WO2021166301A1 - モータユニット - Google Patents

モータユニット Download PDF

Info

Publication number
WO2021166301A1
WO2021166301A1 PCT/JP2020/034768 JP2020034768W WO2021166301A1 WO 2021166301 A1 WO2021166301 A1 WO 2021166301A1 JP 2020034768 W JP2020034768 W JP 2020034768W WO 2021166301 A1 WO2021166301 A1 WO 2021166301A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
shaft
gear
axial direction
bearing
Prior art date
Application number
PCT/JP2020/034768
Other languages
English (en)
French (fr)
Inventor
勇樹 石川
直大 和田
泰伸 熊谷
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202090001095.8U priority Critical patent/CN218603308U/zh
Publication of WO2021166301A1 publication Critical patent/WO2021166301A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor unit.
  • the present application claims priority based on Japanese Patent Application No. 2020-026150 filed on February 19, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes a motor type power unit (motor unit) in which an output shaft is passed through a rotor shaft having a hollow structure.
  • One aspect of the present invention is to provide a motor unit that facilitates the distribution of oil to each part.
  • One aspect of the motor unit of the present invention is a motor having a motor shaft extending along the motor axis, a gear portion connected to one side in the axial direction of the motor, and a drive body accommodating the motor and the gear portion.
  • a housing body provided with an accommodation space, a shaft holding portion arranged in the drive body accommodation space, located between the motor and the gear portion in the axial direction, and having a first bearing for supporting the motor shaft, and the shaft holding portion. It includes oil housed in the drive body storage space.
  • the motor shaft is a hollow shaft.
  • the gear portion includes an output shaft whose part is arranged inside the motor shaft and rotates around the motor axis, and a plurality of gears for transmitting power from the motor shaft to the output shaft.
  • the shaft holding portion has an annular surrounding portion that surrounds the motor axis from the outside in the radial direction. The surrounding portion is provided with an opening that opens in the radial direction of the motor axis.
  • a motor unit capable of simplifying the assembly process.
  • FIG. 1 is a conceptual diagram of a motor unit of one embodiment.
  • FIG. 2 is a perspective view of the motor unit of one embodiment.
  • FIG. 3 is an exploded perspective view of a shaft holding portion of the motor unit of one embodiment.
  • FIG. 4 is a schematic view of the oil pump of the motor unit of one embodiment.
  • FIG. 1 is a conceptual diagram of the motor unit 10.
  • FIG. 2 is a perspective view of the motor unit 10.
  • the direction of gravity will be defined based on the positional relationship when the motor unit 10 is mounted on a vehicle located on a horizontal road surface.
  • the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate.
  • the Z-axis direction indicates the vertical direction (that is, the vertical direction), the + Z direction is the upper side (opposite the gravity direction), and the ⁇ Z direction is the lower side (gravity direction). Therefore, in the present specification, the term "upper side” means the upper side with respect to the direction of gravity.
  • the X-axis direction is orthogonal to the Z-axis direction and indicates the front-rear direction of the vehicle on which the motor unit 10 is mounted.
  • the + X direction is the front of the vehicle
  • the ⁇ X direction is the rear of the vehicle.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and indicates the width direction (left-right direction) of the vehicle, the + Y direction is the vehicle left side, and the -Y direction is the vehicle right side. Is.
  • the direction parallel to the motor axis J1 of the motor 1 is simply referred to as "axial direction”.
  • the direction on the + Y side in the axial direction is referred to as one side in the axial direction
  • the ⁇ Y side is referred to as the other side in the axial direction.
  • the radial direction centered on the motor axis J1 is simply called the "diameter direction”
  • the circumferential direction centered on the motor axis J1 that is, the circumference of the motor axis J1 is simply called the "circumferential direction”.
  • the motor axis J1 and the counter axis J3 described later are virtual axes that do not actually exist.
  • the motor unit 10 is mounted on the vehicle and rotates the wheels H to move the vehicle forward or backward.
  • the motor unit 10 is mounted on, for example, an electric vehicle (EV).
  • EV electric vehicle
  • the motor unit 10 may be mounted on a vehicle powered by a motor, such as a hybrid electric vehicle (HEV) or a plug-in hybrid electric vehicle (PHV).
  • HEV hybrid electric vehicle
  • PHYV plug-in hybrid electric vehicle
  • the motor unit 10 includes a motor 1, a gear portion 5, an inverter 8, a housing 6 accommodating the motor 1, the gear portion 5 and the inverter 8, and a shaft holding a shaft in the housing 6. It includes a holding portion 80, a stator holder 40 that holds the stator 35 of the motor 1 in the housing 6, and oil O.
  • the housing 6 is made of, for example, aluminum die-cast.
  • the housing 6 is located below the housing body 60, the closing member 67 located on one side (+ Y side) of the housing body 60 in the axial direction, the inverter cover 68 located on the upper side of the housing body 60, and the housing body 60. It has a bottom lid member 69 and the like. That is, the motor unit 10 has a housing body 60, a closing member 67, an inverter cover 68, and a bottom lid member 69.
  • the housing 6 is configured by fastening the housing body 60, the closing member 67, the inverter cover 68, and the bottom lid member 69 to each other.
  • the housing body 60 is provided with a drive body accommodating space 61, an inverter accommodating space 62, and an oil storage space 63.
  • the inverter accommodating space 62 is arranged on the upper side of the drive body accommodating space 61, and the oil storage space 63 is arranged on the lower side.
  • the drive body accommodating space 61 is a connected space accommodating the motor 1, the gear portion 5, the shaft holding portion 80, the stator holder 40, and the oil O.
  • the inverter accommodating space 62 is a space accommodating the inverter 8.
  • the oil storage space 63 is a space for storing the oil O circulating in the drive body accommodating space 61. In this way, the housing body 60 accommodates the motor 1, the gear portion 5, the shaft holding portion 80, the stator holder 40, the inverter 8, and the oil O in each space.
  • a communication hole 65 connected to the oil storage space 63 is provided on the lower wall surface of the drive body accommodating space 61.
  • the oil O in the lower region of the drive body accommodating space 61 flows into the oil storage space 63 through the communication hole 65. Oil O is accumulated in the lower region of the drive body accommodating space 61 and the oil storage space 63.
  • Oil O circulates in the oil passage 90 provided in the housing 6.
  • the oil O functions not only as a lubricating oil for lubricating the gear portion 5 but also as a cooling oil for cooling the motor 1.
  • As the oil O it is preferable to use an oil equivalent to a low-viscosity lubricating oil for automatic transmission (ATF: Automatic Transmission Fluid).
  • a part of the ring gear 51, which will be described later, of the gear portion 5 is immersed in the oil O that collects in the lower region of the drive body accommodating space 61.
  • the oil O is scooped up by the operation of the ring gear 51 and diffused into the drive body accommodating space 61.
  • the oil O diffused in the drive body accommodating space 61 is supplied to each gear of the gear portion 5 in the drive body accommodating space 61, and the oil O is distributed to the tooth surfaces of the gears.
  • the oil O supplied to the gear portion 5 and used for lubrication is dropped and collected in the lower region of the drive body accommodating space 61.
  • the housing body 60 has a first opening 61a that exposes the drive body accommodation space 61 on one side (+ Y side) in the axial direction, a second opening 62a that exposes the inverter accommodation space 62 upward, and an oil storage space. It has a third opening 63a that exposes the 63 downwards.
  • the first opening 61a is covered with the closing member 67.
  • the second opening 62a is covered with the inverter cover 68.
  • the third opening 63a is covered by the bottom lid member 69.
  • the housing body 60 is radially extended from an opening of a tubular portion 60a centered on the motor axis J1, a bottom portion 60b that covers the other side of the tubular portion 60a in the axial direction, and an opening on one side of the tubular portion 60a in the axial direction. It has an expansion portion 60c, a box-shaped portion 60d arranged on the upper side of the tubular portion 60a, and a storage wall portion 60e located on the lower side of the tubular portion 60a.
  • the box-shaped portion 60d surrounds the inverter accommodating space 62.
  • the box-shaped portion 60d has a second opening 62a.
  • the storage wall portion 60e surrounds the oil storage space 63.
  • the storage wall portion 60e has a third opening 63a.
  • the tubular portion 60a surrounds the motor 1 from the outside in the radial direction.
  • the bottom portion 60b is located on the other side ( ⁇ Y side) of the motor 1 in the axial direction.
  • the bottom portion 60b has a bearing holding portion 60ba that holds the ball bearing 71.
  • the bottom 60b supports the output shaft 55 via a ball bearing 71.
  • the bottom 60b supports the oil pump 96.
  • the expansion portion 60c faces the closing member 67 in the axial direction.
  • the expansion portion 60c includes an overhanging portion 60ca extending from the opening of the tubular portion 60a along a plane orthogonal to the axial direction, and an outer edge portion 60cc extending from the overhanging portion 60ca toward one side (+ Y side) in the axial direction.
  • the closing member 67 is fastened to the outer edge portion 60cc by using a fastening member such as a bolt.
  • the closing member 67 covers the first opening 61a.
  • the closing member 67, the tubular portion 60a, the bottom portion 60b, and the expansion portion 60c of the housing body 60 surround the drive body accommodating space 61. Therefore, by separating the closing member 67 from the housing body 60, the drive body accommodating space 61 is exposed on one side in the axial direction.
  • the shape of the closing member 67 is a concave shape that opens on the other side ( ⁇ Y side) in the axial direction.
  • the closing member 67 supports the counter shaft 13, which will be described later, via the ball bearing 79. Further, the closing member 67 rotatably supports the gear housing 52 and the ring gear 51, which will be described later, via the conical roller bearing 77.
  • the first opening 61a of the housing body 60 accommodates the motor 1, the gear portion 5, the shaft holding portion 80, and the stator holder 40 on one side (+ Y side) of the drive body accommodation space 61 in the axial direction. ).
  • the motor 1, the gear portion 5, the shaft holding portion 80, and the stator holder 40 are assembled inside the housing body 60 from the first opening 61a.
  • the assembly process of the motor unit 10 is performed by sequentially assembling the motor 1, the gear portion 5, and the like inside the housing body 60.
  • the posture of the housing body 60 is changed according to the assembling direction of each member.
  • the procedure for changing the posture of the housing body 60 lengthens the working time of the assembly process.
  • the motor 1, the gear portion 5, the shaft holding portion 80, and the stator holder 40 can be assembled to the housing body 60 from one direction, thereby simplifying the assembling process and performing assembling. The required cost can be reduced.
  • the housing body 60 has a bottom portion 60b that closes the drive body accommodating space 61 on the other side ( ⁇ Y side) of the motor 1 in the axial direction. Therefore, a member (output shaft 55 or the like) to be accommodated in the drive body accommodating space 61 from one side (+ Y side) in the axial direction can be supported by the bottom portion 60b, which improves the assembling accuracy and simplifies the assembling process. be able to. Further, since the bottom portion 60b is a part of the housing main body 60, the other side in the axial direction of the drive body accommodating space 61 is closed in advance. Therefore, the number of parts can be reduced and the assembly process can be simplified as compared with the case where the drive body accommodating space 61 is opened on both sides in the axial direction.
  • the box-shaped portion 60d has a box shape surrounding the inverter 8.
  • the box-shaped portion 60d opens upward to form a second opening 62a.
  • the box-shaped portion 60d and the inverter cover 68 form a wall surface of the inverter accommodating space 62.
  • the box-shaped portion 60d is connected to the upper side of the tubular portion 60a.
  • a part of the box-shaped portion 60d is composed of a part of the tubular portion 60a and the expansion portion 60c.
  • the box-shaped portion 60d includes a box bottom portion (partition wall, second wall portion) 60da located between the motor 1 and the inverter 8 in the radial direction of the motor axis J1, and the inverter 8 and the gear portion on one side in the axial direction of the inverter 8. It has a side wall portion 60db (partition wall, first wall portion) located between the side wall portion and the other side wall portion.
  • the box bottom portion 60da is a part of the tubular portion 60a and faces the second opening in the vertical direction.
  • the side wall portion 60db is a part of the expansion portion 60c and extends upward from the box bottom portion 60da.
  • the box bottom portion 60da and the side wall portion 60db function as partition walls 66 that partition the drive body accommodation space 61 and the inverter accommodation space 62. Further, the side wall portion 60db is provided with a through hole 60h. The through hole 60h communicates the drive body accommodating space 61 and the inverter accommodating space 62. As will be described later, the bus bar 9 passes through the through hole 60h.
  • the housing main body 60 has a partition wall 66 that partitions the drive body accommodation space 61 and the inverter accommodation space 62. That is, according to the present embodiment, the member accommodating the motor 1 and the gear portion 5 and the member accommodating the inverter 8 are composed of a single member (housing body 60). Therefore, the rigidity of the housing body 60 as a whole is increased, and the effect of suppressing vibration is enhanced. As a result, the transmission of vibration caused by the driving of the motor 1 and the gear portion 5 to the inverter 8 is suppressed, and the load on the inverter 8 can be suppressed.
  • the inverter cover 68 is fixed to the box-shaped portion 60d.
  • the inverter cover 68 has a top plate portion 68a extending along a horizontal plane.
  • the inverter 8 is fixed to the back surface of the top plate portion 68a (that is, the surface facing the inside of the inverter accommodating space 62). As a result, the inverter cover 68 supports the inverter 8.
  • the inverter 8 is fixed to the inverter cover 68 that can be detached from the housing body 60. Therefore, the inverter 8 can be easily detached from the motor unit 10 by releasing the fastening between the inverter cover 68 and the housing body 60 when performing maintenance of the motor unit 10 such as periodic inspection and parts replacement. This step can be performed even when the motor unit 10 is mounted on the vehicle, and the maintainability of the inverter 8 can be improved.
  • the top plate portion 68a may be provided with a flow path for a refrigerant for cooling the inverter 8.
  • the flow path of the refrigerant is provided on the inverter cover 68, which is a member separate from the housing body 60 in contact with the motor 1.
  • the temperature of the inverter 8 can be suppressed to be lower than the temperature of the motor.
  • the flow path provided in the top plate portion 68a may be connected to the passage portion (recessed portion 44) described later. In this case, as the refrigerant, the refrigerant that cools the inverter 8 and the refrigerant that cools the motor 1 can be shared.
  • the motor 1 is a motor generator having both a function as a motor and a function as a generator.
  • the motor 1 mainly functions as an electric motor to drive the vehicle, and functions as a generator at the time of regeneration.
  • the motor 1 of this embodiment is a three-phase AC motor.
  • Motor 1 is connected to inverter 8.
  • the inverter 8 converts the direct current supplied from the battery (not shown) into an alternating current and supplies the direct current to the motor 1.
  • Each rotation speed of the motor 1 is controlled by controlling the inverter 8.
  • the motor 1 has a rotor 31 and a stator 35 located on the radial outer side of the rotor 31.
  • the rotor 31 can rotate about the motor axis J1.
  • the stator 35 is annular.
  • the stator 35 surrounds the rotor 31 from the radial outside of the motor axis J1.
  • the rotor 31 has a motor shaft 32, a rotor core 31a, and a rotor magnet (not shown) held by the rotor core 31a. That is, the motor 1 has a motor shaft 32.
  • the rotor 31 (that is, the motor shaft 32, the rotor core 31a, and the rotor magnet) rotates about the motor axis J1.
  • the torque of the rotor 31 is transmitted to the gear portion 5.
  • the rotor core 31a is formed by laminating silicon steel plates.
  • the rotor core 31a is a cylindrical body extending along the axial direction.
  • a plurality of rotor magnets are fixed to the rotor core 31a.
  • the plurality of rotor magnets are arranged along the circumferential direction with alternating magnetic poles.
  • the motor shaft 32 extends along the motor axis J1 extending in the width direction of the vehicle.
  • the motor shaft 32 is a hollow shaft that opens on both sides of the motor axis J1 in the axial direction. That is, the motor shaft 32 has hollow portions 32h that open on both sides in the axial direction.
  • the motor shaft 32 has a first end portion 32A located on one side (+ Y side) in the axial direction and a second end portion 32B located on the other side ( ⁇ Y side) in the axial direction.
  • the first end 32A of the motor shaft 32 is rotatably supported by the ball bearing 73.
  • a female spline 32b is provided in the opening of the hollow portion 32h of the first end portion 32A.
  • the motor shaft 32 is connected to the input shaft 11 of the gear portion 5 at the female spline 32b of the second end portion 32B.
  • the second end 32B of the motor shaft 32 is rotatably supported by the ball bearing 72.
  • a resolver rotor 3a is fixed to the outer peripheral surface of the second end portion 32B.
  • the resolver rotor 3a rotates around the motor axis J1 together with the motor shaft 32.
  • the resolver rotor 3a is located on the other side ( ⁇ Y side) in the axial direction from the ball bearing 72 that supports the second end portion 32B.
  • the stator 35 has an annular stator core 35a, a coil 35b wound around the stator core 35a, and an insulator (not shown) interposed between the stator core 35a and the coil 35b.
  • the stator core 35a has a plurality of teeth protruding inward in the radial direction of the motor axis J1.
  • a coil wire is wound around the tooth.
  • the coil wire wound around the tooth constitutes the coil 35b.
  • the coil 35b has a coil end portion 35c protruding from the stator core 35a on both sides in the axial direction.
  • One coil end portion 35c projects axially from one end face of the stator core 35a in the axial direction, and the other coil end portion 35c protrudes axially from the other end face of the stator core 35a in the axial direction.
  • a connecting coil wire 35d extends from the coil end portion 35c on one side in the axial direction.
  • the connecting coil wire 35d has a twisted coil wire and an insulating tube that covers the outer circumference of the coil wire. Since the motor 1 of the present embodiment is a three-phase AC motor, it has three connecting coil wires 35d corresponding to each phase.
  • the connection coil wire 35d is connected to the inverter 8 via the bus bar 9.
  • the gear portion 5 is connected to one side (+ Y side) of the motor 1 in the axial direction.
  • the gear portion 5 transmits the power of the motor 1 and outputs the power from the output shaft 55.
  • the gear unit 5 incorporates a plurality of mechanisms responsible for power transmission between the drive source and the driven device.
  • the gear portion 5 includes an input shaft 11, an input gear 21, a counter shaft 13, a counter gear 23, a drive gear 24, a ring gear 51, an output shaft 55, and a differential device 50.
  • Each gear and each shaft of the gear portion 5 can rotate around either the motor axis J1 or the counter axis J3, respectively.
  • the motor axis J1 and the counter axis J3 extend parallel to each other.
  • the motor axis J1 and the counter axis J3 are parallel to the width direction of the vehicle.
  • the axial direction means the axial direction of the motor axis J1. That is, the axial direction in the present specification means a direction parallel to the motor axis J1 and a vehicle width direction.
  • the input shaft 11 extends along the motor axis J1.
  • the input shaft 11 is a hollow shaft that opens on both sides of the motor axis J1 in the axial direction. That is, the input shaft 11 has hollow portions 11h that open on both sides in the axial direction.
  • the input shaft 11 has a first end portion 11A located on one side (+ Y side) in the axial direction and a second end portion 11B located on the other side ( ⁇ Y side) in the axial direction.
  • the input shaft 11 is rotatably supported by a ball bearing 74 between the first end 11A and the second end 11B.
  • a male spline 11a is provided on the outer peripheral surface of the second end 11B of the input shaft 11.
  • the male spline 11a fits into the female spline 32b of the motor shaft 32.
  • the first end 32A of the motor shaft 32 and the second end 32B of the input shaft 11 are connected to each other. That is, the input shaft 11 is connected to the motor shaft 32 in the axial direction.
  • the hollow portion 32h of the motor shaft 32 and the hollow portion 11h of the input shaft 11 communicate with each other. The rotation of the motor 1 is transmitted to the input shaft 11 to rotate the input shaft 11.
  • the input gear 21 is provided on the outer peripheral surface of the first end portion 11A of the input shaft 11.
  • the input gear 21 rotates around the motor axis J1 together with the input shaft 11.
