IIの化合物を含むと推測される試料に、光学分割剤の存在下でアミド系溶媒を添加することを含む方法: 式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス) 式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)に関する。

Description

光学分割されたトロロックス中間体およびその製造方法
 本出願は、トロロックスのキラル分割のための方法を提供する。本出願はまた、アミド系溶媒を含む、化合物を光学分割するための組成物および方法を提供する。
 国際公開第2009/061744号は、ミトコンドリア障害およびある特定の広汎性発達障害を処置および/または抑制するのに有用である、ラセミ2-ヒドロキシ-2-メチル-4-(2,4,5-トリメチル-3,6-ジオキソシクロヘキサ-1,4-ジエニル)ブタンアミドをラセミ体のトロロックス(6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸)から合成することについて記載している。
 キラル分割剤はエナンチオマーを分離するのに有用となり得る。例えば、キラル分割剤は、一方のエナンチオマーと固体塩を形成することができるが、他方のエナンチオマーと固体塩を形成することができない(溶液中にまたは油として残存する)。よって、これら2つのエナンチオマーは、固体を濾過することによって分離することができる。しかし、すべての分割剤が特定の化合物のエナンチオマーを分離するのに有用なわけではない。さらに、分割剤は、例えば、より良い分割、より高い収率、より簡単なスケールアップ、および/または改善された使いやすさを提供するそれらの能力が異なる。
 ラセミ体のトロロックスは、これまでα-メチルベンジルアミン(MBA)およびR-(+)-N-ベンジル-α-フェニルエチルアミン分割剤を用いてその(R)および(S)-異性体に分割されてきた。例えば、米国特許第3,947,473号、第4,003,919号、および第4,026,907号、ならびに米国特許出願公開第2011/0251407号を参照されたい。
国際公開第2009/061744号 米国特許第3,947,473号明細書 米国特許第4,003,919号明細書 米国特許第4,026,907号明細書 米国特許出願公開第2011/0251407号明細書
 本発明者らは、鋭意検討を行った結果、トロロックスを安定して光学分割する方法を見出し、本開示を完成した。本出願はまた、アミド系溶媒が、化合物を光学分割するのに有用であることを見出した。
 例えば、本開示は、以下の項目を提供する。
(項目1)
 式Iの化合物の固体塩を製造する方法であって、式Iの化合物を含み、式IIの化合物を含むと推測される試料に、光学分割剤の存在下でアミド系溶媒を添加することを含む方法:
Figure JPOXMLDOC01-appb-C000011

式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス)
Figure JPOXMLDOC01-appb-C000012

式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)。
(項目2)
 前記光学分割剤が、RトロロックスおよびSトロロックスと塩を形成し得る部分と不斉炭素とを少なくとも含む、項目1に記載の方法。
(項目3)
 前記光学分割剤を前記試料に添加することを含む、項目1または2に記載の方法。
(項目4)
 前記アミド系溶媒の添加は、前記試料に前記光学分割剤と前記アミド系溶媒との混合物を添加することを含む、項目1~3のいずれか1項に記載の方法。
(項目5)
 前記試料が、光学分割剤との複合体を含む、項目1~4のいずれか1項に記載の方法。
(項目6)
 前記試料が、式Iの化合物及び式IIの化合物の混合物を含む、項目1~5のいずれか1項に記載の方法。
(項目7)
 前記光学分割剤が、フェニルエチルアミン、N-メチルグルカミン、アルギニン、リシン、プソイドエフェドリン、ロイシノール、アミノフェニルプロパノールから選ばれる、項目1~6のいずれか1項に記載の方法。
(項目8)
 前記光学分割剤がフェニルエチルアミンである、項目1~7のいずれか1項に記載の方法。
(項目9)
 前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド(DEF)、テトラメチル尿素(TMU)又はヘキサメチルリン酸トリアミド(HMPA)から選ばれる一種以上の溶媒である項目1~8のいずれか一項に記載の方法。
(項目10)
 前記アミド系溶媒が、N-メチルピロリドンである項目9に記載の方法。
(項目11)
 前記アミド系溶媒が、ジメチルアセトアミドである項目9に記載の方法。
(項目12)
 前記アミド系溶媒が、N,N-ジメチルホルムアミドである項目9に記載の方法。
(項目13)
 前記フェニルエチルアミンが、(R)-フェニルエチルアミンである項目7~12のいずれか一項に記載の方法。
(項目14)
 前記固体塩が、R-フェニルエチルアミン塩である項目1~13のいずれか一項に記載の方法。
(項目15)
 前記固体塩が、アミド系溶媒和物である項目1~14のいずれか一項に記載の方法。
(項目16)
 前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒である項目15に記載の方法。
(項目17)
 前記アミド系溶媒が、N-メチルピロリドンである項目16に記載の方法。
(項目18)
 前記アミド系溶媒が、ジメチルアセトアミドである項目16に記載の方法。
(項目19)
 前記アミド系溶媒が、N,N-ジメチルホルムアミドである項目16に記載の方法。
(項目20)
 製造された式Iの化合物の固体塩のエナンチオマー過剰率が少なくとも98%以上である項目1~19のいずれか一項に記載の方法。
(項目21)
 製造された式Iの化合物の固体塩のエナンチオマー過剰率が少なくとも99%以上である項目1~20のいずれか一項に記載の方法。
(項目22)
 さらに、前記フェニルエチルアミンをトルエンに溶解させるステップを含む、項目1~21のいずれか一項に記載の方法。
(項目23)
 貧溶媒を前記試料に加えるステップを含む、項目1~22のいずれか一項に記載の方法。
(項目24)
 前記貧溶媒がトルエンまたは酢酸エチルである、項目23に記載の方法。
(項目25)
 さらに前記アミド系溶媒を除去するステップを含む、項目1~24のいずれか一項に記載の方法。
(項目26)
 式IIIaに記載の化合物を製造する方法であって、項目1~25のいずれか一項に記載の方法により製造された式Iの化合物の固体塩を、式IIIaに記載の化合物に変換することを含む方法:
Figure JPOXMLDOC01-appb-C000013

式IIIa:(R)-2-ヒドロキシ-2-メチル-4-(2,4,5-トリメチル-3,6-ジオキソシクロヘキサ-1,4-ジエニル)ブタンアミド。
(項目27)
 式IVaに記載の化合物:
Figure JPOXMLDOC01-appb-C000014

式IVa
またはその溶媒和物。
(項目28)
 アミド系溶媒和物である項目27に記載の化合物。
(項目29)
 アミド系溶媒が、NMP(N-メチルピロリドン)、DMA(ジメチルアセトアミド)又はDMF(N,N-ジメチルホルムアミド)から選択される1以上の溶媒である項目27~28のいずれか一項に記載の溶媒和物。
(項目30)
 アミド系溶媒が、N-メチルピロリドンである項目29に記載の溶媒和物。
(項目31)
 アミド系溶媒が、ジメチルアセトアミドである項目29に記載の溶媒和物。
(項目32)
 アミド系溶媒が、N,N-ジメチルホルムアミドである項目29に記載の溶媒和物。
(項目33)
 項目27~32のいずれか1項に記載の化合物または溶媒和物を含む医薬原料。
(項目34)
 式IIの化合物の固体塩を製造する方法であって、式IIの化合物を含み、式Iの化合物を含むと推測される試料に、光学分割剤の存在下でアミド系溶媒を添加することを含む方法:
Figure JPOXMLDOC01-appb-C000015

式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス)
Figure JPOXMLDOC01-appb-C000016

式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)。
(項目35)
 前記光学分割剤が、RトロロックスおよびSトロロックスと塩を形成し得る部分と不斉炭素とを少なくとも含む、項目34に記載の方法。
(項目36)
 前記光学分割剤を前記試料添加することを含む、項目34または35に記載の方法。
(項目37)
 前記アミド系溶媒の添加は、前記試料に前記光学分割剤と前記アミド系溶媒との混合物を添加することを含む、項目34~36のいずれか1項に記載の方法。
(項目38)
 前記試料が、光学分割剤との複合体を含む、項目34~37のいずれか1項に記載の方法。
(項目39)
 前記試料が、式Iの化合物及び式IIの化合物の混合物を含む、項目34~38のいずれか1項に記載の方法。
(項目40)
 前記光学分割剤が、フェニルエチルアミン、N-メチルグルカミン、アルギニン、リシン、プソイドエフェドリン、ロイシノール、アミノフェニルプロパノールから選ばれる、項目34~39のいずれか1項に記載の方法。
(項目41)
 前記光学分割剤が、フェニルエチルアミンである、項目34~40のいずれか1項に記載の方法。
(項目42)
 前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒である項目34~41のいずれか1項に記載の方法。
(項目43)
 前記アミド系溶媒が、N-メチルピロリドンである項目42に記載の方法。
(項目44)
 前記アミド系溶媒が、ジメチルアセトアミドである項目42に記載の方法。
(項目45)
 前記アミド系溶媒が、N,N-ジメチルホルムアミドである項目42に記載の方法。
(項目46)
 前記フェニルエチルアミンが、(R)-フェニルエチルアミンである項目40~45のいずれか一項に記載の方法。
(項目47)
 前記固体塩が、S-フェニルエチルアミン塩である項目34~46のいずれか一項に記載の方法。
(項目48)
 前記固体塩が、アミド系溶媒和物である項目34~47のいずれか一項に記載の方法。
(項目49)
 前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒である項目34~48のいずれか1項に記載の方法。
(項目50)
 前記アミド系溶媒が、N-メチルピロリドンである項目49に記載の方法。
(項目51)
 前記アミド系溶媒が、ジメチルアセトアミドである項目49に記載の方法。
(項目52)
 前記アミド系溶媒が、N,N-ジメチルホルムアミドである項目49に記載の方法。
(項目53)
 製造された式IIの化合物の固体塩のエナンチオマー過剰率が少なくとも98%以上である項目34~52のいずれか一項に記載の方法。
(項目54)
 製造された式IIの化合物の固体塩のエナンチオマー過剰率が少なくとも99%以上である項目34~53のいずれか一項に記載の方法。
(項目55)
 さらに、前記フェニルエチルアミンをトルエンに溶解させるステップを含む、項目34~54のいずれか一項に記載の方法。
(項目56)
 貧溶媒を前記試料に加えるステップを含む、項目34~55のいずれか一項に記載の方法。
(項目57)
 前記貧溶媒がトルエンまたは酢酸エチルである、項目56に記載の方法。
(項目58)
 さらに前記アミド系溶媒を除去するステップを含む、項目34~57のいずれか一項に記載の方法。
(項目59)
 式IIIbに記載の化合物を製造する方法であって、項目34~58のいずれか一項に記載の方法により製造された式IIの化合物の固体塩を、式IIIbに記載の化合物に変換することを含む方法:
Figure JPOXMLDOC01-appb-C000017

