WO2021166964A1 - 銀めっき材及びその製造方法、接点又は端子部品、並びに自動車 - Google Patents

銀めっき材及びその製造方法、接点又は端子部品、並びに自動車 Download PDF

Info

Publication number
WO2021166964A1
WO2021166964A1 PCT/JP2021/005964 JP2021005964W WO2021166964A1 WO 2021166964 A1 WO2021166964 A1 WO 2021166964A1 JP 2021005964 W JP2021005964 W JP 2021005964W WO 2021166964 A1 WO2021166964 A1 WO 2021166964A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
plated
plating
film
material according
Prior art date
Application number
PCT/JP2021/005964
Other languages
English (en)
French (fr)
Inventor
竜 村上
晃一 片山
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020096359A external-priority patent/JP2021130866A/ja
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2021166964A1 publication Critical patent/WO2021166964A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/64Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated

Definitions

  • This disclosure relates to silver-plated materials and their manufacturing methods, contacts or terminal parts, and automobiles.
  • a plating material in which a plating film is formed on a base material is known as a material for contact parts of connectors and terminal parts of switches (hereinafter referred to as "contacts or terminal parts").
  • the base material a material (for example, copper, copper alloy, stainless steel, etc.) that is relatively inexpensive and has excellent corrosion resistance and mechanical properties is generally used.
  • various plating films such as a tin plating film, a silver plating film, and a gold plating film are generally used according to required characteristics (for example, electrical characteristics, solderability, etc.).
  • tin plating film is inexpensive, but has a drawback that it does not have sufficient corrosion resistance in a high temperature environment.
  • the gold-plated film has excellent corrosion resistance and high reliability, but has a drawback of high cost. Therefore, a silver-plated film, which is cheaper than a gold-plated film and has excellent corrosion resistance as compared with a tin-plated film, is often selected.
  • Patent Document 1 proposes a method of incorporating 0.1 to 2.0% by mass of antimony in the silver-plated film.
  • antimony is contained in the silver-plated film, the silver is alloyed and the hardness is increased, so that the wear resistance is improved, but the purity of silver is lowered, so that the contact resistance is increased (conductivity is lowered). There is a problem.
  • Patent Document 2 proposes a technique for preventing an increase in contact resistance while maintaining a high hardness by incorporating selenium in a silver-plated film.
  • Patent Document 2 a technique such as Patent Document 2 in which a silver-plated film contains selenium has a problem that heat resistance in a high-temperature environment (for example, wear resistance when heat-treated at 150 ° C. for 20 hours) can deteriorate.
  • An embodiment of the present invention has been made to solve the above problems, and an object of the present invention is to provide a silver-plated material having excellent heat resistance, abrasion resistance and conductivity, and a method for producing the same.
  • Another object of the present invention is to provide a contact or terminal component provided with a silver-plated material having the above characteristics, and an automobile provided with the contact or terminal component.
  • the embodiment of the present invention is a silver plating material in which a silver plating film is formed on a base material, and the silver plating film is a silver plating material containing 0.05 to 0.25% by mass of sulfur. Regarding. Further, the embodiment of the present invention relates to a method for producing a silver-plated material, which electroplats a base material using a silver-plated bath containing sulfide.
  • the embodiment of the present invention relates to a contact or terminal component provided with the above-mentioned silver-plated material. Further, an embodiment of the present invention relates to an automobile including the above-mentioned contact or terminal component.
  • the embodiment of the present invention it is possible to provide a silver-plated material having excellent heat resistance, abrasion resistance and conductivity, and a method for producing the same. Further, according to the embodiment of the present invention, it is possible to provide a contact or terminal component provided with a silver-plated material having the above characteristics, and an automobile provided with the contact or terminal component.
  • the silver-plated material according to the embodiment of the present invention has a base material and a silver-plated film formed on the base material.
  • the silver-plated film may be formed on at least a part of the base material, or may be formed on the entire base material.
  • the base material is not particularly limited as long as it can be used as a silver plating material.
  • Examples of the base material include various metals such as copper, copper alloy, and stainless steel, but copper or copper alloy is preferable.
  • the silver-plated film contains 0.05 to 0.25% by mass, preferably 0.06 to 0.15% by mass, and more preferably 0.08 to 0.11% by mass of sulfur (S).
  • the sulfur content in the silver-plated film can be measured using a carbon sulfur analyzer (CS device) using a high-frequency induction heating furnace combustion-infrared absorption method.
  • CS device carbon sulfur analyzer
  • the hardness of the silver-plated film can be increased.
  • the initial hardness (Vickers hardness) of the silver plating film is 120 HV or more, the wear resistance can be improved. Further, even after the silver-plated material is heat-treated at 150 ° C.
  • the heat resistance can be maintained because the variation in hardness with respect to the initial hardness of the silver-plated film is small.
  • the sulfur content in the silver-plated film is 0.25% by mass or less, it is possible to suppress a decrease in conductivity due to a decrease in silver purity.
  • the silver-plated film contains sulfur of preferably 0.3% by mass or more, more preferably 1.0% by mass or more at the triple point of the grain boundary of the silver crystal structure.
  • the sulfur content at the triple point of the grain boundaries of the silver crystal structure can be determined by performing an analysis by element mapping using STEM-EDS.
  • the "grain boundary triple point” means a set point at which three boundaries (grain boundaries) of crystal grains in contact with each other are gathered. Although it depends on the analyzer, a region having a radius of 10 nm from the gathering point may be regarded as a grain boundary triple point. If the sulfur content at the grain boundary triple point of the silver crystal structure is 0.3% by mass or more, it is considered that a large amount of sulfur is present at the grain boundary triple point. As a result, the pinning effect of sulfur at the grain boundaries works, and the growth of crystal grains during heat treatment is suppressed, so that heat resistance can be improved.
  • the silver-plated film preferably has a silver content of 99.5% by mass or more, more preferably 99.9% by mass or more.
  • the conductivity can be improved.
  • the silver content is 99.9% by mass or more, conductivity, wear resistance and heat resistance can be ensured while satisfying the American Automobile Research Association (USCAR) standard.
  • USCAR American Automobile Research Association
  • the "silver content" in the silver plating film refers to K, Na, C, N, O among the elements contained in the components of the silver plating bath used for forming the silver plating film. It means the content of silver in all the elements except H and H.