  • the input gear 21 and the input shaft 11 are a single member.
  • the input gear 21 may be a separate member assembled on the outer peripheral surface of the input shaft 11.
  • the counter shaft 13 extends along the counter axis J3.
  • the counter shaft 13 rotates around the counter axis J3.
  • the counter shaft 13 has a first end portion 13A located on one side (+ Y side) in the axial direction and a second end portion 13B located on the other side ( ⁇ Y side) in the axial direction.
  • the first end 13A of the counter shaft 13 is rotatably supported by a ball bearing 79.
  • the second end 13B of the counter shaft 13 is rotatably supported by a ball bearing 78.
  • a counter gear 23 and a drive gear 24 are provided on the outer peripheral surface of the counter shaft 13 between the first end portion 13A and the second end portion 13B in the axial direction.
  • the drive gear 24 is located on one side (+ Y side) of the counter gear in the axial direction.
  • the counter gear 23 rotates around the counter axis J3 together with the counter shaft 13.
  • the counter gear 23 meshes with the input gear 21.
  • the drive gear 24 rotates around the counter axis J3 together with the counter shaft 13 and the counter gear 23.
  • the ring gear 51 is a gear centered on the motor axis J1.
  • the ring gear 51 is fixed to the differential device 50.
  • the ring gear 51 rotates around the motor axis J1.
  • the ring gear 51 meshes with the drive gear 24.
  • the ring gear 51 transmits the power of the motor 1 transmitted via the drive gear 24 to the differential device 50.
  • the differential device 50 is arranged around the motor axis J1. That is, the differential device 50 is arranged coaxially with the motor 1.
  • the differential device 50 is a device for transmitting the torque output from the motor 1 to the wheels H of the vehicle.
  • the differential device 50 has a function of transmitting the same torque to the output shafts 55 of the left and right wheels while absorbing the speed difference between the left and right wheels H when the vehicle turns.
  • the differential device 50 has a gear housing 52 fixed to the ring gear 51, a pair of pinion gears 53a, a pinion shaft 53b, and a pair of side gears 54.
  • the gear housing 52 rotates about the motor axis J1 together with the ring gear 51.
  • the gear housing 52 accommodates a pair of pinion gears 53a, a pinion shaft 53b, and a pair of side gears 54.
  • the pair of pinion gears 53a are bevel gears that are coaxially arranged and face each other.
  • the pair of pinion gears 53a are supported by the pinion shaft 53b.
  • the pair of side gears 54 are bevel gears that mesh with the pair of pinion gears 53a at right angles.
  • the pair of side gears 54 are fixed to the output shaft 55, respectively.
  • the gear housing 52 is rotatably supported by conical roller bearings 76 and 77 from both sides in the axial direction. That is, the ring gear 51 is supported by the conical roller bearings 76 and 77 via the gear housing 52.
  • the output shaft 55 extends along the motor axis J1.
  • the output shaft 55 rotates around the motor axis J1.
  • the motor unit 10 is provided with a pair of output shafts 55 arranged along the axial direction.
  • the pair of output shafts 55 are connected to the side gear 54 of the differential device 50 at one end of each. That is, the output shaft 55 is connected to the ring gear 51 via the differential device 50.
  • the power of the motor 1 is transmitted to the output shaft 55 via each gear.
  • each of the pair of output shafts 55 projects to the outside of the housing 6 at the other end.
  • Wheels H are attached to the other end of the output shaft 55.
  • the output shaft 55 outputs power to the outside (road surface via the wheel H).
  • the output shaft 55 is arranged coaxially with the motor shaft 32 and the input shaft 11.
  • One of the pair of output shafts 55 arranged on the other side ( ⁇ Y side) in the axial direction is passed through the hollow portions 32h and 11h of the motor shaft 32 and the input shaft 11.
  • a part of the output shaft 55 is arranged inside the motor shaft 32 and the input shaft 11, so that the motor 1 and the differential device 50 are coaxially aligned when viewed from the axial direction.
  • the size of the motor unit 10 in the radial direction of the motor axis J1 can be reduced.
  • the gear portion 5 constitutes a power transmission path from the motor 1 to the output shaft 55.
  • the gear portion 5 has a plurality of gears (input gear 21, counter gear 23, drive gear 24 and ring gear 51, pinion gear 53a and side gear 54).
  • the gear unit 5 transmits power from the motor shaft 32 to the output shaft 55 by these plurality of gears.
  • the power of the motor 1 is first transmitted from the motor shaft 32 to the input shaft 11, and further transmitted from the input gear 21 to the counter gear 23.
  • the counter gear 23 is arranged coaxially with the drive gear 24 and rotates together with the drive gear 24.
  • the power of the motor 1 is transmitted from the drive gear 24 to the ring gear 51, and is transmitted to the output shaft 55 via the differential device 50.
  • the stator holder 40 has a cylindrical portion 41 that surrounds the stator 35 from the outside in the radial direction, and a bottom plate portion 42 that extends radially inward from the end of the cylindrical portion 41 on the other side ( ⁇ Y side) in the axial direction.
  • the stator holder 40 is arranged inside the tubular portion 60a of the housing body 60.
  • the tubular portion 60a of the housing body 60 has an opposing inner peripheral surface 60a that faces inward in the radial direction.
  • the facing inner peripheral surface 60aa faces the outer peripheral surface 41a of the cylindrical portion 41 in the radial direction.
  • the cylindrical portion 41 has a cylindrical shape centered on the motor axis J1.
  • the stator 35 is supported by fitting the outer peripheral surface of the stator 35 to the inner peripheral surface 41b of the cylindrical portion 41. As a result, the stator holder 40 supports the stator 35.
  • a fitting portion 41p is provided on the inner peripheral surface 41b of the cylindrical portion 41.
  • the fitting portion 41p is provided in the opening on one side (+ Y side) of the cylindrical portion 41 in the axial direction.
  • the inner diameter of the fitting portion 41p is larger than the region where the stator 35 is fitted on the inner peripheral surface 41b.
  • the first retainer 81 of the shaft holding portion 80 is fitted into the fitting portion 41p.
  • the outer peripheral surface 41a of the cylindrical portion 41 is provided with a recess (passage portion) 44 recessed in the radial direction.
  • the recess 44 extends over the entire circumference around the motor axis J1.
  • the recess 44 opens outward in the radial direction.
  • the opening of the recess 44 is covered by the facing inner peripheral surface 60aa of the housing body 60.
  • the recess 44 functions as a passage portion through which the refrigerant W flows.
  • the refrigerant W flows along the circumferential direction between the inner wall surface of the recess 44 and the facing inner peripheral surface 60aa.
  • the refrigerant W cools the stator 35 via the stator holder 40.
  • the refrigerant W passes through a heat exchanger (not shown) and is cooled. Therefore, the stator holder 40 and the cylindrical portion 41 of the housing body 60 function as a water jacket that surrounds the stator 35 and allows the refrigerant W to pass therethrough to cool the stator 35.
  • the case where the recess 44 is provided on the outer peripheral surface 41a of the cylindrical portion 41 and the opening of the recess 44 is covered by the facing inner peripheral surface 60aa has been described.
  • a configuration may be adopted in which a recess is provided on the facing inner peripheral surface 60aa and the opening of the recess is covered by the outer peripheral surface 41a of the cylindrical portion 41.
  • the configuration for passing the refrigerant W is not limited to this embodiment, and a passage portion for passing the refrigerant W may be provided between the outer peripheral surface 41a of the cylindrical portion 41 and the facing inner peripheral surface 60aa.
  • a pair of fitting portions 46 that fit into the opposing inner peripheral surfaces 60aa are provided on the outer peripheral surface 41a of the cylindrical portion 41.
  • the fitting portion 46 extends over the entire circumference around the motor axis J1.
  • One of the pair of fitting portions 46 is located on one side of the recess 44 in the axial direction, and the other is located on the other side of the recess 44 in the axial direction.
  • the stator holder 40 fits into the facing inner peripheral surface 60aa of the housing body 60 at the fitting portion 46. As a result, the positional accuracy of the stator holder 40 in the radial direction with respect to the housing body 60 can be improved.
  • a pair of concave grooves 45a are provided on the outer peripheral surface 41a of the cylindrical portion 41.
  • the concave groove 45a extends over the entire circumference around the motor axis J1.
  • One of the pair of recessed grooves 45a is located on one side of the recess 44 in the axial direction, and the other is located on the other side of the recess 44 in the axial direction.
  • Both of the pair of recessed grooves 45a are arranged between the pair of fitting portions 46 in the axial direction.
  • the concave groove 45a opens outward in the radial direction.
  • the opening of the groove 45a is covered by the facing inner peripheral surface 60aa of the housing body 60.
  • An O-ring (sealing portion) 45b is housed in each of the pair of recessed grooves 45a.
  • the O-ring 45b is compressed in the radial direction by the facing inner peripheral surface 60aa. As a result, the O-ring 45b functions as a sealing portion.
  • a configuration may be adopted in which a concave groove for accommodating the O-ring is provided on the facing inner peripheral surface 60aa, and the O-ring is compressed by the outer peripheral surface 41a of the cylindrical portion 41. That is, the O-ring 45b as the sealing portion may be arranged between the outer peripheral surface 41a of the cylindrical portion 41 and the facing inner peripheral surface 60aa and may extend along the circumferential direction.
  • the O-ring 45b is located on both sides of the recess 44 as the passage portion of the refrigerant W in the axial direction.
  • the O-ring 45b suppresses the refrigerant W from leaking from the recess 44 to both sides in the axial direction. Further, it is possible to prevent the oil O in the drive body accommodating space 61 from entering between the pair of O-rings 45b. As a result, the oil O is prevented from mixing with the refrigerant W in the recess 44.
  • the bottom plate portion 42 is located on the other side (-Y side) in the axial direction with respect to the motor 1.
  • the bottom plate portion 42 has a plate shape orthogonal to the motor axis J1.
  • An insertion hole 42a is provided in the center of the bottom plate portion 42.
  • the insertion hole 42a penetrates the bottom plate portion 42 in the plate thickness direction.
  • the bottom plate portion 42 has a bearing holding portion 43 that projects from the edge portion of the insertion hole 42a to one side (+ Y side) in the axial direction.
  • the bottom plate portion 42 holds the ball bearing 72. Therefore, the bottom plate portion 42 rotatably supports the motor shaft 32 via the ball bearing 72.
  • the stator holder 40 that supports the stator 35 supports the rotor 31 via the ball bearing 72. That is, the only members interposed between the stator 35 and the rotor 31 are the stator holder 40 and the ball bearing 72. Therefore, according to the present embodiment, by controlling the dimensions of the stator holder 40, the coaxiality of the rotor 31 with respect to the stator 35 can be increased, and the driving efficiency of the motor 1 can be easily increased.
  • the bottom plate portion 42 of the stator holder 40 holds the ball bearing 72. Therefore, as compared with the case where a member for holding the ball bearing 72 is separately provided, the entire motor unit 10 can be easily miniaturized in the axial direction.
  • the axial position of the bearing holding portion 43 of the stator holder 40 overlaps with the axial position of the stator 35. As a result, the motor unit 10 can be miniaturized more effectively in the axial direction.
  • the output shaft 55 protrudes from the opening on the other side ( ⁇ Y side) of the motor shaft 32 in the axial direction.
  • the output shaft 55 and the motor shaft 32 are supported by ball bearings 71 and 72 arranged side by side in the axial direction, respectively.
  • the ball bearings 71 and 72 one is held by the housing body 60 and the other is held by the stator holder 40.
  • the structure of the housing body 60 can be simplified and the assembly process as a whole can be simplified as compared with the case where the housing body 60 holds both the two ball bearings 71 and 72. ..
  • the ball bearing 72 is arranged inside the pair of coil end portions 35c of the stator 35 in the radial direction of one coil end portion 35c located on the other side in the axial direction. More specifically, the axial position of the ball bearing 72 overlaps the axial position of one coil end portion 35c located on the other side in the axial direction. Therefore, the ball bearing 72 that supports the second end 32B of the motor shaft 32 can be arranged closer to the first end 32A side. As a result, the ball bearings 72 and 73 that support both ends of the motor shaft 32 can be arranged close to each other, and the eccentricity of the motor shaft 32 can be suppressed. Further, the coil end portion 35c can be cooled and the oil O dropped from the coil end portion 35c can be supplied to the ball bearing 72, and the lubricity of the ball bearing 72 can be improved.
  • the bottom plate portion 42 of the stator holder 40 supports the resolver stator 3b in addition to the ball bearing 72.
  • the resolver stator 3b is arranged inside the insertion hole 42a and on the other side in the axial direction from the ball bearing 72.
  • the resolver stator 3b surrounds the second end 32B of the motor shaft 32 from the outside in the radial direction.
  • the resolver stator 3b faces the resolver rotor 3a in the radial direction.
  • the resolver stator 3b and the resolver rotor 3a constitute the resolver 3. That is, the motor unit 10 includes a resolver 3.
  • the resolver 3 measures the rotation speed of the motor shaft 32.
  • the resolver 3 is arranged between the ball bearing 71 and the ball bearing 72 in the axial direction.
  • the resolver stator 3b since the bottom plate portion 42 of the stator holder 40 supports the resolver stator 3b, the resolver stator 3b has an axial dimension of the motor 1 as compared with the case where the housing body 60 supports the resolver stator 3b. It can be placed closer to the center. As a result, it is possible to prevent the resolver stator 3b from protruding in the axial direction with respect to the motor 1, and the axial dimension of the motor unit 10 can be reduced.
  • the shaft holding portion 80 is arranged in the drive body accommodating space 61. Further, the shaft holding portion 80 is located between the motor 1 and the gear portion 5.
  • the shaft holding portion 80 includes a first retainer 81, a second retainer 86, ball bearings 73, 74, 75, 78, and a conical roller bearing 76.
  • the first retainer 81 is fixed to the stator holder 40 from one side (+ Y side) in the axial direction. Further, the second retainer 86 is fixed to the first retainer 81 from one side (+ Y side) in the axial direction.
  • the ball bearings 73, 74, 78 are held by the first retainer 81. Further, the ball bearing 75 and the conical roller bearing 76 are held by the second retainer 86.
  • FIG. 3 is an exploded perspective view of the shaft holding portion 80.
  • the first retainer 81 has a main body disk portion 82 and a protruding disk portion 83.
  • the main body disk portion 82 and the protruding disk portion 83 are single members connected to each other.
  • the outer diameter of the main body disk portion 82 is larger than the outer diameter of the protruding disk portion 83.
  • the protruding disk portion 83 is arranged so as to be offset from the main body disk portion 82 to one side (+ Y side) in the radial direction and the axial direction.
  • the main body disk portion 82 has a disk shape centered on the motor axis J1.
  • a first insertion hole 82h penetrating in the axial direction is provided in the center of the main body disk portion 82.
  • the first insertion hole 82h is circular with the motor axis J1 as the center when viewed from the axial direction.
  • the first end portion 32A of the motor shaft 32, the second end portion 11B of the input shaft 11, and the output shaft 55 are arranged inside the first insertion hole 82h.
  • a plurality of screw holes 82s are provided on one side (+ Y side) of the main body disk portion 82 in the axial direction.
  • the plurality of screw holes 82s are arranged along the circumferential direction of the motor axis J1 so as to surround the first insertion hole 82h.
  • a fixing screw 84 for fixing the second retainer 86 is inserted into the screw hole 82s. That is, the second retainer 86 is fixed to the first retainer 81 by a plurality of fixing screws 84 inserted on the other side ( ⁇ Y side) in the axial direction.
  • the second retainer 86 can be assembled to the first retainer 81 from the first opening 61a side in the drive body accommodation space 61, so that the assembly process of the motor unit 10 can be simplified. Further, the plurality of fixing screws 84 are arranged along the circumferential direction of the motor axis J1. Therefore, the second retainer 86 can be firmly fixed around the motor axis J1.
  • the protruding disk portion 83 has a disk shape centered on the counter axis J3.
  • a second insertion hole 83h penetrating in the axial direction is provided in the center of the protruding disk portion 83.
  • the second end portion 13B of the counter shaft 13 is arranged inside the second insertion hole 83h.
  • the main body disk portion 82 has an outer edge protruding portion 82c that protrudes from the outer edge to the other side ( ⁇ Y side) in the axial direction.
  • the outer edge protruding portion 82c has a cylindrical shape centered on the motor axis J1.
  • the outer peripheral surface of the outer edge protruding portion 82c is fitted into the fitting portion 41p of the stator holder 40.
  • the first retainer 81 is supported by the stator holder 40. Further, the first retainer 81 is fixed to the housing body 60 via the stator holder 40.
  • the main body disk portion 82 has two bearing holding portions 82a and 82b.
  • the bearing holding portions 82a and 82b are provided on the outer edge of the first insertion hole 82h.
  • the bearing holding portion 82a is provided on the surface of the main body disk portion 82 facing the other side (-Y side) in the axial direction.
  • the bearing holding portion 82a holds the ball bearing 73.
  • the bearing holding portion 82a rotatably supports the first end portion 32A of the motor shaft 32 via the ball bearing 73.
  • the ball bearing 73 is located between the motor 1 and the gear portion 5 in the axial direction. Therefore, the shaft holding portion 80 rotatably supports the motor shaft 32 on one side in the axial direction of the motor 1.
  • the motor 1 and the gear portion 5 are housed in a connected drive body accommodating space 61. Therefore, if the shaft holding portion 80 is not provided, the motor shaft 32 becomes cantilevered and there is a possibility that eccentricity due to rotation becomes remarkable.
  • the shaft holding portion 80 rotatably supports the motor shaft 32 between the motor 1 and the gear portion 5. Therefore, the shaft holding portion 80 can support the motor shaft 32 on both sides of the motor 1 together with the ball bearing 72 that supports the second end portion 32B. According to this embodiment, the eccentricity of the motor shaft 32 can be suppressed and the rotational efficiency of the motor shaft 32 can be improved.
  • the bearing holding portion 82b is provided on the surface of the main body disk portion 82 facing one side (+ Y side) in the axial direction.
  • the bearing holding portion 82b holds the ball bearing 74.
  • the bearing holding portion 82b rotatably supports the input shaft 11 via the ball bearing 74.
  • the protruding disk portion 83 has a bearing holding portion 83a.
  • the bearing holding portion 83a is provided on the outer edge of the second insertion hole 83h.
  • the bearing holding portion 83a is provided on a surface of the protruding disk portion 83 facing one side (+ Y side) in the axial direction.
  • the bearing holding portion 83a supports the ball bearing 78.
  • the bearing holding portion 83a rotatably supports the counter shaft 13 via the ball bearing 78.
  • the first retainer 81 rotatably supports not only the shaft (motor shaft 32 and input shaft 11) on the motor axis J1 but also the shaft (counter shaft 13) on the counter axis J3. .. Therefore, by controlling the machining accuracy of the first retainer 81, the distance dimension between the motor axis J1 and the counter axis J3 can be guaranteed, and as a result, the power transmission efficiency between the gears can be improved. Further, by assembling the first retainer 81 to the housing body 60 with a plurality of bearings (ball bearings 73, 78) incorporated, the assembly process can be simplified.
  • the axial positions of the ball bearing 73 and the ball bearing 78 may overlap each other. Further, the ball bearing 74 and the ball bearing 78 may overlap each other in the axial direction. That is, it is preferable that the positions of the plurality of bearings of the shaft holding portion 80 overlap each other in the axial direction. As a result, the axial dimension of the shaft holding portion 80 can be reduced as compared with the case where the bearings are arranged so as to be displaced, and the drive body accommodating space 61 can be effectively used. Further, in a plurality of bearings having overlapping axial positions, oil O scattered in the radial direction from one bearing can be supplied to another bearing, and the lubricity of the bearing can be improved.
  • the second retainer 86 has a surrounding portion 88 and a flange portion 89.
  • the enclosing portion 88 and the flange portion 89 are a single member connected to each other.
  • the surrounding portion 88 is an annular shape that surrounds the motor axis J1 from the outside in the radial direction.
  • the surrounding portion 88 has a disc portion 88a and a surrounding cylinder portion 88b extending axially from the outer edge of the disc portion 88a to the other side in the axial direction.
  • the disk portion 88a has a disk shape centered on the motor axis J1.
  • a third insertion hole 88h penetrating in the axial direction is provided in the center of the disk portion 88a.