式IIIb:(S)-2-ヒドロキシ-2-メチル-4-(2,4,5-トリメチル-3,6-ジオキソシクロヘキサ-1,4-ジエニル)ブタンアミド。
(項目60)
 式IVbに記載の化合物:
Figure JPOXMLDOC01-appb-C000018

式IVb
またはその溶媒和物。
(項目61)
 アミド系溶媒和物である項目60に記載の化合物。
(項目62)
 アミド系溶媒が、NMP(N-メチルピロリドン)、DMA(ジメチルアセトアミド)又はDMF(N,N-ジメチルホルムアミド)から選択される1以上の溶媒である項目60~61のいずれか一項に記載の溶媒和物。
(項目63)
 アミド系溶媒が、N-メチルピロリドンである項目62に記載の溶媒和物。
(項目64)
 アミド系溶媒が、ジメチルアセトアミドである項目62に記載の溶媒和物。
(項目65)
 アミド系溶媒が、N,N-ジメチルホルムアミドである項目62に記載の溶媒和物。
(項目66)
 項目60~65のいずれか1項に記載の化合物または溶媒和物を含む医薬原料。
(項目67)
 アミド系溶媒を含む、化合物を光学分割するための組成物。
(項目68)
 前記化合物が、式Iの化合物及び式IIの化合物の混合物:
Figure JPOXMLDOC01-appb-C000019

式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス)
Figure JPOXMLDOC01-appb-C000020

式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)
である、項目67に記載の組成物。
(項目69)
 前記組成物が、他の光学分割剤とともに使用される、項目67または68に記載の組成物。
(項目70)
 前記他の光学分割剤は、それ自体が光学活性を有する、項目69に記載の組成物。
(項目71)
 前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒である項目67~70のいずれか一項に記載の組成物。
(項目72)
 前記アミド系溶媒が、N-メチルピロリドンである項目71に記載の組成物。
(項目73)
 前記アミド系溶媒が、ジメチルアセトアミドである項目71に記載の組成物。
(項目74)
 前記アミド系溶媒が、N,N-ジメチルホルムアミドである項目71に記載の組成物。
(項目74A)
 項目1~74のいずれか一項または複数の項に記載の特徴をさらに含む、項目67に記載の方法。
(項目75)
 化合物を光学分割するための方法であって、該化合物にアミド系溶媒を添加することを含む、方法。
(項目75A)
 項目1~74のいずれか一項または複数の項に記載の特徴をさらに含む、項目75に記載の方法。
(項目76)
 化合物を光学分割するためのアミド系溶媒の使用。
(項目76A)
 項目1~75のいずれか一項または複数の項に記載の特徴をさらに含む、項目76に記載の使用。
 本開示において、上記1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。本開示のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
 本出願は、トロロックスを高い光学純度で安定的にキラル分割する方法を提供する。
図1は、RS-Trolox・R-PEA(ラセミ体:R-Trolox・R-PEA・S-Trolox・R-PEA)の単結晶X線構造を示す。 図2は、R-Trolox・R-PEA・NMPの単結晶X線構造を示す。 図3は、RS-Trolox・R-PEA(ラセミ体)、R-Trolox・R-PEA、及びR-Trolox・R-PEA・NMP(溶媒和物)の粉末X線回折(XRPD)の結果を示す。なお、図3の横軸における左端の値は「5」である。
 以下、本開示につき、さらに詳しく説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語及び科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 以下、本開示につき、さらに詳しく説明する。
 本明細書で使用している略語は、特に明記しない限り、当該分野の範囲内でこれらの従来の意味を有する。
 本明細書の値またはパラメーターについての「約」の言及は、値またはパラメーター自体を対象とするばらつきを含む。他に特に言及しない限り、例えば、「約X」とは、「X」自体の他、その±10%の誤差を許容する値を含む。
 本明細書において、「トロロックス(Trolox)」は、6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸を示す。R体をRトロロックスとよび、S体をSトロロックスとよぶ。トロロックスは、当業者に周知の合成法、例えば、米国特許第3,947,473号明細書、米国特許第4,003,919号明細書、および米国特許第4,026,907号明細書に記載される方法により作製することができる。
 本明細書において、「光学分割剤」とは、ラセミ体をおのおのの鏡像異性体、すなわち光学活性体に分離するのに有用な光学活性な試薬をいう。本開示において、光学分割剤は、RトロロックスおよびSトロロックスと塩を形成し得る部分と不斉炭素とを少なくとも含み得る。本開示において、光学分割剤は、塩基部分を含み得る。塩基部分は、アミン部分を含み得る。光学分割剤としては、フェニルエチルアミン、N-メチルグルカミン、アルギニン、リシン、プソイドエフェドリン、ロイシノール、アミノフェニルプロパノールなどの光学活性体が挙げられる。
 本明細書において、「RトロロックスおよびSトロロックスと塩を形成し得る部分」とは、RトロロックスおよびSトロロックスに含まれる官能基と塩を形成し得る官能基を含む部分をいう。例えば、トロロックスは、カルボキシル基を含んでいるので、「RトロロックスおよびSトロロックスと塩を形成し得る部分」は、カルボキシル基と塩を形成し得る塩基を含む部分であり得る。光学分割剤における「RトロロックスおよびSトロロックスと塩を形成し得る部分」は、光学分割剤中の不斉炭素と重複していても、していなくてもよい。重複する場合、光学分割剤が、RトロロックスおよびSトロロックスと塩を形成するときまたは塩を形成した後に不斉炭素が有効に機能する(他の立体配置の不斉炭素とは異なる挙動を示す)ことを条件とする。「RトロロックスおよびSトロロックスと塩を形成し得る部分」としては、アミノ基、イミノ基、グアニジル基、複素環式基(ピリジン、イミダゾール、インドール、プリンなどの窒素含有複素環基)などを含む部分が挙げられる。不斉炭素を含む化合物としては、酒石酸、フェニルエチルアミン、N-メチルグルカミン、アミノ酸(アルギニン、リシンなど)、プソイドエフェドリン、ロイシノール、アミノフェニルプロパノールなどが挙げられ、このような化合物と同じ骨格を有する不斉炭素が使用され得る。
 本明細書において、「アミド系溶媒」とは、アミド基(酸アミド基)を含む化合物の溶媒をいう。アミド基としては、カルボン酸アミド、リン酸アミド基などが挙げられる。アミド系溶媒としては、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド(DEF)、テトラメチル尿素(TMU)およびヘキサメチルリン酸トリアミド(HMPA)が挙げられる。
 本明細書において、「貧溶媒」とは、溶質(目的物質)を溶かす能力はあるが、溶解度に限界がある溶媒(溶質を溶かす能力の小さい溶媒)をいう。本開示における貧溶媒としては、酢酸エチル、トルエンなどが挙げられる。
 本明細書において、「塩」とは、酸と塩基との中和反応によって生じる化合物で、酸の陰性成分と塩基の陽性成分とからなるものを示す。トロロックスは、カルボン酸基を有しており、塩基性物質と塩を形成し得る。
 本明細書において、「固体塩」とは、物質の三態(気・液・固)の1つである固態(solid state)の状態にある塩を示す。
 本明細書において、「推測(suspect)」とは、確認はされていないが、その事柄が十分に予測されることを示す。実際に確認した後にその事柄が存在していなくてもよい。例えば、「式Iの化合物を含み、式IIの化合物を含むと推測される試料」とは、式Iの化合物を含み、式IIの化合物を含むことは確認されていないが、式Iの化合物を含み、式IIの化合物を含むことが十分に予測される試料をいう。
 本明細書において、「混合物」とは、2種類以上のものが混合しているものを示す。混合の割合は任意でよい。例えば、2種類のものの混合物である場合、50:50、45:55、40:60、35:65、30:70、25:75、20:80、15:85、10:90、5:95、1:99、0.1:99.9などでもよい。
 本明細書において、「エナンチオマー過剰率」とは、右形鏡像体と左形鏡像体の混合割合を表す尺度を示し、eeと略される。右形鏡像体と左形鏡像体の試料中に占める割合を、それぞれRおよびSとすると次式で求められる。
 ee(%)=(R-S)/(R+S)×100、または(S-R)/(R+S)×100
 例えば、R体のエナンチオマー過剰率は、R:S=90:10の比率であれば、(90-10)/(90+10)×100=80%eeである。
 (好ましい実施形態)
 本開示の1つの実施形態において、式Iの化合物の固体塩を製造する方法であって、式Iの化合物を含み、式IIの化合物を含むと推測される試料に、光学分割剤の存在下で、アミド系溶媒を添加することを含む方法が提供される:
Figure JPOXMLDOC01-appb-C000021

式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス)
Figure JPOXMLDOC01-appb-C000022

式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)。本開示の方法により、Rトロロックスの光学分割が安定して行うことができる。本方法は、スケールアップがより簡単であり、撹拌がより簡単であり、容易に濾過できる固体を提供し、所望の生成物のより良い分割および/または純度を提供する。
 式Iの化合物の固体塩は、式Iの化合物と光学分割剤との塩であり得る。式Iの化合物の固体塩は、式Iの化合物と光学分割剤との塩と、アミド系溶媒との溶媒和物であり得る。
 本開示において、前記光学分割剤が、RトロロックスおよびSトロロックスと塩を形成し得る部分と不斉炭素とを少なくとも含み得る。トロロックスは、カルボン酸部分を含むため、光学分割剤は、カルボン酸と塩を形成する塩基部分を含み得る。塩基部分は、アミンであり得る。例えば、光学分割剤がR-フェニルエチルアミンである場合、RトロロックスとR-フェニルエチルアミンとは、以下
Figure JPOXMLDOC01-appb-C000023

のような塩を形成し得る。RトロロックスとR-フェニルエチルアミンとの塩がN-メチルピロリドンで溶媒和された場合、以下
Figure JPOXMLDOC01-appb-C000024

