WO2021167031A1 - 水又は飲料の風味を改善する氷を製造するためのミネラル含有組成物 - Google Patents

水又は飲料の風味を改善する氷を製造するためのミネラル含有組成物 Download PDF

Info

Publication number
WO2021167031A1
WO2021167031A1 PCT/JP2021/006226 JP2021006226W WO2021167031A1 WO 2021167031 A1 WO2021167031 A1 WO 2021167031A1 JP 2021006226 W JP2021006226 W JP 2021006226W WO 2021167031 A1 WO2021167031 A1 WO 2021167031A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
water
containing composition
minutes
less
Prior art date
Application number
PCT/JP2021/006226
Other languages
English (en)
French (fr)
Inventor
由紀 寺本
弾宏 大栗
諒 喜多
唯 内海
芳明 横尾
Original Assignee
サントリーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サントリーホールディングス株式会社 filed Critical サントリーホールディングス株式会社
Priority to US17/798,942 priority Critical patent/US20230071432A1/en
Priority to JP2022501992A priority patent/JPWO2021167031A1/ja
Priority to AU2021224002A priority patent/AU2021224002A1/en
Priority to EP21757353.4A priority patent/EP4108101A4/en
Publication of WO2021167031A1 publication Critical patent/WO2021167031A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/04Production of frozen sweets, e.g. ice-cream
    • A23G9/08Batch production
    • A23G9/083Batch production using moulds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/325Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/42Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing plants or parts thereof, e.g. fruits, seeds, extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/56Flavouring or bittering agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/88Taste or flavour enhancing agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/22Treatment of water, waste water, or sewage by freezing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G3/00Preparation of other alcoholic beverages
    • C12G3/04Preparation of other alcoholic beverages by mixing, e.g. for preparation of liqueurs

Definitions

  • the present invention relates to a mineral-containing composition for producing ice whose flavor can be improved by adding it to water or a beverage. Furthermore, the present invention relates to ice having such a function and a method for producing the same.
  • Patent Document 1 discloses that drinking water containing a high concentration of magnesium is produced by mixing a concentrated solution having a high magnesium content with purified water.
  • Patent Document 2 discloses that a beverage is produced by adding a mineral component composed of magnesium and calcium to water derived from deep sea water.
  • divalent metal ions bring about unpleasant tastes such as bitterness and harshness, and water, foods or beverages containing a high concentration of these minerals have a drawback that they are difficult to ingest.
  • Patent Document 3 discloses a method for producing mineral water, which comprises immersing a natural ore such as barley stone, Tenju stone, or tourmaline in water to elute a mineral component.
  • a natural ore such as barley stone, Tenju stone, or tourmaline
  • Patent Document 4 discloses a method for producing mineral water by heat-extracting chicken manure with water, but chicken manure is not suitable as a raw material for food use.
  • Patent Document 5 discloses a method for producing mineral water by boiling and extracting bamboo charcoal
  • Patent Document 6 discloses a method for producing alkaline water by boiling and extracting charcoal.
  • the methods disclosed in these prior arts have failed to efficiently extract mineral components to obtain mineral water containing only the desired mineral components.
  • Cited Document 7 discloses a method of making charcoal ice with shades by appropriately mixing drinking water and finely pulverized charcoal. However, until now, there is no known method for producing ice that is not only delicious in taste but also capable of improving its flavor by adding it to water or beverages.
  • An object of the present invention is to provide ice that not only has a delicious taste itself but can also improve its flavor by adding it to water or beverages.
  • the present inventors have recently found activated carbon, which is a plant-derived raw material such as coconut shell activated carbon, as a natural material capable of elution of minerals using pure water, and as a result of diligent examination of its extraction conditions, it is extremely important for humans.
  • activated carbon which is a plant-derived raw material such as coconut shell activated carbon
  • the present inventors not only contain abundant potassium as a mineral component, but also the mineral extract and the mineral concentrate obtained by concentrating the mineral extract are divalent, which bring about unpleasant tastes such as bitterness and harshness. It was found that the contents of metal ions and chloride ions were significantly low.
  • the present inventors have found that the mineral-containing composition having such a composition has a pH of weakly alkaline to weakly acidic with respect to the added water. Not only does it impart a mellow, less unpleasant flavor with significant buffering capacity in the region, but it is also possible to make delicious ice by freezing the aqueous solvent to which the mineral-containing composition has been added, and in this way. It was surprisingly found that the resulting ice itself has the function of improving the flavor of water or beverages.
  • the gist of the present invention lies in the following.
  • the mineral-containing composition further contains chloride ion, calcium ion, magnesium ion, sodium ion, iron ion, zinc ion, silicon ion, and / or sulfate ion.
  • Mineral-containing composition [3] The mineral-containing composition according to 1 or 2, wherein the content of chloride ions in the mineral-containing composition is 50% or less of the potassium ion concentration.
  • the mineral-containing composition according to any one of 1 to 3 wherein the content of calcium ions in the mineral-containing composition is 2.0% or less of the potassium ion concentration.
  • the mineral-containing composition according to any one of 1 to 4 wherein the content of magnesium ions in the mineral-containing composition is 1.0% or less of the potassium ion concentration.
  • the mineral-containing composition according to any one of 1 to 5 wherein the content of sodium in the mineral-containing composition is 5 to 45% of the potassium ion concentration.
  • the plant-derived raw material is coco palm, palm palm, almond, walnut or plum fruit shell; wood selected from sawdust, charcoal, resin or lignin; nest ash; bamboo wood; bagasse, rice husk, coffee beans or molasses. 7.
  • a method for producing ice that improves the flavor of water or a beverage wherein the mineral-containing composition according to any one of 1 to 8 is added to an aqueous solvent, and the mineral-containing composition is added.
  • a method comprising the step of freezing a water solvent.
  • the water solvent is tap water, purified water, pure water or natural water.
  • the mineral-containing composition is added to an aqueous solvent so that the concentration of the added potassium ion is 50 ppm to 500 ppm, according to 9 or 10.
  • Ice for improving the flavor of water or beverage which comprises the mineral-containing composition according to any one of 1 to 8.
  • the ice according to 12 wherein it contains a water solvent selected from tap water, purified water, pure water or natural water.
  • the ice according to 12 or 13 wherein when the beverage is an alcoholic beverage, it contains 50 ppm to 500 ppm of potassium ions as a concentration of added potassium ions.
  • FIG. 1 shows the buffering capacity of a water composition to which a mineral concentrated extract from each concentration of coconut shell activated carbon was added and a control (KOH and commercially available alkaline ionized water).
  • FIG. 2 shows the buffering capacity of a water composition containing a mineral concentrated extract derived from coconut shell activated carbon prepared so that the final potassium concentration is 100 ppm, and a control (purified water and commercially available alkaline ionized water).
  • the present invention is a mineral-containing composition for producing ice that improves the flavor of water or beverages, and among the metal ions present in the mineral-containing composition, potassium ions are contained in the highest concentration.
  • the present invention relates to a mineral-containing composition.
  • tap water As a water solvent for the purpose of preventing water spoilage due to the bactericidal effect of chlorine contained in tap water.
  • ammoniacal nitrogen contained in raw tap water reacts with residual chlorine such as hypochlorous acid molecule (HCLO) to form inorganic chloramines (monochloramine, dichloramine, trichloramine), which have a chlorine odor. It is the main cause of spoiling the flavor of water.
  • HCLO hypochlorous acid molecule
  • the present inventors have now provided the added water with a significant buffering ability in the pH range from weakly alkaline to weakly acidic, and reduced the odor of karuki. I got a surprising finding that it improves the flavor.
  • Potassium is one of the minerals necessary for the living body, and most of it is present in the intracellular body, and it maintains the osmotic pressure of the cell while interacting with sodium which is abundant in the extracellular fluid. It plays an important role in retaining water in cells. Potassium, along with sodium, maintains the osmotic pressure of cells, maintains acid-base balance, transmits nerve stimulation, regulates heart function and muscle function, and regulates intracellular enzyme reactions. There is. In addition, potassium is known to have an effect of lowering blood pressure because it suppresses the reabsorption of sodium in the kidney and promotes excretion into urine. Thus, potassium is a very important mineral component for humans, but excess potassium ions bring about unpleasant tastes such as bitterness and harshness. Therefore, it is preferable that the mineral-containing composition of the present invention is adjusted so that the concentration of potassium added to the ice is optimized according to the object (that is, water or beverage) whose flavor should be improved.
  • the object that is, water or beverage
  • the mineral-containing composition of the present invention may further contain chloride ion, calcium ion, magnesium ion, sodium ion, iron ion, zinc ion, silicon ion, and / or sulfate ion in addition to potassium ion.
  • Naturally occurring water contains a certain amount of chloride ions, most of which are derived from geology and seawater.
  • the chloride ion When the chloride ion is present in an amount of 250 to 400 mg / l or more, it may give a salty taste to a person who is sensitive to taste and impair the taste. Therefore, the content of chloride ion in the mineral-containing composition of the present invention is determined. It is preferable to have as few as possible.
  • the chloride ion content of the mineral-containing composition of the present invention is, for example, 50% or less, 49% or less, 48% or less, 47% or less, 46% or less, 45% or less, 44% or less of the potassium ion concentration.
  • Calcium is known to form a skeleton as hydroxyapatite together with phosphorus in the living body and to be involved in muscle contraction.
  • Magnesium is known to be involved in the formation of bones and teeth, as well as many in-vivo enzymatic reactions and energy production in vivo.
  • the content of calcium ions and magnesium ions in water is known to affect the taste, and the index (hardness) of the total content of calcium and magnesium among the minerals contained in water is less than a certain level.
  • the case is called soft water, and the case is called hard water. In general, most mineral water produced in Japan is soft water, and most mineral water produced in Europe is hard water.
  • the content of calcium ions in the mineral-containing composition of the present invention is, for example, 2.0% or less of the potassium ion concentration, 1.9% or less, 1.8% or less, 1.7% or less, 1.6. % Or less, 1.5% or less, 1.4% or less, 1.3% or less, 1.2% or less, 1.1% or less, 1.0% or less, 0.9% or less, 0.8% or less , 0.7% or less, 0.6% or less, 0.5% or less, 0.4% or less, 0.3% or less, 0.2% or less, 0.1% or less, 0.09% or less, 0 .08% or less, 0.07% or less, 0.06% or less, 0.05% or less, 0.04% or less, 0.03% or less, 0.02% or less, or 0.01% or less. good.
  • the magnesium ion content in the mineral-containing composition of the present invention is, for example, 1.0% or less, 0.9% or less, 0.8% or less, 0.7% or less, 0 of the potassium ion concentration. 6.6% or less, 0.5% or less, 0.4% or less, 0.3% or less, 0.2% or less, 0.1% or less, 0.09% or less, 0.08% or less, 0.07 % Or less, 0.06% or less, 0.05% or less, 0.04% or less, 0.03% or less, 0.02% or less, or 0.01% or less.
  • the content of sodium in the mineral-containing composition of the present invention is, for example, 5 to 45%, 5 to 40%, 5 to 35%, 5 to 30%, 5 to 25%, 5 to 20 of the potassium ion concentration.
  • the mineral-containing composition of the present invention can be produced from an activated carbon extract of a plant-derived raw material.
  • Activated carbon is a porous substance consisting of oxygen, hydrogen, calcium, etc. in addition to most carbon, and has a large surface area per volume, so it has the property of adsorbing many substances. Everywhere, it is widely produced industrially.
  • activated carbon is produced by forming micropores on the order of nm inside a carbon material as a raw material (activation).
  • Activated carbon is produced by a gas activation method in which the raw material is carbonized and then activated at a high temperature using an activating gas such as steam or carbon dioxide, and an inert gas after adding chemicals such as zinc chloride and phosphoric acid to the raw material.
  • Non-Patent Document 1 a chemical activation method in which carbonization and activation are performed at the same time by heating in an atmosphere.
  • the activated carbon used in the present invention can be produced by either the above gas activation method or the chemical activation method using a plant-derived raw material as a carbon material.
  • the raw material of the activated charcoal used in the present invention is not particularly limited as long as it is a plant-derived raw material, and for example, fruit shell (coco palm, palm palm, almond, walnut, plum), wood (sawdust, charcoal, resin, lignin), nest ash. (Charcoal of sawdust), bamboo, food residue (bagasse, rice husks, coffee beans, waste sugar honey), waste (pulp factory effluent, construction waste), etc., typically coconut husks, sawdust, bamboo, Alternatively, it is selected from a combination thereof, preferably coconut shell. Palm husk means a shell called a shell in the coconut or palm coconut.
  • the shape of the activated carbon used in the present invention is not particularly limited, and examples thereof include powdered activated carbon, granular activated carbon (crushed carbon, granular charcoal, molded carbon), fibrous activated carbon, and special molded activated carbon.
  • the step of extracting minerals from the activated carbon of the plant-derived raw material using an aqueous solvent is achieved by bringing the activated carbon of the plant-derived raw material into contact with the aqueous solvent to elute the minerals present in the activated carbon of the plant-derived raw material.
  • a step is not particularly limited as long as the minerals present in the activated carbon of the plant-derived raw material can be eluted.
  • the activated carbon of the plant-derived raw material is immersed in an aqueous solvent, or the activated carbon of the plant-derived raw material is filled. This can be done by passing an aqueous solvent through the column.
  • the aqueous solvent may be stirred in order to increase the extraction efficiency.
  • the method for producing the mineral extract of the present invention includes a step of extracting minerals from activated charcoal, which is a plant-derived raw material, using an aqueous solvent, and then centrifuging the obtained extract in order to remove impurities. / Or may further include a step of filtering and the like.
  • the aqueous solvent used in the process of extracting minerals from activated carbon, which is a plant-derived raw material, using an aqueous solvent basically refers to something other than an HCl solution. It is typically an aqueous solvent, particularly preferably pure water. Pure water means highly pure water that contains or hardly contains impurities such as salts, residual chlorine, insoluble fine particles, organic substances, and non-electrolytic gas. Pure water includes RO water (water that has passed through a reverse osmosis membrane), deionized water (water from which ions have been removed with an ion exchange resin, etc.), distilled water (water distilled with a distiller, etc.), etc. Is included. Since pure water does not contain mineral components, it does not show the effect of replenishing minerals.
  • the extraction temperature is not particularly limited as long as the mineral can be extracted from the activated carbon of the plant-derived raw material using an aqueous solvent. 15 ° C or higher, 20 ° C or higher, 25 ° C or higher, 30 ° C or higher, 35 ° C or higher, 40 ° C or higher, 45 ° C or higher, 50 ° C or higher, 55 ° C or higher, 60 ° C or higher, 65 ° C or higher, 70 ° C or higher, 75 ° C
  • the above can be carried out at a temperature of 80 ° C. or higher, 85 ° C. or higher, 90 ° C. or higher, or 95 ° C.
  • the extraction time is not particularly limited as long as the mineral can be extracted from the activated carbon of the plant-derived material using the aqueous solvent, but the step of extracting the mineral from the activated carbon of the plant-derived material using the aqueous solvent is 5 minutes or more and 10 minutes or more. 15 minutes or more, 20 minutes or more, 25 minutes or more, 30 minutes or more, 35 minutes or more, 40 minutes or more, 45 minutes or more, 50 minutes or more, 55 minutes or more, 60 minutes or more, 65 minutes or more, 70 minutes or more, 75 minutes.
  • the above or 80 minutes or more can be performed, for example, 5 to 80 minutes, 5 to 75 minutes, 5 to 70 minutes, 5 to 65 minutes, 5 to 60 minutes, 5 to 55 minutes, 5 to 50 minutes.
  • the extract thus obtained can be concentrated by a method well known in the art, such as boiling concentration, vacuum concentration, freeze concentration, membrane concentration, or ultrasonic atomization. Separation etc. can be mentioned.
  • a mineral concentrate composition containing a desired mineral such as high concentration potassium can be obtained with almost no change in its composition.
  • the form of the container for providing the mineral-containing composition of the present invention is not particularly limited, and for example, a metal container (can), a drop type, a spray type, a resin container such as a spoid type or a lotion bottle type, and a paper container ( (Including with cable top), PET bottle, pouch container, glass bottle, airless container, portion container, preservative-free (PF) eye drop container, stick, small pump container, large pump container, portion cup container, bottle with built-in inner bag, Examples include a plastic single-use container and a water-soluble film container.
  • the mineral-containing composition of the present invention is added to an aqueous solvent so that each mineral component is in the above-mentioned concentration range, and the aqueous solvent to which the mineral-containing composition is added is frozen to make it delicious and water or. It is possible to produce ice that can improve the flavor of the beverage. Ice making can be carried out by a method customary in the art without any particular limitation.
  • the water solvent is not particularly limited as long as it is water suitable for drinking, but is typically tap water, purified water, pure water or natural water.
  • the water whose flavor is improved by adding the ice of the present invention is not particularly limited, but is typically tap water, purified water or natural water.
  • the beverage whose flavor is improved by adding the ice of the present invention is not particularly limited, but typically, alcoholic beverages, non-alcoholic beverages, carbonated beverages (non-flavored carbonated beverages, flavored carbonated beverages, etc.), fruits. Beverages (natural fruit juice, fruit juice beverage, fruit meat beverage, mixed beverage containing fruit juice, carbonated beverage containing fruit juice, fruit juice-based near water, aid, etc.), coffee beverage, tea-based beverage (green tea-based beverage, tea beverage, blended tea beverage, oolong tea beverage) , Barley tea beverages, etc.), vegetable beverages, sports drinks, or dairy beverages.
  • the beverage includes not only a ready-to-drink that can be drunk as it is after purchase, but also a beverage base and a raw liquor.
  • the beverage base means a beverage to be appropriately diluted and drunk, and examples thereof include a beverage for preparing a cocktail and a concentrated type beverage.
  • the raw material liquor means a liquor that is a raw material to be blended in an alcoholic beverage.
  • the alcohol content of the alcoholic beverage or raw liquor is not particularly limited as long as it contains ethanol as an alcohol component, but is typically 1 v / v% or more.
  • the alcohol raw material of the alcoholic beverage or raw liquor is not particularly limited, but spirits (lamb, wokka, gin, etc.), whiskey, brandy or shochu, brewed liquor (beer, spirit, fruit liquor, etc.), sparkling liquor, mixed liquor.
  • Alcoholic beverages synthetic sake, sweet fruit liquor, liqueur, etc. can be mentioned, and these alcohol raw materials can be used alone or in combination.
  • the alcoholic beverage may contain fruit juice.
  • the type of fruit juice is not particularly limited, but for example, citrus juice (orange juice, orange juice, grapefruit juice, lemon juice, lime juice, etc.), apple juice, grape juice, peach juice, tropical fruit juice (pineapple, guava, banana). , Mango, acerola, papaya, passion fruit, etc.), other fruit juices (ume juice, pear juice, apricot juice, peach juice, berry juice, kiwi fruit juice, etc.), tomato juice, carrot juice, strawberry juice, melon juice, etc. Can be mentioned.
  • the concentration of potassium added to the water solvent is optimum according to the target (that is, water or beverage) whose flavor should be improved.
  • the target that is, water or beverage
  • the mineral-containing composition of the present invention has an added potassium ion concentration (potassium concentration (ppm) / dilution ratio in the mineral-containing composition) of, for example, 50 to 500 ppm.
  • the mineral-containing composition when the beverage is whiskey or shochu, the mineral-containing composition is appropriately prepared so that the concentration of added potassium ions is within the above-mentioned concentration range, for example, 50 to 100 ppm. be able to.
  • the mineral-containing composition can be appropriately prepared within the above-mentioned concentration range, for example, in the range of 50 to 500 ppm.
  • the flavor can be improved by adding the ice of the present invention to water or a beverage.
  • Example 1 Preparation of mineral extract from coconut shell activated carbon> Put 30 g of coconut shell activated carbon (“Taiko CW type” unwashed product / manufactured by Futamura Chemical Co., Ltd.) and 400 g of distilled water heated to 90 ° C into a 1 L Erlenmeyer flask, and stir at 100 rpm for 15 minutes while heating at 90 ° C. Stirred by the child. The resulting suspension was suction filtered through a polyester 500 mesh (25 ⁇ m) and the resulting filtrate was centrifuged at 3000 rpm for 10 minutes. The supernatant after centrifugation was suction-filtered with a filter paper to obtain a mineral extract.
  • Example 2 Comparison of activated carbon> A mineral extract was prepared in the same manner as in Example 1 except that the coconut shell activated carbon was changed to Kuraraycol (registered trademark) GG (unwashed product / manufactured by Kuraray Co., Ltd.).
  • Kuraraycol registered trademark
  • GG unwashed product / manufactured by Kuraray Co., Ltd.
  • Example 3-6 Comparison of extraction time> A mineral extract was prepared in the same manner as in Example 1 except that the extraction time was changed to 10, 20, 40, and 80 minutes.
  • Example 7-9 Comparison of distilled water amount and extraction time> A mineral extract was prepared in the same manner as in Example 1 except that the distilled water was 130, 200, 400 g and the extraction time was changed to 5 minutes.
  • Example 10-12 Comparison of extraction temperature and extraction time> A mineral extract was prepared in the same manner as in Example 1 except that the extraction temperature was changed to 30, 60, 90 ° C. and the extraction time was changed to 5 minutes.
  • the mineral extract prepared in Example 1-12 was analyzed according to the following method. ⁇ ICP analysis of metals> ICP emission spectroscopic analyzer: iCAP6500Duo (manufactured by Thermo Fisher Scientific) was used. The ICP general-purpose mixture XSTC-622B was diluted to prepare 4 inspection quantity lines of 0, 0.1, 0.5 and 1.0 mg / L. The sample was diluted with dilute nitric acid so as to be within the calibration curve range, and ICP measurement was performed.
  • Ion chromatograph system ICS-5000K (manufactured by Nippon Dionex Co., Ltd.) was used.
  • Dionex Ion Pac AG20 and Dionex Ion Pac AS20 were used.
  • the eluate was eluted with a potassium hydroxide aqueous solution of 5 mmol / L for 0 to 11 minutes, 13 mmol / L for 13 to 18 minutes, and 45 mmol / L for 20 to 30 minutes at a flow rate of 0.25 mL / min.
  • Anion mixed standard solution 1 (Cl - 20mg / L, SO 4 2- 100mg / L containing 7 ionic species containing: manufactured by Fuji Film Wako Pure Chemical Industries) was diluted, Cl - is 0,0.1,0. 5 inspection quantity lines of 2 , 0.4 and 1.0 mg / L were prepared, and 5 inspection quantity lines of 0, 0.5, 1.0, 2.0 and 5.0 mg / L were prepared for SO 4 2-. .. The sample was diluted so as to be within the calibration curve range, and 25 ⁇ L was injected to perform IC measurement.
  • the characteristic that the potassium concentration was significantly high did not change even if the activated carbon, the extraction time, the amount of the extract with respect to the activated carbon, and the extraction temperature were changed. Moreover, while a significant amount of chloride ion was extracted when HCl was used (data not shown), the concentration of chloride ion was low in all the examples. In any of the above examples, heavy metals (lead, cadmium, arsenic, mercury, etc.) were not detected (data not shown).
  • Example 13 Preparation of concentrated solution> Put 174 g of coconut shell activated carbon ("Taiko CW type" unwashed product / manufactured by Futamura Chemical Co., Ltd.) and 753 g of distilled water heated to 30 ° C in a 1 L Erlenmeyer flask, and stir at 100 rpm for 5 minutes while heating at 30 ° C. Stirred by the child. The resulting suspension was suction filtered through a polyester 500 mesh (25 ⁇ m) and the resulting filtrate was centrifuged at 3000 rpm for 10 minutes. The supernatant after centrifugation was suction-filtered with a filter paper to obtain a mineral extract. Similarly, it was carried out twice more. The obtained mineral extracts were mixed three times and concentrated 62 times by an evaporator to obtain the mineral concentrated extract shown below.
  • Example 13 The mineral extract and mineral concentrated extract prepared in Example 13 were diluted 62-fold and analyzed according to the above method. The results are shown in the table below.
  • Example 14 Preparation of mineral concentrated extract from coconut shell activated carbon> Put 200 g of coconut shell activated carbon (“Taiko CW type” unwashed product / manufactured by Futamura Chemical Co., Ltd.) and 1500 g of distilled water heated to 90 ° C into a 1 L Erlenmeyer flask, and stir at 100 rpm for 15 minutes while heating at 90 ° C. Stirred by the child. The resulting suspension was suction filtered through a polyester 500 mesh (25 ⁇ m) and the resulting filtrate was centrifuged at 3000 rpm for 10 minutes. The supernatant after centrifugation was suction-filtered with a filter paper to obtain a mineral extract. The obtained mineral extract was concentrated 14 times by an evaporator to obtain the mineral concentrated extract shown below.
  • Example 15 Buffer capacity evaluation-I> (1) Preparation of Evaluation Sample A sample for evaluation was prepared by adding the mineral concentrated extract obtained above to ultrapure water (MilliQ water) so that the potassium concentration would be the concentration shown below.
  • the titration was carried out with 1 M hydrochloric acid, and the ratio (B) / (A) when the amount of liquid required from pH 9.2 to pH 3.0 was (B) mL was used as the buffering capacity. As shown in FIG. 1, it was found that the water to which the mineral concentrated extract derived from coconut shell activated carbon was added had an excellent buffering capacity.
  • Example 16 Buffer capacity evaluation-II> (1) Preparation of Comparative Example and Evaluation Sample As comparative examples, purified water (tap water treated with a water purifier manufactured by Water Stand) and commercially available alkaline ionized water as in Example 1 were prepared. Further, the mineral concentrated extract obtained in Example 1 was added to purified water (same as above) so that the potassium concentration became 100 ppm, and an evaluation sample was prepared. (2) Measurement of pH The sample obtained above was evaluated for its buffer capacity in the same manner as in Example 2. That is, to 100 ml of each sample, 1 ml of 0.1N HCl was added while stirring with a stirrer, and the pH was measured. As shown in FIG. 2, it was found that water obtained by adding a mineral concentrated extract derived from coconut shell activated carbon to purified tap water has an excellent buffering capacity as compared with purified water and alkaline ionized water.
  • the potassium ion concentration, sodium ion concentration, calcium ion concentration, and magnesium ion concentration of the obtained mineral concentration-treated extract are according to ICP emission spectroscopy, the chloride ion concentration is ion chromatograph method, and TOC is total organic carbon meter measurement method. analyzed. In addition, after storing the obtained mineral-concentrated extract in a refrigerator for 2 weeks, "-" (highly transparent and no suspended matter or precipitate is observed) and "+" (slightly suspended matter or precipitate are observed).
  • the obtained suspension is suction-filtered with a filter paper (ADVANTEC quantitative filter paper No.
  • Hydrochloric acid was added to this mineral concentrate to adjust the pH to about 9.5, and the vial was filled with 10 mL in small portions and stored in a refrigerator for 2 days. Then, it was filtered cold with a filter paper (ADVANTEC 25ASO20AN 0.2 ⁇ m of Toyo Filter Paper Co., Ltd.) and heat-treated at 80 ° C. for 30 minutes to obtain a mineral concentrated extract.
  • the potassium ion concentration, sodium ion concentration, calcium ion concentration, and magnesium ion concentration of the obtained mineral concentration-treated extract were analyzed according to high-frequency inductively coupled plasma emission spectroscopy (ICP-AES), and the chloride ion concentration and sulfate ion concentration were determined.
  • ICP-AES high-frequency inductively coupled plasma emission spectroscopy
  • a filter paper ADVANTEC A080A090C, Toyo Filter Paper Co., Ltd.
  • Hydrochloric acid was added thereto to adjust the pH to be around 9.5, and further diluted with pure water to adjust the potassium ion concentration to about 100,000 ppm. This was heat-treated at 80 ° C. for 30 minutes to obtain a mineral-concentrated extract.
  • the potassium ion concentration, sodium ion concentration, calcium ion concentration, magnesium ion concentration, and sulfate ion of the obtained mineral concentration-treated extract are according to ion chromatography (IC), the chloride ion concentration is ion chromatograph method, and TOC is total organic carbon. It was analyzed by the meter measurement method.
  • Example 17 a mineral extract having a potassium concentration of 60994 ppm, a chloride ion concentration of 3030 ppm and a pH of 11.1 was obtained, and in Example 18, a potassium concentration of 87500 ppm and a chloride ion concentration of 32890 ppm were obtained.
  • a mineral extract having a pH of 9.50 was obtained, and in Example 19, a mineral extract having a potassium concentration of 100,000 ppm, a chloride ion concentration of 13132 ppm and a pH of 9.51 was obtained, and in Example 20, a potassium concentration of 111747 ppm and chloride were obtained.
  • Example 17 A mineral extract having a substance ion concentration of 8545 ppm and a pH of 9.48 was obtained. From the viewpoint of turbidity, in Example 17, it was evaluated as "++++" (a lot of suspended matter was accumulated and agglomerates were accumulated, and the transparency was low), while in Example 18 that refrigerated storage and cold filtration were performed. In both Example 19 and Example 20, the evaluation was "++" (many suspended substances and agglomerates were observed). In particular, in Example 18 in which the pH was adjusted prior to refrigerated storage and cold filtration, the value was "-" (highly transparent and no suspended matter or precipitate was observed). From this, it was found that in order to obtain a highly transparent mineral extract, it is desirable to carry out refrigerated storage and cold filtration, and when adjusting the pH, it is desirable to carry out before refrigerated storage and cold filtration. bottom.
  • Example 21 Sensory evaluation in water-effect of potassium concentration>
  • purified water tap water treated with a water purifier
  • tap water tap water
  • a mineral concentrated extract obtained in the same manner as in Example 17 so that the concentration of potassium added in the water becomes the concentration shown below.
  • Potassium concentration: 104000 ppm was added and the sensory evaluation of water was carried out.
  • the sensory evaluation was carried out by four trained evaluation panelists after the evaluation criteria were adjusted among the evaluation panelists in advance.
  • the case of 1 or more and 2 or less was evaluated as ⁇ , the case of 2.1 or more and 3 or less was evaluated as ⁇ , and the case of 3.1 or more was evaluated as ⁇ .
  • Example 22 Sensory evaluation in water-pH effect>
  • purified water tap water treated with a water purifier
  • tap water were prepared, and the mineral concentrated extract (potassium concentration: 53375 ppm) obtained in the same manner as in Example 17 was mixed with hydrochloric acid at each pH (pH 11.2, 10).
  • hydrochloric acid pH 11.2, 10
  • the water was added so that the concentration of potassium added in the water was the concentration shown below, and the sensory evaluation of water was carried out.
  • the sensory evaluation was carried out by five trained evaluation panelists after the evaluation criteria were adjusted among the evaluation panelists in advance.
  • the case of 1 or more and 2 or less was evaluated as ⁇ , the case of 2.1 or more and 3 or less was evaluated as ⁇ , and the case of 3.1 or more was evaluated as ⁇ .
  • the flavor was significantly improved in a wide potassium concentration range in mineral water containing a mineral concentrated extract adjusted to pH 8.1 to 11.2, particularly pH 8.1 to 10.2. Further, in tap water, at a potassium concentration of 50 ppm or more, a significant reduction in the scaly odor was confirmed at any pH as compared with before the addition of the mineral concentrated extract. -Potassium concentration regions were obtained respectively. Also in purified water, a pH-potassium concentration range with good flavor was obtained depending on each pH and potassium concentration.
  • Example 23 taste improving effect on beverages on ice>
  • purified water tap water treated with a water purifier
  • tap water tap water
  • commercially available mineral water natural water
  • concentration of potassium added in the water is as shown below, respectively.
  • 10 ml each was placed in a cup and frozen overnight, and 5 minutes after taking out, a sensory evaluation was performed on the flavor of ice.
  • the sensory evaluation was carried out by four trained evaluation panelists after the evaluation criteria were adjusted among the evaluation panelists in advance.
  • the case of 1 or more and 2 or less was evaluated as ⁇ , the case of 2.1 or more and 3 or less was evaluated as ⁇ , and the case of 3.1 or more was evaluated as ⁇ .
  • the flavor of the ice itself was significantly improved at a potassium concentration of 50 to 100 ppm.
  • Each ice obtained above was added to 360 ⁇ l of whiskey having an alcohol concentration of 40%, and a sensory evaluation was performed on the flavor (taste, aroma) of the whiskey.
  • the sensory evaluation was carried out by four trained evaluation panelists after the evaluation criteria were adjusted among the evaluation panelists in advance.
  • the case of 1 or more and 2 or less was evaluated as ⁇ , the case of 2.1 or more and 3 or less was evaluated as ⁇ , and the case of 3.1 or more was evaluated as ⁇ .
  • ice produced by adding mineral concentrated extract to purified water, tap water and commercially available mineral water (natural water) was added to whiskey, 50 to 100 ppm of potassium was compared with ice without mineral concentrated extract. The flavor of the whiskey was significantly improved at the concentration.
  • Each ice obtained above was added to 1400 ⁇ l of shochu having an alcohol concentration of 25%, and a sensory evaluation was performed on the flavor (taste, aroma) of the shochu.
  • the sensory evaluation was carried out by four trained evaluation panelists after the evaluation criteria were adjusted among the evaluation panelists in advance.
  • the case of 1 or more and 2 or less was evaluated as ⁇ , the case of 2.1 or more and 3 or less was evaluated as ⁇ , and the case of 3.1 or more was evaluated as ⁇ .
  • ice produced by adding mineral concentrated extract to purified water, tap water and commercially available mineral water (natural water) was added to shochu, 50 to 100 ppm of potassium was compared with ice without mineral concentrated extract. The flavor of the shochu was significantly improved at the concentration.
  • Each ice obtained above was added to 1400 ⁇ l of lemon sour, and a sensory evaluation was performed on the flavor (taste, aroma) of lemon sour.
  • the sensory evaluation was carried out by four trained evaluation panelists after the evaluation criteria were adjusted among the evaluation panelists in advance.
  • Example 24 Sensory evaluation in extraction-based beverages> As water, purified water (tap water treated with a water purifier), tap water, and commercially available mineral water (natural water) are prepared, and the concentration of potassium added in the water is as shown below, respectively.
  • the mineral concentrated extract (potassium concentration: 53375 ppm) obtained in the same manner as above was added and then boiled to prepare water for extracting coffee and green tea (100 ml). Coffee extraction is performed by weighing 10 g of Brazilian coffee beans in each cup, crushing them with a crusher, and then pouring the above-mentioned boiling extraction water, and after leaving them for 4 minutes, sensory evaluation of the coffee extract is performed. rice field.
  • the case of 1 or more and 2 or less was evaluated as ⁇ , the case of 2.1 or more and 3 or less was evaluated as ⁇ , and the case of 3.1 or more was evaluated as ⁇ .
  • the coffee flavor was significantly improved at a potassium concentration of ⁇ 300 ppm.
  • the green tea was extracted by weighing 2 g of tea leaves in each cup and pouring the above-mentioned boiling water, and after leaving it for 3 minutes, the sensory evaluation of the green tea extract was performed.
  • the case of 1 or more and 2 or less was evaluated as ⁇ , the case of 2.1 or more and 3 or less was evaluated as ⁇ , and the case of 3.1 or more was evaluated as ⁇ .
  • the tea flavor was significantly improved at a potassium concentration of ⁇ 100 ppm.
  • the flavor was significantly improved at a potassium concentration of 50 to 100 ppm in cola beverages or lemon-based carbonated beverages, and the flavor was significantly improved at a potassium concentration of 50 to 300 ppm in orange-based fruit juice beverages.
  • the flavor was significantly improved at a potassium concentration of 50 to 100 ppm
  • black coffee beverages the flavor was significantly improved at a potassium concentration of 50 to 300 ppm
  • the flavor was significantly improved.
  • Flavor was significantly improved at potassium concentrations of 50-300 ppm.
  • Example 26 Evaluation of foam quality of carbonated beverage>
  • purified water tap water treated with a water purifier
  • tap water were prepared, and mineral concentration obtained in the same manner as in Example 17 so that the concentration of potassium added in the water was as shown below.
  • an extract potassium concentration: 104000 ppm
  • carbonate the sample with a soda siphon whose gas pressure is adjusted to 2.1 ⁇ 0.2 kg / cm 2, and use it as a sample.
  • “Easy to swallow carbonated water” and “Sharpness of aftertaste” were evaluated. The evaluation was carried out by four trained evaluation panelists after the evaluation criteria were adjusted among the evaluation panelists in advance.
  • the case of is ⁇ , the case of 2.1 or more and 3 or less is ⁇ , and the case of 3.1 or more is ⁇ .
  • the foam quality was significantly improved at a potassium concentration of 50 to 300 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

水又は飲料に添加することにより、その風味を改善することが可能な氷を製造する。 ミネラル含有組成物であって、前記ミネラル含有組成物中に存在する金属イオンのうち、カリウムイオンが最も高い濃度で含まれていることを特徴とする、ミネラル含有組成物を提供する。

Description

水又は飲料の風味を改善する氷を製造するためのミネラル含有組成物
 本発明は、水又は飲料に添加することにより、その風味を改善することが可能な氷を製造するためのミネラル含有組成物に関する。さらに、本発明は、このような機能を有する氷及びその製造方法に関する。
 近年、健康志向や美味志向を背景として、安全で美味しい水を求める社会的関心が高まっており、ペットボトルなどの容器に入ったミネラル水が、世界中で多く飲まれている。しかしながら、ペットボトル等のプラスチック容器のごみは、深刻な環境問題となっており、容器詰めのミネラル水に代わり、家庭などで手軽に提供できるミネラル水の開発が求められている。しかしながら、水道水には殺菌のため塩素が含まれているため、水に残存した塩素がカルキ臭の原因となり、水の風味が著しく損なわれている。
 生体の生理作用に必要な微量元素であるミネラル成分を補給することを目的として、浄水などに高濃度のミネラルを添加した飲用水なども開発されている。例えば、特許文献1には、高マグネシウム含有量濃縮液を浄水と混合することにより、高濃度のマグネシウムを含有する飲用水を製造することが開示されている。特許文献2には、海洋深層水由来の水に、マグネシウム及びカルシウムからなるミネラル成分を添加して飲料を製造することが開示されている。しかしながら、二価の金属イオンは苦みやえぐみなどの雑味をもたらすことが知られており、これらのミネラルを高濃度で含有する水、食品又は飲料は、摂取しにくいという欠点があった。
 さらに、特許文献3には、麦飯石、天寿石、トルマリン等の天然鉱石を水に浸漬することによりミネラル成分を溶出させることを特徴とするミネラル水の製造方法が開示されているが、当該方法は、得られたミネラル水中に、過剰摂取すると有害であるとされるバナジウム等の所望されない成分が含まれることやミネラルの抽出効率が高くないといった欠点を有する。また、特許文献4には、鶏糞炭を水で加熱抽出することによるミネラル水の製造方法が開示されているが、鶏糞炭は食品用途の原料としては適切でない。
 特許文献5には、竹炭を煮沸抽出することによるミネラルウォーターの製造方法が開示されており、また、特許文献6には、木炭を煮沸抽出することによるアルカリ水の製造方法が開示されている。しかしながら、これらの先行技術に開示される方法では、ミネラル成分を効率的に抽出して、所望のミネラル成分のみを含むミネラルウォーターを得ることができなかった。
 引用文献7には、飲料水と微粉砕した炭を適度に混合して、濃淡の付いた炭氷を製氷化する方法が開示されている。しかしながら、これまでに、味そのものが美味しいだけでなく、水や飲料に添加することにより、その風味を改善すること可能な氷を製造するための方法は知られていない。
特開2018-102137号公報 特開2008-48742号公報 特開2009-72723号公報 特開平6-31284号公報 特開2005-334862号公報 特開2001-259659号公報 特開2011-30555号公報
安部郁夫,活性炭の製造方法,炭素 連載講座,2006,No.225,373-381
 本発明は、味そのものが美味しいだけでなく、水や飲料に添加することにより、その風味を改善すること可能な氷を提供すること目的とする。
 本発明者らは、このたび、純水を用いてミネラルの溶出が可能な天然素材としてヤシ殻活性炭などの植物由来原料の活性炭を見出し、その抽出条件について鋭意検討した結果、人にとって極めて重要なミネラル成分であるカリウムを豊富に含むミネラル抽出液を簡便かつ効率的に製造することに成功した。また、本発明者らは、当該ミネラル抽出液及びこれを濃縮することによって得られたミネラル濃縮液は、ミネラル成分としてカリウムを豊富に含むだけでなく、苦味やえぐみといった雑味をもたらす二価の金属イオン及び塩化物イオンの含有量が有意に少ないことを見出した。さらに、本発明者らは、これにより得られたミネラル抽出液の成分について鋭意検討した結果、このような組成を有するミネラル含有組成物が、添加した水に対して、弱アルカリ性から弱酸性のpH領域における有意な緩衝能とともに、まろやかで雑味が少ない風味を付与するだけでなく、当該ミネラル含有組成物を添加した水溶媒を凍らせることにより美味しい氷を作ることができ、かつ、このようにして得られた氷自体が、水又は飲料の風味を改善する機能を有するという驚くべき知見を得た。
 即ち、本発明の主旨は、以下に存する。
[1] 水又は飲料の風味を改善する氷を製造するためのミネラル含有組成物であって、前記ミネラル含有組成物中に存在する金属イオンのうち、カリウムイオンが最も高い濃度で含まれていることを特徴とする、ミネラル含有組成物。
[2] 前記ミネラル含有組成物が、塩化物イオン、カルシウムイオン、マグネシウムイオン、ナトリウムイオン、鉄イオン、亜鉛イオン、ケイ素イオン、及び/又は硫酸イオンをさらに含むことを特徴とする、1に記載のミネラル含有組成物。
[3] 前記ミネラル含有組成物中の塩化物イオンの含有量が、前記カリウムイオン濃度の50%以下であることを特徴とする、1又は2に記載のミネラル含有組成物。
[4] 前記ミネラル含有組成物中のカルシウムイオンの含有量が、前記カリウムイオン濃度の2.0%以下であることを特徴とする、1~3のいずれかに記載のミネラル含有組成物。
[5] 前記ミネラル含有組成物中のマグネシウムイオンの含有量が、前記カリウムイオン濃度の1.0%以下であることを特徴とする、1~4のいずれかに記載のミネラル含有組成物。
[6] 前記ミネラル含有組成物中のナトリウムの含有量が、前記カリウムイオン濃度の5~45%であることを特徴とする、1~5のいずれかに記載のミネラル含有組成物。
[7] 前記ミネラル含有組成物が、植物由来原料の活性炭抽出物を含むことを特徴とする、1~6のいずれかに記載のミネラル含有組成物。
[8] 前記植物由来原料が、ココヤシ、パームヤシ、アーモンド、クルミ又はプラムの果実殻;おがくず、木炭、樹脂又はリグニンから選択される木材;巣灰;竹材;バガス、もみ殻、コーヒー豆又は廃糖蜜から選択される食品残渣;あるいはこれらの組み合わせから選択されることを特徴とする、7に記載のミネラル含有組成物。
[9] 水又は飲料の風味を改善する氷を製造するための方法であって、水溶媒に1~8のいずれかに記載のミネラル含有組成物を添加し、前記ミネラル含有組成物が添加された水溶媒を凍らせる工程を含むことを特徴とする、方法。
[10] 前記水溶媒が、水道水、浄水、純水又は天然水であることを特徴とする、9に記載の方法。
[11] 前記飲料がアルコール飲料である場合、前記ミネラル含有組成物は、添加されたカリウムイオンの濃度が50ppm~500ppmになるように水溶媒に添加されることを特徴とする、9又は10に記載の方法。
[12] 1~8のいずれかに記載のミネラル含有組成物を含むことを特徴とする、水又は飲料の風味を改善する氷。
[13] 水道水、浄水、純水又は天然水から選択される水溶媒を含むことを特徴とする、12に記載の氷。
[14] 前記飲料がアルコール飲料である場合、添加されたカリウムイオンの濃度として50ppm~500ppmのカリウムイオンを含むことを特徴とする、12又は13に記載の氷。
 本発明によって、美味しいだけでなく、それ自体が水又は飲料の風味を改善することができる氷を簡単に提供することができる。
図1は、各濃度のヤシ殻活性炭からのミネラル濃縮エキスを添加した水組成物と対照(KOH及び市販のアルカリイオン水)の緩衝能を示す。 図2は、最終カリウム濃度が100ppmとなるように調製したヤシ殻活性炭由来のミネラル濃縮エキスを添加した水組成物と対照(浄水及び市販のアルカリイオン水)の緩衝能を示す。
 本発明は、水又は飲料の風味を改善する氷を製造するためのミネラル含有組成物であって、前記ミネラル含有組成物中に存在する金属イオンのうち、カリウムイオンが最も高い濃度で含まれていることを特徴とする、ミネラル含有組成物に関する。
 一般に、家庭内の冷蔵庫において氷を作る場合には、水道水に含まれる塩素の殺菌効果によって水の腐敗を防止することを目的として、水溶媒として水道水を用いることが推奨されている。しかしながら、水道水には殺菌のため次亜塩素酸ナトリウム、次亜塩素酸カルシウム、液化塩素などが混ぜられており、日本の水道法の規定では、各家庭の蛇口で1リットルあたり0.1mg以上(=3×10-5mol/l)の残留塩素を保つように規定されている。一方、水道の原水に含まれているアンモニア性窒素と次亜塩素酸分子(HCLO)などの残留塩素が反応して無機クロラミン類(モノクロラミン、ジクロラミン、トリクロラミン)が形成され、これらがカルキ臭の主な原因となり水の風味を損なっている。これについて、本発明者らは、この度、本発明のミネラル含有組成物が、添加した水に対して、弱アルカリ性から弱酸性のpH領域における有意な緩衝能を付与するともに、カルキ臭を低減して風味を改善するという驚くべき知見を得た。pH7.5以上では、水中のHCLOはCLO-にイオン化するため、本発明のミネラル含有組成物を添加して弱アルカリ性となった水中では、無機クロラミン類の形成が生じにくいため、カルキ臭の発生が低減されるものと考えられる。このような水を凍結させることにより、家庭内においても、カルキ臭が低減されて風味が改善された氷を簡単に得ることが可能となる。
 さらに、本発明者らは、このようにして得られた氷が、水や飲料の風味を改善する機能を有するという驚くべき知見を見出した。
 カリウムは生体に必要なミネラルの1つであり、生体内においては大部分が細胞内に存在し、細胞外液に多く存在するナトリウムと相互に作用しながら、細胞の浸透圧を維持したり、細胞内の水分を保持したりするのに重要な役割を果たしている。カリウムは、ナトリウムとともに、細胞の浸透圧を維持しているほか、酸・塩基平衡の維持、神経刺激の伝達、心臓機能や筋肉機能の調節、細胞内の酵素反応の調節などの働きを担っている。また、カリウムは腎臓でのナトリウムの再吸収を抑制して、尿中への排泄を促進するため、血圧を下げる効果を有することが知られている。このように、カリウムは人にとって極めて重要なミネラル成分であるが、過剰なカリウムイオンは、苦みやえぐみといった雑味をもたらす。したがって、本発明のミネラル含有組成物は、風味を改善すべき対象(すなわち、水又は飲料)に応じて、氷に添加されるカリウムの濃度が最適となるように調整することが好ましい。
 本発明のミネラル含有組成物は、カリウムイオンの他に、塩化物イオン、カルシウムイオン、マグネシウムイオン、ナトリウムイオン、鉄イオン、亜鉛イオン、ケイ素イオン、及び/又は硫酸イオンをさらに含んでもよい。
 天然に存在する水には一定量の塩化物イオンが含まれており、これらの多くは地質や海水に由来するものである。塩化物イオンは、250~400mg/l以上存在すると、味に鋭敏な人には塩味を与え、味を損なう可能性があるため、本発明のミネラル含有組成物における塩化物イオンの含有量は、できるだけ少ない方が好ましい。本発明のミネラル含有組成物の塩化物イオンの含有量は、例えば、前記カリウムイオン濃度の50%以下、49%以下、48%以下、47%以下、46%以下、45%以下、44%以下、43%以下、42%以下、41%以下、40%以下、39%以下、38%以下、37%以下、36%以下、35%以下、34%以下、33%以下、32%以下、31%以下、30%以下、29%以下、28%以下、27%以下、26%以下、25%以下、24%以下、23%以下、22%以下、21%以下、20%以下、19%以下、18%以下、17%以下、16%以下、15%以下、14%以下、13%以下、12%以下、11%以下、10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、又は1%以下であってよい。
 カルシウムは、生体内において、リンと共にハイドロキシアパタイトとして骨格を形成し、筋肉の収縮に関与することが知られている。マグネシウムは、生体内において、骨や歯の形成並びに多くの体内の酵素反応やエネルギー産生に関与することが知られている。また、水中のカルシウムイオン及びマグネシウムイオンの含有量は、味に影響することが知られており、水中に含まれるミネラル類のうちカルシウムとマグネシウムの合計含有量の指標(硬度)が一定水準より少ない場合を軟水、多い場合を硬水という。一般的には、日本国内で産出されるミネラルウォーターは軟水のものが多く、欧州で産出されるものには硬水が多い。WHOの基準では、これらの塩類の量を炭酸カルシウムに換算したアメリカ硬度(mg/l)において、0~60のものを軟水、120~180のものを硬水、180以上のものを非常な硬水というように決められている。一般的には適度な硬度(10~100mg/l)の水が美味しいとされており、特にマグネシウム含有量が高くなると苦みが強く飲みにくくなる。また、硬度が高すぎると、味覚に影響を与えるだけでなく、胃腸を刺激し、下痢などの原因となるため好ましくない。本発明のミネラル含有組成物中のカルシウムイオンの含有量は、例えば、前記カリウムイオン濃度の2.0%以下、1.9%以下、1.8%以下、1.7%以下、1.6%以下、1.5%以下、1.4%以下、1.3%以下、1.2%以下、1.1%以下、1.0%以下、0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下、0.09%以下、0.08%以下、0.07%以下、0.06%以下、0.05%以下、0.04%以下、0.03%以下、0.02%以下、又は0.01%以下であってよい。また、本発明のミネラル含有組成物中のマグネシウムイオンの含有量は、例えば、前記カリウムイオン濃度の1.0%以下、0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下、0.09%以下、0.08%以下、0.07%以下、0.06%以下、0.05%以下、0.04%以下、0.03%以下、0.02%以下、又は0.01%以下であってよい。
 ナトリウムは、生体内において、水分を保持しながら細胞外液量や循環血液の量を維持し、血圧を調節している。効果的に体内に水分補給するには、一定量のナトリウムイオンを摂取するとよいことが知られており、特に熱中症対策などに有効である。しかしながら、ナトリウムを過剰に摂取すると、この液量が増大するため、血圧が上昇したり、むくみが生じたりするおそれがある。また、ナトリウムイオンの含有量が多くなるにしたがい、塩味やぬめり感が生じてしまい、飲料の爽快感が損なわれる場合がある。本発明のミネラル含有組成物中のナトリウムの含有量は、例えば、前記カリウムイオン濃度の5~45%、5~40%、5~35%、5~30%、5~25%、5~20%、5~15%、5~10%、10~45%、10~40%、10~35%、10~30%、10~25%、10~20%、10~15%、15~45%、15~40%、15~35%、15~30%、15~25%、15~20%、20~45%、20~40%、20~35%、20~30%、20~25%、25~50%、25~45%、25~40%、25~35%、25~30%、30~45%、30~40%、30~35%、35~45%、35~40%、又は40~45%であってよい。
 本発明のミネラル含有組成物は、植物由来原料の活性炭抽出物から製造することができる。活性炭は、大部分の炭素の他、酸素、水素、カルシウムなどからなる多孔質の物質であり、体積あたり表面積が大きいため、多くの物質を吸着する性質を有することから、20世紀初頭から現在にいたるまで、工業的に広く生産されている。一般には、活性炭は、原料となる炭素材料の内部にnmオーダーの微細孔を生成させること(賦活)によって製造される。活性炭の製造方法は、原料を炭化したのち水蒸気や二酸化炭素などの賦活ガスを用いて高温で賦活処理を行うガス賦活法と、原料に塩化亜鉛やリン酸などの薬品を加えてから不活性ガス雰囲気中で加熱して炭化と賦活を同時に行う薬品賦活法に大別される(非特許文献1)。本発明において用いられる活性炭は、炭素材料として植物由来原料を用いて、上記ガス賦活法又は薬品賦活法のいずれかによって製造することができる。
 本発明において用いられる活性炭の原料は、植物由来原料である限り特に制限されないが、例えば、果実殻(ココヤシ、パームヤシ、アーモンド、クルミ、プラム)、木材(おがくず、木炭、樹脂、リグニン)、巣灰(おがくずの炭化物)、竹材、食品残渣(バガス、もみ殻、コーヒー豆、廃糖蜜)、廃棄物(パルプ工場廃液、建設廃材)などが挙げられ、典型的には、ヤシ殻、おがくず、竹、又はこれらの組み合わせから選択され、好適には、ヤシ殻である。ヤシ殻は、ココヤシ又はパームヤシの実の中にあるシェルと呼ばれる殻を意味する。
 本発明において用いられる活性炭の形状は特に限定されないが、例えば、粉末活性炭、粒状活性炭(破砕炭、顆粒炭、成型炭)、繊維状活性炭、又は特殊成型活性炭などが挙げられる。
 植物由来原料の活性炭から水系溶媒を用いてミネラルを抽出する工程は、植物由来原料の活性炭を水系溶媒と接触させて、植物由来原料の活性炭に存在するミネラルを溶出させることによって達成される。このような工程は、植物由来原料の活性炭に存在するミネラルを溶出させることができる限り特に制限されないが、例えば、植物由来原料の活性炭を水系溶媒に浸漬することや、植物由来原料の活性炭を充填したカラムに水系溶媒を通過させることによって行うことができる。植物由来原料の活性炭を水系溶媒に浸漬する場合には、抽出効率を上げるために、水系溶媒を攪拌してもよい。また、本発明のミネラル抽出液を製造する方法は、植物由来原料の活性炭から水系溶媒を用いてミネラルを抽出した後に、不純物を除去するために、得られた抽出液を遠心分離する工程、及び/又は濾過する工程などをさらに含んでもよい。
 植物由来原料の活性炭から水系溶媒を用いてミネラルを抽出する工程において用いられる水系溶媒は、基本的には、HCl溶液以外のものを指す。典型的には水溶媒であり、特に純水であることが好ましい。純水とは、塩類、残留塩素、不溶性微粒子、有機物、非電解性ガスなどの不純物を含まないか殆ど含まない純度の高い水を意味する。純水には、不純物を取り除く方法により、RO水(逆浸透膜を通した水)、脱イオン水(イオン交換樹脂などによりイオンを除去した水)、蒸留水(蒸留器で蒸留した水)などが含まれる。純水はミネラル成分を含まないことから、ミネラルを補給する効果は示さない。
 植物由来原料の活性炭から水系溶媒を用いてミネラルを抽出できる限り抽出温度は特に制限されないが、植物由来原料の活性炭から水系溶媒を用いてミネラルを抽出する工程は、5℃以上、10℃以上、15℃以上、20℃以上、25℃以上、30℃以上、35℃以上、40℃以上、45℃以上、50℃以上、55℃以上、60℃以上、65℃以上、70℃以上、75℃以上、80℃以上、85℃以上、90℃以上、又は95℃以上の温度で行うことができ、例えば、5~95℃、5~90℃、5~85℃、5~80℃、5~75℃、5~70℃、5~65℃、5~60℃、5~55℃、5~50℃、5~45℃、5~40℃、5~35℃、5~30℃、5~25℃、5~20℃、5~15℃、5~10℃、10~95℃、10~90℃、10~85℃、10~80℃、10~75℃、10~70℃、10~65℃、10~60℃、10~55℃、10~50℃、10~45℃、10~40℃、10~35℃、10~30℃、10~25℃、10~20℃、10~15℃、15~95℃、15~90℃、15~85℃、15~80℃、15~75℃、15~70℃、15~65℃、15~60℃、15~55℃、15~50℃、15~45℃、15~40℃、15~35℃、15~30℃、15~25℃、15~20℃、20~95℃、20~90℃、20~85℃、20~80℃、20~75℃、20~70℃、20~65℃、20~60℃、20~55℃、20~50℃、20~45℃、20~40℃、20~35℃、20~30℃、20~25℃、25~95℃、25~90℃、25~85℃、25~80℃、25~75℃、25~70℃、25~65℃、25~60℃、25~55℃、25~50℃、25~45℃、25~40℃、25~35℃、25~30℃、30~95℃、30~90℃、30~85℃、30~80℃、30~75℃、30~70℃、30~65℃、30~60℃、30~55℃、30~50℃、30~45℃、30~40℃、30~35℃、35~95℃、35~90℃、35~85℃、35~80℃、35~75℃、35~70℃、35~65℃、35~60℃、35~55℃、35~50℃、35~45℃、35~40℃、40~95℃、40~90℃、40~85℃、40~80℃、40~75℃、40~70℃、40~65℃、40~60℃、40~55℃、40~50℃、40~45℃、45~95℃、45~90℃、45~85℃、45~80℃、45~75℃、45~70℃、45~65℃、45~60℃、45~55℃、45~50℃、50~95℃、50~90℃、50~85℃、50~80℃、50~75℃、50~70℃、50~65℃、50~60℃、50~55℃、55~95℃、55~90℃、55~85℃、55~80℃、55~75℃、55~70℃、55~65℃、55~60℃、60~95℃、60~90℃、60~85℃、60~80℃、60~75℃、60~70℃、60~65℃、65~95℃、65~90℃、65~85℃、65~80℃、65~75℃、65~70℃、70~95℃、70~90℃、70~85℃、70~80℃、70~75℃、75~95℃、75~90℃、75~85℃、75~80℃、80~95℃、80~90℃、80~85℃、85~95℃、85~90℃、又は90~95℃の温度で行われる。
 植物由来原料の活性炭から水系溶媒を用いてミネラルを抽出できる限り抽出時間は特に制限されないが、植物由来原料の活性炭から水系溶媒を用いてミネラルを抽出する工程は、5分以上、10分以上、15分以上、20分以上、25分以上、30分以上、35分以上、40分以上、45分以上、50分以上、55分以上、60分以上、65分以上、70分以上、75分以上、又は80分以上の時間で行うことができ、例えば、5~80分、5~75分、5~70分、5~65分、5~60分、5~55分、5~50分、5~45分、5~40分、5~35分、5~30分、5~25分、5~20分、5~15分、5~10分、10~80分、10~75分、10~70分、10~65分、10~60分、10~55分、10~50分、10~45分、10~40分、10~35分、10~30分、10~25分、10~20分、10~15分、15~80分、15~75分、15~70分、15~65分、15~60分、15~55分、15~50分、15~45分、15~40分、15~35分、15~30分、15~25分、15~20分、20~80分、20~75分、20~70分、20~65分、20~60分、20~55分、20~50分、20~45分、20~40分、20~35分、20~30分、20~25分、25~80分、25~75分、25~70分、25~65分、25~60分、25~55分、25~50分、25~45分、25~40分、25~35分、25~30分、30~80分、30~75分、30~70分、30~65分、30~60分、30~55分、30~50分、30~45分、30~40分、30~35分、35~80分、35~75分、35~70分、35~65分、35~60分、35~55分、35~50分、35~45分、35~40分、40~80分、40~75分、40~70分、40~65分、40~60分、40~55分、40~50分、40~45分、45~80分、45~75分、45~70分、45~65分、45~60分、45~55分、45~50分、50~80分、50~75分、50~70分、50~65分、50~60分、50~55分、55~80分、55~75分、55~70分、55~65分、55~60分、60~80分、60~75分、60~70分、60~65分、65~80分、65~75分、65~70分、70~80分、70~75分、又は75~80分の時間で行われる。
 このようにして得られた抽出液は、当業界において周知な方法によって濃縮することができ、このような方法としては、例えば、煮沸濃縮、真空濃縮、凍結濃縮、膜濃縮、又は超音波霧化分離などが挙げられる。ミネラル抽出液を濃縮することにより、その組成を殆ど変更することなく、高濃度のカリウムなどの所望のミネラルを含有するミネラル濃縮液組成物が得られる。
 本発明のミネラル含有組成物を提供するための容器の形態は、特に制限されないが、例えば、金属容器(缶)、滴下タイプ、スプレータイプ、スポイドタイプもしくは化粧水ボトルタイプなどの樹脂容器、紙容器(ケーブルトップつきも含む)、PETボトル、パウチ容器、ガラス瓶、エアレス容器、ポーション容器、防腐剤無添加(PF)点眼容器、スティック、小型ポンプ容器、大型ポンプ容器、ポーションカップ容器、内袋内蔵ボトル、プラスチック使い切り容器、又は水溶性フィルム容器などが挙げられる。
 本発明のミネラル含有組成物を、各ミネラル成分が上述した濃度範囲となるように、水溶媒に添加して、ミネラル含有組成物が添加された水溶媒を凍らせることにより、美味しく、かつ水又は飲料の風味を改善すること可能な氷を製造することができる。製氷は、特に制限されることなく、当業界に慣習的な手法で行うことができる。
 前記水溶媒は、飲用に適した水であれば特に制限されないが、典型的には、水道水、浄水、純水又は天然水である。
 本発明の氷を添加することにより風味が改善される水は特に制限されないが、典型的には、水道水、浄水又は天然水である。
 本発明の氷を添加することにより風味が改善される飲料は特に制限されないが、典型的には、アルコール飲料、ノンアルコール飲料、炭酸飲料(ノンフレーバー系炭酸飲料、フレーバー系炭酸飲料など)、果実飲料(天然果汁、果汁飲料、果肉飲料、果汁入り混合飲料、果汁入り炭酸飲料、果汁系ニアウォーター、エードなど)、コーヒー飲料、茶系飲料(緑茶系飲料、紅茶飲料、ブレンド茶飲料、ウーロン茶飲料、麦茶飲料など)、野菜飲料、スポーツドリンク、又は乳性飲料が挙げられる。発明において、飲料には、購入後にそのまま飲めるレディ・トゥ・ドリンクだけでなく、飲料ベースや原料酒も含まれる。飲料ベースとは、適宜希釈して飲用するための飲料を意味し、例えば、カクテル調製用の飲料や濃縮タイプの飲料などが挙げられる。また、原料酒とは、アルコール飲料に配合する原料となる酒を意味する。
 本発明において、アルコール飲料又は原料酒のアルコール含有量は、アルコール成分としてエタノールを含有する限り特に制限されないが、典型的には、1v/v%以上である。
 アルコール飲料又は原料酒のアルコール原料は、特に制限されないが、スピリッツ類(ラム、ウオッカ、ジンなど)、ウイスキー、ブランデー又は焼酎、さらには醸造酒類(ビール、清酒、果実酒など)、発泡酒、混成酒類(合成清酒、甘味果実酒、リキュールなど)が挙げられ、これらのアルコール原料は、それぞれ単独又は併用して用いることができる。
 また、アルコール飲料には、果汁が配合されていてもよい。果汁の種類は、特に限定されないが、例えば、柑橘類果汁(オレンジ果汁、ミカン果汁、グレープフルーツ果汁、レモン果汁、ライム果汁など)、リンゴ果汁、ブドウ果汁、モモ果汁、熱帯果実果汁(パイナップル、グァバ、バナナ、マンゴー、アセロラ、パパイヤ、パッションフルーツなど)、その他果実の果汁(ウメ果汁、ナシ果汁、アンズ果汁、スモモ果汁、ベリー果汁、キウイフルーツ果汁など)、トマト果汁、ニンジン果汁、イチゴ果汁、メロン果汁などが挙げられる。
 上述のとおり、風味を改善すべき対象(すなわち、水又は飲料)に応じて、水溶媒に添加されるカリウムの濃度が最適となるように調整すること好ましい。例えば、前記飲料がアルコール飲料である場合、本発明のミネラル含有組成物は、添加されたカリウムイオンの濃度(ミネラル含有組成物中のカリウム濃度(ppm)/希釈倍率)が、例えば、50~500ppm、50~490ppm、50~480ppm、50~470ppm、50~460ppm、50~450ppm、50~440ppm、50~430ppm、50~420ppm、50~410ppm、50~400ppm、50~390ppm、50~380ppm、50~370ppm、50~360ppm、50~350ppm、50~340ppm、50~330ppm、50~320ppm、50~310ppm、50~300ppm、50~290ppm、50~280ppm、50~270ppm、50~260ppm、50~250ppm、50~240ppm、50~230ppm、50~220ppm、50~210ppm、50~200ppm、50~190ppm、50~180ppm、50~170ppm、50~160ppm、50~150ppm、50~140ppm、50~130ppm、50~120ppm、50~110ppm、50~100ppm、50~90ppm、50~80ppm、50~70ppm、50~60ppm、60~500ppm、60~490ppm、60~480ppm、60~470ppm、60~460ppm、60~450ppm、60~440ppm、60~430ppm、60~420ppm、60~410ppm、60~400ppm、60~390ppm、60~380ppm、60~370ppm、60~360ppm、60~350ppm、60~340ppm、60~330ppm、60~320ppm、60~310ppm、60~300ppm、60~290ppm、60~280ppm、60~270ppm、60~260ppm、60~250ppm、60~240ppm、60~230ppm、60~220ppm、60~210ppm、60~200ppm、60~190ppm、60~180ppm、60~170ppm、60~160ppm、60~150ppm、60~140ppm、60~130ppm、60~120ppm、60~110ppm、60~100ppm、60~90ppm、60~80ppm、60~70ppm、70~500ppm、70~490ppm、70~480ppm、70~470ppm、70~460ppm、70~450ppm、70~440ppm、70~430ppm、70~420ppm、70~410ppm、70~400ppm、70~390ppm、70~380ppm、70~370ppm、70~360ppm、70~350ppm、70~340ppm、70~330ppm、70~320ppm、70~310ppm、70~300ppm、70~290ppm、70~280ppm、70~270ppm、70~260ppm、70~250ppm、70~240ppm、70~230ppm、70~220ppm、70~210ppm、70~200ppm、70~190ppm、70~180ppm、70~170ppm、70~160ppm、70~150ppm、70~140ppm、70~130ppm、70~120ppm、70~110ppm、70~100ppm、70~90ppm、70~80ppm、80~500ppm、80~490ppm、80~480ppm、80~470ppm、80~460ppm、80~450ppm、80~440ppm、80~430ppm、80~420ppm、80~410ppm、80~400ppm、80~390ppm、80~380ppm、80~370ppm、80~360ppm、80~350ppm、80~340ppm、80~330ppm、80~320ppm、80~310ppm、80~300ppm、80~290ppm、80~280ppm、80~270ppm、80~260ppm、80~250ppm、80~240ppm、80~230ppm、80~220ppm、80~210ppm、80~200ppm、80~190ppm、80~180ppm、80~170ppm、80~160ppm、80~150ppm、80~140ppm、80~130ppm、80~120ppm、80~110ppm、80~100ppm、80~90ppm、90~500ppm、90~490ppm、90~480ppm、90~470ppm、90~460ppm、90~450ppm、90~440ppm、90~430ppm、90~420ppm、90~410ppm、90~400ppm、90~390ppm、90~380ppm、90~370ppm、90~360ppm、90~350ppm、90~340ppm、90~330ppm、90~320ppm、90~310ppm、90~300ppm、90~290ppm、90~280ppm、90~270ppm、90~260ppm、90~250ppm、90~240ppm、90~230ppm、90~220ppm、90~210ppm、90~200ppm、90~190ppm、90~180ppm、90~170ppm、90~160ppm、90~150ppm、90~140ppm、90~130ppm、90~120ppm、90~110ppm、90~100ppm、100~500ppm、100~490ppm、100~480ppm、100~470ppm、100~460ppm、100~450ppm、100~440ppm、100~430ppm、100~420ppm、100~410ppm、100~400ppm、100~390ppm、100~380ppm、100~370ppm、100~360ppm、100~350ppm、100~340ppm、100~330ppm、100~320ppm、100~310ppm、100~300ppm、100~290ppm、100~280ppm、100~270ppm、100~260ppm、100~250ppm、100~240ppm、100~230ppm、100~220ppm、100~210ppm、100~200ppm、100~190ppm、100~180ppm、100~170ppm、100~160ppm、100~150ppm、100~140ppm、100~130ppm、100~120ppm、100~110ppm、110~500ppm、110~490ppm、110~480ppm、110~470ppm、110~460ppm、110~450ppm、110~440ppm、110~430ppm、110~420ppm、110~410ppm、110~400ppm、110~390ppm、110~380ppm、110~370ppm、110~360ppm、110~350ppm、110~340ppm、110~330ppm、110~320ppm、110~310ppm、110~300ppm、110~290ppm、110~280ppm、110~270ppm、110~260ppm、110~250ppm、110~240ppm、110~230ppm、110~220ppm、110~210ppm、110~200ppm、110~190ppm、110~180ppm、110~170ppm、110~160ppm、110~150ppm、110~140ppm、110~130ppm、110~120ppm、120~500ppm、120~490ppm、120~480ppm、120~470ppm、120~460ppm、120~450ppm、120~440ppm、120~430ppm、120~420ppm、120~410ppm、120~400ppm、120~390ppm、120~380ppm、120~370ppm、120~360ppm、120~350ppm、120~340ppm、120~330ppm、120~320ppm、120~310ppm、120~300ppm、120~290ppm、120~280ppm、120~270ppm、120~260ppm、120~250ppm、120~240ppm、120~230ppm、120~220ppm、120~210ppm、120~200ppm、120~190ppm、120~180ppm、120~170ppm、120~160ppm、120~150ppm、120~140ppm、120~130ppm、130~500ppm、130~490ppm、130~480ppm、130~470ppm、130~460ppm、130~450ppm、130~440ppm、130~430ppm、130~420ppm、130~410ppm、130~400ppm、130~390ppm、130~380ppm、130~370ppm、130~360ppm、130~350ppm、130~340ppm、130~330ppm、130~320ppm、130~310ppm、130~300ppm、130~290ppm、130~280ppm、130~270ppm、130~260ppm、130~250ppm、130~240ppm、130~230ppm、130~220ppm、130~210ppm、130~200ppm、130~190ppm、130~180ppm、130~170ppm、130~160ppm、130~150ppm、130~140ppm、140~500ppm、140~490ppm、140~480ppm、140~470ppm、140~460ppm、140~450ppm、140~440ppm、140~430ppm、140~420ppm、140~410ppm、140~400ppm、140~390ppm、140~380ppm、140~370ppm、140~360ppm、140~350ppm、140~340ppm、140~330ppm、140~320ppm、140~310ppm、140~300ppm、140~290ppm、140~280ppm、140~270ppm、140~260ppm、140~250ppm、140~240ppm、140~230ppm、140~220ppm、140~210ppm、140~200ppm、140~190ppm、140~180ppm、140~170ppm、140~160ppm、140~150ppm、150~500ppm、150~490ppm、150~480ppm、150~470ppm、150~460ppm、150~450ppm、150~440ppm、150~430ppm、150~420ppm、150~410ppm、150~400ppm、150~390ppm、150~380ppm、150~370ppm、150~360ppm、150~350ppm、150~340ppm、150~330ppm、150~320ppm、150~310ppm、150~300ppm、150~290ppm、150~280ppm、150~270ppm、150~260ppm、150~250ppm、150~240ppm、150~230ppm、150~220ppm、150~210ppm、150~200ppm、150~190ppm、150~180ppm、150~170ppm、150~160ppm、160~500ppm、160~490ppm、160~480ppm、160~470ppm、160~460ppm、160~450ppm、160~440ppm、160~430ppm、160~420ppm、160~410ppm、160~400ppm、160~390ppm、160~380ppm、160~370ppm、160~360ppm、160~350ppm、160~340ppm、160~330ppm、160~320ppm、160~310ppm、160~300ppm、160~290ppm、160~280ppm、160~270ppm、160~260ppm、160~250ppm、160~240ppm、160~230ppm、160~220ppm、160~210ppm、160~200ppm、160~190
ppm、160~180ppm、160~170ppm、170~500ppm、170~490ppm、170~480ppm、170~470ppm、170~460ppm、170~450ppm、170~440ppm、170~430ppm、170~420ppm、170~410ppm、170~400ppm、170~390ppm、170~380ppm、170~370ppm、170~360ppm、170~350ppm、170~340ppm、170~330ppm、170~320ppm、170~310ppm、170~300ppm、170~290ppm、170~280ppm、170~270ppm、170~260ppm、170~250ppm、170~240ppm、170~230ppm、170~220ppm、170~210ppm、170~200ppm、170~190ppm、170~180ppm、180~500ppm、180~490ppm、180~480ppm、180~470ppm、180~460ppm、180~450ppm、180~440ppm、180~430ppm、180~420ppm、180~410ppm、180~400ppm、180~390ppm、180~380ppm、180~370ppm、180~360ppm、180~350ppm、180~340ppm、180~330ppm、180~320ppm、180~310ppm、180~300ppm、180~290ppm、180~280ppm、180~270ppm、180~260ppm、180~250ppm、180~240ppm、180~230ppm、180~220ppm、180~210ppm、180~200ppm、180~190ppm、190~500ppm、190~490ppm、190~480ppm、190~470ppm、190~460ppm、190~450ppm、190~440ppm、190~430ppm、190~420ppm、190~410ppm、190~400ppm、190~390ppm、190~380ppm、190~370ppm、190~360ppm、190~350ppm、190~340ppm、190~330ppm、190~320ppm、190~310ppm、190~300ppm、190~290ppm、190~280ppm、190~270ppm、190~260ppm、190~250ppm、190~240ppm、190~230ppm、190~220ppm、190~210ppm、190~200ppm、200~500ppm、200~490ppm、200~480ppm、200~470ppm、200~460ppm、200~450ppm、200~440ppm、200~430ppm、200~420ppm、200~410ppm、200~400ppm、200~390ppm、200~380ppm、200~370ppm、200~360ppm、200~350ppm、200~340ppm、200~330ppm、200~320ppm、200~310ppm、200~300ppm、200~290ppm、200~280ppm、200~270ppm、200~260ppm、200~250ppm、200~240ppm、200~230ppm、200~220ppm、200~210ppm、210~500ppm、210~490ppm、210~480ppm、210~470ppm、210~460ppm、210~450ppm、210~440ppm、210~430ppm、210~420ppm、210~410ppm、210~400ppm、210~390ppm、210~380ppm、210~370ppm、210~360ppm、210~350ppm、210~340ppm、210~330ppm、210~320ppm、210~310ppm、210~300ppm、210~290ppm、210~280ppm、210~270ppm、210~260ppm、210~250ppm、210~240ppm、210~230ppm、210~220ppm、220~500ppm、220~490ppm、220~480ppm、220~470ppm、220~460ppm、220~450ppm、220~440ppm、220~430ppm、220~420ppm、220~410ppm、220~400ppm、220~390ppm、220~380ppm、220~370ppm、220~360ppm、220~350ppm、220~340ppm、220~330ppm、220~320ppm、220~310ppm、220~300ppm、220~290ppm、220~280ppm、220~270ppm、220~260ppm、220~250ppm、220~240ppm、220~230ppm、230~500ppm、230~490ppm、230~480ppm、230~470ppm、230~460ppm、230~450ppm、230~440ppm、230~430ppm、230~420ppm、230~410ppm、230~400ppm、230~390ppm、230~380ppm、230~370ppm、230~360ppm、230~350ppm、230~340ppm、230~330ppm、230~320ppm、230~310ppm、230~300ppm、230~290ppm、230~280ppm、230~270ppm、230~260ppm、230~250ppm、230~240ppm、240~500ppm、240~490ppm、240~480ppm、240~470ppm、240~460ppm、240~450ppm、240~440ppm、240~430ppm、240~420ppm、240~410ppm、240~400ppm、240~390ppm、240~380ppm、240~370ppm、240~360ppm、240~350ppm、240~340ppm、240~330ppm、240~320ppm、240~310ppm、240~300ppm、240~290ppm、240~280ppm、240~270ppm、240~260ppm、240~250ppm、250~500ppm、250~490ppm、250~480ppm、250~470ppm、250~460ppm、250~450ppm、250~440ppm、250~430ppm、250~420ppm、250~410ppm、250~400ppm、250~390ppm、250~380ppm、250~370ppm、250~360ppm、250~350ppm、250~340ppm、250~330ppm、250~320ppm、250~310ppm、250~300ppm、250~290ppm、250~280ppm、250~270ppm、250~260ppm、260~500ppm、260~490ppm、260~480ppm、260~470ppm、260~460ppm、260~450ppm、260~440ppm、260~430ppm、260~420ppm、260~410ppm、260~400ppm、260~390ppm、260~380ppm、260~370ppm、260~360ppm、260~350ppm、260~340ppm、260~330ppm、260~320ppm、260~310ppm、260~300ppm、260~290ppm、260~280ppm、260~270ppm、270~500ppm、270~490ppm、270~480ppm、270~470ppm、270~460ppm、270~450ppm、270~440ppm、270~430ppm、270~420ppm、270~410ppm、270~400ppm、270~390ppm、270~380ppm、270~370ppm、270~360ppm、270~350ppm、270~340ppm、270~330ppm、270~320ppm、270~310ppm、270~300ppm、270~290ppm、270~280ppm、280~500ppm、280~490ppm、280~480ppm、280~470ppm、280~460ppm、280~450ppm、280~440ppm、280~430ppm、280~420ppm、280~410ppm、280~400ppm、280~390ppm、280~380ppm、280~370ppm、280~360ppm、280~350ppm、280~340ppm、280~330ppm、280~320ppm、280~310ppm、280~300ppm、280~290ppm、290~500ppm、290~490ppm、290~480ppm、290~470ppm、290~460ppm、290~450ppm、290~440ppm、290~430ppm、290~420ppm、290~410ppm、290~400ppm、290~390ppm、290~380ppm、290~370ppm、290~360ppm、290~350ppm、290~340ppm、290~330ppm、290~320ppm、290~310ppm、290~300ppm、300~500ppm、300~490ppm、300~480ppm、300~470ppm、300~460ppm、300~450ppm、300~440ppm、300~430ppm、300~420ppm、300~410ppm、300~400ppm、300~390ppm、300~380ppm、300~370ppm、300~360ppm、300~350ppm、300~340ppm、300~330ppm、300~320ppm、300~310ppm、310~500ppm、310~490ppm、310~480ppm、310~470ppm、310~460ppm、310~450ppm、310~440ppm、310~430ppm、310~420ppm、310~410ppm、310~400ppm、310~390ppm、310~380ppm、310~370ppm、310~360ppm、310~350ppm、310~340ppm、310~330ppm、310~320ppm、320~500ppm、320~490ppm、320~480ppm、320~470ppm、320~460ppm、320~450ppm、320~440ppm、320~430ppm、320~420ppm、320~410ppm、320~400ppm、320~390ppm、320~380ppm、320~370ppm、320~360ppm、320~350ppm、320~340ppm、320~330ppm、330~500ppm、330~490ppm、330~480ppm、330~470ppm、330~460ppm、330~450ppm、330~440ppm、330~430ppm、330~420ppm、330~410ppm、330~400ppm、330~390ppm、330~380ppm、330~370ppm、330~360ppm、330~350ppm、330~340ppm、340~500ppm、340~490ppm、340~480ppm、340~470ppm、340~460ppm、340~450ppm、340~440ppm、340~430ppm、340~420ppm、340~410ppm、340~400ppm、340~390ppm、340~380ppm、340~370ppm、340~360ppm、340~350ppm、350~500ppm、350~490ppm、350~480ppm、350~470ppm、350~460ppm、350~450ppm、350~440ppm、350~430ppm、350~420ppm、350~410ppm、350~400ppm、350~390ppm、350~380ppm、350~370ppm、350~360ppm、360~500ppm、360~490ppm、360~480ppm、360~470ppm、360~460ppm、360~450ppm、360~440ppm、36
0~430ppm、360~420ppm、360~410ppm、360~400ppm、360~390ppm、360~380ppm、360~370ppm、370~500ppm、370~490ppm、370~480ppm、370~470ppm、370~460ppm、370~450ppm、370~440ppm、370~430ppm、370~420ppm、370~410ppm、370~400ppm、370~390ppm、370~380ppm、380~500ppm、380~490ppm、380~480ppm、380~470ppm、380~460ppm、380~450ppm、380~440ppm、380~430ppm、380~420ppm、380~410ppm、380~400ppm、380~390ppm、390~500ppm、390~490ppm、390~480ppm、390~470ppm、390~460ppm、390~450ppm、390~440ppm、390~430ppm、390~420ppm、390~410ppm、390~400ppm、400~500ppm、400~490ppm、400~480ppm、400~470ppm、400~460ppm、400~450ppm、400~440ppm、400~430ppm、400~420ppm、400~410ppm、410~500ppm、410~490ppm、410~480ppm、410~470ppm、410~460ppm、410~450ppm、410~440ppm、410~430ppm、410~420ppm、420~500ppm、420~490ppm、420~480ppm、420~470ppm、420~460ppm、420~450ppm、420~440ppm、420~430ppm、430~500ppm、430~490ppm、430~480ppm、430~470ppm、430~460ppm、430~450ppm、430~440ppm、440~500ppm、440~490ppm、440~480ppm、440~470ppm、440~460ppm、440~450ppm、450~500ppm、450~490ppm、450~480ppm、450~470ppm、450~460ppm、460~500ppm、460~490ppm、460~480ppm、460~470ppm、470~500ppm、470~490ppm、470~480ppm、480~500ppm、480~490ppm、又は490~500ppmとなるように調製することができる。
 具体的には、前記飲料がウイスキーや焼酎である場合、前記ミネラル含有組成物は、添加されたカリウムイオンの濃度が、上述の濃度範囲のうち、例えば、50~100ppmの範囲内で適宜調製することができる。また、前記飲料がレモンサワーである場合、前記ミネラル含有組成物は、添加されたカリウムイオンの濃度が、上述の濃度範囲のうち、例えば、50~500ppmの範囲内で適宜調製することができる。
 本発明の氷を水又は飲料に添加することにより、その風味を改善することができる。
 以下、実施例を示し、本発明を更に詳細に説明する。但し、本発明は以下の実施例に限定されるものではなく、適宜変更を加えて実施することが可能である。
<実施例1:ヤシ殻活性炭からのミネラル抽出液の作製>
 1L三角フラスコにヤシ殻活性炭(「太閤CWタイプ」未洗浄品/フタムラ化学社製)30g、及び90℃に加温した蒸留水400gを入れ、90℃で加温しながら100rpmで15分間、撹拌子によって攪拌した。得られた懸濁液をポリエステル500メッシュ(25μm)で吸引濾過し、これにより得られた濾液を3000rpmで10分間遠心分離した。遠心分離した後の上清を濾紙で吸引濾過し、ミネラル抽出液を得た。
<実施例2:活性炭の比較>
 ヤシ殻活性炭をクラレコール(登録商標)GG(未洗浄品/クラレ社製)に変更したこと以外は実施例1と同様の方法でミネラル抽出液を作成した。
<実施例3-6:抽出時間の比較>
 抽出時間を10、20、40、80分に変更したこと以外は実施例1と同様の方法でミネラル抽出液を作成した。
<実施例7-9:蒸留水量、抽出時間の比較>
 蒸留水を130、200、400g、抽出時間を5分に変更したこと以外は実施例1と同様の方法でミネラル抽出液を作成した。
<実施例10-12:抽出温度、抽出時間の比較>
 抽出温度を30、60、90℃、抽出時間を5分に変更したこと以外は実施例1と同様の方法でミネラル抽出液を作成した。
 実施例1-12で作成したミネラル抽出液を下記の方法に従って分析した。
<金属のICP分析>
 ICP発光分光分析装置:iCAP6500Duo(サーモフィッシャーサイエンティフィック社製)を使用した。ICP汎用混合液XSTC-622Bを希釈して0、0.1、0.5、1.0mg/Lの4点検量線を作成した。試料を検量線範囲に入るように希硝酸で希釈し、ICP測定を行った。
<Cl-,SO4 2-のIC分析>
 イオンクロマトグラフシステム:ICS-5000K(日本ダイオネクス社製)を使用した。カラムはDionex Ion Pac AG20及びDionex Ion Pac AS20を用いた。溶離液は0~11分は5mmol/L、13~18分は13mmol/L、20~30分は45mmol/Lの水酸化カリウム水溶液を用い、0.25mL/分の流量で溶出した。陰イオン混合標準液1(Cl-20mg/L、SO4 2-100mg/L含む7イオン種含有:富士フイルム和光純薬社製)を希釈して、Cl-は0、0.1、0.2、0.4、1.0mg/Lの5点検量線を、SO4 2-は0、0.5、1.0、2.0、5.0mg/Lの5点検量線を作成した。試料を検量線範囲に入るように希釈し、25μL注入してIC測定を行った。
 結果を下記の表に示す。
Figure JPOXMLDOC01-appb-T000001
 活性炭、抽出時間、活性炭に対する抽出液量、抽出温度を変更してもカリウム濃度が有意に高いという特徴は変わらなかった。また、HClを用いた場合には有意な量の塩化物イオンが抽出された一方(データは示さず)で、いずれの実施例においても、塩化物イオンの濃度は低かった。なお、上記いずれの実施例においても、重金属類(鉛、カドミウム、ヒ素、水銀など)は検出されなかった(データは示さず)。
<実施例13:濃縮液の作成>
 1L三角フラスコにヤシ殻活性炭(「太閤CWタイプ」未洗浄品/フタムラ化学社製)174g、及び30℃に加温した蒸留水753gを入れ、30℃で加温しながら100rpmで5分間、撹拌子によって攪拌した。得られた懸濁液をポリエステル500メッシュ(25μm)で吸引濾過し、これにより得られた濾液を3000rpmで10分間遠心分離した。遠心分離した後の上清を濾紙で吸引濾過し、ミネラル抽出液を得た。同様に、さらに2回実施した。得られた3回のミネラル抽出液を混合し、エバポレーターによって62倍に濃縮し、下記に示すミネラル濃縮エキスを得た。
 実施例13で作成したミネラル抽出液とミネラル濃縮エキスを62倍に希釈したものを上記の方法に従って分析した。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000002
 濃縮の条件を経ても、カリウム濃度が高く、ナトリウム、塩化物イオンの濃度が低い特徴は変わらなかった。
<実施例14:ヤシ殻活性炭からのミネラル濃縮エキスの作製>
 1L三角フラスコにヤシ殻活性炭(「太閤CWタイプ」未洗浄品/フタムラ化学社製)200g、及び90℃に加温した蒸留水1500gを入れ、90℃で加温しながら100rpmで15分間、撹拌子によって攪拌した。得られた懸濁液をポリエステル500メッシュ(25μm)で吸引濾過し、これにより得られた濾液を3000rpmで10分間遠心分離した。遠心分離した後の上清を濾紙で吸引濾過し、ミネラル抽出液を得た。得られたミネラル抽出液を、エバポレーターによって14倍に濃縮し、下記に示すミネラル濃縮エキスを得た。
Figure JPOXMLDOC01-appb-T000003
<実施例15:緩衝能評価-I>
(1)評価用サンプルの作成
 カリウム濃度がそれぞれ下記で示す濃度となるように、上記で得られたミネラル濃縮エキスを、超純水(MilliQ水)に添加し、評価用サンプルを作製した。
Figure JPOXMLDOC01-appb-T000004
(2)pHの測定
 上記で得られた抽出液の他、比較例として下記のサンプルを用意した。各サンプル100mlに対し、0.1N HClを撹拌子で攪拌しながら1mlずつ添加し、pHを測定した。
 ・KOH
 ・市販のアルカリイオン水(Na:8.0mg/l、K:1.6mg/l、Ca:13mg/l、Mg:6.4mg/l、pH値:8.8~9.4)
 pH9.2に調整した水酸化ナトリウム溶液100gに対して0.1M塩酸で滴定し、pH9.2からpH3.0までに要した液量を(A)mLとし、前記ミネラル含有水組成物を0.1M塩酸で滴定し、pH9.2からpH3.0までに要した液量を(B)mLとしたときの比(B)/(A)を緩衝能とした。
 図1に示すとおり、ヤシ殻活性炭由来のミネラル濃縮エキスを添加した水は、優れた緩衝能を有することが判明した。
<実施例16:緩衝能評価-II>
(1)比較例及び評価用サンプルの作成
 比較例として、浄水(水道水をWater Stand社製の浄水器で処理したもの)、及び、実施例1と同じ、市販のアルカリイオン水を用意した。また、カリウム濃度が100ppmとなるように、実施例1で得られたミネラル濃縮エキスを、浄水(上記に同じ)に添加し、評価用サンプルを作製した。
(2)pHの測定
 上記で得られたサンプルを実施例2と同様に緩衝能の評価を行った。すなわち、各サンプル100mlに対し、0.1N HClを撹拌子で攪拌しながら1mlずつ添加し、pHを測定した。
 図2に示すとおり、水道水の浄水にヤシ殻活性炭由来のミネラル濃縮エキスを添加した水は、浄水やアルカリイオン水に比べて、優れた緩衝能を有することが判明した。
<実施例17:ヤシ殼活性炭からのミネラル濃縮エキスの作製>
=パイロットスケール=
 ヤシ殼活性炭(「太閤」、塩酸未洗浄品、フタムラ化学社製)40kgに180Lの純水を通液し、得られた懸濁液をメッシュ及び遠心分離によって清澄化し、ミネラル抽出液を得た。遠心式薄膜真空蒸発装置によって92倍に減圧濃縮し、得られた濃縮液を遠心分離及び濾紙によって清澄化した。これを各1Lのビニールパウチに充填し、85℃、30分間熱処理し、ミネラル濃縮処理エキスを得た。得られたミネラル濃縮処理エキスのカリウムイオン濃度、ナトリウムイオン濃度、カルシウムイオン濃度、マグネシウムイオン濃度はICP発光分光分析法に従い、塩化物イオン濃度はイオンクロマトグラフ法、TOCは全有機炭素計測定法で分析した。また、得られたミネラル濃縮処理エキスについて2週間冷蔵にて保管後、「-」(透明性が高く浮遊物および沈殿物が認められない)、「+」(わずかに浮遊物または沈殿物が認められる)、「++」(浮遊物や凝集物が多く認められる)、「+++」(浮遊物や凝集物がさらに多く認められ、透明性が失われている)、「++++」(浮遊物が多く凝集物が堆積し、透明性が低い)の五段階で濁りの程度の目視評価を行った。
<実施例18:ヤシ殼活性炭からのミネラル濃縮エキスの作製>
=ラボ・スモールスケール=
 ヤシ殼活性炭(粒状白鷺、塩酸未洗浄品、大阪ガスケミカル社製)200gと蒸留水910gを入れ、30℃で加温しながら100rpmで20分間、撹拌子によって攪拌した。得られた懸濁液を濾紙(東洋濾紙株式会社ADVANTEC定量濾紙No.5Cφ55mm)で吸引濾過し、これにより得られた濾液をさらに濾紙(MERCKOmnipore PTFE Membrane 5.0μmφ47mm)で吸引濾過し、ミネラル抽出液を得た。これを十分量のミネラル抽出液が得られるまで複数回繰り返し、ミネラル抽出液全体を混合した後、ロータリーエバポレーターによって50倍に減圧濃縮し、得られた濃縮液を濾紙(東洋濾紙株式会社 ADVANTEC 25ASO20AN 0.2μm)で濾過し、ミネラル濃縮エキスを得た。このミネラル濃縮液に塩酸を添加し、pHが9.5程度付近になるように調整し、これをバイアル瓶に10mL小分け充填し、2日間冷蔵にて保管した。その後、濾紙(東洋濾紙株式会社 ADVANTEC 25ASO20AN 0.2μm)で冷時濾過し、これを80℃、30分間熱処理し、ミネラル濃縮処理エキスを得た。得られたミネラル濃縮処理エキスのカリウムイオン濃度、ナトリウムイオン濃度、カルシウムイオン濃度、マグネシウムイオン濃度は高周波誘導結合プラズマ発光分光分析法(ICP-AES)に従って分析し、塩化物イオン濃度、硫酸イオン濃度はイオンクロマトグラフィー(IC)に従って分析した。また、得られたミネラル濃縮処理エキスについて2週間冷蔵にて保管後、「-」(透明性が高く浮遊物および沈殿物が認められない)、「+」(わずかに浮遊物または沈殿物が認められる)、「++」(浮遊物や凝集物が多く認められる)、「+++」(浮遊物や凝集物がさらに多く認められ、透明性が失われている)、「++++」(浮遊物が多く凝集物が堆積し、透明性が低い)の五段階で濁りの程度の目視評価を行った。
<実施例19:ヤシ殼活性炭からのミネラル濃縮エキスの作製>
=ラボ・ラージスケール=
 ヤシ殼活性炭(粒状白鷺、塩酸未洗浄品、大阪ガスケミカル社製)800gと蒸留水3660gを入れ、30℃で加温しながら15分間、攪拌した。得られた懸濁液を濾紙(東洋濾紙株式会社 ADVANTEC A080A090C)で吸引濾過し、ミネラル抽出液を得た。これを十分量のミネラル抽出液が得られるまで複数回繰り返し、ミネラル抽出液全体を混合した後、ロータリーエバポレーターによって60倍に減圧濃縮し、得られた濃縮液を濾紙(東洋濾紙株式会社 ADVANTEC A080A090C)で濾過し、ミネラル濃縮エキスを得た。これをバイアル瓶に10mL小分け充填し、2日間冷蔵にて保管した。その後、濾紙(東洋濾紙株式会社 ADVANTEC A080A090C)で冷時濾過した。これに塩酸を添加し、pHが9.5程度付近になるように調整し、さらに純水によってカリウムイオン濃度が100000ppm程度になるよう希釈調整した。これを80℃、30分間熱処理し、ミネラル濃縮処理エキスを得た。得られたミネラル濃縮処理エキスのカリウムイオン濃度、ナトリウムイオン濃度、カルシウムイオン濃度、マグネシウムイオン濃度、硫酸イオンはイオンクロマトグラフィー(IC)に従い、塩化物イオン濃度はイオンクロマトグラフ法、TOCは全有機炭素計測定法で分析した。また、得られたミネラル濃縮処理エキスについて2週間冷蔵にて保管後、「-」(透明性が高く浮遊物および沈殿物が認められない)、「+」(わずかに浮遊物または沈殿物が認められる)、「++」(浮遊物や凝集物が多く認められる)、「+++」(浮遊物や凝集物がさらに多く認められ、透明性が失われている)、「++++」(浮遊物が多く凝集物が堆積し、透明性が低い)の五段階で濁りの程度の目視評価を行った。
<実施例20:ヤシ殼活性炭からのミネラル濃縮エキスの作製>
=パイロットスケール=
 2500Lコニカルタンクにヤシ殼活性炭(「粒状白鷺、未洗浄品、大阪ガスケミカル社製)360kgと35℃純水1620kgを入れ、15分間攪拌し、得られた懸濁液を振動篩及び遠心分離、濾紙濾過に清澄化し、ミネラル抽出液を得た。遠心式薄膜真空蒸発装置によって60倍に減圧濃縮し、得られた濃縮液を濾紙で濾過し、ミネラル濃縮エキスを得た。ドラム缶に充填して2日間冷蔵にて保管し、その後、濾紙で冷時濾過した。これに塩酸を添加し、pHが9.5程度付近になるように調整し、さらに純水によってカリウムイオン濃度が100000ppm程度になるよう希釈調整した。これを130℃、30秒間熱処理し、ミネラル濃縮処理エキスを得た。得られたミネラル濃縮処理エキスのカリウムイオン濃度、ナトリウムイオン濃度、カルシウムイオン濃度、マグネシウムイオン濃度、硫酸イオンはイオンクロマトグラフィー(IC)に従い、塩化物イオン濃度はイオンクロマトグラフ法、TOCは燃焼酸化-赤外線TOC分析法で分析した。また、得られたミネラル濃縮処理エキスについて2週間冷蔵にて保管後、「-」(透明性が高く浮遊物および沈殿物が認められない)、「+」(わずかに浮遊物または沈殿物が認められる)、「++」(浮遊物や凝集物が多く認められる)、「+++」(浮遊物や凝集物がさらに多く認められ、透明性が失われている)、「++++」(浮遊物が多く凝集物が堆積し、透明性が低い)の五段階で濁りの程度の目視評価を行い、さらに濁度計(HACH社 2100AN TURBISIMETRER)を用いてNTU濁度を測定した。
 実施例17-20の結果を表5に示す。ミネラルエキスの成分として、実施例17ではカリウム濃度が60994ppm、塩化物イオン濃度が3030ppm、pHが11.1のミネラルエキスが得られ、実施例18ではカリウム濃度が87500ppm、塩化物イオン濃度が32890ppm、pHが9.50のミネラルエキスが得られ、実施例19ではカリウム濃度が100000ppm、塩化物イオン濃度が13132ppm、pHが9.51のミネラルエキスが得られ、実施例20ではカリウム濃度が111747ppm、塩化物イオン濃度が8545ppm、pHが9.48のミネラルエキスが得られた。また、濁りの観点では、実施例17では「++++」(浮遊物が多く凝集物が堆積し、透明性が低い)という評価であった一方で、冷蔵保管及び冷時濾過を行った実施例18、実施例19及び実施例20ではいずれも「++」(浮遊物や凝集物が多く認められる)の評価となった。特に、pH調整を冷蔵保管及び冷時濾過より前に行った実施例18では、「-」(透明性が高く浮遊物及び沈殿物が認められない)となった。このことから、透明性の高いミネラルエキスを得るためには、冷蔵保管及び冷時濾過を行うのが望ましく、pH調整を行う場合は冷蔵保管及び冷時濾過より前に行うのが望ましいことが判明した。
Figure JPOXMLDOC01-appb-T000005
<実施例21:水における官能評価-カリウム濃度の影響>
 水は浄水(水道水を浄水器処理したもの)と水道水を用意し、水中の添加されるカリウム濃度が下記に示す濃度となるように、実施例17と同様にして得られたミネラル濃縮エキス(カリウム濃度:104000ppm)を添加して水の官能評価を実施した。
 官能評価は、訓練された評価パネラー4名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが香味大変不良;1点=変化があるが香味不良;2点=変化なし;3点=変化があり香味良好;4点=変化があり香味大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000006
 ミネラル濃縮エキスを添加した浄水及び水道水では、50~100ppmのカリウム濃度において風味が有意に改善された。特に、水道水では、50~100ppmのカリウム濃度において、ミネラル濃縮エキスの添加前と比較してカルキ臭の有意な低減が確認された。
<実施例22:水における官能評価-pH影響>
 水は浄水(水道水を浄水器処理したもの)と水道水を用意し、実施例17と同様にして得られたミネラル濃縮エキス(カリウム濃度:53375ppm)を塩酸で各pH(pH11.2、10.2、9.2及び8.1)に調整後、水中の添加されるカリウム濃度がそれぞれ下記に示す濃度となるように添加して水の官能評価を実施した。
 官能評価は、訓練された評価パネラー5名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが香味大変不良;1点=変化があるが香味不良;2点=変化なし;3点=変化があり香味良好;4点=変化があり香味大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000007
 pH8.1~11.2、特にpH8.1~10.2に調整したミネラル濃縮エキスを添加したミネラル水において広いカリウム濃度範囲で香味が有意に改善された。また、水道水では、50ppm以上のカリウム濃度において、どのpHにおいてもミネラル濃縮エキスの添加前と比較してカルキ臭の有意な低減が確認されたが、各pHとカリウム濃度により、香味良好なpH-カリウム濃度領域がそれぞれ得られた。浄水においても、各pHとカリウム濃度により、香味良好なpH-カリウム濃度領域がそれぞれ得られた。
<実施例23:氷における飲料に対する味覚改善効果>
 水は浄水(水道水を浄水器処理したもの)と水道水と市販のミネラル水(天然水)を用意し、水中の添加されるカリウム濃度がそれぞれ下記に示す濃度となるように、実施例17と同様にして得られたミネラル濃縮エキス(カリウム濃度:53375ppm)を添加後、10mlずつカップに入れて一晩冷凍、取り出し5分後、氷の風味について官能評価を実施した。
 官能評価は、訓練された評価パネラー4名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが香味大変不良;1点=変化があるが香味不良;2点=変化なし;3点=変化があり香味良好;4点=変化があり香味大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000008
 浄水、水道水及び市販のミネラル水(天然水)にミネラル濃縮エキスを添加して製造した氷では、50~100ppmのカリウム濃度において氷自体の風味が有意に改善された。
 上記で得られた各氷をアルコール濃度40%のウイスキー360μlに添加し、ウイスキーの風味(味わい、香り立ち)について官能評価を実施した。
 官能評価は、訓練された評価パネラー4名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが香味大変不良;1点=変化があるが香味不良;2点=変化なし;3点=変化があり香味良好;4点=変化があり香味大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000009
 浄水、水道水及び市販のミネラル水(天然水)にミネラル濃縮エキスを添加して製造した氷をウイスキーに添加したところ、ミネラル濃縮エキスを添加していない氷と比較して、50~100ppmのカリウム濃度においてウイスキーの風味が有意に改善された。
 上記で得られた各氷をアルコール濃度25%の焼酎1400μlに添加し、焼酎の風味(味わい、香り立ち)について官能評価を実施した。
 官能評価は、訓練された評価パネラー4名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが香味大変不良;1点=変化があるが香味不良;2点=変化なし;3点=変化があり香味良好;4点=変化があり香味大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000010
 浄水、水道水及び市販のミネラル水(天然水)にミネラル濃縮エキスを添加して製造した氷を焼酎に添加したところ、ミネラル濃縮エキスを添加していない氷と比較して、50~100ppmのカリウム濃度において焼酎の風味が有意に改善された。
 上記で得られた各氷をレモンサワー1400μlに添加し、レモンサワーの風味(味わい、香り立ち)について官能評価を実施した。
 官能評価は、訓練された評価パネラー4名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが香味大変不良;1点=変化があるが香味不良;2点=変化なし;3点=変化があり香味良好;4点=変化があり香味大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000011
 浄水、水道水及び市販のミネラル水(天然水)にミネラル濃縮エキスを添加して製造した氷をレモンサワーに添加したところ、ミネラル濃縮エキスを添加していない氷と比較して、50~500ppmのカリウム濃度においてレモンサワーの風味が有意に改善された。
 水道水で製造した氷では、50~100ppmのカリウム濃度において、ミネラル濃縮エキスを添加しないものと比較してカルキ臭の有意な低減が確認された。
<実施例24:抽出系飲料における官能評価>
 水は浄水(水道水を浄水器処理したもの)と水道水と市販のミネラル水(天然水)を用意し、水中の添加されるカリウム濃度がそれぞれ下記に示す濃度となるように、実施例17と同様にして得られたミネラル濃縮エキス(カリウム濃度:53375ppm)を添加後、沸騰させ、コーヒー及び緑茶の抽出水(100ml)とした。
 コーヒーの抽出は、各カップ分にブラジル産コーヒー豆10gを計量して、粉砕機で粉砕したのち、上記沸騰した抽出水を注ぐことにより行い、4分置いたのちコーヒー抽出液の官能評価を行った。
 コーヒーの官能評価は、ミルク及び砂糖なし、ミルク入り(15mlに500μlのミルクを添加)、砂糖入り(50mlに3gのグラニュー糖を添加)、ミルク及び砂糖入り(50mlに3gのグラニュー糖及び166μlのミルクを添加)の4種類で行い、訓練された評価パネラー4名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが香味大変不良;1点=変化があるが香味不良;2点=変化なし;3点=変化があり香味良好;4点=変化があり香味大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000012
 ミネラル濃縮エキスを添加した浄水、水道水及び市販のミネラル水(天然水)を抽出溶媒として用いて抽出したコーヒーでは、ミネラル濃縮エキスを添加していない抽出溶媒を用いた場合と比較して、50~300ppmのカリウム濃度においてコーヒーの風味が有意に改善された。
 緑茶の抽出は、各カップ分に茶葉2gを計量して、上記沸騰した抽出水を注ぐことにより行い、3分置いたのち緑茶抽出液の官能評価を行った。
 官能評価は、訓練された評価パネラー4名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが香味大変不良;1点=変化があるが香味不良;2点=変化なし;3点=変化があり香味良好;4点=変化があり香味大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000013
 ミネラル濃縮エキスを添加した浄水、水道水及び市販のミネラル水(天然水)を抽出溶媒として用いて抽出した茶では、ミネラル濃縮エキスを添加していない抽出溶媒を用いた場合と比較して、50~100ppmのカリウム濃度において茶の風味が有意に改善された。
<実施例25:各種飲料における官能評価>
 各種飲料に、飲料中の添加されるカリウム濃度がそれぞれ下記に示す濃度となるように、実施例17と同様にして得られたミネラル濃縮エキス(カリウム濃度:96900ppm)を添加して、各飲料について官能評価を行った。
 官能評価は、訓練された評価パネラー4名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが香味大変不良;1点=変化があるが香味不良;2点=変化なし;3点=変化があり香味良好;4点=変化があり香味大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000014
 上記表から、ミネラル濃縮エキスを添加したアルコール飲料では、50~600ppmのカリウム濃度、特に50~100ppmの濃度範囲において風味が有意に改善されることが確認された。また、ノンアルコールビールでは、50~300ppmのカリウム濃度において風味が有意に改善された。
Figure JPOXMLDOC01-appb-T000015
 ミネラル濃縮エキスを各種飲料に添加したところ、コーラ飲料又はレモン系炭酸飲料では、50~100ppmのカリウム濃度において風味が有意に改善され、オレンジ系果汁飲料では、50~300ppmのカリウム濃度において風味が有意に改善され、緑茶飲料又は麦茶飲料では、50~100ppmのカリウム濃度において風味が有意に改善され、ブラックコーヒー飲料では、50~300ppmのカリウム濃度において風味が有意に改善され、ミルク入り紅茶飲料では、50~300ppmのカリウム濃度において風味が有意に改善された。
<実施例26:炭酸飲料の泡質評価>
 水は浄水(水道水を浄水器処理したもの)と水道水を用意し、水中の添加されるカリウム濃度がそれぞれ下記に示す濃度となるように、実施例17と同様にして得られたミネラル濃縮エキス(カリウム濃度:104000ppm)を添加して調整後、ガス圧を2.1±0.2kg/cm2に揃えたソーダサイフォンで炭酸を付けてサンプルとし、泡質(「泡の細かさ」、「炭酸の飲みこみやすさ」及び「後味のキレ」)の評価を行った。
 評価は、訓練された評価パネラー4名により、事前に評価パネラー間で評価基準のすり合わせを行った上で実施した。評価は、ミネラル濃縮エキスを添加していないものをコントロールとして用いて、各パネラーによる以下の4段階の評価点(0点=変化があるが大変不良;1点=変化があるが不良;2点=変化なし;3点=変化があり良好;4点=変化があり大変良好)を合計した後にそれぞれの平均値を算出し、平均値が1以下である場合を×、1.1以上2以下である場合を△、2.1以上3以下である場合を〇、3.1以上である場合を◎とした。
Figure JPOXMLDOC01-appb-T000016
 浄水及び水道水にミネラル濃縮エキスを添加した炭酸水では、50~300ppmのカリウム濃度において泡質が有意に改善された。

Claims (14)

  1.  水又は飲料の風味を改善する氷を製造するためのミネラル含有組成物であって、前記ミネラル含有組成物中に存在する金属イオンのうち、カリウムイオンが最も高い濃度で含まれていることを特徴とする、ミネラル含有組成物。
  2.  前記ミネラル含有組成物が、塩化物イオン、カルシウムイオン、マグネシウムイオン、ナトリウムイオン、鉄イオン、亜鉛イオン、ケイ素イオン、及び/又は硫酸イオンをさらに含むことを特徴とする、請求項1に記載のミネラル含有組成物。
  3.  前記ミネラル含有組成物中の塩化物イオンの含有量が、前記カリウムイオン濃度の50%以下であることを特徴とする、請求項1又は2に記載のミネラル含有組成物。
  4.  前記ミネラル含有組成物中のカルシウムイオンの含有量が、前記カリウムイオン濃度の2.0%以下であることを特徴とする、請求項1~3のいずれか1項に記載のミネラル含有組成物。
  5.  前記ミネラル含有組成物中のマグネシウムイオンの含有量が、前記カリウムイオン濃度の1.0%以下であることを特徴とする、請求項1~4のいずれか1項に記載のミネラル含有組成物。
  6.  前記ミネラル含有組成物中のナトリウムの含有量が、前記カリウムイオン濃度の5~45%であることを特徴とする、請求項1~5のいずれか1項に記載のミネラル含有組成物。
  7.  前記ミネラル含有組成物が、植物由来原料の活性炭抽出物を含むことを特徴とする、請求項1~6のいずれか1項に記載のミネラル含有組成物。
  8.  前記植物由来原料が、ココヤシ、パームヤシ、アーモンド、クルミ又はプラムの果実殻;おがくず、木炭、樹脂又はリグニンから選択される木材;巣灰;竹材;バガス、もみ殻、コーヒー豆又は廃糖蜜から選択される食品残渣;あるいはこれらの組み合わせから選択されることを特徴とする、請求項7に記載のミネラル含有組成物。
  9.  水又は飲料の風味を改善する氷を製造するための方法であって、水溶媒に請求項1~8のいずれか1項に記載のミネラル含有組成物を添加し、前記ミネラル含有組成物が添加された水溶媒を凍らせる工程を含むことを特徴とする、方法。
  10.  前記水溶媒が、水道水、浄水、純水又は天然水であることを特徴とする、請求項9に記載の方法。
  11.  前記飲料がアルコール飲料である場合、前記ミネラル含有組成物は、添加されたカリウムイオンの濃度が50ppm~500ppmになるように水溶媒に添加されることを特徴とする、請求項9又は10に記載の方法。
  12.  請求項1~8のいずれか1項に記載のミネラル含有組成物を含むことを特徴とする、水又は飲料の風味を改善する氷。
  13.  水道水、浄水、純水又は天然水から選択される水溶媒を含むことを特徴とする、請求項12に記載の氷。
  14.  前記飲料がアルコール飲料である場合、添加されたカリウムイオンの濃度として50ppm~500ppmのカリウムイオンを含むことを特徴とする、請求項12又は13に記載の氷。
PCT/JP2021/006226 2020-02-18 2021-02-18 水又は飲料の風味を改善する氷を製造するためのミネラル含有組成物 WO2021167031A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/798,942 US20230071432A1 (en) 2020-02-18 2021-02-18 Mineral-containing composition for producing ice for improving flavor of water or beverage
JP2022501992A JPWO2021167031A1 (ja) 2020-02-18 2021-02-18
AU2021224002A AU2021224002A1 (en) 2020-02-18 2021-02-18 Mineral-containing composition for producing ice for improving flavor of water or beverage
EP21757353.4A EP4108101A4 (en) 2020-02-18 2021-02-18 MINERAL COMPOSITION FOR PRODUCING ICE TO IMPROVE THE TASTE OF WATER OR BEVERAGES

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020025725 2020-02-18
JP2020-025725 2020-02-18
JP2020025724 2020-02-18
JP2020-025724 2020-02-18
JP2020-041409 2020-03-10
JP2020041409 2020-03-10
JP2020-189872 2020-11-13
JP2020189872 2020-11-13

Publications (1)

Publication Number Publication Date
WO2021167031A1 true WO2021167031A1 (ja) 2021-08-26

Family

ID=77391941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006226 WO2021167031A1 (ja) 2020-02-18 2021-02-18 水又は飲料の風味を改善する氷を製造するためのミネラル含有組成物

Country Status (6)

Country Link
US (1) US20230071432A1 (ja)
EP (1) EP4108101A4 (ja)
JP (1) JPWO2021167031A1 (ja)
AU (1) AU2021224002A1 (ja)
TW (1) TW202143855A (ja)
WO (1) WO2021167031A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874610A (ja) * 1981-10-30 1983-05-06 Nichirei:Kk アルカリイオン氷及びその製造法
JPS6295193A (ja) * 1985-10-18 1987-05-01 Sekisui Chem Co Ltd ミネラルウオ−タ−製造具
JPS6295194A (ja) * 1985-10-18 1987-05-01 Sekisui Chem Co Ltd ミネラルウオ−タ−製造剤
JPS62125275A (ja) * 1985-11-26 1987-06-06 本田冷蔵株式会社 ミネラル富化氷の製造方法
JPH0440290A (ja) * 1990-06-07 1992-02-10 Shisayoshi Shimozaka ミネラル水およびミネラル氷
JP2006204191A (ja) * 2004-01-30 2006-08-10 Kao Corp コーヒー飲料組成物
JP2014140360A (ja) * 2012-12-28 2014-08-07 Kao Corp コーヒー組成物の製造方法
JP2017079618A (ja) * 2015-10-26 2017-05-18 花王株式会社 コーヒー抽出液の製造方法
JP2017112909A (ja) * 2015-12-24 2017-06-29 アサヒビール株式会社 コク及び嗜好性が増強されたアルコールテイスト飲料
JP2018042533A (ja) * 2016-09-16 2018-03-22 サントリーホールディングス株式会社 加熱処理活性炭含有飲料
JP6526354B1 (ja) * 2017-09-25 2019-06-05 サントリーホールディングス株式会社 カリウム含有無色透明飲料
JP2019176873A (ja) * 2017-09-25 2019-10-17 サントリーホールディングス株式会社 カリウム含有無色透明飲料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710385B2 (ja) * 1987-12-28 1995-02-08 積水化学工業株式会社 水道水脱臭剤
EP0587972A1 (en) * 1992-09-18 1994-03-23 The Procter & Gamble Company Sports drink without added sugar or artificial sweetener
US5306511A (en) * 1993-03-18 1994-04-26 Sang Whang Enterprises, Inc. Alkaline additive for drinking water
JPH06343981A (ja) * 1993-06-03 1994-12-20 Katsufumi Akizuki ミネラルウオーターの製造方法
JP3245570B2 (ja) * 1999-03-01 2002-01-15 株式会社チャコ 洗浄剤
JP2001259659A (ja) * 2000-03-15 2001-09-25 Chaco:Kk アルカリ水
JP3680825B2 (ja) * 2002-08-19 2005-08-10 株式会社木炭屋 洗浄剤
JP4046288B2 (ja) * 2004-01-22 2008-02-13 群逸 若槻 竹炭ミネラルウオーターの短時間、量産製造法及び無色透明な竹炭ミネラルウオーター用竹炭パック
US9986752B2 (en) * 2008-05-23 2018-06-05 Lawrence M. Green Base medicinal liquid formulation for supporting the specific homeostatic acid-base balance of living tissue

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874610A (ja) * 1981-10-30 1983-05-06 Nichirei:Kk アルカリイオン氷及びその製造法
JPS6295193A (ja) * 1985-10-18 1987-05-01 Sekisui Chem Co Ltd ミネラルウオ−タ−製造具
JPS6295194A (ja) * 1985-10-18 1987-05-01 Sekisui Chem Co Ltd ミネラルウオ−タ−製造剤
JPS62125275A (ja) * 1985-11-26 1987-06-06 本田冷蔵株式会社 ミネラル富化氷の製造方法
JPH0440290A (ja) * 1990-06-07 1992-02-10 Shisayoshi Shimozaka ミネラル水およびミネラル氷
JP2006204191A (ja) * 2004-01-30 2006-08-10 Kao Corp コーヒー飲料組成物
JP2014140360A (ja) * 2012-12-28 2014-08-07 Kao Corp コーヒー組成物の製造方法
JP2017079618A (ja) * 2015-10-26 2017-05-18 花王株式会社 コーヒー抽出液の製造方法
JP2017112909A (ja) * 2015-12-24 2017-06-29 アサヒビール株式会社 コク及び嗜好性が増強されたアルコールテイスト飲料
JP2018042533A (ja) * 2016-09-16 2018-03-22 サントリーホールディングス株式会社 加熱処理活性炭含有飲料
JP6526354B1 (ja) * 2017-09-25 2019-06-05 サントリーホールディングス株式会社 カリウム含有無色透明飲料
JP2019176873A (ja) * 2017-09-25 2019-10-17 サントリーホールディングス株式会社 カリウム含有無色透明飲料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABE, I.: "Production methods of activated carbon", TANSO, no. 225, 2006, pages 373 - 381
See also references of EP4108101A4

Also Published As

Publication number Publication date
EP4108101A4 (en) 2024-04-24
US20230071432A1 (en) 2023-03-09
JPWO2021167031A1 (ja) 2021-08-26
AU2021224002A1 (en) 2022-09-15
EP4108101A1 (en) 2022-12-28
TW202143855A (zh) 2021-12-01

Similar Documents

Publication Publication Date Title
JP7109680B2 (ja) 植物由来原料の活性炭からミネラルを抽出する方法
WO2021167024A1 (ja) ミネラル濃縮液組成物
WO2021167031A1 (ja) 水又は飲料の風味を改善する氷を製造するためのミネラル含有組成物
WO2021167026A1 (ja) 水又は飲料の風味を改善するためのミネラル含有組成物
WO2021167033A1 (ja) 炭酸水又は炭酸飲料の泡質を改善するためのミネラル含有組成物
WO2021167035A1 (ja) コーヒー又は茶の抽出溶媒を製造するためのミネラル含有組成物
WO2021167034A1 (ja) ミネラル含有水組成物
WO2021167028A1 (ja) カルキ臭を低減するためのミネラル含有組成物
WO2023022178A1 (ja) 食品添加用ミネラル含有組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501992

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021224002

Country of ref document: AU

Date of ref document: 20210218

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757353

Country of ref document: EP

Effective date: 20220919