  • the third insertion hole 88h is circular with the motor axis J1 as the center when viewed from the axial direction.
  • An output shaft 55 is arranged inside the third insertion hole 88h.
  • the disk portion 88a has two bearing holding portions 88e and 88f.
  • the bearing holding portions 88e and 88f are provided on the outer edge of the third insertion hole 88h.
  • the surrounding cylinder portion 88b has a tubular shape centered on the motor axis J1.
  • the surrounding cylinder portion 88b opens on the other side (-Y side) in the axial direction.
  • the surrounding cylinder portion 88b is provided with a notch portion 88c.
  • the cutout portion 88c extends from the end portion of the surrounding cylinder portion 88b on the other side ( ⁇ Y side) in the axial direction to the one side (+ Y side) in the axial direction.
  • the cutout portion 88c is provided in the upper region of the entire circumference of the surrounding cylinder portion 88b.
  • the notch 88c functions as an opening 87 that exposes the inside of the surrounding portion 88 upward.
  • the flange portion 89 is located at the end of the surrounding portion 88 on the other side (-Y side) in the axial direction. More specifically, the flange portion 89 extends radially outward from the end on the other side in the axial direction of the surrounding cylinder portion 88b.
  • the flange portion 89 is provided with a plurality of through holes 89a penetrating in the axial direction.
  • the plurality of through holes 89a are arranged along the circumferential direction of the motor axis J1.
  • a fixing screw 84 inserted into the screw hole 82s of the first retainer 81 is passed through the through hole 89a in order to fix the second retainer 86 to the first retainer 81. As a result, the second retainer 86 is supported by the first retainer 81.
  • the bearing holding portion 88f of the second retainer 86 is provided on the surface of the disk portion 88a facing the other side ( ⁇ Y side) in the axial direction.
  • the bearing holding portion 88f holds the ball bearing 75.
  • the bearing holding portion 88f rotatably supports the output shaft 55 via the ball bearing 75.
  • the bearing holding portion 88e is provided on the surface of the main body disk portion 82 facing one side (+ Y side) in the axial direction.
  • the bearing holding portion 88e holds the conical roller bearing 76.
  • the bearing holding portion 88e rotatably supports the gear housing 52 and the ring gear 51 via the conical roller bearing 76.
  • the second retainer 86 that supports the output shaft 55 via the ball bearing 75 is fixed to the first retainer 81.
  • the first retainer 81 supports the motor shaft 32 and the input shaft 11 via ball bearings 73 and 74. Therefore, according to the present embodiment, the coaxiality of the output shaft 55 with respect to the motor shaft 32 and the input shaft 11 can be guaranteed by the assembly accuracy of the second retainer 86 with respect to the first retainer 81. Therefore, it is easy to increase the rotational efficiency of the motor shaft 32 and the input shaft 11.
  • the shaft holding portion 80 has a surrounding portion 88 that surrounds the motor axis, and the surrounding portion 88 is provided with an opening 87 that opens in the radial direction of the motor axis J1.
  • the opening 87 communicates the inside and outside of the surrounding portion 88.
  • the opening 87 of the present embodiment exposes the ball bearings 74 and 75 into the drive body accommodating space 61. Therefore, according to the present embodiment, the oil O can be supplied to the ball bearings 74 and 75 from the opening 87, and the lubricity of the ball bearings 74 and 75 can be improved.
  • the opening 87 opens upward. Therefore, the oil O that has reached the inside of the surrounding portion 88 from the opening 87 collects inside the surrounding portion 88. That is, the surrounding portion 88 has an oil storage space 64 in which the oil O is stored. Further, the opening 87 and the oil storage space 64 are arranged in the second retainer 86.
  • the surrounding portion 88 of the shaft holding portion 80 of the present embodiment surrounds the first end portion 11A of the input shaft 11. Therefore, the hollow portion 11h of the input shaft 11 opens in the oil storage space 64. A part of the oil O in the oil storage space 64 penetrates into the hollow portion 11h and enhances the lubricity between the inner peripheral surface of the input shaft 11 and the output shaft 55. Further, the oil O is supplied to the male spline 11a and the female spline 32b of the connecting portion between the input shaft 11 and the motor shaft 32, and suppresses wear of the connecting portion. The oil O is scattered from the connecting portion of the male spline 11a and the female spline 32b and is supplied to the ball bearing 73 that supports the motor shaft 32 to improve the lubricity of the ball bearing 73.
  • At least a part of the input gear 21 provided at the first end 11A of the input shaft 11 is located in the oil storage space 64. Therefore, the lower end of the input gear 21 is immersed in the oil O accumulated in the oil storage space 64.
  • the oil O is scooped up by the operation of the input gear 21, diffused into the drive body accommodating space 61, and spreads over the tooth surface of each gear.
  • the meshing portion 14 in which the input gear 21 and the counter gear 23 mesh with each other is arranged in the opening 87. Therefore, the shaft holding portion 80 can transmit power from the input gear 21 to the counter gear 23 while supporting the shaft on both sides of the input gear 21 in the axial direction.
  • the shaft holding portion 80 has a plurality of bearing holding portions 82a, 82b, 88f, 88e, 83a, respectively, which hold bearings.
  • the bearing holding portions 82a, 82b, 83a are arranged in the first retainer 81
  • the bearing holding portions 88f, 88e are arranged in the second retainer 86.
  • the first retainer 81 and the second retainer 86 which are separable from each other, each have a bearing holding portion, the first retainer 81 and the second retainer 86 can be assembled in a separated state. Therefore, the assembly process can be simplified. Further, the bearings can be assembled from both sides of the first retainer 81 and the second retainer 86 in the axial direction, and it is easy to improve the positional accuracy of the bearings in the axial direction and the radial direction.
  • the inverter 8 As shown in FIG. 1, the inverter 8 is arranged in the inverter accommodation space 62. The inverter 8 is fixed to the inverter cover 68. The inverter 8 is connected to the stator 35 of the motor 1 via the bus bar 9. The inverter 8 converts a direct current into an alternating current and supplies it to the motor 1. That is, the inverter 8 controls the current supplied to the motor 1.
  • the inverter 8 is arranged on the outer peripheral surface side of the motor 1. More specifically, the inverter 8 is located directly above the motor 1. As a result, the dimensions of the motor unit 10 in the front-rear direction can be reduced. As a result, the dimensions of the motor unit 10 in the vehicle front-rear direction can be reduced as compared with the case where the inverter 8 is arranged in the vehicle front-rear direction with respect to the motor 1. As a result, it is possible to secure a wide crushable zone in the vehicle.
  • the inverter 8 Seen from the axial direction, at least a part of the inverter 8 overlaps with the counter gear 23.
  • the inverter 8 By arranging the inverter 8 so as to overlap the counter gear 23, the projected area of the motor unit 10 in the axial direction can be reduced, and the motor unit 10 can be miniaturized.
  • the bus bar 9 is made of a conductive metal material.
  • the bus bar 9 electrically connects the motor 1 and the inverter 8. Since the motor 1 of the present embodiment is a three-phase AC motor, the motor unit 10 has three inverters 8 corresponding to each phase.
  • the bus bar 9 has an axial extending portion 9a extending along the axial direction and a radial extending portion 9b extending along the radial direction of the motor axis J1.
  • the end of the axial extending portion 9a on the other side ( ⁇ Y side) in the axial direction is connected to the inverter 8. Further, the end portion of the axial extending portion 9a on one axial side (+ Y side) is connected to the radial extending portion 9b.
  • the radial extending portion 9b extends inward in diameter from the end portion of the axial extending portion and is connected to the connecting coil wire 35d at the tip thereof. That is, the bus bar 9 is connected to the inverter 8 at the axial extending portion 9a and is connected to the connecting coil wire 35d at the radial extending portion 9b.
  • the axially extending portion 9a passes through the through hole 60h provided in the partition wall 66 that partitions the drive body accommodation space 61 and the inverter accommodation space 62.
  • the bus bar 9 is arranged so as to straddle between the drive body accommodation space 61 and the inverter accommodation space 62.
  • the bus bar 9 is held by a bus bar holder (not shown).
  • the bus bar holder is arranged between the inner peripheral surface of the through hole 60h and the bus bar 9, and has a sealing structure that seals between the drive body accommodating space 61 and the inverter accommodating space 62. As a result, the bus bar holder suppresses the oil O in the drive body accommodating space 61 from entering the inverter accommodating space 62.
  • the through hole 60h through which the bus bar 9 passes is provided in the side wall portion 60db.
  • the side wall portion 60db is located on one side in the axial direction of the inverter 8 and between the inverter 8 and the gear portion 5. Further, the through hole 60h penetrates the side wall portion 60db along the axial direction.
  • the assembly worker accommodates the bus bar 9 from the first opening 61a.
  • the bus bar 9 can be assembled to the housing body 60 by accommodating it in the space 61 and inserting it into the through hole 60h.
  • the bus bar 9 can be assembled to the housing body 60 from the first opening 61a like the other members, and the assembly process can be simplified by assembling from one direction.
  • the oil passage 90 is a route of the oil O that circulates the oil O in the housing 6.
  • the oil passage 90 is provided in the housing 6.
  • An oil pump 96 is provided in the oil passage 90.
  • the "oil passage” is not only a “flow path” that forms a stationary flow of oil in one direction, but also a path that temporarily retains oil (for example, oil storage). It is a concept that also includes a space 63) and a path through which oil drips.
  • the oil passage 90 includes a first flow path 91 that guides the oil O from the oil storage space 63 to the oil pump 96, and a second flow path 97 that extends from the oil pump 96 to the upper side of the motor 1 and supplies the oil O to the motor 1.
  • the oil O reaches the oil pump 96 from the oil storage space 63 via the first flow path 91, and is supplied to the motor 1 from the oil pump 96 via the second flow path 97. Further, the oil O drops from the motor 1 and returns to the oil storage space 63.
  • the first flow path 91 and the second flow path 97 are provided inside the wall surface of the housing body 60.
  • the first flow path 91 is connected to the oil pump 96 from the oil storage space 63.
  • the second flow path 97 extends upward from the oil pump 96 and branches, and opens on the upper side of the pair of coil end portions 35c of the stator 35.
  • the oil pump 96 is located on the other side (-Y side) of the motor 1 in the axial direction.
  • the oil pump 96 is a mechanical pump connected to the output shaft 55 and driven by the rotation of the output shaft 55.
  • the oil pump 96 sucks oil O from the oil storage space 63 and pumps it into the oil passage 90.
  • FIG. 4 is a schematic view of the oil pump 96 viewed from the axial direction.
  • the oil pump 96 has a pump case 96a, an external gear 92, and an internal gear 93.
  • the pump case 96a is fixed to the bottom 60b of the housing body 60.
  • the pump case 96a is circular when viewed from the axial direction.
  • the pump case 96a is provided with a pump chamber 96c, a suction port 94, and a discharge port 95.
  • the pump chamber 96c has a circular shape centered on the axis J2 that is eccentric with respect to the motor axis J1 when viewed from the axial direction.
  • a suction port 94 and a discharge port 95 are connected to the pump chamber 96c.
  • An external gear 92 and an internal gear 93 are arranged in the pump chamber 96c.
  • the suction port 94 and the discharge port 95 are opened on the side surface of the pump chamber 96c facing the other side in the axial direction.
  • the suction port 94 is connected to the first flow path 91.
  • the discharge port 95 is connected to the second flow path 97.
  • the oil pump 96 sucks oil O from the suction port 94 and discharges oil O from the discharge port 95.
  • the external tooth gear 92 is a gear that can rotate around the motor axis J1.
  • the external gear 92 is fixed to the output shaft 55.
  • the external gear 92 is housed in the pump chamber 96c.
  • the external gear 92 has a plurality of tooth portions 92a on the outer peripheral surface.
  • the tooth profile of the tooth portion 92a of the external gear 92 is a trochoid tooth profile.
  • the internal gear 93 is an annular gear that can rotate around the axis J2 that is eccentric with respect to the motor axis J1.
  • the outer diameter of the internal gear is slightly smaller than the inner diameter of the pump chamber 96c.
  • the outer peripheral surface of the internal gear 93 slidably faces the inner peripheral surface of the pump chamber 96c.
  • the internal gear 93 surrounds the radial outer side of the external gear 92 and meshes with the external gear 92.
  • the internal gear 93 has a plurality of tooth portions 93a on the inner peripheral surface.
  • the tooth profile of the tooth portion 93a of the internal gear 93 is a trochoid tooth profile.
  • the oil O discharged from the oil pump 96 is supplied to the pair of coil end portions 35c via the second flow path 97, respectively.
  • the oil O supplied to the coil end portion 35c takes heat from the stator 35 while penetrating the entire coil 35b by the capillary force and gravity acting between the coil wires. Further, the oil O drops downward, passes through the holes provided in the stator holder 40, the communication holes 65, and the like, and returns to the oil storage space 63.
  • the stator core 35a is cooled by the refrigerant W via the stator holder 40, and the coil end portion 35c is directly cooled by the oil O, so that each part of the stator 35 can be effectively cooled. ..
  • the oil O is stored in the oil storage space 63.
  • a motor 1 provided with a passage portion (recess 44) for the refrigerant W is arranged around the oil storage space 63. Therefore, the oil O in the oil storage space 63 is cooled by the refrigerant W. Therefore, the oil O is supplied to the coil end portion 35c in a state where the temperature is lowered, and the coil end portion 35c can be effectively cooled.
  • the method for manufacturing the motor unit 10 mainly includes the following first to ninth steps.
  • the first step is an output shaft assembling step of assembling the output shaft 55 to the housing body 60.
  • the bottom lid member 69 Prior to the first step, the bottom lid member 69 is assembled to the housing body 60 in advance. As a result, the bottom lid member 69 covers the third opening 63a of the housing body 60.
  • a seal member (not shown) and a ball bearing 71 are assembled to the bearing holding portion 60ba provided on the bottom portion 60b of the housing body 60.
  • the output shaft 55 is accommodated in the drive body accommodating space 61 through the first opening 61a of the housing body 60.
  • the output shaft 55 is assembled to the housing body 60 by inserting the end of the output shaft 55 on the other side ( ⁇ Y side) in the axial direction into the ball bearing 71.
  • the oil pump 96 is assembled to the output shaft 55.
  • the second step is a motor assembling step of assembling the motor 1 to the housing body 60. Prior to the second step, the rotor 31 and the stator 35 are assembled in advance. Further, the stator 35 is previously assembled to the stator holder 40 together with the ball bearing 72.
  • the pre-assembled stator 35 and the stator holder 40 are accommodated in the drive body accommodating space 61 through the first opening 61a. Further, the fitting portion 46 of the stator holder 40 is fitted into the facing inner peripheral surface 60aa of the tubular portion 60a of the housing body 60. As a result, the stator holder 40 and the stator 35 are fixed to the housing body 60.
  • the rotor 31 is then accommodated in the drive body accommodating space 61 through the first opening 61a while inserting the output shaft 55 into the hollow portion 32h of the motor shaft 32.
  • the motor 1 and the stator holder 40 are accommodated and fixed in the drive body accommodating space 61 through the first opening 61a of the housing body 60.
  • the third step is a bus bar assembling step of assembling the bus bar 9 to the housing body 60.
  • the three bus bars 9 are accommodated in the drive body accommodating space 61 through the first opening 61a of the housing body 60, and are fixed to the housing body 60 through the through holes 60h of the housing body 60.
  • the bus bar 9 is connected to the connecting coil wire 35d extending from the stator 35.
  • the fourth step is a step of assembling the first retainer 81 to the stator holder 40. Prior to the fourth step, the ball bearing 73 and the ball bearing 78 are assembled to the first retainer 81 in advance.
  • the first retainer 81 is accommodated in the drive body accommodating space 61 through the first opening 61a of the housing body 60, and the motor shaft 32 is inserted into the ball bearing 73. Further, the outer edge protruding portion 82c of the first retainer 81 is fitted into the fitting portion 41p of the stator holder 40, and the first retainer 81 is fixed to the housing body 60 via the stator holder 40. Next, the ball bearing 74 is assembled to the first retainer 81.
  • the fifth step is a step of assembling the input shaft 11, the counter shaft 13, the input gear 21, the counter gear 23, and the drive gear 24 to the housing body 60.
  • the input shaft 11, the counter shaft 13, the input gear 21, the counter gear 23, and the drive gear 24 are housed in the drive body accommodating space 61 through the first opening 61a of the housing body 60 and assembled.
  • the sixth step is a step of assembling the second retainer 86 to the first retainer 81. Prior to the sixth step, the ball bearing 75 and the conical roller bearing 76 are assembled in advance on the second retainer 86.
  • the second retainer 86 is accommodated in the drive body accommodating space 61 through the first opening 61a of the housing body 60, and is inserted into the ball bearing 75 by the output shaft 55. Further, the second retainer 86 is fixed to the first retainer 81.
  • the shaft holding portion 80 is accommodated in the drive body accommodating space 61 from the first opening 61a of the housing body 60. Fix it.
  • the seventh step is a step of assembling the ring gear 51 and the differential device 50 to the shaft holding portion 80. Prior to the seventh step, the differential device 50 is assembled in advance, and the ring gear 51 is assembled to the gear housing 52 of the differential device 50.
  • the gear housing 52 is held by the conical roller bearing 76, and the output shaft 55 is connected to the side gear 54 of the differential device 50.
  • the fifth step and the seventh step described above are gear section assembling steps in which the gear section 5 is accommodated and fixed in the drive body accommodating space 61 from the first opening 61a.
  • the eighth step is a step of assembling the closing member 67 to the housing body 60. Prior to the eighth step, the ball bearing 79 and the conical roller bearing 77 are assembled to the closing member 67 in advance.
  • the closing member 67 is assembled and fastened so as to cover the first opening 61a of the housing body 60.
  • the counter shaft 13 is inserted into the ball bearing 79, and the conical roller bearing 77 holds the gear housing 52.
  • the first to eighth steps described above are steps of assembling each member including the motor 1 and the gear portion 5 into the drive body accommodating space 61 of the housing main body 60.
  • each member is assembled to the housing body 60 from one side (+ Y side) in the axial direction.
  • the first to eighth steps can be performed without changing the posture of the housing body 60, and as a result, the time required for manufacturing the motor unit 10 can be shortened.
  • the ninth step is a step of assembling the inverter 8 to the housing body 60. Prior to the ninth step, the inverter 8 is assembled to the inverter cover 68 in advance. That is, the step of assembling the inverter 8 includes a preliminary step of fixing the inverter 8 to the inverter cover 68.
  • the inverter cover 68 to which the inverter 8 is assembled is fixed to the housing body 60.
  • the second opening 62a of the housing body 60 is covered with the inverter cover 68 while arranging the inverter 8 in the inverter accommodation space 62.
  • the window portion (not shown) arranged on the upper surface of the inverter cover is opened, the bus bar 9 is connected to the inverter 8 in the inverter accommodation space 62, and the window portion is closed again.
  • each member is assembled to the housing body 60 from the opening direction of the first opening 61a.
  • the inverter 8 and the inverter cover 68 are assembled to the housing body 60 from the opening direction of the second opening 62a. Therefore, the assembly posture of the housing body 60 is changed prior to performing the ninth step.
  • the steps of assembling the motor 1 and the gear portion 5 are performed with the first opening facing upward.
  • the step of assembling the inverter 8 (9th step) is performed with the second opening 62a facing upward. As a result, the assembly work can be facilitated.
  • inverter cover 71 ... ball bearing, 72 ... ball bearing, 73 ... ball bearing (first bearing), 74 ... ball bearing (fifth bearing), 75 ... Ball bearing (2nd bearing), 76 ... Conical roller bearing (4th bearing), 77 ... Conical roller bearing, 78 ... Ball bearing (3rd bearing), 79 ... Ball bearing, 80 ... Shaft holder, 81 ... No. 1 retainer, 82a ... bearing holding part (first bearing holding part), 82b ... bearing holding part, 83a ... bearing holding part, 84 ... fixing screw, 86 ... second retainer, 87 ... opening, 88 ... surrounding part, 88e ... bearing holding part (third bearing holding part), 88f ... bearing holding part (second bearing holding part), J1 ... motor axis, J2 ... axis, J3 ... counter axis, O ... oil, W ... refrigerant