のような溶媒和物となり得る。光学分割剤が、N-メチルグルカミン、アルギニン、リシン、プソイドエフェドリン、ロイシノール、アミノフェニルプロパノールなどのアミン部分を含む場合、アミン部分がアンモニウムとなった塩を形成し得る。
 本開示の方法において、光学分割剤を前記試料に添加することを含み得る。
 前記アミド系溶媒の添加は、前記試料に前記光学分割剤と前記アミド系溶媒との混合物を添加することによって達成されてもよい。アミド系溶媒を添加するとき、既に試料中に光学分割剤および/またはアミド系溶媒が存在していてもよい(それゆえ、新たなアミド系溶媒の添加はあってもなくてもよい)。光学分割剤の添加とアミド系溶媒の添加を行う場合、同時であっても別々であってもよい。
 本開示において、前記試料が、光学分割剤との複合体を含み得る。
 本開示において、前記試料が、式Iの化合物及び式IIの化合物の混合物を含み得る。
 本開示において、前記光学分割剤が、フェニルエチルアミン、N-メチルグルカミン、アルギニン、リシン、プソイドエフェドリン、ロイシノール、アミノフェニルプロパノールから選ばれ得る。光学分割剤は、R-フェニルエチルアミン、S-フェニルエチルアミン、N-メチル-D-グルカミン、N-メチル-L-グルカミン、D-アルギニン、L-アルギニン、D-リシン、L-リシン、(1S,2S)-(+)-プソイドエフェドリン、(1R,2R)-(-)-プソイドエフェドリン、(R)-(-)-ロイシノール、(S)-(+)-ロイシノール、(S)-(-)-2-アミノ-3-フェニル-1-プロパノール、(R)-(+)-2-アミノ-3-フェニル-1-プロパノールであり得る。
 本開示において、前記光学分割剤が、フェニルエチルアミンであり得る。
 本開示において、前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド(DEF)、テトラメチル尿素(TMU)又はヘキサメチルリン酸トリアミド(HMPA)から選ばれる一種以上の溶媒であり得る。
 本開示において、前記アミド系溶媒が、N-メチルピロリドンであり得る。
 本開示において、前記アミド系溶媒が、ジメチルアセトアミドであり得る。
 本開示において、前記アミド系溶媒が、N,N-ジメチルホルムアミドであり得る。
 本開示において、前記フェニルエチルアミンが、(R)-フェニルエチルアミンであり得る。
 本開示において、前記固体塩が、R-フェニルエチルアミン塩であり得る。
 本開示において、前記固体塩が、アミド系溶媒和物であり得る。
 本開示において、前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒であり得る。
 本開示において、前記アミド系溶媒が、N-メチルピロリドンであり得る。
 本開示において、前記アミド系溶媒が、ジメチルアセトアミドであり得る。
 本開示において、前記アミド系溶媒が、N,N-ジメチルホルムアミドであり得る。
 本開示において、製造された式Iの化合物の固体塩のエナンチオマー過剰率が少なくとも98%以上であり得る。
 本開示において、製造された式Iの化合物の固体塩のエナンチオマー過剰率が少なくとも99%以上であり得る。
 本開示において、さらに、前記フェニルエチルアミンをトルエンに溶解させるステップを含み得る。
 本開示において、貧溶媒を前記試料に加えるステップを含み得る。貧溶媒を使用することのメリットとしては、ろ過性を向上させることが挙げられる。貧溶媒の添加によって、アミド系溶媒の粘性を下げ、実用性を改善することができるが、本開示はこれに限定されるものではない。貧溶媒を加えることで光学純度も若干向上し得る。
 本開示において、前記貧溶媒がトルエンまたは酢酸エチルであり得る。
 本開示において、さらに前記アミド系溶媒を除去するステップを含み得る。
 本開示の1つの実施形態において、式IIIaに記載の化合物を製造する方法であって、上記方法により製造された式Iの化合物の固体塩を、式IIIaに記載の化合物に変換することを含む方法が提供される:
Figure JPOXMLDOC01-appb-C000025

式IIIa:(R)-2-ヒドロキシ-2-メチル-4-(2,4,5-トリメチル-3,6-ジオキソシクロヘキサ-1,4-ジエニル)ブタンアミド。
 本開示の1つの実施形態において、式IVaに記載の化合物:
Figure JPOXMLDOC01-appb-C000026

式IVa
またはその溶媒和物が提供される。
 本開示において、前記化合物は、アミド系溶媒和物であり得る。
 本開示において、アミド系溶媒が、NMP(N-メチルピロリドン)、DMA(ジメチルアセトアミド)又はDMF(N,N-ジメチルホルムアミド)から選択される1以上の溶媒であり得る。
 本開示において、アミド系溶媒が、N-メチルピロリドンであり得る。
 本開示において、アミド系溶媒が、ジメチルアセトアミドであり得る。
 本開示において、アミド系溶媒が、N,N-ジメチルホルムアミドであり得る。
 本開示において、上記化合物または溶媒和物を含む医薬原料が提供され得る。
 本開示の1つの実施形態において、式IIの化合物の固体塩を製造する方法であって、式IIの化合物を含み、式Iの化合物を含むと推測される試料に、光学分割剤の存在下で、アミド系溶媒を添加することを含む方法が提供される:
Figure JPOXMLDOC01-appb-C000027

式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス)
Figure JPOXMLDOC01-appb-C000028

式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)。本開示の方法により、トロロックスの光学分割が安定して行うことができる。本方法は、スケールアップがより簡単であり、撹拌がより簡単であり、容易に濾過できる固体を提供し、所望の生成物のより良い分割および/または純度を提供する。
 式IIの化合物の固体塩は、式IIの化合物と光学分割剤との塩であり得る。式IIの化合物の固体塩は、式IIの化合物と光学分割剤との塩と、アミド系溶媒との溶媒和物であり得る。
 本開示において、前記光学分割剤が、RトロロックスおよびSトロロックスと塩を形成し得る部分と不斉炭素とを少なくとも含み得る。トロロックスは、カルボン酸部分を含むため、光学分割剤は、カルボン酸と塩を形成する塩基部分を含み得る。塩基部分は、アミンであり得る。例えば、光学分割剤がS-フェニルエチルアミンである場合、SトロロックスとS-フェニルエチルアミンとは、上記R体と鏡像関係にある塩を形成し得る。
 本開示の方法において、光学分割剤を前記試料に添加することを含み得る。
 前記アミド系溶媒の添加は、前記試料に前記光学分割剤と前記アミド系溶媒との混合物を添加することによって達成されてもよい。アミド系溶媒を添加するとき、既に試料中に光学分割剤および/またはアミド系溶媒が存在していてもよい(それゆえ、新たなアミド系溶媒の添加はあってもなくてもよい)。光学分割剤の添加とアミド系溶媒の添加を行う場合、同時であっても別々であってもよい。
 本開示において、前記試料が、光学分割剤との複合体を含む得る。
 本開示において、前記試料が、式Iの化合物及び式IIの化合物の混合物を含み得る。
 本開示において、前記光学分割剤が、フェニルエチルアミン、N-メチルグルカミン、アルギニン、リシン、プソイドエフェドリン、ロイシノール、アミノフェニルプロパノールから選ばれ得る。光学分割剤は、R-フェニルエチルアミン、S-フェニルエチルアミン、N-メチル-D-グルカミン、N-メチル-L-グルカミン、D-アルギニン、L-アルギニン、D-リシン、L-リシン、(1S,2S)-(+)-プソイドエフェドリン、(1R,2R)-(-)-プソイドエフェドリン、(R)-(-)-ロイシノール、(S)-(+)-ロイシノール、(S)-(-)-2-アミノ-3-フェニル-1-プロパノール、(R)-(+)-2-アミノ-3-フェニル-1-プロパノールであり得る。
 本開示において、前記光学分割剤が、フェニルエチルアミンであり得る
 本開示において、前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒であり得る。
 本開示において、前記アミド系溶媒が、N-メチルピロリドンであり得る。
 本開示において、前記アミド系溶媒が、ジメチルアセトアミドであり得る。
 本開示において、前記アミド系溶媒が、N,N-ジメチルホルムアミドであり得る。
 本開示において、前記フェニルエチルアミンが、(R)-フェニルエチルアミンであり得る。
 本開示において、前記固体塩が、S-フェニルエチルアミン塩であり得る。
 本開示において、前記固体塩が、アミド系溶媒和物であり得る。
 本開示において、前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒であり得る。
 本開示において、前記アミド系溶媒が、N-メチルピロリドンであり得る。
 本開示において、前記アミド系溶媒が、ジメチルアセトアミドであり得る。
 本開示において、前記アミド系溶媒が、N,N-ジメチルホルムアミドであり得る。
 本開示において、製造された式IIの化合物の固体塩のエナンチオマー過剰率が少なくとも98%以上であり得る。
 本開示において、製造された式IIの化合物の固体塩のエナンチオマー過剰率が少なくとも99%以上であり得る。
 本開示において、さらに、前記フェニルエチルアミンをトルエンに溶解させるステップを含み得る。
 本開示において、貧溶媒を前記試料に加えるステップを含み得る。貧溶媒を使用することのメリットとしては、ろ過性を向上させることが挙げられる。貧溶媒の添加によって、アミド系溶媒の粘性を下げ、実用性を改善することができるが、本開示はこれに限定されるものではない。貧溶媒を加えることで光学純度も若干向上し得る。
 本開示において、前記貧溶媒がトルエンまたは酢酸エチルであり得る。
 本開示において、さらに前記アミド系溶媒を除去するステップを含み得る。
 本開示の1つの実施形態において、式IIIbに記載の化合物を製造する方法であって、上記方法により製造された式IIの化合物の固体塩を、式IIIbに記載の化合物に変換することを含む方法が提供される:
Figure JPOXMLDOC01-appb-C000029

式IIIb:(S)-2-ヒドロキシ-2-メチル-4-(2,4,5-トリメチル-3,6-ジオキソシクロヘキサ-1,4-ジエニル)ブタンアミド。
 本開示の1つの実施形態において、式IVbに記載の化合物:
Figure JPOXMLDOC01-appb-C000030

式IVb
またはその溶媒和物が提供される。
 本開示において、アミド系溶媒和物であり得る。
 本開示において、アミド系溶媒が、NMP(N-メチルピロリドン)、DMA(ジメチルアセトアミド)又はDMF(N,N-ジメチルホルムアミド)から選択される1以上の溶媒であり得る。
 本開示において、アミド系溶媒が、N-メチルピロリドンであり得る。
 本開示において、アミド系溶媒が、ジメチルアセトアミドであり得る。
 本開示において、アミド系溶媒が、N,N-ジメチルホルムアミドであり得る。
 本開示において、上記化合物または溶媒和物を含む医薬原料が提供され得る。
 本開示の1つの実施形態において、アミド系溶媒を含む、化合物を光学分割するための組成物が提供される。
 本開示において、前記化合物が、式Iの化合物及び式IIの化合物の混合物:
Figure JPOXMLDOC01-appb-C000031

