WO2019131421A1 - モータユニット - Google Patents

モータユニット Download PDF

Info

Publication number
WO2019131421A1
WO2019131421A1 PCT/JP2018/046954 JP2018046954W WO2019131421A1 WO 2019131421 A1 WO2019131421 A1 WO 2019131421A1 JP 2018046954 W JP2018046954 W JP 2018046954W WO 2019131421 A1 WO2019131421 A1 WO 2019131421A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
housing
gear
inverter
oil
Prior art date
Application number
PCT/JP2018/046954
Other languages
English (en)
French (fr)
Inventor
慶介 福永
勇樹 石川
隼人 中間
修平 中松
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880084241.5A priority Critical patent/CN111527673B/zh
Publication of WO2019131421A1 publication Critical patent/WO2019131421A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor unit.
  • a motor drive unit is known in which an inverter case is fixed to a housing.
  • Japanese Patent Laid-Open Publication No. 2011-10383 describes a motor drive unit in which an inverter case and a housing are fixed by fastening pins.
  • an object of the present invention is to provide a motor unit having a structure that can be miniaturized and that can easily fix an inverter case to a housing.
  • One aspect of the motor unit according to the present invention includes a motor having a motor shaft extending in a first direction orthogonal to the vertical direction, a reduction gear having an intermediate gear connected to the motor and rotating about an intermediate shaft, Orthogonal to both the vertical direction and the first direction, a differential having a ring gear connected to the device and rotating about a differential axis, an inverter supplying power to the motor, a housing containing the motor, and And an inverter case fixed to one side of the housing in the second direction and housing the inverter.
  • the intermediate shaft and the differential shaft extend in the first direction.
  • the inverter case has an inverter case main body disposed on the upper side in the vertical direction of the differential shaft when viewed from the first direction, and a flange portion projecting to the other side in the second direction from the inverter case main body. .
  • the housing has a first support that contacts and supports the buttocks from below in the vertical direction.
  • a motor unit having a structure which can be miniaturized and which can easily fix an inverter case to a housing.
  • FIG. 1 is a conceptual view of a motor unit according to one embodiment.
  • FIG. 2 is a perspective view of a motor unit according to an embodiment.
  • FIG. 3 is a schematic side view of a motor unit according to an embodiment.
  • FIG. 4 is an exploded view of the housing of one embodiment.
  • FIG. 5 is a side view of the motor unit of one embodiment.
  • FIG. 6 is a bottom view of the motor unit according to the embodiment as viewed from below.
  • FIG. 7 is a perspective view showing a part of a motor unit according to an embodiment.
  • FIG. 8 is a perspective view of an inverter unit according to one embodiment.
  • FIG. 9 is a cross-sectional view showing a part of a motor unit according to an embodiment.
  • FIG. 10 is a schematic view showing a part of the mounting procedure of the inverter unit of one embodiment.
  • FIG. 11 is a schematic view showing a part of the attachment procedure of the inverter unit of one embodiment.
  • FIG. 12 is a schematic view showing a part of the attachment procedure of the inverter unit according to one embodiment.
  • an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate.
  • the Z-axis direction indicates the vertical direction (that is, the vertical direction)
  • the + Z direction is the upper side (opposite the gravity direction)
  • the -Z direction is the lower side (gravity direction).
  • the X-axis direction is a direction orthogonal to the Z-axis direction, and indicates the front-rear direction of the vehicle on which the motor unit 1 is mounted.
  • the + X direction is the vehicle front
  • the ⁇ X direction is the vehicle rear.
  • the + X direction may be the rear of the vehicle and the ⁇ X direction may be the front of the vehicle.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and indicates the width direction (left-right direction) of the vehicle, the + Y direction is the vehicle left, and the -Y direction is the vehicle right It is.
  • the + X direction is the rear of the vehicle
  • the + Y direction may be the right of the vehicle and the ⁇ Y direction may be the left of the vehicle.
  • the direction (Y-axis direction) parallel to the motor axis J2 of the motor 2 is simply referred to as “axial direction”, and the radial direction centered on the motor axis J2 is simply referred to as “radial direction”.
  • the circumferential direction around the motor axis J2, that is, around the axis of the motor axis J2, is simply referred to as “circumferential direction”.
  • the above-mentioned "parallel direction” also includes a substantially parallel direction.
  • a direction parallel to the X-axis direction is referred to as “front-rear direction”.
  • the positive side in the X-axis direction is called “front side”, and the negative side in the X-axis direction is called “rear side”.
  • the positive side in the Y-axis direction is called “left side”, and the negative side in the Y-axis direction is called “right side”.
  • the axial direction that is, the width direction of the vehicle corresponds to the first direction.
  • the front-rear direction corresponds to the second direction.
  • the left side corresponds to one side in the first direction
  • the right side corresponds to the other side in the first direction.
  • the rear side corresponds to one side in the second direction
  • the front side corresponds to the other side in the second direction.
  • the lower side corresponds to the lower side in the vertical direction
  • the upper side corresponds to the upper side in the vertical direction.
  • FIG. 1 is a conceptual view of a motor unit 1 according to an embodiment.
  • FIG. 2 is a perspective view of the motor unit 1.
  • FIG. 1 is a conceptual diagram to the last, and arrangement
  • the motor unit 1 is mounted on a vehicle having a motor as a power source such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), and used as the power source.
  • a motor as a power source
  • HEV hybrid vehicle
  • PHY plug-in hybrid vehicle
  • EV electric vehicle
  • the motor unit 1 includes a motor (main motor) 2, a gear portion 3, a housing 6, oil O housed in the housing 6, an inverter unit 8, and a parking mechanism 7, Equipped with
  • the motor 2 includes a rotor 20 rotating around a motor axis J 2 extending in the horizontal direction, and a stator 30 located radially outward of the rotor 20.
  • An interior of the housing 6 is provided with an accommodation space 80 for accommodating the motor 2 and the gear portion 3. That is, the housing 6 accommodates the motor 2 and the gear portion 3.
  • the housing space 80 is divided into a motor chamber 81 for housing the motor 2 and a gear chamber 82 for housing the gear portion 3.
  • the motor 2 is accommodated in a motor chamber 81 of the housing 6.
  • the motor 2 includes a rotor 20 rotating around a motor axis J 2 extending in the horizontal direction, and a stator 30 located radially outward of the rotor 20.
  • the motor 2 is an inner rotor type motor including a stator 30 and a rotor 20 rotatably disposed inside the stator 30.
  • the rotor 20 rotates by supplying power to the stator 30 from a battery (not shown).
  • the rotor 20 has a shaft (motor shaft) 21, a rotor core 24, and a rotor magnet (not shown).
  • the rotor 20 i.e., the shaft 21, the rotor core 24, and the rotor magnet
  • the torque of the rotor 20 is transmitted to the gear portion 3.
  • the shaft 21 extends around a motor axis J2 extending in the horizontal direction and the width direction of the vehicle.
  • the shaft 21 rotates about the motor axis J2.
  • the shaft 21 is a hollow shaft provided with a hollow portion 22 having an inner circumferential surface extending along the motor axis J2.
  • the shaft 21 extends across the motor chamber 81 and the gear chamber 82 of the housing 6. One end of the shaft 21 protrudes toward the gear chamber 82. A first gear 41 is fixed to an end of the shaft 21 projecting into the gear chamber 82.
  • the rotor core 24 is configured by laminating silicon steel plates.
  • the rotor core 24 is a cylindrical body extending along the axial direction.
  • a plurality of rotor magnets (not shown) are fixed to the rotor core 24.
  • the plurality of rotor magnets are arranged along the circumferential direction with the magnetic poles alternately.
  • the stator 30 surrounds the rotor 20 from the radially outer side. That is, the stator 30 is disposed radially outward of the shaft 21.
  • the stator 30 has a stator core 32, a coil 31, and an insulator (not shown) interposed between the stator core 32 and the coil 31.
  • the stator 30 is held by the housing 6.
  • the stator core 32 has a plurality of magnetic pole teeth (not shown) radially inward from the inner circumferential surface of the annular yoke.
  • a coil wire is wound around the pole teeth.
  • the coil wire wound around the pole teeth constitutes a coil 31.
  • the coil wire is connected to the inverter unit 8 via a bus bar (not shown).
  • the coil 31 has a coil end 31 a protruding from the axial end surface of the stator core 32.
  • the coil end 31 a protrudes in the axial direction more than the end of the rotor core 24 of the rotor 20.
  • the coil end 31 a protrudes on both sides in the axial direction with respect to the rotor core 24.
  • the gear portion 3 is accommodated in a gear chamber 82 of the housing 6.
  • the gear portion 3 is connected to the shaft 21 on one side in the axial direction of the motor shaft J2.
  • the gear portion 3 has a reduction gear 4 and a differential device 5. That is, the motor unit 1 includes the reduction gear 4 and the differential device 5. The torque output from the motor 2 is transmitted to the differential 5 via the reduction gear 4.
  • the reduction gear 4 is connected to the rotor 20 of the motor 2.
  • the reduction gear 4 has a function of reducing the rotational speed of the motor 2 and increasing the torque output from the motor 2 according to the reduction ratio.
  • the reduction gear 4 transmits the torque output from the motor 2 to the differential 5.
  • the reduction gear 4 has a first gear (intermediate drive gear) 41, a second gear (intermediate gear) 42, a third gear (filed drive gear) 43, and an intermediate shaft 45.
  • the torque output from the motor 2 is transmitted to the ring gear 51 of the differential 5 via the shaft 21 of the motor 2, the first gear 41, the second gear 42, the intermediate shaft 45 and the third gear 43.
  • the gear ratio of each gear, the number of gears, etc. can be variously changed according to the required reduction ratio.
  • the reduction gear 4 is a reduction gear of a parallel axis gear type in which axes of the respective gears are arranged in parallel.
  • the first gear 41 is provided on the outer peripheral surface of the shaft 21 of the motor 2.
  • the first gear 41 rotates with the shaft 21 about the motor axis J2.
  • the intermediate shaft 45 extends in the axial direction of the motor axis J2 and extends along an intermediate axis J4 parallel to the motor axis J2.
  • the middle shaft 45 rotates around the middle axis J4.
  • the second gear 42 and the third gear 43 are provided on the outer peripheral surface of the intermediate shaft 45.
  • the second gear 42 and the third gear 43 are connected via an intermediate shaft 45.
  • the second gear 42 and the third gear 43 rotate around the intermediate shaft J4.
  • the second gear 42 meshes with the first gear 41.
  • the third gear 43 meshes with the ring gear 51 of the differential device 5.
  • the third gear 43 is located on the side of the partition wall 61 c with respect to the second gear 42.
  • the second gear 42 corresponds to an intermediate gear.
  • the differential 5 is connected to the reduction gear 4.
  • the differential device 5 is connected to the motor 2 via the reduction gear 4.
  • the differential 5 is a device for transmitting the torque output from the motor 2 to the wheels of the vehicle.
  • the differential device 5 has a function of transmitting the same torque to the axles 55 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle is turning.
  • the differential 5 has a ring gear 51, a gear housing (not shown), a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown).
  • the ring gear 51 extends in the axial direction of the motor axis J2 and rotates around a differential axis J5 parallel to the motor axis J2. Ring gear 51 is connected to reduction gear 4. The torque output from the motor 2 is transmitted to the ring gear 51 via the reduction gear 4. That is, the ring gear 51 is connected to the motor 2 through another gear.
  • FIG. 3 is a schematic side view of the motor unit 1.
  • the motor axis J2, the intermediate axis J4 and the differential axis J5 extend parallel to one another along the horizontal direction.
  • the intermediate shaft J4 and the differential shaft J5 are located below the motor shaft J2. Therefore, the reduction gear 4 and the differential 5 are located below the motor 2.
  • a line segment virtually connecting the motor axis J2 and the intermediate axis J4 is a first line segment L1 when viewed from the axial direction of the motor axis J2, and a line segment virtually connecting the intermediate axis J4 and the differential axis J5 Is a second line segment L2, and a line segment that virtually connects the motor axis J2 and the differential axis J5 is a third line segment L3.
  • the second line segment L2 extends along the substantially horizontal direction. That is, the intermediate shaft J4 and the differential shaft J5 are aligned substantially in the horizontal direction.
  • the substantially horizontal direction of the second line segment L2 is a direction within ⁇ 10 ° with respect to the horizontal direction.
  • An angle ⁇ between the second line segment L2 and the third line segment L3 is 30 ° ⁇ 5 °.
  • the first line segment L1 extends substantially in the vertical direction. That is, the motor shaft J2 and the intermediate shaft J4 are aligned along the substantially vertical direction.
  • the substantially vertical direction of the first line segment L1 is a direction within ⁇ 10 ° with respect to the vertical direction.
  • the length L1 of the first line segment, the length L2 of the second line segment, and the length L3 of the third line segment satisfy the following relationship.
  • L1: L2: L3 1: 1.4 to 1.7: 1.8 to 2.0
  • the reduction ratio in the reduction mechanism from the motor 2 to the differential 5 is 8 or more and 11 or less.
  • a desired gear ratio (8 or more and 11 or less) can be realized while maintaining the positional relationship between the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 as described above.
  • the motor 2 and the gear portion 3 are housed in a housing space 80 provided inside the housing 6.
  • the housing 6 holds the motor 2 and the gear portion 3 in the housing space 80.
  • the housing 6 has a partition wall 61c.
  • the housing space 80 of the housing 6 is divided into a motor chamber 81 and a gear chamber 82 by a partition wall 61 c.
  • the motor 2 is accommodated in the motor chamber 81.
  • the gear chamber 3 accommodates the gear portion 3 (i.e., the reduction gear 4 and the differential 5).
  • An oil reservoir P in which oil O is accumulated is provided in a lower region in the accommodation space 80.
  • the bottom 81 a of the motor chamber 81 is located above the bottom 82 a of the gear chamber 82.
  • a partition wall opening 68 is provided in the partition wall 61 c that divides the motor chamber 81 and the gear chamber 82. The partition opening 68 brings the motor chamber 81 and the gear chamber 82 into communication with each other. The partition opening 68 moves the oil O accumulated in the lower region in the motor chamber 81 to the gear chamber 82.
  • a part of the differential device 5 is immersed in the oil reservoir P.
  • the oil O accumulated in the oil reservoir P is scooped up by the operation of the differential device 5 and a portion is supplied to the first oil passage 91 and a portion is diffused into the gear chamber 82.
  • the oil O diffused to the gear chamber 82 is supplied to the gears of the reduction gear 4 and the differential gear 5 in the gear chamber 82 and spreads the oil O on the tooth surfaces of the gears.
  • the oil O used in the reduction gear 4 and the differential device 5 drips and is collected in an oil reservoir P located below the gear chamber 82.
  • the capacity of the oil reservoir P of the housing space 80 is such that part of the bearing of the differential gear 5 is immersed in the oil O when the motor unit 1 is stopped.
  • the housing 6 has a first housing member 61, a second housing member 62, and a closing portion 63.
  • the second housing member 62 is located on the left side (+ Y direction) of the first housing member 61.
  • the closing portion 63 is located on the right side ( ⁇ Y direction) with respect to the first housing member 61.
  • the housing 6 may be composed of three or more members.
  • FIG. 4 is an exploded view of the housing 6.
  • the first housing member 61 has a cylindrical peripheral wall portion 61 a surrounding the motor 2 from the radial outer side, and a side plate portion 61 b located on one side in the axial direction of the peripheral wall portion 61 a.
  • a space inside the peripheral wall portion 61 a constitutes a motor chamber 81.
  • the peripheral wall 61 a has a shoulder 61 j that protrudes rearward on the upper side.
  • the shoulder 61 j is in the form of a substantially rectangular parallelepiped extending in the axial direction.
  • the upper surface of the shoulder 61 j is orthogonal to the vertical direction.
  • the upper end of the shoulder 61 j is part of the upper end of the peripheral wall 61 a.
  • the shoulder 61 j has a first opening 61 i on the rear surface. That is, the housing 6 has the first opening 61i.
  • the first opening 61i penetrates the rear wall of the shoulder 61j in the front-rear direction, and opens in the rear.
  • the first opening hole 61i has an elongated circular shape that is long in the axial direction.
  • the side plate portion 61b has a partition wall 61c and a projecting plate portion 61d.
  • the partition wall 61c covers an opening on one side in the axial direction of the peripheral wall portion 61a.
  • the partition 61 c is provided with an insertion hole 61 f through which the shaft 21 of the motor 2 is inserted.