  • silver plating containing potassium cyanide (K [Ag (CN) 2 ]), potassium cyanide (KCN), potassium carbonate (K 2 CO 3 ), potassium nitrate (KNO 3 ), potassium hydroxide (KSH) and unavoidable impurities.
  • K [Ag (CN) 2 ] potassium cyanide
  • KCN potassium carbonate
  • KNO 3 potassium nitrate
  • KSH potassium hydroxide
  • unavoidable impurities When using a bath, it means the content of silver in the total content of silver and sulfur.
  • the thickness of the silver-plated film is preferably 2 to 10 ⁇ m, more preferably 3 to 7 ⁇ m.
  • the thickness of the silver plating film is preferably 2 to 10 ⁇ m, more preferably 3 to 7 ⁇ m.
  • the silver-plated film has a crystallite diameter of preferably 50 nm (500 ⁇ ) or more, more preferably 55 nm (550 ⁇ ) or more, and further preferably 60 nm (600 ⁇ ) or more.
  • the crystallite diameter can be calculated by the Scherrer method based on the diffraction peak intensity and the half width of the peak obtained by the X-ray diffraction method (XRD method).
  • XRD method X-ray diffraction method
  • the hardness decreases as the crystallite diameter increases.
  • the silver-plated film of the silver-plated material according to the embodiment of the present invention can increase the hardness even though the crystallite diameter is relatively large.
  • the upper limit of the crystallite diameter of the silver-plated film is not particularly limited, but is preferably 150 nm (1500 ⁇ ), more preferably 130 nm (1300 ⁇ ).
  • the volatility of the crystallite diameter before and after the heat treatment of the silver-plated film is preferably within ⁇ 30%, more preferably within ⁇ 20%. If the volatility of the crystallite diameter before and after the heat treatment is within ⁇ 30%, it can be said that the growth of crystal grains is small even by the heat treatment. Therefore, the hardness does not easily decrease even by heat treatment, and heat resistance can be ensured.
  • the silver plating film has a hardness (Vickers hardness) of preferably 120 HV or more, and more preferably 125 HV or more.
  • the hardness can be measured according to JIS Z2244: 2009. If the hardness of the silver plating film is 120 HV or more, it can be said that the wear resistance is high.
  • the upper limit of the hardness of the silver plating film is not particularly limited, but is preferably 200 HV, more preferably 180 HV, from the viewpoint of reducing additives and achieving a high silver concentration.
  • the volatility of the hardness of the silver-plated film before and after the heat treatment is preferably within ⁇ 15%, more preferably within ⁇ 13%, and even more preferably within ⁇ 10%. If the rate of change in hardness before and after the heat treatment is within ⁇ 15%, it can be said that the change in hardness is small even by the heat treatment. Therefore, the wear resistance does not decrease even by the heat treatment, and the heat resistance can be ensured.
  • the silver-plated film has a (111) orientation ratio of preferably 40% or more, more preferably 50% or more.
  • the orientation rate can be calculated based on the diffraction peak intensity obtained by the X-ray diffraction method (XRD method).
  • XRD method X-ray diffraction method
  • the "(111) orientation rate” refers to the diffraction peak of the (111) plane in the total sum of the diffraction peak intensities of the planes (111), (200), (220) and (311). It means the ratio of strength.
  • Abrasion resistance can be improved by setting the (111) orientation ratio of the silver plating film to 40% or more.
  • the upper limit of the (111) orientation ratio of the silver-plated film is not particularly limited, but is preferably 98%, more preferably 95%.
  • the volatility of the (111) orientation rate before and after the heat treatment is preferably within ⁇ 32%, more preferably within ⁇ 20%. If the volatility of the (111) orientation rate before and after the heat treatment is within ⁇ 32%, the wear resistance is unlikely to decrease even by the heat treatment, and the heat resistance can be ensured.
  • a base layer can be provided between the base material and the silver-plated film, if necessary.
  • the base layer is not particularly limited as long as it has the above-mentioned functions, but when the base material is copper or a copper alloy, it is preferably a Ni-plated layer from the viewpoint of preventing the diffusion of copper.
  • the thickness of the base layer is preferably 0.2 to 2.0 ⁇ m, more preferably 0.5 to 1.5 ⁇ m. By setting the thickness of the base layer to 0.2 ⁇ m or more, the effect of improving the adhesion between the base material and the silver plating film can be obtained.
  • the thickness of the base layer is set to 2.0 ⁇ m or less, it is possible to suppress a decrease in workability of the silver-plated material.
  • a Ni plating layer is provided as the base layer, it is preferable to provide a strike Ag plating layer between the Ni plating layer and the silver plating film from the viewpoint of improving the adhesion between the silver plating film and the Ni plating layer.
  • the thickness of the strike Ag plating layer may be appropriately set according to the thickness of the silver plating film and the like, and is not particularly limited.
  • the silver-plated material according to the embodiment of the present invention having the above-mentioned characteristics can be produced by electroplating a base material using a silver-plated bath containing sulfide.
  • sulfide as used herein means a compound having a structure in which one or two atoms of hydrogen sulfide (HSH) are replaced with other atoms.
  • hydrosulfide alkali metal hydrosulfide such as sodium hydrosulfide (NaSH) and potassium hydrosulfide (KSH) can be used.
  • sulfides other than hydrosulfide examples include potassium sulfide (K 2 S), sodium sulfide (Na 2 S), calcium sulfide (CaS), magnesium sulfide (Mg S), and ammonium sulfide ((NH 4 ) 2 S).
  • K 2 S potassium sulfide
  • Na 2 S sodium sulfide
  • CaS calcium sulfide
  • Mg S magnesium sulfide
  • ammonium sulfide (NH 4 ) 2 S).
  • the silver plating material according to the embodiment of the present invention can be produced by using or the like.
  • the amount of sulfide added in the silver plating bath may be appropriately adjusted according to the type of sulfide used and is not particularly limited.
  • KSH potassium hydrosulfide
  • the silver according to the embodiment of the present invention is obtained by electroplating the base material using a silver plating bath containing 15 to 250 mg / L of potassium hydrosulfide (KSH).
  • Plating material can be manufactured.
  • concentration of potassium hydrosulfide to 15 mg / L or more, sulfur can be sufficiently contained in the silver plating film, so that the hardness can be increased and the wear resistance can be improved.
  • concentration of potassium hydrosulfide to 250 mg / L or less, the production of silver sulfide can be suppressed.
  • the silver according to the embodiment of the present invention is obtained by electroplating the base material using a silver plating bath containing 48 to 130 mg / L of sodium hydrosulfide (NaSH). Plating material can be manufactured. By setting the concentration of sodium hydrosulfide to 48 mg / L or more, sulfur can be sufficiently contained in the silver plating film, so that the hardness can be increased and the wear resistance can be improved.
  • the concentration of sodium hydrosulfide is set to 130 mg / L or less. Therefore, the production of silver sulfide can be suppressed. Therefore, the appearance abnormality of the silver plating film due to the discoloration of the silver plating bath and the precipitation of silver sulfide is less likely to occur.
  • the silver plating bath preferably has a silver concentration of 20 to 35 g / L.