式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス)
Figure JPOXMLDOC01-appb-C000032

式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)
であり得る。
 本開示において、前記組成物が、他の光学分割剤とともに使用され得る。
 本開示において、前記他の光学分割剤は、それ自体が光学活性を有し得る。
 本開示において、前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒であり得る。
 本開示において、前記アミド系溶媒が、N-メチルピロリドンであり得る。
 本開示において、前記アミド系溶媒が、ジメチルアセトアミドであり得る。
 本開示において、前記アミド系溶媒が、N,N-ジメチルホルムアミドであり得る。
 本開示の1つの実施形態において、化合物を光学分割するための方法であって、該化合物にアミド系溶媒を添加することを含む、方法が提供される。
 本開示の1つの実施形態において、化合物を光学分割するためのアミド系溶媒の使用が提供される。
 本開示の1つの実施形態において、RS-Trolox・R-PEA(ラセミ体)の粉末X線回折(XRPD)は、8.54°、12.55°、13.45°、15.41°、17.11°、18.87°、21.00°、22.19°、23.83°に2θのピークを示すが、これに限定されず、表6に記載されるGross Intensityが大きいものから選択される適宜の数(1個、2個、3個、4個、5個、6個、7個、8個、9個、10個またはそれ以上の任意の整数値)のピークを有していてもよい。なお、本開示において、粉末X線回折(XRPD)の帰属に関して、2θは、示された値に対して±0.2°の範囲の誤差を有し得る。
 本開示の1つの実施形態において、R-Trolox・R-PEAの粉末X線回折(XRPD)は、6.75°、7.19°、9.86°、13.49°、14.37°、14.67°、15.29°、21.51°、22.71°、23.31°、27.10°、28.03°に2θのピークを示すが、これに限定されず、表6に記載されるGross Intensityが大きいものから選択される適宜の数(1個、2個、3個、4個、5個、6個、7個、8個、9個、10個またはそれ以上の任意の整数値)のピークを有していてもよい。
 本開示の1つの実施形態において、R-Trolox・R-PEA・NMP(溶媒和物)の粉末X線回折(XRPD)における特徴的な2θとしては、5.30°、7.69°、8.94°、10.55°、12.78°、14.41°、15.04°、15.35°、15.83°、17.86°、19.56°、22.34°、25.43°、26.48°、27.47°に2θのピークを示すが、これに限定されず、表6に記載されるGross Intensityが大きいものから選択される適宜の数(1個、2個、3個、4個、5個、6個、7個、8個、9個、10個またはそれ以上の任意の整数値)のピークを有していてもよい。
 結晶は、晶析条件に依存してさまざまな構造、形状、大きさ、凝集状態などを示す。結晶中に溶媒が取り込まれた溶媒和物は、厳密な意味での結晶多形と区別するため疑似結晶多形と称されることもある。この場合、結晶の物理化学的性質は、溶媒の結晶格子形成への寄与や結晶化される分子との相互作用に大きく支配され得る。結晶化条件にかかわる溶媒の特性、過飽和度、温度などのさまざまな因子が、結晶の特性を決定し得る。本開示は、光学分割剤および溶媒を適切に選択することにより、トロロックスを高い光学純度で安定的にキラル分割することが可能である。
 トロロックスの光学分割において、非アミド系溶媒中、フェネチルアミンを光学分割剤として用いると、光学分割ができなくなることが見られたが、アミド系溶媒を用いることにより、トロロックスの光学分割が安定して行えるようになった。
 本開示の方法は、(R)-および(S)-トロロックスエナンチオマーを分離するために光学分割剤を利用し、この分割剤は、(R)-トロロックスおよび(S)-トロロックスのうちの一方と固体塩を形成し、特定の反応条件下で他方と固体塩を実質的に形成しない。一部の実施形態では、分割剤がトロロックスエナンチオマーと固体塩を形成する場合、そのトロロックスエナンチオマーの少なくとも約50%は、特定の反応条件下でこの分割剤と固体塩を形成する。様々な実施形態では、分割剤がトロロックスエナンチオマーと固体塩を形成する場合、そのトロロックスエナンチオマーの少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、少なくとも約96%、少なくとも約97%、少なくとも約98%、または少なくとも約99%が、特定の反応条件下で分割剤と固体塩を形成する。「固体塩を実質的に形成しない」とは、(非固体塩形成性)トロロックスエナンチオマーの約10%未満が特定の反応条件下で分割剤と固体塩を形成することを示す。様々な実施形態では、「固体塩を実質的に形成しない」とは、(非固体塩形成性)トロロックスエナンチオマーの約9%未満、約8%未満、約7%未満、約6%未満、約5%未満、約4%未満、約3%未満、約2%未満、約1%未満、約0.5%未満、または約0.1%未満が特定の反応条件下で分割剤と固体塩を形成することを示す。固体塩は、アミド系溶媒との溶媒和物であり得る。
 「収率」は、出発物質の量に対して得られるトロロックスエナンチオマーの%を示す。例えば、(R)/(S)-トロロックスの50/50ラセミ混合物100gが分割され、50gの(S)-トロロックスが回収された場合、収率は50%である。30gの(S)-トロロックスが回収された場合、収率は30%である。トロロックス塩の回収に関して、収率は、塩対イオンではなく、トロロックスのみが存在するものとして計算される。例えば、(R)/(S)-トロロックスの50/50ラセミ混合物100gが分割され、40gの(S)-トロロックス塩が回収され、その塩内に含有されている(S)-トロロックスの理論的重量が30gである場合、収率は30%である。(R)-トロロックスと(S)-トロロックスの両方が分割されてそれぞれ50gずつ回収された場合、収率は100%である。
 本明細書に記載されている化合物は中性(非塩)化合物として生じ、使用することができる一方で、本記載は本明細書に記載されている化合物のすべての塩、ならびに化合物のこのような塩を使用する方法を包含することを意図する。一実施形態では、化合物の塩は薬学的に許容される塩を含む。薬学的に許容される塩は、ヒトおよび/または動物に薬物または医薬品として投与することができ、投与の際に、遊離化合物(中性化合物または非塩化合物)の生物学的活性の少なくともいくつかを保持する塩である。塩基性化合物の所望の塩は、化合物を酸で処理することにより、当業者に公知の方法で調製することができる。無機酸の例として、これらに限定されないが、塩酸、臭化水素酸、硫酸、硝酸、およびリン酸が挙げられる。有機酸の例として、これらに限定されないが、ギ酸、酢酸、プロピオン酸、グリコール酸、ピルビン酸、シュウ酸、マレイン酸、マロン酸、コハク酸、フマル酸、酒石酸、クエン酸、安息香酸、ケイヒ酸、マンデル酸、スルホン酸、およびサリチル酸が挙げられる。アミノ酸との塩基性化合物の塩、例えば、アスパラギン酸塩およびグルタメート塩などもまた調製することができる。酸性化合物の所望の塩は、化合物を塩基で処理することによって、当業者に公知の方法で調製することができる。酸化合物の無機塩の例として、これらに限定されないが、アルカリ金属およびアルカリ土類塩、例えば、ナトリウム塩、カリウム塩、マグネシウム塩、およびカルシウム塩など;アンモニウム塩;ならびにアルミニウム塩が挙げられる。酸化合物の有機塩の例として、これらに限定されないが、プロカイン、ジベンジルアミン、N-エチルピペリジン、N,N-ジベンジルエチレンジアミン、およびトリエチルアミンの塩が挙げられる。酸性化合物のアミノ酸との塩、例えば、リシン塩などもまた調製することができる。特に薬学的調製物に対して有用な追加の塩は、Berge S.M.ら、「Pharmaceutical salts」、1. Pharm. Sci.、1977年1月;66巻(1号):1~19頁に記載されている。
 用途
 本開示の方法により製造される化合物は、医薬原料として有用である。光学活性な医薬を作製する中間体として使用され得る。
 合成反応パラメーター
 本開示の化合物および組成物の合成に利用される溶媒として、例えば、水、アセトニトリル(「ACN」)、ジエチルエーテル、2-メチル-テトラヒドロフラン(「2-MeTHF」)、酢酸エチル(「EtOAc」)、エタノール(「EtOH」)、イソプロピルアルコール(「IPA」)、酢酸イソプロピル(「IPAc」)、メタノール(MeOH)など、ならびにこれらの混合物が挙げられる。
 「q.s.(適量)」という用語は、述べられている機能を達成するのに、例えば、溶液を所望の容量にする(すなわち、100%)のに十分な量を加えることを意味する。
 本明細書の化合物および組成物を合成するのに有用な技術は、本明細書に記載されている教示を考慮して、当業者にとって容易に明らかであり、利用しやすいものである。以下の考察は、本明細書の化合物および組成物の構築における使用に利用可能な多様な方法のうちのある特定のものを例示するために提供されている。しかし、この考察は、本明細書の化合物および組成物を調製するのに有用な反応または反応の順序の範囲を定義することを意図するものではない。
 本開示の化合物および組成物を生成するための他の方法は、本明細書の教示を考慮して当業者に明らかである。
 明細書の記載を簡略化するために実施例及び実施例中の表において以下に示すような略号を用いることもある。
Trolox:トロロックス、6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸
R-Trolox:R-トロロックス、R-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸
S-Trolox:S-トロロックス、S-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸
RS-Trolox:RS-トロロックス、RS-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(ラセミ体)
PEA:1-フェニルエチルアミン
R-PEA:R-1-フェニルエチルアミン
S-PEA:S-1-フェニルエチルアミン
EtOAc:酢酸エチル
iPrOAc:酢酸イソプロピル
NMP:N-メチルピロリドン
DMA:ジメチルアセトアミド
DMF:N,N-ジメチルホルムアミド
DMP:N,N-ジメチルプロピオンアミド
MTBE:メチル-ターシャリーブチルエーテル
DME:1,2-ジメトキシエタン、
2-MeTHF:2-メチルテトラヒドロフラン、
MEK:メチルエチルケトン
DMSО:ジメチルスルホキシド
CDCl:重水素化クロロホルム
MeОH:メタノール
MeCN:アセトニトリル
IPA:2-プロパノール
CDI:カルボニルジイミダゾール
NMRに用いられる記号としては、δは化学シフト値、sは一重線、dは二重線、tは三重線、qは四重線、mは多重線、及びJはスピン結合定数を意味する。
 実施例において使用されるS-Troloxは、Sigma-Aldrich社から購入した。実施例において使用されるRS-Troloxは、D-STONE社から購入した。種晶を使用して本開示の化合物を製造する方法は、初めてその化合物を作製する場合には、種晶を使用しないで少量生成した生成物を次回の種晶として利用することにより、行われ得る。
(光学純度の測定方法)
 光学純度の測定は、高速液体クロマトグラフィー(HPLC)により、各ピーク面積を比較することで算出している。測定条件は、以下の通りであり、保持時間をRt(分)で示す。
光学純度
カラム:Chiralpak AD-3 3μm (250×4.6mm)
移動相:ヘキサン/2-プロパノール/トリフルオロ酢酸:900/100/1
流速:1.0mL/min
カラム温度:35℃
波長:205nm
 上記測定条件にて測定した、各化合物のRtを、下表に示す。
Figure JPOXMLDOC01-appb-T000033
 (実施例1)
 溶媒検討(アミド系以外)
 室温にてR-Trolox・R-PEA(1.0g)にS-Trolox(0.67g)、R-PEA(0.11g)および溶媒を加えてリスラリーする。30℃で3時間保温した後に、5℃まで冷却し終夜撹拌した。5℃終夜撹拌後、結晶をろ別し結晶の光学純度を測定した。
Figure JPOXMLDOC01-appb-T000034
 非アミド系溶媒である2-MeTHFについては光学分割ができていることが示されているが、その後、これらの溶媒についても光学分割ができなくなった。2-MeTHFおよびクロロベンゼンでは、高い光学純度であるものの、原料であるR-Trolox・R-PEA(1.0g)は、半分程度(それぞれ、0.55gおよび0.53g)に減少している。
 (実施例2)
 アミド系溶媒(NMP或いはDMA)の検討
 室温にて、Trolox(10.0g)に対し、NMP(70.0g)或いはDMA(70.0g)、R-PEAを加えて50℃に昇温し、ごみ取りろ過にNMP(20.0g)で洗浄した。この溶液を25℃に冷却した後、R-Trolox・R-PEA(0.01g)種晶を接種して3時間保温した。10℃まで冷却して終夜保温した後、析出物をろ取した。該析出物をNMP或いはDMA(15.0g)で洗浄、IPAc(15.0g)で2回洗浄した後、乾燥させて、R-Trolox・R-PEAのアミド溶媒和物として得た。
Figure JPOXMLDOC01-appb-T000035
 (実施例3)
 RS-Trolox・R-PEA(ラセミ体)からR-Trolox・R-PEA・NMP(溶媒和物)を得る方法(NMP/DMA混合溶媒)
 室温にて、NMP(10.0g)、DMA(10.0g)、RS-Trolox(2.00g)を加えて50℃に昇温した後、25℃に冷却し、R-Trolox・R-PEA(0.01g)種晶を接種して1時間保温した。10℃まで冷却して終夜保温した後、析出物をろ取した。該析出物をNMP/DMA混合溶媒(1.5g/1.5g)で洗浄、IPAc(3.0g)で2回洗浄した後、乾燥させて、R-Trolox・R-PEAのNMP溶媒和物として得た(収量:0.76g、収率30.1%、光学純度:98.3%ee)。
 (実施例4)
 RS-Trolox・R-PEA(ラセミ体)からR-Trolox・R-PEA・NMP(溶媒和物)を得る方法(NMP溶媒)
 RS-Trolox・R-PEA(100mg)をNMP(1mL)に溶解させ、3時間撹拌し、析出してきた結晶を濾別した(光学純度:98.7%ee)。
 (実施例5)
 RS-Trolox・R-PEA、R-Trolox・R-PEA、S-Trolox・R-PEAの酢酸エチル溶媒に対する溶解度
 各結晶に酢酸エチルを加えリスラリーした。各温度で各反応液の上澄み溶液の含量分析から、溶解度を算出した。
Figure JPOXMLDOC01-appb-T000036
 (実施例6)
 R-Trolox・R-PEA、S-Trolox・R-PEA、S-TroloxのNMP及びDMAに対する溶解度
 各結晶にアミド溶媒(NMP、DMA)を加えリスラリーした。各温度で各反応液の上澄み溶液の含量分析から、溶解度を算出した。
Figure JPOXMLDOC01-appb-T000037
 (実施例7)
 光学純度を改善するためのNMP溶媒を用いる2回晶析(第一工程:光学分割、第二工程
:再晶析)
 室温にて、Trolox(70.0g)に対し、NMP(490.4g)、R-PEA(28.90g)を加えて50℃に昇温し、ごみ取りろ過にNMP(140.59g)で洗浄した。この溶液を25℃に冷却した後、R-Trolox・R-PEA(0.693g)種晶を接種して3時間保温した。10℃まで冷却して終夜保温した後、析出物をろ取した。該析出物をNMP(105.0g)で洗浄、IPAc(105.0g)で2回洗浄した後、乾燥させて、R-Trolox・R-PEAのアミド溶媒和物として得た(収量:43.57g、収率33.1%、光学純度:97.2%ee)。
 上記で得た結晶(10g)に対し、NMP(47.87g)を加えて60℃に昇温し、40℃に冷却してから、R-Trolox・R-PEA(0.1g)種晶を接種して2時間保温した。10℃まで冷却して1.5時間保温した後、析出物をろ取した。該析出物をNMP(16g)で洗浄、酢酸イソプロピル(8g)で2回洗浄した後、乾燥させて、R-Trolox・R-PEAのアミド溶媒和物として得た(収量:7.61g、収率76.1%、光学純度:99.8%ee)
 (実施例8)
 光学純度及びろ過性を改善するためのNMP/トルエン混合溶媒を用いる2回晶析(第一工程:光学分割、第二工程:再晶析)
 室温にて、Trolox(800g)に対し、NMP(1440g)、トルエン(5760g)を加えて50℃に昇温し、ごみ取りろ過にNMP/トルエン混合溶媒(160g/640g)で洗浄した。50℃にて、R-PEA(232g)を加え、45℃に冷却した後、R-Trolox・R-PEA(0.8g)種晶を接種して2時間保温した。R-PEA(97g)を1時間かけて滴下した後、30分保温した。0℃まで冷却して終夜保温した後、析出物をろ取した。該析出物をNMP/トルエン混合溶媒(320g/1280g)で2回洗浄、トルエン(1600g)で洗浄した後、乾燥させて、R-Trolox・R-PEAのアミド溶媒和物として得た(収量:624g、収率41.5%、光学純度:96.8%ee)。
 上記で得た結晶(550g)に対し、NMP(1650g)、トルエン(4950g)を加えて70℃に昇温して30分保温した後、60℃に冷却してR-Trolox・R-PEA(0.6g)種晶を接種して30分保温した。0℃まで冷却して終夜保温した後、析出物をろ取した。該析出物をNMP/トルエン混合溶媒(206g/619g)で洗浄、トルエン(825g)で洗浄した後、乾燥させて、R-Trolox・R-PEAのアミド溶媒和物として得た(収量:514g、収率93.4%、光学純度:>99.9%ee)。
 (実施例9)
 光学純度及びろ過性を改善するためのNMP/酢酸エチル混合溶媒を用いる2回晶析(第一工程:光学分割、第二工程:再晶析)
 室温にて、Trolox(6.00kg)に対し、NMP(10.80kg)、酢酸エチル(43.20kg)を加えて50℃に昇温し、ごみ取りろ過後、NMP/酢酸エチル混合溶媒(1.20kg/4.80kg)で洗浄した。50℃にて、R-PEA(1.74kg)を加えてから、R-Trolox・R-PEA・NMP(6.04g)を種晶として接種し、2時間保温した。R-PEA(0.73kg)を1時間かけて滴下した後、30分保温した。5℃まで冷却して終夜保温した後、析出物をろ取した。該析出物をNMP/酢酸エチル混合溶媒(2.40kg/9.60kg)で2回洗浄、トルエン(12.00kg)で2回洗浄した後、乾燥させて、R-Trolox・R-PEAのNMP溶媒和物として得た(収量:4.53kg、収率40.2%、光学純度:96.6%ee)。
 上記で得た結晶(3.00kg)に対し、NMP(9.00kg)、酢酸エチル(27.00kg)を加えて68℃に昇温し、60℃に冷却してからR-Trolox・R-PEA・NMP(3.02g)を種晶として接種し、1時間保温した。5℃まで冷却して終夜保温した後、析出物をろ取した。該析出物をNMP/酢酸エチル混合溶媒(1.13kg/3.38kg)で2回洗浄、酢酸エチル(4.50kg)で2回洗浄した後、乾燥させて、R-Trolox・R-PEAのNMP溶媒和物として得た(収量:2.71g、収率90.3%、光学純度:>99.9%ee)。
 (実施例10)
 RS-Trolox・R-PEA(ラセミ体)及びR-Trolox・R-PEA・NMP(溶媒和物)の単結晶X線構造解析
 RS-Trolox・R-PEA(ラセミ体)及びR-Trolox・R-PEA・NMP(溶媒和物)の単結晶X線構造解析を行った。図1および図2に示す。測定装置:リガク社製単結晶X線回折装置(型番:VariMax RAPID RA-Micro7)。測定温度:-170℃。解析プログラム:CrystalStructure crystallographic software package。
 RS-Trolox・R-PEA(ラセミ体)については、具体的には、以下のように測定した。
(データ収集)
 0.200 x 0.110 x 0.090 mmのおよその寸法を有するC22H29NO4の無色プリズム結晶を、ガラス繊維に載せた。すべての測定を、多層膜鏡モノクロメーターMo-Kα放射線を使用するRigaku R-AXIS RAPID回折計で行った。
 結晶と検出器との距離は、127.40mmであった。
 データ収集のセル定数および回転マトリクスは、次元を有する単純三斜晶単位胞に対応した:
Figure JPOXMLDOC01-appb-M000038
 Z=2および式量=371.48について、計算密度は、1.285g/cmである。強度分布の統計分析、ならびに構造の首尾よい解析および精密化に基づくと、空間群は、
 P1(#1)
であると決定された。
 データを、-170℃±1℃の温度で、55.0°の最大2θ値まで収集した。合計192個のオシレーション画像を収集した。データの掃引は、χ=45.0°およびφ=0.0°において、2.00°ステップで130.0°~190°までωスキャンを使用して行った。曝露速度は、80.0[秒/°]であった。第2の掃引は、χ=45.0°およびφ=180.0°において、2.00°ステップで0.0°~162.0°までωスキャンを使用して行った。曝露速度は、80.0[秒/°]であった。別の掃引は、χ=45.0°およびφ=90.0°において、2.00°ステップで0.0°~162.0°までωスキャンを使用して行った。曝露速度は、80.0[秒/°]であった。結晶と検出器との距離は、127.40mmであった。読み取りは、0.100mmピクセルモードで行った。
 (データ削減)
 収集した0反射のうち、0がユニーク(Rint=0.0115)である場合、等しい反射を併合した。
 Mo-Kαについて線吸収係数μは、0.875cm-1である。0.958~0.992の範囲の透過率を生じる経験的吸収補正を適用した。ローレンツおよび偏光効果についてデータを補正した。
 (構造解析および精密化)
 直接法(SHELXT Version 2014/5: Sheldrick, G. M. (2014). Acta Cryst. A70, C1437)によって構造を解析し、フーリエ技術を使用して拡張した。非水素原子を異方的に精密化した。騎乗モデルを使用して水素原子を精密化した。Fについての完全行列最小二乗精密化の最終サイクルは、8184の観察された反射および501の変数パラメーターに基づき、重みづけしていないおよび重みづけした以下の一致因子を用いて収束した(最も大きなパラメーターシフトは、そのesdの0.00倍であった):
Figure JPOXMLDOC01-appb-M000039

 最小二乗関数最小化:(SHELXL Version 2017/1)
 Σw(Fo 2-Fc 2)2     ここで、w = 最小二乗重みづけ。
 適合度は、1.06であった。適合度は、以下のように規定される:
 [Σw(Fo2-Fc2)2/(No-Nv)]1/2
 ここで:No = 観察数
 Nv = 変数の数
 単位重みを使用した。最終差分フーリエマップの最大および最小ピークは、それぞれ0.31および-0.20e/Åに対応した。最終Flackパラメーター(Parsons,
 S. and Flack, H. (2004), Acta Cryst. A60, s61)は、0.11(11)で
あり、存在する絶対構造は正しいことを示す(Flack, H.D. and Bernardinelli (2000), J. Appl. Cryst. 33, 114-1148)。
 中性原子散乱因子は、Crystallography (IT), Vol. C, Table 6.1.1.4のInternational Tableからとった(International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572)。異常分散効果はFcalcに含めた(Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964));Δf’およびΔf’’の値は、CreaghおよびMcAuleyのものであった(Creagh, D. C. & McAuley,
 W.J .; ”International Tables for Crystallography”, Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992))。質量減衰係数の値は、Creagh およびHubbellのものである(Creagh,
 D. C. & Hubbell, J.H..; ”International Tables for Crystallography”,
 Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).)。すべての計算は、SHELXL Version 2017/1(SHELXL Version 2017/1: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122)を使用して行った精密化を除いて、CrystalStructure(CrystalStructure 4.3: Crystal Structure Analysis Package, Rigaku Corporation (2000-2018). Tokyo 196-8666, Japan)結晶学ソフトウェアパッケージを使用して行った。
 結晶データは、以下であった。
Figure JPOXMLDOC01-appb-M000040

 強度測定は以下であった。
Figure JPOXMLDOC01-appb-M000041

 構造解析および精密化は以下である。
Figure JPOXMLDOC01-appb-M000042
 (実施例11)
 RS-Trolox・R-PEA(ラセミ体)、R-Trolox・R-PEA、及びR-Trolox・R-PEA・NMP(溶媒和物)の粉末X線回折(XRPD)
 RS-Trolox・R-PEA(ラセミ体)、R-Trolox・R-PEA、及びR-Trolox・R-PEA・NMP(溶媒和物)の粉末X線回折(XRPD)を行った。図3および表6に結果を示す。粉末X線回折(XRPD)は、Bruker AXS製D
8 ADVANCEを用いて回折角度2θ5度~40度の範囲でCu Kα線、X線管電流40ミリアンペア、電圧40キロボルトステップ0.015度、測定時間48秒/ステップの条件にて室温で測定した。
Figure JPOXMLDOC01-appb-T000043

Figure JPOXMLDOC01-appb-T000044
(実施例12)
 DMP/トルエン混合溶媒を用いる2回晶析(第一工程:光学分割、第二工程:再晶析)
 室温にて、Trolox(25.00g)に対し、DMP(50.0g)、トルエン(200.0g)を加えて50℃に昇温し、R-PEA(7.26g)を加え、45℃に冷却した後、R-Trolox・R-PEA(0.03g)種晶を接種して2時間保温した。R-PEA(3.03g)を20分かけて滴下した後、40分保温した。5℃まで冷却した後、析出物をろ取した。該析出物をDMP/トルエン混合溶媒(10.0g/40.0g)で2回洗浄、トルエン(50g)で2回洗浄した後、乾燥させて、R-Trolox・R-PEAのDMP溶媒和物として得た(収量:19.32g、収率40.9%、光学純度:94.7%ee)。
 上記で得た結晶(18.00g)に対し、DMP(54.0g)、トルエン(162.0g)を加えて80℃に昇温した後、70℃に冷却してR-Trolox・R-PEA(0.02g)を接種して1時間保温した。5℃まで冷却した後、析出物をろ取した。該析出物をDMP/トルエン混合溶媒(6.8g/20.3g)で洗浄、トルエン(27.0g)で2回洗浄した後、乾燥させて、R-Trolox・R-PEAのDMP溶媒和物として得た(収量:16.82g、収率93.4%、光学純度:99.9%ee)
 (実施例13)
 S-Trolox・S-PEA・NMPを得る光学分割
 室温にて、Trolox(25.00g)に対し、NMP(50.00g)、トルエン(200.0g)を加えて50℃に昇温し、S-PEA(7.26g)を加え、45℃に冷却した後、S-Trolox・S-PEA(0.03g)を種晶を接種して2時間保温した。S-PEA(3.03g)を30分かけて滴下した後、2時間保温した。0℃まで冷却して終夜保温した後、析出物をろ取した。該析出物をNMP/トルエン混合溶媒(10.0g/40.0g)で2回洗浄、トルエン(50g)で2回洗浄した後、乾燥させて、S-Trolox・S-PEAのNMP溶媒和物として得た(収量:19.32g、収率41.1%、光学純度:97.0%ee)。
 (実施例14A)
(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸の調製
Figure JPOXMLDOC01-appb-C000045
 R-Tolox・PEA・NMP(10.00kg,21.25mol)に酢酸イソプロピル(110kg)および水(10.99kg)を加えた後、35%塩酸(3.80kg、36.55mol)を滴下し、25±5℃で20分攪拌した。静置、分液後、有機層を水で2回(15.80kg、15.83kg)洗浄し、45℃以下で減圧濃縮した(留出量:92.0kg)。酢酸イソプロピル(8.38kg)を加えて、R-Troloxの酢酸イソプロピル溶液(16.7%、31.9kg)を調整し、次のステップに使用した(収率100%と仮定)。
 (実施例14B)
(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボキサミドの調製
Figure JPOXMLDOC01-appb-C000046
 CDI(保土谷化学)(8.61kg、52.12mol)に酢酸イソプロピル(26.6kg)を加えたスラリーに対し、R-Troloxの酢酸イソプロピル溶液(16.7%、31.8kg、21.25mol(仮定))を20±5℃で1時間かけて滴下し、酢酸イソプロピル(2.94kg)で洗い込み、2時間保温した。温度を15±5℃未満に維持しながら、この酢酸イソプロピル溶液を、15±5℃に予冷した28%アンモニア水(ナカライクス、16.15kg、265.61mol)に1時間かけて滴下し、酢酸イソプロピル(1.33kg)で洗い込んだ。1.5時間攪拌した後、酢酸イソプロピル(43.5kg)および水(21.27kg)を加え、水(10.64kg)および85%リン酸(19.60kg)を混合したリン酸水溶液を、10~60℃で滴下し、水(1.06kg)で洗い込んだ。分液して、標記化合物の酢酸イソプロピル溶液(109.09kg)を得て、次のステップに使用した(収率100%と仮定)。
 (実施例14C)
 (R)-2-ヒドロキシ-2-メチル-4-(2,4,5-トリメチル-3,6-ジオキソシクロヘキサ-1,4-ジエニル)ブタンアミドの調製
Figure JPOXMLDOC01-appb-C000047
 (R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボキサミドの酢酸イソプロピル溶液(109.58kg、21.25mol(仮定))に対し、30℃以下で、33.9%硝酸鉄水溶液(国産化学)(33.64kg、48.66mol)を1時間かけて滴下し、25±5℃で2.5時間保温した後、食塩(3.71kg)を加え、15分攪拌し、静置した。分液後、40±5℃まで昇温し、12.1%クエン酸水溶液(13.52kg)を加えて、洗浄した。更に10%炭酸ナトリウム水溶液(13.24kg)を加えて洗浄した後、水(10.60kg)で洗浄した。分液して得られた有機層を45℃以下で減圧濃縮した(留出量:52.7kg)。80±5℃まで昇温して1時間保温した後、種晶(0.003kg)を加えて1時間保温した。冷却速度10℃/hで0℃まで冷却して11時間保温した後、析出物をろ取し、予冷した酢酸イソプロピルで2回洗浄した(13.24kg×2)。45℃以下の窒素で通気乾燥し、粗結晶を得た(収量:4.47kg、3ステップの収率:79.3%、品質:100.00%、光学純度:>99.9%ee)。
 得られた粗結晶(4.01kg)をイソプロパノール/ヘプタン混合溶媒で再結晶し、標記化合物を得た(3.77kg、再結晶の収率:94.0%、品質:100.00%、光学純度:>99.9%ee)。
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本願は、日本国出願である特願2020-28614(2020年2月21日出願)に対して優先権を主張するものであり、その内容はその全体が本明細書において参考として援用される。本明細書において引用した特許、特許出願および他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本開示は、光学活性な医薬の製造に有用である。

Claims (76)

  1.  式Iの化合物の固体塩を製造する方法であって、式Iの化合物を含み、式IIの化合物を含むと推測される試料に、光学分割剤の存在下でアミド系溶媒を添加することを含む方法:
    Figure JPOXMLDOC01-appb-C000001

    式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス)
    Figure JPOXMLDOC01-appb-C000002

    式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)。
  2.  前記光学分割剤が、RトロロックスおよびSトロロックスと塩を形成し得る部分と不斉炭素とを少なくとも含む、請求項1に記載の方法。
  3.  前記光学分割剤を前記試料に添加することを含む、請求項1または2に記載の方法。
  4.  前記アミド系溶媒の添加は、前記試料に前記光学分割剤と前記アミド系溶媒との混合物を添加することを含む、請求項1~3のいずれか1項に記載の方法。
  5.  前記試料が、光学分割剤との複合体を含む、請求項1~4のいずれか1項に記載の方法。
  6.  前記試料が、式Iの化合物及び式IIの化合物の混合物を含む、請求項1~5のいずれか1項に記載の方法。
  7.  前記光学分割剤が、フェニルエチルアミン、N-メチルグルカミン、アルギニン、リシン、プソイドエフェドリン、ロイシノール、アミノフェニルプロパノールから選ばれる、請求項1~6のいずれか1項に記載の方法。
  8.  前記光学分割剤がフェニルエチルアミンである、請求項1~7のいずれか1項に記載の方法。
  9.  前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド(DEF)、テトラメチル尿素(TMU)又はヘキサメチルリン酸トリアミド(HMPA)から選ばれる一種以上の溶媒である請求項1~8のいずれか一項に記載の方法。
  10.  前記アミド系溶媒が、N-メチルピロリドンである請求項9に記載の方法。
  11.  前記アミド系溶媒が、ジメチルアセトアミドである請求項9に記載の方法。
  12.  前記アミド系溶媒が、N,N-ジメチルホルムアミドである請求項9に記載の方法。
  13.  前記フェニルエチルアミンが、(R)-フェニルエチルアミンである請求項7~12のいずれか一項に記載の方法。
  14.  前記固体塩が、R-フェニルエチルアミン塩である請求項1~13のいずれか一項に記載の方法。
  15.  前記固体塩が、アミド系溶媒和物である請求項1~14のいずれか一項に記載の方法。
  16.  前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒である請求項15に記載の方法。
  17.  前記アミド系溶媒が、N-メチルピロリドンである請求項16に記載の方法。
  18.  前記アミド系溶媒が、ジメチルアセトアミドである請求項16に記載の方法。
  19.  前記アミド系溶媒が、N,N-ジメチルホルムアミドである請求項16に記載の方法。
  20.  製造された式Iの化合物の固体塩のエナンチオマー過剰率が少なくとも98%以上である請求項1~19のいずれか一項に記載の方法。
  21.  製造された式Iの化合物の固体塩のエナンチオマー過剰率が少なくとも99%以上である請求項1~20のいずれか一項に記載の方法。
  22.  さらに、前記フェニルエチルアミンをトルエンに溶解させるステップを含む、請求項1~21のいずれか一項に記載の方法。
  23.  貧溶媒を前記試料に加えるステップを含む、請求項1~22のいずれか一項に記載の方法。
  24.  前記貧溶媒がトルエンまたは酢酸エチルである、請求項23に記載の方法。
  25.  さらに前記アミド系溶媒を除去するステップを含む、請求項1~24のいずれか一項に記載の方法。
  26.  式IIIaに記載の化合物を製造する方法であって、請求項1~25のいずれか一項に記載の方法により製造された式Iの化合物の固体塩を、式IIIaに記載の化合物に変換することを含む方法:
    Figure JPOXMLDOC01-appb-C000003

    式IIIa:(R)-2-ヒドロキシ-2-メチル-4-(2,4,5-トリメチル-3,6-ジオキソシクロヘキサ-1,4-ジエニル)ブタンアミド。
  27.  式IVaに記載の化合物:
    Figure JPOXMLDOC01-appb-C000004

    式IVa
    またはその溶媒和物。
  28.  アミド系溶媒和物である請求項27に記載の化合物。
  29.  アミド系溶媒が、NMP(N-メチルピロリドン)、DMA(ジメチルアセトアミド)又はDMF(N,N-ジメチルホルムアミド)から選択される1以上の溶媒である請求項27~28のいずれか一項に記載の溶媒和物。
  30.  アミド系溶媒が、N-メチルピロリドンである請求項29に記載の溶媒和物。
  31.  アミド系溶媒が、ジメチルアセトアミドである請求項29に記載の溶媒和物。
  32.  アミド系溶媒が、N,N-ジメチルホルムアミドである請求項29に記載の溶媒和物。
  33.  請求項27~32のいずれか1項に記載の化合物または溶媒和物を含む医薬原料。
  34.  式IIの化合物の固体塩を製造する方法であって、式IIの化合物を含み、式Iの化合物を含むと推測される試料に、光学分割剤の存在下でアミド系溶媒を添加することを含む方法:
    Figure JPOXMLDOC01-appb-C000005

    式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス)
    Figure JPOXMLDOC01-appb-C000006

    式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)。
  35.  前記光学分割剤が、RトロロックスおよびSトロロックスと塩を形成し得る部分と不斉炭素とを少なくとも含む、請求項34に記載の方法。
  36.  前記光学分割剤を前記試料添加することを含む、請求項34または35に記載の方法。
  37.  前記アミド系溶媒の添加は、前記試料に前記光学分割剤と前記アミド系溶媒との混合物を添加することを含む、請求項34~36のいずれか1項に記載の方法。
  38.  前記試料が、光学分割剤との複合体を含む、請求項34~37のいずれか1項に記載の方法。
  39.  前記試料が、式Iの化合物及び式IIの化合物の混合物を含む、請求項34~38のいずれか1項に記載の方法。
  40.  前記光学分割剤が、フェニルエチルアミン、N-メチルグルカミン、アルギニン、リシン、プソイドエフェドリン、ロイシノール、アミノフェニルプロパノールから選ばれる、請求項34~39のいずれか1項に記載の方法。
  41.  前記光学分割剤が、フェニルエチルアミンである、請求項34~40のいずれか1項に記載の方法。
  42.  前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒である請求項34~41のいずれか1項に記載の方法。
  43.  前記アミド系溶媒が、N-メチルピロリドンである請求項42に記載の方法。
  44.  前記アミド系溶媒が、ジメチルアセトアミドである請求項42に記載の方法。
  45.  前記アミド系溶媒が、N,N-ジメチルホルムアミドである請求項42に記載の方法。
  46.  前記フェニルエチルアミンが、(R)-フェニルエチルアミンである請求項40~45のいずれか一項に記載の方法。
  47.  前記固体塩が、S-フェニルエチルアミン塩である請求項34~46のいずれか一項に記載の方法。
  48.  前記固体塩が、アミド系溶媒和物である請求項34~47のいずれか一項に記載の方法。
  49.  前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒である請求項34~48のいずれか1項に記載の方法。
  50.  前記アミド系溶媒が、N-メチルピロリドンである請求項49に記載の方法。
  51.  前記アミド系溶媒が、ジメチルアセトアミドである請求項49に記載の方法。
  52.  前記アミド系溶媒が、N,N-ジメチルホルムアミドである請求項49に記載の方法。
  53.  製造された式IIの化合物の固体塩のエナンチオマー過剰率が少なくとも98%以上である請求項34~52のいずれか一項に記載の方法。
  54.  製造された式IIの化合物の固体塩のエナンチオマー過剰率が少なくとも99%以上である請求項34~53のいずれか一項に記載の方法。
  55.  さらに、前記フェニルエチルアミンをトルエンに溶解させるステップを含む、請求項34~54のいずれか一項に記載の方法。
  56.  貧溶媒を前記試料に加えるステップを含む、請求項34~55のいずれか一項に記載の方法。
  57.  前記貧溶媒がトルエンまたは酢酸エチルである、請求項56に記載の方法。
  58.  さらに前記アミド系溶媒を除去するステップを含む、請求項34~57のいずれか一項に記載の方法。
  59.  式IIIbに記載の化合物を製造する方法であって、請求項34~58のいずれか一項に記載の方法により製造された式IIの化合物の固体塩を、式IIIbに記載の化合物に変換することを含む方法:
    Figure JPOXMLDOC01-appb-C000007

    式IIIb:(S)-2-ヒドロキシ-2-メチル-4-(2,4,5-トリメチル-3,6-ジオキソシクロヘキサ-1,4-ジエニル)ブタンアミド。
  60.  式IVbに記載の化合物:
    Figure JPOXMLDOC01-appb-C000008

    式IVb
    またはその溶媒和物。
  61.  アミド系溶媒和物である請求項60に記載の化合物。
  62.  アミド系溶媒が、NMP(N-メチルピロリドン)、DMA(ジメチルアセトアミド)又はDMF(N,N-ジメチルホルムアミド)から選択される1以上の溶媒である請求項60~61のいずれか一項に記載の溶媒和物。
  63.  アミド系溶媒が、N-メチルピロリドンである請求項62に記載の溶媒和物。
  64.  アミド系溶媒が、ジメチルアセトアミドである請求項62に記載の溶媒和物。
  65.  アミド系溶媒が、N,N-ジメチルホルムアミドである請求項62に記載の溶媒和物。
  66.  請求項60~65のいずれか1項に記載の化合物または溶媒和物を含む医薬原料。
  67.  アミド系溶媒を含む、化合物を光学分割するための組成物。
  68.  前記化合物が、式Iの化合物及び式IIの化合物の混合物:
    Figure JPOXMLDOC01-appb-C000009

    式I:(R)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Rトロロックス)
    Figure JPOXMLDOC01-appb-C000010

    式II:(S)-6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-カルボン酸(以下、Sトロロックス)
    である、請求項67に記載の組成物。
  69.  前記組成物が、他の光学分割剤とともに使用される、請求項67または68に記載の組成物。
  70.  前記他の光学分割剤は、それ自体が光学活性を有する、請求項69に記載の組成物。
  71.  前記アミド系溶媒が、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMA)又はN,N-ジメチルホルムアミド(DMF)から選ばれる一種以上の溶媒である請求項67~70のいずれか一項に記載の組成物。
  72.  前記アミド系溶媒が、N-メチルピロリドンである請求項71に記載の組成物。
  73.  前記アミド系溶媒が、ジメチルアセトアミドである請求項71に記載の組成物。
  74.  前記アミド系溶媒が、N,N-ジメチルホルムアミドである請求項71に記載の組成物。
  75.  化合物を光学分割するための方法であって、該化合物にアミド系溶媒を添加することを含む、方法。
  76.  化合物を光学分割するためのアミド系溶媒の使用。
PCT/JP2021/006465 2020-02-21 2021-02-19 光学分割されたトロロックス中間体およびその製造方法 WO2021167095A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202180015723.7A CN115066420A (zh) 2020-02-21 2021-02-19 光学拆分的Trolox中间体和其制造方法
US17/801,237 US20230029044A1 (en) 2020-02-21 2021-02-19 Optically resolved trolox intermediate and method for producing same
IL295785A IL295785A (en) 2020-02-21 2021-02-19 An optically degradable trolox intermediate and a method for its production
EP21757166.0A EP4108658A4 (en) 2020-02-21 2021-02-19 OPTICALLY RESOLVED TROLOX INTERMEDIATE AND PRODUCTION METHOD THEREFOR
BR112022016508A BR112022016508A2 (pt) 2020-02-21 2021-02-19 Intermediário de trolox opticamente resolvido e método para produção do mesmo
KR1020227032224A KR20220143897A (ko) 2020-02-21 2021-02-19 광학 분할된 트롤록스 중간체 및 그 제조 방법
JP2022501092A JPWO2021167095A1 (ja) 2020-02-21 2021-02-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-028614 2020-02-21
JP2020028614 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021167095A1 true WO2021167095A1 (ja) 2021-08-26

Family

ID=77390820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006465 WO2021167095A1 (ja) 2020-02-21 2021-02-19 光学分割されたトロロックス中間体およびその製造方法

Country Status (8)

Country Link
US (1) US20230029044A1 (ja)
EP (1) EP4108658A4 (ja)
JP (1) JPWO2021167095A1 (ja)
KR (1) KR20220143897A (ja)
CN (1) CN115066420A (ja)
BR (1) BR112022016508A2 (ja)
IL (1) IL295785A (ja)
WO (1) WO2021167095A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071372A1 (ja) * 2022-09-30 2024-04-04 住友ファーマ株式会社 Troloxアミドの酸化的開裂法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988877A (ja) * 1972-12-22 1974-08-24
US3947473A (en) 1972-12-22 1976-03-30 Hoffman-La Roche Inc. Antioxidant chroman compounds
US4003919A (en) 1973-11-19 1977-01-18 Hoffmann-La Roche Inc. Antioxidant chroman compounds
US4026907A (en) 1973-11-19 1977-05-31 Hoffmann-La Roche Inc. Antioxidant chroman compounds
JP2002167381A (ja) * 2000-08-03 2002-06-11 Kuraray Co Ltd (±)−6−ヒドロキシ−2,5,7,8−テトラメチルクロマン−2−カルボン酸の光学分割法
WO2009061744A2 (en) 2007-11-06 2009-05-14 Edison Pharmaceuticals, Inc. 4- (p-quinonyl)-2-hydroxybutanamide derivatives for treatment of mitochondrial diseases
US20110251407A1 (en) 2008-10-29 2011-10-13 Mitsubishi Gas Chemical Company, Inc. Process for production of optically active organic carboxylic acid
JP2012025705A (ja) * 2010-07-26 2012-02-09 Tokuyama Corp (s)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジンのジアステレオマー塩の製造方法
JP2012508219A (ja) * 2008-11-07 2012-04-05 シプラ・リミテッド ゾピクロンを分割するための方法
WO2014168103A1 (ja) * 2013-04-10 2014-10-16 第一三共株式会社 ピロール誘導体の結晶及びその製造方法
JP2020028614A (ja) 2018-08-24 2020-02-27 株式会社三共 遊技機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012221A1 (fr) * 2000-08-03 2002-02-14 Kuraray Co., Ltd. Procede de resolution optique de l'acide (±)-6-hydroxy-2,5,7,8,-tetramethyle de coumarone-2-carboxylique
WO2013011999A1 (ja) * 2011-07-20 2013-01-24 株式会社カネカ 光学活性2-メチルプロリン誘導体の製造法
KR102626895B1 (ko) * 2014-12-16 2024-01-18 피티씨 테라퓨틱스, 인크. (r)-2-하이드록시-2-메틸-4-(2,4,5-트리메틸-3,6-디옥소사이클로헥사-1,4-디에닐)부탄아미드의 다형성 및 무정형 형태
US20180002247A1 (en) * 2014-12-16 2018-01-04 Bioelectron Technology Corporation Methods for chiral resolution of trolox

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988877A (ja) * 1972-12-22 1974-08-24
US3947473A (en) 1972-12-22 1976-03-30 Hoffman-La Roche Inc. Antioxidant chroman compounds
US4003919A (en) 1973-11-19 1977-01-18 Hoffmann-La Roche Inc. Antioxidant chroman compounds
US4026907A (en) 1973-11-19 1977-05-31 Hoffmann-La Roche Inc. Antioxidant chroman compounds
JP2002167381A (ja) * 2000-08-03 2002-06-11 Kuraray Co Ltd (±)−6−ヒドロキシ−2,5,7,8−テトラメチルクロマン−2−カルボン酸の光学分割法
WO2009061744A2 (en) 2007-11-06 2009-05-14 Edison Pharmaceuticals, Inc. 4- (p-quinonyl)-2-hydroxybutanamide derivatives for treatment of mitochondrial diseases
JP2011503005A (ja) * 2007-11-06 2011-01-27 エジソン ファーマシューティカルズ, インコーポレイテッド ミトコンドリア病を治療するための4−(p−キノリル)−2−ヒドロキシブタンアミド誘導体
US20110251407A1 (en) 2008-10-29 2011-10-13 Mitsubishi Gas Chemical Company, Inc. Process for production of optically active organic carboxylic acid
JP2012508219A (ja) * 2008-11-07 2012-04-05 シプラ・リミテッド ゾピクロンを分割するための方法
JP2012025705A (ja) * 2010-07-26 2012-02-09 Tokuyama Corp (s)−4−〔(4−クロロフェニル)(2−ピリジル)メトキシ〕ピペリジンのジアステレオマー塩の製造方法
WO2014168103A1 (ja) * 2013-04-10 2014-10-16 第一三共株式会社 ピロール誘導体の結晶及びその製造方法
JP2020028614A (ja) 2018-08-24 2020-02-27 株式会社三共 遊技機

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BERGE S.M. ET AL.: "Pharmaceutical salts", PHARM. SCI., vol. 66, no. 1, January 1977 (1977-01-01), pages 1 - 19, XP002675560, DOI: 10.1002/jps.2600660104
CREAGH, D. C.HUBBELL, J.H.: "International Tables for Crystallography", vol. C, 1992, KLUWER ACADEMIC PUBLISHERS, pages: 200 - 206
FLACK, H.D.BERNARDINELLI, J. APPL. CRYST., vol. 33, 2000, pages 114 - 1148
HIROYUKI NOHIRA: "Separation of optical isomers (quarterly chemistry review no. 6)", KIKAN-KAGAKU-SŌSETSU = QUARTERLY CHEMICAL REVIEW, no. 6, 1 January 1989 (1989-01-01), JP, pages 45 - 54, XP009530687, ISSN: 1342-5722 *
IBERS, J. A.HAMILTON, W. C., ACTA CRYSTALLOGR., vol. 17, 1964, pages 781
INTERNATIONAL TABLE IN CRYSTALLOGRAPHY, vol. C
See also references of EP4108658A4
SHELDRICK, G. M., ACTA CRYST, vol. A64, 2008, pages 112 - 122
SHELDRICK, G. M., ACTA CRYST., vol. A70, 2014, pages C1437

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071372A1 (ja) * 2022-09-30 2024-04-04 住友ファーマ株式会社 Troloxアミドの酸化的開裂法

Also Published As

Publication number Publication date
IL295785A (en) 2022-10-01
EP4108658A1 (en) 2022-12-28
US20230029044A1 (en) 2023-01-26
CN115066420A (zh) 2022-09-16
EP4108658A4 (en) 2024-05-22
BR112022016508A2 (pt) 2022-10-11
JPWO2021167095A1 (ja) 2021-08-26
KR20220143897A (ko) 2022-10-25

Similar Documents

Publication Publication Date Title
KR101333620B1 (ko) 모르피난 유도체의 결정 및 그 제조법
JP2019526628A (ja) セニクリビロクメシレートの固体形態及びセニクリビロクメシレートの固体形態を製造するプロセス
US20090076272A1 (en) Polymorphs of eszopiclone malate
WO2021167095A1 (ja) 光学分割されたトロロックス中間体およびその製造方法
JP2014516341A (ja) アゴメラチンの新しい結晶形vii、その調製方法及び使用並びにこれを含有する医薬組成物
WO2012106584A2 (en) Pitavastatin salts
JP4944612B2 (ja) トシル酸スプラタスト結晶の均一性の評価方法並びに均一な結晶及びその製造方法
JP2010132561A (ja) コハク酸シベンゾリンの新規a型結晶及びその製造方法
EP4132909B1 (en) Organic acid addition salts of s-pindolol
JP7068411B2 (ja) ヘキサデシルトレプロスチニル結晶及びその製造方法
Kaviani et al. Chiral resolution methods for racemic pharmaceuticals based on cocrystal formation
CN109689620B (zh) 拆分巴氯芬盐的方法
US9388113B2 (en) Salts of sitagliptin, process from the preparation and pharmaceutical composition therefore
JP7434274B2 (ja) ブロモドメイン阻害剤の合成方法
JP2022521568A (ja) 抗うつ薬sage‐217の結晶型及びその調製方法
JP7051968B2 (ja) オキサゾール化合物結晶
TW201932453A (zh) 法索西坦(fasoracetam)之固體型態
JP7426832B2 (ja) 新規結晶構造を有するイグラチモド及びその製造方法
JP7326295B2 (ja) オキサゾール化合物結晶
JP7125156B2 (ja) ベンズインデンプロスタグランジン中間体の結晶及びその製造方法
TWI723455B (zh) 魯比前列酮(lubiprostone)晶體及其製備方法
US10577340B1 (en) Beraprost-314d crystals and methods for preparation thereof
WO2023027162A1 (ja) 2-(4-エチルフェノキシ)-4'-メトキシ-3,3'-ビピリジンの結晶及びその製造方法
JP4402361B2 (ja) 塩酸エピナスチンの結晶多形
Harfouche Non-Classical Studies for Cyclic Preferential Crystallization of a Stable Racemic Compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501092

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016508

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227032224

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757166

Country of ref document: EP

Effective date: 20220921

ENP Entry into the national phase

Ref document number: 112022016508

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220818