  • the side plate portion 61b has a partition wall 61c and a projecting plate portion 61d which protrudes outward in the radial direction with respect to the peripheral wall portion 61a.
  • the protruding plate portion 61d is provided with a first axle passage hole 61e through which a drive shaft (not shown) supporting the wheels passes.
  • the closing portion 63 is fixed to the peripheral wall portion 61 a of the first housing member 61.
  • the closing portion 63 closes the opening of the cylindrical first housing member 61.
  • the closing portion 63 has a closing portion main body 63a and a lid member 63b.
  • the closing portion main body 63a is provided with a window portion 63c penetrating in the axial direction.
  • the lid member 63 b closes the window 63 c from the outside of the accommodation space 80.
  • the second housing member 62 is fixed to the side plate portion 61 b of the first housing member 61.
  • the shape of the second housing member 62 is a concave shape that opens to the side plate portion 61 b side.
  • the opening of the second housing member 62 is covered by the side plate portion 61 b.
  • a space between the second housing member 62 and the side plate portion 61 b constitutes a gear chamber 82 accommodating the gear portion 3. That is, the second housing member 62 accommodates the reduction gear 4 and the differential device 5.
  • the second housing member 62 is provided with a second axle passage hole 62e.
  • the second axle passage hole 62e overlaps the first axle passage hole 61e when viewed in the axial direction.
  • the peripheral wall portion 61 a of the first housing member 61 and the closing portion 63 constitute a motor chamber 81, surround the motor 2, and accommodate the motor 2. That is, the peripheral wall portion 61a and the closing portion 63 constitute the motor housing portion 6a shown in FIG.
  • the side plate portion 61 b of the first housing member 61 and the second housing member 62 constitute a gear chamber 82, surround the gear portion 3, and accommodate the gear portion 3. That is, the side plate portion 61b and the second housing member 62 constitute the gear housing portion 6b shown in FIG.
  • the housing 6 has the motor housing portion 6 a in which the motor chamber 81 housing the motor 2 is provided, and the gear housing portion 6 b in which the gear chamber 82 housing the gear portion 3 is provided.
  • FIG. 5 is a side view of the motor unit 1.
  • FIG. 6 is a bottom view of the motor unit 1 as viewed from below. In FIG. 5 and FIG. 6, the illustration of the inverter unit 8 is omitted.
  • the gear housing portion 6b has a protruding portion 6d that protrudes in the radial direction with respect to the motor housing portion 6a when viewed from the axial direction.
  • the overhanging portion 6d projects rearward and downward with respect to the motor housing portion 6a.
  • the overhanging portion 6 d accommodates a part of the gear portion 3. More specifically, a part of the second gear 42 and a part of the ring gear 51 are accommodated inside the overhanging part 6 d.
  • the housing 6 has a first support 61 g and a second support 63 d.
  • the first support portion 61 g is provided on the first housing member 61. More specifically, the first support portion 61g is provided on the shoulder portion 61j.
  • the first support 61g is an upper end of the rear end of the shoulder 61j.
  • the upper surface of the first support portion 61g is a first support surface 61h.
  • the first support surface 61 h is a flat surface extending in the axial direction.
  • the first support surface 61 h is orthogonal to the vertical direction.
  • the first support surface 61 h is recessed below the portion of the upper surface of the shoulder 61 j which is located on the front side of the first support surface 61 h.
  • the first support surface 61h extends from the left end of the shoulder 61j to the right end of the shoulder 61j.
  • the right end of the first support surface 61 h is connected to the left surface of the closing portion 63.
  • the first support portion 61g has a female screw hole 61k which is recessed downward from the first support surface 61h.
  • a plurality of female screw holes 61k are provided along the axial direction. In FIG. 7, three female screw holes 61k are provided, for example.
  • the second support portion 63 d is provided at the closing portion 63.
  • the second support portion 63 d is an upper end portion at the rear end portion of the closing portion main body 63 a.
  • the second support portion 63d protrudes upward beyond the first support portion 61g.
  • the second support portion 63 d is a portion that protrudes to the upper side of the peripheral wall portion 61 a when viewed from the left side.
  • the second support portion 63d is disposed on the right side of the first support portion 61g when viewed in the vertical direction.
  • the left side surface of the second support portion 63d is a second support surface 63e.
  • the second support surface 63e is a flat surface.
  • the second support surface 63e is orthogonal to the axial direction.
  • the right end of the first support surface 61h is connected to the second support surface 63e.
  • the second support portion 63d can support the positioning member MP described later from the right side by the second support surface 63e.
  • the oil O circulates in an oil passage 90 provided in the housing 6.
  • the oil path 90 is a path of oil O which supplies the oil O from the oil reservoir P to the motor 2.
  • the oil O is used to lubricate the reduction gear 4 and the differential gear 5.
  • the oil O is also used for cooling the motor 2.
  • the oil O accumulates in the lower region (i.e., oil reservoir P) in the gear chamber 82. Since the oil O exhibits the functions of a lubricating oil and a cooling oil, it is preferable to use an oil equivalent to a low viscosity lubricating oil for automatic transmission (ATF: Automatic Transmission Fluid).
  • ATF Automatic Transmission Fluid
  • an oil passage 90 is provided in the housing 6.
  • the oil passage 90 is located in the housing space 80 in the housing 6.
  • the oil passage 90 is configured to straddle the motor chamber 81 and the gear chamber 82 of the accommodation space 80.
  • the oil passage 90 is a path of oil O that guides the oil O from the oil reservoir P on the lower side of the motor 2 (that is, the lower region in the accommodation space 80) through the motor 2 to the oil reservoir P on the lower side of the motor 2 again. It is.
  • the “oil passage” means a passage of oil O circulating in the storage space 80. Therefore, the “oil path” is not only a “flow path” that forms a steady flow of oil in one direction in a steady manner, but also a path (for example, a reservoir) for temporarily retaining oil and dripping oil It is a concept that also includes the route.
  • the oil passage 90 has a first oil passage 91 passing through the inside of the motor 2 and a second oil passage 92 passing through the outside of the motor 2.
  • the oil O cools the motor 2 from the inside and the outside in the first oil passage 91 and the second oil passage 92.
  • the first oil passage 91 and the second oil passage 92 are paths for supplying the oil O from the oil reservoir P to the motor 2 and recovering the oil O in the oil reservoir P again.
  • the oil O drips from the motor 2 and accumulates in the lower region in the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 moves to the lower region (i.e., the oil reservoir P) in the gear chamber 82 through the partition opening 68. That is, the first oil passage 91 and the second oil passage 92 include paths for moving the oil O from the lower region in the motor chamber 81 to the lower region in the gear chamber 82.
  • the first oil passage 91 has a scraping path 91a, a shaft supply path 91b, an in-shaft path 91c, and an in-rotor path 91d.
  • a first reservoir 93 is provided in the path of the first oil passage 91.
  • the first reservoir 93 is provided in the gear chamber 82.
  • the scraping path 91 a is a path for scraping the oil O from the oil reservoir P by the rotation of the ring gear 51 of the differential device 5 and receiving the oil O in the first reservoir 93.
  • the first reservoir 93 is disposed between the intermediate shaft J4 and the differential shaft J5.
  • the first reservoir 93 opens upward.
  • the first reservoir 93 receives the oil O picked up by the ring gear 51. Further, when the liquid level of the oil reservoir P is high immediately after the motor 2 is driven, etc., the oil stored in the first reservoir 93 is scraped up by the second gear 42 and the third gear 43 in addition to the ring gear 51. O also receive.
  • the shaft supply path 91 b guides the oil O from the first reservoir 93 to the motor 2.
  • the shaft supply path 91 b is constituted by a hole 94 provided in the second housing member 62.
  • the shaft inner path 91 c is a path through which the oil O passes in the hollow portion 22 of the shaft 21.
  • the rotor inner path 91 d is a path that passes through the inside of the rotor core 24 from the communication hole 23 of the shaft 21 and scatters to the stator 30.
  • the oil O that has reached the stator 30 removes heat from the stator 30.
  • the oil O which has cooled the stator 30 is dropped downward, and is accumulated in the lower region in the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 moves to the gear chamber 82 through the partition opening 68 provided in the partition 61 c.
  • the oil O is pulled up from the oil reservoir P to the upper side of the motor 2 in the second oil passage 92 and supplied to the motor 2.
  • the oil O supplied to the motor 2 takes heat from the stator 30 while cooling along the outer peripheral surface of the stator 30 to cool the motor 2.
  • the oil O transmitted along the outer peripheral surface of the stator 30 drips downward and accumulates in the lower region in the motor chamber 81.
  • the oil O of the second oil passage 92 merges with the oil O of the first oil passage 91 in the lower region of the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 moves to the lower region (i.e., the oil reservoir P) in the gear chamber 82 through the partition opening 68.
  • the second oil passage 92 has a first flow passage 92a, a second flow passage 92b, and a third flow passage 92c.
  • a pump 96, a cooler 97, and a second reservoir 98 are provided in the path of the second oil passage 92.
  • the pump 96 supplies oil O to the motor 2.
  • the cooler 97 also cools the oil O passing through the second oil passage 92.
  • the oil O passes through each portion in the order of the first passage 92a, the pump 96, the second passage 92b, the cooler 97, the third passage 92c, and the second reservoir 98. And supplied to the motor 2.
  • the first flow passage 92 a, the second flow passage 92 b and the third flow passage 92 c pass through the wall of the housing 6 surrounding the accommodation space 80.
  • the first flow path 92 a connects the oil reservoir P and the pump 96.
  • the second flow path 92 b connects the pump 96 and the cooler 97.
  • the third flow path 92 c connects the cooler 97 and the storage space 80.
  • the first flow passage 92 a, the second flow passage 92 b, and the third flow passage 92 c pass through the inside of the wall portion of the housing 6 surrounding the accommodation space 80. Therefore, it is not necessary to prepare a pipe separately, which can contribute to the reduction in the number of parts.
  • the pump 96 is an electric pump driven by electricity.
  • the pump 96 sucks up the oil O from the oil reservoir P via the first flow passage 92 a, and the motor 2 via the second flow passage 92 b, the cooler 97, the third flow passage 92 c and the second reservoir 98.
  • the pump 96 has a pump mechanism 96p, a pump motor 96m, an inlet 96a and an outlet 96b.
  • the pump mechanism portion 96p is a trochoidal pump in which an external gear (not shown) and an internal gear mesh with each other and rotate. The internal gear of the pump mechanism 96p is rotated by the pump motor 96m. The gap between the internal gear and the external gear of the pump mechanism portion 96p leads to the suction port 96a and the discharge port 96b.
  • the suction port 96a of the pump 96 is connected to the first flow passage 92a. Further, the discharge port 96 b of the pump 96 is connected to the second flow path 92 b.
  • the pump 96 sucks up the oil O from the oil reservoir P via the first flow passage 92 a, and the motor 2 via the second flow passage 92 b, the cooler 97, the third flow passage 92 c and the second reservoir 98.
  • the pump motor 96m rotates the internal gear of the pump mechanism 96p.
  • the rotation axis J6 of the pump motor 96m is parallel to the motor axis J2.
  • the pump 96 having the pump motor 96m tends to be long in the direction of the rotation axis J6.
  • the pump 96 by making the rotation axis J6 of the pump motor 96m parallel to the motor axis J2, it is possible to reduce the size of the motor unit 1 in the radial direction.
  • the pump 96 can be easily disposed so as to overlap the overhanging portion 6 d of the housing 6 as viewed from the axial direction. As a result, it is possible to realize a structure in which the motor unit 1 can be easily miniaturized by suppressing an increase in the projected area in the axial direction of the motor unit 1.
  • the pump 96 is located below the motor chamber 81.
  • the pump 96 is fixed to the surface of the overhang 6 d facing the motor housing 6 a.
  • the suction port 96a of the pump 96 is disposed to face the overhang 6d.
  • the first flow passage 92 a connected to the suction port 96 a of the pump 96 linearly penetrates the wall surface of the overhang portion 6 d in the axial direction and opens in the lower region in the gear chamber 82. That is, the overhanging portion 6 d is provided with a first flow passage 92 a which extends along the axial direction and is connected to the pump 96 from the lower region (i.e., oil reservoir P) in the gear chamber 82.
  • the suction port 96a can be easily disposed near the oil reservoir P.
  • the first flow path 92a connecting the oil reservoir P and the suction port 96a can be shortened.
  • the first flow path 92a can be made a linear flow path.
  • the cooler 97 is connected to a first flow passage 92 a and a second flow passage 92 b.
  • the first flow path 92 a and the second flow path 92 b are connected via the internal flow path of the cooler 97.
  • Connected to the cooler 97 is a cooling water pipe 97j that allows the cooling water cooled by a radiator (not shown) to pass.
  • the oil O passing through the inside of the cooler 97 is cooled by heat exchange with the cooling water passing through the cooling water pipe 97j.
  • An inverter unit 8 is provided in the path of the cooling water pipe 97j. The cooling water passing through the cooling water pipe 97j cools the inverter unit 8.
  • the cooler 97 is fixed to the outer peripheral surface of the motor housing portion 6 a facing the radially outer side on the lower side of the motor chamber 81.
  • the oil O supplied to the motor 2 temporarily accumulates in the lower region in the motor chamber 81 and then moves to the lower region in the gear chamber 82 through the partition opening 68.
  • the cooler 97 since the cooler 97 is fixed to the outer peripheral surface of the motor housing 6a below the motor chamber 81, the motor chamber 81 from the installation surface of the cooler 97 via the wall surface of the motor housing 6a. The oil O accumulated in the lower region of the inside can be cooled.
  • the cooler 97 and the pump 96 at least partially overlap the overhanging portion 6 d of the gear housing portion 6 b when viewed in the axial direction.
  • the gear portion 3 is accommodated inside the overhang portion 6 d.
  • the projected area in the axial direction of the overhang portion 6 d is determined depending on the size of each gear of the gear portion 3.
  • the size of each gear constituting the gear portion 3 is set to satisfy a desired gear ratio. For this reason, it is difficult to reduce the projected area in the axial direction of the overhang portion 6d.
  • the motor unit 1 can be miniaturized while suppressing an increase in the projected area in the axial direction of the motor unit 1.
  • the cooler 97 and the pump 96 at least partially overlap the second gear 42 of the gear portion 3 as viewed in the axial direction. Therefore, even if the projected area of the overhang 6d as viewed in the axial direction is as small as possible along the outline of each gear of the gear portion 3, the cooler 97 and the pump 96 overhang as viewed from the axial direction A configuration overlapping with 6d can be realized. As a result, it is possible to miniaturize the motor unit 1 while suppressing an increase in the projected area in the axial direction of the motor unit 1.
  • the cooler 97 and the pump 96 are located above the lower end of the overhang 6 d. That is, the cooler 97 and the pump 96 do not protrude further downward from the lower end of the overhang 6 d. For this reason, the motor unit 1 can be miniaturized in the vertical direction.
  • the cooler 97 and the pump 96 are located below the motor chamber 81.
  • the motor unit 1 is disposed, for example, in a hood of a vehicle. Further, in the motor unit 1, the cooler 97 and the pump 96 are projections that project relative to the housing 6. According to the present embodiment, by arranging the cooler 97 and the pump 96 below the motor chamber 81, even if the vehicle collides with the object due to an accident or the like, the cooler 97 and the pump 96, which are protrusions, can be provided. However, it is possible to suppress sticking to the object.
  • the pump 96 and the cooler 97 are fixed to the outer peripheral surface of the housing 6. For this reason, as compared with the case where the pump 96 and the cooler 97 are fixed to a structure outside the housing 6, the motor unit 1 can be reduced in size.
  • the pump 96 and the cooler 97 are fixed to the outer peripheral surface of the housing 6, whereby the first flow passage 92a, the second flow passage 92b and the third flow passage 92c passing through the wall of the housing 6
  • a flow path connecting the housing space 80, the pump 96 and the cooler 97 can be configured.
  • the position of the pump 96 in the axial direction and the position of the cooler 97 overlap each other.
  • the cooler 97 and the pump 96 are connected via the second flow path 92b. That is, the second oil passage 92 is provided with a second flow passage 92 b connecting the pump 96 and the cooler 97.
  • the axial positions of the pump 96 and the cooler 97 overlap with each other, so that it is possible to realize a structure in which the second flow path 92b linearly extends in the direction orthogonal to the axial direction. That is, the second flow path 92b can be made a linear short flow path, pressure loss in the path from the pump 96 to the cooler 97 can be reduced, and efficient oil O circulation can be realized.
