WO2021153405A1 - ペースト状樹脂組成物、高熱伝導性材料、および半導体装置 - Google Patents

ペースト状樹脂組成物、高熱伝導性材料、および半導体装置 Download PDF

Info

Publication number
WO2021153405A1
WO2021153405A1 PCT/JP2021/001980 JP2021001980W WO2021153405A1 WO 2021153405 A1 WO2021153405 A1 WO 2021153405A1 JP 2021001980 W JP2021001980 W JP 2021001980W WO 2021153405 A1 WO2021153405 A1 WO 2021153405A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste
resin
resin composition
group
metal
Prior art date
Application number
PCT/JP2021/001980
Other languages
English (en)
French (fr)
Inventor
直輝 渡部
弓依 阿部
真 高本
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN202180011544.6A priority Critical patent/CN115023453A/zh
Priority to JP2021545737A priority patent/JP7279802B2/ja
Publication of WO2021153405A1 publication Critical patent/WO2021153405A1/ja
Priority to JP2022172992A priority patent/JP2023015160A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present invention relates to a paste-like resin composition, a highly thermally conductive material, and a semiconductor device.
  • thermosetting resin composition containing metal particles A technique for manufacturing a semiconductor device using a thermosetting resin composition containing metal particles is known with the intention of improving the heat dissipation of the semiconductor device.
  • metal particles having a higher thermal conductivity than the resin in the thermosetting resin composition By including metal particles having a higher thermal conductivity than the resin in the thermosetting resin composition, the thermal conductivity of the cured product can be increased.
  • a semiconductor element and a substrate (support member) are bonded / bonded using a thermosetting resin composition containing metal particles.
  • the technology is known.
  • Patent Document 1 describes a thermosetting resin composition for semiconductor adhesion containing a (meth) acrylic acid ester compound having a predetermined structure, a radical initiator, silver fine particles, silver powder, and a solvent. A semiconductor device to which is bonded is disclosed. The document states that connection reliability for post-mounting temperature cycles can be improved (paragraph 0011).
  • Patent Document 2 discloses a resin paste composition containing an imide acrylate compound, a radical initiator, a filler, and a liquid rubber component, and a semiconductor device in which a semiconductor element and a base material are bonded with the composition.
  • the document describes that the occurrence of chip cracks and chip warpage can be suppressed by reducing the stress of the resin paste composition (paragraph 0003).
  • the semiconductor device in which the semiconductor element and the base material are bonded may not exhibit good conductivity for a long period of time, and the long-term reliability is improved. There was room.
  • the present inventors have found that by using a (meth) acryloyl group-containing compound having a predetermined structure, a semiconductor device exhibits good conductivity over a long period of time and is excellent in long-term reliability. Completed.
  • the present invention can be shown below.
  • A A (meth) acryloyl group-containing compound having two or more functionalities and having two or more repeating units of a linear or branched oxyalkylene group.
  • B Metal-containing particles containing silver-containing particles or copper-containing particles, and A paste-like resin composition containing the above is provided.
  • a highly thermally conductive material obtained by sintering the paste-like resin composition.
  • a semiconductor device comprising a base material and a semiconductor element mounted on the base material via an adhesive layer, wherein the adhesive layer is obtained by sintering the paste-like resin composition. Is provided.
  • a paste-like resin composition capable of exhibiting good conductivity over a long period of time and obtaining a semiconductor device having excellent long-term reliability by applying it to a bonding between a semiconductor element and a base material.
  • the paste-like resin composition of the present embodiment has (A) a (meth) acryloyl group-containing compound having two or more functionalities and having two or more repeating units of linear or branched oxyalkylene groups, and (B). Includes metal-containing particles, including silver or copper particles.
  • the (meth) acryloyl group-containing compound (A) is a compound having two or more (meth) acryloyl groups and having two or more repeating units of a linear or branched oxyalkylene group, as long as it is a compound of the present invention. It can be used without particular limitation as long as it can exert its effect.
  • the material obtained by sintering the composition is stress-relieved and tough. Also excellent (high breaking energy and difficult to break). Therefore, in the semiconductor device in which the semiconductor element and the base material are bonded by the paste-like resin composition of the present embodiment, peeling of the bonded portion and the like are suppressed, good conductivity is exhibited over a long period of time, and long-term reliability is exhibited. It is considered to be excellent.
  • the number of repeating units of the oxyalkylene group can be 2 or more, preferably 4 or more, more preferably 4 to 30, particularly preferably 8 to 30.
  • the oxyalkylene group is a linear or branched oxyalkylene group having 2 to 10 carbon atoms, preferably a linear or branched oxyalkylene group having 2 to 8 carbon atoms, and more preferably a linear or branched oxyalkylene group having 2 to 8 carbon atoms. 5 oxyalkylene groups can be mentioned.
  • the (meth) acryloyl group-containing compound (A) preferably contains at least one selected from the compounds represented by the following general formula (1).
  • R represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • a plurality of Rs existing may be the same or different.
  • X represents a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a cyano group, a mercapto group, a carboxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, preferably a hydrogen atom or an alkoxy group having 1 to 3 carbon atoms. It is 1 to 3 alkyl groups.
  • a plurality of Xs may be the same or different.
  • m can represent an integer of 2 to 10, preferably an integer of 2 to 8, and more preferably an integer of 2 to 5.
  • n represents an integer of 4 or more and 30 or less, and preferably an integer of 8 or more and 30 or less.
  • Examples of the (meth) acryloyl group-containing compound (A) include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol # 200 di (meth) acrylate (n: 4), and polyethylene glycol #. Examples thereof include 400 di (meth) acrylate (n: 9), polyethylene glycol # 600 di (meth) acrylate (n: 14), polyethylene glycol # 1000 di (meth) acrylate (n: 23) and the like.
  • the (meth) acryloyl group-containing compound (A) is contained in an amount of 0.1 to 15% by weight or less, preferably 0.5 to 10% by weight, in the entire non-volatile component of the paste-like resin composition. , More preferably in an amount of 1.0-8% by weight.
  • the (meth) acryloyl group-containing compound (A) and the (meth) acrylic monomer such as a monofunctional (meth) acrylic monomer having only one (meth) acryloyl group in one molecule are used.
  • Acryloyl group-containing compound A (meth) acryloyl group-containing compound other than (A) can also be contained.
  • Metal-containing particles (B) The metal-containing particles (B) can be sintered by appropriate heat treatment to form a particle connecting structure (sintering structure).
  • the metal-containing particles (B) can include silver-containing particles or copper-containing particles.
  • the paste-like resin composition contains silver-containing particles, and in particular, silver particles having a relatively small particle size and a relatively large specific surface area are contained, so that the paste-like resin composition contains silver particles at a relatively low temperature (about 180 ° C.).
  • a sintered structure is likely to be formed even by heat treatment. The preferred particle size will be described later.
  • the shape of the metal-containing particles (B) is not particularly limited.
  • the preferred shape is spherical, but non-spherical shapes such as ellipsoidal, flat, plate, flake, needle and the like may be used.
  • the term "spherical” is not limited to a perfect sphere, but also includes a shape having some irregularities on the surface. The same shall apply hereinafter in the present specification.
  • the metal-containing particles (B) may be (i) particles substantially composed of only metal, or (ii) particles composed of metal and non-metal components. Further, (i) and (ii) may be used in combination as the metal-containing particles.
  • the metal-containing particles (B) include metal-coated resin particles whose surfaces are coated with metal. Thereby, it is possible to prepare a paste-like resin composition capable of obtaining a cured product having excellent thermal conductivity and excellent storage elastic modulus.
  • the metal-coated resin particles have a metal surface and a resin inside, so that they have good thermal conductivity and are softer than particles made of only metal. Therefore, by using the metal-coated resin particles, the thermal conductivity and the storage elastic modulus can be easily designed to appropriate values.
  • the metal layer covers at least a part of the surface of the resin particles.
  • the entire surface of the resin particles may be covered with metal.
  • the metal layer covers preferably 50% or more, more preferably 75% or more, still more preferably 90% or more of the surface of the resin particles.
  • the metal layer covers substantially the entire surface of the resin particles.
  • the mass ratio of resin / metal in the metal-coated resin particles is, for example, 90/10 to 10/90, preferably 80/20 to 20/80, and more preferably 70/30 to 30/70. be.
  • the "metal” in the metal-coated resin particles is as described above. In particular, silver is preferable.
  • the "resin” in the metal-coated resin particles include silicone resin, (meth) acrylic resin, phenol resin, polystyrene resin, melamine resin, polyamide resin, and polytetrafluoroethylene resin. Of course, resins other than these may be used. Further, only one kind of resin may be used, or two or more kinds of resins may be used in combination. From the viewpoint of elastic properties and heat resistance, the resin is preferably a silicone resin or a (meth) acrylic resin.
  • the silicone resin may be particles composed of organopolysiloxane obtained by polymerizing organochlorosilane such as methylchlorosilane, trimethyltrichlorosilane, and dimethyldichlorosilane. Further, a silicone resin having a structure in which organopolysiloxane is further three-dimensionally crosslinked may be used as a basic skeleton.
  • the (meth) acrylic resin contains a resin obtained by polymerizing a monomer containing a (meth) acrylic acid ester as a main component in an amount of 50% by weight or more, preferably 70% by weight or more, and more preferably 90% by weight or more. Can be done.
  • the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and lauryl (meth) acrylate.
  • the monomer component of the acrylic resin may contain a small amount of other monomers. Examples of such other monomer components include styrene-based monomers.
  • metal-coated (meth) acrylic resin refer to the description in JP-A-2017-126463.
  • Various functional groups may be introduced into the silicone resin or (meth) acrylic resin.
  • the functional group that can be introduced is not particularly limited.
  • an epoxy group, an amino group, a methoxy group, a phenyl group, a carboxyl group, a hydroxyl group, an alkyl group, a vinyl group, a mercapto group and the like can be mentioned.
  • the portion of the resin particles in the metal-coated resin particles may contain various additive components such as a low stress modifier.
  • the low stress modifier include liquid synthetic rubbers such as butadiene styrene rubber, butadiene acrylonitrile rubber, polyurethane rubber, polyisoprene rubber, acrylic rubber, fluororubber, liquid organopolysiloxane, and liquid polybutadiene.
  • the portion of the resin particles contains a silicone resin
  • the elastic properties of the metal-coated resin particles can be made preferable by containing a low stress modifier.
  • the shape of the resin particle portion of the metal-coated resin particle is not particularly limited.
  • the preferred shape is spherical, but irregular shapes other than spherical, such as flat, plate, and needle, may be used.
  • the shape of the metal-coated resin particles is formed to be spherical, it is preferable that the shape of the resin particles to be used is also spherical.
  • the specific gravity of the metal-coated resin particles is not particularly limited, but the lower limit is, for example, 2 or more, preferably 2.5 or more, and more preferably 3 or more.
  • the upper limit of the specific gravity is, for example, 10 or less, preferably 9 or less, and more preferably 8 or less. Appropriate specific gravity is preferable in terms of dispersibility of the metal-coated resin particles themselves and uniformity when the metal-coated resin particles and other metal-containing particles are used in combination.
  • the ratio of the metal-coated resin particles in the entire metal-containing particles (B) is preferably 1 to 50% by mass, more preferably 3 to 45% by mass, and further preferably 5 to 40% by mass. Is. By appropriately adjusting this ratio, it is possible to further improve the heat dissipation while suppressing the decrease in the adhesive force due to the heat cycle.
  • the metal-containing particles other than the metal-coated resin particles are, for example, particles substantially composed of only metal.
  • the median diameter D 50 of the metal-containing particles (B) (as a whole when a plurality of types of metal-containing particles are used in combination) is, for example, 0.001 to 1000 ⁇ m, preferably 0.01 to 100 ⁇ m, and more preferably 0.1. It is ⁇ 20 ⁇ m.
  • D 50 By setting D 50 to an appropriate value, it is easy to balance thermal conductivity, sinterability, resistance to heat cycle, and the like. Further, by setting D 50 to an appropriate value, it may be possible to improve the workability of coating / bonding.
  • the particle size distribution of the metal-containing particles (horizontal axis: particle size, vertical axis: frequency) may be monomodal or multimodal.
  • the median diameter D 50 of the particles substantially composed of only metal is, for example, 0.8 ⁇ m or more, preferably 1.0 ⁇ m or more, and more preferably 1.2 ⁇ m or more. Thereby, the thermal conductivity can be further enhanced.
  • the median diameter D 50 of the particles substantially composed of only metal is, for example, 7.0 ⁇ m or less, preferably 5.0 ⁇ m or less, and more preferably 4.0 ⁇ m or less. As a result, it is possible to further improve the ease of sintering and improve the uniformity of sintering.
  • the median diameter D 50 of the metal-containing particles (B) is, for example, 0.5 ⁇ m or more, preferably 1.5 ⁇ m or more, and more preferably 2.0 ⁇ m or more. This makes it easy to set the storage elastic modulus E'to an appropriate value.
  • the median diameter D 50 of the metal-containing particles (B) is, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less. This makes it easy to increase the thermal conductivity sufficiently.
  • the median diameter D 50 of the metal-containing particles (B) can be determined by performing particle image measurement using, for example, a flow-type particle image analyzer FPIA (registered trademark) -3000 manufactured by Sysmex Corporation. More specifically, the particle size of the metal-containing particles (B) can be determined by measuring the volume-based median diameter in a wet manner using this device.
  • FPIA flow-type particle image analyzer
  • the proportion of the metal-containing particles (B) (in the case of using a plurality of types of metal-containing particles, the total thereof) in the entire paste-like resin composition is, for example, 1 to 98% by mass, preferably 30 to 95% by mass, and more. It is preferably 50 to 90% by mass.
  • the ratio of the metal-containing particles By setting the ratio of the metal-containing particles to 1% by mass or more, it is easy to increase the thermal conductivity.
  • By setting the ratio of the metal-containing particles (B) to 98% by mass or less the workability of coating / bonding can be improved.
  • particles substantially composed of only metal can be obtained from, for example, DOWA Hightech Co., Ltd., Fukuda Metal Foil Powder Industry Co., Ltd., and the like.
  • the metal-coated resin particles can be obtained from, for example, Mitsubishi Materials Corporation, Sekisui Chemical Co., Ltd., Sanno Co., Ltd., and the like.
  • thermosetting resin (C) The paste-like resin composition of the present embodiment can further contain a thermosetting resin (C).
  • the thermosetting resin (C) does not contain the (meth) acryloyl group-containing compound (A).
  • the thermosetting resin (C) usually contains a group that polymerizes / crosslinks by the action of an active chemical species such as a radical, and / or a chemical structure that reacts with a curing agent (D) described later.
  • the thermosetting resin (C) contains, for example, one or more of an epoxy group, an oxetanyl group, a group containing an ethylenic carbon-carbon double bond, a hydroxy group, an isocyanate group, a maleimide structure, and the like.
  • an epoxy resin can be preferably mentioned.
  • the epoxy resin may be a compound having only one epoxy group in one molecule, or a compound having two or more epoxy groups in one molecule.
  • the epoxy resin examples include bifunctional or crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, stilben type epoxy resin, and hydroquinone type epoxy resin; cresol novolac type epoxy resin, Novolak type epoxy resin such as phenol novolac type epoxy resin, naphthol novolac type epoxy resin; phenol aralkyl type epoxy resin containing phenylene skeleton, phenol aralkyl type epoxy resin containing biphenylene skeleton, phenol aralkyl type epoxy resin such as phenylene skeleton containing naphthol aralkyl type epoxy resin Resin: Trifunctional epoxy resin such as triphenol methane type epoxy resin and alkyl modified triphenol methane type epoxy resin; Modified phenol type epoxy resin such as dicyclopentadiene modified phenol type epoxy resin and terpen modified phenol type epoxy resin; Triazine nucleus Examples thereof include a heterocycle-containing epoxy resin such as a containing epoxy resin.
  • epoxy group-containing compound a monofunctional epoxy group-containing compound such as 4-tert-butylphenylglycidyl ether, m, p-cresyl glycidyl ether, phenylglycidyl ether, cresyl glycidyl ether and the like can also be included.
  • the paste-like resin composition of the present embodiment may contain only one type of thermosetting component, or may contain two or more types.
  • thermosetting resin (C) and the (meth) acryloyl group-containing compound (A) are used in combination.
  • Resin (C) / ((meth) acryloyl group-containing compound (A) 90/10 to 60/40.
  • Epoxy resin is preferable as the thermosetting resin (C).
  • the epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin and the like are preferably mentioned.
  • the amount of the thermosetting resin (C) in the paste-like resin composition of the present embodiment is, for example, 3 to 20% by mass, preferably 5 to 15% by mass, based on the total amount of the non-volatile components.
  • the paste-like resin composition of the present embodiment can further contain a curing agent (D).
  • Examples of the curing agent (D) include those having a reactive group that reacts with the thermosetting resin (C).
  • the curing agent (D) contains, for example, a reactive group that reacts with a functional group such as an epoxy group, a maleimide group, or a hydroxy group contained in the thermosetting resin (C).
  • the curing agent (D) preferably contains a phenol-based curing agent and / or an imidazole-based curing agent. These curing agents are particularly preferable when the thermosetting component contains an epoxy group.
  • the phenolic curing agent may be a low molecular weight compound or a high molecular weight compound (that is, a phenol resin).
  • phenolic curing agent which is a low molecular weight compound
  • bisphenol compounds such as bisphenol A and bisphenol F (dihydroxydiphenylmethane) (phenol resins having a bisphenol F skeleton); compounds having a biphenylene skeleton such as 4,4'-biphenol. And so on.
  • a novolak type phenol resin such as a phenol novolac resin, a cresol novolak resin, a bisphenol novolak resin, a phenol-biphenylnovolak resin; a polyvinylphenol; a polyfunctional phenol resin such as a triphenylmethane type phenol resin; a terpen Modified phenol resins such as modified phenol resins and dicyclopentadiene modified phenol resins; phenol aralkyl resins having a phenylene skelesin and / or biphenylene skelesin, phenol aralkyl type phenol resins such as naphthol aralkyl resins having phenylene and / or biphenylene skeletons, and the like.
  • the curing agent (D) only one type may be used, or two or more types may be used in combination.
  • the amount thereof is, for example, 10 to 150 parts by mass, preferably 20 parts by mass, when the amount of the thermosetting resin (C) is 100 parts by mass. ⁇ 100 parts by mass.
  • the paste-like resin composition of the present embodiment can further contain a curing accelerator.
  • the curing accelerator typically accelerates the reaction between the thermosetting resin (C) and the curing agent (D).
  • phosphorus atom-containing compounds such as organic phosphine, tetra-substituted phosphonium compound, phosphobetaine compound, adduct of phosphine compound and quinone compound, adduct of phosphonium compound and silane compound; dicyandiamide, 1 , 8-diazabicyclo [5.4.0] Undecene-7, amidines such as benzyldimethylamine and tertiary amines; nitrogen atom-containing compounds such as the amidine or the quaternary ammonium salt of the tertiary amines.
  • a curing accelerator When a curing accelerator is used, only one type may be used, or two or more types may be used in combination.
  • the amount thereof is, for example, 0.1 to 10 parts by mass, preferably 0, when the amount of the thermosetting resin (C) is 100 parts by mass. .5 to 5 parts by mass.
  • the paste-like resin composition of the present embodiment can further contain a silane coupling agent. As a result, the adhesive strength can be further improved.
  • silane coupling agent examples include known silane coupling agents, and specifically, vinylsilanes such as nyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Epoxysilanes such as methyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; Styrylsilanes such as p-styryltrimethoxysilane; Methylsilanes such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxy
  • the amount thereof is the total amount of the thermosetting component ((meth) acryloyl group-containing compound (A) and the thermosetting resin (C)).
  • the amount thereof is the total amount of the thermosetting component ((meth) acryloyl group-containing compound (A) and the thermosetting resin (C)).
  • the paste-like resin composition of the present embodiment may contain a plasticizer.
  • the plasticizer makes it easy to design a small storage elastic modulus. Then, it becomes easier to suppress the decrease in the adhesive force due to the heat cycle.
  • plasticizer examples include polyester compounds, silicone oils, silicone compounds such as silicone rubber, polybutadiene compounds such as polybutadiene maleic anhydride adduct, and acrylonitrile butadiene copolymer compounds.
  • plasticizer When a plasticizer is used, only one type may be used, or two or more types may be used in combination.
  • the amount thereof is the amount of the thermosetting component (the total amount of the (meth) acryloyl group-containing compound (A) and the thermosetting resin (C)).
  • the amount of the thermosetting component is 100 parts by mass, it is, for example, 5 to 50 parts by mass, preferably 10 to 30 parts by mass.
  • the paste-like resin composition of the present embodiment can contain a radical initiator.
  • the radical initiator can prevent insufficient curing, for example, can sufficiently proceed the curing reaction at a relatively low temperature (for example, 180 ° C.), and further improve the adhesive strength. May be created.
  • Examples of the radical initiator include peroxides and azo compounds.
  • peroxide examples include organic peroxides such as diacyl peroxide, dialkyl peroxide, and peroxyketal, and more specifically, ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide; Peroxy ketones such as 1,1-di (t-butyl peroxy) cyclohexane and 2,2-di (4,5-di (t-butyl peroxy) cyclohexyl) propane; Hydroperoxides such as p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide; To di (2-t-butylperoxyisopropyl) benzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-
  • azo compound examples include 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis (2-cyclopropylpropionitrile), and 2,2'-azobis (2,). 4-Dimethylvaleronitrile) and the like.
  • a radical initiator When a radical initiator is used, only one type may be used, or two or more types may be used in combination.
  • the amount thereof is the amount of the thermosetting component (the total amount of the (meth) acryloyl group-containing compound (A) and the thermosetting resin (C)). Is 100 parts by mass, for example, 0.1 to 10 parts by mass, preferably 0.5 to 8 parts by mass, and more preferably 0.5 to 5 parts by mass.
  • the paste-like resin composition of the present embodiment can further contain a solvent.
  • a solvent for example, the fluidity of the paste-like resin composition can be adjusted, and the workability when forming the adhesive layer on the base material can be improved.
  • the solvent is typically an organic solvent.
  • Organic solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, and propylene glycol monomethyl.
  • the amount thereof is not particularly limited.
  • the amount used may be appropriately adjusted based on the desired fluidity and the like.
  • the solvent is used in an amount such that the concentration of the non-volatile component of the paste-like resin composition is 50 to 90% by mass.
  • the paste-like resin composition of the present embodiment is preferably in the form of a paste at 20 ° C. That is, the paste-like resin composition of the present embodiment can be preferably applied to a substrate or the like at 20 ° C. like glue. As a result, the paste-like resin composition of the present embodiment can be preferably used as an adhesive for semiconductor elements and the like. Of course, depending on the applied process and the like, the paste-like resin composition of the present embodiment may be in the form of a varnish having a relatively low viscosity.
  • a highly thermally conductive material can be obtained by sintering the paste-like resin composition of the present embodiment. By changing the shape of the highly thermally conductive material, it can be applied to various parts that require heat dissipation in the fields of automobiles and electric appliances.
  • a semiconductor device can be manufactured using the paste-like resin composition of the present embodiment.
  • a semiconductor device can be manufactured by using the paste-like resin composition of the present embodiment as an "adhesive" between a base material and a semiconductor element.
  • the semiconductor device of the present embodiment includes, for example, a base material and a semiconductor element mounted on the base material via an adhesive layer obtained by sintering the above-mentioned paste-like resin composition by heat treatment. Be prepared.
  • the adhesiveness of the adhesive layer is unlikely to decrease even with a heat cycle. That is, the reliability of the semiconductor device of this embodiment is high.
  • semiconductor elements include ICs, LSIs, power semiconductor elements (power semiconductors), and various other elements.
  • the substrate include various semiconductor wafers, lead frames, BGA substrates, mounting substrates, heat spreaders, heat sinks, and the like.
  • FIG. 1 is a cross-sectional view showing an example of a semiconductor device.
  • the semiconductor device 100 includes a base material 30 and a semiconductor element 20 mounted on the base material 30 via an adhesive layer 10 (diatack material) which is a heat-treated body of a paste-like resin composition.
  • an adhesive layer 10 (diatack material) which is a heat-treated body of a paste-like resin composition.
  • the semiconductor element 20 and the base material 30 are electrically connected via, for example, a bonding wire 40 or the like. Further, the semiconductor element 20 is sealed with, for example, a sealing resin 50.
  • the thickness of the adhesive layer 10 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more. As a result, the stress absorption capacity of the paste-like resin composition can be improved, and the heat cycle resistance can be improved.
  • the thickness of the adhesive layer 10 is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the base material 30 is, for example, a lead frame.
  • the semiconductor element 20 is mounted on the die pad 32 or the base material 30 via the adhesive layer 10. Further, the semiconductor element 20 is electrically connected to the outer lead 34 (base material 30) via, for example, a bonding wire 40.
  • the base material 30 which is a lead frame is composed of, for example, a 42 alloy, a Cu frame, or the like.
  • the base material 30 may be an organic substrate or a ceramic substrate.
  • the organic substrate include those composed of an epoxy resin, a cyanate resin, a maleimide resin, and the like.
  • the surface of the base material 30 may be coated with a metal such as silver or gold. As a result, the adhesiveness between the adhesive layer 10 and the base material 30 is improved.
  • FIG. 2 is a cross-sectional view showing an example of a semiconductor device 100 different from that of FIG.
  • the base material 30 is, for example, an interposer.
  • the base material 30 that is an interposer for example, a plurality of solder balls 52 are formed on the surface opposite to one surface on which the semiconductor element 20 is mounted. In this case, the semiconductor device 100 is connected to another wiring board via the solder balls 52.
  • the paste-like resin composition is applied onto the base material 30, and then the semiconductor element 20 is arranged on the paste-like resin composition. That is, the base material 30, the paste-like resin composition, and the semiconductor element 20 are laminated in this order.
  • the method of applying the paste-like resin composition is not particularly limited. Specific examples include a dispensing method, a printing method, and an inkjet method.
  • the paste-like resin composition is heat-cured.
  • Thermosetting is preferably carried out by pre-curing and post-curing.
  • the paste-like resin composition is made into a heat-treated body (cured product) by thermosetting.
  • thermosetting heat treatment
  • the metal-containing particles in the paste-like resin composition are aggregated, and a structure in which the interface between the plurality of metal-containing particles disappears is formed in the adhesive layer 10.
  • the base material 30 and the semiconductor element 20 are adhered to each other via the adhesive layer 10.
  • the semiconductor element 20 and the base material 30 are electrically connected using the bonding wire 40.
  • the semiconductor element 20 is sealed with the sealing resin 50. In this way, the semiconductor device can be manufactured.
  • Embodiments of the present invention will be described in detail based on Examples and Comparative Examples. The present invention is not limited to the examples.
  • each raw material component was mixed according to the blending amount shown in Table 1 below to obtain a varnish.
  • the obtained varnish, solvent and metal-containing particles (including metal-coated resin particles) were blended according to the blending amounts shown in Table 1 below, and kneaded with a three-roll mill at room temperature. As a result, a paste-like resin composition was prepared.
  • ((Meta) acryloyl group-containing compound) -Acrylic monomer 1 Ethylene glycol dimethacrylate (manufactured by Kyoei Chemical Co., Ltd., light ester EG) -Acrylic monomer 2: Polyethylene glycol # 600 dimethacrylate (n of general formula (1) is 14) (manufactured by NOF Corporation, PDE600) -Acrylic monomer 3: Polyethylene glycol # 600 dimethacrylate (n of general formula (1) is 14) (Kyoeisha Chemical Co., Ltd., light ester 14EG) -Acrylic monomer 4: Polyethylene glycol # 1000 diacrylate (n of general formula (1) is 23) (manufactured by Shin-Nakamura Chemical Co., Ltd., A-1000)
  • (Plasticizer) -Plasticizer 1 Allyl resin (manufactured by Kanto Chemical Co., Inc., polymer of 1,2-cyclohexanedicarboxylic acid bis (2-propenyl) and propane-1,2-diol)
  • (Curing accelerator) -Imidazole curing agent 1 2-phenyl-1H-imidazole-4,5-dimethanol (manufactured by Shikoku Chemicals Corporation, 2PHZ-PW)
  • -Silver particles 1 Silver powder (manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., HKD-38, flakes, D 50 : 4 ⁇ m)
  • -Silver-coated resin particles 1 Silver-plated silicone resin particles (manufactured by Mitsubishi Materials, heat-resistant / surface-treated 10 ⁇ m product, spherical shape, D 50 : 10 ⁇ m, specific gravity: 2.3, silver weight ratio 50 wt%, resin weight ratio 50 wt%)
  • solvent butyl propylene triglycol (BFTG)
  • thermal conductivity ⁇ was calculated based on the following formula.
  • Thermal conductivity ⁇ [W / (m ⁇ K)] ⁇ [m 2 / sec] ⁇ Cp [J / kg ⁇ K] ⁇ ⁇ [g / cm 3 ]
  • the obtained paste-like resin composition was applied onto a glass plate, heated in a nitrogen atmosphere from 30 ° C. to 200 ° C. over 60 minutes, and then heat-treated at 200 ° C. for 120 minutes. As a result, a heat-treated body of a paste-like resin composition having a thickness of 0.05 mm was obtained.
  • the resistance value on the surface of the heat-treated body was measured using a DC four-electrode method using a milliome meter (manufactured by HIOKI) and electrodes having an electrode spacing of 40 mm.
  • the breaking strain was calculated by dividing the elongation from the origin of elongation (distance between initial chucks) to the breaking point of each test piece (displacement amount when the test piece broke) by the distance between initial chucks.
  • the breaking point energy was calculated by integrating the stress from the origin of elongation (distance between initial chucks) to the breaking point of each test piece (displacement amount when the test piece broke) by displacement. The obtained breaking point energy was divided by the volume of the test piece to obtain the breaking point energy per unit volume (mJ / mm 3 ).
  • the sample was placed in a high temperature and high humidity bath at 60 ° C./60% RH, treated for 48 hours, and then subjected to a reflow treatment at 260 ° C.
  • the sample after the reflow treatment was put into a temperature cycle tester TSA-72ES (manufactured by ESPEC), and (i) 150 ° C./10 minutes, (ii) 25 ° C./10 minutes, (iii) -65 ° C./10 minutes, (Iv) 2000 cycles were performed with 25 ° C./10 minutes as one cycle. After that, the presence or absence of peeling was confirmed by SAT (ultrasonic flaw detection). Those without peeling were evaluated as ⁇ (good), and those with peeling were evaluated as ⁇ (poor).
  • SAT ultrasonic flaw detection

Abstract

本発明のペースト状樹脂組成物は、(A)2官能以上を有し、直鎖または分岐のオキシアルキレン基の繰り返し単位数が2以上である(メタ)アクリロイル基含有化合物と、(B)銀含有粒子または銅含有粒子を含む金属含有粒子と、を含む。

Description

ペースト状樹脂組成物、高熱伝導性材料、および半導体装置
 本発明は、ペースト状樹脂組成物、高熱伝導性材料、および半導体装置に関する。
 半導体装置の放熱性を高めることを意図して、金属粒子を含む熱硬化性樹脂組成物を用いて半導体装置を製造する技術が知られている。樹脂よりも大きな熱伝導率を有する金属粒子を熱硬化性樹脂組成物に含めることで、その硬化物の熱伝導性を大きくすることができる。
 半導体装置への適用の具体例として、以下の特許文献1および2のように、金属粒子を含む熱硬化型の樹脂組成物を用いて、半導体素子と基板(支持部材)とを接着/接合する技術が知られている。
 特許文献1には、所定の構造の(メタ)アクリル酸エステル化合物、ラジカル開始剤、銀微粒子、銀粉および溶剤を含む半導体接着用熱硬化型樹脂組成物、当該組成物で半導体素子と基材とが接合された半導体装置が開示されている。当該文献には、実装後の温度サイクルに対する接続信頼性を向上させることができると記載されている(0011段落)。
 特許文献2には、イミドアクリレート化合物、ラジカル開始剤、フィラー、および液状ゴム成分を含む樹脂ペースト組成物、当該組成物で半導体素子と基材とが接合された半導体装置が開示されている。当該文献には、樹脂ペースト組成物を低応力化することによりチップクラックやチップ反りの発生を抑制することができると記載されている(0003段落)。
特開2014-74132号公報 特開2000-239616号公報
 しかしながら、特許文献1~2に記載の樹脂組成物で、半導体素子と基材とが接合された半導体装置は、長期に亘って良好な導電性が発現しない場合があり、長期信頼性に改善の余地があった。
 本発明者らは、所定の構造を備える(メタ)アクリロイル基含有化合物を用いることで、半導体装置が長期に亘って良好な導電性が発現し、長期信頼性に優れることを見出し、本発明を完成させた。
 本発明は、以下に示すことができる。
 本発明によれば、
 (A)2官能以上を有し、直鎖または分岐のオキシアルキレン基の繰り返し単位数が2以上である(メタ)アクリロイル基含有化合物と、
 (B)銀含有粒子または銅含有粒子を含む金属含有粒子と、
を含む、ペースト状樹脂組成物
が提供される。
 本発明によれば、前記ペースト状樹脂組成物を焼結して得られる高熱伝導性材料が提供される。
 本発明によれば、基材と、前記基材上に接着層を介して搭載された半導体素子と、を備え、前記接着層は、前記ペースト状樹脂組成物を焼結してなる、半導体装置が提供される。
 本発明によれば、半導体素子と基材との接合に適用することにより、長期に亘って良好な導電性が発現し、長期信頼性に優れた半導体装置を得ることができるペースト状樹脂組成物を提供することができる。
半導体装置の一例を模式的に示す断面図である。 半導体装置の一例を模式的に示す断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、「~」は特に断りがなければ「以上」から「以下」を表す。
 本実施形態のペースト状樹脂組成物は、(A)2官能以上を有し、直鎖または分岐のオキシアルキレン基の繰り返し単位数が2以上である(メタ)アクリロイル基含有化合物と、(B)銀粒子または銅粒子を含む金属含有粒子と、を含む。
[(メタ)アクリロイル基含有化合物(A)]
 (メタ)アクリロイル基含有化合物(A)としては、(メタ)アクリロイル基を2官能以上有し、直鎖または分岐のオキシアルキレン基の繰り返し単位数が2以上である化合物であれば、本発明の効果を発揮し得る範囲で特に限定されず用いることができる。
 本実施形態において、当該構造を備える(メタ)アクリロイル基含有化合物(A)を含むペースト状樹脂組成物を用いることにより、当該組成物を焼結して得られる材料は、応力が緩和され、靱性にも優れる(破断エネルギーが高く破断し難い)。したがって、本実施形態のペースト状樹脂組成物により半導体素子と基材とが接合された半導体装置は、接合部の剥離等が抑制され、長期に亘って良好な導電性が発現し、長期信頼性に優れると考えられる。
 オキシアルキレン基の繰り返し単位数は、本発明の効果の観点から、2以上、好ましくは4以上、より好ましくは4~30、特に好ましくは8~30とすることができる。
 オキシアルキレン基としては、直鎖または分岐の炭素数2~10のオキシアルキレン基、好ましくは直鎖または分岐の炭素数2~8のオキシアルキレン基、より好ましくは直鎖または分岐の炭素数2~5のオキシアルキレン基を挙げることができる。
 本実施形態においては、(メタ)アクリロイル基含有化合物(A)は、下記一般式(1)で表される化合物から選択される少なくとも1種を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、Rは水素原子または炭素数1~3のアルキル基を示し、複数存在するRは同一でも異なっていてもよい。
 Xは水素原子、ハロゲン原子、水酸基、アミノ基、シアノ基、メルカプト基、カルボキシル基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し、好ましくは水素原子または炭素数1~3のアルキル基である。複数存在するXは同一でも異なっていてもよい。
 mは2~10の整数、好ましくは2~8の整数、より好ましくは2~5の整数を示すことができる。
 nは4以上30以下の整数を示し、好ましくは8以上30以下の整数と示すことができる。
 (メタ)アクリロイル基含有化合物(A)としては、ジエチレングルコールジ(メタ)アクリレート、トリエチレングルコールジ(メタ)アクリレート、ポリエチレングリコール♯200ジ(メタ)アクリレート(n:4)、ポリエチレングリコール♯400ジ(メタ)アクリレート(n:9)、ポリエチレングリコール♯600ジ(メタ)アクリレート(n:14)、ポリエチレングリコール♯1000ジ(メタ)アクリレート(n:23)等を挙げることができる。
 (メタ)アクリロイル基含有化合物(A)は、本発明の効果の観点から、ペースト状樹脂組成物の不揮発成分全体中に、0.1~15重量%以下、好ましくは0.5~10重量%、より好ましく1.0~8重量%の量で含むことができる。
 なお、本発明の効果に影響を与えない範囲で(メタ)アクリロイル基含有化合物(A)とともに、一分子中に(メタ)アクリロイル基を1つのみ備える単官能(メタ)アクリルモノマー等の(メタ)アクリロイル基含有化合物(A)以外の(メタ)アクリロイル基含有化合物を含むこともできる。
[金属含有粒子(B)]
 金属含有粒子(B)は、適切な熱処理によってシンタリング(焼結)を起こし、粒子連結構造(シンタリング構造)を形成することができる。
 金属含有粒子(B)は、銀含有粒子または銅含有粒子を含むことができる。
 特に、ペースト状樹脂組成物中に銀含有粒子が含まれること、特に、粒径が比較的小さくて比表面積が比較的大きい銀粒子が含まれることで、比較的低温(180℃程度)での熱処理でもシンタリング構造が形成されやすい。好ましい粒径については後述する。
 金属含有粒子(B)の形状は特に限定されない。好ましい形状は球状であるが、球状ではない形状、例えば楕円体状、扁平状、板状、フレーク状、針状などでもよい。
(「球状」とは、完全な真球に限られず、表面に若干の凹凸がある形状等も包含する。本明細書において以下同様。)
 金属含有粒子(B)は、(i)実質的に金属のみからなる粒子であってもよいし、(ii)金属と金属以外の成分からなる粒子であってもよい。また、金属含有粒子として(i)および(ii)が併用されてもよい。
 本実施形態において、特に好ましくは、金属含有粒子(B)は、樹脂粒子の表面が金属でコートされた金属コート樹脂粒子を含む。これにより、熱伝導性により優れるとともに貯蔵弾性率により優れた硬化物が得られるペースト状樹脂組成物を調製することができる。
 金属コート樹脂粒子は、表面が金属であり、かつ、内部が樹脂であるため、熱伝導性が良く、かつ、金属のみからなる粒子と比較して軟らかい。このため、金属コート樹脂粒子を用いることで、熱伝導率や貯蔵弾性率を適切な値に容易に設計することができる。
 通常、熱伝導性を大きくするためには、金属含有粒子の量を増やすことが考えられる。しかし、通常、金属は「硬い」ため、金属含有粒子の量が多すぎると、シンタリング後の弾性率が大きくなりすぎてしまう場合がある。金属含有粒子の一部または全部が金属コート樹脂粒子であることで、所望の熱伝導率や貯蔵弾性率を有する硬化物を得ることができるペースト状樹脂組成物を容易に設計することができる。
 金属コート樹脂粒子においては、樹脂粒子の表面の少なくとも一部の領域を金属層が覆っていればよい。もちろん、樹脂粒子の表面の全面を金属が覆っていてもよい。
 具体的には、金属コート樹脂粒子において、金属層は、樹脂粒子の表面の好ましくは50%以上、より好ましく75%以上、さらに好ましくは90%以上を覆っている。特に好ましくは、金属コート樹脂粒子において、金属層は、樹脂粒子の表面の実質的に全てを覆っている。
 別観点として、金属コート樹脂粒子をある断面で切断したときには、その断面の周囲全部に金属層が確認されることが好ましい。
 さらに別観点として、金属コート樹脂粒子中の、樹脂/金属の質量比率は、例えば90/10~10/90、好ましくは80/20~20/80、より好ましくは70/30~30/70である。
 金属コート樹脂粒子における「金属」は、前述のとおりである。特に、銀が好ましい。
 金属コート樹脂粒子における「樹脂」としては、例えば、シリコーン樹脂、(メタ)アクリル樹脂、フェノール樹脂、ポリスチレン樹脂、メラミン樹脂、ポリアミド樹脂、ポリテトラフルオロエチレン樹脂などを挙げることができる。もちろん、これら以外の樹脂であってもよい。また、樹脂は1種のみであってもよいし、2種以上の樹脂が併用されてもよい。
 弾性特性や耐熱性の観点から、樹脂は、シリコーン樹脂または(メタ)アクリル樹脂が好ましい。
 シリコーン樹脂は、メチルクロロシラン、トリメチルトリクロロシラン、ジメチルジクロロシラン等のオルガノクロロシランを重合させることにより得られるオルガノポリシロキサンにより構成される粒子でもよい。また、オルガノポリシロキサンをさらに三次元架橋した構造を基本骨格としたシリコーン樹脂でもよい。
 (メタ)アクリル樹脂は、(メタ)アクリル酸エステルを含むモノマーを重合させて得られた樹脂を、主成分として50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上含むことができる。(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-プロピル(メタ)アクリレート、クロロ-2-ヒドロキシエチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレートおよびイソボロノル(メタ)アクリレートからなる群から選ばれる少なくとも1種の化合物を挙げることができる。また、アクリル系樹脂のモノマー成分には、少量の他のモノマーが含まれていてもよい。そのような他のモノマー成分としては、例えば、スチレン系モノマーが挙げられる。金属コート(メタ)アクリル樹脂については、特開2017-126463号公報の記載なども参照されたい。
 シリコーン樹脂や(メタ)アクリル樹脂中に各種官能基を導入してもよい。導入できる官能基は特に限定されない。例えば、エポキシ基、アミノ基、メトキシ基、フェニル基、カルボキシル基、水酸基、アルキル基、ビニル基、メルカプト基等が挙げられる。
 金属コート樹脂粒子における樹脂粒子の部分は、各種の添加成分、例えば低応力改質剤などを含んでもよい。低応力改質剤としては、ブタジエンスチレンゴム、ブタジエンアクリロニトリルゴム、ポリウレタンゴム、ポリイソプレンゴム、アクリルゴム、フッ素ゴム、液状オルガノポリシロキサン、液状ポリブタジエン等の液状合成ゴム等が挙げられる。特に、樹脂粒子の部分がシリコーン樹脂を含む場合、低応力改質剤を含むことで、金属コート樹脂粒子の弾性特性を好ましいものとすることができる。
 金属コート樹脂粒子における樹脂粒子の部分の形状は、特に限定されない。好ましい形状は球状であるが、球状以外の異形状、例えば扁平状、板状、針状などでもよい。金属コート樹脂粒子の形状を球状に形成する場合は、使用する樹脂粒子の形状も球状であることが好ましい。
 金属コート樹脂粒子の比重は特に限定されないが、下限は、例えば2以上、好ましくは2.5以上、より好ましくは3以上である。また、比重の上限は、例えば10以下、好ましくは9以下、より好ましくは8以下である。比重が適切であることは、金属コート樹脂粒子そのものの分散性や、金属コート樹脂粒子とそれ以外の金属含有粒子を併用したときの均一性などの点で好ましい。
 金属コート樹脂粒子を用いる場合、金属含有粒子(B)全体中の金属コート樹脂粒子の割合は、好ましくは1~50質量%、より好ましくは3~45質量%、さらに好ましくは5~40質量%である。この割合を適切に調整することで、ヒートサイクルによる接着力の低下を抑えつつ、放熱性を一層高めることができる。
 ちなみに、金属含有粒子(B)全体中の金属コート樹脂粒子の割合が100質量%ではない場合、金属コート樹脂粒子以外の金属含有粒子は、例えば、実質的に金属のみからなる粒子である。
 金属含有粒子(B)(複数種の金属含有粒子が併用される場合は全体として)のメジアン径D50は、例えば0.001~1000μm、好ましくは0.01~100μm、より好ましくは0.1~20μmである。D50を適切な値とすることで、熱伝導性、焼結性、ヒートサイクルに対する耐性などのバランスを取りやすい。また、D50を適切な値とすることで、塗布/接着の作業性の向上などを図れることもある。
 金属含有粒子の粒度分布(横軸:粒子径、縦軸:頻度)は、単峰性であっても多峰性であってもよい。
 実質的に金属のみからなる粒子のメジアン径D50は、例えば0.8μm以上、好ましくは1.0μm以上、より好ましくは1.2μm以上である。これにより、熱伝導性をより高めることができる。
 また、実質的に金属のみからなる粒子のメジアン径D50は、例えば7.0μm以下、好ましくは5.0μm以下、より好ましくは4.0μm以下である。これにより、シンタリングのしやすさの一層の向上、シンタリングの均一性の向上などを図ることができる。
 金属含有粒子(B)のメジアン径D50は、例えば0.5μm以上、好ましくは1.5μm以上、より好ましくは2.0μm以上である。これにより、貯蔵弾性率E'を適切な値にしやすい。
 また、金属含有粒子(B)のメジアン径D50は、例えば20μm以下、好ましくは15μm以下、より好ましくは10μm以下である。これにより、熱伝導性を十分大きくしやすい。
 金属含有粒子(B)のメジアン径D50は、例えば、シスメックス株式会社製フロー式粒子像分析装置FPIA(登録商標)-3000を用い、粒子画像計測を行うことで求めることができる。より具体的には、この装置を用い、湿式で体積基準のメジアン径を計測することで、金属含有粒子(B)の粒子径を決定することができる。
 ペースト状樹脂組成物全体中の金属含有粒子(B)(複数種の金属含有粒子を用いる場合は、それらの合計)の割合は、例えば1~98質量%、好ましくは30~95質量%、より好ましくは50~90質量%である。金属含有粒子の割合を1質量%以上とすることで、熱伝導性を高めやすい。金属含有粒子(B)の割合を98質量%以下とすることで、塗布/接着の作業性を向上させることができる。
 金属含有粒子(B)のうち、実質的に金属のみからなる粒子は、例えば、DOWAハイテック社、福田金属箔粉工業社などより入手することができる。また、金属コート樹脂粒子は、例えば、三菱マテリアル社、積水化学工業社、株式会社山王などより入手することができる。
[熱硬化性樹脂(C)]
 本実施形態のペースト状樹脂組成物は、さらに熱硬化性樹脂(C)を含むことができる。本実施形態において、熱硬化性樹脂(C)は(メタ)アクリロイル基含有化合物(A)を含まない。
 熱硬化性樹脂(C)は、通常、ラジカルなどの活性化学種が作用することで重合/架橋する基、および/または、後述の硬化剤(D)と反応する化学構造を含む。熱硬化性樹脂(C)は、例えば、エポキシ基、オキセタニル基、エチレン性炭素-炭素二重結合を含む基、ヒドロキシ基、イソシアネート基、マレイミド構造などのうち1または2以上を含む。
 熱硬化性樹脂(C)としては、好ましくは、エポキシ樹脂を挙げることができる。
 エポキシ樹脂は、一分子中にエポキシ基を1つのみ備える化合物であってもよいし、一分子中にエポキシ基を2つ以上備える化合物であってもよい。
 エポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の2官能性または結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂およびアルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂等が挙げられる。
 また、エポキシ基含有化合物として、4-tert-ブチルフェニルグリシジルエーテル、m,p-クレジルグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテル等の、単官能のエポキシ基含有化合物を含むこともできる。
 本実施形態のペースト状樹脂組成物は、熱硬化性成分を1種のみ含んでもよいし、2種以上含んでもよい。
 本実施形態においては、熱硬化性樹脂(C)と(メタ)アクリロイル基含有化合物(A)とが併用されることが好ましい。これらを併用する場合の比率(質量比)は特に限定されないが、例えば熱硬化性樹脂(C)/(メタ)アクリロイル基含有化合物(A)=95/5~50/50、好ましくは熱硬化性樹脂(C)/((メタ)アクリロイル基含有化合物(A)=90/10~60/40である。
 熱硬化性樹脂(C)としてはエポキシ樹脂が好ましい。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等が好ましく挙げられる。
 本実施形態のペースト状樹脂組成物中の、熱硬化性樹脂(C)の量は、不揮発成分全体中、例えば3~20質量%、好ましくは5~15質量%である。
[硬化剤(D)]
 本実施形態のペースト状樹脂組成物は、さらに硬化剤(D)を含むことができる。
 硬化剤(D)としては、熱硬化性樹脂(C)と反応する反応性基を有するものを挙げることができる。硬化剤(D)は、例えば、熱硬化性樹脂(C)中に含まれるエポキシ基、マレイミド基、ヒドロキシ基などの官能基と反応する反応性基を含む。
 硬化剤(D)は、好ましくは、フェノール系硬化剤および/またはイミダゾール系硬化剤を含む。これら硬化剤は、特に、熱硬化性成分がエポキシ基を含む場合に好ましい。
 フェノール系硬化剤は、低分子化合物あってもよいし、高分子化合物(すなわちフェノール樹脂)であってもよい。
 低分子化合物であるフェノール系硬化剤としては、例えば、ビスフェノールA、ビスフェノールF(ジヒドロキシジフェニルメタン)等のビスフェノール化合物(ビスフェノールF骨格を有するフェノール樹脂);4,4'-ビフェノールなどのビフェニレン骨格を有する化合物などが挙げられる。
 フェノール樹脂として具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、フェノール-ビフェニルノボラック樹脂等のノボラック型フェノール樹脂;ポリビニルフェノール;トリフェニルメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のフェノールアラルキル型フェノール樹脂などを挙げることができる。
 硬化剤(D)を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
 本実施形態のペースト状樹脂組成物が硬化剤(D)を含む場合、その量は、熱硬化性樹脂(C)の量を100質量部としたとき、例えば10~150質量部、好ましくは20~100質量部である。
(硬化促進剤)
 本実施形態のペースト状樹脂組成物は、さらに硬化促進剤を含むことができる。
 硬化促進剤は、典型的には熱硬化性樹脂(C)と硬化剤(D)との反応を促進させるものである。
 硬化促進剤として具体的には、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;ジシアンジアミド、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等のアミジンや3級アミン;上記アミジンまたは上記3級アミンの4級アンモニウム塩等の窒素原子含有化合物などが挙げられる。
 硬化促進剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
 本実施形態のペースト状樹脂組成物が硬化促進剤を含む場合、その量は、熱硬化性樹脂(C)の量を100質量部としたとき、例えば0.1~10質量部、好ましくは0.5~5質量部である。
(シランカップリング剤)
 本実施形態のペースト状樹脂組成物は、さらにシランカップリング剤を含むことができる。これにより、接着力の一層の向上を図ることができる。
 シランカップリング剤としては、公知のシランカップリング剤を挙げることができ、具体的には、ニルトリメトキシシラン、ビニルトリエトキシシランなどのビニルシラン;
 2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシシラン;
 p-スチリルトリメトキシシランなどのスチリルシラン;
 3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリルシラン;
 メタクリル酸3-(トリメトキシシリル)プロピル、3-アクリロキシプロピルトリメトキシシランなどのアクリルシラン;
 N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシランなどのアミノシラン;
 イソシアヌレートシラン;
 アルキルシラン;
 3-ウレイドプロピルトリアルコキシシランなどのウレイドシラン;
 3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプトシラン;
 3-イソシアネートプロピルトリエトキシシランなどのイソシアネートシランなどを挙げることができる。
 シランカップリング剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
 本実施形態のペースト状樹脂組成物がシランカップリング剤を含む場合、その量は、熱硬化性成分の量((メタ)アクリロイル基含有化合物(A)および熱硬化性樹脂(C)の合計量)を100質量部としたとき、例えば0.1~10質量部、好ましくは0.5~5質量部である。
(可塑剤)
 本実施形態のペースト状樹脂組成物は、可塑剤を含むことができる。可塑剤により、貯蔵弾性率を小さめに設計しやすい。そして、ヒートサイクルによる接着力の低下を一層抑えやすくなる。
 可塑剤として具体的には、ポリエステル化合物、シリコーンオイル、シリコーンゴム等のシリコーン化合物、ポリブタジエン無水マレイン酸付加体などのポリブタジエン化合物、アクリロニトリルブタジエン共重合化合物などを挙げることができる。
 可塑剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
 本実施形態のペースト状樹脂組成物が可塑剤を含む場合、その量は、熱硬化性成分の量((メタ)アクリロイル基含有化合物(A)および熱硬化性樹脂(C)の合計量)を100質量部としたとき、例えば5~50質量部、好ましくは10~30質量部である。
(ラジカル開始剤)
 本実施形態のペースト状樹脂組成物は、ラジカル開始剤を含むことができる。
 ラジカル開始剤により、例えば、硬化が不十分となることを抑えることができたり、比較的低温(例えば180℃)での硬化反応を十分に進行させることができたり、接着力を一層向上させることができたりする場合がある。
 ラジカル開始剤としては、過酸化物、アゾ化合物などを挙げることができる。
 過酸化物としては、例えば、ジアシルパーオキサイド、ジアルキルパーオキサイド、パーオキシケタールなどの有機過酸化物を挙げることができ、より具体的には、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド;1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ(t-ブチルパーオキシ)シクロヘキシル)プロパン等のパーオキシケタール;
 p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド;
 ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-へキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド等のジアルキルパーオキサイド;
 ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド等のジアシルパーオキサイド;
 ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート;
 2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-へキシルパーオキシベンゾエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ2-エチルヘキサノネート等のパーオキシエステルなどを挙げることができる。
 アゾ化合物としては、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-シクロプロピルプロピオニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)などを挙げることができる。
 ラジカル開始剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
 本実施形態のペースト状樹脂組成物がラジカル開始剤を含む場合、その量は、熱硬化性成分の量((メタ)アクリロイル基含有化合物(A)および熱硬化性樹脂(C)の合計量)を100質量部としたとき、例えば0.1~10質量部、好ましくは0.5~8質量部、さらに好ましくは0.5~5質量部である。
(溶剤)
 本実施形態のペースト状樹脂組成物は、さらに溶剤を含むことができる。溶剤により、例えば、ペースト状樹脂組成物の流動性の調整、基材上に接着層を形成する際の作業性の向上などを図ることができる。
 溶剤は、典型的には有機溶剤である。
 有機溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α-ターピネオール、β-ターピネオール、へキシレングリコール、ベンジルアルコール、2-フェニルエチルアルコール、イゾパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコール、ブチルプロピレントリグリコール、グリセリン等のアルコール類;
 アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4-ヒドロキシ-4-メチル-2-ペンタノン)、2-オクタノン、イソホロン(3、5、5-トリメチル-2-シクロヘキセン-1-オン)、ジイソブチルケトン(2、6-ジメチル-4-ヘプタノン)等のケトン類;
 酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2-ジアセトキシエタン、リン酸トリブチル、リン酸トリクレジル、リン酸トリペンチル等のエステル類;
 テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2-ビス(2-ジエトキシ)エタン、1,2-ビス(2-メトキシエトキシ)エタン等のエーテル類;
 酢酸2-(2ブトキシエトキシ)エタン等のエステルエーテル類;
 2-(2-メトキシエトキシ)エタノール等のエーテルアルコール類;
 トルエン、キシレン、n-パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシン、軽油等の炭化水素類;
 アセトニトリルもしくはプロピオニトリル等のニトリル類;
 アセトアミド、N,N-ジメチルホルムアミド等のアミド類;
 低分子量の揮発性シリコンオイル、揮発性有機変成シリコンオイル等のシリコンオイル類など、を挙げることができる。
 溶剤を用いる場合、1種のみの溶剤を用いてもよいし、2種以上の溶剤を併用してもよい。
 溶剤を用いる場合、その量は特に限定されない。所望の流動性などに基づき使用量は適宜調整すればよい。一例として、溶剤は、ペースト状樹脂組成物の不揮発成分濃度が50~90質量%となる量で使用される。
(組成物の性状)
 本実施形態のペースト状樹脂組成物は、好ましくは、20℃でペースト状である。すなわち、本実施形態のペースト状樹脂組成物は、好ましくは、20℃で、糊のようにして基板等に塗布することができる。このことにより、本実施形態のペースト状樹脂組成物を、半導体素子の接着剤などとして好ましく用いることができる。
 もちろん、適用されるプロセスなどによっては、本実施形態のペースト状樹脂組成物は、比較的低粘度のワニス状などであってもよい。
<高熱伝導性材料>
 本実施形態のペースト状樹脂組成物を焼結しことにより高熱伝導性材料を得ることができる。
 高熱伝導性材料の形状を変えることにより、自動車、電機分野において熱放散性を必要とする様々な部品に適用することができる。
<半導体装置>
 本実施形態のペースト状樹脂組成物を用いて、半導体装置を製造することができる。例えば、本実施形態のペースト状樹脂組成物を、基材と半導体素子との「接着剤」として用いることで、半導体装置を製造することができる。
 換言すると、本実施形態の半導体装置は、例えば、基材と、上述のペースト状樹脂組成物を熱処理により焼結して得られる接着層を介して基材上に搭載された半導体素子と、を備える。
 本実施形態の半導体装置は、ヒートサイクルによっても接着層の密着性などが低下しにくい。つまり、本実施形態の半導体装置の信頼性は高い。
 半導体素子としては、IC、LSI、電力用半導体素子(パワー半導体)、その他各種の素子を挙げることができる。
 基板としては、各種半導体ウエハ、リードフレーム、BGA基板、実装基板、ヒートスプレッダー、ヒートシンクなどを挙げることができる。
 以下、図面を参照して、半導体装置の一例を説明する。
 図1は、半導体装置の一例を示す断面図である。
 半導体装置100は、基材30と、ペースト状樹脂組成物の熱処理体である接着層10(ダイアタッチ材)を介して基材30上に搭載された半導体素子20と、を備える。
 半導体素子20と基材30は、例えばボンディングワイヤ40等を介して電気的に接続される。また、半導体素子20は、例えば封止樹脂50により封止される。
 接着層10の厚さは、5μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。これにより、ペースト状樹脂組成物の応力吸収能が向上し、耐ヒートサイクル性を向上できる。
 接着層10の厚さは、例えば100μm以下、好ましくは50μm以下である。
 図1において、基材30は、例えば、リードフレームである。この場合、半導体素子20は、ダイパッド32または基材30上に接着層10を介して搭載されることとなる。また、半導体素子20は、例えば、ボンディングワイヤ40を介してアウターリード34(基材30)へ電気的に接続される。リードフレームである基材30は、例えば、42アロイ、Cuフレーム等により構成される。
 基材30は、有機基板やセラミック基板であってもよい。有機基板としては、例えばエポキシ樹脂、シアネート樹脂、マレイミド樹脂等によって構成されたものを挙げることができる。
 基材30の表面は、例えば、銀、金などの金属により被膜されていてもよい。これにより、接着層10と基材30との接着性が向上する。
 図2は、図1とは別の半導体装置100の一例を示す断面図である。
 図2の半導体装置100において、基材30は、例えばインターポーザである。インターポーザである基材30のうち、半導体素子20が搭載される一面と反対側の面には、例えば複数の半田ボール52が形成される。この場合、半導体装置100は、半田ボール52を介して他の配線基板へ接続されることとなる。
 半導体装置の製造方法の一例について説明する。
 まず、基材30の上に、ペースト状樹脂組成物を塗工し、次いで、その上に半導体素子20を配置する。すなわち、基材30、ペースト状樹脂組成物、半導体素子20がこの順で積層される。
 ペースト状樹脂組成物を塗工する方法は特に限定されない。具体的には、ディスペンシング、印刷法、インクジェット法などを挙げることができる。
 次いで、ペースト状樹脂組成物を熱硬化させる。熱硬化は、好ましくは前硬化及び後硬化により行われる。熱硬化により、ペースト状樹脂組成物を熱処理体(硬化物)とする。熱硬化(熱処理)により、ペースト状樹脂組成物中の金属含有粒子が凝集し、複数の金属含有粒子同士の界面が消失した構造が接着層10中に形成される。これにより、接着層10を介して、基材30と、半導体素子20とが接着される。次いで、半導体素子20と基材30を、ボンディングワイヤ40を用いて電気的に接続する。次いで、半導体素子20を封止樹脂50により封止する。このようにして半導体装置を製造することができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。本発明は実施例に限定されるものではない。
<ペースト状樹脂組成物の調製>
 まず、後掲の表-1に示される配合量に従って、各原料成分を混合し、ワニスを得た。
 次に、得られたワニス、溶剤および金属含有粒子(金属コート樹脂粒子を含む)を、後掲の表-1に示す配合量に従って配合し、常温で、3本ロールミルで混練した。これにより、ペースト状樹脂組成物を作製した。
 以下、表-1の原料成分の情報を示す。
(熱硬化性成分)
・エポキシ樹脂1:ビスフェノールF型液状エポキシ樹脂(日本化薬社製、RE-303S)
(硬化剤)
・硬化剤1:ビスフェノールF骨格を有するフェノール樹脂(室温25℃で固体、DIC社製、DIC-BPF)
((メタ)アクリロイル基含有化合物)
・アクリルモノマー1:エチレングリコールジメタクリレート(共栄化学社製、ライトエステルEG)
・アクリルモノマー2:ポリエチレングリコール♯600ジメタアクリレート(一般式(1)のnが14)(日油社製、PDE600)
・アクリルモノマー3:ポリエチレングリコール♯600ジメタアクリレート(一般式(1)のnが14)(共栄社化学社製、ライトエステル14EG)
・アクリルモノマー4:ポリエチレングリコール♯1000ジアクリレート(一般式(1)のnが23)(新中村化学社製、A-1000)
(可塑剤)
・可塑剤1:アリル樹脂(関東化学社製、1,2-シクロヘキサンジカルボン酸ビス(2-プロペニル)とプロパン-1,2-ジオールとの重合体)
(硬化促進剤)
・イミダゾール硬化剤1:2-フェニル-1H-イミダゾール-4,5-ジメタノール(四国化成工業社製、2PHZ-PW)
(重合開始剤)
・ラジカル重合開始剤1:ジクミルパーオキサイド(化薬アクゾ社製、パーカドックスBC)
(金属含有粒子)
・銀粒子1:銀粉(福田金属箔粉工業社製、HKD-38、フレーク状、D50:4μm)
・銀コート樹脂粒子1:銀メッキシリコーン樹脂粒子(三菱マテリアル社製、耐熱・表面処理10μm品、球形状、D50:10μm、比重:2.3、銀の重量比率50wt%、樹脂の重量比率50wt%)
(溶剤)
・溶剤1:ブチルプロピレントリグリコール(BFTG)
<熱伝導率λの測定>
 得られたペースト状樹脂組成物を、テフロン板上に塗布し、窒素雰囲気下で、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。これにより、厚さ1mmの、ペースト状樹脂組成物の熱処理体を得た(「テフロン」は、フッ素樹脂に関する登録商標である)。
 次いで、レーザーフラッシュ法により、熱処理体の厚み方向の熱拡散係数αを測定した。測定温度は25℃とした。
 また、示差走査熱量(Differential scanning calorimetry:DSC)測定により、比熱Cpを測定した。
 さらに、JIS K 6911に準拠して、密度ρを測定した。
 これらの値を用いて、以下の式に基づいて、熱伝導率λを算出した。
  熱伝導率λ[W/(m・K)]=α[m/sec]×Cp[J/kg・K]×ρ[g/cm
<電気抵抗率の測定>
 得られたペースト状樹脂組成物をガラス板上に塗布し、窒素雰囲気下で、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。これにより、厚さ0.05mmのペースト状樹脂組成物の熱処理体を得た。ミリオームメータ(HIOKI社製)による直流四電極法、電極間隔が40mmの電極を用い、熱処理体表面の抵抗値を測定した。
<25℃での貯蔵弾性率E'の測定>
 得られたペースト状樹脂組成物を、テフロン板上に塗布し、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。これにより、厚さ0.3mmの、熱伝導性組成物の熱処理体を得た。
 得られた熱処理体をテフロン板から剥がして、測定装置(日立ハイテクサイエンス社製、DMS6100)にセットし、引張モード、周波数1Hzでの動的粘弾性測定(DMA)を行った。これにより、25℃における貯蔵弾性率E'(MPa)を測定した。
<破断強度の測定>
 得られたペースト状樹脂組成物を、テフロン板上に塗布し、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。これにより、厚さ0.3mm、幅4mmの熱伝導性組成物の熱処理体を得た。そして、各試験サンプルの25℃における破断強度を、引張試験機(島津製作所社製、「MST-1」)を用いて測定した。
<破断ひずみの測定>
 破断ひずみは、伸びの原点(初期チャック間距離)から各試験片の破断点(試験片が破断したときの変位量)までの伸びを、初期チャック間距離で除することによって算出した。
<破断エネルギーの測定>
 破断点エネルギーは、伸びの原点(初期チャック間距離)から各試験片の破断点(試験片が破断したときの変位量)までの応力を変位で積分することによって算出した。得られた破断点エネルギーを試験片の体積で割り、単位体積当たりの破断点エネルギー(mJ/mm)を得た。
<ヒートサイクル試験/剥離有無の評価>
 ペースト状樹脂組成物を表面銀めっきの基板上に塗布して塗膜を形成し、その塗膜の上に表面金めっきの7×7mmのシリコンチップを載せた。その後、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。以上により熱伝導性組成物を硬化させ、また、シリコンチップを基板に接合した。
 接合後のシリコンチップ・基板を、封止材EME-G700ML-C(住友ベークライト製)で封止した。これを温度サイクル試験用のサンプルとした。
 サンプルを、60℃/60%RHの高温高湿槽に入れて、48時間処理し、その後、260℃のリフロー処理にかけた。
 リフロー処理後のサンプルを、温度サイクル試験機TSA-72ES(エスペック製)に投入し、(i)150℃/10分、(ii)25℃/10分、(iii)-65℃/10分、(iv)25℃/10分を1サイクルとして、2000サイクル処理を行った。
 その後、SAT(超音波探傷)により剥離の有無を確認した。剥離がないものを○(良好)、剥離があるものを×(不良)と評価した。
Figure JPOXMLDOC01-appb-T000003
 表-1の結果から、半導体素子と基材とを本発明のペースト状樹脂組成物を用いて接合することにより、長期に亘って良好な導電性が発現し、長期信頼性に優れた半導体装置を得ることができることが明らかとなった。
 この出願は、2020年1月29日に出願された日本出願特願2020-012506号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (7)

  1.  (A)2官能以上を有し、直鎖または分岐のオキシアルキレン基の繰り返し単位数が2以上である(メタ)アクリロイル基含有化合物と、
     (B)銀含有粒子または銅含有粒子を含む金属含有粒子と、
    を含む、ペースト状樹脂組成物。
  2.  (メタ)アクリロイル基含有化合物(A)は、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rは水素原子または炭素数1~3のアルキル基を示し、複数存在するRは同一でも異なっていてもよい。Xは水素原子、ハロゲン原子、水酸基、アミノ基、シアノ基、メルカプト基、カルボキシル基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し、複数存在するXは同一でも異なっていてもよい。mは2~10の整数を示す。nは4以上30以下の整数を示す。)
    で表される化合物から選択される少なくとも1種を含む、請求項1に記載のペースト状樹脂組成物。
  3.  さらに熱硬化性樹脂(C)((メタ)アクリロイル基含有化合物(A)を除く)を含む、請求項1または2に記載のペースト状樹脂組成物。
  4.  熱硬化性樹脂(C)はエポキシ樹脂を含む、請求項3に記載のペースト状樹脂組成物。
  5.  さらに硬化剤(D)を含む、請求項3または4に記載のペースト状樹脂組成物。
  6.  請求項1~5のいずれかに記載のペースト状樹脂組成物を焼結して得られる高熱伝導性材料。
  7.  基材と、
     前記基材上に接着層を介して搭載された半導体素子と、を備え、
     前記接着層は、請求項1~5のいずれかに記載のペースト状樹脂組成物を焼結してなる、半導体装置。
PCT/JP2021/001980 2020-01-29 2021-01-21 ペースト状樹脂組成物、高熱伝導性材料、および半導体装置 WO2021153405A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180011544.6A CN115023453A (zh) 2020-01-29 2021-01-21 膏状树脂组合物、高导热性材料和半导体装置
JP2021545737A JP7279802B2 (ja) 2020-01-29 2021-01-21 高熱伝導性材料用ペースト状樹脂組成物、高熱伝導性材料、および半導体装置
JP2022172992A JP2023015160A (ja) 2020-01-29 2022-10-28 ペースト状樹脂組成物、高熱伝導性材料、および半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020012506 2020-01-29
JP2020-012506 2020-01-29

Publications (1)

Publication Number Publication Date
WO2021153405A1 true WO2021153405A1 (ja) 2021-08-05

Family

ID=77078539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001980 WO2021153405A1 (ja) 2020-01-29 2021-01-21 ペースト状樹脂組成物、高熱伝導性材料、および半導体装置

Country Status (4)

Country Link
JP (2) JP7279802B2 (ja)
CN (1) CN115023453A (ja)
TW (1) TW202138507A (ja)
WO (1) WO2021153405A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074132A (ja) * 2012-10-05 2014-04-24 Kyocera Chemical Corp 半導体接着用熱硬化型樹脂組成物及び半導体装置
JP2017106023A (ja) * 2015-01-29 2017-06-15 住友ベークライト株式会社 ペースト状接着剤組成物、半導体装置、半導体装置の製造方法、および放熱板の接着方法
WO2019167819A1 (ja) * 2018-03-01 2019-09-06 住友ベークライト株式会社 ペースト状接着剤組成物及び半導体装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150135A (ja) * 1997-11-17 1999-06-02 Nec Corp 熱伝導性が良好な導電性ペースト及び電子部品
JP3428483B2 (ja) * 1998-02-17 2003-07-22 凸版印刷株式会社 パターン形成方法、プラズマディスプレイのリブ基板の製造方法、プラズマディスプレイの製造方法
JP2004139754A (ja) 2002-10-15 2004-05-13 Mitsubishi Paper Mills Ltd 酸化銀ペースト、及び酸化銀ペーストからの金属銀の作製方法
JP2009295895A (ja) * 2008-06-09 2009-12-17 Sumitomo Bakelite Co Ltd 回路板用導電性ペースト
JP2011122129A (ja) 2009-11-12 2011-06-23 Sekisui Chem Co Ltd 無機微粒子分散ペースト組成物
JP5616070B2 (ja) 2010-01-21 2014-10-29 株式会社フジクラ 電子線硬化用導電性ペースト及びこれを用いた回路基板の製造方法
JP2013026089A (ja) 2011-07-22 2013-02-04 Fujikura Ltd 電子線硬化用導電性ペースト及びこれを用いた回路基板の製造方法
JP2013067673A (ja) * 2011-09-20 2013-04-18 Hitachi Chemical Co Ltd 樹脂ペースト組成物及び半導体装置
JP6318137B2 (ja) * 2015-09-30 2018-04-25 Dowaエレクトロニクス株式会社 導電性ペースト及び導電膜
JP2017130357A (ja) * 2016-01-20 2017-07-27 住友ベークライト株式会社 導電性ペースト、および導電性ペーストの硬化体の製造方法
JP2017130393A (ja) * 2016-01-21 2017-07-27 国立大学法人群馬大学 導電性ペーストおよび銀膜の形成方法
KR102040529B1 (ko) * 2016-08-19 2019-11-06 스미또모 베이크라이트 가부시키가이샤 다이 어태치 페이스트 및 반도체 장치
KR102029853B1 (ko) * 2016-10-31 2019-10-08 스미또모 베이크라이트 가부시키가이샤 열전도성 페이스트 및 전자 장치
JP7201296B2 (ja) * 2018-02-06 2023-01-10 ローム株式会社 半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074132A (ja) * 2012-10-05 2014-04-24 Kyocera Chemical Corp 半導体接着用熱硬化型樹脂組成物及び半導体装置
JP2017106023A (ja) * 2015-01-29 2017-06-15 住友ベークライト株式会社 ペースト状接着剤組成物、半導体装置、半導体装置の製造方法、および放熱板の接着方法
WO2019167819A1 (ja) * 2018-03-01 2019-09-06 住友ベークライト株式会社 ペースト状接着剤組成物及び半導体装置

Also Published As

Publication number Publication date
JPWO2021153405A1 (ja) 2021-08-05
TW202138507A (zh) 2021-10-16
JP2023015160A (ja) 2023-01-31
JP7279802B2 (ja) 2023-05-23
CN115023453A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
JP2022069401A (ja) ペースト状組成物、高熱伝導性材料、および半導体装置
JP6927455B2 (ja) 熱伝導性組成物および半導体装置
JP7264211B2 (ja) 熱伝導性組成物および半導体装置
WO2021153405A1 (ja) ペースト状樹脂組成物、高熱伝導性材料、および半導体装置
JP6950848B2 (ja) 半導体パッケージに用いる熱伝導性組成物
JP2022018051A (ja) ペースト状樹脂組成物、高熱伝導性材料、および半導体装置
WO2022113923A1 (ja) 銀含有ペーストおよび接合体
WO2022202505A1 (ja) 導電性樹脂組成物、高熱伝導性材料および半導体装置
WO2023276690A1 (ja) 導電性樹脂組成物、高熱伝導性材料および半導体装置
WO2023132051A1 (ja) ペースト状樹脂組成物、高熱伝導性材料、および半導体装置
JP2006016580A (ja) 接着剤組成物、それを用いたフィルム状接着剤及び回路接続材料、並びに回路部材の接続構造及びその製造方法
WO2023048098A1 (ja) 導電性ペースト、硬化物、シンタリング促進剤およびシンタリング促進方法
JP2022049009A (ja) ペースト状重合性組成物、高熱伝導性材料
JP2024011945A (ja) 導電性ペースト、硬化物および半導体装置
JP2023018445A (ja) 導電性ペースト、高熱伝導性材料および半導体装置
JP2024011926A (ja) 導電性ペースト、硬化物および半導体装置
CN117098806A (zh) 导电性树脂组合物、高导热性材料和半导体装置
TW202328380A (zh) 糊狀樹脂組成物、高導熱性材料及半導體裝置
CN112912427A (zh) 导电性树脂组合物和半导体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545737

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748018

Country of ref document: EP

Kind code of ref document: A1