Abstract

本発明のモータユニットの一つの態様は、モータ軸線に沿って延びるモータシャフトを有するモータと、モータの軸方向一方側に接続されるギヤ部と、モータおよびギヤ部を収容する駆動体収容空間が設けられるハウジング本体と、駆動体収容空間に配置され、軸方向においてモータとギヤ部との間に位置しモータシャフトを支持する第1ベアリングを有する軸保持部と、駆動体収容空間に収容されるオイルと、を備える。モータシャフトは、中空のシャフトである。ギヤ部は、一部がモータシャフトの内部に配置されモータ軸線周りに回転する出力シャフトと、モータシャフトから出力シャフトに動力を伝達する複数のギヤと、を有する。軸保持部は、モータ軸線を径方向外側から囲む環状の包囲部を有する。包囲部には、モータ軸線の径方向に開口する開口部が設けられる。

Description

モータユニット
 本発明は、モータユニットに関する。
本願は、2020年2月19日に出願された日本出願特願2020-026150号に基づき優先権を主張し、その内容をここに援用する。
 近年、電気自動車に搭載される駆動装置の開発が盛んに行われている。特許文献1には、中空構造のロータシャフトの内部に出力シャフトを通したモータ式動力装置(モータユニット)が記載されている。
特開2009-121549号公報
 このような構造では、モータユニット全体を小型化できる一方で、複数の部材が集中して配置されるために、ギヤおよびベアリングにオイルを行き渡らせ難くなるという問題があった。
 本発明の一つの態様は、各部にオイルを行き渡らせやすくなるモータユニットの提供を目的の一つとする。
 本発明のモータユニットの一つの態様は、モータ軸線に沿って延びるモータシャフトを有するモータと、前記モータの軸方向一方側に接続されるギヤ部と、前記モータおよび前記ギヤ部を収容する駆動体収容空間が設けられるハウジング本体と、前記駆動体収容空間に配置され、軸方向において前記モータと前記ギヤ部との間に位置し前記モータシャフトを支持する第1ベアリングを有する軸保持部と、前記駆動体収容空間に収容されるオイルと、を備える。前記モータシャフトは、中空のシャフトである。前記ギヤ部は、一部が前記モータシャフトの内部に配置され前記モータ軸線周りに回転する出力シャフトと、前記モータシャフトから前記出力シャフトに動力を伝達する複数のギヤと、を有する。前記軸保持部は、前記モータ軸線を径方向外側から囲む環状の包囲部を有する。前記包囲部には、前記モータ軸線の径方向に開口する開口部が設けられる。
 本発明の一つの態様によれば、組み立て工程を簡素化できるモータユニットが提供される。
図1は、一実施形態のモータユニットの概念図である。 図2は、一実施形態のモータユニットの斜視図である。 図3は、一実施形態のモータユニットの軸保持部の分解斜視図である。 図4は、一実施形態のモータユニットのオイルポンプの模式図である。
 以下、図面を参照しながら、本発明の一実施形態に係るモータユニット10について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数などを異ならせる場合がある。
 図1は、モータユニット10の概念図である。図2は、モータユニット10の斜視図である。
 以下の説明では、モータユニット10が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。
 本実施形態において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。したがって、本明細書において、単に上側という場合、重力方向に対して上側であることを意味する。また、X軸方向は、Z軸方向と直交する方向であってモータユニット10が搭載される車両の前後方向を示し、+X方向が車両前方であり、-X方向が車両後方である。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)を示し、+Y方向が車両左方であり、-Y方向が車両右方である。
 以下の説明において特に断りのない限り、モータ1のモータ軸線J1に平行な方向(Y軸と平行な方向)を単に「軸方向」と呼ぶ。また、軸方向であって+Y側の方向を軸方向一方側と呼び、-Y側を軸方向他方側と呼ぶ。さらに、モータ軸線J1を中心とする径方向を単に「径方向」と呼び、モータ軸線J1を中心とする周方向、すなわち、モータ軸線J1の軸周りを単に「周方向」と呼ぶ。
 なお、モータ軸線J1および後述するカウンタ軸線J3は、実際には存在しない仮想軸である。
 モータユニット10は、車両に搭載され車輪Hを回転させることで車両を前進または後進させる。モータユニット10は、例えば、電気自動車(EV)に搭載される。なお、モータユニット10は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、等、モータを動力源とする車両に搭載されていればよい。
 図1に示すように、モータユニット10は、モータ1と、ギヤ部5と、インバータ8と、モータ1、ギヤ部5およびインバータ8を収容するハウジング6と、ハウジング6内でシャフトを保持する軸保持部80と、ハウジング6内でモータ1のステータ35を保持するステータホルダ40と、オイルOと、を備える。
 (ハウジング)
 ハウジング6は、例えばアルミダイカスト製である。ハウジング6は、ハウジング本体60と、ハウジング本体60の軸方向一方側(+Y側)に位置する閉塞部材67と、ハウジング本体60の上側に位置するインバータカバー68と、ハウジング本体60の下側に位置する底蓋部材69と、を有する。すなわち、モータユニット10は、ハウジング本体60、閉塞部材67、インバータカバー68および底蓋部材69を有する。ハウジング6は、ハウジング本体60、閉塞部材67、インバータカバー68および底蓋部材69を互いに締結させることで構成される。
 ハウジング本体60には、駆動体収容空間61とインバータ収容空間62とオイル貯留空間63とが設けられる。駆動体収容空間61の上側にはインバータ収容空間62が配置され、下側にはオイル貯留空間63が配置される。
 駆動体収容空間61は、モータ1、ギヤ部5、軸保持部80、ステータホルダ40およびオイルOを収容する一つながりの空間である。また、インバータ収容空間62は、インバータ8を収容する空間である。オイル貯留空間63は、駆動体収容空間61内を循環するオイルOを貯留する空間である。このように、ハウジング本体60は、各空間において、モータ1、ギヤ部5、軸保持部80、ステータホルダ40、インバータ8およびオイルOを収容する。
 駆動体収容空間61の下側の壁面には、オイル貯留空間63に繋がる連通孔65が設けられる。駆動体収容空間61の下部領域のオイルOは、連通孔65からオイル貯留空間63に流入する。駆動体収容空間61の下部領域およびオイル貯留空間63には、オイルOが溜まる。
 オイルOは、ハウジング6内に設けられた油路90を循環する。オイルOは、ギヤ部5を潤滑させる潤滑油として機能するととともに、モータ1を冷却する冷却油としても機能する。オイルOとしては、粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のものを用いることが好ましい。
 駆動体収容空間61の下部領域に溜まるオイルOには、ギヤ部5の後述するリングギヤ51の一部が浸かる。オイルOは、リングギヤ51の動作によってかき上げられて、駆動体収容空間61内に拡散される。駆動体収容空間61内に拡散されたオイルOは、駆動体収容空間61内のギヤ部5の各ギヤに供給されてギヤの歯面にオイルOを行き渡らせる。ギヤ部5に供給され潤滑に使用されたオイルOは、滴下して駆動体収容空間61の下部領域に回収される。
 ハウジング本体60は、駆動体収容空間61を軸方向一方側(+Y側)に露出させる第1の開口部61aと、インバータ収容空間62を上側に露出させる第2の開口部62aと、オイル貯留空間63を下側に露出させる第3の開口部63aと、を有する。第1の開口部61aは、閉塞部材67によって覆われる。第2の開口部62aは、インバータカバー68によって覆われる。第3の開口部63aは、底蓋部材69によって覆われる。
 ハウジング本体60は、モータ軸線J1を中心とする筒状部60aと、筒状部60aの軸方向他方側を覆う底部60bと、筒状部60aの軸方向一方側の開口から径方向に拡張される拡張部60cと、筒状部60aの上側に配置される箱状部60dと、筒状部60aの下側に位置する貯留壁部60eと、を有する。箱状部60dは、インバータ収容空間62を囲む。箱状部60dは、第2の開口部62aを有する。貯留壁部60eは、オイル貯留空間63を囲む。貯留壁部60eは、第3の開口部63aを有する。
 筒状部60aは、モータ1を径方向外側から囲む。底部60bは、モータ1の軸方向他方側(-Y側)に位置する。底部60bは、ボールベアリング71を保持するベアリング保持部60baを有する。底部60bは、ボールベアリング71を介して出力シャフト55を支持する。また、底部60bは、オイルポンプ96を支持する。
 拡張部60cは、軸方向において、閉塞部材67と対向する。拡張部60cは、筒状部60aの開口から軸方向と直交する平面に沿って延びる張出部60caと、張出部60caから軸方向一方側(+Y側)に向かって延びる外縁部60cbと、を有する。外縁部60cbには、ボルト等の締結部材を用いて閉塞部材67が締結される。
 閉塞部材67は、第1の開口部61aを覆う。閉塞部材67と、ハウジング本体60の筒状部60a、底部60bおよび拡張部60cは、駆動体収容空間61を囲む。したがって、閉塞部材67を、ハウジング本体60から離脱させることで、駆動体収容空間61は軸方向一方側に露出する。閉塞部材67の形状は、軸方向他方側(-Y側)に開口する凹形状である。閉塞部材67は、ボールベアリング79を介して後述するカウンタシャフト13を支持する。また、閉塞部材67は、円錐コロベアリング77を介して、後述するギヤハウジング52およびリングギヤ51を回転可能に支持する。
 本実施形態によれば、ハウジング本体60の第1の開口部61aは、モータ1、ギヤ部5、軸保持部80およびステータホルダ40を収容する駆動体収容空間61を軸方向一方側(+Y側)に露出させる。モータ1、ギヤ部5、軸保持部80およびステータホルダ40は、第1の開口部61aからハウジング本体60の内部に組み付けられる。
 モータユニット10の組み立て工程は、ハウジング本体60の内部に、順次、モータ1およびギヤ部5等を組み付けることで行われる。一般的にて、各部材の組み付け方向に合わせて、ハウジング本体60の姿勢を変えることがなされる。しかしながら、ハウジング本体60の重量が大きい場合、ハウジング本体60の姿勢を変える手順が、組み立て工程の作業時間を長くしていた。
 本実施形態によれば、モータ1、ギヤ部5、軸保持部80およびステータホルダ40を、ハウジング本体60に対して、一方向から組み付けることができ、これにより、組み立て工程を簡素化し、組み立てに要するコストを低減させることができる。
 また、本実施形態によれば、ハウジング本体60は、モータ1の軸方向他方側(-Y側)において駆動体収容空間61を閉塞する底部60bを有する。このため、駆動体収容空間61に軸方向一方側(+Y側)から収容する部材(出力シャフト55など)を底部60bによって支持させることができ、組み付け精度を高めるとともに組み付こう工程を簡素化することができる。また、底部60bは、ハウジング本体60の一部であるため、駆動体収容空間61の軸方向他方側は予め閉塞される。したがって、駆動体収容空間61が軸方向両側に開口する場合と比較して、部品点数を減少させ組み立て工程を簡素化できる。
 箱状部60dは、インバータ8を囲む箱形状である。箱状部60dは、上側に開口して第2の開口部62aを構成する。箱状部60dとインバータカバー68とは、インバータ収容空間62の壁面を構成する。箱状部60dは、筒状部60aの上側に連結される。箱状部60dの一部は、筒状部60aおよび拡張部60cの一部から構成される。
 箱状部60dは、モータ軸線J1の径方向においてモータ1とインバータ8との間に位置する箱底部(隔壁、第2壁部)60daと、インバータ8の軸方向一方側かつインバータ8とギヤ部5との間に位置する側壁部60db(隔壁、第1壁部)と、その他の側壁部と、を有する。箱底部60daは、筒状部60aの一部であり上下方向において第2開口と対向する。側壁部60dbは、拡張部60cの一部であり箱底部60daから上側に向かって延びる。箱底部60daおよび側壁部60dbは、駆動体収容空間61とインバータ収容空間62とを区画する隔壁66として機能する。また、側壁部60dbには、貫通孔60hが設けられる。貫通孔60hは、駆動体収容空間61とインバータ収容空間62とを連通させる。後述するように、貫通孔60hには、バスバー9が通過する。
 本実施形態によれば、ハウジング本体60は、駆動体収容空間61とインバータ収容空間62とを区画する隔壁66を有する。すなわち、本実施形態によれば、モータ1およびギヤ部5を収容する部材とインバータ8を収容する部材とが、単一の部材(ハウジング本体60)から構成される。このため、ハウジング本体60の全体としての剛性が高められ振動抑制の効果が高められる。結果的にインバータ8に、モータ1およびギヤ部5の駆動に起因する振動が伝わることが抑制され、インバータ8への負荷を抑制できる。
 インバータカバー68は、箱状部60dに固定される。インバータカバー68は、水平面に沿って延びる天板部68aを有する。天板部68aの裏面(すなわち、インバータ収容空間62の内側を向く面)には、インバータ8が固定される。これにより、インバータカバー68は、インバータ8を支持する。
 本実施形態によれば、インバータ8が、ハウジング本体60から離脱可能なインバータカバー68に固定される。したがって、定期点検および部品交換などのモータユニット10のメンテナンスを行う際に、インバータカバー68とハウジング本体60との締結を解除することで、インバータ8をモータユニット10から容易に離脱することができる。この工程は、モータユニット10を車両に搭載した状態でも行うことができ、インバータ8のメンテナンス性を高めることができる。
 なお、天板部68aには、インバータ8を冷却するための冷媒用の流路が設けられていてもよい。この場合、冷媒の流路が、モータ1に接するハウジング本体60とは別部材のインバータカバー68に設けられることとなる。本実施形態によれば、モータ1の熱が冷媒に伝わりにくいので、インバータ8の温度をモータの温度よりも低く抑えることができる。また、天板部68aに設けられる流路は、後述の通路部(凹部44)に繋がっていてもよい。この場合、冷媒は、インバータ8を冷却する冷媒と、モータ1を冷却する冷媒とを共通化できる。
 (モータ)
 モータ1は、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機である。モータ1は、おもに電動機として機能して車両を駆動し、回生時には発電機として機能する。本実施形態のモータ1は、三相交流モータである。
 モータ1は、インバータ8に接続される。インバータ8は、図示略のバッテリから供給される直流電流を交流電流に変換しモータ1に供給する。モータ1の各回転速度は、インバータ8を制御することで制御される。
 モータ1は、ロータ31と、ロータ31の径方向外側に位置するステータ35と、を有する。ロータ31は、モータ軸線J1を中心に回転可能である。ステータ35は、環状である。ステータ35は、ロータ31をモータ軸線J1の径方向外側から囲む。
 ロータ31は、モータシャフト32と、ロータコア31aと、ロータコア31aに保持されるロータマグネット(図示略)と、を有する。すなわち、モータ1は、モータシャフト32を有する。
 ロータ31(すなわち、モータシャフト32、ロータコア31aおよびロータマグネット)は、モータ軸線J1を中心として回転する。ロータ31のトルクは、ギヤ部5に伝達される。ロータコア31aは、珪素鋼板を積層して構成される。ロータコア31aは、軸方向に沿って延びる円柱体である。ロータコア31aには、複数のロータマグネットが固定される。複数のロータマグネットは、磁極を交互にして周方向に沿って並ぶ。
 モータシャフト32は、車両の幅方向に延びるモータ軸線J1に沿って延びる。モータシャフト32は、モータ軸線J1の軸方向両側に開口する中空のシャフトである。すなわち、モータシャフト32は、軸方向両側に開口する中空部32hを有する。
 モータシャフト32は、軸方向一方側(+Y側)に位置する第1端部32Aと、軸方向他方側(-Y側)に位置する第2端部32Bと、を有する。
 モータシャフト32の第1端部32Aは、ボールベアリング73によって回転可能に支持される。第1端部32Aの中空部32hの開口には、雌スプライン32bが設けられる。モータシャフト32には、第2端部32Bの雌スプライン32bにおいて、ギヤ部5のインプットシャフト11に接続される。
 モータシャフト32の第2端部32Bは、ボールベアリング72によって回転可能に支持される。第2端部32Bの外周面には、レゾルバロータ3aが固定される。レゾルバロータ3aは、モータシャフト32とともにモータ軸線J1周りを回転する。レゾルバロータ3aは、第2端部32Bを支持するボールベアリング72よりも軸方向他方側(-Y側)に位置する。
 ステータ35は、環状のステータコア35aと、ステータコア35aに巻き付けられるコイル35bと、ステータコア35aとコイル35bとの間に介在するインシュレータ(図示略)とを有する。ステータコア35aは、モータ軸線J1の径方向内側に突出する複数のティースを有する。ティースには、コイル線が巻かれている。ティースに巻かれたコイル線は、コイル35bを構成する。
 コイル35bは、ステータコア35aから軸方向両側に突出するコイルエンド部35cを有する。一方のコイルエンド部35cは、ステータコア35aの軸方向一方側の端面から軸方向に突出し、他方のコイルエンド部35cは、ステータコア35aの軸方向他方側の端面から軸方向に突出する。軸方向一方側のコイルエンド部35cからは、接続コイル線35dが延び出る。接続コイル線35dは、撚り合わせられたコイル線および当該コイル線の外周を覆う絶縁チューブを有する。本実施形態のモータ1は、三相交流モータであるため、各相に対応する3本の接続コイル線35dを有する。接続コイル線35dは、バスバー9を介してインバータ8に接続される。
 (ギヤ部)
 ギヤ部5は、モータ1の軸方向一方側(+Y側)に接続される。ギヤ部5は、モータ1の動力を伝達し出力シャフト55から出力する。ギヤ部5は、駆動源と被駆動装置との間の動力伝達を担う複数の機構を内蔵する。
 ギヤ部5は、インプットシャフト11と、インプットギヤ21と、カウンタシャフト13と、カウンタギヤ23と、ドライブギヤ24と、リングギヤ51と、出力シャフト55と、差動装置50と、を有する。
 ギヤ部5の各ギヤおよび各シャフトは、それぞれモータ軸線J1およびカウンタ軸線J3の何れかを中心として回転可能である。本実施形態において、モータ軸線J1およびカウンタ軸線J3は、互いに平行に延びる。また、モータ軸線J1およびカウンタ軸線J3は、車両の幅方向と平行である。以下の説明において、軸方向とは、モータ軸線J1の軸方向を意味する。すなわち、本明細書における軸方向とは、モータ軸線J1に平行な方向であって車幅方向を意味する。
 インプットシャフト11は、モータ軸線J1に沿って延びる。インプットシャフト11は、モータ軸線J1の軸方向両側に開口する中空のシャフトである。すなわち、インプットシャフト11は、軸方向両側に開口する中空部11hを有する。
 インプットシャフト11は、軸方向一方側(+Y側)に位置する第1端部11Aと、軸方向他方側(-Y側)に位置する第2端部11Bと、を有する。インプットシャフト11は、第1端部11Aと第2端部11Bとの間で、ボールベアリング74によって回転可能に支持される。
 インプットシャフト11の第2端部11Bの外周面には、雄スプライン11aが設けられる。雄スプライン11aは、モータシャフト32の雌スプライン32bに嵌合する。これにより、モータシャフト32の第1端部32Aとインプットシャフト11の第2端部32Bとが、互いに接続される。すなわち、インプットシャフト11は、軸方向においてモータシャフト32に連結される。また、モータシャフト32の中空部32hと、インプットシャフト11の中空部11hとが、互いに連通する。インプットシャフト11は、モータ1の回転が伝達されて回転する。
 インプットギヤ21は、インプットシャフト11の第1端部11Aの外周面に設けられる。インプットギヤ21は、インプットシャフト11とともに、モータ軸線J1周りを回転する。本実施形態において、インプットギヤ21とインプットシャフト11は、単一の部材である。しかしながら、インプットギヤ21は、インプットシャフト11の外周面に組み付けられた別部材であってもよい。
 カウンタシャフト13は、カウンタ軸線J3に沿って延びる。カウンタシャフト13は、カウンタ軸線J3周りを回転する。カウンタシャフト13は、軸方向一方側(+Y側)に位置する第1端部13Aと、軸方向他方側(-Y側)に位置する第2端部13Bと、を有する。
 カウンタシャフト13の第1端部13Aは、ボールベアリング79によって回転可能に支持される。カウンタシャフト13の第2端部13Bは、ボールベアリング78によって回転可能に支持される。カウンタシャフト13の外周面であって、軸方向において第1端部13Aと第2端部13Bとの間には、カウンタギヤ23とドライブギヤ24とが設けられる。本実施形態において、ドライブギヤ24は、カウンタギヤの軸方向一方側(+Y側)に位置する。
 カウンタギヤ23は、カウンタシャフト13とともに、カウンタ軸線J3周りを回転する。カウンタギヤ23は、インプットギヤ21と噛み合う。
 ドライブギヤ24は、カウンタシャフト13およびカウンタギヤ23とともに、カウンタ軸線J3周りを回転する。
 リングギヤ51は、モータ軸線J1を中心とするギヤである。リングギヤ51は、差動装置50に固定される。リングギヤ51は、モータ軸線J1周りを回転する。リングギヤ51は、ドライブギヤ24と噛み合う。リングギヤ51は、ドライブギヤ24を介して伝達されるモータ1の動力を差動装置50に伝達する。
 差動装置50は、モータ軸線J1を中心として配置される。すなわち、差動装置50は、モータ1と同軸上に配置される。差動装置50は、モータ1から出力されるトルクを車両の車輪Hに伝達するための装置である。差動装置50は、車両の旋回時に、左右の車輪Hの速度差を吸収しつつ、左右両輪の出力シャフト55に同トルクを伝える機能を有する。
 差動装置50は、リングギヤ51に固定されるギヤハウジング52と、一対のピニオンギヤ53aと、ピニオンシャフト53bと、一対のサイドギヤ54と、を有する。ギヤハウジング52は、リングギヤ51とともにモータ軸線J1を中心として回転する。
 ギヤハウジング52は、一対のピニオンギヤ53a、ピニオンシャフト53bおよび一対のサイドギヤ54を収容する。一対のピニオンギヤ53aは、同軸上に配置され互いに向かい合う傘歯車である。一対のピニオンギヤ53aは、ピニオンシャフト53bに支持される。一対のサイドギヤ54は、一対のピニオンギヤ53aに直角に噛み合う傘歯車である。一対のサイドギヤ54は、それぞれ出力シャフト55に固定される。
 ギヤハウジング52は、軸方向両側から円錐コロベアリング76、77によって回転可能に支持される。すなわち、リングギヤ51は、ギヤハウジング52を介して、円錐コロベアリング76、77に支持される。
 出力シャフト55は、モータ軸線J1に沿って延びる。出力シャフト55は、モータ軸線J1周りを回転する。モータユニット10には、軸方向に沿って並ぶ一対の出力シャフト55が設けられる。一対の出力シャフト55は、それぞれ一方の端部において差動装置50のサイドギヤ54に接続される。すなわち、出力シャフト55は、差動装置50を介してリングギヤ51に接続される。出力シャフト55には、各ギヤを介して、モータ1の動力が伝達される。また、一対の出力シャフト55は、それぞれ他方の端部において、ハウジング6の外部に突出する。出力シャフト55の他方の端部には、車輪Hが取り付けられる。出力シャフト55は、動力を外部(車輪Hを介して路面)に出力する。
 本実施形態において、出力シャフト55は、モータシャフト32およびインプットシャフト11と同軸上に配置される。一対の出力シャフト55のうち軸方向他方側(-Y側)に配置される一方は、モータシャフト32およびインプットシャフト11の中空部32h、11hを通される。本実施形態のモータユニット10によれば、出力シャフト55の一部がモータシャフト32およびインプットシャフト11の内部に配置されることで、軸方向から見てモータ1と差動装置50とを同軸上に配置することができ、モータ軸線J1の径方向におけるモータユニット10の寸法を小型化できる。
 ギヤ部5は、モータ1から出力シャフト55に至る動力伝達経路を構成する。ギヤ部5は、複数のギヤ(インプットギヤ21、カウンタギヤ23、ドライブギヤ24およびリングギヤ51、ピニオンギヤ53aおよびサイドギヤ54)を有する。ギヤ部5は、これらの複数のギヤにより、モータシャフト32から出力シャフト55に動力を伝達する。ギヤ部5の動力伝達経路において、モータ1の動力は、まず、モータシャフト32からインプットシャフト11に伝わり、さらにインプットギヤ21からカウンタギヤ23に伝達される。カウンタギヤ23は、ドライブギヤ24と同軸上に配置され、ドライブギヤ24とともに回転する。モータ1の動力は、ドライブギヤ24からリングギヤ51に伝達され、差動装置50を介して出力シャフト55に伝達される。
 (ステータホルダ)
 ステータホルダ40は、ステータ35を径方向外側から囲む円筒部41と、円筒部41の軸方向他方側(-Y側)の端部から径方向内側に延びる底板部42と、を有する。
 ステータホルダ40は、ハウジング本体60の筒状部60aの内部に配置される。ハウジング本体60の筒状部60aは、径方向内側を向く対向内周面60aaを有する。対向内周面60aaは、円筒部41の外周面41aと径方向に対向する。
 円筒部41は、モータ軸線J1を中心とする円筒形状である。円筒部41の内周面41bには、ステータ35の外周面が嵌合されることでステータ35が支持される。これにより、ステータホルダ40は、ステータ35を支持する。
 円筒部41の内周面41bには、嵌め込み部41pが設けられる。嵌め込み部41pは、円筒部41の軸方向一方側(+Y側)の開口に設けられる。嵌め込み部41pは、内周面41bにおいてステータ35が嵌合される領域より、内径が大きくなっている。嵌め込み部41pには、軸保持部80の第1リテーナ81が嵌め込まれる。
 円筒部41の外周面41aには、径方向に窪む凹部(通路部)44が設けられる。凹部44は、モータ軸線J1周りの全周に亘って延びる。凹部44は、径方向外側に向かって開口する。凹部44の開口は、ハウジング本体60の対向内周面60aaによって覆われる。
 凹部44は、冷媒Wが流れる通路部として機能する。冷媒Wは、凹部44の内壁面と対向内周面60aaとの間を、周方向に沿って流れる。冷媒Wは、ステータホルダ40を介してステータ35を冷却する。冷媒Wは、図示略の熱交換器を通過して冷却される。したがって、ステータホルダ40とハウジング本体60の円筒部41とは、ステータ35を囲むとともに冷媒Wを通過させることでステータ35を冷却するウォータジャケットとして機能する。
 なお、本実施形態では、円筒部41の外周面41aに凹部44が設けられ、対向内周面60aaによって凹部44の開口を覆う場合について説明した。しかしながら、対向内周面60aaに凹部が設けられ、円筒部41の外周面41aによって凹部の開口を覆う構成を採用してもよい。また、冷媒Wを通過させる構成は、本実施形態に限定されず、円筒部41の外周面41aおよび対向内周面60aaの間に冷媒Wを通す通路部が設けられていればよい。
 円筒部41の外周面41aには、対向内周面60aaに嵌る一対の嵌合部46が設けられる。嵌合部46は、モータ軸線J1周りの全周に亘って延びる。一対の嵌合部46の一方は、凹部44の軸方向一方側に位置し、他方は凹部44の軸方向他方側に位置する。本実施形態によれば、ステータホルダ40が、嵌合部46においてハウジング本体60の対向内周面60aaに嵌る。これにより、ハウジング本体60に対するステータホルダ40の径方向の位置精度を高めることができる。
 円筒部41の外周面41aには、一対の凹溝45aが設けられる。凹溝45aは、モータ軸線J1周りの全周に亘って延びる。一対の凹溝45aの一方は、凹部44の軸方向一方側に位置し、他方は凹部44の軸方向他方側に位置する。一対の凹溝45aは、ともに、軸方向において一対の嵌合部46の間に配置される。凹溝45aは、径方向外側に向かって開口する。凹溝45aの開口は、ハウジング本体60の対向内周面60aaによって覆われる。一対の凹溝45aには、それぞれOリング(封止部)45bが収容される。Oリング45bは、対向内周面60aaによって径方向に圧縮される。これによって、Oリング45bは、封止部として機能する。
 なお、対向内周面60aaにOリングを収容する凹溝が設けられ、当該Oリングが、円筒部41の外周面41aによって圧縮される構成を採用してもよい。すなわち、封止部としてのOリング45bは、円筒部41の外周面41aと対向内周面60aaとの間に配置され、周方向に沿って延びていればよい。
 本実施形態によれば、Oリング45bは、冷媒Wの通路部としての凹部44の軸方向両側にそれぞれ位置する。Oリング45bは、冷媒Wが、凹部44から軸方向両側に漏出することを抑制する。さらに、駆動体収容空間61内のオイルOが、一対のOリング45bの間に侵入することを抑制できる。これにより、オイルOは、凹部44内の冷媒Wと混合することを抑制する。
 底板部42は、モータ1に対し軸方向他方側(-Y側)に位置する。底板部42は、モータ軸線J1に対して直交する板状である。底板部42の中央には、挿通孔42aが設けられる。挿通孔42aは、底板部42を板厚方向に貫通する。底板部42は、挿通孔42aの縁部から軸方向一方側(+Y側)に突出するベアリング保持部43を有する。底板部42は、ボールベアリング72を保持する。したがって、底板部42は、ボールベアリング72を介しモータシャフト32を回転可能に支持する。
 本実施形態によれば、ステータ35を支持するステータホルダ40がボールベアリング72を介してロータ31を支持する。すなわち、ステータ35とロータ31との間に介在する部材が、ステータホルダ40とボールベアリング72のみである。このため本実施形態によれば、ステータホルダ40の寸法管理を行うことで、ステータ35に対するロータ31の同軸度を高めることができ、モータ1の駆動効率を高め易い。
 本実施形態によれば、ステータホルダ40の底板部42がボールベアリング72を保持する。このため、ボールベアリング72を保持する部材を別途設ける場合と比較して、モータユニット10全体を軸方向に小型化しやすい。特に、本実施形態において、ステータホルダ40のベアリング保持部43の軸方向位置は、ステータ35の軸方向位置と重なる。これにより、モータユニット10を、軸方向においてより効果的に小型化できる。
 モータシャフト32の軸方向他方側(-Y側)の開口からは、出力シャフト55が突出する。本実施形態によれば、出力シャフト55とモータシャフト32とは、軸方向に並べて配置されたボールベアリング71、72によってそれぞれ支持される。ボールベアリング71、72のうち、一方はハウジング本体60に保持され、他方はステータホルダ40に保持される。本実施形態によれば、2つのボールベアリング71、72をともにハウジング本体60が保持する場合と比較して、ハウジング本体60の構造を簡素化することができるとともに全体としての組み立て工程を簡素化できる。
 本実施形態によれば、ボールベアリング72は、ステータ35の一対のコイルエンド部35cのうち軸方向他方側に位置する一方のコイルエンド部35cの径方向内側に配置される。より具体的には、ボールベアリング72の軸方向位置は、軸方向他方側に位置する一方のコイルエンド部35cの軸方向位置に重なる。このため、モータシャフト32の第2端部32Bを支持するボールベアリング72を、第1端部32A側に近づけて配置できる。これにより、モータシャフト32の両端部を支持するボールベアリング72、73を互いに近づけて配置でき、モータシャフト32の偏心等を抑制できる。さらに、コイルエンド部35cを冷却しコイルエンド部35cから滴下するオイルOをボールベアリング72に供給でき、ボールベアリング72の潤滑性を高めることができる。
 ステータホルダ40の底板部42は、ボールベアリング72に加えて、レゾルバステータ3bを支持する。レゾルバステータ3bは、挿通孔42aの内部であって、ボールベアリング72より軸方向他方側に配置される。レゾルバステータ3bは、モータシャフト32の第2端部32Bを、径方向外側から囲む。レゾルバステータ3bは、径方向においてレゾルバロータ3aと対向する。
 レゾルバステータ3bとレゾルバロータ3aとは、レゾルバ3を構成する。すなわち、モータユニット10は、レゾルバ3を備える。レゾルバ3は、モータシャフト32の回転数を測定する。レゾルバ3は、軸方向においてボールベアリング71とボールベアリング72との間に配置される。
 本実施形態によれば、ステータホルダ40の底板部42がレゾルバステータ3bを支持するため、ハウジング本体60がレゾルバステータ3bを支持する場合と比較して、レゾルバステータ3bをモータ1の軸方向寸法の中心に近づけて配置することができる。これにより、モータ1に対してレゾルバステータ3bが軸方向に突出することを抑制することができ、モータユニット10の軸方向寸法を小型化できる。
 (軸保持部)
 軸保持部80は、駆動体収容空間61に配置される。また、軸保持部80は、モータ1とギヤ部5との間に位置する。軸保持部80は、第1リテーナ81と、第2リテーナ86と、ボールベアリング73、74、75、78と、円錐コロベアリング76と、を有する。
 第1リテーナ81は、ステータホルダ40に軸方向一方側(+Y側)から固定される。また、第2リテーナ86は、第1リテーナ81に軸方向一方側(+Y側)から固定される。ボールベアリング73、74、78は、第1リテーナ81に保持される。また、ボールベアリング75および円錐コロベアリング76は、第2リテーナ86に保持される。
 図3は、軸保持部80の分解斜視図である。
 第1リテーナ81は、本体円盤部82と、突出円盤部83と、を有する。本体円盤部82と突出円盤部83とは、互いに連結された単一の部材である。本体円盤部82の外形の直径は、突出円盤部83の外形の直径より大きい。突出円盤部83は、本体円盤部82に対して径方向および軸方向一方側(+Y側)にずれて配置される。
 本体円盤部82は、モータ軸線J1を中心とする円盤状である。本体円盤部82の中央には、軸方向に貫通する第1挿通孔82hが設けられる。第1挿通孔82hは、軸方向から見てモータ軸線J1を中心とする円形である。第1挿通孔82hの内部には、モータシャフト32の第1端部32A、インプットシャフト11の第2端部11Bおよび出力シャフト55が配置される。
 本体円盤部82の軸方向一方側(+Y側)の面には、複数のネジ孔82sが設けられる。複数のネジ孔82sは、第1挿通孔82hを囲むようにモータ軸線J1の周方向に沿って並ぶ。ネジ孔82sには、第2リテーナ86を固定する固定ネジ84が挿入される。すなわち、第2リテーナ86は、第1リテーナ81に対し軸方向他方側(-Y側)に挿入される複数の固定ネジ84によって固定される。これにより、駆動体収容空間61内で、第1の開口部61a側から第1リテーナ81に第2リテーナ86を組み付けることができるため、モータユニット10の組み立て工程を簡素化できる。さらに、複数の固定ネジ84は、モータ軸線J1の周方向に沿って並ぶ。このため、モータ軸線J1の周囲において第2リテーナ86を強固に固定できる。
 突出円盤部83は、カウンタ軸線J3を中心とする円盤状である。突出円盤部83の中央には、軸方向に貫通する第2挿通孔83hが設けられる。第2挿通孔83hの内部には、カウンタシャフト13の第2端部13Bが配置される。
 図1に示すように、本体円盤部82は、外縁から軸方向他方側(-Y側)に突出する外縁突出部82cを有する。外縁突出部82cは、モータ軸線J1を中心とする円筒状である。外縁突出部82cの外周面は、ステータホルダ40の嵌め込み部41pに嵌合される。これにより、第1リテーナ81は、ステータホルダ40に支持される。また、第1リテーナ81は、ステータホルダ40を介してハウジング本体60に固定される。
 本体円盤部82は、2つのベアリング保持部82a、82bを有する。ベアリング保持部82a、82bは、第1挿通孔82hの外縁に設けられる。
 ベアリング保持部82aは、本体円盤部82の軸方向他方側(-Y側)を向く面に設けられる。ベアリング保持部82aは、ボールベアリング73を保持する。これにより、ベアリング保持部82aは、ボールベアリング73を介して、モータシャフト32の第1端部32Aを回転可能に支持する。ボールベアリング73は、軸方向においてモータ1とギヤ部5との間に位置する。したがって、軸保持部80は、モータ1の軸方向一方側でモータシャフト32を回転可能に支持する。
 本実施形態において、モータ1およびギヤ部5は、一つながりの駆動体収容空間61に収容される。このため、軸保持部80が設けられない場合、モータシャフト32は、片持ち支持となり回転に伴う偏心が顕著となる虞がある。本実施形態によれば、軸保持部80は、モータシャフト32を、モータ1とギヤ部5との間で回転可能に支持する。このため、軸保持部80は、第2端部32Bを支持するボールベアリング72とともにモータシャフト32をモータ1の両側で支持することができる。本実施形態によれば、モータシャフト32の偏心を抑制して、モータシャフト32の回転効率を高めることができる。
 ベアリング保持部82bは、本体円盤部82の軸方向一方側(+Y側)を向く面に設けられる。ベアリング保持部82bは、ボールベアリング74を保持する。これにより、ベアリング保持部82bは、ボールベアリング74を介して、インプットシャフト11を回転可能に支持する。
 突出円盤部83は、ベアリング保持部83aを有する。ベアリング保持部83aは、第2挿通孔83hの外縁に設けられる。ベアリング保持部83aは、突出円盤部83の軸方向一方側(+Y側)を向く面に設けられる。ベアリング保持部83aは、ボールベアリング78を支持する。ベアリング保持部83aは、ボールベアリング78を介して、カウンタシャフト13を回転可能に支持する。
 本実施形態によれば、第1リテーナ81は、モータ軸線J1上のシャフト(モータシャフト32およびインプットシャフト11)のみならず、カウンタ軸線J3上のシャフト(カウンタシャフト13)をも回転可能に支持する。したがって、第1リテーナ81の加工精度を管理することで、モータ軸線J1とカウンタ軸線J3との距離寸法を保証することができ、結果的にギヤ間の動力伝達効率を高めることができる。また、複数のベアリング(ボールベアリング73、78)を組み込んだ状態で、第1リテーナ81をハウジング本体60に組み付けることで、組み立て工程を簡素化できる。
 ボールベアリング73とボールベアリング78とは、軸方向位置が互いに重なっていてもよい。また、ボールベアリング74とボールベアリング78とは、軸方向位置が互いに重なっていてもよい。すなわち、軸保持部80の複数のベアリングは、軸方向位置が互いに重なっていることが好ましい。これにより、ベアリングがずれて配置される場合と比較して、軸保持部80の軸方向寸法を小型化することができ、駆動体収容空間61を有効利用できる。また、軸方向位置が重なる複数のベアリングにおいて、1つのベアリングから径方向に飛散するオイルOを他のベアリングに供給することができ、ベアリングの潤滑性を高めることができる。
 図3に示すように、第2リテーナ86は、包囲部88とフランジ部89とを有する。包囲部88およびフランジ部89は、互いに連結された単一の部材である。
 包囲部88は、モータ軸線J1を径方向外側から囲む環状である。包囲部88は、円盤部88aと、円盤部88aの外縁から軸方向他方側に延びる包囲筒部88bと、を有する。
 円盤部88aは、モータ軸線J1を中心とする円盤状である。円盤部88aの中央には、軸方向に貫通する第3挿通孔88hが設けられる。第3挿通孔88hは、軸方向から見てモータ軸線J1を中心とする円形である。第3挿通孔88hの内部には、出力シャフト55が配置される。
 円盤部88aは、2つのベアリング保持部88e、88fを有する。ベアリング保持部88e、88fは、第3挿通孔88hの外縁に設けられる。
 包囲筒部88bは、モータ軸線J1を中心とする筒状である。包囲筒部88bは、軸方向他方側(-Y側)に開口する。包囲筒部88bには、切欠部88cが設けられる。切欠部88cは、包囲筒部88bの軸方向他方側(-Y側)の端部から軸方向一方側(+Y側)に延びる。切欠部88cは、包囲筒部88bの全周のうち上側の領域に設けられる。
 第2リテーナ86が第1リテーナ81に固定されることで、切欠部88cの軸方向他方側(-Y側)は、第1リテーナ81によって閉塞される。これにより、切欠部88cは、包囲部88の内部を上側に露出させる開口部87として機能する。
 フランジ部89は、包囲部88の軸方向他方側(-Y側)の端部に位置する。より具体的には、フランジ部89は、包囲筒部88bの軸方向他方側の端部から径方向外側に延びる。フランジ部89には、軸方向に貫通する複数の貫通孔89aが設けられる。複数の貫通孔89aは、モータ軸線J1の周方向に沿って並ぶ。貫通孔89aには、第2リテーナ86を第1リテーナ81に固定するために、第1リテーナ81のネジ孔82sに挿入される固定ネジ84が通される。これにより、第2リテーナ86は、第1リテーナ81に支持される。
 図1に示すように、第2リテーナ86のベアリング保持部88fは、円盤部88aの軸方向他方側(-Y側)を向く面に設けられる。ベアリング保持部88fは、ボールベアリング75を保持する。これにより、ベアリング保持部88fは、ボールベアリング75を介して、出力シャフト55を回転可能に支持する。
 ベアリング保持部88eは、本体円盤部82の軸方向一方側(+Y側)を向く面に設けられる。ベアリング保持部88eは、円錐コロベアリング76を保持する。これにより、ベアリング保持部88eは、円錐コロベアリング76を介して、ギヤハウジング52およびリングギヤ51を回転可能に支持する。
 本実施形態によれば、ボールベアリング75を介して出力シャフト55を支持する第2リテーナ86は、第1リテーナ81に固定される。第1リテーナ81はボールベアリング73、74を介してモータシャフト32およびインプットシャフト11を支持する。したがって、本実施形態によれば、第1リテーナ81に対する第2リテーナ86の組み付け精度によって、モータシャフト32およびインプットシャフト11に対する出力シャフト55の同軸度を保証できる。このため、モータシャフト32およびインプットシャフト11の回転効率を高め易い。
 本実施形態によれば、軸保持部80は、モータ軸線を囲む包囲部88を有し、包囲部88には、モータ軸線J1の径方向に開口する開口部87が設けられる。開口部87は、包囲部88の内外を連通させる。これにより、リングギヤ51のかき上げ等によって駆動体収容空間61内に飛散するオイルOを包囲部88内に到達させることができ、包囲部88の内部に飛散したオイルOを供給できる。なお、本実施形態の開口部87は、ボールベアリング74、75を駆動体収容空間61内に露出させる。したがって、本実施形態によれば、開口部87からボールベアリング74、75にオイルOを供給でき、ボールベアリング74、75の潤滑性を高めることができる。
 本実施形態において、開口部87は上側に開口する。したがって、開口部87から包囲部88の内部に達したオイルOは、包囲部88の内部に溜まる。すなわち、包囲部88は、オイルOが貯留されるオイル収容空間64を有する。また、開口部87およびオイル収容空間64は、第2リテーナ86に配置される。
 本実施形態の軸保持部80の包囲部88は、インプットシャフト11の第1端部11Aを囲む。このため、インプットシャフト11の中空部11hは、オイル収容空間64内で開口する。オイル収容空間64のオイルOの一部は、中空部11hに侵入し、インプットシャフト11の内周面と出力シャフト55との間の潤滑性を高める。さらに、オイルOは、インプットシャフト11とモータシャフト32との連結部分の雄スプライン11aおよび雌スプライン32bに供給され、連結部分の摩耗を抑制する。オイルOは、雄スプライン11aおよび雌スプライン32bの連結部分から飛散して、モータシャフト32を支持するボールベアリング73に供給され、ボールベアリング73の潤滑性を高める。
 本実施形態において、インプットシャフト11の第1端部11Aに設けられたインプットギヤ21の少なくとも一部は、オイル収容空間64内に位置する。したがって、インプットギヤ21の下端部は、オイル収容空間64に溜まるオイルOに浸かる。オイルOは、インプットギヤ21の動作によってかき上げられて、駆動体収容空間61内に拡散され、各ギヤの歯面に行き渡る。
 本実施形態において、インプットギヤ21とカウンタギヤ23とが噛み合う噛合部14は、開口部87に配置される。このため、軸保持部80は、インプットギヤ21の軸方向両側においてシャフトを支持しつつ、インプットギヤ21からカウンタギヤ23に動力を伝達させることができる。
 本実施形態によれば、軸保持部80は、それぞれベアリングを保持する複数のベアリング保持部82a、82b、88f、88e、83aを有する。これらのうち、ベアリング保持部82a、82b、83aは、第1リテーナ81に配置され、ベアリング保持部88f、88eは、第2リテーナ86に配置される。このように、互いに分離可能な第1リテーナ81と第2リテーナ86とがそれぞれベアリング保持部を有することで、第1リテーナ81と第2リテーナ86とを分離した状態で、それぞれの組み付けることが可能となり、組み立て工程を簡素化することができる。さらに、第1リテーナ81および第2リテーナ86の軸方向両側からそれぞれのベアリングを組み付けることができ、各ベアリング同士の軸方向および径方向の位置精度を高め易い。
 (インバータ)
 図1に示すように、インバータ8は、インバータ収容空間62に配置される。インバータ8は、インバータカバー68に固定される。インバータ8は、バスバー9を介してモータ1のステータ35に接続される。インバータ8は、直流電流を交流電流に変換してモータ1に供給する。すなわち、インバータ8は、モータ1に供給される電流を制御する。
 インバータ8は、モータ1の外周面側に配置される。より具体的には、インバータ8は、モータ1の直上に位置する。これにより、モータユニット10の前後方向寸法を小型化できる。これにより、インバータ8をモータ1に対して車両前後方向に配置する場合と比較して、モータユニット10の車両前後方向の寸法を小型化できる。結果的に、車両内のクラッシャブルゾーンを広く確保することが可能となる。
 軸方向から見て、インバータ8の少なくとも一部は、カウンタギヤ23に重なる。インバータ8をカウンタギヤ23に重ねて配置することで、モータユニット10の軸方向への投影面積を小さくして、モータユニット10の小型化を図ることができる。
 バスバー9は、導電性の金属材料から構成される。バスバー9は、モータ1とインバータ8とを電気的に繋ぐ。本実施形態のモータ1は、三相交流モータであるため、モータユニット10は、各相に対応する3つのインバータ8を有する。
 バスバー9は、バスバー9は、軸方向に沿って延びる軸方向延在部9aと、モータ軸線J1の径方向に沿って延びる径方向延在部9bと、を有する。
 軸方向延在部9aの軸方向他方側(-Y側)の端部は、インバータ8に接続される。また、軸方向延在部9aの軸方向一方側(+Y側)の端部は、径方向延在部9bに接続される。径方向延在部9bは、軸方向延在部の端部から径内側に延びその先端で接続コイル線35dに接続される。すなわち、バスバー9は、軸方向延在部9aにおいてインバータ8に接続され、径方向延在部9bにおいて接続コイル線35dに接続される。
 軸方向延在部9aは、駆動体収容空間61とインバータ収容空間62とを区画する隔壁66に設けられた貫通孔60hを通過する。これにより、バスバー9は、駆動体収容空間61とインバータ収容空間62との間に跨って配置される。
 なお、バスバー9は、図示略のバスバーホルダによって保持される。バスバーホルダは、貫通孔60hの内周面とバスバー9との間に配置され、駆動体収容空間61とインバータ収容空間62との間を封止する封止構造を有する。これにより、バスバーホルダは、駆動体収容空間61のオイルOがインバータ収容空間62に侵入することを抑制する。
 本実施形態によれば、バスバー9が通過する貫通孔60hは、側壁部60dbに設けられる。側壁部60dbは、インバータ8の軸方向一方側、かつインバータ8とギヤ部5との間に位置する。また、貫通孔60hは、側壁部60dbを軸方向に沿って貫通する。上述したように、駆動体収容空間61は、第1の開口部61aにおいて軸方向一方側(+Y側)に開口するため、組み立て作業者は、バスバー9を第1の開口部61aから駆動体収容空間61に収容するとともに貫通孔60hに挿入することで、ハウジング本体60に対してバスバー9を組み付けることができる。本実施形態によれば、ハウジング本体60に対するバスバー9の組み付けを、他の部材と同じく第1の開口部61aから行うことができ、一方向から組み付けを行うことで組み立て工程を簡素化できる。
 (油路)
 油路90は、ハウジング6内でオイルOを循環させるオイルOの経路である。油路90は、ハウジング6に設けられる。油路90には、オイルポンプ96が設けられる。
 なお、本明細書において、「油路」とは、定常的に一方向に向かう定常的なオイルの流動を形成する「流路」のみならず、オイルを一時的に滞留させる経路(例えばオイル貯留空間63)およびオイルが滴り落ちる経路をも含む概念である。
 油路90は、オイル貯留空間63からオイルポンプ96にオイルOを導く第1流路91と、オイルポンプ96からモータ1の上側に延びモータ1にオイルOを供給する第2流路97と、を有する。オイルOは、第1流路91を介しオイル貯留空間63からオイルポンプ96に達し、第2流路97を介しオイルポンプ96からモータ1に供給される。さらにオイルOは、モータ1から滴下してオイル貯留空間63に戻る。
 第1流路91および第2流路97は、ハウジング本体60の壁面の内部に設けられる。第1流路91は、オイル貯留空間63からオイルポンプ96に繋がる。一方で、第2流路97は、オイルポンプ96から上側に延びるとともに分岐しステータ35の一対のコイルエンド部35cの上側で開口する。
 オイルポンプ96は、モータ1の軸方向他方側(-Y側)に位置する。オイルポンプ96は、出力シャフト55に接続され、出力シャフト55の回転により駆動する機械式ポンプである。オイルポンプ96は、オイルOをオイル貯留空間63から吸い上げて油路90内に圧送する。
 図4は、軸方向から見たオイルポンプ96の模式図である。
 オイルポンプ96は、ポンプケース96aと、外歯歯車92と、内歯歯車93と、を有する。
 ポンプケース96aは、ハウジング本体60の底部60bに固定される。本実施形態において、ポンプケース96aは、軸方向から見て円形である。ポンプケース96aには、ポンプ室96cと、吸入口94と、吐出口95とが設けられる。
 ポンプ室96cは、軸方向から見て、モータ軸線J1に対して偏心する軸線J2を中心とする円形である。ポンプ室96cには、吸入口94および吐出口95が繋がる。ポンプ室96cには、外歯歯車92および内歯歯車93が配置される。
 吸入口94および吐出口95は、ポンプ室96cの軸方向他方側を向く側面に開口する。吸入口94は、第1流路91に繋がる。吐出口95は、第2流路97に繋がる。オイルポンプ96は、吸入口94からオイルOを吸い込み、吐出口95からオイルOを吐出する。
 外歯歯車92は、モータ軸線J1周りに回転可能な歯車である。外歯歯車92は、出力シャフト55に固定される。外歯歯車92は、ポンプ室96c内に収容される。外歯歯車92は、外周面に複数の歯部92aを有する。外歯歯車92の歯部92aの歯形は、トロコイド歯形である。
 内歯歯車93は、モータ軸線J1に対して偏心する軸線J2周りに回転可能な円環状の歯車である。内歯歯車の外径は、ポンプ室96cの内径より若干小さい。内歯歯車93の外周面は、ポンプ室96cの内周面と摺動可能に対向する。
 内歯歯車93は、外歯歯車92の径方向外側を囲み、外歯歯車92と噛み合う。内歯歯車93は、内周面に複数の歯部93aを有する。内歯歯車93の歯部93aの歯形は、トロコイド歯形である。
 外歯歯車92がモータ軸線J1周りを回転することで、外歯歯車92と当該外歯歯車92と噛み合う内歯歯車93も、軸線J2周りを回転する。これにより、外歯歯車92の歯部92aと内歯歯車93の歯部93aとの間の隙間が周方向に沿って移動し、オイルポンプ96は、隙間内のオイルOを吸入口94から吐出口95に移送する。これにより、オイルポンプ96は、吸入口94からオイルOをから吸入し吐出口95から吐出する。
 オイルポンプ96から吐出されたオイルOは、第2流路97を介して一対のコイルエンド部35cにそれぞれ供給される。コイルエンド部35cに供給されたオイルOは、コイル線間に作用する毛細管力および重力によってコイル35bの全体に浸透しながらステータ35から熱を奪う。さらに、オイルOは、下側に滴下してステータホルダ40に設けられた孔および連通孔65等を通過してオイル貯留空間63に戻る。
 本実施形態によれば、ステータコア35aがステータホルダ40を介し冷媒Wで冷却され、コイルエンド部35cがオイルOで直接的に冷却されるため、ステータ35の各部を効果的に冷却することができる。
 本実施形態において、オイルOは、オイル貯留空間63に貯留される。オイル貯留空間63の直上には、周囲に冷媒Wの通路部(凹部44)が設けられたモータ1が配置される。このため、オイル貯留空間63のオイルOは、冷媒Wによって冷却される。このため、オイルOは、温度が下がった状態でコイルエンド部35cに供給され、コイルエンド部35cを効果的に冷却できる。
 (モータユニットの製造方法)
 次に、図1を基に、モータユニット10の製造方法として、ハウジング本体60に対する各部材の組み付け手順について説明する。
 モータユニット10の製造方法は、主に、以下の第1工程から第9工程を有する。
 <第1工程>
 第1工程は、出力シャフト55をハウジング本体60に組み付ける出力シャフト組み付け工程である。第1工程に先立って、ハウジング本体60には、予め、底蓋部材69が組み付けられる。これにより、底蓋部材69がハウジング本体60の第3の開口部63aを覆う。
 第1工程では、まず、ハウジング本体60の底部60bに設けられたベアリング保持部60baに、図示略のシール部材とボールベアリング71とが組み付けられる。次いで、出力シャフト55をハウジング本体60の第1の開口部61aから駆動体収容空間61に収容する。次いで、出力シャフト55の軸方向他方側(-Y側)の端部をボールベアリング71に挿入することで、出力シャフト55をハウジング本体60に組み付ける。次いで、出力シャフト55にオイルポンプ96を組み付ける。
 <第2工程>
 第2工程は、モータ1をハウジング本体60に組み付けるモータ組み付け工程である。第2工程に先立って、ロータ31およびステータ35は、予め、それぞれ組み立てられる。さらに、ステータ35は、予め、ボールベアリング72とともにステータホルダ40に組み付けられる。
 第2工程では、まず、予め組み立てられたステータ35およびステータホルダ40を、第1の開口部61aから駆動体収容空間61に収容する。さらに、ステータホルダ40の嵌合部46をハウジング本体60の筒状部60aの対向内周面60aaに嵌め込む。これによって、ステータホルダ40およびステータ35をハウジング本体60に固定する。
 第2工程では、次いで、モータシャフト32の中空部32hに、出力シャフト55を挿入しながら、ロータ31を第1の開口部61aから駆動体収容空間61に収容する。
 以上の手順を経ることで、第2工程は、モータ1およびステータホルダ40をハウジング本体60の第1の開口部61aから駆動体収容空間61に収容し固定する。
 <第3工程>
 第3工程は、バスバー9をハウジング本体60に組み付けるバスバー組み付け工程である。第3工程では、3つのバスバー9をハウジング本体60の第1の開口部61aから駆動体収容空間61に収容するとともに、ハウジング本体60の貫通孔60hに通しハウジング本体60に固定する。次いで、バスバー9を、ステータ35から延び出る接続コイル線35dに接続する。
 <第4工程>
 第4工程は、第1リテーナ81をステータホルダ40に組み付ける工程である。第4工程に先立って、第1リテーナ81には、予め、ボールベアリング73およびボールベアリング78が組み付けられる。
 第4工程では、まず、第1リテーナ81をハウジング本体60の第1の開口部61aから駆動体収容空間61に収容とともに、モータシャフト32をボールベアリング73に挿入する。さらに、第1リテーナ81の外縁突出部82cをステータホルダ40の嵌め込み部41pに嵌合させて、第1リテーナ81をステータホルダ40を介しハウジング本体60に固定する。次いで、第1リテーナ81にボールベアリング74を組み付ける。
 <第5工程>
 第5工程は、インプットシャフト11、カウンタシャフト13、インプットギヤ21、カウンタギヤ23およびドライブギヤ24をハウジング本体60に組み付ける工程である。第5工程では、インプットシャフト11、カウンタシャフト13、インプットギヤ21、カウンタギヤ23およびドライブギヤ24をハウジング本体60の第1の開口部61aから駆動体収容空間61に収容し組み付ける。
 <第6工程>
 第6工程は、第2リテーナ86を第1リテーナ81に組み付ける工程である。第6工程に先立って、第2リテーナ86は、予め、ボールベアリング75および円錐コロベアリング76が組み付けられる。
 第6工程では、まず、第2リテーナ86をハウジング本体60の第1の開口部61aから駆動体収容空間61に収容とともに、出力シャフト55にボールベアリング75に挿入させる。さらに、第2リテーナ86を第1リテーナ81に固定する。
 第4工程および第6工程における第1リテーナ81および第2リテーナ86の組み付け手順を経ることで、軸保持部80を、ハウジング本体60の第1の開口部61aから駆動体収容空間61に収容し固定する。
 <第7工程>
 第7工程は、リングギヤ51および差動装置50を軸保持部80に組み付ける工程である。第7工程に先立って、予め、差動装置50が組み立てられるとともに、リングギヤ51が差動装置50のギヤハウジング52に組み付けられる。
 第7工程では、ギヤハウジング52を円錐コロベアリング76に保持させるとともに、出力シャフト55を、差動装置50のサイドギヤ54と連結させる。
 上述する第5工程および第7工程は、ギヤ部5を第1の開口部61aから駆動体収容空間61に収容し固定するギヤ部組み付け工程である。
 <第8工程>
 第8工程は、閉塞部材67をハウジング本体60に組み付ける工程である。第8工程に先立って、予め、閉塞部材67にボールベアリング79および円錐コロベアリング77が組み付けられる。
 第8工程では、まず、閉塞部材67によってハウジング本体60の第1の開口部61aを覆うように組み付けて締結する。これとともに、ボールベアリング79にカウンタシャフト13を挿入するとともに、円錐コロベアリング77にギヤハウジング52を保持させる。
 上述した第1工程から第8工程は、ハウジング本体60の駆動体収容空間61にモータ1およびギヤ部5を含む各部材を組み付ける工程である。第1工程から第8工程において、各部材は、ハウジング本体60に対して、軸方向一方側(+Y側)から組み付けられる。本実施形態によれば、ハウジング本体60の姿勢を変えることなく第1工程から第8工程を行うことができ結果的にモータユニット10の製造に要する時間を短縮できる。
 <第9工程>
 第9工程は、ハウジング本体60にインバータ8を組み付ける工程である。第9工程に先立って、予め、インバータ8はインバータカバー68に組み付けられる。すなわち、インバータ8を組み付ける工程は、インバータ8をインバータカバー68に固定する予備工程を有する。
 第9工程では、インバータ8が組み付けられたインバータカバー68を、ハウジング本体60に固定する。これにより、インバータ8をインバータ収容空間62に配置しつつ、ハウジング本体60の第2の開口部62aをインバータカバー68で覆う。次いで、インバータカバーの上面に配置される窓部(図示略)を開放して、インバータ収容空間62内において、バスバー9をインバータ8に接続し再度窓部を閉塞する。
 上述したように第1工程から第8工程では、各部材は第1の開口部61aの開口方向からハウジング本体60に組み付けられる。一方で、第9工程では、インバータ8およびインバータカバー68は、第2の開口部62aの開口方向からハウジング本体60に組み付ける。したがって、ハウジング本体60は、第9工程を行うに先立って組み付け姿勢が変更される。本実施形態において、モータ1およびギヤ部5を組み付ける工程(第1から第8工程)は、第1の開口部を上側に向けた状態で行われる。また、インバータ8を組み付ける工程(第9工程)は、第2の開口部62aを上側に向けた状態で行われる。これにより、組み立て作業を容易とすることができる。
 以上に、本発明の実施形態および変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
 1…モータ、3…レゾルバ、3a…レゾルバロータ、3b…レゾルバステータ、5…ギヤ部、6…ハウジング、8…インバータ、9…バスバー、10…モータユニット、11…インプットシャフト、13…カウンタシャフト、14…噛合部、21…インプットギヤ、23…カウンタギヤ、31…ロータ、32…モータシャフト、35…ステータ、35a…ステータコア、35b…コイル、35c…コイルエンド部、40…ステータホルダ、41…円筒部、41a…外周面、41b…内周面、42…底板部、43…ベアリング保持部、44…凹部(通路部)、45b…Oリング(封止部)、46…嵌合部、50…差動装置、51…リングギヤ、55…出力シャフト、60…ハウジング本体、60aa…対向内周面、60b…底部、60ba…ベアリング保持部、60da…箱底部(隔壁)、60db…側壁部(隔壁、第1壁部)、60h…貫通孔、61…駆動体収容空間、61a…第1の開口部、62…インバータ収容空間、62a…第2の開口部、63…オイル貯留空間、63a…第3の開口部、64…オイル収容空間、66…隔壁、68…インバータカバー、71…ボールベアリング、72…ボールベアリング、73…ボールベアリング(第1ベアリング)、74…ボールベアリング(第5ベアリング)、75…ボールベアリング(第2ベアリング)、76…円錐コロベアリング(第4ベアリング)、77…円錐コロベアリング、78…ボールベアリング(第3ベアリング)、79…ボールベアリング、80…軸保持部、81…第1リテーナ、82a…ベアリング保持部(第1ベアリング保持部)、82b…ベアリング保持部、83a…ベアリング保持部、84…固定ネジ、86…第2リテーナ、87…開口部、88…包囲部、88e…ベアリング保持部(第3ベアリング保持部)、88f…ベアリング保持部(第2ベアリング保持部)、J1…モータ軸線、J2…軸線、J3…カウンタ軸線、O…オイル、W…冷媒

Claims (9)

  1.  モータ軸線に沿って延びるモータシャフトを有するモータと、
     前記モータの軸方向一方側に接続されるギヤ部と、
     前記モータおよび前記ギヤ部を収容する駆動体収容空間が設けられるハウジング本体と、
     前記駆動体収容空間に配置され、軸方向において前記モータと前記ギヤ部との間に位置し前記モータシャフトを支持する第1ベアリングを有する軸保持部と、
     前記駆動体収容空間に収容されるオイルと、を備え、
     前記モータシャフトは、中空のシャフトであり、
     前記ギヤ部は、
      一部が前記モータシャフトの内部に配置され前記モータ軸線周りに回転する出力シャフトと、
      前記モータシャフトから前記出力シャフトに動力を伝達する複数のギヤと、を有し、
     前記軸保持部は、前記モータ軸線を径方向外側から囲む環状の包囲部を有し、
     前記包囲部には、前記モータ軸線の径方向に開口する開口部が設けられる、モータユニット。
  2.  前記包囲部は、前記オイルが貯留されるオイル収容空間を有する、請求項1に記載のモータユニット。
  3.  前記軸保持部は、
      前記モータシャフトを支持する前記第1ベアリングと、
      前記第1ベアリングを保持する第1ベアリング保持部と、
      前記出力シャフトを支持する第2ベアリングと、
      前記第1ベアリングを保持する第2ベアリング保持部と、を有し、
     前記開口部は、軸方向において前記第1ベアリング保持部と前記第2ベアリング保持部との間に位置する、請求項2に記載のモータユニット。
  4.  前記軸保持部は、
      前記ハウジング本体に固定される第1リテーナと、
      前記第1リテーナに軸方向一方側から固定される第2リテーナと、を有し、
     前記第1ベアリング保持部は、前記第1リテーナに配置され、
     前記第2ベアリング保持部は、前記第2リテーナに配置される、請求項3に記載のモータユニット。
  5.  前記開口部および前記オイル収容空間は、前記第2リテーナに配置される、請求項4に記載のモータユニット。
  6.  前記開口部は、上側に開口し、
     前記ギヤ部は、前記モータシャフトに接続されるインプットギヤを有し、
     前記インプットギヤの少なくとも一部は、前記オイル収容空間内に位置する、請求項2に記載のモータユニット。
  7.  前記ギヤ部は、前記モータ軸線と平行に延びるカウンタ軸線周りに回転するカウンタギヤを有し、
     前記カウンタギヤと前記インプットギヤとが噛み合う噛合部は、前記開口部に配置される、
    請求項6に記載のモータユニット。
  8.  前記ギヤ部は、軸方向において前記モータシャフトに連結され外周面に前記インプットギヤが設けられるインプットシャフトを有し、
     前記軸保持部は、
      前記インプットシャフトを支持する第3ベアリングを有する、請求項6又は7に記載のモータユニット。
  9.  前記ギヤ部は、前記出力シャフトに動力を伝達する差動装置を有し、
     前記差動装置は、前記モータ軸線周りに回転するリングギヤを有し、
     前記軸保持部は、前記リングギヤを支持する第4ベアリングが保持される第4ベアリング保持部を有する、請求項1~8の何れか一項に記載のモータユニット。
PCT/JP2020/034768 2020-02-19 2020-09-14 モータユニット WO2021166301A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202090001095.8U CN218603308U (zh) 2020-02-19 2020-09-14 马达单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-026150 2020-02-19
JP2020026150 2020-02-19

Publications (1)

Publication Number Publication Date
WO2021166301A1 true WO2021166301A1 (ja) 2021-08-26

Family

ID=77390578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034768 WO2021166301A1 (ja) 2020-02-19 2020-09-14 モータユニット

Country Status (2)

Country Link
CN (1) CN218603308U (ja)
WO (1) WO2021166301A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303367A (ja) * 2008-06-12 2009-12-24 Honda Motor Co Ltd 車両用駆動モータユニット
JP2012060785A (ja) * 2010-09-09 2012-03-22 Toyota Motor Corp 車両用駆動装置の冷却構造
JP2018189136A (ja) * 2017-05-01 2018-11-29 本田技研工業株式会社 動力装置
JP2019193440A (ja) * 2018-04-25 2019-10-31 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
WO2020032026A1 (ja) * 2018-08-09 2020-02-13 日本電産株式会社 モータユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303367A (ja) * 2008-06-12 2009-12-24 Honda Motor Co Ltd 車両用駆動モータユニット
JP2012060785A (ja) * 2010-09-09 2012-03-22 Toyota Motor Corp 車両用駆動装置の冷却構造
JP2018189136A (ja) * 2017-05-01 2018-11-29 本田技研工業株式会社 動力装置
JP2019193440A (ja) * 2018-04-25 2019-10-31 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
WO2020032026A1 (ja) * 2018-08-09 2020-02-13 日本電産株式会社 モータユニット

Also Published As

Publication number Publication date
CN218603308U (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2021166298A1 (ja) モータユニット
JP7310367B2 (ja) 駆動装置
CN111585394B (zh) 马达单元
JP7243637B2 (ja) モータユニット
WO2019131417A1 (ja) モータユニット
WO2021166299A1 (ja) モータユニット
WO2021124792A1 (ja) 駆動装置
WO2019131454A1 (ja) モータユニット
WO2021079664A1 (ja) 駆動装置
WO2021140807A1 (ja) モータユニット
WO2019131421A1 (ja) モータユニット
CN114555399A (zh) 车用驱动装置
CN112770926A (zh) 驱动装置
CN115095648A (zh) 驱动装置
JPWO2020032026A1 (ja) モータユニット
WO2021166301A1 (ja) モータユニット
WO2021166302A1 (ja) モータユニットおよびモータユニットの製造方法
WO2021166300A1 (ja) モータユニットおよびモータユニットの製造方法
CN111527678A (zh) 马达单元和马达单元的制造方法
CN115051513A (zh) 驱动装置
WO2021182590A1 (ja) モータユニット
CN112533783B (zh) 马达单元
JP2021061675A (ja) モータユニット
JP2021067304A (ja) 駆動装置
CN111953115A (zh) 马达单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP