WO2021164223A1 - 电子雾化装置及其应用的气帘形成结构 - Google Patents

电子雾化装置及其应用的气帘形成结构 Download PDF

Info

Publication number
WO2021164223A1
WO2021164223A1 PCT/CN2020/110870 CN2020110870W WO2021164223A1 WO 2021164223 A1 WO2021164223 A1 WO 2021164223A1 CN 2020110870 W CN2020110870 W CN 2020110870W WO 2021164223 A1 WO2021164223 A1 WO 2021164223A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
channel
forming structure
passage
curtain forming
Prior art date
Application number
PCT/CN2020/110870
Other languages
English (en)
French (fr)
Inventor
雷桂林
徐丹
唐光武
姜茹
龚博学
程时毅
谢攀
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP20920396.7A priority Critical patent/EP4108279A4/en
Priority to CN202010955466.2A priority patent/CN113273732A/zh
Priority to PCT/CN2020/114886 priority patent/WO2021164243A1/zh
Publication of WO2021164223A1 publication Critical patent/WO2021164223A1/zh
Priority to US17/820,801 priority patent/US20220386691A1/en
Priority to US17/820,939 priority patent/US20220400761A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/18Mouthpieces for cigars or cigarettes; Manufacture thereof
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F7/00Mouthpieces for pipes; Mouthpieces for cigar or cigarette holders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2206/00Characteristics of a physical parameter; associated device therefor
    • A61M2206/10Flow characteristics
    • A61M2206/20Flow characteristics having means for promoting or enhancing the flow, actively or passively

Definitions

  • This application relates to the technical field of atomization equipment, and in particular to an electronic atomization device and an air curtain forming structure for its application.
  • the atomization gas is prone to condensation when it encounters the inner wall of the electronic atomization device.
  • the condensate formed on the inner wall of the air outlet channel of an electronic cigarette easily enters the user’s mouth, which has a negative impact on the user’s experience; for medical nebulizers, especially medical nebulizers that deliver drugs to the lungs, those that carry drugs
  • the atomization gas condenses in the gas outlet channel, which will cause the loss of medicine; and in addition to the gas outlet channel, the inner walls of other electronic atomization devices in contact with the atomization gas are also prone to condensate droplets, which are prone to liquid leakage.
  • the main technical problem to be solved by the present application is to provide an electronic atomization device and an air curtain forming structure for its application, which can alleviate the condensation of atomized gas.
  • the air curtain forming structure includes an air flow channel, and the air flow channel is used for transmitting atomized gas.
  • the air curtain forming structure further includes a first air inlet passage, the first air inlet passage communicates with the air flow channel, and the first air inlet passage is used to introduce the external air flow into the air flow channel to form a barrier air flow between the inner wall of the air flow channel and the atomizing gas .
  • the electronic atomization device includes a main body and an air curtain forming structure, and the main body is connected to the air curtain forming structure.
  • the air curtain forming structure further includes a first air inlet passage, the first air inlet passage communicates with the air flow channel, and the first air inlet passage is used to introduce the external air flow into the air flow channel to form a barrier air flow between the inner wall of the air flow channel and the atomizing gas .
  • the beneficial effect of the present application is that, different from the prior art, the present application provides an electronic atomization device and an air curtain forming structure for its application.
  • the air curtain forming structure includes an air flow channel for transmitting atomized gas.
  • the airflow channel includes a first airflow channel, and the first airflow channel is used to introduce an external airflow into the airflow channel to form a barrier airflow between the inner wall of the airflow channel and the atomizing gas.
  • the present application blocks the inner wall of the airflow channel and the atomizing gas through the blocking airflow, so that the atomizing gas contacts the inner wall of the airflow channel as little as possible, which can alleviate the condensation of the atomized gas, reduce the formation of condensate, and improve users.
  • the use experience reduce the loss of medicine and reduce the risk of leakage phenomenon.
  • Fig. 1 is a schematic structural diagram of a first embodiment of an atomizing suction nozzle of the present application
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the first embodiment of the atomizing suction nozzle of the present application
  • FIG. 3 is a schematic diagram of the structure of the first air inlet passage of the air passage body of the atomizing suction nozzle of the present application;
  • FIG. 4 is a schematic structural diagram of a second embodiment of the atomizing suction nozzle of the present application.
  • FIG. 5 is a schematic diagram of the three-dimensional structure of the second embodiment of the atomizing suction nozzle of the present application.
  • Fig. 6 is a schematic bottom view of the second embodiment of the atomizing suction nozzle of the present application.
  • Fig. 7 is a schematic structural diagram of a third embodiment of an atomizing suction nozzle of the present application.
  • FIG. 8 is a schematic cross-sectional structure diagram of the third embodiment of the atomizing suction nozzle of the present application.
  • Fig. 9 is a schematic top view of the third embodiment of the atomizing suction nozzle of the present application.
  • FIG. 10 is a schematic diagram of the structure of the first embodiment of the atomizer of the present application.
  • FIG. 11 is a schematic partial cross-sectional structure diagram of the first embodiment of the atomizer of the present application.
  • FIG. 12 is a schematic diagram of another view of the partial cross-sectional structure of the first embodiment of the atomizer of the present application.
  • FIG. 13 is a schematic structural diagram of a fourth embodiment of an atomizing suction nozzle of the present application.
  • FIG. 14 is a schematic cross-sectional structure diagram of the fourth embodiment of the atomizing suction nozzle of the present application.
  • FIG. 15 is a schematic view of the top structure of the fourth embodiment of the atomizing suction nozzle of the present application.
  • 16 is a schematic diagram of the structure of the second embodiment of the atomizer of the present application.
  • FIG. 17 is a schematic partial cross-sectional structure diagram of the second embodiment of the atomizer of the present application.
  • 18 is a schematic structural diagram of the relative positional relationship between the centerline of the splitter opening of the atomizer of the present application and the connection between the first diversion portion and the second diversion portion;
  • FIG. 19 is a schematic diagram of the structure of the third embodiment of the atomizer of the present application.
  • 20 is a schematic diagram of the cross-sectional structure of the third embodiment of the atomizer of the present application in the A-A direction;
  • FIG. 21 is a schematic bottom view of the third embodiment of the atomizer of the present application.
  • 22 is a schematic diagram of the structure of the fourth embodiment of the atomizer of the present application.
  • Fig. 23 is a schematic structural diagram of an embodiment of an air outlet channel of the present application.
  • FIG. 24 is a schematic structural diagram of an embodiment of the electronic atomization device of the present application.
  • FIG. 25 is a schematic structural diagram of another embodiment of the electronic atomization device of the present application.
  • FIG. 26 is a schematic structural diagram of an embodiment of the medical atomization electronic device of the present application.
  • FIG. 27 is a schematic structural diagram of another embodiment of the medical atomization electronic device of the present application.
  • an embodiment of the present application provides an air curtain forming structure applied to an electronic atomization device.
  • the air curtain forming structure includes an air flow channel, and the air flow channel is used for transmitting atomized gas.
  • the air curtain forming structure further includes a first air inlet passage, the first air inlet passage communicates with the air flow channel, and the first air inlet passage is used to introduce the external air flow into the air flow channel to form a barrier air flow between the inner wall of the air flow channel and the atomizing gas . This will be explained in detail below.
  • FIG. 1 is a schematic structural diagram of a first embodiment of an atomizing suction nozzle of the present application.
  • the air curtain forming structure is an atomizing suction nozzle applied to an electronic atomizing device.
  • the air curtain forming structure takes the form of an atomized suction nozzle.
  • the atomizing nozzle provided in this embodiment can be applied to electronic atomizing devices such as electronic cigarettes and medical atomizers.
  • the atomizing suction nozzle includes an airflow channel 11, and the airflow channel 11 is used to transmit atomized gas.
  • the atomizing suction nozzle also includes a first air inlet passage 12, which communicates with the airflow passage 11, and the first airflow passage 12 is used to introduce an external airflow into the airflow passage 11, so as to be atomized on the inner wall of the airflow passage 11. Between the air to form a barrier to airflow. Among them, the air flow is blocked to form an air curtain.
  • the atomizing suction nozzle further includes an air outlet 13 communicating with the airflow channel 11.
  • the first air inlet channel 12 is close to the inner wall of the airflow channel 11, and the outlet of the first air inlet channel 12 faces the air outlet 13, so as to ensure that the first air inlet
  • the airflow entering the airflow channel 11 from the air inlet channel 12 can flow along the inner wall of the airflow channel 11 to form a barrier airflow, which can block the atomization gas and the inner wall of the airflow channel 11, so that the atomization gas contacts the inner wall of the airflow channel 11 as little as possible , Can alleviate the condensation of atomized gas and reduce the formation of condensate.
  • the atomizing suction nozzle includes an airway body 21 and a suction nozzle.
  • the suction nozzle includes a tube body 22, and the air flow channel 11 is provided in the airway body 21 and the tube body 22.
  • the end of the tube body 22 away from the airway body 21 is the air outlet 13.
  • the first air inlet passage 12 is opened at a position of the air passage body 21 close to the inner wall of the tube body 22 to form a barrier airflow between the inner wall of the tube body 22 and the atomizing gas.
  • the air flow channel 11 includes an inlet channel 111 and an air guide channel 112.
  • the tube body 22 has an air guiding channel 112.
  • the airway body 21 is installed at one end of the tube body 22, the airway body 21 has an inlet channel 111, and the inlet channel 111 of the airway body 21 communicates with the air guiding channel 112 of the tube body 22.
  • the inlet channel 111 is used to introduce the atomization gas and deliver the atomization gas to the air guiding channel 112.
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the first embodiment of the atomizing suction nozzle of the present application.
  • the airway body 21 when installed at one end of the tube body 22, it partially abuts against one end of the air guiding channel 112 and shields a part of the air guiding channel 112.
  • a position where the air passage body 21 blocks the air guide passage 112 is provided with a first air inlet passage 12 communicating with the air guide passage 112.
  • the air passage body 21 has a wall 211 abutting on one end of the air guiding channel 112 and shielding a part of the air guiding channel 112.
  • the first air inlet channel 12 is located on the wall 211 and communicates with the air guiding channel 112.
  • the first air inlet channel 12 is provided, and the first air inlet channel 12 passes air into it.
  • an air pressure difference is formed inside the atomizing nozzle.
  • the air entering the first air inlet channel 12 adheres to the air guide channel 112.
  • the inner wall and the inner wall of the air guiding channel 112 form a barrier to the air flow, thereby isolating the atomizing gas from the inner wall of the air guiding channel 112, so as to reduce the condensate formed by the atomizing gas on the inner wall of the air guiding channel 112.
  • the atomizing nozzle is not sucking, there is no air pressure difference inside the atomizing nozzle, and the inner wall of the air guiding channel 112 does not block the air flow.
  • the flow direction of the blocked airflow is parallel to the inner wall of the airflow channel 11, that is, the flow direction of the blocked airflow is parallel to the inner wall of the air guide channel 112, that is, the flow direction of the blocked airflow is parallel to the inner wall of the tube body 22 to ensure that the airflow is blocked. It can effectively block the atomization gas and the inner wall of the tube body 22.
  • the number of the first air inlet channels 12 may be multiple, and the multiple first inlets
  • the air passages 12 are arranged at intervals along the circumferential direction of the wall portion 211.
  • FIG. 3 is a schematic diagram of the structure of the first air inlet passage of the air passage body of the atomizing nozzle of the present application.
  • the airway body 21 includes a wall 211 that shields the air guiding channel 112.
  • the first air intake passage 12 is located on the wall 211 and communicates with the air guide passage 112.
  • the number of the first air intake passages 12 is multiple, which are evenly arranged along the circumferential direction of the wall portion 211.
  • the shape of the first air intake passage 12 is not limited, as long as the air can enter the air guiding passage 112 during suction.
  • the shape of the first air inlet passage 12 may be any one or any combination of a square, a circle, and a triangle.
  • the air entering the first air inlet passage 12 can be formed on the inner wall of the air guiding passage 112 to completely cover the air guiding passage 112.
  • the inner wall blocks the airflow.
  • the airway body 21 of the atomizing nozzle of the present application includes a first airway portion 212, a second airway portion 213, and a part that connects the first airway portion 212 and the second airway portion 213 and shields the part
  • the inlet passage 111 is mainly located in the first air passage portion 212 and communicates with the air guide passage 112, and the second air passage portion 213 is sleeved on the outside of the tube body 22 of the suction nozzle.
  • the wall portion 211 abuts against one end of the air guiding channel 112.
  • the wall portion 211 may also have a gap with one end of the air guiding channel 112, as long as it can ensure that the atomization gas will not It can be leaked.
  • the first airway portion 212 further includes a vent 214 and a first connecting portion 215, wherein the first connecting portion 215 is located on the side of the wall portion 211 away from the second airway portion 213,
  • the ventilation portion 214 is located on the side of the first connecting portion 215 away from the wall portion 211.
  • the cross-sectional area of the first connecting portion 215 (wherein, the cross-section is defined as a cross-section perpendicular to the axial direction, the same below) is smaller than the cross-sectional area of the venting portion 214, and the position where the first connecting portion 215 is connected to the venting portion 214 A card interface 216 is formed, and the card interface 216 is used for clamping the atomizing gas generating device (that is, the part of the electronic atomizing device for generating the atomizing gas, not shown). Further, referring to FIGS.
  • an integrated air passage 14 is formed at the position of the card interface 216, and air enters the first air inlet passage 12 from the integrated air passage 14, and then enters the air guide from the first air inlet passage 12 In the channel 112, after a pressure difference is generated during suction, the inner wall of the air guiding channel 112 forms a barrier airflow under the action of the pressure difference. Blocking the airflow isolates the atomizing gas from the air guiding channel 112, thereby reducing the condensate formed by the atomizing gas in the air guiding channel 112.
  • the first airway portion 212, the second airway portion 213, and the wall portion 211 connecting the first airway portion 212 and the second airway portion 213 in the airway body 21 are integrally formed .
  • the first airway portion 212, the second airway portion 213, and the wall portion 211 connecting the first airway portion 212 and the second airway portion 213 in the airway body 21 may also be welded, etc. The process is connected.
  • the second airway portion 213 of the airway body 21 is sleeved on the outside of the tube body 22 of the suction nozzle.
  • the airway body 21 and the tube body 22 may be integrally formed.
  • the second airway portion 213 can also be sleeved on the outside of the tube body 22 of the suction nozzle in a matching manner.
  • the second airway portion 213 can be sleeved It can be installed on the outside of the tube body 22 of the suction nozzle by means of interference fit.
  • a first air inlet channel 12 connected to the air guiding channel 112 is provided on the wall 211 that blocks the air guiding channel 112.
  • the tube body 22 has a suction action, the atomized gas flows from the inlet While the passage 111 enters the air guide passage 112, air enters the conductor passage from the position of the first air intake passage 12. Under the action of air pressure, the air entering from the first air intake passage 12 will be formed on the inner wall of the air guide passage 112 The air flow is blocked, thereby isolating the atomized gas from the inner wall of the air guiding channel 112, thereby preventing the atomizing gas from forming condensate on the inner wall of the air guiding channel 112.
  • FIG. 4 is a schematic structural diagram of a second embodiment of the atomizing suction nozzle of the present application.
  • this embodiment is provided with a second air inlet passage 15 on the outside of the vent 214.
  • the second air inlet passage 15 is used to accelerate the discharge speed of the atomized gas, so as to further prevent the atomized gas from forming condensate on the inner wall of the air guiding channel 112.
  • the second air intake passage 15 includes an air intake portion 151 and an air guide portion 152.
  • the air intake portion 151 is arranged around the ventilation portion 214 in a direction parallel to the wall portion 211, and the air guide portion 152 extends The direction is parallel to the extending direction of the inlet channel 111, and the air guiding portion 152 is connected to an end of the air inlet 151 located in the vent 214. The air enters from the air inlet 151 and flows from the air guide 152 to the air guide channel 112.
  • FIG. 5 is a schematic diagram of the three-dimensional structure of the second embodiment of the atomizing suction nozzle of the present application.
  • the second air intake passage 15 is located at the ventilation portion 214
  • the first air intake passage 12 is located at the wall portion 211 connecting the first air passage portion 212 and the second air passage portion 213.
  • the tube body 22 of the suction nozzle when the tube body 22 of the suction nozzle generates a suction force, the atomized gas enters from the inlet channel 111 and the air enters from the positions of the second air inlet channel 15 and the first air inlet channel 12.
  • FIG. 6 which is a schematic bottom view of the second embodiment of the atomizing suction nozzle of the present application. As shown in FIG.
  • the position of the first air intake passage 12 is closer to the inner wall of the tube body 22 than the air guide portion 152 in the second air intake passage 15. Therefore, when suction is performed, under the action of air pressure, the air entering the first air inlet passage 12 forms a barrier airflow on the inner wall of the conductor passage of the tube body 22 of the suction nozzle, and then atomizes the air entering from the inlet passage 111 The gas is isolated from the inner wall of the conductor channel to reduce the condensate formed by the atomized gas and the inner wall of the conductor channel. Further, a second air inlet passage 15 is provided.
  • the second air inlet passage 15 enters air, which accelerates the discharge speed of the atomized gas entering from the inlet passage 111 in the air guide passage 112, and further prevents The atomizing gas forms a condensate with the inner wall of the conductor channel.
  • a card interface 216 is formed at the position where the first connecting portion 215 is connected to the ventilation portion 214, and the card interface 216 is used for clamping the atomizing gas generating device (not shown). Further, an integrated air passage 14 is formed at the position of the card interface 216, and air enters the first air intake passage 12 and the second air intake passage 15 from the integrated air passage 14 and then enters the air guide passage from the first air intake passage 12 112. During suction, after a pressure difference is generated, under the action of the pressure difference, a barrier airflow is formed on the inner wall of the air guiding channel 112.
  • blocking the airflow isolates the atomizing gas (shown by arrow G in Figure 4) from the air guiding channel 112, thereby reducing the atomization gas on the inner wall of the air guiding channel 112 Condensate is formed.
  • Air enters the air guide portion 152 from the second air inlet passage 15 and forms a second air flow when it enters the air guide channel 112, and the second air flow accelerates the discharge speed of the atomized gas.
  • the air guiding portion 152 of the second air intake passage 15 may be any one or any combination of a square, a circle, and a triangle.
  • the air intake portion 151 of the second air intake passage 15 can also be any one or any combination of square, circular, and triangular shapes, which is not specifically limited, as long as it can introduce air into the air guiding portion 152 and then into the air guiding passage 112 Just medium.
  • the second intake passage 15 may be arranged corresponding to the position of the first intake passage 12. In another embodiment, the second intake passage 15 may also be staggered from the position of the first intake passage 12 set up. Specifically, in order to reduce the mutual influence between the airflow formed by the air entering the first air intake passage 12 and the second air intake passage 15, the second air intake passage 15 and the first air intake passage 12 are positioned staggered, as shown in the figure 6 shown.
  • the first air intake passage 12 and the second air intake passage 15 are provided, in order to ensure that the air entering the first air intake passage 12 forms a barrier airflow on the inner wall of the air guide passage 112, so as to achieve atomization.
  • the air is isolated from the air guide channel 112, and the air entering from the second air inlet channel 15 can accelerate the discharge speed of the atomized gas, and the air flow formed by the second air inlet channel 15 and the first air inlet channel 12 has a speed difference.
  • the flow rate of the air flow formed by the first air inlet passage 12 is greater than the flow rate of the air flow formed by the second air inlet passage 15, so as to achieve the effect of reducing condensate and reduce the impact on atomization gas. The influence of the transmission direction.
  • the flow rate of the air flow formed by the first air inlet passage 12 and the second air inlet passage 15 is related to the size of the opening, and the larger the size of the opening, the faster the flow rate. Therefore, in a specific embodiment, in order to realize that the flow rate of the air flow formed by the first air inlet passage 12 is greater than the flow rate of the air flow formed by the second air inlet passage 15, the size (that is, the cross-sectional area of the first air inlet passage 12) is set.
  • the cross-section of the first intake passage 12 should be a cross-section taken along the direction perpendicular to the extension of the first intake passage 12) is greater than the size of the second intake passage 15 (that is, the cross-sectional area, where the second intake passage The cross section of 15 should be a cross section taken along the extending direction perpendicular to the second intake passage 15), or in another embodiment, the number of first intake passages 12 is greater than the number of second intake passages 15.
  • the external airflow enters the airflow channel 11 (that is, the air guiding channel 112) through the first air inlet channel 12, and the airflow channel 11
  • the inner wall forms a barrier airflow Q1.
  • the blocking airflow Q1 isolates the atomizing gas G from the inner wall of the airflow channel 11 to reduce the condensate formed by the atomizing gas G on the inner wall of the airflow channel 11.
  • the air flow Q2 entering the air flow channel 11 through the second air inlet channel 15 flows along the outer edge of the atomized gas G to accelerate the discharge speed of the atomized gas G.
  • FIG. 7 is a schematic structural diagram of a third embodiment of the atomizing nozzle of the present application
  • FIG. 8 is a schematic cross-sectional structure diagram of the third embodiment of the atomizing nozzle of the present application.
  • the air curtain forming structure is an atomizing suction nozzle applied to an electronic atomizing device.
  • the air curtain forming structure takes the form of an atomized suction nozzle.
  • the atomizing nozzle provided in this embodiment can be applied to electronic atomizing devices such as electronic cigarettes and medical atomizing nozzles.
  • the atomizing suction nozzle includes an airflow channel 11, and the airflow channel 11 is used to transmit atomized gas.
  • the atomizing suction nozzle also includes a first air inlet passage 12, which communicates with the airflow passage 11, and the first airflow passage 12 is used to introduce an external airflow into the airflow passage 11, so as to be atomized on the inner wall of the airflow passage 11.
  • a barrier airflow is formed between the air (as shown by the arrow Q1 in Figure 8, the same below). Among them, the air flow is blocked to form an air curtain.
  • the atomizing suction nozzle is further provided with a first air inlet 16 and an air outlet 13.
  • the first air inlet 16 and the air outlet 13 are arranged oppositely and respectively communicate with the air flow channel 11, and the atomizing gas is from the first air inlet
  • the port 16 enters the airflow channel 11, and is transmitted to the air outlet 13 through the airflow channel 11, and then is output from the air outlet 13 for the user to inhale.
  • the first air inlet passage 12 is close to the inner wall of the air flow passage 11, and the outlet of the first air inlet passage 12 faces the air outlet 13 to ensure that the air flow entering the air flow passage 11 through the first air inlet passage 12 can follow the inner wall of the air flow passage 11 ( That is, the inner wall of the atomizing nozzle) flows to form a barrier to the air flow (as shown by the arrow Q1 in Figure 8, the same below), which can block the atomizing gas and the inner wall of the air flow channel 11, that is, blocking the atomizing gas and the atomizing nozzle
  • the inner wall makes the atomization gas contact the inner wall of the atomization nozzle as little as possible, which can alleviate the condensation of the atomization gas and reduce the formation of condensate.
  • the flow direction of the barrier airflow is parallel to the inner wall of the airflow channel 11, that is, the flow direction of the barrier airflow is parallel to the inner wall of the atomization nozzle, so as to ensure that the barrier airflow can effectively block the atomization gas and the atomization nozzle.
  • the role of the inner wall is parallel to the inner wall of the airflow channel 11, that is, the flow direction of the barrier airflow is parallel to the inner wall of the atomization nozzle, so as to ensure that the barrier airflow can effectively block the atomization gas and the atomization nozzle.
  • the atomizing suction nozzle further includes a first guide portion 31.
  • a first air inlet passage 12 is formed between the first air guide portion 31 and the inner wall of the air flow passage 11 for guiding the air flow introduced through the first air inlet passage 12 to flow along the inner wall of the air flow passage 11 to form a barrier to the air flow.
  • the atomizing suction nozzle further includes a second connecting portion 32.
  • the first air guiding portion 31 and the inner wall of the air flow channel 11 are connected by a second connecting portion 32.
  • a plurality of second connecting portions 32 are provided between the first air guiding portion 31 and the inner wall of the air flow channel 11.
  • the plurality of second connecting portions 32 are arranged at intervals along the circumferential direction of the first air guiding portion 31, and a first air inlet passage 12 is formed between adjacent second connecting portions 32, that is, at least one first air inlet passage 12 is formed .
  • the relative position of the first guide portion 31 in the atomizing nozzle is fixed, and the formation of the first air inlet passage 12 between the first guide portion 31 and the inner wall of the air flow passage 11 is also ensured. .
  • a plurality of first air intake passages 12 may be formed between the first air guide portion 31 and the inner wall of the air flow passage 11, and the air flow barrier formed by the plurality of first air intake passages 12 forms an air curtain, as shown in FIG. 8 As shown, the atomization gas is made to contact the inner wall of the atomization suction nozzle (that is, the inner wall of the air flow channel 11) as little as possible to a great extent, which can alleviate the condensation of the atomization gas and reduce the formation of condensate.
  • the first guide portion 31 may be a ring shape corresponding to the inner space of the atomization nozzle, which surrounds the atomization nozzle in the circumferential direction.
  • the atomizing suction nozzle further includes a second guide portion 33.
  • the second guide portion 33 is far away from the inner wall of the airflow channel 11 relative to the first guide portion 31, and a second air inlet passage 15 is formed between the second guide portion 33 and the first air guide portion 31, and the second air inlet passage 15
  • the outlet of ⁇ faces the air outlet 13, and the air flow entering through the second air inlet passage 15 (as shown by the arrow Q2 in FIG. 8) is used to guide the atomized gas to be output from the air outlet 13, thereby accelerating the discharge of the atomized gas.
  • the second guide portion 33 is arranged in a ring shape to surround the first air inlet 16 forming the atomization suction nozzle.
  • the air curtain forming structure further includes a third connecting portion 34, and the second guiding portion 33 and the first guiding portion 31 are connected by the third connecting portion 34, so that the second guiding portion 31 is used to fix the second guiding portion.
  • a plurality of third connecting portions 34 are provided between the second guide portion 33 and the first guide portion 31, and the plurality of third connecting portions 34 extend along the second guide portion 33. It is arranged at intervals in the circumferential direction, and the second air inlet passage 15 is formed between the adjacent third connecting portions 34. In this way, the relative position of the second guide part 33 in the atomizing nozzle is fixed, and the second air inlet passage 15 between the second guide part 33 and the first guide part 31 is also ensured. form.
  • FIG. 10 is a schematic structural diagram of the first embodiment of the atomizer of the present application
  • FIG. 11 is a partial cross-sectional structure diagram of the first embodiment of the atomizer of the present application.
  • the air curtain forming structure is an atomizer applied to an electronic atomization device.
  • the air curtain forming structure takes the form of an atomizer.
  • the atomizer provided in this embodiment can be applied to electronic atomization devices such as electronic cigarettes and medical atomizers.
  • FIG. 10 shows the application of the air curtain forming structure to a medical nebulizer, which is only for discussion and does not limit the application environment of the air curtain forming structure in this embodiment.
  • the air curtain forming structure includes an atomizing suction nozzle, an atomizing core 40 and a liquid storage cavity 50.
  • the atomizing suction nozzle is provided with a first air inlet 16 and an air outlet 13. Atomized gas enters the atomizing nozzle from the first air inlet 16, and is transmitted to the air outlet 13 through the atomizing nozzle, and then from the air outlet 13 Output for the user to ingest.
  • the atomizing core 40 is arranged at the position of the first air inlet 16 of the atomizing suction nozzle, and is used to atomize the aerosol generating substrate stored in the liquid storage cavity 50 to generate atomized gas.
  • structures such as the atomizing core 40 and the liquid storage cavity 50 constitute the atomizing gas generating device of the air curtain forming structure of this embodiment, and are used for generating atomizing gas.
  • the atomizing core 40 may be an ultrasonic atomizing sheet, etc.
  • the ultrasonic atomizing sheet uses high-frequency vibration to atomize the aerosol generating substrate to generate atomized gas.
  • the specific principle belongs to the understanding of those skilled in the art, and will not be repeated here.
  • the atomizing core 40 may also adopt a method of generating atomized gas by heating the atomized aerosol generating substrate, etc., which is not limited herein.
  • the atomization suction nozzle includes an airflow channel 11, and the airflow channel 11 is used for transmitting the atomization gas.
  • the atomizing suction nozzle also includes a first air inlet passage 12, which communicates with the airflow passage 11, and the first airflow passage 12 is used to introduce an external airflow into the airflow passage 11, so as to be atomized on the inner wall of the airflow passage 11.
  • a barrier airflow is formed between the air (as shown by the arrow Q1 in Figure 11, the same below). Among them, the air flow is blocked to form an air curtain.
  • first air inlet 16 and the air outlet 13 are arranged oppositely and communicate with the air flow channel 11 respectively.
  • the first air inlet passage 12 is close to the inner wall of the air flow passage 11, and the outlet of the first air inlet passage 12 faces the air outlet 13 to ensure that the air flow entering the air flow passage 11 through the first air inlet passage 12 can follow the inner wall of the air flow passage 11 ( That is, the inner wall of the atomizing nozzle) flows to form a barrier to the airflow, which can block the atomization gas and the inner wall of the airflow channel 11, that is, block the atomization gas and the inner wall of the atomization nozzle, so that the atomization gas contacts the mist as little as possible
  • the inner wall of the suction nozzle can alleviate the condensation of atomized gas and reduce the formation of condensate.
  • the flow direction of the barrier airflow is parallel to the inner wall of the airflow channel 11, that is, the flow direction of the barrier airflow is parallel to the inner wall of the atomization nozzle, so as to ensure that the barrier airflow can effectively block the atomization gas and the atomization nozzle.
  • the role of the inner wall is parallel to the inner wall of the airflow channel 11, that is, the flow direction of the barrier airflow is parallel to the inner wall of the atomization nozzle, so as to ensure that the barrier airflow can effectively block the atomization gas and the atomization nozzle.
  • the atomizing suction nozzle further includes a first guide portion 31.
  • a first air inlet passage 12 is formed between the first air guide portion 31 and the inner wall of the air flow passage 11 for guiding the air flow introduced through the first air inlet passage 12 to flow along the inner wall of the air flow passage 11 to form a barrier to the air flow.
  • the atomizing suction nozzle further includes a second connecting portion 32.
  • the first air guiding portion 31 and the inner wall of the air flow channel 11 are connected by a second connecting portion 32.
  • a plurality of second connecting portions 32 are provided between the first air guiding portion 31 and the inner wall of the air flow channel 11.
  • the plurality of second connecting portions 32 are arranged at intervals along the circumferential direction of the first air guiding portion 31, and a first air inlet passage 12 is formed between adjacent second connecting portions 32, that is, at least one first air inlet passage 12 is formed .
  • the relative position of the first guide portion 31 in the atomizing nozzle is fixed, and the formation of the first air inlet passage 12 between the first guide portion 31 and the inner wall of the air flow passage 11 is also ensured. .
  • the first guide portion 31 may be a ring shape corresponding to the inner space of the atomization nozzle, which surrounds the atomization nozzle in the circumferential direction.
  • the atomizing suction nozzle further includes a second guide portion 33.
  • the second guide portion 33 is far away from the inner wall of the airflow channel 11 relative to the first guide portion 31, and a second air inlet passage 15 is formed between the second guide portion 33 and the first air guide portion 31, and the second air inlet passage 15
  • the outlet of the port faces the air outlet 13, and the air flow entering through the second air inlet passage 15 is used to guide the atomized gas to be output from the air outlet 13, thereby accelerating the discharge of the atomized gas.
  • the second guide portion 33 is arranged in a ring shape to surround the first air inlet 16 forming the atomization suction nozzle.
  • the air curtain forming structure further includes a third connecting portion 34, and the second guiding portion 33 and the first guiding portion 31 are connected by the third connecting portion 34, so that the second guiding portion 31 is used to fix the second guiding portion.
  • a plurality of third connecting parts 34 are provided between the second air guiding part 33 and the first air guiding part 31, and the plurality of third connecting parts 34 are sequentially spaced apart along the circumferential direction of the second air guiding part 33.
  • the second air inlet passage 15 is formed between the adjacent third connecting portions 34. In this way, the relative position of the second guide part 33 in the atomizing nozzle is fixed, and the second air inlet passage 15 between the second guide part 33 and the first guide part 31 is also ensured. form.
  • the air curtain forming structure further includes a confluence passage 17.
  • One end of the confluence passage 17 is an air inlet, that is, the second air inlet 18, and the other end is a diversion port 171, and the diversion ports 171 are respectively The first intake passage 12 and the second intake passage 15 are connected.
  • the confluence channel 17 includes a first channel section 172 and a second channel section 173 that are connected.
  • the port of the first channel section 172 away from the second channel section 173 is the shunt 171, and the second channel section 173 is away from the first channel section 172.
  • the port of is the air inlet, that is, the second air inlet 18.
  • the extension directions of the first channel section 172 and the second channel section 173 are different.
  • FIG. 11 shows that the extension direction of the first channel section 172 is a horizontal direction, the extension direction of the second channel section 173 is a vertical direction, and the second channel section 173 extends toward the air outlet 13.
  • the external airflow enters the second passage section 173 from the second air inlet 18, is transmitted to the first passage section 172, and then passes through the first air inlet passage 12 and the second air inlet through the diversion port 171, respectively.
  • the channel 15 enters the air flow channel 11 in the atomizing nozzle, and the air flow is shown by the dotted arrow in FIG. 11.
  • the air curtain forming structure is provided with a mounting part 60.
  • the mounting portion 60 is provided with a mounting protrusion 61 and a ventilation groove 62, and the mounting protrusion 61 is used for fixing the atomizing suction nozzle.
  • a first channel section 172 is formed between the atomizing nozzle and the mounting portion 60, specifically a first channel section 172 is formed between the atomizing nozzle and the bottom of the mounting portion 60;
  • a second channel section 173 is formed between the ventilation groove 62 and the atomizing suction nozzle.
  • the outer periphery of the atomizing nozzle is provided with a limiting groove 35 surrounding the circumference of the atomizing nozzle.
  • the limiting groove 35 is used for placing an elastic ring to fix the atomizing nozzle.
  • the elastic ring placed in the limiting groove 35 and the mounting protrusion 61 in the mounting portion 60 are elastically interference fit, so that the atomizing nozzle It is fixed in the mounting part 60.
  • the elastic ring at the position of the ventilation groove 62 in the mounting part 60 will not block the gap between the atomization nozzle and the ventilation groove 62 to ensure the gap between the atomization nozzle and the ventilation groove 62
  • the ventilation function ensures that the external airflow can enter the airflow channel 11 to block the airflow and accelerate the discharge of the atomized gas.
  • the number of the limiting grooves 35 may be multiple, and the plurality of limiting grooves 35 are spaced apart from each other along the axial direction of the atomizing suction nozzle.
  • the elastic ring may be a silicone ring, etc., which is not limited here.
  • FIG. 12 is a schematic diagram of the partial cross-sectional structure of the first embodiment of the atomizer of the present application from another perspective.
  • the air flow conditions of the first air intake passage 12 and the second air intake passage 15 in this exemplary embodiment will be described below.
  • the cross-sectional area of the first air intake passage 12 will affect the flow rate of the blocked air flow. Specifically, when the air pressure difference caused by the user's inhalation is constant, within a certain range, the larger the cross-sectional area of the first air intake passage 12 is, the larger the air flow blocking the airflow will be. Specifically, the greater the distance D between the first guide portion 31 and the inner wall of the atomization suction nozzle (that is, the inner wall of the air flow channel 11), the larger the cross-sectional area of the first air inlet channel 12, which blocks the air flow of the air flow. Also bigger.
  • the flow direction of the air flow (as indicated by the arrow Q2 in FIG. 12, the same below) entering the air flow channel 11 (ie, the atomizing nozzle) through the second air inlet channel 15 will affect the air flow inside the air flow channel 11. Specifically, if the angle between the flow direction of the airflow entering through the second air inlet passage 15 and the preset direction (as shown by the angle ⁇ in FIG. 12, the same below) is too small, the airflow entering through the second air inlet passage 15 will be affected.
  • the airflow entering through the second air inlet channel 15 cannot carry the output of the atomized gas well, and its effect of accelerating the discharge of the atomized gas will be greatly reduced;
  • the angle between the flow direction of the airflow entering the channel 15 and the preset direction is too large, the airflow entering through the second air inlet channel 15 will block the output path of the atomization gas, preventing the atomization gas from being transmitted to the atomization nozzle.
  • Outlet 13 Wherein, the preset direction is parallel to the flow direction of the blocked airflow (as shown by the arrow Q1 in FIG. 12), that is, the preset direction can be represented by the flow direction of the blocked airflow.
  • the angle between the flow direction of the airflow entering through the second air inlet passage 15 and the preset direction is preferably 30° to 45°, such as 30°, 33°, 37°, 41°, 43°, 45°, etc. . In this way, it can be ensured that the airflow entering through the second air inlet passage 15 carries the atomized gas output to accelerate the realization of the function of discharging the atomized gas.
  • the flow direction of the airflow entering through the second air inlet channel 15 can be adjusted by adjusting the structure of the atomizing nozzle at the position of the second air inlet channel 15.
  • the flow direction of the air flow entering through the second air inlet channel 15 can be adjusted by adjusting the positions of the first air guiding portion 31 and the second air guiding portion 33 in the axial direction of the air flow channel 11, which is not limited herein.
  • FIG. 13 is a schematic structural diagram of a fourth embodiment of an atomizing suction nozzle according to the present application
  • FIG. 14 is a schematic cross-sectional structure diagram of a fourth embodiment of an atomizing suction nozzle according to the present application.
  • the air curtain forming structure is an atomizing suction nozzle applied to an electronic atomizing device.
  • the atomizing suction nozzle is provided with a first air inlet 16, a second air inlet 18 and an air outlet 13, and the first air inlet 16 and the air outlet 13 are arranged oppositely.
  • the atomizing suction nozzle further includes a flow guide, which is connected to the second air inlet 18, and the flow guide is used to guide the airflow entering from the second air inlet 18 to flow toward the first air inlet 16. This will be explained in detail below.
  • the air curtain forming structure takes the form of an atomized suction nozzle.
  • the atomizing nozzle provided in this embodiment can be applied to electronic atomizing devices such as electronic cigarettes and medical atomizing nozzles.
  • the atomizing suction nozzle includes an airflow channel 11, and the airflow channel 11 is used for transmitting atomized gas.
  • the atomizing suction nozzle also includes a first air inlet passage 12, which communicates with the airflow passage 11, and the first airflow passage 12 is used to introduce an external airflow into the airflow passage 11, so as to be atomized on the inner wall of the airflow passage 11.
  • a barrier airflow is formed between the air (as shown by the arrow Q1 in Figure 14, the same below). Among them, the air flow is blocked to form an air curtain.
  • the atomizing suction nozzle is further provided with a first air inlet 16 and an air outlet 13.
  • the first air inlet 16 and the air outlet 13 are arranged opposite to each other and the two are respectively connected to the air flow channel 11, and the atomizing gas is from the first air inlet
  • the port 16 enters the air flow channel 11 and is transmitted to the air outlet 13 through the air flow channel 11, and then is output from the air outlet 13 for the user to inhale.
  • the first air inlet passage 12 is close to the inner wall of the air flow passage 11, and the outlet of the first air inlet passage 12 faces the air outlet 13, so as to ensure that the air flow entering the air flow passage 11 through the first air inlet passage 12 can follow the inner wall of the air flow passage 11 ( That is, the inner wall of the atomizing nozzle) flows to form a barrier to the airflow, which can block the atomization gas and the inner wall of the airflow channel 11, that is, block the atomization gas and the inner wall of the atomization nozzle, so that the atomization gas contacts the mist as little as possible
  • the inner wall of the suction nozzle can alleviate the condensation of atomized gas and reduce the formation of condensate.
  • the flow direction of the barrier airflow is parallel to the inner wall of the airflow channel 11, that is, the flow direction of the barrier airflow is parallel to the inner wall of the atomization nozzle, so as to ensure that the barrier airflow can effectively block the atomization gas and the atomization nozzle.
  • the role of the inner wall is parallel to the inner wall of the airflow channel 11, that is, the flow direction of the barrier airflow is parallel to the inner wall of the atomization nozzle, so as to ensure that the barrier airflow can effectively block the atomization gas and the atomization nozzle.
  • the atomizing suction nozzle is also provided with a second air inlet 18 that is different from the first air inlet 16, and the second air inlet 18 is used to guide the external airflow into the atomizing suction. Mouth.
  • the atomizing suction nozzle also includes a flow guide, which is connected to the second air inlet 18, and the flow guide is used to guide the airflow entering from the second air inlet 18 to flow toward the first air inlet 16, thereby being used for carrying
  • the atomized gas entering the atomizing suction nozzle from the first air inlet 16 is output from the air outlet 13 of the atomizing suction nozzle for the user to inhale and accelerate the discharge of the atomized gas.
  • the air guide is arranged obliquely in a direction away from the inner wall of the atomization suction nozzle (that is, the inner wall of the airflow channel 11) and the air outlet 13 for guiding the airflow entering from the second air inlet 18 toward the first
  • the air inlet 16 flows, and is used to carry the atomized gas entering the atomizing suction nozzle from the first air inlet 16 and output from the air outlet 13 of the atomizing suction nozzle for the user to inhale and accelerate the discharge of the atomized gas.
  • the flow guide includes a first flow guide 31.
  • a first air inlet passage 12 is formed between the first air guide portion 31 and the inner wall of the airflow channel 11 (ie, the inner wall of the atomizing nozzle) for guiding the airflow introduced through the first air inlet channel 12 along the airflow channel 11
  • the inner wall flows, wherein the air flow entering through the first air inlet passage 12 is used to form a barrier air flow between the inner wall of the atomizing nozzle and the atomizing gas (as shown by the arrow Q1 in FIG. 14, the same below).
  • the atomizing suction nozzle further includes a second connecting portion 32.
  • the first air guiding portion 31 and the inner wall of the air flow channel 11 are connected by a second connecting portion 32.
  • a plurality of second connecting portions 32 are provided between the first air guiding portion 31 and the inner wall of the air flow channel 11.
  • the plurality of second connecting portions 32 are arranged at intervals along the circumferential direction of the first air guiding portion 31, and a first air inlet passage 12 is formed between adjacent second connecting portions 32, that is, at least one first air inlet passage 12 is formed .
  • the relative position of the first guide portion 31 in the atomizing nozzle is fixed, and the formation of the first air inlet passage 12 between the first guide portion 31 and the inner wall of the air flow passage 11 is also ensured. .
  • the first guide portion 31 may be a ring shape corresponding to the inner space of the atomization nozzle, which surrounds the atomization nozzle in the circumferential direction.
  • the air guiding member further includes a second air guiding part 33.
  • the second air guiding portion 33 is provided on a side of the first air guiding portion 31 away from the air outlet 13, that is, the first air guiding portion 31 is close to the air outlet 13 relative to the second air guiding portion 33.
  • the second guide portion 33 is arranged obliquely along the direction away from the inner wall of the air flow channel 11 and the air outlet 13, and is used to form the second air inlet channel 15.
  • the air flow entering through the second air inlet channel 15 (as indicated by the arrow Q2 in Figure 14) (Shown, the same below) is used to guide the atomization gas to be output from the air outlet 13 to accelerate the discharge of the atomization gas.
  • the airflow entering through the second air inlet passage 15 flows along the second guide portion 33 to the first air inlet 16 to mix with the atomized gas at the first air inlet 16, and then carry the atomized gas through
  • the first air inlet 16 is output from the air outlet 13.
  • the second guide portion 33 may be a ring shape corresponding to the inner space of the atomization nozzle, which surrounds the atomization nozzle in the circumferential direction.
  • the deflector is located at the end of the atomizing nozzle away from the air outlet 13, which aims to make the deflector as close as possible to the electronic mist after the atomizing nozzle is assembled to the electronic atomization device.
  • the atomization core of the atomization device, the airflow guided by the guide can maximize the output of the atomization gas near the atomization core, and minimize the accumulation of the atomization gas near the atomization core. Slow down the condensation of the atomizing gas near the atomizing core.
  • the deflector and its connected second air inlet 18 can be arranged at other positions in the axial direction of the atomization nozzle, which can also reduce the atomization gas near the atomization core.
  • the purpose of the stay is not limited here.
  • Fig. 16 is a schematic structural diagram of the second embodiment of the atomizer of the present application
  • Fig. 17 is a partial cross-sectional structural diagram of the second embodiment of the atomizer of the present application.
  • the air curtain forming structure is an atomizer applied to an electronic atomization device.
  • the air curtain forming structure takes the form of an atomizer.
  • the atomizer provided in this embodiment can be applied to electronic atomization devices such as electronic cigarettes and medical atomizers.
  • FIG. 16 shows the application of the air curtain forming structure to a medical nebulizer, which is only for discussion and does not limit the application environment of the air curtain forming structure in this embodiment.
  • the air curtain forming structure includes an atomizing suction nozzle, an atomizing core 40 and a liquid storage cavity 50.
  • the atomizing suction nozzle is provided with a first air inlet 16 and an air outlet 13. Atomized gas enters the atomizing nozzle from the first air inlet 16, and is transmitted to the air outlet 13 through the atomizing nozzle, and then from the air outlet 13 Output for the user to ingest.
  • the atomizing core 40 is arranged at the position of the first air inlet 16 of the atomizing suction nozzle, and is used to atomize the aerosol generating substrate stored in the liquid storage cavity 50 to generate atomized gas.
  • structures such as the atomizing core 40 and the liquid storage cavity 50 constitute the atomizing gas generating device of the air curtain forming structure of this embodiment, and are used for generating atomizing gas.
  • the atomizing core 40 may be an ultrasonic atomizing sheet, etc.
  • the ultrasonic atomizing sheet uses high-frequency vibration to atomize the aerosol generating substrate to generate atomized gas.
  • the specific principle belongs to the understanding of those skilled in the art, and will not be repeated here.
  • the atomizing core 40 may also adopt a method of generating atomized gas by heating the atomized aerosol generating substrate, etc., which is not limited herein.
  • the atomizing suction nozzle includes an air flow channel 11, and the air flow channel 11 is used for transmitting the atomized gas.
  • the atomizing suction nozzle also includes a first air inlet passage 12, which communicates with the airflow passage 11, and the first airflow passage 12 is used to introduce an external airflow into the airflow passage 11, so as to be atomized on the inner wall of the airflow passage 11.
  • a barrier airflow is formed between the air (as shown by the arrow Q1 in Figure 17, the same below). Among them, the air flow is blocked to form an air curtain.
  • first air inlet 16 and the air outlet 13 are arranged oppositely and communicate with the air flow channel 11 respectively.
  • the first air inlet passage 12 is close to the inner wall of the air flow passage 11, and the outlet of the first air inlet passage 12 faces the air outlet 13 to ensure that the air flow entering the air flow passage 11 through the first air inlet passage 12 can follow the inner wall of the air flow passage 11 ( That is, the inner wall of the atomizing nozzle) flows to form a barrier to the airflow, which can block the atomization gas and the inner wall of the airflow channel 11, that is, block the atomization gas and the inner wall of the atomization nozzle, so that the atomization gas contacts the mist as little as possible
  • the inner wall of the suction nozzle can alleviate the condensation of atomized gas and reduce the formation of condensate.
  • the flow direction of the barrier airflow is parallel to the inner wall of the airflow channel 11, that is, the flow direction of the barrier airflow is parallel to the inner wall of the atomization nozzle, so as to ensure that the barrier airflow can effectively block the atomization gas and the atomization nozzle.
  • the role of the inner wall is parallel to the inner wall of the airflow channel 11, that is, the flow direction of the barrier airflow is parallel to the inner wall of the atomization nozzle, so as to ensure that the barrier airflow can effectively block the atomization gas and the atomization nozzle.
  • the atomizing suction nozzle is also provided with a second air inlet 18 that is different from the first air inlet 16, and the second air inlet 18 is used to guide the external airflow into the atomizing suction. Mouth.
  • the atomizing suction nozzle also includes a flow guide, which is connected to the second air inlet 18, and the flow guide is used to guide the airflow entering from the second air inlet 18 to flow toward the first air inlet 16, thereby being used for carrying
  • the atomized gas entering the atomizing suction nozzle from the first air inlet 16 is output from the air outlet 13 of the atomizing suction nozzle for the user to inhale and accelerate the discharge of the atomized gas.
  • the air guide is used to guide the airflow to the atomization core 40, thereby driving the atomization gas near the atomization core 40 to be output from the air outlet 13, which can effectively alleviate the accumulation of the atomization gas near the atomization core 40. In turn, the condensation of the atomizing gas near the atomizing core 40 is alleviated.
  • At least part of the air guide is arranged obliquely along the direction away from the inner wall of the atomization suction nozzle and the air outlet 13, and is used to guide the airflow entering from the second air inlet 18 to flow toward the first air inlet 16, that is, to guide The airflow flows toward the atomization core 40, and it directly hits the surface of the atomization core 40 to carry the atomized gas atomized by the atomization core 40 into the atomization suction nozzle from the first air inlet 16 and output from the air outlet 13.
  • Speeding up the discharge of the atomized gas can reduce the contact of the atomized gas with the inner wall of the atomizing nozzle to a certain extent, thereby alleviating the condensation of the atomizing gas and reducing the formation of condensate.
  • the air guiding member includes a first air guiding part 31.
  • a first air inlet passage 12 is formed between the first air guide portion 31 and the inner wall of the airflow channel 11 (ie, the inner wall of the atomizing nozzle) for guiding the airflow introduced through the first air inlet channel 12 along the airflow channel 11
  • the inner wall flows, wherein the air flow entering through the first air inlet passage 12 is used to form a barrier air flow between the inner wall of the atomizing suction nozzle and the atomizing gas.
  • the atomizing suction nozzle further includes a second connecting portion 32.
  • the first air guiding portion 31 and the inner wall of the air flow channel 11 are connected by a second connecting portion 32.
  • a plurality of second connecting portions 32 are provided between the first air guiding portion 31 and the inner wall of the air flow channel 11.
  • the plurality of second connecting portions 32 are arranged at intervals along the circumferential direction of the first air guiding portion 31, and a first air inlet passage 12 is formed between adjacent second connecting portions 32, that is, at least one first air inlet passage 12 is formed .
  • the relative position of the first guide portion 31 in the atomizing nozzle is fixed, and the formation of the first air inlet passage 12 between the first guide portion 31 and the inner wall of the air flow passage 11 is also ensured. .
  • the first guide portion 31 may be a ring shape corresponding to the inner space of the atomization nozzle, which surrounds the atomization nozzle in the circumferential direction.
  • the air guiding member further includes a second air guiding part 33.
  • the second air guiding portion 33 is provided on a side of the first air guiding portion 31 away from the air outlet 13, that is, the first air guiding portion 31 is close to the air outlet 13 relative to the second air guiding portion 33.
  • the second guide portion 33 is arranged obliquely along the direction away from the inner wall of the air flow channel 11 and the air outlet 13 and is used to form the second air inlet channel 15.
  • the air flow entering through the second air inlet channel 15 is used to guide the atomized gas from the outlet
  • the air port 13 outputs to accelerate the discharge of the atomized gas.
  • the airflow entering through the second air inlet passage 15 flows along the second guide portion 33 to the first air inlet 16 to mix with the atomized gas at the first air inlet 16, and then carry the atomized gas through
  • the first air inlet 16 is output from the air outlet 13.
  • the second guide portion 33 may be a ring shape corresponding to the inner space of the atomization nozzle, which surrounds the atomization nozzle in the circumferential direction.
  • the air curtain forming structure further includes a confluence passage 17.
  • One end of the confluence passage 17 is an air inlet, that is, the second air inlet 18, and the other end is a diversion port 171.
  • the diversion ports 171 are respectively The first intake passage 12 and the second intake passage 15 are connected.
  • the confluence channel 17 includes a first channel section 172 and a second channel section 173 that are connected.
  • the port of the first channel section 172 away from the second channel section 173 is the shunt 171, and the second channel section 173 is away from the first channel section 172.
  • the port of is the air inlet, that is, the second air inlet 18.
  • the extension directions of the first channel section 172 and the second channel section 173 are different.
  • FIG. 17 shows that the extension direction of the first channel section 172 is a horizontal direction, the extension direction of the second channel section 173 is a vertical direction, and the second channel section 173 extends toward the air outlet 13.
  • the external airflow enters the second passage section 173 from the second air inlet 18, is transmitted to the first passage section 172, and then passes through the first air inlet passage 12 and the second air inlet through the diversion port 171, respectively.
  • the channel 15 enters the air flow channel 11 in the atomizing nozzle, and the air flow is shown by the dotted arrow in FIG. 17.
  • the air curtain forming structure is provided with a mounting part 60.
  • the mounting portion 60 is provided with a mounting protrusion 61 and a ventilation groove 62, and the mounting protrusion 61 is used for fixing the atomizing suction nozzle.
  • a first channel section 172 is formed between the atomizing nozzle and the mounting portion 60, specifically a first channel section 172 is formed between the atomizing nozzle and the bottom of the mounting portion 60;
  • a second channel section 173 is formed between the ventilation groove 62 and the atomizing suction nozzle.
  • FIG. 18 is a structural schematic diagram of the relative positional relationship between the center line of the splitter opening of the atomizer of the present application and the connection between the first diversion portion and the second diversion portion.
  • the air flow conditions of the first air intake passage 12 and the second air intake passage 15 in this exemplary embodiment will be described below.
  • the airflow entering through the first air inlet passage 12 forms a barrier airflow between the inner wall of the atomizing nozzle and the atomizing gas, so that the atomizing gas contacts the inner wall of the atomizing nozzle as little as possible, Alleviate the condensation of the atomized gas and reduce the formation of condensate; and the airflow entering through the second air inlet channel 15 guides the atomized gas to be output from the air outlet 13 to accelerate the discharge of the atomized gas, thereby effectively alleviating the encircling of the flow guide Condensation of atomized gas in the formed cavity.
  • the air pressure difference caused by the user's suction is constant, so the total amount of airflow entering the first air intake passage 12 and the second air intake passage 15 is constant. Therefore, the exemplary embodiment adopts reasonable distribution to enter the first air intake passage 12 and the first air intake passage 12 and the second air intake passage.
  • the air flow of the two air inlet channels 15 can alleviate the condensation of the atomized gas on the inner wall of the atomizing nozzle and the condensation of the atomized gas in the cavity formed by the guide member.
  • the centerline ⁇ of the diversion port 171 (the centerline a of the diversion port 171 is defined as being perpendicular to the central axis of the diversion port 171, the same below) passes through the first diversion portion 31 and the second diversion portion 33
  • the connection is shown in Figure 18a.
  • the airflow entering through the first air inlet passage 12 is sufficient to form a barrier airflow between the inner wall of the atomizing nozzle and the atomizing gas, reducing the degree of adhesion of the atomizing gas on the inner wall of the atomizing nozzle, and
  • the airflow entering through the second air inlet passage 15 is sufficient to quickly carry the atomized gas out, which can reduce the degree of adhesion of the atomized gas in the cavity formed by the air guide.
  • the centerline ⁇ of the diversion port 171 is far away from the air outlet 13 relative to the junction of the first diversion portion 31 and the second diversion portion 33, as shown in FIG. 18b.
  • the air flow of the airflow entering through the second air inlet passage 15 is significantly increased, which can further accelerate the discharge of the carried atomized gas, and further reduce the degree of adhesion of the atomized gas in the cavity formed by the flow guide. Alleviate the condensation of atomized gas in the cavity formed by the deflector.
  • the centerline ⁇ of the diversion port 171 is close to the air outlet 13 relative to the junction of the first diversion portion 31 and the second diversion portion 33, as shown in FIG. 18c.
  • the air flow rate of the airflow entering through the first air inlet passage 12 is significantly increased, which can further increase the air flow rate of the barrier airflow between the inner wall of the atomizing nozzle and the atomizing gas, and further reduce the airflow rate of the atomizing nozzle.
  • the degree of adhesion of the atomized gas on the inner wall alleviates the condensation of the atomized gas on the inner wall of the atomizing nozzle.
  • the size relationship between the cross-sectional area of the first intake passage 12 and the second intake passage 15 is the same as the size relationship between the air flow rates of the first intake passage 12 and the second intake passage 15. That is, if the cross-sectional area of the first intake passage 12 is greater than the cross-sectional area of the second intake passage 15, the air flow rate of the first intake passage 12 is greater than the air flow rate of the second intake passage 15, and vice versa. .
  • the adhesion rate of the atomized gas on the inner wall of the atomizing suction nozzle and the adhesion rate of the atomized gas in the cavity formed by the guide member are less than 3%. It can be seen that the design of the first air intake passage 12 and the second air intake passage 15 of this exemplary embodiment can effectively reduce the adhesion degree of the atomized gas and alleviate the condensation of the atomized gas.
  • FIG. 19 is a schematic structural diagram of a third embodiment of an atomizer according to the present application, and a schematic cross-sectional structure diagram of the third embodiment of an atomizer according to the present application along the A-A direction.
  • the air curtain forming structure is an atomizer applied to an electronic atomization device.
  • the air curtain forming structure takes the form of an atomizer.
  • the atomizer provided in this embodiment can be applied to electronic atomization devices such as electronic cigarettes and medical atomizers.
  • FIG. 19 shows the application of the air curtain forming structure to the electronic cigarette, which is only for discussion and does not limit the application environment of the air curtain forming structure in this embodiment.
  • the atomizer includes an airflow channel 11, and the airflow channel 11 is used to transmit atomized gas.
  • the atomizer also includes a first air inlet passage 12, which communicates with the air flow passage 11, and the first air inlet passage 12 is used to introduce the external air flow into the air flow channel 11 to connect the atomizing gas on the inner wall of the air flow channel 11 Form a barrier airflow between. Among them, the air flow is blocked to form an air curtain.
  • the atomizer further includes an air outlet 13 communicating with the airflow channel 11.
  • the first air inlet channel 12 is close to the inner wall of the airflow channel 11, and the outlet of the first air inlet channel 12 faces the air outlet 13 to ensure that it passes through the first inlet
  • the air flow from the air channel 12 into the air channel 11 can flow along the inner wall of the air channel 11 (that is, the inner wall of the atomizer) to form a barrier air flow, which can block the atomization gas and the inner wall of the air channel 11, that is, block the atomization gas and the mist
  • the inner wall of the atomizer makes the atomized gas contact the inner wall of the atomizer as little as possible, which can alleviate the condensation of the atomized gas and reduce the formation of condensate.
  • the atomizer further includes an atomization cavity 71.
  • the atomizing cavity 71 is provided with an atomizing core 40 for atomizing the aerosol generating substrate to form an atomizing gas.
  • the air flow channel 11 is provided in the atomization cavity 71, that is, the space used for accommodating the atomization gas in the atomization cavity 71 is the air flow channel 11.
  • the first air inlet passage 12 is provided at the bottom of the atomization cavity 71 close to the inner wall of the atomization cavity 71, so that when the user inhales, the airflow from the first air inlet passage 12 into the atomization cavity 71 will follow the atomization cavity 71
  • the inner wall of the atomization chamber 71 flows, thereby forming a barrier airflow between the inner wall of the atomizing cavity 71 and the atomizing gas.
  • the atomizer also includes a second air inlet passage 15, and the airflow entering through the second air inlet passage 15 is used to guide the atomized gas to be output from the outlet 13 so as to speed up the discharge of the atomized gas.
  • the contact between the atomization gas and the inner wall of the atomization cavity 71 can be reduced, and the condensation of the atomization gas can also be alleviated.
  • the second air inlet passage 15 is provided at the bottom of the atomization cavity 71, and the first air inlet passage 12 is close to the edge of the bottom of the atomization cavity 71 relative to the second air inlet passage 15.
  • the second intake passage 15 is provided with a first intake passage 12 on opposite sides of the second intake passage 15.
  • the number of the first air inlet passage 12 can be increased to further reduce the contact between the atomized gas and the inner wall of the atomization cavity 71, and further alleviate the condensation of the atomized gas; and the first air inlet passage 12 is as symmetrical as possible
  • the ground is arranged on opposite sides of the second air inlet channel 15 to optimize the distribution of the blocked airflow in the atomization cavity 71 and improve the effect of alleviating the condensation of the atomization gas.
  • the first air intake passage 12 may be in the form of a through hole, as shown in FIG. 21a.
  • a number of first air inlet passages 12 spaced apart from each other are provided at the bottom of the atomization cavity 71 close to the inner wall of the atomization cavity 71, and the airflow entering the atomization cavity 71 through the first air inlet passages 12 in the form of through holes forms a barrier airflow.
  • a plurality of first air inlet passages 12 are arranged at intervals along the edge of the bottom of the atomization cavity 71, and a plurality of first air inlet passages 12 are arranged at intervals on opposite sides of the second air inlet passage 15 respectively.
  • the aperture of the first air inlet passage 12 in the form of a through hole may be 0.3 mm, 0.4 mm, etc., which is not limited herein.
  • the cross-section of the first air inlet passage 12 is elongated, that is, the first air inlet passage 12 is a elongated slit, as shown in FIG. 21b.
  • the first air inlet passage 12 in the form of a slit extends along the edge of the bottom of the atomization cavity 71, and the air flow entering the atomization cavity 71 through the first air inlet passage 12 in the form of a slit forms a barrier air flow.
  • opposite sides of the second intake passage 15 are respectively provided with first intake passages 12 in the form of narrow slits.
  • the width of the first air inlet passage 12 in the form of a slit may be 0.3 mm, 0.4 mm, etc., which is not limited herein.
  • the airflow blocking distribution formed by the first air intake passage 12 in the form of a narrow slit is better than the airflow blocking distribution formed by the first air intake passage 12 in the form of a through hole, and a narrow slit with a width of 0.4 mm
  • the airflow blocking distribution formed by the first air intake passage 12 is better than the airflow blocking distribution formed by the first air intake passage 12 having a width of 0.3 mm.
  • the overall flow direction of the air flow inside the atomization cavity 71 is more orderly, and it is not easy to form a vortex.
  • FIG. 22 is a schematic structural diagram of a fourth embodiment of an atomizer according to the present application.
  • the air curtain forming structure is an atomizer applied to an electronic atomization device.
  • the air curtain forming structure takes the form of an atomizer.
  • the atomizer provided in this embodiment can be applied to electronic atomization devices such as electronic cigarettes and medical atomizers.
  • FIG. 22 shows the application of the air curtain forming structure to the electronic cigarette, which is only for discussion and does not limit the application environment of the air curtain forming structure in this embodiment.
  • the atomizer includes an airflow channel 11, and the airflow channel 11 is used to transmit atomized gas.
  • the atomizer also includes a first air inlet passage 12, which communicates with the air flow passage 11, and the first air inlet passage 12 is used to introduce the external air flow into the air flow channel 11 to connect the atomizing gas on the inner wall of the air flow channel 11 Form a barrier airflow between. Among them, the air flow is blocked to form an air curtain.
  • the atomizer also includes an air outlet channel 72.
  • the air flow channel 11 is provided on the air outlet channel 72.
  • the first air inlet channel 12 is provided on the side wall of the air outlet channel 72.
  • the first air inlet channel 12 enters the air outlet channel 72 and flows along the inner wall of the air outlet channel 72 to form a barrier airflow between the inner wall of the air outlet channel 72 and the atomizing gas, which can effectively reduce the high temperature and low temperature of the atomizing gas in the air outlet channel 72
  • the contact with the inner wall of the gas outlet channel 72 reduces the condensation of the atomized gas.
  • the blocking airflow Q1 is located between the inner wall of the air outlet channel 72 and the atomizing gas G to block the inner wall of the air outlet channel 72 and the atomizing gas G.
  • the atomizer further includes an atomization cavity 71.
  • the atomizing cavity 71 is provided with an atomizing core 40 for atomizing the aerosol generating substrate to form an atomizing gas.
  • the atomization cavity 71 communicates with the air outlet channel 72.
  • the atomization cavity 71 is provided with a second air inlet passage 15.
  • the external airflow will enter the atomization cavity 71 through the second air inlet passage 15, so as to carry the atomization gas in the atomization cavity 71 to be discharged through the air outlet passage 72, thereby accelerating the discharge of the atomization gas,
  • the contact between the atomization gas and the inner wall of the atomization cavity 71 and the atomization gas and the inner wall of the air outlet channel 72 can also be reduced, and the condensation of the atomization gas can also be alleviated.
  • the first air inlet passage 12 is provided in the part of the air outlet passage 72 close to the atomization cavity 71, as shown in FIG. 22, so as to avoid as much as possible fogging in the air outlet passage 72 between the first air inlet passage 12 and the atomization cavity 71.
  • the phenomenon of gas condensation further alleviates the condensation of atomized gas.
  • the atomizer includes a plurality of first air inlet passages 12, and the plurality of first air inlet passages 12 are arranged at intervals along the circumferential direction of the air outlet passage 72 in sequence. Furthermore, the plurality of first air intake passages 12 are evenly spaced along the circumference of the air outlet passage 72, so that the side walls of the air outlet passage 72 evenly enter air, thereby forming a well-distributed air curtain barrier in the air outlet passage 72 airflow.
  • the first air inlet passage 12 is preferably a circular hole, as shown in FIG. 23a, or a long strip hole, as shown in FIG. 23b, etc., and the diameter of the first air inlet passage 12 in the form of a circular hole may be 0.3 mm, 0.4mm, etc., and the width of the first air inlet passage 12 in the form of a strip may be 0.3mm, 0.4mm, etc., which is not limited here.
  • the following table shows the accumulation of condensate when the conventional air outlet channel and the air outlet channel 72 of this exemplary embodiment reach different port numbers:
  • the air curtain forming structure applied to an electronic atomization device includes an air flow channel for transmitting atomized gas.
  • the airflow channel includes a first airflow channel, and the first airflow channel is used to introduce an external airflow into the airflow channel to form a barrier airflow between the inner wall of the airflow channel and the atomizing gas.
  • the present application blocks the inner wall of the airflow channel and the atomizing gas through the blocking airflow, so that the atomizing gas contacts the inner wall of the airflow channel as little as possible, which can alleviate the condensation of the atomized gas, reduce the formation of condensate, and improve users.
  • the use experience reduce the loss of medicine and reduce the risk of leakage phenomenon.
  • FIG. 24 is a schematic structural diagram of an embodiment of the electronic atomization device of the present application.
  • the electronic atomization device may be an electronic cigarette, a medical atomization electronic device, etc., which includes a main body 81 and an air curtain forming structure 82.
  • the main body 81 is connected to the air curtain forming structure 82.
  • the air curtain forming structure 82 includes an air flow channel and an air flow channel. Used to transmit atomized gas.
  • the air curtain forming structure 82 also includes a first air inlet passage, the first air inlet passage communicates with the air flow channel, and the first air inlet passage is used to introduce the external air flow into the air flow channel to form a barrier air flow between the inner wall of the air flow channel and the atomizing gas .
  • the air curtain forming structure 82 has been described in detail in the above-mentioned embodiments, and will not be repeated here.
  • the main body 81 is defined as a collection of other elements of the electronic atomization device except for the air curtain forming structure 82. Specifically, when the air curtain forming structure 82 is an atomizing nozzle applied to an electronic atomizing device, the main body 81 includes the main body of the electronic atomizing device (including the power supply and the circuit part of the electronic atomizing device) and the atomizer defogging Other components other than the nozzle (including the atomization core, etc.); and when the air curtain forming structure 82 is an atomizer applied to an electronic atomization device, the main body 81 includes the main body of the electronic atomization device.
  • FIG. 25 shows the whole form of the main body 81 and the air curtain forming structure 82 after being assembled, that is, the electronic atomization device.
  • FIG. 26 is a schematic structural diagram of an embodiment of the medical atomization electronic device of the present application.
  • the medical atomization electronic device is applied to the field of medical atomization, and it includes a host 91 (including a power supply and a circuit part of the medical atomization electronic device) and a medical atomizer 92 connected to the host 91.
  • the medical atomizer 92 includes an atomizing suction nozzle, and the atomizing suction nozzle is provided with a first air inlet, a second air inlet, and an air outlet.
  • the medical nebulizer 92 also includes a liquid storage cavity for storing the aerosol generating substrate.
  • the medical atomizer 92 further includes an atomizing core, which is located at the first air inlet, and is used to atomize the aerosol generating substrate to form an atomized gas.
  • the medical nebulizer 92 also includes a flow guide, which is arranged on the atomization suction nozzle and communicates with the second air inlet.
  • the flow guide is used to guide the airflow entering from the second air inlet to flow toward the atomizing core to Carry the atomized gas and output it from the air outlet.
  • the medical nebulizer 92 has been described in detail in the above-mentioned embodiments, and will not be repeated here.
  • FIG. 27a shows an exemplary embodiment of the host 91
  • FIG. 27b shows the assembled form of the host 91 and the medical atomizer 92, that is, the medical atomization electronic device.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Integral; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • connection may be a fixed connection or a detachable connection, or Integral; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种电子雾化装置及其应用的气帘形成结构。其中,气帘形成结构包括气流通道(11),气流通道用于传输雾化气;第一进气通道(12),第一进气通道连通气流通道,第一进气通道用于将外部气流引入气流通道,以在气流通道的内壁和雾化气之间形成阻隔气流,以缓解雾化气冷凝的情况。

Description

电子雾化装置及其应用的气帘形成结构 【技术领域】
本申请涉及雾化设备技术领域,特别是涉及一种电子雾化装置及其应用的气帘形成结构。
【背景技术】
目前,诸如电子烟、医疗雾化器等电子雾化装置,雾化气遇到电子雾化装置的内壁容易发生冷凝现象。例如,电子烟的出气通道内壁上形成的冷凝液容易进入用户口中,对用户的使用体验造成不良影响;对于医疗雾化器,特别是为肺部输送药物的医疗雾化器,携带有药物的雾化气在出气通道冷凝,会造成药量的损耗;并且除了出气通道,其他与雾化气接触的电子雾化装置内壁也容易形成冷凝液滴,容易发生漏液现象。
【申请内容】
有鉴于此,本申请主要解决的技术问题是提供一种电子雾化装置及其应用的气帘形成结构,能够缓解雾化气冷凝的情况。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种应用于电子雾化装置的气帘形成结构。该气帘形成结构包括气流通道,气流通道用于传输雾化气。该气帘形成结构还包括第一进气通道,第一进气通道连通气流通道,第一进气通道用于将外部气流引入气流通道,以在气流通道的内壁和雾化气之间形成阻隔气流。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种电子雾化装置。该电子雾化装置包括主体以及气帘形成结构,所述主体连接所述气帘形成结构。该气帘形成结构还包括第一进气通道,第一进气通道连通气流通道,第一进气通道用于将外部气流引入气流通道,以在气流通道的内壁和雾化气之间形成阻隔气流。
本申请的有益效果是:区别于现有技术,本申请提供一种电子雾化装置及其应用的气帘形成结构。该气帘形成结构包括用于传输雾化气的气流通道。该气流通道包括第一进气通道,第一进气通道用于将外部气流引入气流通道,以在气流通道的内壁和雾化气之间形成阻隔气流。其中,本申请通过该阻隔气流阻隔气流通道的内壁和雾化气,使得雾化气尽可能少地接触气流通道的内壁,能够缓解雾化气冷凝的情况,减少冷凝液的形成,进而改善用户的使用体验、减少药量的损耗以及降低漏液现象发生的风险等。
【附图说明】
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。此外,这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
图1是本申请雾化吸嘴第一实施例的结构示意图;
图2是本申请雾化吸嘴第一实施例的立体结构示意图;
图3是本申请雾化吸嘴的气道体的第一进气通道的结构示意图;
图4是本申请雾化吸嘴第二实施例的结构示意图;
图5是本申请雾化吸嘴第二实施例的立体结构示意图;
图6是本申请雾化吸嘴第二实施例的仰视结构示意图;
图7是本申请雾化吸嘴第三实施例的结构示意图;
图8是本申请雾化吸嘴第三实施例的剖面结构示意图;
图9是本申请雾化吸嘴第三实施例的俯视结构示意图;
图10是本申请雾化器第一实施例的结构示意图;
图11是本申请雾化器第一实施例的局部剖面结构示意图;
图12是本申请雾化器第一实施例的局部剖面结构另一视角的示意图;
图13是本申请雾化吸嘴第四实施例的结构示意图;
图14是本申请雾化吸嘴第四实施例的剖面结构示意图;
图15是本申请雾化吸嘴第四实施例的俯视结构示意图;
图16是本申请雾化器第二实施例的结构示意图;
图17是本申请雾化器第二实施例的局部剖面结构示意图;
图18是本申请雾化器分流口的中心线与第一导流部和第二导流部的连接处的相对位置关系的结构示意图;
图19是本申请雾化器第三实施例的结构示意图;
图20是本申请雾化器第三实施例A-A方向的剖面结构示意图;
图21是本申请雾化器第三实施例的仰视结构示意图;
图22是本申请雾化器第四实施例的结构示意图;
图23是本申请出气通道一实施例的结构示意图;
图24是本申请电子雾化装置一实施例的结构示意图;
图25是本申请电子雾化装置另一实施例的结构示意图;
图26是本申请医疗雾化电子装置一实施例的结构示意图;
图27是本申请医疗雾化电子装置另一实施例的结构示意图。
【具体实施方式】
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
为解决现有技术中雾化气的冷凝情况较为严重的技术问题,本申请的一实施例提供一种应用于电子雾化装置的气帘形成结构。该气帘形成结构包括气流通道,气流通道用于传输雾化气。该气帘形成结构还包括第一进气通道,第一进气通道连通气流通道,第一进气通道用于将外部气流引入气流通道,以在气流通道的内壁和雾化气之间形成阻隔气流。以下进行详细阐述。
请参阅图1,图1是本申请雾化吸嘴第一实施例的结构示意图。
下文对气帘形成结构为应用于电子雾化装置的雾化吸嘴的一个示例性实施例进行阐述。
在本实施例中,气帘形成结构采用雾化吸嘴的形式。本实施例提供的雾化吸嘴可以应用于电子烟、医疗雾化器等电子雾化装置。具体地,雾化吸嘴包括气流通道11,气流通道11用于传输雾化气。雾化吸嘴还包括第一进气通道12,第一进气通道12连通气流通道11,第一进气通道12用于将外部气流引入气流通道11,以在气流通道11的内壁和雾化气之间形成阻隔气流。其中,阻隔气流形成气帘的形式。
进一步地,雾化吸嘴还包括连通气流通道11的出气口13,第一进气通道12靠近气流通道11的内壁,并且第一进气通道12的出口朝向出气口13,以保证经第一进气通道12进入气流通道11的气流能够沿气流通道11的内壁流动,即形成阻隔气流,能够阻隔雾化气和气 流通道11的内壁,使得雾化气尽可能少地接触气流通道11的内壁,能够缓解雾化气冷凝的情况,减少冷凝液的形成。
具体地,雾化吸嘴包括气道体21及吸嘴部。其中,吸嘴部包括管体22,气流通道11设于气道体21和管体22。管体22远离气道体21的一端为出气口13。第一进气通道12开设于气道体21靠近管体22的内壁的位置,以在管体22的内壁和雾化气之间形成阻隔气流。
气流通道11包括入口通道111和导气通道112。管体22具有导气通道112。气道体21安装于管体22的一端,气道体21具有入口通道111,气道体21的入口通道111与管体22的导气通道112连通。其中,入口通道111用于导入雾化气,并将雾化气输送至导气通道112中。
请参阅图1和图2,图2是本申请雾化吸嘴第一实施例的立体结构示意图。其中,气道体21安装于管体22的一端时,部分抵接于导气通道112的一端,并遮挡部分导气通道112。气道体21遮挡导气通道112的位置处设置有与导气通道112连通的第一进气通道12。可选地,气道体21具有抵接导气通道112的一端并遮挡部分导气通道112的壁部211,第一进气通道12位于壁部211上,并与导气通道112连通。
由于雾化气中含有水汽,容易在导气通道112的内壁形成冷凝液,设置第一进气通道12,第一进气通道12通入空气,在雾化吸嘴进行抽吸时,即在管体22远离气道体21的一端进行抽吸时,在雾化吸嘴内部形成气压差,在气压差的作用下,使得第一进气通道12中进入的空气附着在导气通道112的内壁,并在导气通道112的内壁形成阻隔气流,进而将雾化气与导气通道112的内壁隔离,以减少雾化气在导气通道112的内壁形成的冷凝液。在雾化吸嘴未进行抽吸时,雾化吸嘴内部没有气压差,导气通道112的内壁没有阻隔气流。
进一步地,阻隔气流的流动方向平行于气流通道11的内壁,即阻隔气流的流动方向平行于导气通道112的内壁,也就是阻隔气流的流动方向平行于管体22的内壁,以保证阻隔气流能够起到良好的阻隔雾化气和管体22的内壁的作用。
可选地,为了使导气通道112的内壁均附着有阻隔气流,以形成气帘形式,在一具体实施例中,第一进气通道12的数量可以为多个,且该多个第一进气通道12沿壁部211的周向彼此间隔排布。
请一并参阅图3,图3是本申请雾化吸嘴的气道体的第一进气通道的结构示意图。气道体21包括遮挡导气通道112的壁部211。第一进气通道12位于壁部211,且与导气通道112连通。如图3所示,第一进气通道12的数量为多个,其均匀的沿壁部211周向排布。在一具体实施例中,第一进气通道12的形状不做限定,其只要能够在抽吸时使空气进入导气通道112即可。在一可选实施例中,第一进气通道12的形状可以为方形、圆形、三角形中任意一种或任意组合。
进一步的,在设置第一进气通道12时,当对其大小进行合理规划时,可实现第一进气通道12中进入的空气能够在导气通道112的内壁形成完全覆盖导气通道112的内壁的阻隔气流。
请继续参阅图1,本申请的雾化吸嘴的气道体21包括第一气道部212、第二气道部213及连接第一气道部212与第二气道部213并遮挡部分导气通道112的壁部211。其中,入口通道111主要位于第一气道部212中,且与导气通道112连通,第二气道部213套设在吸嘴部的管体22的外侧。在一具体实施例中,壁部211抵接导气通道112的一端,在另一实施例中,壁部211还可以与导气通道112的一端具有间隙,其只要能够保证雾化气不会外泄即可。
可选地,请继续参阅图2,第一气道部212还包括通气部214及第一连接部215,其中,第一连接部215位于壁部211远离第二气道部213的一侧,通气部214位于第一连接部215远离壁部211的一侧。其中,第一连接部215的横截面面积(其中,横截面定义为垂直于轴向的截面,下同)小于通气部214的横截面面积,第一连接部215与通气部214连接的位置处形成卡接口216,卡接口216用于卡接雾化气产生装置(即电子雾化装置用于产生雾化气 的部分,图未示)。进一步地,请结合图1和图2,卡接口216的位置处形成有综合气道14,空气从综合气道14进入第一进气通道12,进而从第一进气通道12进入至导气通道112,在抽吸时,产生压力差后,在压力差的作用下在导气通道112的内壁形成阻隔气流。阻隔气流将雾化气与导气通道112隔离,进而减少雾化气在导气通道112形成的冷凝液。
可选地,在一实施方式中,气道体21中的第一气道部212、第二气道部213及连接第一气道部212及第二气道部213的壁部211一体成型。在另一实施方式中,气道体21中的第一气道部212、第二气道部213及连接第一气道部212及第二气道部213的壁部211还可以通过焊接等工艺连接而成。
可选地,气道体21的第二气道部213套设于吸嘴部的管体22的外侧。具体的,在一实施方式中,气道体21与管体22可以一体成型设计。在另一实施方式中,第二气道部213还可以通过匹配的方式套设于吸嘴部的管体22的外侧,为了防止雾化气外泄,在将第二气道部213套设于吸嘴部的管体22的外侧时可使用过盈配合的方式进行设置。
本实施例提供的雾化吸嘴,在遮挡导气通道112的壁部211设置与导气通道112连通的第一进气通道12,在管体22有抽吸动作时,雾化气从入口通道111进入导气通道112的同时,空气从第一进气通道12的位置处进入导体通道,在气压的作用下,从第一进气通道12进入的空气会在导气通道112的内壁形成阻隔气流,从而将雾化气与导气通道112的内壁隔离,进而防止雾化气在导气通道112的内壁形成冷凝液。
请参阅图4,图4是本申请雾化吸嘴第二实施例的结构示意图。与上述图1所示的第一实施例相比,区别在于:本实施例在通气部214的外侧设置有第二进气通道15。第二进气通道15用于加快雾化气的排出速度,以进一步防止雾化气在导气通道112的内壁形成冷凝液。
可选地,第二进气通道15包括进气部151及导气部152,具体地,进气部151在通气部214的周围沿平行于壁部211的方向设置,导气部152的延伸方向平行于入口通道111的延伸方向设置,且导气部152连接进气部151位于通气部214内的一端。其中,空气自进气部151中进入,并从导气部152流向导气通道112。
可选地,请参阅图4和图5,图5是本申请雾化吸嘴第二实施例的立体结构示意图。第二进气通道15位于通气部214,第一进气通道12位于连接第一气道部212及第二气道部213的壁部211。在一具体实施例中,当吸嘴部的管体22产生抽吸力时,雾化气从入口通道111进入,空气从第二进气通道15及第一进气通道12的位置进入。请结合图6,图6是本申请雾化吸嘴第二实施例的仰视结构示意图。如图6所示,第一进气通道12的位置较之第二进气通道15中的导气部152更靠近于管体22的内壁。因此,当进行抽吸时,在气压的作用下,第一进气通道12进入的空气在吸嘴部的管体22的导体通道的内壁形成阻隔气流,进而将从入口通道111进入的雾化气与导体通道的内壁隔离,以减少雾化气与导体通道的内壁形成的冷凝液。进一步的,设置第二进气通道15,在进行抽吸时,第二进气通道15进入空气,该空气加快自入口通道111进入的雾化气在导气通道112中的排出速度,进一步防止雾化气与导体通道的内壁形成冷凝液。
进一步地,请继续参阅图4和图5,第一连接部215与通气部214连接的位置处形成卡接口216,卡接口216用于卡接雾化气产生装置(图未示)。进一步地,卡接口216的位置处形成有综合气道14,空气从综合气道14进入第一进气通道12及第二进气通道15,进而从第一进气通道12进入至导气通道112,在抽吸时,产生压力差后,在压力差的作用下在导气通道112的内壁形成阻隔气流。如图4所示,阻隔气流(如图4中箭头Q1所示)将雾化气(如图4中箭头G所示)与导气通道112隔离,进而减少雾化气在导气通道112内壁形成冷凝液。空气从第二进气通道15进入导气部152,在进入导气通道112形成第二气流,第二气流加快雾化气的排出速度。
可选地,在本实施例中,第二进气通道15的导气部152可以为方形、圆形、三角形中任意一种或任意组合。第二进气通道15的进气部151同样可以为方形、圆形、三角形中任意一 种或任意组合,具体不做限定,其只要能够将空气引入导气部152,进而进入导气通道112中即可。
在一实施例中,第二进气通道15为至少一个,且其在通气部214的外侧周向排布。
在一实施例中,第二进气通道15可以与第一进气通道12的位置对应设置,在另一实施例中,第二进气通道15还可以与第一进气通道12的位置错开设置。具体的,为了减少进入第一进气通道12及第二进气通道15的空气形成的气流之间的相互影响,第二进气通道15与第一进气通道12的位置错开设置,如图6所示。
在一实施例中,在设置第一进气通道12及第二进气通道15时,为保证第一进气通道12进入的空气在导气通道112的内壁形成阻隔气流,进而实现将雾化气与导气通道112隔离,并实现自第二进气通道15进入的空气能够加快雾化气的排出速度,第二进气通道15及第一进气通道12形成的气流具有速度差。在一具体实施例中,第一进气通道12形成的气流的流速要大于第二进气通道15形成的气流的流速,以此能在实现减少冷凝液的效果的同时,减少对雾化气的传输方向的影响。
具体的,第一进气通道12及第二进气通道15形成的气流的流速与开孔的尺寸相关,开孔的尺寸越大,流速越快。因此,在一具体实施方式中,为实现第一进气通道12形成的气流的流速要大于第二进气通道15形成的气流的流速,设置第一进气通道12的尺寸(即横截面面积,其中第一进气通道12的横截面应当是沿垂直于第一进气通道12的延伸方向截取的截面)大于第二进气通道15的尺寸(即横截面面积,其中第二进气通道15的横截面应当是沿垂直于第二进气通道15的延伸方向截取的截面),或者在另一实施例中,设置第一进气通道12的数量大于第二进气通道15的数量。
如图4所示,在用户进行抽吸而产生气压差时,在气压差的作用下,外部气流经第一进气通道12进入气流通道11(即导气通道112),在气流通道11的内壁形成阻隔气流Q1。阻隔气流Q1将雾化气G与气流通道11的内壁隔离,以减少雾化气G在气流通道11的内壁形成的冷凝液。另外,在气压差的作用下,经第二进气通道15进入气流通道11的气流Q2沿雾化气G的外边沿进行流动,以加快雾化气G的排出速度。
请参阅图7和图8,图7是本申请雾化吸嘴第三实施例的结构示意图,图8是本申请雾化吸嘴第三实施例的剖面结构示意图。
下文对气帘形成结构为应用于电子雾化装置的雾化吸嘴的一个示例性实施例进行阐述。
在本实施例中,气帘形成结构采用雾化吸嘴的形式。本实施例提供的雾化吸嘴可以应用于电子烟、医疗雾化吸嘴等电子雾化装置。
具体地,雾化吸嘴包括气流通道11,气流通道11用于传输雾化气。雾化吸嘴还包括第一进气通道12,第一进气通道12连通气流通道11,第一进气通道12用于将外部气流引入气流通道11,以在气流通道11的内壁和雾化气之间形成阻隔气流(如图8中箭头Q1所示,下同)。其中,阻隔气流形成气帘的形式。
进一步地,雾化吸嘴还设有第一进气口16和出气口13,第一进气口16和出气口13相对设置且二者分别连通气流通道11,雾化气自第一进气口16进入气流通道11,并通过气流通道11传输至出气口13,进而从出气口13输出,以供用户吸食。第一进气通道12靠近气流通道11的内壁,并且第一进气通道12的出口朝向出气口13,以保证经第一进气通道12进入气流通道11的气流能够沿气流通道11的内壁(即雾化吸嘴的内壁)流动,即形成阻隔气流(如图8中箭头Q1所示,下同),能够阻隔雾化气和气流通道11的内壁,即阻隔雾化气和雾化吸嘴的内壁,使得雾化气尽可能少地接触雾化吸嘴的内壁,能够缓解雾化气冷凝的情况,减少冷凝液的形成。
进一步地,阻隔气流的流动方向平行于气流通道11的内壁,即阻隔气流的流动方向平行于雾化吸嘴的内壁,以保证阻隔气流能够起到良好的阻隔雾化气和雾化吸嘴的内壁的作用。
在一实施例中,请继续参阅图8,雾化吸嘴还包括第一导流部31。第一导流部31和气流 通道11的内壁之间形成有第一进气通道12,用于引导通过第一进气通道12引入的气流沿气流通道11的内壁流动,以形成阻隔气流。
进一步地,雾化吸嘴还包括第二连接部32。第一导流部31和气流通道11的内壁之间通过第二连接部32连接。
具体地,请一并参阅图9,第一导流部31和气流通道11的内壁之间设有多个第二连接部32。该多个第二连接部32沿第一导流部31的周向依次间隔设置,相邻的第二连接部32之间形成第一进气通道12,即形成至少一个第一进气通道12。如此一来,实现了第一导流部31在雾化吸嘴中相对位置的固定,同时也保证了第一导流部31和气流通道11的内壁之间的第一进气通道12的形成。
进一步地,第一导流部31和气流通道11的内壁之间可以形成多个第一进气通道12,经该多个第一进气通道12形成的阻隔气流形成气帘的形式,如图8所示,极大程度地使得雾化气尽可能少地接触雾化吸嘴的内壁(即气流通道11的内壁),能够缓解雾化气冷凝的情况,减少冷凝液的形成。
可选地,第一导流部31可以为对应雾化吸嘴内部空间的环状,其沿雾化吸嘴的周向环绕。
在一实施例中,请继续参阅图8,雾化吸嘴还包括第二导流部33。第二导流部33相对第一导流部31远离气流通道11的内壁,并且第二导流部33和第一导流部31之间形成第二进气通道15,第二进气通道15的出口朝向出气口13,经第二进气通道15进入的气流(如图8中箭头Q2所示)用于引导雾化气从出气口13输出,从而加快雾化气的排出。
进一步地,第二导流部33呈环状设置,以包围形成雾化吸嘴的第一进气口16。
进一步地,气帘形成结构还包括第三连接部34,第二导流部33和第一导流部31之间通过第三连接部34连接,从而通过第一导流部31固定第二导流部33在雾化吸嘴中的相对位置。
具体地,请一并参阅图9,第二导流部33和第一导流部31之间设有多个第三连接部34,多个第三连接部34沿第二导流部33的周向依次间隔设置,相邻的第三连接部34之间形成第二进气通道15。如此一来,实现了第二导流部33在雾化吸嘴中相对位置的固定,同时也保证了第二导流部33和第一导流部31之间的第二进气通道15的形成。
请参阅图10和图11,图10是本申请雾化器第一实施例的结构示意图,图11是本申请雾化器第一实施例的局部剖面结构示意图。
下文对气帘形成结构为应用于电子雾化装置的雾化器的一个示例性实施例进行阐述。
在本实施例中,气帘形成结构采用雾化器的形式。本实施例提供的雾化器可以应用于电子烟、医疗雾化器等电子雾化装置。图10展示了气帘形成结构应用于医疗雾化器的情况,仅为论述需要,并非因此对本实施例气帘形成结构的应用环境造成限定。
在本实施例中,请参阅图10,气帘形成结构包括雾化吸嘴、雾化芯40以及储液腔50。雾化吸嘴设有第一进气口16和出气口13,雾化气自第一进气口16进入雾化吸嘴,并通过雾化吸嘴传输至出气口13,进而从出气口13输出,以供用户吸食。雾化芯40设于雾化吸嘴的第一进气口16的所在位置处,用于雾化储液腔50中所存储的气溶胶生成基质而产生雾化气。其中,雾化芯40以及储液腔50等结构组成本实施例气帘形成结构的雾化气产生装置,用于产生雾化气。
针对本实施例气帘形成结构应用于医疗雾化器的情况,雾化芯40可以是超声波雾化片等,超声波雾化片利用高频的震荡使得气溶胶生成基质雾化而产生雾化气,其具体原理属于本领域技术人员的理解范畴,在此就不再赘述。当然,针对气帘形成结构应用于其它领域的情况,雾化芯40也可以采用加热雾化气溶胶生成基质等产生雾化气的方式,在此不做限定。
具体地,请一并参阅图11,雾化吸嘴包括气流通道11,气流通道11用于传输雾化气。雾化吸嘴还包括第一进气通道12,第一进气通道12连通气流通道11,第一进气通道12用于将外部气流引入气流通道11,以在气流通道11的内壁和雾化气之间形成阻隔气流(如图11中箭头Q1所示,下同)。其中,阻隔气流形成气帘的形式。
进一步地,第一进气口16和出气口13相对设置且二者分别连通气流通道11。第一进气通道12靠近气流通道11的内壁,并且第一进气通道12的出口朝向出气口13,以保证经第一进气通道12进入气流通道11的气流能够沿气流通道11的内壁(即雾化吸嘴的内壁)流动,即形成阻隔气流,能够阻隔雾化气和气流通道11的内壁,即阻隔雾化气和雾化吸嘴的内壁,使得雾化气尽可能少地接触雾化吸嘴的内壁,能够缓解雾化气冷凝的情况,减少冷凝液的形成。
进一步地,阻隔气流的流动方向平行于气流通道11的内壁,即阻隔气流的流动方向平行于雾化吸嘴的内壁,以保证阻隔气流能够起到良好的阻隔雾化气和雾化吸嘴的内壁的作用。
在一实施例中,请继续参阅图11,雾化吸嘴还包括第一导流部31。第一导流部31和气流通道11的内壁之间形成有第一进气通道12,用于引导通过第一进气通道12引入的气流沿气流通道11的内壁流动,以形成阻隔气流。
进一步地,雾化吸嘴还包括第二连接部32。第一导流部31和气流通道11的内壁之间通过第二连接部32连接。
具体地,第一导流部31和气流通道11的内壁之间设有多个第二连接部32。该多个第二连接部32沿第一导流部31的周向依次间隔设置,相邻的第二连接部32之间形成第一进气通道12,即形成至少一个第一进气通道12。如此一来,实现了第一导流部31在雾化吸嘴中相对位置的固定,同时也保证了第一导流部31和气流通道11的内壁之间的第一进气通道12的形成。
可选地,第一导流部31可以为对应雾化吸嘴内部空间的环状,其沿雾化吸嘴的周向环绕。
在一实施例中,请继续参阅图11,雾化吸嘴还包括第二导流部33。第二导流部33相对第一导流部31远离气流通道11的内壁,并且第二导流部33和第一导流部31之间形成第二进气通道15,第二进气通道15的出口朝向出气口13,经第二进气通道15进入的气流用于引导雾化气从出气口13输出,从而加快雾化气的排出。
进一步地,第二导流部33呈环状设置,以包围形成雾化吸嘴的第一进气口16。
进一步地,气帘形成结构还包括第三连接部34,第二导流部33和第一导流部31之间通过第三连接部34连接,从而通过第一导流部31固定第二导流部33在雾化吸嘴中的相对位置。
具体地,第二导流部33和第一导流部31之间设有多个第三连接部34,多个第三连接部34沿第二导流部33的周向依次间隔设置,相邻的第三连接部34之间形成第二进气通道15。如此一来,实现了第二导流部33在雾化吸嘴中相对位置的固定,同时也保证了第二导流部33和第一导流部31之间的第二进气通道15的形成。
在一实施例中,请继续参阅图11,气帘形成结构还包括汇流通道17,汇流通道17的一端为进气口,即第二进气口18,另一端为分流口171,分流口171分别连通第一进气通道12和第二进气通道15。
具体地,汇流通道17包括连通的第一通道段172和第二通道段173,第一通道段172远离第二通道段173的端口为分流口171,第二通道段173远离第一通道段172的端口为进气口,即第二进气口18。其中,第一通道段172和第二通道段173的延伸方向不同。
图11展示了第一通道段172的延伸方向为水平方向,第二通道段173的延伸方向为竖直方向,并且第二通道段173朝向出气口13延伸。当用户抽吸时,外部的气流自第二进气口18进入第二通道段173,并传输至第一通道段172,进而通过分流口171分别经第一进气通道12和第二进气通道15进入雾化吸嘴中的气流通道11,其中气流流动情况如图11中虚线箭头所示。
进一步地,气帘形成结构设有安装部60。安装部60设有安装凸起61和通风凹槽62,安装凸起61用于固定雾化吸嘴。在雾化吸嘴固定于安装部60后,雾化吸嘴和安装部60之间形成第一通道段172,具体是雾化吸嘴和安装部60的底部之间形成第一通道段172;并且通风凹槽62和雾化吸嘴之间形成第二通道段173。
在一实施例中,请继续参阅图11,雾化吸嘴的外周设有沿其周向环绕的限位槽35,限位槽35用于放置弹性圈,以固定雾化吸嘴。具体地,在雾化吸嘴嵌入于上文所述的安装部60后,限位槽35中放置的弹性圈与安装部60中的安装凸起61弹性过盈配合,从而将雾化吸嘴固定于安装部60中。
需要说明的是,安装部60中通风凹槽62所在位置处的弹性圈不会堵塞雾化吸嘴和通风凹槽62之间的间隙,以保证雾化吸嘴和通风凹槽62之间的通风功能,进而保证外部气流能够进入气流通道11,以形成阻隔气流以及加快雾化气的排出。
可选地,限位槽35的数量可以是多个,该多个限位槽35沿雾化吸嘴的轴向彼此间隔设置。通过多个限位槽35的设计,能够保证雾化吸嘴和安装部60之间具有足够的结合强度,以避免雾化吸嘴脱落。并且,弹性圈可以是硅胶圈等,在此不做限定。
请参阅图12,图12是本申请雾化器第一实施例的局部剖面结构另一视角的示意图。以下对本示例性实施例中第一进气通道12和第二进气通道15的气流情况进行阐述。
一方面,第一进气通道12的横截面面积会影响阻隔气流的气流量。具体地,在用户抽吸所引起的气压差一定的情况下,在一定范围内,第一进气通道12的横截面面积越大,阻隔气流的气流量就会越大。具体表现为第一导流部31和雾化吸嘴的内壁(即气流通道11的内壁)之间的距离D越大,第一进气通道12的横截面面积越大,阻隔气流的气流量也越大。
可以理解的是,由于用户抽吸所引起的气压差有限,因此阻隔气流的气流量是存在上限的,当阻隔气流的气流量达到上限时,即便继续增大第一导流部31和雾化吸嘴的内壁的距离,阻隔气流的气流量也不会具有明显的涨幅。
另一方面,经第二进气通道15进入气流通道11(即雾化吸嘴)的气流(如图12中箭头Q2所示,下同)的流向将会影响气流通道11内部的气流情况。具体地,经第二进气通道15进入的气流的流向与预设方向的夹角(如图12中角θ所示,下同)过小时,经第二进气通道15进入的气流会受阻隔气流的影响而被阻隔气流吸引,致使经第二进气通道15进入的气流无法很好地携带雾化气输出,其加快雾化气排出的效果将会大打折扣;而经第二进气通道15进入的气流的流向与预设方向的夹角过大时,经第二进气通道15进入的气流会对雾化气的输出路径形成阻挡,阻碍雾化气传输至雾化吸嘴的出气口13。其中,预设方向平行于阻隔气流(如图12中箭头Q1所示)的流向,即预设方向可以利用阻隔气流的流向来表示。
有鉴于此,经第二进气通道15进入的气流的流向与预设方向的夹角优选为30°至45°,例如30°、33°、37°、41°、43°、45°等。如此一来,能够保证经第二进气通道15进入的气流携带雾化气输出以加快雾化气排出的功能实现。
需要说明的是,可以通过调整第二进气通道15所在位置处的雾化吸嘴的结构来调整经第二进气通道15进入的气流的流向。举例而言,可以通过调整第一导流部31和第二导流部33在气流通道11轴向上的位置来调整经第二进气通道15进入的气流的流向,在此不做限定。
请参阅图13和图14,图13是本申请雾化吸嘴第四实施例的结构示意图,图14是本申请雾化吸嘴第四实施例的剖面结构示意图。
下文对气帘形成结构为应用于电子雾化装置的雾化吸嘴的一个示例性实施例进行阐述。该雾化吸嘴设有第一进气口16、第二进气口18以及出气口13,第一进气口16和出气口13相对设置。该雾化吸嘴还包括导流件,导流件连通第二进气口18,导流件用于引导自第二进气口18进入的气流朝向第一进气口16流动。以下进行详细阐述。
在本实施例中,气帘形成结构采用雾化吸嘴的形式。本实施例提供的雾化吸嘴可以应用于电子烟、医疗雾化吸嘴等电子雾化装置。
具体地,请参阅图14,雾化吸嘴包括气流通道11,气流通道11用于传输雾化气。雾化吸嘴还包括第一进气通道12,第一进气通道12连通气流通道11,第一进气通道12用于将外部气流引入气流通道11,以在气流通道11的内壁和雾化气之间形成阻隔气流(如图14中箭头Q1所示,下同)。其中,阻隔气流形成气帘的形式。
进一步地,雾化吸嘴还设有第一进气口16和出气口13,第一进气口16和出气口13相对设置且二者分别连通气流通道11,雾化气自第一进气口16进入气流通道11,并通过气流通道11传输至出气口13,进而从出气口13输出,以供用户吸食。第一进气通道12靠近气流通道11的内壁,并且第一进气通道12的出口朝向出气口13,以保证经第一进气通道12进入气流通道11的气流能够沿气流通道11的内壁(即雾化吸嘴的内壁)流动,即形成阻隔气流,能够阻隔雾化气和气流通道11的内壁,即阻隔雾化气和雾化吸嘴的内壁,使得雾化气尽可能少地接触雾化吸嘴的内壁,能够缓解雾化气冷凝的情况,减少冷凝液的形成。
进一步地,阻隔气流的流动方向平行于气流通道11的内壁,即阻隔气流的流动方向平行于雾化吸嘴的内壁,以保证阻隔气流能够起到良好的阻隔雾化气和雾化吸嘴的内壁的作用。
在一实施例中,请继续参阅图14,雾化吸嘴还设有不同于第一进气口16的第二进气口18,第二进气口18用于引导外部气流进入雾化吸嘴。雾化吸嘴还包括导流件,导流件连通第二进气口18,导流件用于引导自第二进气口18进入的气流朝向第一进气口16流动,进而用于携带自第一进气口16进入雾化吸嘴的雾化气从雾化吸嘴的出气口13输出,以供用户吸食并且加快雾化气的排出。
具体地,导流件的至少部分沿远离雾化吸嘴的内壁(即气流通道11的内壁)和出气口13的方向倾斜设置,用于引导自第二进气口18进入的气流朝向第一进气口16流动,进而用于携带自第一进气口16进入雾化吸嘴的雾化气从雾化吸嘴的出气口13输出,以供用户吸食并且加快雾化气的排出。
在一实施例中,导流件包括第一导流部31。第一导流部31和气流通道11的内壁(即雾化吸嘴的内壁)之间形成有第一进气通道12,用于引导通过第一进气通道12引入的气流沿气流通道11的内壁流动,其中经第一进气通道12进入的气流用于在雾化吸嘴的内壁和雾化气之间形成阻隔气流(如图14中箭头Q1所示,下同)。
进一步地,雾化吸嘴还包括第二连接部32。第一导流部31和气流通道11的内壁之间通过第二连接部32连接。
具体地,请一并参阅图15,第一导流部31和气流通道11的内壁之间设有多个第二连接部32。该多个第二连接部32沿第一导流部31的周向依次间隔设置,相邻的第二连接部32之间形成第一进气通道12,即形成至少一个第一进气通道12。如此一来,实现了第一导流部31在雾化吸嘴中相对位置的固定,同时也保证了第一导流部31和气流通道11的内壁之间的第一进气通道12的形成。
可选地,第一导流部31可以为对应雾化吸嘴内部空间的环状,其沿雾化吸嘴的周向环绕。
在一实施例中,请继续参阅图14,导流件还包括第二导流部33。第二导流部33设于第一导流部31远离出气口13的一侧,即第一导流部31相对第二导流部33靠近出气口13。第二导流部33沿远离气流通道11的内壁和出气口13的方向倾斜设置,用于形成第二进气通道15,经第二进气通道15进入的气流(如图14中箭头Q2所示,下同)用于引导雾化气从出气口13输出,进而加快雾化气的排出。
具体地,经第二进气通道15进入的气流沿第二导流部33流动至第一进气口16,以与第一进气口16处的雾化气混合,进而携带雾化气通过第一进气口16并从出气口13输出。
可选地,第二导流部33可以为对应雾化吸嘴内部空间的环状,其沿雾化吸嘴的周向环绕。
需要说明的是,本示例性实施例中导流件位于雾化吸嘴远离出气口13的一端,旨在雾化吸嘴装配于电子雾化装置后,使得导流件尽可能地靠近电子雾化装置的雾化芯,如此导流件所引导的气流能够最大限度地带动雾化芯附近的雾化气输出,最大限度地减缓雾化芯附近的雾化气滞留的情况,进而最大限度地减缓雾化芯附近的雾化气冷凝的情况。
当然,在本申请的其它实施例中,导流件及其连通的第二进气口18可以设于雾化吸嘴轴向上的其它位置,同样能够达到减缓雾化芯附近的雾化气滞留情况的目的,在此不做限定。
请参阅图16和图17,图16是本申请雾化器第二实施例的结构示意图,图17是本申请 雾化器第二实施例的局部剖面结构示意图。
下文对气帘形成结构为应用于电子雾化装置的雾化器的一个示例性实施例进行阐述。
在本实施例中,气帘形成结构采用雾化器的形式。本实施例提供的雾化器可以应用于电子烟、医疗雾化器等电子雾化装置。图16展示了气帘形成结构应用于医疗雾化器的情况,仅为论述需要,并非因此对本实施例气帘形成结构的应用环境造成限定。
在本实施例中,请参阅图16,气帘形成结构包括雾化吸嘴、雾化芯40以及储液腔50。雾化吸嘴设有第一进气口16和出气口13,雾化气自第一进气口16进入雾化吸嘴,并通过雾化吸嘴传输至出气口13,进而从出气口13输出,以供用户吸食。雾化芯40设于雾化吸嘴的第一进气口16的所在位置处,用于雾化储液腔50中所存储的气溶胶生成基质而产生雾化气。其中,雾化芯40以及储液腔50等结构组成本实施例气帘形成结构的雾化气产生装置,用于产生雾化气。
针对本实施例气帘形成结构应用于医疗雾化器的情况,雾化芯40可以是超声波雾化片等,超声波雾化片利用高频的震荡使得气溶胶生成基质雾化而产生雾化气,其具体原理属于本领域技术人员的理解范畴,在此就不再赘述。当然,针对气帘形成结构应用于其它领域的情况,雾化芯40也可以采用加热雾化气溶胶生成基质等产生雾化气的方式,在此不做限定。
具体地,请参阅图17,雾化吸嘴包括气流通道11,气流通道11用于传输雾化气。雾化吸嘴还包括第一进气通道12,第一进气通道12连通气流通道11,第一进气通道12用于将外部气流引入气流通道11,以在气流通道11的内壁和雾化气之间形成阻隔气流(如图17中箭头Q1所示,下同)。其中,阻隔气流形成气帘的形式。
进一步地,第一进气口16和出气口13相对设置且二者分别连通气流通道11。第一进气通道12靠近气流通道11的内壁,并且第一进气通道12的出口朝向出气口13,以保证经第一进气通道12进入气流通道11的气流能够沿气流通道11的内壁(即雾化吸嘴的内壁)流动,即形成阻隔气流,能够阻隔雾化气和气流通道11的内壁,即阻隔雾化气和雾化吸嘴的内壁,使得雾化气尽可能少地接触雾化吸嘴的内壁,能够缓解雾化气冷凝的情况,减少冷凝液的形成。
进一步地,阻隔气流的流动方向平行于气流通道11的内壁,即阻隔气流的流动方向平行于雾化吸嘴的内壁,以保证阻隔气流能够起到良好的阻隔雾化气和雾化吸嘴的内壁的作用。
在一实施例中,请继续参阅图17,雾化吸嘴还设有不同于第一进气口16的第二进气口18,第二进气口18用于引导外部气流进入雾化吸嘴。雾化吸嘴还包括导流件,导流件连通第二进气口18,导流件用于引导自第二进气口18进入的气流朝向第一进气口16流动,进而用于携带自第一进气口16进入雾化吸嘴的雾化气从雾化吸嘴的出气口13输出,以供用户吸食并且加快雾化气的排出。
也就是说,导流件用于引导气流流向雾化芯40,从而带动雾化芯40附近的雾化气从出气口13输出,能够有效缓解雾化芯40附近的雾化气滞留的情况,进而缓解雾化芯40附近的雾化气冷凝的情况。
具体地,导流件的至少部分沿远离雾化吸嘴的内壁和出气口13的方向倾斜设置,用于引导自第二进气口18进入的气流朝向第一进气口16流动,即引导气流朝向雾化芯40流动,其直冲雾化芯40表面,以携带经雾化芯40雾化形成的雾化气自第一进气口16进入雾化吸嘴并从出气口13输出,加快雾化气的排出,能够从一定程度上减少雾化气接触雾化吸嘴的内壁,进而缓解雾化气冷凝的情况,减少冷凝液的形成。
在一实施例中,请继续参阅图17,导流件包括第一导流部31。第一导流部31和气流通道11的内壁(即雾化吸嘴的内壁)之间形成有第一进气通道12,用于引导通过第一进气通道12引入的气流沿气流通道11的内壁流动,其中经第一进气通道12进入的气流用于在雾化吸嘴的内壁和雾化气之间形成阻隔气流。
进一步地,雾化吸嘴还包括第二连接部32。第一导流部31和气流通道11的内壁之间通 过第二连接部32连接。
具体地,第一导流部31和气流通道11的内壁之间设有多个第二连接部32。该多个第二连接部32沿第一导流部31的周向依次间隔设置,相邻的第二连接部32之间形成第一进气通道12,即形成至少一个第一进气通道12。如此一来,实现了第一导流部31在雾化吸嘴中相对位置的固定,同时也保证了第一导流部31和气流通道11的内壁之间的第一进气通道12的形成。
可选地,第一导流部31可以为对应雾化吸嘴内部空间的环状,其沿雾化吸嘴的周向环绕。
在一实施例中,请继续参阅图17,导流件还包括第二导流部33。第二导流部33设于第一导流部31远离出气口13的一侧,即第一导流部31相对第二导流部33靠近出气口13。第二导流部33沿远离气流通道11的内壁和出气口13的方向倾斜设置,用于形成第二进气通道15,经第二进气通道15进入的气流用于引导雾化气从出气口13输出,进而加快雾化气的排出。
具体地,经第二进气通道15进入的气流沿第二导流部33流动至第一进气口16,以与第一进气口16处的雾化气混合,进而携带雾化气通过第一进气口16并从出气口13输出。
可选地,第二导流部33可以为对应雾化吸嘴内部空间的环状,其沿雾化吸嘴的周向环绕。
在一实施例中,请继续参阅图17,气帘形成结构还包括汇流通道17,汇流通道17的一端为进气口,即第二进气口18,另一端为分流口171,分流口171分别连通第一进气通道12和第二进气通道15。
具体地,汇流通道17包括连通的第一通道段172和第二通道段173,第一通道段172远离第二通道段173的端口为分流口171,第二通道段173远离第一通道段172的端口为进气口,即第二进气口18。其中,第一通道段172和第二通道段173的延伸方向不同。
图17展示了第一通道段172的延伸方向为水平方向,第二通道段173的延伸方向为竖直方向,并且第二通道段173朝向出气口13延伸。当用户抽吸时,外部的气流自第二进气口18进入第二通道段173,并传输至第一通道段172,进而通过分流口171分别经第一进气通道12和第二进气通道15进入雾化吸嘴中的气流通道11,其中气流流动的情况如图17中虚线箭头所示。
进一步地,气帘形成结构设有安装部60。安装部60设有安装凸起61和通风凹槽62,安装凸起61用于固定雾化吸嘴。在雾化吸嘴固定于安装部60后,雾化吸嘴和安装部60之间形成第一通道段172,具体是雾化吸嘴和安装部60的底部之间形成第一通道段172;并且通风凹槽62和雾化吸嘴之间形成第二通道段173。
请参阅图18,图18是本申请雾化器分流口的中心线与第一导流部和第二导流部的连接处的相对位置关系的结构示意图。以下对本示例性实施例中第一进气通道12和第二进气通道15的气流情况进行阐述。
本示例性实施例中经第一进气通道12进入的气流在雾化吸嘴的内壁和雾化气之间形成阻隔气流,使得雾化气尽可能少地接触雾化吸嘴的内壁,能够缓解雾化气冷凝的情况,减少冷凝液的形成;而经第二进气通道15进入的气流引导雾化气从出气口13输出,以加快雾化气排出,从而有效缓解导流件所包围形成的腔体中雾化气冷凝的情况。
由于用户抽吸而引起的气压差一定,因此进入第一进气通道12和第二进气通道15的气流总量一定,因此本示例性实施例通过合理分配进入第一进气通道12和第二进气通道15的气流量,来缓解雾化吸嘴内壁的雾化气冷凝的情况以及导流件所包围形成的腔体中雾化气冷凝的情况。
在一实施例中,分流口171的中心线α(分流口171的中心线α定义为垂直于分流口171的中轴线,下同)过第一导流部31和第二导流部33的连接处,如图18a所示。如此一来,经第一进气通道12进入的气流足以在雾化吸嘴的内壁和雾化气之间形成阻隔气流,减小雾化吸嘴的内壁上雾化气粘附的程度,并且经第二进气通道15进入的气流足以快速地携带雾化气 排出,能够减小导流件所包围形成的腔体中雾化气粘附的程度。
在一替代实施例中,分流口171的中心线α相对第一导流部31和第二导流部33的连接处远离出气口13,如图18b所示。如此一来,经第二进气通道15进入的气流的气流量显著增加,能够进一步加快携带雾化气排出,进一步减小导流件所包围形成的腔体中雾化气粘附的程度,缓解导流件所包围形成的腔体中雾化气冷凝的情况。
在另一替代实施例中,分流口171的中心线α相对第一导流部31和第二导流部33的连接处靠近出气口13,如图18c所示。如此一来,经第一进气通道12进入的气流的气流量显著增加,能够进一步增加雾化吸嘴的内壁和雾化气之间的阻隔气流的气流量,进一步减小雾化吸嘴的内壁上雾化气粘附的程度,缓解雾化吸嘴内壁的雾化气冷凝的情况。
需要说明的是,第一进气通道12和第二进气通道15的横截面面积的大小关系与第一进气通道12和第二进气通道15的气流量的大小关系相同。也就是说,第一进气通道12的横截面面积大于第二进气通道15的横截面面积,则第一进气通道12的气流量大于第二进气通道15的气流量,反之则反。
有鉴于此,本示例性实施例中还可以通过调整导流件的第二导流部33的倾斜程度,来调整第二进气通道15的横截面面积,进而调整第一进气通道12和第二进气通道15的横截面面积的大小情况,达到调整第一进气通道12和第二进气通道15的气流量的目的。
具体地,第二导流部33越朝向远离出气口13的方向倾斜,第二进气通道15的横截面面积越小,第二进气通道15的气流量越小,而第一进气通道12的气流量越大,反之则反。
需要说明的是,通过上述方式,雾化吸嘴的内壁上雾化气的粘附率以及导流件所包围形成的腔体中雾化气的粘附率低于3%。可见,本示例性实施例第一进气通道12和第二进气通道15的设计,能够有效减小雾化气的粘附程度,缓解雾化气冷凝的情况。
请参阅图19和图20,图19是本申请雾化器第三实施例的结构示意图,本申请雾化器第三实施例A-A方向的剖面结构示意图。
下文对气帘形成结构为应用于电子雾化装置的雾化器的一个示例性实施例进行阐述。
在本实施例中,气帘形成结构采用雾化器的形式。本实施例提供的雾化器可以应用于电子烟、医疗雾化器等电子雾化装置。图19展示了气帘形成结构应用于电子烟的情况,仅为论述需要,并非因此对本实施例气帘形成结构的应用环境造成限定。
具体地,雾化器包括气流通道11,气流通道11用于传输雾化气。雾化器还包括第一进气通道12,第一进气通道12连通气流通道11,第一进气通道12用于将外部气流引入气流通道11,以在气流通道11的内壁和雾化气之间形成阻隔气流。其中,阻隔气流形成气帘的形式。
进一步地,雾化器还包括连通气流通道11的出气口13,第一进气通道12靠近气流通道11的内壁,并且第一进气通道12的出口朝向出气口13,以保证经第一进气通道12进入气流通道11的气流能够沿气流通道11的内壁(即雾化器的内壁)流动,即形成阻隔气流,能够阻隔雾化气和气流通道11的内壁,即阻隔雾化气和雾化器的内壁,使得雾化气尽可能少地接触雾化器的内壁,能够缓解雾化气冷凝的情况,减少冷凝液的形成。
在一实施例中,请继续参阅图20,雾化器还包括雾化腔71。雾化腔71中设有雾化芯40,用于雾化气溶胶生成基质,以形成雾化气。气流通道11设于雾化腔71,即雾化腔71中用于容纳雾化气的空间即为气流通道11。第一进气通道12设于雾化腔71的底部靠近雾化腔71的内壁的位置,以当用户抽吸时自第一进气通道12进入雾化腔71的气流会沿雾化腔71的内壁流动,从而在雾化腔71的内壁和雾化气之间形成阻隔气流。
进一步地,雾化器还包括第二进气通道15,经第二进气通道15进入的气流用于引导雾化气从出气口13输出,从而加快雾化气的排出,从一定程度上也能够减少雾化气与雾化腔71内壁的接触,同样能够缓解雾化气冷凝的情况。具体地,第二进气通道15设于雾化腔71的底部,第一进气通道12相对第二进气通道15靠近雾化腔71的底部的边缘。
更进一步地,请参阅图21,第二进气通道15的相对两侧分别设有第一进气通道12。通过上述方式,能够增加第一进气通道12的数量,以进一步减少雾化气与雾化腔71内壁的接触,进一步缓解雾化气冷凝的情况;并且,第一进气通道12尽可能对称地设于第二进气通道15的相对两侧,能够优化雾化腔71内阻隔气流的分布,改善缓解雾化气冷凝的效果。
在一实施例中,第一进气通道12可以是通孔的形式,如图21a所示。雾化腔71的底部靠近雾化腔71的内壁的位置设有若干彼此间隔设置的第一进气通道12,经通孔形式的第一进气通道12进入雾化腔71的气流形成阻隔气流。具体地,若干第一进气通道12沿雾化腔71的底部的边缘彼此间隔设置,并且第二进气通道15的相对两侧分别设有若干彼此间隔设置的第一进气通道12。
可选地,通孔形式的第一进气通道12的孔径可以为0.3mm、0.4mm等,在此不做限定。
在替代实施例中,第一进气通道12的横截面呈长条状,即第一进气通道12为长条状的窄缝,如图21b所示。窄缝形式的第一进气通道12沿雾化腔71的底部的边缘延伸,经窄缝形式的第一进气通道12进入雾化腔71的气流形成阻隔气流。进一步地,第二进气通道15的相对两侧分别设有窄缝形式的第一进气通道12。
可选地,窄缝形式的第一进气通道12的宽度可以为0.3mm、0.4mm等,在此不做限定。
需要说明的是,窄缝形式的第一进气通道12所形成阻隔气流的分布情况优于通孔形式的第一进气通道12所形成阻隔气流的分布情况,并且宽度为0.4mm的窄缝形式的第一进气通道12所形成阻隔气流的分布情况优于宽度为0.3mm的窄缝形式的第一进气通道12所形成阻隔气流的分布情况。并且,由于阻隔气流的存在,雾化腔71内部气流的整体流向更加有序,不易形成涡流。
请参阅图22,图22是本申请雾化器第四实施例的结构示意图。
下文对气帘形成结构为应用于电子雾化装置的雾化器的一个示例性实施例进行阐述。
在本实施例中,气帘形成结构采用雾化器的形式。本实施例提供的雾化器可以应用于电子烟、医疗雾化器等电子雾化装置。图22展示了气帘形成结构应用于电子烟的情况,仅为论述需要,并非因此对本实施例气帘形成结构的应用环境造成限定。
具体地,雾化器包括气流通道11,气流通道11用于传输雾化气。雾化器还包括第一进气通道12,第一进气通道12连通气流通道11,第一进气通道12用于将外部气流引入气流通道11,以在气流通道11的内壁和雾化气之间形成阻隔气流。其中,阻隔气流形成气帘的形式。
雾化器还包括出气通道72,气流通道11设于出气通道72,第一进气通道12设于出气通道72的侧壁,当用户抽吸时外部的气流会通过出气通道72侧壁上的第一进气通道12进入出气通道72,并沿出气通道72的内壁流动,以在出气通道72的内壁和雾化气之间形成阻隔气流,可以有效减少出气通道72中高温雾化气与低温的出气通道72内壁的接触,减少雾化气的冷凝。如图22所示,阻隔气流Q1处于出气通道72的内壁和雾化气G之间,以阻隔出气通道72的内壁和雾化气G。
进一步地,雾化器还包括雾化腔71。雾化腔71中设有雾化芯40,用于雾化气溶胶生成基质,以形成雾化气。雾化腔71连通出气通道72。并且,雾化腔71设有第二进气通道15。当用户抽吸时,外部的气流会通过第二进气通道15进入雾化腔71,以携带雾化腔71中的雾化气通过出气通道72排出,从而加快雾化气的排出,从一定程度上也能够减少雾化气与雾化腔71内壁以及雾化气与出气通道72内壁的接触,同样能够缓解雾化气冷凝的情况。
其中,第一进气通道12设于出气通道72靠近雾化腔71的部分,如图22所示,以尽可能避免第一进气通道12和雾化腔71之间的出气通道72发生雾化气冷凝现象,进一步缓解雾化气冷凝的情况。
进一步地,请参阅图23,雾化器包括多个第一进气通道12,该多个第一进气通道12沿出气通道72的周向依次间隔设置。更进一步地,该多个第一进气通道12沿出气通道72的周 向均匀间隔分布,使得出气通道72的侧壁均匀进风,进而在出气通道72中形成分布情况良好的气帘形式的阻隔气流。
可选地,第一进气通道12优选为圆孔,如图23a所示,或长条形孔,如图23b所示等,并且圆孔形式的第一进气通道12的直径可以是0.3mm、0.4mm等,长条形形式的第一进气通道12的宽度可以是0.3mm、0.4mm等,在此不做限定。
请参阅下表,下表展示了传统出气通道和本示例性实施例的出气通道72在达到不同口数时冷凝液的积累量的情况:
Figure PCTCN2020110870-appb-000001
综上所述,本申请所提供的应用于电子雾化装置的气帘形成结构,该气帘形成结构包括用于传输雾化气的气流通道。该气流通道包括第一进气通道,第一进气通道用于将外部气流引入气流通道,以在气流通道的内壁和雾化气之间形成阻隔气流。其中,本申请通过该阻隔气流阻隔气流通道的内壁和雾化气,使得雾化气尽可能少地接触气流通道的内壁,能够缓解雾化气冷凝的情况,减少冷凝液的形成,进而改善用户的使用体验、减少药量的损耗以及降低漏液现象发生的风险等。
请参阅图24,图24是本申请电子雾化装置一实施例的结构示意图。
在本实施例中,电子雾化装置可以为电子烟、医疗雾化电子装置等,其包括主体81以及气帘形成结构82,主体81连接气帘形成结构82,气帘形成结构82包括气流通道,气流通道用于传输雾化气。气帘形成结构82还包括第一进气通道,第一进气通道连通气流通道,第一进气通道用于将外部气流引入气流通道,以在气流通道的内壁和雾化气之间形成阻隔气流。
其中,气帘形成结构82已在上述实施例中详细阐述,在此就不再赘述。
需要说明的是,主体81定义为电子雾化装置除气帘形成结构82之外的其它元件的集合。具体地,当气帘形成结构82为应用于电子雾化装置的雾化吸嘴时,主体81即包括电子雾化装置的主机(包括电源以及电子雾化装置的电路部分)以及雾化器除雾化吸嘴之外的其它元件(包括雾化芯等);而当气帘形成结构82为应用于电子雾化装置的雾化器时,主体81即包括电子雾化装置的主机。
举例而言,图25展示了主体81以及气帘形成结构82装配后的整机形态,即电子雾化装置。
请参阅图26,图26是本申请医疗雾化电子装置一实施例的结构示意图。
在本实施例中,医疗雾化电子装置应用于医疗雾化领域,其包括主机91(包括电源以及医疗雾化电子装置的电路部分)以及连接主机91的医疗雾化器92。医疗雾化器92包括雾化吸嘴,雾化吸嘴设有第一进气口、第二进气口以及出气口。医疗雾化器92还包括储液腔,储液腔用于储存气溶胶生成基质。医疗雾化器92还包括雾化芯,雾化芯位于第一进气口,雾化芯用于雾化气溶胶生成基质,以形成雾化气。医疗雾化器92还包括导流件,导流件设于雾化吸嘴且连通第二进气口,导流件用于引导自第二进气口进入的气流朝向雾化芯流动,以携带雾化气从出气口输出。
其中,医疗雾化器92已在上述实施例中详细阐述,在此就不再赘述。
举例而言,图27a展示了主机91的一示例性实施例,并且图27b展示了主机91和医疗雾化器92装配后的整机形态,即医疗雾化电子装置。
此外,在本申请中,除非另有明确的规定和限定,术语“相连”、“连接”、“层叠”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相 连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (37)

  1. 一种应用于电子雾化装置的气帘形成结构,其中,所述气帘形成结构包括:
    气流通道,用于传输雾化气;
    第一进气通道,连通所述气流通道,所述第一进气通道用于将外部气流引入所述气流通道,以在所述气流通道的内壁和所述雾化气之间形成阻隔气流。
  2. 根据权利要求1所述的气帘形成结构,其中,所述阻隔气流的流动方向平行于所述气流通道的内壁。
  3. 根据权利要求1所述的气帘形成结构,其中,所述气帘形成结构还包括连通所述气流通道的出气口,所述第一进气通道靠近所述气流通道的内壁,并且所述第一进气通道的出口朝向所述出气口。
  4. 根据权利要求3所述的气帘形成结构,其中,
    所述气帘形成结构为应用于所述电子雾化装置的雾化吸嘴;
    所述雾化吸嘴包括气道体和管体,所述气流通道设于所述气道体和所述管体,所述管体远离所述气道体的一端为所述出气口,所述第一进气通道开设于所述气道体靠近所述管体的内壁的位置,以在所述管体的内壁和所述雾化气之间形成所述阻隔气流。
  5. 根据权利要求4所述的气帘形成结构,其中,
    所述气道体包括第一气道部、第二气道部以及壁部,所述气流通道还包括连通的入口通道和导气通道,所述入口通道设于所述第一气道部,所述导气通道设于所述管体,所述第二气道部套设于所述管体的外周,所述壁部衔接所述第一气道部和所述第二气道部且遮挡所述导气通道;
    其中,所述第一进气通道开设于所述壁部。
  6. 根据权利要求5所述的气帘形成结构,其中,所述气流通道包括多个第一进气通道,所述多个第一进气通道沿所述壁部的周向彼此间隔分布。
  7. 根据权利要求5所述的气帘形成结构,其中,
    所述第一气道部还包括通气部和第一连接部,所述通气部和所述壁部之间通过所述第一连接部衔接;
    所述第一连接部的横截面面积小于所述通气部的横截面面积,使得所述第一连接部的所在位置处形成有卡接口,所述卡接口用于卡接所述电子雾化装置的雾化气产生装置。
  8. 根据权利要求7所述的气帘形成结构,其中,所述通气部设有第二进气通道,经所述第二进气通道进入的气流用于引导所述雾化气从所述出气口输出。
  9. 根据权利要求8所述的气帘形成结构,其中,所述第二进气通道包括进气部和导气部,所述进气部用于将外部气流引入所述导气部,所述进气部和所述气流通道之间通过所述导气部连通,所述导气部的延伸方向平行于所述入口通道的延伸方向。
  10. 根据权利要求8所述的气帘形成结构,其中,所述卡接口的所在位置处形成有综合气道,所述综合气道分别连通所述第一进气通道和所述第二进气通道。
  11. 根据权利要求8所述的气帘形成结构,其中,
    所述第一进气通道与所述第二进气通道的位置对应设置;或
    所述第一进气通道与所述第二进气通道的位置错开设置。
  12. 根据权利要求8所述的气帘形成结构,其中,
    所述第一进气通道的横截面面积大于所述第二进气通道的横截面面积;和/或
    所述第一进气通道的数量大于所述第二进气通道的数量。
  13. 根据权利要求3所述的气帘形成结构,其中,所述气帘形成结构还包括第一导流部,所述第一导流部和所述气流通道的内壁之间形成所述第一进气通道,用于引导通过所述第一进气通道引入的气流沿所述气流通道的内壁流动,以形成所述阻隔气流。
  14. 根据权利要求13所述的气帘形成结构,其中,所述气帘形成结构还包括第二连接部,所述第一导流部和所述气流通道的内壁之间通过所述第二连接部连接。
  15. 根据权利要求14所述的气帘形成结构,其中,所述第一导流部和所述气流通道的内壁之间设有多个第二连接部,所述多个第二连接部沿所述第一导流部的周向依次间隔设置,相邻的所述第二连接部之间形成所述第一进气通道。
  16. 根据权利要求13所述的气帘形成结构,其中,所述气帘形成结构还包括第二导流部,所述第二导流部相对所述第一导流部远离所述气流通道的内壁,并且所述第二导流部和所述第一导流部之间形成第二进气通道,所述第二进气通道的出口朝向所述出气口,经所述第二进气通道进入的气流用于引导所述雾化气从所述出气口输出。
  17. 根据权利要求16所述的气帘形成结构,其中,经所述第二进气通道进入的气流的流向与预设方向的夹角为30°至45°,其中所述预设方向平行于所述阻隔气流的流向。
  18. 根据权利要求16所述的气帘形成结构,其中,所述气帘形成结构还包括第三连接部,所述第二导流部和所述第一导流部之间通过所述第三连接部连接。
  19. 根据权利要求18所述的气帘形成结构,其中,所述第二导流部和所述第一导流部之间设有多个第三连接部,所述多个第三连接部沿所述第二导流部的周向依次间隔设置,相邻的所述第三连接部之间形成所述第二进气通道。
  20. 根据权利要求13所述的气帘形成结构,其中,所述气帘形成结构还包括第二导流部,所述第二导流部设于所述第一导流部远离所述出气口的一侧,并且所述第二导流部沿远离所述气流通道的内壁和所述出气口的方向倾斜设置,用于形成第二进气通道,经所述第二进气通道进入的气流用于引导所述雾化气从所述出气口输出。
  21. 根据权利要求20所述的气帘形成结构,其中,所述气帘形成结构为应用于所述电子雾化装置的雾化器,所述雾化器包括雾化吸嘴和雾化气产生装置,所述第二导流部设于所述雾化吸嘴,所述第二导流部和所述雾化气产生装置之间形成所述第二进气通道。
  22. 根据权利要求21所述的气帘形成结构,其中,所述气帘形成结构还包括汇流通道,所述汇流通道的一端为进气口,另一端为分流口,所述分流口分别连通所述第一进气通道和所述第二进气通道。
  23. 根据权利要求22所述的气帘形成结构,其中,所述分流口的中心线过所述第一导流部和所述第二导流部的连接处。
  24. 根据权利要求22所述的气帘形成结构,其中,所述分流口的中心线相对所述第一导流部和所述第二导流部的连接处远离所述出气口。
  25. 根据权利要求22所述的气帘形成结构,其中,所述分流口的中心线相对所述第一导流部和所述第二导流部的连接处靠近所述出气口。
  26. 根据权利要求22所述的气帘形成结构,其中,所述汇流通道包括连通的第一通道段和第二通道段,所述第一通道段远离所述第二通道段的端口为所述分流口,所述第二通道段远离所述第一通道段的端口为所述进气口,其中所述第一通道段和所述第二通道段的延伸方向不同。
  27. 根据权利要求21所述的气帘形成结构,其中,所述雾化气产生装置设有安装部,所述安装部设有安装凸起和通风凹槽,所述安装凸起用于固定所述雾化吸嘴,所述雾化吸嘴和所述安装部之间形成所述第一通道段,所述通风凹槽和所述雾化吸嘴之间形成所述第二通道段。
  28. 根据权利要求21所述的气帘形成结构,其中,所述雾化吸嘴的外周设有沿其周向环绕的限位槽,所述限位槽用于放置弹性圈,以将所述雾化吸嘴固定于雾化气产生装置。
  29. 根据权利要求3所述的气帘形成结构,其中,
    所述气帘形成结构为应用于所述电子雾化装置的雾化器,所述雾化器包括雾化腔;
    所述气流通道设于所述雾化腔,所述第一进气通道设于所述雾化腔的底部靠近所述雾化 腔的内壁的位置,以在所述雾化腔的内壁和所述雾化气之间形成所述阻隔气流。
  30. 根据权利要求29所述的气帘形成结构,其中,所述雾化器还包括第二进气通道,经所述第二进气通道进入的气流用于引导所述雾化气从所述出气口输出,所述第二进气通道设于所述雾化腔的底部,所述第一进气通道相对所述第二进气通道靠近所述雾化腔的底部的边缘。
  31. 根据权利要求30所述的气帘形成结构,其中,所述第二进气通道的相对两侧分别设有所述第一进气通道。
  32. 根据权利要求29所述的气帘形成结构,其中,
    所述气帘形成结构包括多个第一进气通道,所述多个第一进气通道彼此间隔设置;和/或所述第一进气通道的横截面呈长条状。
  33. 根据权利要求1所述的气帘形成结构,其中,
    所述气帘形成结构为应用于所述电子雾化装置的雾化器,所述雾化器包括出气通道;
    所述气流通道设于所述出气通道,所述第一进气通道设于所述出气通道的侧壁,以在所述出气通道的内壁和所述雾化气之间形成所述阻隔气流。
  34. 根据权利要求33所述的气帘形成结构,其中,所述雾化器还包括雾化腔,所述雾化腔连通所述出气通道,所述第一进气通道设于所述出气通道靠近所述雾化腔的部分。
  35. 根据权利要求33所述的气帘形成结构,其中,所述雾化器包括多个第一进气通道,所述多个第一进气通道沿所述出气通道的周向依次间隔设置。
  36. 根据权利要求33所述的气帘形成结构,其中,所述第一进气通道为圆孔或长条形孔。
  37. 一种电子雾化装置,其中,所述电子雾化装置包括主体以及气帘形成结构,所述主体连接所述气帘形成结构,所述气帘形成结构包括:
    气流通道,用于传输雾化气;
    第一进气通道,连通所述气流通道,所述第一进气通道用于将外部气流引入所述气流通道,以在所述气流通道的内壁和所述雾化气之间形成阻隔气流。
PCT/CN2020/110870 2020-02-20 2020-08-24 电子雾化装置及其应用的气帘形成结构 WO2021164223A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20920396.7A EP4108279A4 (en) 2020-02-20 2020-08-24 ELECTRONIC ATOMIZER AND AIR CURTAIN FORMING STRUCTURE THEREFROM
CN202010955466.2A CN113273732A (zh) 2020-02-20 2020-09-11 雾化器及其应用的出气通道插件、电子雾化装置
PCT/CN2020/114886 WO2021164243A1 (zh) 2020-02-20 2020-09-11 雾化器及其应用的出气通道插件、电子雾化装置
US17/820,801 US20220386691A1 (en) 2020-02-20 2022-08-18 Electronic atomization device and air curtain formation structure used by same
US17/820,939 US20220400761A1 (en) 2020-02-20 2022-08-19 Atomizer and air output channel plug-in used by same, and electronic atomization device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010105137.9A CN111359060A (zh) 2020-02-20 2020-02-20 雾化吸嘴及雾化装置
CN202010105137.9 2020-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/820,801 Continuation US20220386691A1 (en) 2020-02-20 2022-08-18 Electronic atomization device and air curtain formation structure used by same

Publications (1)

Publication Number Publication Date
WO2021164223A1 true WO2021164223A1 (zh) 2021-08-26

Family

ID=71199261

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2020/110870 WO2021164223A1 (zh) 2020-02-20 2020-08-24 电子雾化装置及其应用的气帘形成结构
PCT/CN2020/110872 WO2021164224A1 (zh) 2020-02-20 2020-08-24 雾化吸嘴、医疗雾化器以及医疗雾化电子装置
PCT/CN2020/114886 WO2021164243A1 (zh) 2020-02-20 2020-09-11 雾化器及其应用的出气通道插件、电子雾化装置
PCT/CN2021/072494 WO2021164484A1 (zh) 2020-02-20 2021-01-18 雾化吸嘴及雾化装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/110872 WO2021164224A1 (zh) 2020-02-20 2020-08-24 雾化吸嘴、医疗雾化器以及医疗雾化电子装置
PCT/CN2020/114886 WO2021164243A1 (zh) 2020-02-20 2020-09-11 雾化器及其应用的出气通道插件、电子雾化装置
PCT/CN2021/072494 WO2021164484A1 (zh) 2020-02-20 2021-01-18 雾化吸嘴及雾化装置

Country Status (4)

Country Link
US (2) US20220386691A1 (zh)
EP (1) EP4108279A4 (zh)
CN (3) CN111359060A (zh)
WO (4) WO2021164223A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359060A (zh) * 2020-02-20 2020-07-03 深圳麦克韦尔科技有限公司 雾化吸嘴及雾化装置
WO2022236744A1 (zh) * 2021-05-12 2022-11-17 深圳麦克韦尔科技有限公司 一种雾化器及其电子雾化装置
TWI766804B (zh) * 2021-09-13 2022-06-01 心誠鎂行動醫電股份有限公司 霧化器組件及其氣流導引件
CN116406837A (zh) * 2021-12-30 2023-07-11 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040527A (en) * 1990-12-18 1991-08-20 Healthscan Products Inc. Metered dose inhalation unit with slide means
CN1285759A (zh) * 1997-10-17 2001-02-28 肺部释放药品有限公司 输送气雾化药品的方法及装置
CN1387447A (zh) * 1999-11-01 2002-12-25 肺部释放药品有限公司 用于吸入器装置的内部涡流机构
CN1541125A (zh) * 2001-06-22 2004-10-27 ̩ 用于干粉末吸入器上的粉末剂型分散装置和方法
US20110011395A1 (en) * 2008-03-17 2011-01-20 Discovery Laboratories, Inc. Ventilation circuit adaptor and proximal aerosol delivery system
CN104736191A (zh) * 2012-08-21 2015-06-24 菲利普莫里斯生产公司 呼吸机气溶胶输送系统
CN208355880U (zh) * 2017-10-31 2019-01-11 正大天晴药业集团股份有限公司 一种内部气流改善的医疗雾化器

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012804A (en) * 1989-03-06 1991-05-07 Trudell Medical Medication inhaler with adult mask
DE9204938U1 (zh) * 1992-04-09 1993-08-12 Klein, Christoph, 53757 Sankt Augustin, De
DE59209686D1 (de) * 1991-08-29 1999-06-02 Broncho Air Medizintechnik Ag Medizinisches gerät zur inhalation von dosier-aerosolen
GB2279879B (en) * 1993-07-14 1997-10-08 Bespak Plc Medicament inhalers
AU2003276447A1 (en) * 2002-11-04 2004-06-07 Cambridge Consultants Limited Inhalers
ES2648196T3 (es) * 2008-02-07 2017-12-29 The University Of Washington Dispositivo aerosol circunferencial
EP2319334A1 (en) * 2009-10-27 2011-05-11 Philip Morris Products S.A. A smoking system having a liquid storage portion
US10098381B2 (en) * 2013-03-15 2018-10-16 Altria Client Services Llc Electronic smoking article
CN106455705A (zh) * 2014-01-22 2017-02-22 方特慕控股第私人有限公司 用于吸烟欲望救济的方法和装置
CN204907913U (zh) * 2015-06-19 2015-12-30 卓尔悦(常州)电子科技有限公司 雾化器及其气溶胶发生装置
CN205456063U (zh) * 2016-01-29 2016-08-17 深圳市合元科技有限公司 电子烟雾化器和电子烟
EP3435795B1 (en) * 2016-03-31 2020-04-01 Philip Morris Products S.a.s. Airflow in aerosol generating system with mouthpiece
CN205547375U (zh) * 2016-04-27 2016-09-07 珠海优德科技有限公司 一种双功能双进气电子烟雾化器
CN105982363B (zh) * 2016-04-29 2019-09-13 湖南中烟工业有限责任公司 一种雾化器
CN205947119U (zh) * 2016-06-03 2017-02-15 湖南中烟工业有限责任公司 一种电子烟雾化器
WO2018112755A1 (zh) * 2016-12-20 2018-06-28 惠州市吉瑞科技有限公司深圳分公司 一种雾化器
WO2018120206A1 (zh) * 2016-12-30 2018-07-05 惠州市吉瑞科技有限公司深圳分公司 一种雾化器
CN107440161B (zh) * 2017-09-26 2023-08-11 深圳市新宜康科技股份有限公司 具有粉末导油雾化结构的雾化器
CN109718431B (zh) * 2017-10-31 2023-11-28 正大天晴药业集团股份有限公司 内部气流改善的医疗雾化器
EP3743140A1 (en) * 2018-01-23 2020-12-02 SHL Medical AG Aerosol generator
EP3801086B1 (en) * 2018-06-05 2022-10-12 Philip Morris Products S.A. Cartridge assembly with activating piercing members for an aerosol-generating system
CN110250579B (zh) * 2019-06-25 2022-12-06 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN110623308A (zh) * 2019-09-29 2019-12-31 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN110558630A (zh) * 2019-10-14 2019-12-13 欧俊彪 电子烟及其雾化器
CN111359060A (zh) * 2020-02-20 2020-07-03 深圳麦克韦尔科技有限公司 雾化吸嘴及雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040527A (en) * 1990-12-18 1991-08-20 Healthscan Products Inc. Metered dose inhalation unit with slide means
CN1285759A (zh) * 1997-10-17 2001-02-28 肺部释放药品有限公司 输送气雾化药品的方法及装置
CN1387447A (zh) * 1999-11-01 2002-12-25 肺部释放药品有限公司 用于吸入器装置的内部涡流机构
CN1541125A (zh) * 2001-06-22 2004-10-27 ̩ 用于干粉末吸入器上的粉末剂型分散装置和方法
US20110011395A1 (en) * 2008-03-17 2011-01-20 Discovery Laboratories, Inc. Ventilation circuit adaptor and proximal aerosol delivery system
CN104736191A (zh) * 2012-08-21 2015-06-24 菲利普莫里斯生产公司 呼吸机气溶胶输送系统
CN208355880U (zh) * 2017-10-31 2019-01-11 正大天晴药业集团股份有限公司 一种内部气流改善的医疗雾化器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4108279A4 *

Also Published As

Publication number Publication date
WO2021164484A1 (zh) 2021-08-26
US20220400761A1 (en) 2022-12-22
US20220386691A1 (en) 2022-12-08
EP4108279A1 (en) 2022-12-28
CN113274593A (zh) 2021-08-20
CN113274594A (zh) 2021-08-20
CN111359060A (zh) 2020-07-03
WO2021164224A1 (zh) 2021-08-26
EP4108279A4 (en) 2023-09-06
CN113274593B (zh) 2024-04-05
WO2021164243A1 (zh) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2021164223A1 (zh) 电子雾化装置及其应用的气帘形成结构
WO2022188537A1 (zh) 雾化器及电子雾化装置
US7581718B1 (en) Atomizer
ES2943010T3 (es) Núcleo de atomización de cigarrillo electrónico ultrasónico
CN103041480B (zh) 雾化装置及其喷头
US20050145243A1 (en) Nebuliser
TWM548027U (zh) 節流除草噴嘴及噴灑裝置
WO2023155476A1 (zh) 雾化器和雾化装置
CN217446690U (zh) 雾化器及气溶胶发生装置
CN113273732A (zh) 雾化器及其应用的出气通道插件、电子雾化装置
TW200932204A (en) An atomizer capable of speeding up the mist output
US20210052831A1 (en) Nebulizer
WO2020024145A1 (zh) 精油回流式雾化器
CN108704202B (zh) 医用给药雾化杯
CN220800062U (zh) 一种雾化器及雾化装置
TW201408379A (zh) 氣壓式霧化裝置、霧化裝置與其噴頭
TWI500432B (zh) 霧化裝置及其噴頭
CN220326842U (zh) 一种雾化座及气溶胶生成装置
WO2022266804A1 (zh) 雾化杯组件及雾化器
CN219613088U (zh) 雾化装置及气溶胶发生装置
WO2022267719A1 (zh) 雾化杯组件及雾化器
WO2022267742A1 (zh) 雾化杯组件及雾化器
CN219069464U (zh) 雾化器及气溶胶生成装置
WO2024012041A1 (zh) 雾化器及电子雾化装置
CN215736937U (zh) 雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020920396

Country of ref document: EP

Effective date: 20220919