  • the silver concentration is not particularly limited, but for example, silver potassium cyanide (K [Ag (CN) 2 ]) or the like can be used.
  • the silver plating bath preferably contains potassium cyanide (KCN).
  • KCN potassium cyanide
  • the concentration of potassium cyanide in the silver plating bath is preferably 100 to 175 g / L, more preferably 100 to 150 g / L.
  • concentration of potassium cyanide is preferably 100 to 175 g / L, more preferably 100 to 150 g / L.
  • the ratio of the silver concentration to the potassium cyanide concentration is preferably 0.14 to 0.40.
  • the productivity can be increased and the purity of the silver plating film can be increased.
  • this concentration ratio is set to 0.40 or less, the production of silver sulfide can be suppressed. Therefore, the appearance abnormality of the silver plating film due to the discoloration of the silver plating bath and the precipitation of silver sulfide is less likely to occur.
  • the silver plating bath can contain components known in the art such as potassium carbonate (K 2 CO 3 ) and potassium nitrate (KNO 3), if necessary.
  • K 2 CO 3 potassium carbonate
  • KNO 3 potassium nitrate
  • the conditions for electroplating are not particularly limited, and may be appropriately adjusted according to the composition of the silver plating bath and the like.
  • electroplating may be performed under the conditions that the temperature of the silver plating bath is less than 30 ° C. and the current density is 3.0 A / dm 2 or less.
  • the silver-plated material according to the embodiment of the present invention has a silver-plated film having the above-mentioned characteristics, it is excellent in heat resistance, abrasion resistance and conductivity. Therefore, this silver-plated material is useful for use in contact parts of connectors, terminal parts of switches, and the like.
  • the contact or terminal component according to the embodiment of the present invention includes the above silver-plated material. Since the silver-plated material is excellent in heat resistance, wear resistance, and conductivity, the contact or terminal component can cope with high voltage and / or high current.
  • the automobile according to the embodiment of the present invention includes the above-mentioned contact points or terminal parts. Since the above-mentioned contact or terminal component can cope with high voltage and / or high current, it is possible to improve the performance of automobiles, particularly hybrid vehicles and electric vehicles.
  • Example 1 56 g / L potassium cyanide (K [Ag (CN) 2 ]), 100 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ), 20 g / L potassium nitrate (KNO 3 ) And a silver plating bath containing 21 mg / L potassium nitrate (KSH) was prepared.
  • the silver concentration in this silver plating bath is 30 g / L, and the ratio of the silver concentration to the potassium cyanide concentration is 0.30.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 2 56 g / L potassium cyanide (K [Ag (CN) 2 ]), 100 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ), 20 g / L potassium nitrate (KNO 3 ) And 31 mg / L potassium nitrate (KSH) was prepared in a silver plating bath.
  • the silver concentration in this silver plating bath is 30 g / L, and the ratio of the silver concentration to the potassium cyanide concentration is 0.30.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 3 56 g / L potassium cyanide (K [Ag (CN) 2 ]), 100 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ), 20 g / L potassium nitrate (KNO 3 ) And 42 mg / L potassium nitrate (KSH) was prepared in a silver plating bath.
  • the silver concentration in this silver plating bath is 30 g / L, and the ratio of the silver concentration to the potassium cyanide concentration is 0.30.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 4 56 g / L potassium cyanide (K [Ag (CN) 2 ]), 100 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ), 20 g / L potassium nitrate (KNO 3 ) And 84 mg / L potassium nitrate (KSH) was prepared in a silver plating bath.
  • the silver concentration in this silver plating bath is 30 g / L, and the ratio of the silver concentration to the potassium cyanide concentration is 0.30.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 5 56 g / L potassium cyanide (K [Ag (CN) 2 ]), 100 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ), 20 g / L potassium nitrate (KNO 3 ) And 126 mg / L potassium nitrate (KSH) was prepared in a silver plating bath.
  • the silver concentration in this silver plating bath is 30 g / L, and the ratio of the silver concentration to the potassium cyanide concentration is 0.30.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 6 56 g / L potassium cyanide (K [Ag (CN) 2 ]), 100 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ), 20 g / L potassium nitrate (KNO 3 ) And a silver plating bath containing 168 mg / L potassium nitrate (KSH) was prepared.
  • the silver concentration in this silver plating bath is 30 g / L, and the ratio of the silver concentration to the potassium cyanide concentration is 0.30.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 7 56 g / L potassium cyanide (K [Ag (CN) 2 ]), 100 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ), 20 g / L potassium nitrate (KNO 3 ) And 210 mg / L potassium nitrate (KSH) was prepared in a silver plating bath.
  • the silver concentration in this silver plating bath is 30 g / L, and the ratio of the silver concentration to the potassium cyanide concentration is 0.30.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 8 46.5 g / L potassium cyanide (K [Ag (CN) 2 ]), 175 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ) and 84 mg / L potassium hydrosulfide
  • KSH potassium hydrosulfide
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 9 56 g / L potassium cyanide (K [Ag (CN) 2 ]), 150 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ) and 84 mg / L potassium hydrosulfide (KSH) ) was prepared.
  • the silver concentration in this silver plating bath is 30 g / L, and the ratio of the silver concentration to the potassium cyanide concentration is 0.20.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 10 56 g / L potassium cyanide (K [Ag (CN) 2 ]), 125 g / L potassium cyanide (KCN), 20 g / L potassium carbonate (K 2 CO 3 ) and 81 mg / L sodium hydroxide (NaSH) ) was prepared.
  • the silver concentration in this silver plating bath is 30 g / L, and the ratio of the silver concentration to the potassium cyanide concentration is 0.24.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • Example 11 A silver-plated material was obtained under the same conditions as in Example 10 except that a silver-plated bath in which the amount of sodium hydrosulfide (NaSH) was changed to 65 mg / L was used.
  • NaSH sodium hydrosulfide
  • Example 12 A silver-plated material was obtained under the same conditions as in Example 10 except that a silver-plated bath in which the amount of sodium hydrosulfide (NaSH) was changed to 97.5 mg / L was used.
  • NaSH sodium hydrosulfide
  • Example 13 A silver-plated material was obtained under the same conditions as in Example 10 except that a silver-plated bath in which the amount of sodium hydrosulfide (NaSH) was changed to 130 mg / L was used.
  • NaSH sodium hydrosulfide
  • a sterling silver plating bath (MS-5, JX Metals Trading Co., Ltd.) was used as the silver plating bath.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 40 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • a copper plate (brass plate, manufactured by Yamamoto Plating Tester Co., Ltd., B-60-P03) on which a strike Ag plating layer having a thickness of 0.05 ⁇ m and a Ni plating layer having a thickness of 0.2 ⁇ m was formed from the surface layer side.
  • electroplating is performed at a silver plating bath temperature of 23 ° C. and a current density of 2.5 A / dm 2 , and a silver plating film having a thickness of 5 ⁇ m is formed on the strike Ag plating layer of the base material.
  • a silver-plated material was obtained.
  • the sulfur content in the silver-plated film was measured with a carbon sulfur analyzer (CS device; LECO CS844 type) using a high-frequency induction heating furnace combustion-infrared absorption method.
  • CS device carbon sulfur analyzer
  • LECO CS844 type carbon sulfur analyzer
  • a sample obtained by processing a silver-plated material into a 5 mm square plate was used.
  • the sample was placed in a crucible together with a combustion improver (LECO copper metal accelerator) and placed in a high-frequency induction heating furnace. After burning the sample, the sulfur content was measured by an infrared absorption method.
  • a Cu standard substance was used for the calibration curve.
  • the sulfur content was calculated by subtracting the sulfur content in the non-silver-plated sample (copper plate) from the sulfur content in the silver-plated sample.
  • the silver plating materials (Examples 1 to 10 and Comparative Examples 1 to 2) used for measuring the sulfur (S) content are different from the above-mentioned silver plating materials in the following points. -Instead of a copper plate (brass plate, B-60-P03 manufactured by Yamamoto Plating Tester Co., Ltd.) on which a strike Ag plating layer with a thickness of 0.05 ⁇ m and a Ni plating layer with a thickness of 0.2 ⁇ m are formed from the surface layer side.
  • a copper plate (B-60-P05 manufactured by Yamamoto Plating Tester Co., Ltd.) on which the strike Ag plating layer and the Ni plating layer were not formed was used as the base material.
  • Forming a silver-plated film with a thickness of 192 ⁇ m (calculated value) The silver (Ag) content in the silver-plated film is 0% by mass of unavoidable impurities, and the silver plating used to form the silver-plated film.
  • the elements contained in the components of the bath the elements excluding K, Na, C, N, O and H were calculated as silver and sulfur. That is, in the present disclosure, the silver content in the silver-plated film was determined by subtracting the sulfur content in the silver-plated film from 100% by mass.
  • the sulfur content at the triple point of the grain boundaries of the silver crystal structure was determined by analysis by element mapping using STEM-EDS.
  • the silver plating material is cut in the thickness direction using a FIB (focused ion beam device; SMI3050SE manufactured by Hitachi High-Tech Co., Ltd.), and the cross section of the silver plating film is cut into STEM (scanning transmission electron microscope; JEM-2100F manufactured by JEOL Ltd.). ).
  • the triple point of the grain boundary of the silver crystal structure identified by STEM is selectively irradiated with an electron beam using an EDS (energy dispersive X-ray analyzer; JED-2300T manufactured by JEOL Ltd.), and the sulfur content.
  • EDS energy dispersive X-ray analyzer
  • the acceleration voltage of STEM was 2200 KeV
  • the detector of EDS was a silicon drift detector
  • the detection area of EDS was 60 mm 2 .
  • the STEM image of the silver-plated material of Example 5 is shown in FIG. In FIG. 1, position 001 corresponds to the grain boundary triple point. As a result of measuring the sulfur content at position 001, the sulfur content was 2.17% by mass.
  • Crystallite diameter in silver-plated film The crystallite diameter was calculated by the Scherrer method based on the diffraction peak intensity and the half width of the peak obtained by the X-ray diffraction method (XRD method).
  • XRD method X-ray diffraction method
  • an X-ray diffraction measuring device SmartLab manufactured by Rigaku Co., Ltd.
  • Cu / K ⁇ rays as an X-ray source was used.
  • a detector a hybrid multidimensional pixel detector HyPix-3000 (manufactured by Rigaku Co., Ltd., 1D mode) is used, the operation mode is continuous scanning, the angle range is 20 to 150 °, and the scanning speed is 20 ° / min. I went as.
  • the crystallite diameter is measured by measuring the above-mentioned silver plating material (hereinafter referred to as "silver plating material before heat treatment”) and the silver plating material after heat treatment at 150 ° C. for 20 hours (hereinafter, “silver plating material after heat treatment”). I went to both of them.
  • the heat treatment was performed using a blower low temperature incubator DKM300 manufactured by Yamato Kagaku Co., Ltd.
  • the volatility of the crystallite diameter before and after the heat treatment was also calculated based on the above formula (1).
  • ((111) Orientation rate in silver-plated film) (111) The orientation rate was calculated based on the diffraction peak intensity obtained by the X-ray diffraction method (XRD method). The X-ray diffraction method was carried out under the same equipment and conditions as the crystallite diameter in the silver-plated film.
  • the diffraction peak intensities of the surfaces (111), (200), (220) and (311) are measured, and the diffraction peak intensity of the (111) surface is the sum of the diffraction peak intensities of each surface. Calculated by dividing by.
  • the (111) orientation ratio was measured for both the silver-plated material before the heat treatment and the silver-plated material after the heat treatment. Further, based on the above formula (3), the volatility of the (111) orientation rate before and after the heat treatment was also calculated.
  • the hardness of the silver-plated film was measured by measuring the Vickers hardness according to JIS Z2244: 2009. The Vickers hardness was measured using a Vickers hardness tester (MXT50) manufactured by Matsuzawa Co., Ltd. The Vickers hardness was determined by using a diamond indenter (square pyramid type) at a temperature of 23 ° C., a load of 10 gf, and a load time of 15 seconds. The hardness was measured for both the silver-plated material before the heat treatment and the silver-plated material after the heat treatment. In addition, the volatility of hardness before and after the heat treatment was also calculated based on the above formula (2).
  • Table 1 shows the results of each of the above evaluations.
  • the silver-plated materials of Examples 1 to 10 in which the sulfur content of the silver-plated film is in the range of 0.05 to 0.25% by mass have high hardness before heat treatment and wear resistance. It was found that the properties were good, the hardness was maintained high even after the heat treatment, and the heat resistance was also good. Although the sulfur content of the silver-plated film was not measured in the silver-plated materials of Examples 11 to 13, the same characteristics as those of Examples 1 to 10 were obtained. It was also found that the silver-plated materials of Examples 1 to 10 had a high Ag content (purity) and good conductivity. On the other hand, the silver plating material of Comparative Example 1 had insufficient hardness because the silver plating film did not contain sulfur. Further, the silver plating material of Comparative Example 2 also had insufficient hardness because the sulfur content of the silver plating film was too low.
  • the embodiment of the present invention it is possible to provide a silver-plated material having excellent heat resistance, abrasion resistance and conductivity, and a method for producing the same. Further, according to the embodiment of the present invention, it is possible to provide a contact or terminal component provided with a silver-plated material having the above characteristics, and an automobile provided with the contact or terminal component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

基材上に銀めっき皮膜が形成された銀めっき材である。この銀めっき材は、銀めっき皮膜が、0.05~0.25質量%の硫黄を含有する。また、このめっき材は、硫化物を含有する銀めっき浴を用いて基材の電気めっきを行うことによって製造することができる。

Description

銀めっき材及びその製造方法、接点又は端子部品、並びに自動車
 本開示は、銀めっき材及びその製造方法、接点又は端子部品、並びに自動車に関する。
 従来、コネクタの接点部品やスイッチの端子部品(以下、「接点又は端子部品」という)などの材料として、基材上にめっき皮膜が形成されためっき材が知られている。基材には、比較的安価であって耐食性や機械的特性などに優れる素材(例えば、銅、銅合金、ステンレス鋼など)が一般に用いられている。また、めっき皮膜には、要求される特性(例えば、電気特性や半田付け性など)に応じて、錫めっき皮膜、銀めっき皮膜、金めっき皮膜などの各種めっき皮膜が一般に用いられている。
 各種めっき皮膜の中でも錫めっき皮膜は、安価である一方、高温環境下における耐食性が十分でないという欠点がある。また、金めっき皮膜は、耐食性に優れ、信頼性が高い一方、コストが高いという欠点がある。そのため、金めっき皮膜に比べて安価であり、錫めっき皮膜に比べて耐食性に優れる銀めっき皮膜が選択されることが多くなっている。
 接点又は端子部品に用いられる銀めっき材は、コネクタの挿抜やスイッチの摺動などによる劣化を抑制するために、耐摩耗性を向上させることが要求されている。
 銀めっき材の耐摩耗性を向上させる技術としては、例えば、特許文献1には、銀めっき皮膜に0.1~2.0質量%のアンチモンを含有させる方法が提案されている。
 しかしながら、銀めっき皮膜にアンチモンを含有させると、銀が合金化して硬度が高くなることで耐摩耗性が向上するものの、銀の純度が低くなるため、接触抵抗が増加(導電性が低下)するという問題がある。
 特に近年、ハイブリッド車や電気自動車などの自動車に搭載される接点又は端子部品には、高電圧化及び/又は高電流化に対応可能なことが要求されている。そのため、接点又は端子部品に用いられる銀めっき材には、耐摩耗性だけでなく、耐熱性及び導電性も向上させることが必要とされている。
 そこで、特許文献2には、銀めっき皮膜にセレンを含有させることで、硬度を高く維持したまま、接触抵抗の増加を防止する技術が提案されている。
特開2005-133169号公報 特開2016-145413号公報
 しかしながら、銀めっき皮膜にセレンを含有させる特許文献2のような技術は、高温環境時における耐熱性(例えば、150℃で20時間の熱処理を行った場合の耐摩耗性)が劣化し得るという問題を有する。
 本発明の実施形態は、上記のような課題を解決するためになされたものであり、耐熱性、耐摩耗性及び導電性に優れる銀めっき材及びその製造方法を提供することを目的とする。
 また、本発明の実施形態は、上記の特性を有する銀めっき材を備える接点又は端子部品、及びこの接点又は端子部品を備える自動車を提供することを目的とする。
 本発明者らは、銀めっき材について鋭意研究を行った結果、所定量の硫黄を銀めっき皮膜に含有させることにより、上記の課題を解決し得ることを見出し、本発明の実施形態を完成するに至った。
 すなわち、本発明の実施形態は、基材上に銀めっき皮膜が形成された銀めっき材であって、前記銀めっき皮膜は、0.05~0.25質量%の硫黄を含有する銀めっき材に関する。
 また、本発明の実施形態は、硫化物を含有する銀めっき浴を用いて基材の電気めっきを行う、銀めっき材の製造方法に関する。
 また、本発明の実施形態は、上記の銀めっき材を備える接点又は端子部品に関する。
 さらに、本発明の実施形態は、上記の接点又は端子部品を備える自動車に関する。
 本発明の実施形態によれば、耐熱性、耐摩耗性及び導電性に優れる銀めっき材及びその製造方法を提供することができる。
 また、本発明の実施形態によれば、上記の特性を有する銀めっき材を備える接点又は端子部品、及びこの接点又は端子部品を備える自動車を提供することができる。
実施例5の銀めっき材のSTEM画像である。
 以下、本発明の好適な実施形態について具体的に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。この実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、この実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。
 本発明の実施形態に係る銀めっき材は、基材と、基材上に形成された銀めっき皮膜とを有する。銀めっき皮膜は、基材の少なくとも一部に形成されていてもよいし、基材の全体に形成されていてもよい。
 基材としては、銀めっき材に用いることが可能なものであれば特に限定されない。基材の例としては、銅、銅合金、ステンレス鋼などの各種金属が挙げられるが、銅又は銅合金が好ましい。
 銀めっき皮膜は、0.05~0.25質量%、好ましくは0.06~0.15質量%、更に好ましくは0.08~0.11質量%の硫黄(S)を含有する。銀めっき皮膜における硫黄の含有量は、高周波誘導加熱炉燃焼-赤外線吸収法を用いた炭素硫黄分析装置(CS装置)を用いて測定することができる。
 銀めっき皮膜における硫黄の含有量を0.05質量%以上とすることにより、銀めっき皮膜の硬度を高めることができる。特に、銀めっき皮膜の初期硬度(ビッカース硬さ)が120HV以上となるため、耐摩耗性を向上させることができる。また、銀めっき材に対して150℃で20時間の熱処理を行った後でも、銀めっき皮膜の初期硬度に対する硬度の変動が小さいため、耐熱性を維持することができる。
 一方、銀めっき皮膜における硫黄の含有量を0.25質量%以下とすることにより、銀純度の低下に伴う導電性の低下を抑制することができる。
 銀めっき皮膜は、銀結晶組織の粒界三重点において、好ましくは0.3質量%以上、より好ましくは1.0質量%以上の硫黄を含有する。銀結晶組織の粒界三重点における硫黄の含有量は、STEM-EDSを用いた元素マッピングによる分析を行うことによって求めることができる。
 ここで、本明細書において「粒界三重点」とは、相互に接触している結晶粒の境界(粒界)が3個集合した集合点のことを意味する。なお、分析装置にもよるが、集合点から半径10nmの領域を粒界三重点とみなしてよい。
 銀結晶組織の粒界三重点における硫黄の含有量が0.3質量%以上であれば、粒界三重点に硫黄が多く存在していると考えられる。これにより、結晶粒界の硫黄によるピン止め効果が働き、熱処理時における結晶粒の成長が抑えられるため、耐熱性を向上させることができる。
 銀めっき皮膜は、銀の含有量が好ましくは99.5質量%以上、より好ましくは99.9質量%以上である。
 銀めっき皮膜における銀の含有量を99.5質量%以上とすることにより、導電性を向上させることができる。特に、銀の含有量が99.9質量%以上であれば、米国自動車研究連合会(USCAR)規格を満たしつつ、導電性、耐摩耗性及び耐熱性を確保することができる。
 ここで、本明細書において銀めっき皮膜中の「銀の含有量」とは、銀めっき皮膜の形成に用いられる銀めっき浴の成分に含まれる元素のうち、K、Na、C、N、O及びHを除いた全元素中に占める銀の含有量のことを意味する。例えば、シアン化銀カリウム(K[Ag(CN)2])、シアン化カリウム(KCN)、炭酸カリウム(K2CO3)、硝酸カリウム(KNO3)、水硫化カリウム(KSH)及び不可避不純物を含む銀めっき浴を用いる場合、銀及び硫黄の合計含有量に占める銀の含有量のことを意味する。
 銀めっき皮膜は、厚さが好ましくは2~10μm、より好ましくは3~7μmである。銀めっき皮膜の厚さを2μm以上とすることにより、耐熱性、耐摩耗性及び導電性を十分に確保することができる。また、銀めっき皮膜の厚さを10μm以下とすることにより、コストの増加及び銀めっき材の加工性の低下を抑制することができる。
 銀めっき皮膜は、結晶子径が好ましくは50nm(500Å)以上、より好ましくは55nm(550Å)以上、さらに好ましくは60nm(600Å)以上である。結晶子径は、X線回折法(XRD法)で得られる回折ピーク強度及びピークの半値幅に基づき、Scherrer法によって算出することができる。
 通常、ホール・ペッチの関係式に従うと、結晶子径が大きくなるほど硬度は低下する。しかしながら、本発明の実施形態に係る銀めっき材の銀めっき皮膜は、結晶子径が比較的大きいにもかかわらず、硬度を高めることができる。
 また、銀めっき皮膜の結晶子径の上限値は、特に限定されないが、好ましくは150nm(1500Å)、より好ましくは130nm(1300Å)である。
 銀めっき皮膜は、熱処理前後の結晶子径の変動率が好ましくは±30%以内、より好ましくは±20%以内である。
 熱処理前後の結晶子径の変動率が±30%以内であれば、熱処理によっても結晶粒の成長が少ないということができる。そのため、熱処理によっても硬度が低下し難く、耐熱性を確保することができる。
 ここで、本明細書において「熱処理」とは、150℃で20時間の加熱処理のことを意味する。
 また、熱処理前後の結晶子径の変動率は、以下の式(1)によって算出することができる。
  熱処理前後の結晶子径の変動率=(熱処理後の結晶子径-熱処理前の結晶子径)/熱処理前の結晶子径×100  (1)
 銀めっき皮膜は、硬度(ビッカース硬さ)が好ましくは120HV以上、より好ましくは125HV以上である。硬度は、JIS Z2244:2009に準じて測定することができる。
 銀めっき皮膜の硬度が120HV以上であれば、耐摩耗性が高いということができる。
 なお、銀めっき皮膜の硬度の上限値は、特に限定されないが、添加物を減らして高い銀濃度を実現する観点から、好ましくは200HV、より好ましくは180HVである。
 銀めっき皮膜は、熱処理前後の硬度の変動率が好ましくは±15%以内、より好ましくは±13%以内、さらに好ましくは±10%以内である。
 熱処理前後の硬度の変動率が±15%以内であれば、熱処理によっても硬度の変動が少ないということができる。そのため、熱処理によっても耐摩耗性が低下せず、耐熱性を確保することができる。
 ここで、熱処理前後の硬度の変動率は、以下の式(2)によって算出することができる。
  熱処理前後の硬度の変動率=(熱処理後の硬度-熱処理前の硬度)/熱処理前の強度×100  (2)
 銀めっき皮膜は、(111)配向率が好ましくは40%以上、より好ましくは50%以上である。配向率は、X線回折法(XRD法)で得られる回折ピーク強度に基づいて算出することができる。ここで、本明細書において「(111)配向率」とは、(111)、(200)、(220)及び(311)の各面の回折ピーク強度の総和に占める(111)面の回折ピーク強度の割合のことを意味する。
 銀めっき皮膜の(111)配向率を40%以上とすることにより、耐摩耗性を向上させることができる。
 なお、銀めっき皮膜の(111)配向率の上限値は、特に限定されないが、好ましくは98%、より好ましくは95%である。
 銀めっき皮膜は、熱処理前後の(111)配向率の変動率が好ましくは±32%以内、より好ましくは±20%以内である。
 熱処理前後の(111)配向率の変動率が±32%以内であれば、熱処理によっても耐摩耗性が低下し難く、耐熱性を確保することができる。
 ここで、熱処理前後の(111)配向率の変動率は、以下の式(3)によって算出することができる。
  熱処理前後の(111)配向率の変動率=(熱処理後の(111)配向率-熱処理前の(111)配向率)/熱処理前の(111)配向率×100  (3)
 本発明の実施形態に係る銀めっき材は、必要に応じて、基材と銀めっき皮膜との間に下地層を設けることができる。下地層を設けることにより、基材と銀めっき皮膜との間の密着性を向上させることができる。
 下地層としては、上記の機能を有する層であれば特に限定されないが、基材が銅又は銅合金である場合は、銅の拡散を防止する観点から、Niめっき層であることが好ましい。
 下地層の厚さは、好ましくは0.2~2.0μm、より好ましくは0.5~1.5μmである。下地層の厚さを0.2μm以上とすることにより、基材と銀めっき皮膜との間の密着性を向上させる効果を得ることができる。また、下地層の厚さを2.0μm以下とすることにより、銀めっき材の加工性の低下を抑制することができる。
 また、下地層としてNiめっき層を設ける場合、銀めっき皮膜とNiめっき層との密着性を向上させる観点から、Niめっき層と銀めっき皮膜との間にストライクAgめっき層を設けることが好ましい。ストライクAgめっき層の厚さは、銀めっき皮膜の厚さなどに応じて適宜設定すればよく、特に限定されない。
 上記のような特徴を有する本発明の実施形態に係る銀めっき材は、硫化物を含有する銀めっき浴を用いて基材の電気めっきを行うことによって製造し得る。
 ここで、本明細書において「硫化物」とは、硫化水素(H-S-H)の1つ又は2つの原子を他の原子に置換した構造を有する化合物を意味する。特に、硫化水素の1つの原子を他の原子に置換した構造を有する化合物を「水硫化物」という。
 水硫化物としては、水硫化ナトリウム(NaSH)、水硫化カリウム(KSH)などのアルカリ金属の水硫化物を用いることができる。また、水硫化物以外の硫化物としては、硫化カリウム(K2S)、硫化ナトリウム(Na2S)、硫化カルシウム(CaS)、硫化マグネシウム(MgS)、硫化アンモニウム((NH42S)などを用いることで本発明の実施形態に係る銀めっき材を製造し得る。
 銀めっき浴における硫化物の添加量は、使用する硫化物の種類に応じて適宜調整すればよく特に限定されない。
 例えば、水硫化カリウム(KSH)を用いる場合、15~250mg/Lの水硫化カリウム(KSH)を含有する銀めっき浴を用いて基材の電気めっきを行うことによって本発明の実施形態に係る銀めっき材を製造し得る。水硫化カリウムの濃度を15mg/L以上とすることにより、銀めっき皮膜中に硫黄を十分に含有させることができるため、硬度を高め、耐摩耗性を向上させることができる。また、水硫化カリウムの濃度を250mg/L以下とすることにより、硫化銀の生成を抑制することができる。そのため、銀めっき浴の変色や硫化銀の沈殿に起因する銀めっき皮膜の外観異常が起こり難くなる。
 また、水硫化ナトリウム(NaSH)を用いる場合、48~130mg/Lの水硫化ナトリウム(NaSH)を含有する銀めっき浴を用いて基材の電気めっきを行うことによって本発明の実施形態に係る銀めっき材を製造し得る。水硫化ナトリウムの濃度を48mg/L以上とすることにより、銀めっき皮膜中に硫黄を十分に含有させることができるため、硬度を高め、耐摩耗性を向上させることができる。また、水硫化ナトリウムの濃度を130mg/L以下とすることにより、硫化銀の生成を抑制することができる。そのため、銀めっき浴の変色や硫化銀の沈殿に起因する銀めっき皮膜の外観異常が起こり難くなる。
 銀めっき浴は、銀濃度が好ましくは20~35g/Lである。銀濃度を20g/L以上とすることにより、所望の厚さの銀めっき皮膜を効率良く形成することができる。また、銀濃度を35g/L以下とすることにより、コストの増大を抑えつつ、硫化銀の生成を抑制することができる。そのため、銀めっき浴の変色や硫化銀の沈殿に起因する銀めっき皮膜の外観異常が起こり難くなる。
 なお、銀めっき浴における銀の供給源としては、特に限定されないが、例えば、シアン化銀カリウム(K[Ag(CN)2])などを用いることができる。
 銀めっき浴は、シアン化カリウム(KCN)を含有することが好ましい。
 銀めっき浴中のシアン化カリウムの濃度は、好ましくは100~175g/L、より好ましくは100~150g/Lである。シアン化カリウムの濃度を100g/L以上とすることにより、硫化銀の生成を抑制することができる。そのため、銀めっき浴の変色や硫化銀の沈殿に起因する銀めっき皮膜の外観異常が起こり難くなる。また、シアン化カリウムの濃度を175g/L以下とすることにより、作業者に害を及ぼす影響を低減することができる。
 銀めっき浴は、シアン化カリウム濃度に対する銀濃度の比(銀濃度/シアン化カリウム濃度)が、好ましくは0.14~0.40である。この濃度比を0.14以上とすることにより、生産性を高めるとともに、銀めっき皮膜の純度を高めることができる。また、この濃度比を0.40以下とすることにより、硫化銀の生成を抑制することができる。そのため、銀めっき浴の変色や硫化銀の沈殿に起因する銀めっき皮膜の外観異常が起こり難くなる。
 銀めっき浴は、必要に応じて、炭酸カリウム(K2CO3)、硝酸カリウム(KNO3)などの当該技術分野において公知の成分を含有することができる。
 電気めっきの条件としては、特に限定されず、銀めっき浴の組成などに応じて適宜調整すればよい。例えば、銀めっき浴の温度を30℃未満、電流密度を3.0A/dm2以下の条件で電気めっきを行えばよい。
 本発明の実施形態に係る銀めっき材は、上記のような特徴を有する銀めっき皮膜を有しているため、耐熱性、耐摩耗性及び導電性に優れている。そのため、この銀めっき材は、コネクタの接点部品やスイッチの端子部品などに用いるのに有用である。
 本発明の実施形態に係る接点又は端子部品は、上記の銀めっき材を備える。上記の銀めっき材は、耐熱性、耐摩耗性及び導電性に優れているため、この接点又は端子部品は高電圧化及び/又は高電流化に対応することが可能となる。
 本発明の実施形態に係る自動車は、上記の接点又は端子部品を備える。上記の接点又は端子部品は、高電圧化及び/又は高電流化に対応することが可能であるため、自動車、特にハイブリッド車や電気自動車の性能を向上させることができる。
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、100g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)、20g/Lの硝酸カリウム(KNO3)及び21mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.30である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例2)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、100g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)、20g/Lの硝酸カリウム(KNO3)及び31mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.30である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例3)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、100g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)、20g/Lの硝酸カリウム(KNO3)及び42mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.30である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例4)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、100g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)、20g/Lの硝酸カリウム(KNO3)及び84mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.30である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例5)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、100g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)、20g/Lの硝酸カリウム(KNO3)及び126mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.30である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例6)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、100g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)、20g/Lの硝酸カリウム(KNO3)及び168mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.30である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例7)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、100g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)、20g/Lの硝酸カリウム(KNO3)及び210mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.30である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例8)
 46.5g/Lのシアン化銀カリウム(K[Ag(CN)2])、175g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)及び84mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は25g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.14である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例9)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、150g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)及び84mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.20である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例10)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、125g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)及び81mg/Lの水硫化ナトリウム(NaSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.24である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(実施例11)
 水硫化ナトリウム(NaSH)の量を65mg/Lに変更した銀めっき浴を用いたこと以外は実施例10と同様の条件にて銀めっき材を得た。
(実施例12)
 水硫化ナトリウム(NaSH)の量を97.5mg/Lに変更した銀めっき浴を用いたこと以外は実施例10と同様の条件にて銀めっき材を得た。
(実施例13)
 水硫化ナトリウム(NaSH)の量を130mg/Lに変更した銀めっき浴を用いたこと以外は実施例10と同様の条件にて銀めっき材を得た。
(比較例1)
 銀めっき浴として、純銀めっき浴(MS-5、JX金属商事株式会社)を用いた。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を40℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
(比較例2)
 56g/Lのシアン化銀カリウム(K[Ag(CN)2])、100g/Lのシアン化カリウム(KCN)、20g/Lの炭酸カリウム(K2CO3)、25g/Lの硝酸カリウム(KNO3)及び10mg/Lの水硫化カリウム(KSH)を含む銀めっき浴を調製した。なお、この銀めっき浴における銀濃度は30g/Lであり、シアン化カリウム濃度に対する銀濃度の比が0.30である。
 次に、表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)を基材として用い、銀めっき浴の温度を23℃、電流密度を2.5A/dm2として電気めっきを行い、基材のストライクAgめっき層上に厚さ5μmの銀めっき皮膜を形成することによって銀めっき材を得た。
 上記の実施例及び比較例で得られた銀めっき材について以下の評価を行った。
(銀めっき皮膜における硫黄(S)含有量)
 銀めっき皮膜における硫黄の含有量は、高周波誘導加熱炉燃焼-赤外線吸収法を用いた炭素硫黄分析装置(CS装置;LECO製CS844型)にて測定した。測定用試料としては、銀めっき材を5mm角の板状に加工した試料を用いた。試料を助燃剤(LECO製カッパーメタルアクセラレーター)とともに坩堝に入れて高周波誘導加熱炉内に配置し、試料を燃焼させた後、赤外線吸収法によって硫黄含有量を測定した。検量線にはCuの標準物質を用いた。硫黄の含有量は、銀めっき材の試料における硫黄の含有量から銀めっきされていない試料(銅板)における硫黄の含有量を差し引くことによって算出した。
 なお、本開示において、硫黄(S)含有量の測定に供した銀めっき材(実施例1~10、比較例1~2)は、上述の銀めっき材と以下の点で異なる。
・表層側から厚さ0.05μmのストライクAgめっき層、及び厚さ0.2μmのNiめっき層が形成された銅板(真鍮板、株式会社山本鍍金試験器製B-60-P03)に代えて、ストライクAgめっき層及びNiめっき層が形成されていない銅板(株式会社山本鍍金試験器製B-60-P05)を基材として用いたこと
・上述の電気めっき条件にて2時間めっきを行ない、厚さ192μm(計算値)の銀めっき皮膜を形成したこと
 また、銀めっき皮膜における銀(Ag)含有量は、不可避不純物の含有量を0質量%とし、銀めっき皮膜の形成に用いられる銀めっき浴の成分に含まれる元素のうち、K、Na、C、N、O及びHを除いた元素が、銀及び硫黄であるとして算出した。すなわち、本開示においては、銀めっき皮膜における銀の含有量は、銀めっき皮膜における硫黄の含有量を100質量%から差し引くことによって求めた。
(銀結晶組織の粒界三重点における硫黄(S)含有量)
 銀結晶組織の粒界三重点における硫黄の含有量は、STEM-EDSを用いた元素マッピングによる分析を行うことによって求めた。FIB(集束イオンビーム装置;株式会社日立ハイテク製SMI3050SE)を用いて銀めっき材を厚さ方向に切断し、銀めっき皮膜の断面をSTEM(走査透過型電子顕微鏡;日本電子株式会社製JEM-2100F)によって観察した。STEMによって特定した銀結晶組織の粒界三重点に対し、EDS(エネルギー分散型X線分析装置;日本電子株式会社製JED-2300T)を用いて電子ビームを選択的に照射し、硫黄の含有量を測定した。STEMの加速電圧は2200KeV、EDSの検出器はシリコンドリフト検出器、EDSの検出面積は60mm2とした。
 実施例5の銀めっき材のSTEM画像を図1に示す。図1において、位置001が粒界三重点に相当する。位置001における硫黄の含有量を測定した結果、硫黄の含有量は2.17質量%であった。
(銀めっき皮膜における結晶子径)
 結晶子径は、X線回折法(XRD法)で得られる回折ピーク強度及びピークの半値幅に基づき、Scherrer法によって算出した。X線回折法では、X線源としてCu・Kα線を備えるX線回折測定装置(株式会社リガク製SmartLab)を用いた。また、検出器としては、ハイブリッド型多次元ピクセル検出器HyPix-3000(株式会社リガク製、1Dモード)を用い、操作モードを連続スキャン、角度範囲を20~150°、スキャンスピードを20°/分として行った。
 なお、結晶子径の測定は、上記の銀めっき材(以下、「熱処理前の銀めっき材」という)及び150℃で20時間熱処理した後の銀めっき材(以下、「熱処理後の銀めっき材」という)の両方に対して行った。熱処理は、ヤマト科学株式会社製の送風低温恒温器DKM300を用いて行った。また、上記の式(1)に基づいて、熱処理前後の結晶子径の変動率も算出した。
(銀めっき皮膜における(111)配向率)
 (111)配向率は、X線回折法(XRD法)で得られる回折ピーク強度に基づいて算出した。X線回折法は、銀めっき皮膜における結晶子径と同様の装置及び条件で行った。(111)配向率は、(111)、(200)、(220)及び(311)の各面の回折ピーク強度を測定し、(111)面の回折ピーク強度を各面の回折ピーク強度の総和で除することによって算出した。
 なお、(111)配向率の測定は、熱処理前の銀めっき材及び熱処理後の銀めっき材の両方に対して行った。また、上記の式(3)に基づいて、熱処理前後の(111)配向率の変動率も算出した。
(銀めっき皮膜の硬度)
 銀めっき皮膜の硬度は、JIS Z2244:2009に準じて、ビッカース硬さを測定した。ビッカース硬さは、株式会社マツザワ製のビッカース硬さ試験機(MXT50)を用いて測定した。また、ビッカース硬さは、ダイヤモンド圧子(四角錐型)を用い、温度23℃、荷重10gf、負荷時間15秒として行った。
 なお、硬度の測定は、熱処理前の銀めっき材及び熱処理後の銀めっき材の両方に対して行った。また、上記の式(2)に基づいて、熱処理前後の硬度の変動率も算出した。
 上記の各評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、銀めっき皮膜の硫黄含有量が0.05~0.25質量%の範囲内である実施例1~10の銀めっき材は、熱処理前の硬度が高く、耐摩耗性が良好であるとともに、熱処理後でも高い硬度が維持されており、耐熱性も良好であることがわかった。なお、実施例11~13の銀めっき材は、銀めっき皮膜の硫黄含有量について未測定ではあるが、実施例1~10と同様の特性が得られた。
 また、実施例1~10の銀めっき材は、Ag含有量(純度)も高く、導電性が良好であることもわかった。
 一方、比較例1の銀めっき材は、銀めっき皮膜が硫黄を含有していないため、硬度が十分でなかった。また、比較例2の銀めっき材も、銀めっき皮膜の硫黄含有量が少なすぎたため、硬度が十分でなかった。
 以上の結果からわかるように、本発明の実施形態によれば、耐熱性、耐摩耗性及び導電性に優れる銀めっき材及びその製造方法を提供することができる。また、本発明の実施形態によれば、上記の特性を有する銀めっき材を備える接点又は端子部品、及びこの接点又は端子部品を備える自動車を提供することができる。

Claims (18)

  1.  基材上に銀めっき皮膜が形成された銀めっき材であって、
     前記銀めっき皮膜は、0.05~0.25質量%の硫黄を含有する銀めっき材。
  2.  前記銀めっき皮膜は、銀結晶組織の粒界三重点において0.3質量%以上の硫黄を含有する、請求項1に記載の銀めっき材。
  3.  前記銀めっき皮膜は、前記銀めっき皮膜の形成に用いられる銀めっき浴の成分に含まれる元素のうち、K、Na、C、N、O及びHを除いた全元素中に占める銀の含有量が99.5質量%以上である、請求項1又は2に記載の銀めっき材。
  4.  前記銀の含有量が99.9質量%以上である、請求項3に記載の銀めっき材。
  5.  前記銀めっき皮膜は、結晶子径が50nm以上である、請求項1~4のいずれか一項に記載の銀めっき材。
  6.  前記銀めっき皮膜は、150℃で20時間の熱処理前後の結晶子径の変動率が±30%以内である、請求項1~5のいずれか一項に記載の銀めっき材。
  7.  前記銀めっき皮膜は、ビッカース硬さが120HV以上である、請求項1~6のいずれか一項に記載の銀めっき材。
  8.  前記銀めっき皮膜は、150℃で20時間の熱処理前後のビッカース硬さの変動率が±15%以内である、請求項1~7のいずれか一項に記載の銀めっき材。
  9.  前記銀めっき皮膜は、(111)配向率が40%以上である、請求項1~8のいずれか一項に記載の銀めっき材。
  10.  前記銀めっき皮膜は、150℃で20時間の熱処理前後の(111)配向率の変動率が±32%以内である、請求項1~9のいずれか一項に記載の銀めっき材。
  11.  硫化物を含有する銀めっき浴を用いて基材の電気めっきを行う、銀めっき材の製造方法。
  12.  前記銀めっき浴は、15~250mg/Lの水硫化カリウムを含有する、請求項11に記載の銀めっき材の製造方法。
  13.  前記銀めっき浴は、48~130mg/Lの水硫化ナトリウムを含有する、請求項11に記載の銀めっき材の製造方法。
  14.  前記銀めっき浴は、銀濃度が20~35g/Lである、請求項11~13のいずれか一項に記載の銀めっき材の製造方法。
  15.  前記銀めっき浴は、100~175g/Lのシアン化カリウムを含有する、請求項11~14のいずれか一項に記載の銀めっき材の製造方法。
  16.  前記めっき浴は、シアン化カリウム濃度に対する銀濃度の比が0.14~0.40である、請求項15に記載の銀めっき材の製造方法。
  17.  請求項1~10のいずれか一項に記載の銀めっき材を備える接点又は端子部品。
  18.  請求項17に記載の接点又は端子部品を備える自動車。
PCT/JP2021/005964 2020-02-19 2021-02-17 銀めっき材及びその製造方法、接点又は端子部品、並びに自動車 WO2021166964A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-026524 2020-02-19
JP2020026524 2020-02-19
JP2020-096359 2020-06-02
JP2020096359A JP2021130866A (ja) 2020-02-19 2020-06-02 銀めっき材及びその製造方法、接点又は端子部品、並びに自動車

Publications (1)

Publication Number Publication Date
WO2021166964A1 true WO2021166964A1 (ja) 2021-08-26

Family

ID=77391269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005964 WO2021166964A1 (ja) 2020-02-19 2021-02-17 銀めっき材及びその製造方法、接点又は端子部品、並びに自動車

Country Status (2)

Country Link
TW (1) TW202202662A (ja)
WO (1) WO2021166964A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256187A (ja) * 1996-03-21 1997-09-30 Electroplating Eng Of Japan Co 半光沢銀めっき用の光沢度調整剤
JP2014080672A (ja) * 2012-09-27 2014-05-08 Dowa Metaltech Kk 銀めっき材およびその製造方法
JP2016130362A (ja) * 2015-01-08 2016-07-21 Dowaメタルテック株式会社 銀めっき材およびその製造方法
JP2016166396A (ja) * 2015-03-10 2016-09-15 三菱マテリアル株式会社 銀めっき付き銅端子材及び端子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256187A (ja) * 1996-03-21 1997-09-30 Electroplating Eng Of Japan Co 半光沢銀めっき用の光沢度調整剤
JP2014080672A (ja) * 2012-09-27 2014-05-08 Dowa Metaltech Kk 銀めっき材およびその製造方法
JP2016130362A (ja) * 2015-01-08 2016-07-21 Dowaメタルテック株式会社 銀めっき材およびその製造方法
JP2016166396A (ja) * 2015-03-10 2016-09-15 三菱マテリアル株式会社 銀めっき付き銅端子材及び端子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SNYMAN H. C., WILSDORF H. G. F.: "Observations of Extrinsic‐Intrinsic Faulting in Ag Platelets by High‐Voltage Electron Microscopy", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 41, no. 1, 1 January 1970 (1970-01-01), US, pages 35 - 38, XP055849834, ISSN: 0021-8979, DOI: 10.1063/1.1658346 *
TÖRÖK TAMAS I., ATTILA CSIK, JÓZSEF HAKL, KÁLMÁN VAD, LÁSZLÓ KÖVÉR, JÓZSEF TÓTH, SÁNDOR MÉSZÁROS: "Nanoscale characterization of thin immersion silver coatings on copper substrates Co-authors", NATIONAL ASSOCIATION FOR SURFACE FINISHING ANNUAL CONFERENCE AND TRADE SHOW, SUR/FIN, 5 February 2015 (2015-02-05), XP055849840, Retrieved from the Internet <URL:https://arxiv.org/ftp/arxiv/papers/1502/1502.01579.pdf> *

Also Published As

Publication number Publication date
TW202202662A (zh) 2022-01-16

Similar Documents

Publication Publication Date Title
JP4817095B2 (ja) ウィスカ抑制表面処理方法
JP3727069B2 (ja) 錫被覆電気コネクタ
EP2743381B1 (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
JP6916971B1 (ja) 銀めっき材およびその製造方法
KR20070079974A (ko) 내구성 및 유연성이 탁월한 구리 합금의 제조 방법
JP2009057630A (ja) Snメッキ導電材料及びその製造方法並びに通電部品
JP6216953B2 (ja) 銀−錫合金めっき層を含む金属積層体の製造方法
WO2021171818A1 (ja) 銀めっき材およびその製造方法
WO2021166964A1 (ja) 銀めっき材及びその製造方法、接点又は端子部品、並びに自動車
JP4154100B2 (ja) 表面特性の優れた電子材料用銅合金およびその製造方法
JP2021130867A (ja) 銀めっき材、接点又は端子部品、及び自動車
JP7335679B2 (ja) 導電材
JP2021130866A (ja) 銀めっき材及びその製造方法、接点又は端子部品、並びに自動車
CN111534714B (zh) 一种含Nb和Al的钛青铜合金带材及其制备方法
WO2021166965A1 (ja) 銀めっき材、接点又は端子部品、及び自動車
CN107354482B (zh) 精炼铜的制造方法和精炼铜以及电线的制造方法和电线
JP4820228B2 (ja) Snめっきの耐熱剥離性に優れるCu−Zn−Sn系合金条及びそのSnめっき条
JP6324431B2 (ja) 銅合金板材および銅合金板材の製造方法
CN1926253A (zh) 铜合金
JP2006009108A (ja) 曲げ加工性が優れたCu−Ni−Si系銅合金条
JP2006016629A (ja) BadWayの曲げ加工性が優れたCu−Ni−Si系銅合金条
US11761109B2 (en) Terminal material for connector
JPH0387341A (ja) 曲げ加工性の良好な高強度りん青銅の製造方法
WO2021199526A1 (ja) 銀めっき材およびその製造方法、並びに、端子部品
JPH05311298A (ja) コネクタ用銅基合金およびその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757411

Country of ref document: EP

Kind code of ref document: A1