  • the second reservoir 98 is located in the motor chamber 81 of the accommodation space 80.
  • the second reservoir 98 is located above the motor 2.
  • the second reservoir 98 stores the oil O supplied to the motor chamber 81 via the third flow path 92c.
  • the second reservoir 98 has a plurality of outlets 98a.
  • the oil O accumulated in the second reservoir 98 is supplied to the motor 2 from each outlet 98 a.
  • the oil O flowing out from the outlet 98 a of the second reservoir 98 flows from the upper side to the lower side along the outer peripheral surface of the motor 2 to remove the heat of the motor 2. Thereby, the whole motor 2 can be cooled.
  • the second reservoir 98 extends along the axial direction. Also, the outlets 98 a of the second reservoir 98 are provided at both axial ends of the second reservoir 98. The outlet 98a is located above the coil end 31a. As a result, it is possible to apply oil O to the coil ends 31 a located at both axial ends of the stator 30 to directly cool the coils 31.
  • the oil O which has cooled the coil 31 is dropped downward, and is accumulated in the lower region in the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 moves to the gear chamber 82 through the partition opening 68 provided in the partition 61 c.
  • a cooler 97 for cooling the oil O is provided in the path of the second oil passage 92.
  • the oil O passing through the second oil passage 92 and cooled by the cooler 97 merges with the oil O passing through the first oil passage 91 in the oil reservoir P.
  • the oil O which has passed through the first oil passage 91 and the second oil passage 92 is mixed with each other to perform heat exchange. For this reason, the oil O which is disposed in the path of the second oil passage 92 and has the effect of cooling the cooler 97 can also be exerted on the oil O passing through the first oil passage 91.
  • Inverter unit 8 is electrically connected to motor 2.
  • the inverter unit 8 controls the current supplied to the motor 2.
  • the inverter unit 8 is fixed to the housing 6. More specifically, inverter unit 8 is fixed to the outer peripheral surface facing the radially outer side of motor housing 6a.
  • the inverter unit 8 When viewed in the axial direction, at least a portion of the inverter unit 8 overlaps the overhanging portion 6 d of the gear housing portion 6 b. According to the present embodiment, by arranging the inverter unit 8 so as to overlap the overhang portion 6 d when viewed from the axial direction, it is possible to suppress the increase in the projection area in the axial direction of the motor unit 1 due to the inverter unit 8. . As a result, the motor unit 1 can be miniaturized while suppressing an increase in the projected area in the axial direction of the motor unit 1.
  • the inverter unit 8 overlaps the ring gear 51 of the gear portion 3 when viewed in the axial direction. Therefore, even if the projected area of the overhang 6d viewed in the axial direction is made as small as possible along the outer shape of each gear of the gear portion 3, the inverter unit 8 is not An overlapping configuration can be realized. As a result, it is possible to miniaturize the motor unit 1 while suppressing an increase in the projected area in the axial direction of the motor unit 1.
  • the inverter unit 8 is located on the opposite side of the cooler 97 with respect to the motor axis J2 when viewed from the vertical direction. For this reason, it is possible to reduce the dimension along the horizontal direction of the motor unit 1 by effectively utilizing the region overlapping with the overhanging portion 6 d when viewed from the axial direction, thereby achieving downsizing of the motor unit 1. it can.
  • a cooling water pipe 97 j extending from a radiator (not shown) is connected to the inverter unit 8.
  • the inverter unit 8 can be cooled efficiently.
  • the cooling water flowing through the cooling water pipe 97 j also cools the motor housing portion 6 a which contacts the housing portion via the housing portion of the inverter unit 8.
  • the inverter unit 8 has an inverter case 110 and an inverter 140. That is, the motor unit 1 includes an inverter case 110 and an inverter 140.
  • the inverter case 110 accommodates the inverter 140.
  • the inverter case 110 is fixed to the rear side of the housing 6.
  • the inverter case 110 is fixed to the housing 6 by, for example, a screw.
  • the inverter case 110 is fixed to only the first housing member 61 of the housing 6.
  • the inverter case 110 has an inverter case main body 111, a lid 112, and a collar portion 113.
  • the inverter case main body 111 has a substantially rectangular parallelepiped shape that is long in the axial direction, and has a box shape that opens upward.
  • the inverter case main body 111 is disposed above the differential axis J5. Therefore, in the configuration in which the motor axis J2, the intermediate axis J4, and the differential axis J5 extend in the same direction as in the present embodiment, the space above the differential axis J5 where wasteful space is likely to occur is the arrangement of the inverter unit 8. It can be effectively used as space. Therefore, the entire motor unit 1 can be easily miniaturized.
  • the inverter case main body 111 has a second opening hole 111 a on the front surface.
  • the second opening 111a penetrates the front wall of the inverter case main body 111 in the front-rear direction, and opens in the front.
  • the second opening 111a is in the form of an oval long in the axial direction, as viewed from the front side.
  • the second opening hole 111 a faces the first opening hole 61 i in the front-rear direction.
  • the first opening hole 61i and the second opening hole 111a entirely overlap with each other when viewed from the axial direction.
  • the lid 112 is attached to the upper side of the inverter case main body 111. The lid 112 closes the upper opening of the inverter case main body 111.
  • the collar portion 113 protrudes from the inverter case main body 111 to the front side. More specifically, the collar portion 113 protrudes forward from a portion on the left side of the upper end portion of the inverter case main body 111.
  • the ridge portion 113 has a plate shape whose plate surface is orthogonal to the vertical direction.
  • the collar 113 extends in the axial direction. As shown in FIG. 10, the dimension W1 in the front-rear direction of the collar 113 is the distance W2 in the front-rear direction from the rear end of the first support 61g to the rear end of the bus bar support member 120 described later. Too big.
  • the distance W2 corresponds to the protrusion length of the bus bar support member 120 from the housing 6 to the rear side.
  • the collar portion 113 has a fixing hole 113 a penetrating the collar portion 113 in the vertical direction.
  • a plurality of fixing holes 113a are provided along the axial direction.
  • three fixing holes 113a are provided in FIG.
  • the collar portion 113 contacts the first support portion 61 g from the upper side. That is, in the vertical direction, the first support 61g contacts and supports the hook 113 from the lower side.
  • the collar portion 113 is fixed to the first support portion 61g by screwing a screw, which is passed through the fixing hole 113a from the upper side, into the female screw hole 61k.
  • the collar portion 113 is disposed on the left side of the second support portion 63 d so as to face the second support portion 63 d via a gap. That is, the second support surface 63 e is axially opposed to the right end of the collar portion 113 with a gap.
  • a gap is provided between the end portion on the right side of the collar portion 113 and the axial direction of the second support portion 63 d when viewed from the vertical direction.
  • the collar 113 is disposed on the right side of the second housing member 62.
  • the right end of the collar 113 is located more to the left than the right end of the first housing member 61.
  • the range of the axial position of the collar portion 113 is included in the range of the axial position of the first housing member 61.
  • the collar 113 entirely overlaps the first housing member 61 when viewed from the vertical direction.
  • the inverter 140 has a terminal portion 140 a and a circuit board (not shown) on which the terminal portion 140 a is provided.
  • An inverter circuit is provided on the circuit board.
  • the terminal portion 140a has a plate shape in which the plate surface is orthogonal to the vertical direction and extends in the front-rear direction.
  • the terminal portion 140 a is fixed to the upper surface of the base portion 141 inside the inverter case 110.
  • Motor unit 1 further includes bus bar support member 120, a first O-ring 151, a second O-ring 152, and a bus bar 130.
  • the bus bar support member 120 is a member made of resin that supports the bus bar 130.
  • the bus bar support member 120 is inserted across the first opening hole 61i and the second opening hole 111a, and is fitted to the first opening hole 61i and the second opening hole 111a.
  • the bus bar support member 120 has a bus bar support member main body 121 and a convex portion 122. As shown in FIG. 7, the bus bar support member main body 121 has a columnar shape extending in the front-rear direction.
  • the bus bar support member main body 121 has an oval shape that is long in the axial direction when viewed from the front-rear direction.
  • the front end of the bus bar support member main body 121 is disposed at substantially the same position as the front end of the first opening 61i in the front-rear direction.
  • the rear end of the bus bar support member main body 121 is disposed at substantially the same position as the rear end of the second opening 111a in the front-rear direction.
  • the bus bar support member main body 121 has a through hole 121 a penetrating the bus bar support member main body 121 in the front-rear direction.
  • the through hole 121 a is disposed at the center of the bus bar support member main body 121 in the vertical direction.
  • the through hole 121a has a rectangular shape which is long in the axial direction when viewed from the front and rear direction.
  • the bus bar 130 is passed through the through hole 121a.
  • a plurality of through holes 121a are provided along the axial direction. In the present embodiment, for example, three through holes 121 a are provided.
  • the bus bar support member main body 121 has grooves 123 a and 123 b which are recessed from the outer peripheral surface of the bus bar support member main body 121.
  • the grooves 123 a and 123 b are annular and provided along one circumference of the outer peripheral surface of the bus bar support member main body 121.
  • the groove 123a is provided in a portion of the bus bar support member main body 121 which is inserted into the first opening 61i.
  • the groove 123 b is provided in a portion of the bus bar support member main body 121 to be inserted into the second opening 111 a.
  • the convex portion 122 protrudes from the bus bar support member main body 121 in the vertical direction.
  • the convex portion 122 has a substantially rectangular parallelepiped shape.
  • the convex portion 122 includes a plurality of convex portions 122 projecting upward from the bus bar supporting member main body 121 and a plurality of convex portions 122 projecting downward from the bus bar supporting member main body 121.
  • the projections 122 are three projections 122 axially spaced from each other at the upper end of the bus bar support member main body 121 and the lower end of the bus bar support member main body 121. A total of six of the three convex portions 122 spaced apart in the axial direction are provided.
  • the convex portion 122 has a rib 122 a.
  • the rib 122 a protrudes rearward from an end face of the convex portion 122 facing the rear side.
  • the rib 122 a is disposed at the axial center of each protrusion 122.
  • the rib 122 a extends in the vertical direction from the upper end of the projection 122 to the lower end of the projection 122.
  • the axial dimension of the rib 122a decreases from the front to the rear.
  • the convex portion 122 is disposed between the housing 6 and the inverter case 110 in the front-rear direction.
  • the convex portion 122 is sandwiched in a state of being in contact with the housing 6 and the inverter case 110.
  • An end surface of the convex portion 122 facing the front side contacts the housing 6. More specifically, the end surface of the convex portion 122 facing the front side is in contact with the peripheral portion of the first opening 61i in the rear surface of the peripheral wall 61a.
  • the bus bar support member 120 can be positioned in the front-rear direction with respect to the housing 6.
  • the rib 122 a contacts the inverter case 110. More specifically, the rib 122 a is in contact with the peripheral portion of the second opening 111 a in the front surface of the inverter case main body 111.
  • the rib 122 a is in a state in which at least one of plastic deformation and elastic deformation has occurred in a state where the convex portion 122 is sandwiched between the housing 6 and the inverter case 110. Therefore, even if an error occurs between the dimensions of the inverter case 110 and the dimensions of the housing 6, the error can be absorbed by the deformation of the rib 122a.
  • the bus bar support member 120 can be suitably held by the housing 6 and the inverter case 110. Therefore, in the state where inverter case 110 is fixed to housing 6, it is possible to suppress that bus bar support member 120 moves in the front-rear direction.
  • the first O-ring 151 has an annular shape surrounding the bus bar support member 120 as viewed in the front-rear direction.
  • the first O-ring 151 is disposed between the inner circumferential surface of the first opening 61 i and the portion of the outer circumferential surface of the bus bar support member 120 facing the inner circumferential surface of the first opening 61 i.
  • the first O-ring 151 is in contact with the inner peripheral surface of the first opening 61i and the outer peripheral surface of the bus bar support member 120, and seals between the inner peripheral surface of the first open hole 61i and the outer peripheral surface of the bus bar support 120 Stop.
  • the first O-ring 151 is fitted into the groove 123 a and held on the outer peripheral surface of the bus bar support member 120.
  • the second O-ring 152 has an annular shape surrounding the bus bar support member 120 as viewed in the front-rear direction.
  • the second O-ring 152 is disposed between the inner circumferential surface of the second opening 111 a and the portion of the outer circumferential surface of the bus bar support member 120 facing the inner circumferential surface of the second opening 111 a.
  • the second O-ring 152 contacts the inner peripheral surface of the second opening hole 111 a and the outer peripheral surface of the bus bar support member 120, and seals between the inner peripheral surface of the second opening hole 111 a and the outer peripheral surface of the bus bar support member 120. Stop.
  • the second O-ring 152 is fitted in the groove 123 b and held on the outer peripheral surface of the bus bar support member 120.
  • the second O-ring 152 corresponds to a seal member.
  • the bus bar support member 120 can be suppressed from moving in the front-rear direction, the first O-ring 151 and the second O-ring 152 may be rubbed against the inner peripheral surfaces of the respective opening holes to be damaged. It can be suppressed.
  • the bus bar 130 is a plate-like metal member.
  • the bus bar 130 has a first extending portion 131 and a second extending portion 132.
  • the first extending portion 131 extends in the front-rear direction.
  • the first extending portion 131 has a plate shape whose plate surface is orthogonal to the vertical direction.
  • the first extending portion 131 extends from the inside of the housing 6 to the inside of the inverter case 110 via the first opening hole 61i and the second opening hole 111a. More specifically, the first extending portion 131 extends from the inside of the shoulder 61 j to the inside of the inverter case 110 via the first opening 61 i and the second opening 111 a.
  • the distance in the front-rear direction between the rear end of the first extending portion 131 and the rear end of the first support portion 61g is larger than the dimension W1 of the collar 113 in the front-rear direction.
  • the first extending portion 131 passes through the through hole 121 a and penetrates the bus bar support member 120 in the front-rear direction.
  • the bus bar 130 can be prevented from being in contact with the inner peripheral surface of the first opening 61i and the inner peripheral surface of the second opening 111 a by the bus bar support member 120. Therefore, bus bar 130 can be arranged so as to be insulated from housing 6 and inverter case 110.
  • the first extending portion 131 is fitted in the through hole 121 a.
  • the first extending portion 131 is fixed to the inside of the through hole 121 a by the sealing material filled in the inside of the through hole 121 a. Thereby, the first extending portion 131 is fixed to the bus bar support member 120.
  • the sealing material is, for example, an adhesive. According to the present embodiment, as described above, the movement of the bus bar support member 120 in the front-rear direction can be suppressed, so that the fixation between the first extension portion 131 and the bus bar support member 120 can be suppressed.
  • the first extending portion 131 has a fixing hole 131 a penetrating the first extending portion 131 in the vertical direction.
  • the fixing hole 131 a is provided at the rear end of the first extending portion 131.
  • the rear end of the first extending portion 131 is fixed to the terminal portion 140 a inside the inverter case 110. More specifically, the rear end portion of the first extension portion 131 is screwed into the female screw hole provided in the base portion 141 by the screw member 160 passing from the upper side to the fixing hole 131 a and the terminal portion 140 a It is fixed to The first extending portion 131 and the terminal portion 140 a are collectively fixed to the base portion 141 by the screw member 160. The lower surface of the first extending portion 131 is in contact with the upper surface of the terminal portion 140a.
  • the bus bar 130 is electrically connected to the inverter 140.
  • the second extending portion 132 extends upward from the front end of the first extending portion 131 in the housing 6.
  • the second extending portion 132 has a plate shape whose plate surface is orthogonal to the front-rear direction.
  • the second extending portion 132 extends above the first opening 61i.
  • the second extension portion 132 is electrically connected to the coil 31.
  • the bus bar 130 electrically connects the stator 30 and the inverter 140.
  • a current is supplied to stator 30 from inverter 140 via bus bar 130.
  • the inverter 140 supplies power to the motor 2.
  • the parking mechanism 7 moves between the teeth of the parking gear 71 fixed to the intermediate shaft 45 and rotating around the intermediate shaft J4 with the intermediate shaft 45 and rotates the parking gear 71. It has the rotation prevention part 72 to block, and the parking motor 73 which drives the rotation prevention part 72.
  • rotation prevention unit 72 retracts from parking gear 71.
  • the parking motor 73 moves the rotation preventing portion 72 between the teeth of the parking gear 71 to prevent the parking gear 71 from rotating.
  • the method of manufacturing the motor unit 1 of the present embodiment described above includes an attaching step of attaching the bus bar support member 120 to the housing 6 and a fixing step of fixing the inverter case 110 to the housing 6.
  • the worker passes the first extending portion 131 projecting to the outside of the housing 6 through the first opening hole 61i to the through hole 121a, and the bus bar support member 120 from the outside of the housing 6 the first opening hole. Insert in 61i and fit.
  • the bus bar support member 120 is in a state where the first O-ring 151 and the second O-ring 152 are attached.
  • the operator pushes the bus bar support member 120 into the first opening 61i until the front end surface of the convex portion 122 contacts the housing 6.
  • the bus bar support member 120 is attached to the housing 6 in the front-rear direction.
  • the operator roughly positions the vertical direction position and the axial direction position of the inverter unit 8 with respect to the housing 6 and brings the inverter unit 8 closer to the housing 6 from the rear side.
  • the worker sets the position of the inverter unit 8 in the vertical direction to a position where the vertical position of the flange portion 113 is above the first support portion 61g.
  • the worker moves the inverter unit 8 to the front side until the front end of the collar portion 113 is located above the first support 61g.
  • the first extending portion 131 is The front end of the is inserted into the second opening 111a.
  • the worker moves the inverter unit 8 downward until the collar portion 113 contacts the first support surface 61 h of the first support portion 61 g.
  • the collar portion 113 is positioned in the vertical direction, and the inverter unit 8 can be positioned in the vertical direction with respect to the housing 6. That is, the fixing step includes positioning the collar 113 in contact with the first support 61g from the upper side and positioning in the vertical direction.
  • the operator moves the inverter unit 8 to the right while sliding the collar portion 113 on the first support surface 61h.
  • the operator attaches the positioning member MP to the housing 6 before moving the inverter unit 8 to the right.
  • the positioning member MP has a plate shape whose plate surface is orthogonal to the axial direction.
  • the operator brings the positioning member MP into contact with the second support surface 63e of the second support portion 63d, and places the positioning member MP on the upper side of the first support portion 61g. That is, the fixing step includes attaching the positioning member MP to the housing 6 with the second support portion 63 d supported from the right side.
  • the operator moves the collar 113 to the right until the right end of the collar 113 contacts the positioning member MP.
  • the collar portion 113 can be positioned in the axial direction, and the inverter unit 8 can be positioned in the axial direction with respect to the housing 6. That is, the positioning member MP can position the collar portion 113 in the axial direction.
  • the fixing step includes positioning the collar portion 113 in the axial direction by contacting the positioning member MP from the left side.
  • the operator moves the inverter unit 8 to the front side until the inverter case main body 111 and the first housing member 61 contact in the front-rear direction.
  • the inverter unit 8 can be positioned in the front-rear direction with respect to the housing 6. That is, after the flange portion 113 is positioned in the vertical direction and the axial direction, the fixing step includes moving the inverter case 110 to the front side to contact the housing 6 and positioning in the front-rear direction.
  • the inverter unit 8 When the inverter unit 8 is positioned in the front-rear direction, a portion of the bus bar support member 120 that protrudes rearward from the housing 6 is fitted in the second opening 111a. Further, the convex portion 122 described above is sandwiched between the inverter case main body 111 and the first housing member 61, and the rib 122a is plastically or elastically deformed, or plastically deformed and elastically deformed.
  • the operator can position the inverter unit 8 in the vertical direction, the axial direction, and the front-rear direction with respect to the housing 6.
  • the operator fixes the inverter case 110 to the housing 6 with a screw. More specifically, the operator passes a screw from the upper side to the fixing hole 113a and tightens the female screw hole 61k to fix the collar 113 to the first support 61g.
  • the operator fixes the inverter case 110 to the housing 6 by tightening a screw in the front-rear direction.
  • the fixing step includes fixing the inverter case 110 and the housing 6 after the inverter case 110 is positioned in the front-rear direction.
  • the fixing step includes removing the positioning member MP after fixing the inverter case 110 and the housing 6. Thereby, a gap is provided between the second support portion 63 d and the collar portion 113. As described above, the operator can fix the inverter unit 8 to the housing 6.
  • the inverter case 110 has the collar 113. Therefore, even when the inverter unit 8 is disposed at a position adjacent to the housing 6 in the front-rear direction, when the inverter case 110 is fixed to the housing 6, the flange portion 113 is used as the first support portion of the housing 6 It can be hooked from the top to 61 g.
  • the inverter case 110 can be positioned in the vertical direction with respect to the housing 6, and the inverter case 110 can be supported by the housing 6. Therefore, the inverter case 110 can be easily fixed at a position adjacent to the housing 6 in the front-rear direction, and the motor unit 1 can be easily miniaturized in the vertical direction.
  • the inverter case main body 111 is disposed on the upper side of the differential shaft J5 when viewed from the axial direction, the inverter case 110 can be disposed space efficiently with respect to the housing 6, and the motor unit 1 is further miniaturized. It is easy to As described above, according to the present embodiment, it is possible to obtain the motor unit 1 that can be miniaturized and has a structure that facilitates fixing the inverter case 110 to the housing 6.
  • the second support portion 63 d capable of supporting the positioning member MP from the right side is disposed on the right side of the collar portion 113. Therefore, by supporting the positioning member MP on the second support portion 63d, the flange portion 113 can be brought into contact with the positioning member MP, and the inverter case 110 can be positioned in the axial direction. Thereby, the inverter case 110 can be closely approached with respect to the housing 6 in the front-rear direction in the state positioned in the vertical direction and in both the axial directions.
  • the inverter case 110 when the inverter case 110 is fixed to the housing 6, the attitude of the inverter case 110 can be stabilized, and the bus bar passes through the first opening 61i of the housing 6 and the second opening 111a of the inverter case 110. It can suppress that 130 touches the inner skin of each opening. Therefore, deformation of bus bar 130 can be suppressed, and inverter case 110 can be accurately positioned on housing 6. As a result, the bus bar 130 and the inverter 140 can be arranged with relative position accuracy. As described above, according to the present embodiment, the motor unit 1 having a structure in which the bus bar 130 can be easily connected to the inverter 140 can be obtained.
  • the flange portion 113 and the second support portion 63d can be removed by removing the positioning member MP used when positioning the inverter case 110 in the axial direction.
  • a gap can be provided between the As described above, by arranging the collar portion 113 and the second support portion 63 d with a gap, when the motor unit 1 is vibrated, the collar portion 113 and the second support portion 63 d rub against each other. Can be suppressed.
  • the second support portion 63d has a second support surface 63e axially opposed to the right end portion of the collar portion 113 with a gap. Therefore, it is easy to support the positioning member MP on the second support surface 63e. Further, since the second support surface 63e is a flat surface, the positioning member MP can be accurately disposed with respect to the second support portion 63d, and the positioning accuracy of the inverter case 110 can be improved.
  • the first support surface 61 h which is the upper surface of the first support portion 61 g is a flat surface extending in the axial direction. Therefore, after bringing the collar portion 113 into contact with the first support surface 61 h, it is easy to move the inverter case 110 while sliding it in the axial direction. Thus, the inverter case 110 can be easily positioned in the axial direction.
  • the bus bar support member 120 inserted across the first opening hole 61i and the second opening hole 111a is provided.
  • the bus bar support member 120 attached to the inverter case 110 or the housing 6 into the first opening 61i or the second opening 111a.
  • the rear end of the bus bar support member 120 attached to the housing 6 needs to be inserted into the second opening 111a.
  • the dimension W1 in the front-rear direction of the collar portion 113 is the front-rear direction from the rear end of the first support 61g to the rear end of the bus bar support member 120. It is larger than the distance W2. Therefore, the flange portion 113 can be brought into contact with the first support portion 61g in a state where the rear end of the bus bar support member 120 is not inserted into the second opening 111a.
  • the bus bar support member 120 can be inserted into the second opening 111 a in a state where the inverter case 110 is positioned in the vertical direction and in the axial direction. Therefore, it can be suppressed that the bus bar support member 120 contacts the inner peripheral surface of the second opening 111a.
  • bus bar support member 120 deformation of bus bar support member 120 can be suppressed, and displacement of the position of bus bar 130 supported by bus bar support member 120 can be suppressed. Therefore, the bus bar 130 can be easily connected to the inverter 140 while the bus bar 130 is insulated from the housing 6 and the inverter case 110 by the bus bar support member 120.
  • the second O-ring 152 as a seal member disposed between the inner peripheral surface of the second opening hole 111 a and the outer peripheral surface of the bus bar support member 120 is provided.
  • the bus bar support member 120 can be inserted into the second opening 111 a in a state where the inverter case 110 is positioned in the vertical direction and in the axial direction. Therefore, the second O-ring 152 is not easily rubbed against the inner peripheral surface of the second opening 111a, and the breakage of the second O-ring 152 can be suppressed.
  • the peripheral wall 61a has a shoulder 61j protruding to the rear side, and the first support 61g is provided on the shoulder 61j. Therefore, it is easy to provide the first support portion 61 g at the rear end of the housing 6. Thereby, the dimension W1 of the front-back direction of the collar part 113 can be shortened. Therefore, the portion fixed to the housing 6 in the collar 113 can be brought closer to the inverter case 110, and the moment due to the weight of the inverter unit 8 applied to the portion fixed to the housing 6 in the collar 113 can be reduced. Therefore, the load applied to the inverter case 110 can be reduced, and the inverter unit 8 can be fixed to the housing 6 more stably.
  • the portion fixed to the housing 6 in the collar portion 113 is a portion of the collar portion 113 where the fixing hole 113 a is provided.
  • the shoulder 61j has the first opening 61i, and the first extension 131 extends from the inside of the shoulder 61j to the inside of the inverter case 110. Therefore, the portion of the housing 6 in which a part of the bus bar 130 is accommodated can be effectively used for positioning of the inverter case 110.
  • the first support portion 61 g is provided to the first housing member 61 disposed on the right side of the second housing member 62.
  • the collar portion 113 is disposed on the right side of the second housing member 62, and the right end is disposed on the left side of the right end of the first housing member 61. Therefore, the collar portion 113 can be easily fixed only to the first housing member 61, and the inverter case 110 can be easily fixed to only the first housing member 61.
  • the positioning accuracy of the inverter case 110 by the collar portion 113 can be improved as compared to the case where the collar portion 113 is fixed across the first housing member 61 and the second housing member 62.
  • the number of screws and the like for fixing can be reduced, and the number of parts of the motor unit 1 can be reduced.
  • the present invention is not limited to the above-described embodiment, and other configurations can be adopted.
  • the second support is not particularly limited as long as the positioning member can be supported from the right side.
  • the second support may be, for example, a screw hole recessed downward from the upper surface of the housing.
  • the positioning member is a screw member screwed into the screw hole, and the inverter case can be positioned in the axial direction by bringing the flange into contact with the screw member.
  • the second support may not be provided.
  • the vertical positioning of the barb with respect to the housing may occur after axial positioning of the barb with respect to the housing. That is, after the collar portion is in contact with the positioning member, it may be in contact with the first support portion.
  • the first direction and the second direction may have the same relative relationship with each other, and in actual arrangement and posture of the motor unit, they are indicated by names such as the front-rear direction, the left-right direction, and the width direction described in the above embodiment. It may be a direction other than the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本発明のモータユニットの一つの態様は、鉛直方向と直交する第1方向に延びるモータシャフトを有するモータと、モータに接続され中間軸を中心として回転する中間ギヤを有する減速装置と、減速装置に接続され差動軸を中心として回転するリングギヤを有する差動装置と、モータに電力を供給するインバータと、モータを収容するハウジングと、鉛直方向および第1方向の両方と直交する第2方向において、ハウジングの一方側に固定され、インバータを収容するインバータケースと、を備える。中間軸および差動軸は、第1方向に延びる。インバータケースは、第1方向から見て、差動軸の鉛直方向上側に配置されるインバータケース本体と、インバータケース本体から第2方向他方側に突出する庇部と、を有する。ハウジングは、庇部を鉛直方向下側から接触して支持する第1支持部を有する。

Description

モータユニット
 本発明は、モータユニットに関する。
 インバータケースがハウジングに固定されるモータ駆動ユニットが知られる。例えば、日本国公開公報:特開2011-10383号公報には、インバータケースとハウジングとが締結ピンによって固定されるモータ駆動ユニットが記載される。
日本国公開公報:特開2011-10383号公報
 上記のようなモータ駆動ユニットにおいては、インバータケースがハウジングの鉛直方向上側に配置されるため、モータ駆動ユニットが鉛直方向に大型化する問題があった。これに対して、鉛直方向と直交する水平方向においてハウジングの一方側にインバータケースを固定することが考えられる。しかし、この場合、インバータケースを支持しつつハウジングに対して固定する作業を行う必要があるため、インバータケースをハウジングに固定しにくい問題があった。また、単にインバータケースをハウジングの水平方向一方側に配置するのみでは、モータ駆動ユニット全体としては十分に小型化しにくい場合があった。
 本発明は、上記事情に鑑みて、小型化でき、かつ、インバータケースをハウジングに固定しやすい構造を有するモータユニットを提供することを目的の一つとする。
 本発明のモータユニットの一つの態様は、鉛直方向と直交する第1方向に延びるモータシャフトを有するモータと、前記モータに接続され中間軸を中心として回転する中間ギヤを有する減速装置と、前記減速装置に接続され差動軸を中心として回転するリングギヤを有する差動装置と、前記モータに電力を供給するインバータと、前記モータを収容するハウジングと、鉛直方向および前記第1方向の両方と直交する第2方向において、前記ハウジングの一方側に固定され、前記インバータを収容するインバータケースと、を備える。前記中間軸および前記差動軸は、前記第1方向に延びる。前記インバータケースは、前記第1方向から見て、前記差動軸の鉛直方向上側に配置されるインバータケース本体と、前記インバータケース本体から前記第2方向他方側に突出する庇部と、を有する。前記ハウジングは、前記庇部を鉛直方向下側から接触して支持する第1支持部を有する。
 本発明の一つの態様によれば、小型化でき、かつ、インバータケースをハウジングに固定しやすい構造を有するモータユニットが提供される。
図1は、一実施形態のモータユニットの概念図である。 図2は、一実施形態のモータユニットの斜視図である。 図3は、一実施形態のモータユニットの側面模式図である。 図4は、一実施形態のハウジングの分解図である。 図5は、一実施形態のモータユニットの側面図である。 図6は、一実施形態のモータユニットを下側から見た下面図である。 図7は、一実施形態のモータユニットの一部を示す斜視図である。 図8は、一実施形態のインバータユニットの斜視図である。 図9は、一実施形態のモータユニットの一部を示す断面図である。 図10は、一実施形態のインバータユニットの取り付け手順の一部を示す模式図である。 図11は、一実施形態のインバータユニットの取り付け手順の一部を示す模式図である。 図12は、一実施形態のインバータユニットの取り付け手順の一部を示す模式図である。
 以下、図面を参照しながら、本発明の実施形態に係るモータユニットについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。
 以下の説明では、モータユニット1が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。また、X軸方向は、Z軸方向と直交する方向であってモータユニット1が搭載される車両の前後方向を示し、+X方向が車両前方であり、-X方向が車両後方である。ただし、+X方向が車両後方であり、-X方向が車両前方となることもありうる。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)を示し、+Y方向が車両左方であり、-Y方向が車両右方である。但し、+X方向が車両後方となる場合には、+Y方向が車両右方であり、-Y方向が車両左方となることもありうる。
 以下の説明において特に断りのない限り、モータ2のモータ軸J2に平行な方向(Y軸方向)を単に「軸方向」と呼び、モータ軸J2を中心とする径方向を単に「径方向」と呼び、モータ軸J2を中心とする周方向、すなわち、モータ軸J2の軸周りを単に「周方向」と呼ぶ。ただし、上記の「平行な方向」は、略平行な方向も含む。また、X軸方向と平行な方向を「前後方向」と呼ぶ。X軸方向の正の側を「前側」と呼び、X軸方向の負の側を「後側」と呼ぶ。Y軸方向の正の側を「左側」と呼び、Y軸方向の負の側を「右側」と呼ぶ。
 本実施形態において、軸方向、すなわち車両の幅方向は、第1方向に相当する。前後方向は、第2方向に相当する。左側は、第1方向一方側に相当し、右側は、第1方向他方側に相当する。後側は、第2方向一方側に相当し、前側は、第2方向他方側に相当する。下側は、鉛直方向下側に相当し、上側は、鉛直方向上側に相当する。
 以下、図面を基に本発明の例示的な一実施形態に係るモータユニット(電動駆動装置)1について説明する。
 図1は、一実施形態のモータユニット1の概念図である。図2は、モータユニット1の斜視図である。なお、図1は、あくまで概念図であり、各部の配置および寸法が実際と同じであるとは限らない。
 モータユニット1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両に搭載され、その動力源として使用される。
 図1に示すように、モータユニット1は、モータ(メインモータ)2と、ギヤ部3と、ハウジング6と、ハウジング6内に収容されるオイルOと、インバータユニット8と、パーキング機構7と、を備える。
 図1に示すように、モータ2は、水平方向に延びるモータ軸J2を中心として回転するロータ20と、ロータ20の径方向外側に位置するステータ30と、を備える。ハウジング6の内部は、モータ2およびギヤ部3を収容する収容空間80が設けられる。すなわち、ハウジング6は、モータ2およびギヤ部3を収容する。収容空間80は、モータ2を収容するモータ室81と、ギヤ部3を収容するギヤ室82と、に区画される。
 <モータ>
 モータ2は、ハウジング6のモータ室81に収容される。モータ2は、水平方向に延びるモータ軸J2を中心として回転するロータ20と、ロータ20の径方向外側に位置するステータ30と、を備える。モータ2は、ステータ30と、ステータ30の内側に回転自在に配置されるロータ20と、を備えるインナーロータ型モータである。
 ロータ20は、図示略のバッテリからステータ30に電力が供給されることで回転する。ロータ20は、シャフト(モータシャフト)21と、ロータコア24と、ロータマグネット(図示略)と、を有する。ロータ20(すなわち、シャフト21、ロータコア24およびロータマグネット)は、水平方向に延びるモータ軸J2を中心として回転する。ロータ20のトルクは、ギヤ部3に伝達される。
 シャフト21は、水平方向かつ車両の幅方向に延びるモータ軸J2を中心として延びる。シャフト21は、モータ軸J2を中心として回転する。シャフト21は、内部にモータ軸J2に沿って延びる内周面を有する中空部22が設けられた中空シャフトである。
 シャフト21は、ハウジング6のモータ室81とギヤ室82とを跨いで延びる。シャフト21の一方の端部は、ギヤ室82側に突出する。ギヤ室82に突出するシャフト21の端部には、第1のギヤ41が固定されている。
 ロータコア24は、珪素鋼板を積層して構成される。ロータコア24は、軸方向に沿って延びる円柱体である。ロータコア24には、図示略の複数のロータマグネットが固定される。複数のロータマグネットは、磁極を交互にして周方向に沿って並ぶ。
 ステータ30は、ロータ20を径方向外側から囲む。すなわち、ステータ30は、シャフト21の径方向外側に配置される。ステータ30は、ステータコア32と、コイル31と、ステータコア32とコイル31との間に介在するインシュレータ(図示略)とを有する。ステータ30は、ハウジング6に保持される。ステータコア32は、円環状のヨークの内周面から径方向内方に複数の磁極歯(図示略)を有する。磁極歯の間には、コイル線が掛けまわされる。磁極歯に掛けまわされたコイル線は、コイル31を構成する。コイル線は、図示略のバスバーを介してインバータユニット8に接続される。コイル31は、ステータコア32の軸方向端面から突出するコイルエンド31aを有する。コイルエンド31aは、ロータ20のロータコア24の端部よりも軸方向に突出する。コイルエンド31aは、ロータコア24に対し軸方向両側に突出する。
 <ギヤ部>
 ギヤ部3は、ハウジング6のギヤ室82に収容される。ギヤ部3は、モータ軸J2の軸方向一方側においてシャフト21に接続される。ギヤ部3は、減速装置4と差動装置5とを有する。すなわち、モータユニット1は、減速装置4と、差動装置5と、を備える。モータ2から出力されるトルクは、減速装置4を介して差動装置5に伝達される。
 <減速装置>
 減速装置4は、モータ2のロータ20に接続される。減速装置4は、モータ2の回転速度を減じて、モータ2から出力されるトルクを減速比に応じて増大させる機能を有する。減速装置4は、モータ2から出力されるトルクを差動装置5へ伝達する。
 減速装置4は、第1のギヤ(中間ドライブギヤ)41と、第2のギヤ(中間ギヤ)42と、第3のギヤ(ファイルナルドライブギヤ)43と、中間シャフト45と、を有する。モータ2から出力されるトルクは、モータ2のシャフト21、第1のギヤ41、第2のギヤ42、中間シャフト45および第3のギヤ43を介して差動装置5のリングギヤ51へ伝達される。各ギヤのギヤ比およびギヤの個数等は、必要とされる減速比に応じて種々変更可能である。減速装置4は、各ギヤの軸芯が平行に配置される平行軸歯車タイプの減速機である。
 第1のギヤ41は、モータ2のシャフト21の外周面に設けられる。第1のギヤ41は、シャフト21とともに、モータ軸J2を中心に回転する。中間シャフト45は、モータ軸J2の軸方向に延びモータ軸J2と平行な中間軸J4に沿って延びる。中間シャフト45は、中間軸J4を中心として回転する。第2のギヤ42および第3のギヤ43は、中間シャフト45の外周面に設けられる。第2のギヤ42と第3のギヤ43は、中間シャフト45を介して接続される。第2のギヤ42および第3のギヤ43は、中間軸J4を中心として回転する。第2のギヤ42は、第1のギヤ41に噛み合う。これにより、第2のギヤ42は、第1のギヤ41を介してモータ2に接続される。第3のギヤ43は、差動装置5のリングギヤ51と噛み合う。第3のギヤ43は、第2のギヤ42に対して隔壁61c側に位置する。本実施形態において、第2のギヤ42は、中間ギヤに相当する。
 <差動装置>
 差動装置5は、減速装置4に接続される。差動装置5は、減速装置4を介しモータ2に接続される。差動装置5は、モータ2から出力されるトルクを車両の車輪に伝達するための装置である。差動装置5は、車両の旋回時に、左右の車輪の速度差を吸収しつつ、左右両輪の車軸55に同トルクを伝える機能を有する。差動装置5は、リングギヤ51と、ギヤハウジング(不図示)と、一対のピニオンギヤ(不図示)と、ピニオンシャフト(不図示)と、一対のサイドギヤ(不図示)と、を有する。
 リングギヤ51は、モータ軸J2の軸方向に延びモータ軸J2と平行な差動軸J5を中心として回転する。リングギヤ51は、減速装置4に接続される。リングギヤ51には、モータ2から出力されるトルクが減速装置4を介して伝えられる。すなわち、リングギヤ51は、他のギヤを介してモータ2に接続される。
 (各軸の配置)
 図3は、モータユニット1の側面模式図である。
 モータ軸J2、中間軸J4および差動軸J5は、水平方向に沿って互いに平行に延びる。モータ軸J2に対し中間軸J4および差動軸J5は、下側に位置する。したがって、減速装置4および差動装置5は、モータ2より下側に位置する。
 モータ軸J2の軸方向から見て、モータ軸J2と中間軸J4とを仮想的に結ぶ線分を第1の線分L1とし、中間軸J4と差動軸J5とを仮想的に結ぶ線分を第2の線分L2とし、モータ軸J2と差動軸J5とを仮想的に結ぶ線分を第3の線分L3とする。
 第2の線分L2は略水平方向に沿って延びる。すなわち、中間軸J4と差動軸J5は、略水平方向に並んでいる。なお、本実施形態において、第2の線分L2が略水平方向とは、水平方向に対して±10°以内の方向である。
 第2の線分L2と第3の線分L3とのなす角αは、30°±5°である。
 第1の線分L1は、略鉛直方向に沿って延びる。すなわち、モータ軸J2と中間軸J4は、略鉛直方向に沿って並んでいる。なお、本実施形態において、第1の線分L1が略鉛直方向とは、鉛直方向に対して±10°以内の方向である。
 第1の線分の長さL1と、第2の線分の長さL2と、第3の線分の長さL3は、以下の関係を満たす。
 L1:L2:L3=1:1.4~1.7:1.8~2.0
 また、モータ2から差動装置5に至る減速機構における減速比が8以上11以下である。本実施形態によれば、上述したようなモータ軸J2、中間軸J4および差動軸J5の位置関係を維持しながら、所望のギヤ比(8以上11以下)を実現できる。
 <ハウジング>
 図1に示すように、ハウジング6の内部に設けられた収容空間80には、モータ2およびギヤ部3が収容される。ハウジング6は、収容空間80においてモータ2およびギヤ部3を保持する。ハウジング6は、隔壁61cを有する。ハウジング6の収容空間80は、隔壁61cによってモータ室81とギヤ室82とに区画される。モータ室81には、モータ2が収容される。ギヤ室82には、ギヤ部3(すなわち、減速装置4および差動装置5)が収容される。
 収容空間80内の下部領域には、オイルOが溜るオイル溜りPが設けられる。本実施形態では、モータ室81の底部81aは、ギヤ室82の底部82aより上側に位置する。また、モータ室81とギヤ室82とを区画する隔壁61cには、隔壁開口68が設けられる。隔壁開口68は、モータ室81とギヤ室82とを連通させる。隔壁開口68は、モータ室81内の下部領域に溜ったオイルOをギヤ室82に移動させる。
 オイル溜りPには、差動装置5の一部が浸かる。オイル溜りPに溜るオイルOは、差動装置5の動作によってかき上げられて、一部が第1の油路91に供給され、一部がギヤ室82内に拡散される。ギヤ室82に拡散されたオイルOは、ギヤ室82内の減速装置4および差動装置5の各ギヤに供給されてギヤの歯面にオイルOを行き渡らせる。減速装置4および差動装置5に使用されたオイルOは、滴下してギヤ室82の下側に位置するオイル溜りPに回収される。収容空間80のオイル溜りPの容量は、モータユニット1の停止時に、差動装置5の軸受の一部がオイルOに浸かる程度である。
 図2に示すように、ハウジング6は、第1のハウジング部材61と、第2のハウジング部材62と、閉塞部63と、を有する。第2のハウジング部材62は、第1のハウジング部材61の左側(+Y方向)に位置する。閉塞部63は、第1のハウジング部材61に対して右側(-Y方向)に位置する。なお、ハウジング6は、3つ以上の部材で構成されてもよい。
 図4は、ハウジング6の分解図である。
 第1のハウジング部材61は、モータ2を径方向外側から囲む筒状の周壁部61aと、周壁部61aの軸方向一方側に位置する側板部61bと、を有する。周壁部61aの内側の空間は、モータ室81を構成する。図4に示すように、周壁部61aは、上側の部分に後側に突出する肩部61jを有する。肩部61jは、軸方向に延びる略直方体状である。肩部61jの上側の面は、鉛直方向と直交する。肩部61jの上側の端部は、周壁部61aの上側の端部の一部である。
 肩部61jは、後側の面に第1開口孔61iを有する。すなわち、ハウジング6は、第1開口孔61iを有する。第1開口孔61iは、肩部61jの後側の壁部を前後方向に貫通し、後側に開口する。第1開口孔61iは、後側から見て、軸方向に長い長円状である。
 側板部61bは、隔壁61cと突出板部61dとを有する。隔壁61cは、周壁部61aの軸方向一方側の開口を覆う。隔壁61cには、上述の隔壁開口68に加えて、モータ2のシャフト21を挿通させる挿通孔61fが設けられる。側板部61bは、隔壁61cと、周壁部61aに対して径方向外側に突出する突出板部61dと、を有する。突出板部61dには、車輪を支持するドライブシャフト(図示略)が通過する第1の車軸通過孔61eが設けられる。
 閉塞部63は、第1のハウジング部材61の周壁部61aに固定される。閉塞部63は、筒状の第1のハウジング部材61の開口を塞ぐ。閉塞部63は、閉塞部本体63aと、蓋部材63bと、を有する。閉塞部本体63aには、軸方向に貫通する窓部63cが設けられる。蓋部材63bは、収容空間80の外側から窓部63cを塞ぐ。
 第2のハウジング部材62は、第1のハウジング部材61の側板部61bに固定される。第2のハウジング部材62の形状は、側板部61b側に開口する凹形状である。第2のハウジング部材62の開口は、側板部61bに覆われる。第2のハウジング部材62と側板部61bの間との空間は、ギヤ部3を収容するギヤ室82を構成する。すなわち、第2のハウジング部材62は、減速装置4および差動装置5を収容する。第2のハウジング部材62には、第2の車軸通過孔62eが設けられる。第2の車軸通過孔62eは、軸方向から見て第1の車軸通過孔61eと重なる。
 第1のハウジング部材61の周壁部61aと閉塞部63とは、モータ室81を構成し、モータ2を囲み、モータ2を収容する。すなわち、周壁部61aと閉塞部63とは、図1に示すモータ収容部6aを構成する。
 同様に、第1のハウジング部材61の側板部61bと第2のハウジング部材62とは、ギヤ室82を構成し、ギヤ部3を囲み、ギヤ部3を収容する。すなわち、側板部61bと第2のハウジング部材62とは、図1に示すギヤ収容部6bを構成する。
 このように、ハウジング6は、モータ2を収容するモータ室81を内部に設けるモータ収容部6aと、ギヤ部3を収容するギヤ室82を内部に設けるギヤ収容部6bと、を有する。
 図5は、モータユニット1の側面図である。また、図6は、モータユニット1を下側から見た下面図である。なお、図5および図6において、インバータユニット8の図示を省略する。
 図5および図6に示すように、ギヤ収容部6bは、軸方向から見てモータ収容部6aに対し径方向に張り出す張出部6dを有する。本実施形態において、張出部6dは、モータ収容部6aに対し後側および下側に張り出す。張出部6dは、ギヤ部3の一部を収容する。より具体的には、張出部6dの内側には、第2のギヤ42の一部と、リングギヤ51の一部が収容される。
 図7に示すように、ハウジング6は、第1支持部61gと、第2支持部63dと、を有する。本実施形態において第1支持部61gは、第1のハウジング部材61に設けられる。より詳細には、第1支持部61gは、肩部61jに設けられる。第1支持部61gは、肩部61jの後側の端部のうち上側の端部である。第1支持部61gの上側の面は、第1支持面61hである。第1支持面61hは、軸方向に延びる平坦な面である。第1支持面61hは、鉛直方向と直交する。第1支持面61hは、肩部61jの上側の面のうち第1支持面61hより前側に位置する部分よりも下側に窪む。第1支持面61hは、肩部61jの左側の端部から肩部61jの右側の端部まで延びる。第1支持面61hにおける右側の端部は、閉塞部63の左側の面と繋がる。
 第1支持部61gは、第1支持面61hから下側に窪む雌ネジ穴61kを有する。雌ネジ穴61kは、軸方向に沿って複数設けられる。図7において、雌ネジ穴61kは、例えば、3つ設けられる。
 本実施形態において第2支持部63dは、閉塞部63に設けられる。第2支持部63dは、閉塞部本体63aのうち後側の端部における上側の端部である。第2支持部63dは、第1支持部61gよりも上側に突出する。第2支持部63dは、左側から見たときに、周壁部61aの上側にはみ出す部分である。第2支持部63dは、鉛直方向から見て、第1支持部61gの右側に配置される。第2支持部63dの左側の面は、第2支持面63eである。第2支持面63eは、平坦な面である。第2支持面63eは、軸方向と直交する。第2支持面63eには、第1支持面61hにおける右側の端部が繋がる。第2支持部63dは、第2支持面63eによって、後述する位置決め部材MPを右側から支持可能である。
 <オイル>
 図1に示すように、オイルOは、ハウジング6に設けられた油路90内を循環する。油路90は、オイル溜りPからオイルOをモータ2に供給するオイルOの経路である。
 オイルOは、減速装置4および差動装置5の潤滑用として使用される。また、オイルOは、モータ2の冷却用として使用される。オイルOは、ギヤ室82内の下部領域(すなわちオイル溜りP)に溜る。オイルOは、潤滑油および冷却油の機能を奏するため、粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のオイルを用いることが好ましい。
 <油路>
 図1に示すように、油路90は、ハウジング6に設けられる。油路90は、ハウジング6内の収容空間80に位置する。油路90は、収容空間80のモータ室81とギヤ室82とに跨って構成される。油路90は、オイルOをモータ2の下側のオイル溜りP(すなわち、収容空間80内の下部領域)からモータ2を経て、再びモータ2の下側のオイル溜りPに導くオイルOの経路である。
 なお、本明細書において、「油路」とは、収容空間80を循環するオイルOの経路を意味する。したがって、「油路」とは、定常的に一方向に向かう定常的なオイルの流動を形成する「流路」のみならず、オイルを一時的に滞留させる経路(例えばリザーバ)およびオイルが滴り落ちる経路をも含む概念である。
 油路90は、モータ2の内部を通る第1の油路91と、モータ2の外部を通る第2の油路92と、を有する。オイルOは、第1の油路91および第2の油路92において、モータ2を内部および外部から冷却する。
 第1の油路91および第2の油路92は、ともにオイル溜りPからオイルOをモータ2に供給して、再びオイル溜りPに回収する経路である。第1の油路91および第2の油路92において、オイルOは、モータ2から滴下して、モータ室81内の下部領域に溜る。モータ室81内の下部領域に溜ったオイルOは、隔壁開口68を介して、ギヤ室82内の下部領域(すなわち、オイル溜りP)に移動する。すなわち、第1の油路91および第2の油路92は、オイルOをモータ室81内の下部領域からギヤ室82内の下部領域に移動させる経路を含む。
 (第1の油路)
 図1に示すように、第1の油路91において、オイルOは、オイル溜りPから差動装置5によりかき上げられてロータ20の内部に導かれる。オイルOには、ロータ20の内部で、ロータ20の回転に伴う遠心力が付与される。これにより、オイルOは、ロータ20を径方向外側から囲むステータ30に向かって均等に拡散されステータ30を冷却する。
 第1の油路91は、かき上げ経路91aと、シャフト供給経路91bと、シャフト内経路91cと、ロータ内経路91dと、を有する。また、第1の油路91の経路中には、第1のリザーバ93が設けられる。第1のリザーバ93は、ギヤ室82に設けられている。
 かき上げ経路91aは、差動装置5のリングギヤ51の回転によってオイル溜りPからオイルOをかき上げて、第1のリザーバ93でオイルOを受ける経路である。図3に示すように、第1のリザーバ93は、中間軸J4と差動軸J5との間に配置される。第1のリザーバ93は、上側に開口する。第1のリザーバ93は、リングギヤ51がかき上げたオイルOを受ける。また、モータ2の駆動直後などオイル溜りPの液面が高い場合等には、第1のリザーバ93は、リングギヤ51に加えて第2のギヤ42および第3のギヤ43によってかき上げられたオイルOも受ける。
 シャフト供給経路91bは、第1のリザーバ93からモータ2にオイルOを誘導する。シャフト供給経路91bは、第2のハウジング部材62に設けられた孔部94により構成される。シャフト内経路91cは、シャフト21の中空部22内をオイルOが通過する経路である。ロータ内経路91dは、シャフト21の連通孔23からロータコア24の内部を通過して、ステータ30に飛散する経路である。
 シャフト内経路91cにおいて、ロータ20の内部のオイルOには、ロータ20の回転に伴い遠心力が付与される。これにより、オイルOは、ロータ20から径方向外側に連続的に飛散する。また、オイルOの飛散に伴い、ロータ20内部の経路が負圧となり、第1のリザーバ93に溜るオイルOが、ロータ20の内部に吸引され、ロータ20内部の経路にオイルOが満たされる。
 ステータ30に到達したオイルOは、ステータ30から熱を奪う。ステータ30を冷却したオイルOは、下側に滴下され、モータ室81内の下部領域に溜る。モータ室81内の下部領域に溜ったオイルOは、隔壁61cに設けられた隔壁開口68を介してギヤ室82に移動する。
 (第2の油路)
 図1に示すように、第2の油路92においてオイルOは、オイル溜りPからモータ2の上側まで引き上げられてモータ2に供給される。モータ2に供給されたオイルOは、ステータ30の外周面を伝いながら、ステータ30から熱を奪い、モータ2を冷却する。ステータ30の外周面を伝ったオイルOは、下方に滴下してモータ室81内の下部領域に溜る。第2の油路92のオイルOは、第1の油路91のオイルOとモータ室81内の下部領域で合流する。モータ室81内の下部領域に溜ったオイルOは、隔壁開口68を介して、ギヤ室82内の下部領域(すなわち、オイル溜りP)に移動する。
 第2の油路92は、第1の流路92aと第2の流路92bと第3の流路92cとを有する。第2の油路92の経路中には、ポンプ96と、クーラー97と、第2のリザーバ98と、が設けられる。ポンプ96は、オイルOをモータ2に供給する。また、クーラー97は、第2の油路92を通過するオイルOを冷却する。第2の油路92において、オイルOは、第1の流路92a、ポンプ96、第2の流路92b、クーラー97、第3の流路92c、第2のリザーバ98の順で各部を通過して、モータ2に供給される。
 第1の流路92a、第2の流路92bおよび第3の流路92cは、収容空間80を囲むハウジング6の壁部を通過する。第1の流路92aはオイル溜りPとポンプ96とを繋ぐ。第2の流路92bは、ポンプ96とクーラー97とを繋ぐ。第3の流路92cは、クーラー97と収容空間80とを繋ぐ。
 本実施形態において、第1の流路92a、第2の流路92bおよび第3の流路92cは、収容空間80を囲むハウジング6の壁部の内部を通過する。したがって、別途管材を用意する必要がなく部品点数減少に寄与できる。
 ポンプ96は、電気により駆動する電動ポンプである。ポンプ96は、第1の流路92aを介してオイル溜りPからオイルOを吸い上げて、第2の流路92b、クーラー97、第3の流路92cおよび第2のリザーバ98を介してモータ2に供給する。
 図6に示すように、ポンプ96は、ポンプ機構部96pと、ポンプモータ96mと、吸入口96aと吐出口96bとを有する。本実施形態において、ポンプ機構部96pは、図示略の外歯車と内歯車がかみ合って回転するトロコイダルポンプである。ポンプ機構部96pの内歯車は、ポンプモータ96mによって回転させられる。ポンプ機構部96pの内歯車と外歯車との間の隙間は、吸入口96aおよび吐出口96bに繋がる。
 ポンプ96の吸入口96aは、第1の流路92aに繋がる。また、ポンプ96の吐出口96bは、第2の流路92bに繋がる。ポンプ96は、第1の流路92aを介してオイル溜りPからオイルOを吸い上げて、第2の流路92b、クーラー97、第3の流路92cおよび第2のリザーバ98を介してモータ2に供給する。
 ポンプモータ96mは、ポンプ機構部96pの内歯車を回転させる。ポンプモータ96mの回転軸J6は、モータ軸J2と平行である。ポンプモータ96mを有するポンプ96は、回転軸J6方向に長尺となり易い。本実施形態によれば、ポンプモータ96mの回転軸J6をモータ軸J2と平行とすることで、モータユニット1の径方向の寸法を小型化することができる。また、モータユニット1の径方向寸法を小型化することで、軸方向から見てポンプ96をハウジング6の張出部6dに重ねて配置しやすい。結果的に、モータユニット1の軸方向の投影面積が大きくなることを抑制してモータユニット1を小型化しやすい構造を実現できる。
 ポンプ96は、モータ室81の下側に位置する。また、ポンプ96は、張出部6dのモータ収容部6a側を向く面に固定される。ポンプ96の吸入口96aは、張出部6dに対向して配置される。ポンプ96の吸入口96aに繋がる第1の流路92aは、張出部6dの壁面を軸方向に直線的に貫通して、ギヤ室82内の下部領域に開口する。すなわち、張出部6dには、軸方向に沿って延びギヤ室82内の下部領域(すなわち、オイル溜りP)からポンプ96に繋がる第1の流路92aが設けられる。
 本実施形態によれば、ポンプ96がモータ室81の下側に配置されるため、吸入口96aをオイル溜りPの近くに配置しやすい。結果的に、オイル溜りPと吸入口96aとを繋ぐ第1の流路92aを短くすることができる。また、オイル溜りPと吸入口96aとの距離が近いために、第1の流路92aを直線的な流路とすることができる。第1の流路92aを直線的な短い流路とすることで、オイル溜りPからポンプ96に至る経路の圧力損失を低減し、効率的なオイルOの循環を実現することができる。
 図1に示すように、クーラー97には、第1の流路92aおよび第2の流路92bが接続される。第1の流路92aおよび第2の流路92bは、クーラー97の内部流路を介して繋がる。クーラー97には、ラジエーター(図示略)で冷却された冷却水を通過させる冷却水用配管97jが接続される。クーラー97の内部を通過するオイルOは、冷却水用配管97jを通過する冷却水との間で熱交換されて冷却される。なお、冷却水用配管97jの経路中には、インバータユニット8が設けられる。冷却水用配管97jを通過する冷却水は、インバータユニット8を冷却する。
 図5に示すように、クーラー97は、モータ室81の下側において、モータ収容部6aの径方向外側を向く外周面に固定される。図1に示すように、モータ2に供給されたオイルOは、モータ室81内の下部領域に一時的に溜った後に、隔壁開口68を介してギヤ室82内の下部領域に移動する。本実施形態によれば、クーラー97が、モータ室81の下側で、モータ収容部6aの外周面に固定されるため、クーラー97の設置面からモータ収容部6aの壁面を介してモータ室81内の下部領域に溜ったオイルOを冷却することができる。
 図5に示すように、クーラー97およびポンプ96は、軸方向から見て少なくとも一部がギヤ収容部6bの張出部6dに重なる。張出部6dの内部には、ギヤ部3が収容される。張出部6dの軸方向の投影面積は、ギヤ部3の各ギヤの大きさに依存して決まる。ギヤ部3を構成する各ギヤの大きさは、所望のギヤ比を満たすために設定されている。このため、張出部6dの軸方向の投影面積を小さくすることは、困難である。本実施形態によれば、軸方向においてクーラー97およびポンプ96を張出部6dに重ねて配置することで、モータユニット1の軸方向の投影面積が、クーラー97およびポンプ96によって大きくなることを抑制できる。これにより、モータユニット1の軸方向の投影面積が大きくなることを抑制して、モータユニット1を小型化することができる。
 本実施形態によれば、クーラー97およびポンプ96は、軸方向から見て、少なくとも一部がギヤ部3の第2のギヤ42に重なる。このため、張出部6dの軸方向から見た投影面積をギヤ部3の各ギヤの外形に沿ってできるだけ小さくした場合であっても、軸方向から見てクーラー97およびポンプ96が張出部6dに重なる構成が実現できる。結果的に、モータユニット1の軸方向の投影面積が大きくなることを抑制して、モータユニット1を小型化することができる。
 本実施形態によれば、クーラー97およびポンプ96は、張出部6dの下端より上側に位置する。すなわち、クーラー97およびポンプ96が、張出部6dの下端からさらに下側に飛び出すことがない。このため、上下方向において、モータユニット1を小型化することができる。
 クーラー97およびポンプ96は、モータ室81の下側に位置する。モータユニット1は、例えば車両のボンネット内に配置される。また、モータユニット1において、クーラー97およびポンプ96は、ハウジング6に対して突出する突起物である。本実施形態によれば、クーラー97およびポンプ96をモータ室81の下側に配置することで、車両が事故などによって対象物に衝突した場合であっても、突起物であるクーラー97およびポンプ96が、対象物に突き刺さることを抑制できる。
 本実施形態によれば、ポンプ96およびクーラー97が、ハウジング6の外周面に固定される。このため、ポンプ96およびクーラー97が、ハウジング6の外部の構造物に固定される場合と比較して、モータユニット1の小型化に寄与できる。加えて、ポンプ96およびクーラー97が、ハウジング6の外周面に固定されることで、ハウジング6の壁部を通過する第1の流路92a、第2の流路92bおよび第3の流路92cにより、収容空間80とポンプ96およびクーラー97とを繋ぐ流路を構成することができる。
 図6に示すように、本実施形態によれば、軸方向におけるポンプ96の位置とクーラー97の位置とは、互いに重なる。クーラー97とポンプ96とは、第2の流路92bを介して繋がる。すなわち、第2の油路92には、ポンプ96とクーラー97とを繋ぐ第2の流路92bが設けられる。本実施形態によれば、ポンプ96およびクーラー97の軸方向位置が互いに重なることで、第2の流路92bを軸方向と直交する方向に直線的に延ばす構造を実現できる。すなわち、第2の流路92bを直線的な短い流路とすることができ、ポンプ96からクーラー97に至る経路の圧力損失を低減し、効率的なオイルOの循環を実現することができる。
 図1に示すように、第2のリザーバ98は、収容空間80のモータ室81に位置する。第2のリザーバ98は、モータ2の上側に位置する。第2のリザーバ98は、第3の流路92cを介してモータ室81に供給されたオイルOを貯留する。第2のリザーバ98は、複数の流出口98aを有する。第2のリザーバ98内に溜ったオイルOは、各流出口98aからモータ2に供給される。第2のリザーバ98の流出口98aから流出したオイルOは、上側から下側に向かってモータ2の外周面を伝って流れてモータ2の熱を奪う。これにより、モータ2全体を冷却することができる。
 第2のリザーバ98は、軸方向に沿って延びる。また、第2のリザーバ98の流出口98aは、第2のリザーバ98の軸方向の両端部に設けられる。流出口98aは、コイルエンド31aの上側に位置する。これにより、ステータ30の軸方向両端に位置するコイルエンド31aにオイルOをかけてコイル31を直接的に冷却できる。
 コイル31を冷却したオイルOは、下側に滴下され、モータ室81内の下部領域に溜る。モータ室81内の下部領域に溜ったオイルOは、隔壁61cに設けられた隔壁開口68を介してギヤ室82に移動する。
 本実施形態によれば、第2の油路92の経路中には、オイルOを冷却するクーラー97が設けられる。第2の油路92を通過しクーラー97により冷却されたオイルOは、オイル溜りPにおいて第1の油路91を通過したオイルOと合流する。オイル溜りPにおいて、第1の油路91および第2の油路92を通過したオイルOは、互いに混ざりあって熱交換が行われる。このため、第2の油路92の経路中に配置されてクーラー97の冷却の効果を第1の油路91を通過するオイルOにも及ぼすことができる。
 <インバータユニット>
 インバータユニット8は、モータ2と電気的に接続される。インバータユニット8は、モータ2に供給される電流を制御する。図5に示すように、インバータユニット8は、ハウジング6に固定される。より具体的には、インバータユニット8は、モータ収容部6aの径方向外側を向く外周面に固定される。
 インバータユニット8は、軸方向から見て、少なくとも一部がギヤ収容部6bの張出部6dに重なる。本実施形態によれば、軸方向から見て、インバータユニット8を張出部6dに重ねて配置することで、モータユニット1の軸方向の投影面積が、インバータユニット8によって大きくなることを抑制できる。これにより、モータユニット1の軸方向の投影面積が大きくなることを抑制して、モータユニット1を小型化することができる。
 本実施形態によれば、インバータユニット8は、軸方向から見て少なくとも一部がギヤ部3のリングギヤ51に重なる。このため、張出部6dの軸方向から見た投影面積をギヤ部3の各ギヤの外形に沿ってできるだけ小さくした場合であっても、軸方向から見てインバータユニット8が張出部6dに重なる構成が実現できる。結果的に、モータユニット1の軸方向の投影面積が大きくなることを抑制して、モータユニット1を小型化することができる。
 本実施形態によれば、インバータユニット8は、鉛直方向から見て、モータ軸J2を挟んでクーラー97と反対側に位置する。このため、軸方向から見て張出部6dと重なる領域を有効的に活用して、モータユニット1の水平方向に沿う寸法を小さくすることが可能となり、モータユニット1の小型化を図ることができる。
 図1に示すように、インバータユニット8には、図示略のラジエータから延びる冷却水用配管97jが接続される。これにより、インバータユニット8を効率的に冷却できる。また、冷却水用配管97jを流れる冷却水は、インバータユニット8の筐体部を介して筐体部に接触するモータ収容部6aをも冷却する。
 図8および図9に示すように、インバータユニット8は、インバータケース110と、インバータ140と、を有する。すなわち、モータユニット1は、インバータケース110と、インバータ140と、を備える。
 図9に示すように、インバータケース110は、インバータ140を収容する。インバータケース110は、ハウジング6の後側に固定される。インバータケース110は、例えば、ネジによってハウジング6に固定される。本実施形態においてインバータケース110は、ハウジング6のうち第1のハウジング部材61のみに固定される。
 図8に示すように、インバータケース110は、インバータケース本体111と、蓋体112と、庇部113と、を有する。インバータケース本体111は、軸方向に長い略直方体状であり、上側に開口する箱状である。図3に示すように、インバータケース本体111は、差動軸J5の上側に配置される。そのため、本実施形態のようにモータ軸J2と中間軸J4と差動軸J5とが同じ方向に延びる構成において、無駄な空間が生じやすい差動軸J5の上側の空間を、インバータユニット8の配置空間として有効に利用できる。したがって、モータユニット1全体を小型化しやすい。
 図8に示すように、インバータケース本体111は、前側の面に第2開口孔111aを有する。第2開口孔111aは、インバータケース本体111の前側の壁部を前後方向に貫通し、前側に開口する。第2開口孔111aは、前側から見て、軸方向に長い長円状である。図9に示すように、第2開口孔111aは、第1開口孔61iと前後方向に対向する。本実施形態において第1開口孔61iと第2開口孔111aとは、軸方向から見て、互いに全体が重なり合う。図8に示すように、蓋体112は、インバータケース本体111の上側に取り付けられる。蓋体112は、インバータケース本体111の上側の開口を塞ぐ。
 庇部113は、インバータケース本体111から前側に突出する。より詳細には、庇部113は、インバータケース本体111の上側の端部のうち左側寄りの部分から前側に突出する。庇部113は、板面が鉛直方向と直交する板状である。庇部113は、軸方向に延びる。図10に示すように、庇部113の前後方向の寸法W1は、第1支持部61gの後側の端部から後述するバスバー支持部材120の後側の端部までの前後方向の距離W2よりも大きい。距離W2は、バスバー支持部材120におけるハウジング6から後側への突出長さに相当する。
 図8に示すように、庇部113は、庇部113を鉛直方向に貫通する固定孔113aを有する。固定孔113aは、軸方向に沿って複数設けられる。図8において固定孔113aは、例えば、3つ設けられる。
 図2に示すように、庇部113は、第1支持部61gに上側から接触する。すなわち、第1支持部61gは、鉛直方向において、庇部113を下側から接触して支持する。庇部113は、固定孔113aに上側から通されるネジが雌ネジ穴61kに締め込まれることによって、第1支持部61gに固定される。庇部113は、第2支持部63dの左側に隙間を介して対向して配置される。すなわち、第2支持面63eが庇部113の右側の端部と隙間を介して軸方向に対向する。これにより、鉛直方向から見て、庇部113の右側の端部と第2支持部63dとの軸方向の間には、隙間が設けられる。
 庇部113は、第2のハウジング部材62よりも右側に配置される。庇部113の右側の端部は、第1のハウジング部材61の右側の端部よりも左側に位置する。庇部113の軸方向位置の範囲は、第1のハウジング部材61の軸方向位置の範囲に含まれる。本実施形態において庇部113は、鉛直方向から見て、全体が第1のハウジング部材61と重なる。
 図9に示すように、インバータ140は、端子部140aと、端子部140aが設けられる図示しない回路基板と、を有する。回路基板には、インバータ回路が設けられる。端子部140aは、板面が鉛直方向と直交し、前後方向に延びる板状である。端子部140aは、インバータケース110の内部において、基台部141の上側の面に固定される。
 モータユニット1は、バスバー支持部材120と、第1Oリング151と、第2Oリング152と、バスバー130と、をさらに備える。バスバー支持部材120は、バスバー130を支持する樹脂製の部材である。バスバー支持部材120は、第1開口孔61iと第2開口孔111aとに跨って挿入され、第1開口孔61iおよび第2開口孔111aに嵌め合わされる。バスバー支持部材120は、バスバー支持部材本体121と、凸部122と、を有する。図7に示すように、バスバー支持部材本体121は、前後方向に延びる柱状である。バスバー支持部材本体121は、前後方向から見て、軸方向に長い長円形状である。
 図9に示すように、バスバー支持部材本体121の前側の端部は、前後方向において、第1開口孔61iの前側の端部とほぼ同じ位置に配置される。バスバー支持部材本体121の後側の端部は、前後方向において、第2開口孔111aの後側の端部とほぼ同じ位置に配置される。
 バスバー支持部材本体121は、バスバー支持部材本体121を前後方向に貫通する貫通孔121aを有する。貫通孔121aは、バスバー支持部材本体121における鉛直方向の中央に配置される。図示は省略するが、貫通孔121aは、前後方向から見て、軸方向に長い長方形状である。貫通孔121aには、バスバー130が通される。図示は省略するが、貫通孔121aは、軸方向に沿って、複数設けられる。本実施形態では、貫通孔121aは、例えば、3つ設けられる。
 バスバー支持部材本体121は、バスバー支持部材本体121の外周面から窪む溝123a,123bを有する。溝123a,123bは、バスバー支持部材本体121の外周面の一周に亘って設けられる環状である。溝123aは、バスバー支持部材本体121のうち第1開口孔61iに挿入される部分に設けられる。溝123bは、バスバー支持部材本体121のうち第2開口孔111aに挿入される部分に設けられる。
 図7および図9に示すように、凸部122は、バスバー支持部材本体121から鉛直方向に突出する。凸部122は、略直方体状である。凸部122は、バスバー支持部材本体121から上側に突出する複数の凸部122と、バスバー支持部材本体121から下側に突出する複数の凸部122と、を含む。本実施形態では、凸部122は、バスバー支持部材本体121の上側の端部において軸方向に間隔を空けて配置される3つの凸部122と、バスバー支持部材本体121の下側の端部において軸方向に間隔を空けて配置される3つ凸部122との合計6つ設けられる。
 凸部122は、リブ122aを有する。リブ122aは、凸部122の後側を向く端面から後側に突出する。リブ122aは、各凸部122の軸方向の中央に配置される。リブ122aは、凸部122の上側の端部から凸部122の下側の端部まで鉛直方向に延びる。リブ122aの軸方向の寸法は、前側から後側に向かうに従って小さくなる。
 図9に示すように、凸部122は、ハウジング6とインバータケース110との前後方向の間に配置される。凸部122は、ハウジング6とインバータケース110とに接触した状態で挟まれる。凸部122の前側を向く端面は、ハウジング6と接触する。より詳細には、凸部122の前側を向く端面は、周壁部61aにおける後側の面のうち第1開口孔61iの周縁部と接触する。これにより、バスバー支持部材120をハウジング6に対して前後方向に位置決めできる。
 リブ122aは、インバータケース110と接触する。より詳細には、リブ122aは、インバータケース本体111における前側の面のうち第2開口孔111aの周縁部と接触する。リブ122aは、凸部122がハウジング6とインバータケース110とに挟まれた状態において、塑性変形と弾性変形とのうちの少なくとも一方の変形が生じた状態である。そのため、インバータケース110の寸法とハウジング6の寸法とに誤差が生じても、その誤差をリブ122aの変形により吸収することができる。これにより、バスバー支持部材120をハウジング6とインバータケース110とによって好適に挟持することができる。したがって、インバータケース110がハウジング6に固定された状態においてバスバー支持部材120が前後方向に動くことを抑制できる。
 第1Oリング151は、前後方向から見て、バスバー支持部材120を囲む環状である。第1Oリング151は、第1開口孔61iの内周面とバスバー支持部材120の外周面のうち第1開口孔61iの内周面に対向する部分との間に配置される。第1Oリング151は、第1開口孔61iの内周面とバスバー支持部材120の外周面とに接触し、第1開口孔61iの内周面とバスバー支持部材120の外周面との間を封止する。本実施形態において第1Oリング151は、溝123aに嵌め込まれて、バスバー支持部材120の外周面に保持される。
 第2Oリング152は、前後方向から見て、バスバー支持部材120を囲む環状である。第2Oリング152は、第2開口孔111aの内周面とバスバー支持部材120の外周面のうち第2開口孔111aの内周面に対向する部分との間に配置される。第2Oリング152は、第2開口孔111aの内周面とバスバー支持部材120の外周面とに接触し、第2開口孔111aの内周面とバスバー支持部材120の外周面との間を封止する。本実施形態において第2Oリング152は、溝123bに嵌め込まれて、バスバー支持部材120の外周面に保持される。本実施形態において、第2Oリング152は、シール部材に相当する。
 本実施形態によれば、上述したようにバスバー支持部材120が前後方向に動くことを抑制できるため、第1Oリング151および第2Oリング152が各開口孔の内周面と擦れて破損することを抑制できる。
 バスバー130は、板状の金属部材である。バスバー130は、第1延伸部131と、第2延伸部132と、を有する。第1延伸部131は、前後方向に延びる。第1延伸部131は、板面が鉛直方向と直交する板状である。第1延伸部131は、第1開口孔61iおよび第2開口孔111aを介してハウジング6の内部からインバータケース110の内部まで延びる。より詳細には、第1延伸部131は、第1開口孔61iおよび第2開口孔111aを介して肩部61jの内部からインバータケース110の内部まで延びる。第1延伸部131の後側の端部と第1支持部61gの後側の端部との間の前後方向の距離は、庇部113の前後方向の寸法W1よりも大きい。
 第1延伸部131は、貫通孔121aに通され、バスバー支持部材120を前後方向に貫通する。これにより、バスバー支持部材120によって、第1開口孔61iの内周面および第2開口孔111aの内周面にバスバー130が接触することを抑制できる。したがって、バスバー130をハウジング6およびインバータケース110に対して絶縁して配置することができる。第1延伸部131は、貫通孔121aに嵌め合わされる。第1延伸部131は、貫通孔121aの内部に充填された封止材によって貫通孔121aの内部に固定される。これにより、第1延伸部131は、バスバー支持部材120に固定される。封止材は、例えば、接着剤である。本実施形態によれば、上述したようにバスバー支持部材120が前後方向に動くことを抑制できるため、第1延伸部131とバスバー支持部材120との固定が外れることを抑制できる。
 図7に示すように、第1延伸部131は、第1延伸部131を鉛直方向に貫通する固定孔131aを有する。固定孔131aは、第1延伸部131の後側の端部に設けられる。図9に示すように、第1延伸部131の後側の端部は、インバータケース110の内部において、端子部140aと固定される。より詳細には、第1延伸部131の後側の端部は、固定孔131aに上側から通されるネジ部材160が基台部141に設けられた雌ネジ穴に締め込まれて端子部140aに固定される。第1延伸部131と端子部140aとは、ネジ部材160によって、まとめて基台部141に固定される。第1延伸部131の下側の面は、端子部140aの上側の面と接触する。これにより、バスバー130は、インバータ140と電気的に接続される。
 第2延伸部132は、ハウジング6の内部において第1延伸部131の前側の端部から上側に延びる。第2延伸部132は、板面が前後方向と直交する板状である。第2延伸部132は、第1開口孔61iよりも上側に延びる。図示は省略するが、第2延伸部132は、コイル31と電気的に接続される。これにより、バスバー130は、ステータ30とインバータ140とを電気的に接続する。ステータ30には、バスバー130を介してインバータ140から電流が供給される。これにより、インバータ140は、モータ2に電力を供給する。
 <パーキング機構>
 電気自動車では、サイドブレーキ以外に車両にブレーキをかける制動機構が無いため、モータユニット1にパーキング機構7が必要となる。
 図1に示すように、パーキング機構7は、中間シャフト45に固定され中間シャフト45とともに中間軸J4周りに回転するパーキングギヤ71と、パーキングギヤ71の歯間に移動してパーキングギヤ71の回転を阻止する回転阻止部72と、回転阻止部72を駆動するパーキングモータ73と、を有する。モータ2の動作時において、回転阻止部72は、パーキングギヤ71から退避する。一方、シフトレバーがパーキングの位置にある時は、パーキングモータ73が回転阻止部72をパーキングギヤ71の歯間に移動させパーキングギヤ71の回転を阻止する。
 上述した本実施形態のモータユニット1の製造方法は、バスバー支持部材120をハウジング6に取り付ける取付工程と、インバータケース110をハウジング6に固定する固定工程と、を含む。取付工程において、作業者は、第1開口孔61iを介してハウジング6の外部に突出する第1延伸部131を貫通孔121aに通しつつ、バスバー支持部材120をハウジング6の外部から第1開口孔61iに挿入し、嵌め合わせる。このとき、バスバー支持部材120は、第1Oリング151と第2Oリング152とが装着された状態とする。作業者は、凸部122の前側の端面がハウジング6と接触するまで、バスバー支持部材120を第1開口孔61iに押し込む。これにより、バスバー支持部材120がハウジング6に対して前後方向に位置決めされた状態で取り付けられる。
 次に、固定工程において作業者は、図10に示すようにハウジング6に対してインバータユニット8の鉛直方向位置および軸方向位置を大まかに位置決めし、インバータユニット8を後側からハウジング6に近づける。このとき、作業者は、インバータユニット8の鉛直方向の位置を、庇部113の鉛直方向位置が第1支持部61gよりも上側になる位置とする。作業者は、庇部113の前側の端部が第1支持部61gの上側に位置するまで、インバータユニット8を前側に移動させる。このとき、庇部113の前後方向の寸法W1よりも第1支持部61gの後側の端部から第1延伸部131の前側の端部までの距離の方が大きいため、第1延伸部131の前側の端部は、第2開口孔111aに挿入される。
 次に、固定工程において作業者は、庇部113が第1支持部61gの第1支持面61hに接触するまで、インバータユニット8を下側に移動させる。これにより、庇部113が鉛直方向に位置決めされ、ハウジング6に対してインバータユニット8を鉛直方向に位置決めできる。すなわち、固定工程は、庇部113を上側から第1支持部61gに接触させて鉛直方向に位置決めすることを含む。
 次に、作業者は、図11に示すように、庇部113を第1支持面61h上で滑らせながら、インバータユニット8を右側に移動させる。ここで、作業者は、インバータユニット8を右側に移動させる前に、位置決め部材MPをハウジング6に取り付ける。位置決め部材MPは、板面が軸方向と直交する板状である。作業者は、位置決め部材MPを第2支持部63dの第2支持面63eに接触させて、第1支持部61gの上側に配置する。すなわち、固定工程は、位置決め部材MPを第2支持部63dに右側から支持させて、ハウジング6に取り付けることを含む。
 位置決め部材MPがハウジング6に取り付けられた状態において作業者は、庇部113の右側の端部を位置決め部材MPに接触するまで、庇部113を右側に移動させる。これにより、庇部113を軸方向に位置決めでき、ハウジング6に対してインバータユニット8を軸方向に位置決めできる。すなわち、位置決め部材MPは、庇部113を軸方向に位置決め可能である。また、固定工程は、庇部113を左側から位置決め部材MPに接触させて軸方向に位置決めすることを含む。
 次に、図12に示すように、作業者は、インバータケース本体111と第1のハウジング部材61とが前後方向に接触するまで、インバータユニット8を前側に移動させる。これにより、ハウジング6に対してインバータユニット8を前後方向に位置決めできる。すなわち、固定工程は、庇部113を鉛直方向および軸方向に位置決めした後に、インバータケース110を前側に移動させてハウジング6に接触させ、前後方向に位置決めすることを含む。
 インバータユニット8を前後方向に位置決めする際においては、バスバー支持部材120のうちハウジング6から後側に突出する部分が、第2開口孔111aに嵌め合わされる。また、上述した凸部122がインバータケース本体111と第1のハウジング部材61とに挟まれて、リブ122aが塑性変形もしくは弾性変形、または塑性変形および弾性変形する。
 上述したようにして、作業者は、ハウジング6に対してインバータユニット8を鉛直方向、軸方向および前後方向に位置決めできる。インバータユニット8を位置決めした後、作業者は、インバータケース110をハウジング6に対してネジで固定する。より詳細には、作業者は、ネジを上側から固定孔113aに通して雌ネジ穴61kに締め込み、庇部113を第1支持部61gに固定する。また、図示は省略するが、作業者は、ネジを前後方向に締め込んで、インバータケース110をハウジング6に固定する。このように、固定工程は、インバータケース110を前後方向に位置決めした後に、インバータケース110とハウジング6とを固定することを含む。
 その後、作業者は、位置決め部材MPをハウジング6から取り外す。すなわち、固定工程は、インバータケース110とハウジング6とを固定した後に、位置決め部材MPを取り外すことを含む。これにより、第2支持部63dと庇部113との間には、隙間が設けられる。以上のようにして、作業者は、インバータユニット8をハウジング6に固定できる。
 本実施形態によれば、インバータケース110が庇部113を有する。そのため、インバータユニット8をハウジング6と前後方向に隣り合う位置に配置する場合であっても、インバータケース110をハウジング6に固定する作業を行う際に、庇部113をハウジング6の第1支持部61gに上側から引っ掛けることができる。これにより、ハウジング6に対してインバータケース110を鉛直方向に位置決めできるとともに、インバータケース110をハウジング6に支持させることができる。したがって、ハウジング6の前後方向に隣り合う位置にインバータケース110を容易に固定することができ、モータユニット1を鉛直方向に小型化しやすい。
 また、上述したように、軸方向から見てインバータケース本体111が差動軸J5の上側に配置されるため、インバータケース110をハウジング6に対して空間効率よく配置でき、モータユニット1をさらに小型化しやすい。以上により、本実施形態によれば、小型化でき、かつ、インバータケース110をハウジング6に固定しやすい構造を有するモータユニット1が得られる。
 また、本実施形態によれば、位置決め部材MPを右側から支持可能な第2支持部63dが、庇部113の右側に配置される。そのため、第2支持部63dに位置決め部材MPを支持させることで、庇部113を位置決め部材MPに接触させて、インバータケース110を軸方向に位置決めできる。これにより、鉛直方向および軸方向の両方向に位置決めした状態で、インバータケース110をハウジング6に対して前後方向に近づけることができる。したがって、インバータケース110をハウジング6に固定する際に、インバータケース110の姿勢を安定させることができ、ハウジング6の第1開口孔61iとインバータケース110の第2開口孔111aとに通されるバスバー130が各開口孔の内周面に接触することを抑制できる。そのため、バスバー130が変形することを抑制でき、かつ、インバータケース110を精度よくハウジング6に位置決めできる。これにより、バスバー130とインバータ140とを相対位置精度よく配置できる。以上により、本実施形態によれば、バスバー130をインバータ140と接続しやすい構造を有するモータユニット1が得られる。
 また、本実施形態によれば、インバータケース110をハウジング6に固定した後に、インバータケース110を軸方向に位置決めする際に用いた位置決め部材MPを取り外すことで、庇部113と第2支持部63dとの間に隙間を設けることができる。このように、庇部113と第2支持部63dとが隙間を介して配置されることで、モータユニット1に振動が加えられた際に、庇部113と第2支持部63dとが擦れ合って摩耗することを抑制できる。
 また、本実施形態によれば、第2支持部63dは、庇部113の右側の端部と隙間を介して軸方向に対向する第2支持面63eを有する。そのため、位置決め部材MPを第2支持面63eに支持させることが容易である。また、第2支持面63eは、平坦な面であるため、位置決め部材MPを第2支持部63dに対して精度よく配置することができ、インバータケース110の位置決め精度を向上できる。
 また、本実施形態によれば、第1支持部61gの上側の面である第1支持面61hは、軸方向に延びる平坦な面である。そのため、庇部113を第1支持面61hに接触させた後、インバータケース110を軸方向に滑らせながら移動させることが容易である。これにより、インバータケース110を軸方向に位置決めしやすい。
 また、本実施形態では、第1開口孔61iと第2開口孔111aとに跨って挿入されるバスバー支持部材120が設けられる。このような場合、インバータケース110をハウジング6に固定する際に、インバータケース110またはハウジング6に取り付けられたバスバー支持部材120を、第1開口孔61iまたは第2開口孔111aに挿入させる必要がある。例えば、上述した実施形態では、ハウジング6に取り付けられたバスバー支持部材120の後側の端部を、第2開口孔111aに挿入させる必要がある。
 これに対して、本実施形態によれば、庇部113の前後方向の寸法W1は、第1支持部61gの後側の端部からバスバー支持部材120の後側の端部までの前後方向の距離W2よりも大きい。そのため、バスバー支持部材120の後側の端部が第2開口孔111aに挿入されない状態で、庇部113を第1支持部61gに接触させることができる。これにより、上述したように、インバータケース110を鉛直方向および軸方向に位置決めした状態で、バスバー支持部材120を第2開口孔111aに挿入させることができる。したがって、バスバー支持部材120が第2開口孔111aの内周面に接触することを抑制できる。これにより、バスバー支持部材120が変形することを抑制でき、バスバー支持部材120に支持されるバスバー130の位置がずれることを抑制できる。したがって、バスバー支持部材120によってバスバー130とハウジング6およびインバータケース110とを絶縁しつつ、バスバー130をインバータ140と接続しやすい。
 また、本実施形態によれば、第2開口孔111aの内周面とバスバー支持部材120の外周面との間に配置されるシール部材としての第2Oリング152が設けられる。この場合、バスバー支持部材120が第2開口孔111aに対してずれて挿入されると、第2Oリング152が第2開口孔111aの内周面に強く擦りつけられて破損する虞がある。これに対して、本実施形態によれば、上述したように、インバータケース110を鉛直方向および軸方向に位置決めした状態でバスバー支持部材120を第2開口孔111aに挿入できる。そのため、第2Oリング152が第2開口孔111aの内周面に対して擦れにくく、第2Oリング152が破損することを抑制できる。
 また、本実施形態によれば、周壁部61aが後側に突出する肩部61jを有し、第1支持部61gは、肩部61jに設けられる。そのため、第1支持部61gをハウジング6の後側の端部に設けやすい。これにより、庇部113の前後方向の寸法W1を短くできる。したがって、庇部113におけるハウジング6との固定部分をインバータケース110に近づけることができ、庇部113におけるハウジング6との固定部分に加えられるインバータユニット8の自重によるモーメントを小さくできる。そのため、インバータケース110に掛かる負荷を低減でき、インバータユニット8をより安定してハウジング6に固定することができる。なお、本実施形態における庇部113におけるハウジング6との固定部分とは、庇部113のうち固定孔113aが設けられる部分である。
 また、本実施形態によれば、肩部61jが第1開口孔61iを有し、第1延伸部131は肩部61jの内部からインバータケース110の内部まで延びる。そのため、バスバー130の一部が内部に収容されるハウジング6の部分を、インバータケース110の位置決めに有効利用することができる。
 また、本実施形態によれば、第1支持部61gが、第2のハウジング部材62の右側に配置される第1のハウジング部材61に設けられる。また、庇部113は、第2のハウジング部材62よりも右側に配置され、かつ、右側の端部は、第1のハウジング部材61の右側の端部よりも左側に配置される。そのため、庇部113を第1のハウジング部材61のみに固定しやすく、インバータケース110を第1のハウジング部材61のみに固定しやすい。これにより、庇部113が第1のハウジング部材61と第2のハウジング部材62とに跨って固定される場合に比べて、庇部113によるインバータケース110の位置決め精度を向上できる。また、インバータケース110を第2のハウジング部材62に対して固定する必要がないため、固定するためのネジ等の数を低減でき、モータユニット1の部品点数を低減できる。
 本発明は上述の実施形態に限られず、他の構成を採用することもできる。第2支持部は、位置決め部材を右側から支持できるならば、特に限定されない。第2支持部は、例えば、ハウジングの上側の面から下側に窪むネジ穴であってもよい。この場合、位置決め部材は、ネジ穴に締め込まれるネジ部材であり、ネジ部材に庇部を接触させることで、インバータケースを軸方向に位置決めできる。第2支持部は、設けられなくてもよい。ハウジングに対する庇部の鉛直方向の位置決めは、ハウジングに対する庇部の軸方向の位置決めの後に行われてもよい。すなわち、庇部を位置決め部材に接触させた後に、第1支持部に接触させてもよい。第1方向および第2方向は、互いの相対関係が同様であればよく、実際のモータユニットの配置および姿勢において、上記実施形態で説明した前後方向、左右方向、および幅方向等の名称で示される方向以外の方向であってもよい。
 上記の各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
 1…モータユニット、2…モータ、4…減速装置、5…差動装置、6…ハウジング、21…シャフト(モータシャフト)、30…ステータ、42…第2のギヤ(中間ギヤ)、51…リングギヤ、61…第1のハウジング部材、61a…周壁部、61g…第1支持部、61i…第1開口孔、61j…肩部、62…第2のハウジング部材、110…インバータケース、111…インバータケース本体、111a…第2開口孔、113…庇部、130…バスバー、131…第1延伸部、140…インバータ、J4…中間軸、J5…差動軸

Claims (4)

  1.  鉛直方向と直交する第1方向に延びるモータシャフトおよび前記モータシャフトの径方向外側に配置されるステータを有するモータと、
     前記モータに接続され中間軸を中心として回転する中間ギヤを有する減速装置と、
     前記減速装置に接続され差動軸を中心として回転するリングギヤを有する差動装置と、
     前記モータに電力を供給するインバータと、
     前記モータを収容するハウジングと、
     鉛直方向および前記第1方向の両方と直交する第2方向において、前記ハウジングの一方側に固定され、前記インバータを収容するインバータケースと、
     を備え、
     前記中間軸および前記差動軸は、前記第1方向に延び、
     前記インバータケースは、
      前記第1方向から見て、前記差動軸の鉛直方向上側に配置されるインバータケース本体と、
      前記インバータケース本体から前記第2方向他方側に突出する庇部と、
     を有し、
     前記ハウジングは、前記庇部を鉛直方向下側から接触して支持する第1支持部を有する、モータユニット。
  2.  前記ハウジングは、前記モータシャフトの径方向において前記モータを外側から囲む筒状の周壁部を有し、
     前記周壁部は、前記第2方向一方側に突出する肩部を有し、
     前記第1支持部は、前記肩部に設けられる、請求項1に記載のモータユニット。
  3.  前記ステータと前記インバータとを電気的に接続するバスバーをさらに備え、
     前記肩部は、前記第2方向一方側に開口する第1開口孔を有し、
     前記インバータケース本体は、前記第2方向他方側に開口する第2開口孔を有し、
     前記第2開口孔は、前記第1開口孔と前記第2方向に対向し、
     前記バスバーは、前記第1開口孔および前記第2開口孔を介して前記肩部の内部から前記インバータケースの内部まで延びる第1延伸部を有する、請求項2に記載のモータユニット。
  4.  前記ハウジングは、
      前記モータを収容する第1のハウジング部材と、
      前記減速装置および前記差動装置を収容する第2のハウジング部材と、
     を有し、
     前記第1のハウジング部材は、前記第2のハウジング部材の前記第1方向一方側に配置され、
     前記第1支持部は、前記第1のハウジング部材に設けられ、
     前記庇部は、前記第2のハウジング部材よりも前記第1方向一方側に配置され、
     前記庇部の前記第1方向一方側の端部は、前記第1のハウジング部材の前記第1方向一方側の端部よりも前記第1方向他方側に位置する、請求項1から3のいずれか一項に記載のモータユニット。
PCT/JP2018/046954 2017-12-28 2018-12-20 モータユニット WO2019131421A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880084241.5A CN111527673B (zh) 2017-12-28 2018-12-20 马达单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-254651 2017-12-28
JP2017254651 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131421A1 true WO2019131421A1 (ja) 2019-07-04

Family

ID=67063603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046954 WO2019131421A1 (ja) 2017-12-28 2018-12-20 モータユニット

Country Status (2)

Country Link
CN (1) CN111527673B (ja)
WO (1) WO2019131421A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472149A (zh) * 2020-03-31 2021-10-01 日本电产株式会社 驱动装置及其制造方法
CN113472147A (zh) * 2020-03-31 2021-10-01 日本电产株式会社 马达单元
FR3111750A1 (fr) * 2020-06-23 2021-12-24 Valeo Equipements Electriques Moteur ensemble comprenant une machine électrique tournante, un connecteur et un module électronique
EP4297252A1 (en) * 2022-06-20 2023-12-27 Valeo eAutomotive Germany GmbH Electric drive assembly system, vehicle and assembly method of electric drive assembly system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322439A (ja) * 2000-05-17 2001-11-20 Daihatsu Motor Co Ltd ハイブリッド車両用動力源のインバータ取付構造
JP2008220061A (ja) * 2007-03-05 2008-09-18 Asmo Co Ltd モータ装置
JP2009303305A (ja) * 2008-06-10 2009-12-24 Honda Motor Co Ltd 車両用駆動モータユニット
JP2011250645A (ja) * 2010-05-31 2011-12-08 Hitachi Automotive Systems Ltd 電気回路装置
JP2014234052A (ja) * 2013-05-31 2014-12-15 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
US20160039277A1 (en) * 2013-03-15 2016-02-11 Adrian Quintana Hybrid Axle Assembly For A Motor Vehicle
JP2016154418A (ja) * 2015-02-20 2016-08-25 株式会社安川電機 駆動装置、インバータ取り外し方法及びインバータ取り付け方法
JP2017117534A (ja) * 2015-12-21 2017-06-29 本田技研工業株式会社 電気的接続構造体、端子構造体及び車両並びに電気的接続構造体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102252B (zh) * 2013-05-31 2017-07-28 爱信艾达株式会社 车辆用驱动装置
CN114915075A (zh) * 2017-12-28 2022-08-16 日本电产株式会社 马达单元
CN111527675B (zh) * 2017-12-28 2022-07-26 日本电产株式会社 马达单元
CN111566910B (zh) * 2017-12-28 2023-12-19 日本电产株式会社 马达单元
WO2019131420A1 (ja) * 2017-12-28 2019-07-04 日本電産株式会社 モータユニット、およびモータユニットの製造方法
US11728707B2 (en) * 2018-03-24 2023-08-15 Nidec Corporation Driving device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322439A (ja) * 2000-05-17 2001-11-20 Daihatsu Motor Co Ltd ハイブリッド車両用動力源のインバータ取付構造
JP2008220061A (ja) * 2007-03-05 2008-09-18 Asmo Co Ltd モータ装置
JP2009303305A (ja) * 2008-06-10 2009-12-24 Honda Motor Co Ltd 車両用駆動モータユニット
JP2011250645A (ja) * 2010-05-31 2011-12-08 Hitachi Automotive Systems Ltd 電気回路装置
US20160039277A1 (en) * 2013-03-15 2016-02-11 Adrian Quintana Hybrid Axle Assembly For A Motor Vehicle
JP2014234052A (ja) * 2013-05-31 2014-12-15 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP2016154418A (ja) * 2015-02-20 2016-08-25 株式会社安川電機 駆動装置、インバータ取り外し方法及びインバータ取り付け方法
JP2017117534A (ja) * 2015-12-21 2017-06-29 本田技研工業株式会社 電気的接続構造体、端子構造体及び車両並びに電気的接続構造体の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472149A (zh) * 2020-03-31 2021-10-01 日本电产株式会社 驱动装置及其制造方法
CN113472147A (zh) * 2020-03-31 2021-10-01 日本电产株式会社 马达单元
FR3111750A1 (fr) * 2020-06-23 2021-12-24 Valeo Equipements Electriques Moteur ensemble comprenant une machine électrique tournante, un connecteur et un module électronique
WO2021259968A1 (fr) * 2020-06-23 2021-12-30 Valeo Equipements Electriques Moteur Ensemble comprenant une machine électrique tournante, un connecteur et un module électronique
EP4297252A1 (en) * 2022-06-20 2023-12-27 Valeo eAutomotive Germany GmbH Electric drive assembly system, vehicle and assembly method of electric drive assembly system

Also Published As

Publication number Publication date
CN111527673B (zh) 2022-12-06
CN111527673A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2019131421A1 (ja) モータユニット
WO2019131419A1 (ja) モータユニット
WO2019131454A1 (ja) モータユニット
WO2019131417A1 (ja) モータユニット
WO2019131424A1 (ja) モータユニット
CN111585394B (zh) 马达单元
WO2019098166A1 (ja) モータユニット
JP7400365B2 (ja) モータユニット
WO2021140807A1 (ja) モータユニット
JP2020137207A (ja) モータユニット
WO2019131420A1 (ja) モータユニット、およびモータユニットの製造方法
CN115136470A (zh) 马达单元
WO2021166299A1 (ja) モータユニット
JP7434911B2 (ja) モータユニット
WO2019131418A1 (ja) モータユニット
JP2022081379A (ja) 駆動装置、及び車両
WO2019131425A1 (ja) モータユニット
CN218603308U (zh) 马达单元
CN111953115B (zh) 马达单元
US12015329B2 (en) Motor unit with oil passage and partition
WO2021166302A1 (ja) モータユニットおよびモータユニットの製造方法
WO2021166300A1 (ja) モータユニットおよびモータユニットの製造方法
WO2019131423A1 (ja) モータユニット
JP2023066956A (ja) 駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP