WO2021153174A1 - 触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法 - Google Patents

触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法 Download PDF

Info

Publication number
WO2021153174A1
WO2021153174A1 PCT/JP2021/000287 JP2021000287W WO2021153174A1 WO 2021153174 A1 WO2021153174 A1 WO 2021153174A1 JP 2021000287 W JP2021000287 W JP 2021000287W WO 2021153174 A1 WO2021153174 A1 WO 2021153174A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
composition
producing
less
niobium
Prior art date
Application number
PCT/JP2021/000287
Other languages
English (en)
French (fr)
Inventor
夏萌 小池
剛輔 大山
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US17/796,571 priority Critical patent/US20230057028A1/en
Priority to KR1020227026414A priority patent/KR20220116326A/ko
Priority to JP2021574575A priority patent/JP7191254B2/ja
Priority to EP21748195.1A priority patent/EP4098362A4/en
Priority to CN202180012027.0A priority patent/CN115038523B/zh
Priority to BR112022013676A priority patent/BR112022013676A2/pt
Publication of WO2021153174A1 publication Critical patent/WO2021153174A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a composition for producing a catalyst, a method for producing a composition for producing a catalyst, and a method for producing an oxide catalyst.
  • a composite metal oxide containing a plurality of metals such as molybdenum and vanadium has been used as a catalyst used in producing acrylonitrile.
  • a general method for producing a composite metal oxide catalyst for example, a method including a step of preparing a slurry containing a metal salt constituting the catalyst, spray-drying the slurry, and firing the slurry can be mentioned. At this time, if the slurry containing the metal salt is non-uniform, the obtained catalyst is also non-uniform, so that a composite metal oxide having a desired composition cannot be obtained. Therefore, it is desired to prepare a slurry in which the metal salt is uniformly dissolved.
  • the metal salt exhibits poor solubility depending on the metal species in the metal salt, and it is necessary to sufficiently dissolve the poorly soluble metal salt when obtaining a composite metal oxide from the slurry.
  • niobium (Nb) forms a skeleton that serves as an active site in the catalyst, and when a catalyst containing niobium is used in the reaction, it also suppresses the decomposition of products. It is known to contribute.
  • niobium oxide Nb 2 O 5
  • Nb 2 O 5 is poorly water-soluble, it is difficult to obtain a uniform slurry when an amount of Nb 2 O 5 that can sufficiently enhance the catalyst performance is added to the catalyst raw material slurry. Therefore, for the production of a composite metal oxide catalyst, a method for obtaining a uniform slurry containing niobium is being studied.
  • Patent Document 1 describes a mixing tank having corrosion resistance and provided with stirring means, heating means, and cooling means, and a filter for filtering undissolved Nb compounds and precipitated dicarboxylic acids.
  • a method for preparing a niobium compound-containing aqueous solution is disclosed by using a manufacturing apparatus that performs filtration under pressure.
  • Nb 2 O 5 is heated together with an aqueous solution containing a carboxylic acid such as oxalic acid as a chelating agent to form an oxalic acid Nb complex to obtain an oxalic acid Nb complex aqueous solution, and the oxalic acid Nb is obtained.
  • a method of obtaining a slurry from a complex aqueous solution is used. According to the method of Patent Document 1, it is said that in the obtained aqueous mixed solution of Nb compound and dicarboxylic acid, the undissolved residue and precipitation of the Nb compound can be reduced, and the recovery rate of Nb and the productivity of the mixed solution can be improved. There is.
  • the aqueous mixture of a solid niobium raw material and oxalic acid which can be used for producing a catalyst
  • Nb 2 which is a solid niobium raw material together with an aqueous solution containing an acid substance such as oxalic acid as a chelating agent, as described above.
  • O 5 is heated to form an oxalic acid Nb complex to obtain an oxalic acid niobium complex aqueous solution.
  • oxalic acid acts as a reducing agent
  • the composite metal oxide catalyst obtained from the above aqueous solution may be in a hyperreduced state, and there is a concern that the activity of the catalyst may be reduced. Therefore, it is necessary to suppress the amount of oxalic acid used as much as possible, but if the amount of oxalic acid used relative to the amount of niobium is suppressed, the solubility of the Nb compound is lowered.
  • Patent Document 1 First, an aqueous solution containing oxalic acid is prepared while heating, Nb 2 O 5 is added thereto, and the mixture is stirred while heating to obtain an aqueous mixed solution. Next, the aqueous mixed solution is allowed to cool naturally, allowed to stand, cooled, and allowed to stand, and the excess oxalic acid is precipitated as a solid. Further, the precipitated solid is removed by filtration to obtain an aqueous solution of niobium oxalate complex.
  • excess oxalic acid can be removed, but the oxalic acid Nb complex aqueous solution still contains oxalic acid in a saturated state at the cooling step temperature, and unnecessary oxalic acid is sufficiently removed. There is a problem that it cannot be done. In addition, since oxalic acid, which is removed as a solid, is discarded, it is required to reduce the amount of oxalic acid used from the viewpoint of cost reduction and environmental load reduction, and because it is a deleterious substance.
  • the production process of the oxalic acid Nb complex aqueous solution includes a step of cooling and removing a solid, and the production process is complicated. Therefore, a method for easily obtaining an oxalic acid niobium complex aqueous solution is required.
  • the present invention comprises a catalyst production composition in which the amount of an acid substance such as oxalic acid used is suppressed while containing a niobium compound, a production method capable of efficiently obtaining the catalyst production composition, and a production method.
  • An object of the present invention is to provide a production method for producing an oxide catalyst using the catalyst production composition.
  • the present inventors have reduced the amount of an aqueous solution containing a niobium compound and an acid substance such as oxalic acid by using a solid niobium raw material and hydrogen peroxide. We have found that it can be obtained efficiently while suppressing it, and have completed the present invention.
  • a composition for producing a catalyst used for producing a catalyst for a vapor-phase catalytic oxidation reaction or a catalyst for a vapor-phase catalytic ammoxidation reaction is an aqueous solution containing a niobium compound and hydrogen peroxide, and optionally containing an organic acid.
  • the molar ratio (organic acid / Nb) of the organic acid concentration to the Nb concentration in the catalyst production composition is 0.00 or more and 2.00 or less.
  • the molar ratio of hydrogen peroxide (hydrogen peroxide / Nb) to the Nb concentration in the catalyst production composition is 0.01 or more and 50 or less.
  • Composition for catalyst production is an aqueous solution containing a niobium compound and hydrogen peroxide, and optionally containing an organic acid.
  • the molar ratio (organic acid / Nb) of the organic acid concentration to the Nb concentration in the catalyst production composition is 0.00 or more and 2.00 or less.
  • the organic acid is one or more carboxylic acid compounds selected from the group consisting of a dicarboxylic acid, an anhydride of a dicarboxylic acid, a hydrate of a dicarboxylic acid, and an oxycarboxylic acid.
  • the composition for producing a catalyst according to [1].
  • composition for producing a catalyst according to any one of [1] and [2].
  • peak is in the range of 685 cm -1 or more and 785 cm -1 or less.
  • the composition for producing a catalyst is an aqueous solution containing a niobium compound and hydrogen peroxide and optionally containing an organic acid.
  • the Raman spectrum of the catalyst-producing composition by Raman spectroscopy For the largest peak ratio of the intensity X of that observed in the range of 500 cm -1 or more 650 cm -1 or less, the ratio of the intensity Y of the largest peak observed in the range of 890 cm -1 or more 1000 cm -1 or less (Y / X ) Is 0 or more and 1.0 or less.
  • Composition for catalyst production [6] The molar ratio (organic acid / Nb) of the organic acid concentration to the Nb concentration in the catalyst production composition is 0.00 or more and 2.00 or less. The molar ratio of hydrogen peroxide (hydrogen peroxide / Nb) to the Nb concentration in the catalyst production composition is 0.01 or more and 50 or less.
  • a method for producing a catalyst for a gas phase catalytic oxidation reaction or a catalyst for a vapor phase catalytic ammoxidation reaction used for producing an unsaturated acid or an unsaturated nitrile A step of preparing an aqueous mixed solution containing a Mo raw material, a V raw material, and an Sb raw material, and A step of preparing a precursor slurry by mixing the composition for producing a catalyst according to any one of [1] to [6] and the aqueous mixture.
  • a method for producing an oxide catalyst A method for producing an oxide catalyst.
  • a method for producing a composition for producing a catalyst used for producing a catalyst for a vapor-phase catalytic oxidation reaction or a catalyst for a vapor-phase catalytic ammoxidation reaction A mixing step of mixing a solid niobium raw material and a hydrogen peroxide solution to prepare a solid niobium raw material dispersion, and It has a dissolution step of dissolving the solid niobium raw material in the solid niobium raw material dispersion liquid to prepare a niobium compound-containing aqueous solution.
  • the molar ratio of hydrogen peroxide (hydrogen peroxide / Nb) to the Nb concentration of the niobium compound in the niobium compound-containing aqueous solution is 0.01 or more and 50 or less.
  • the temperature of the melting step is 40 ° C. or higher and 70 ° C. or lower.
  • a method for producing a composition for producing a catalyst. [9] In the mixing step, the organic acid is further mixed and The composition for producing a catalyst according to [8], wherein the molar ratio (organic acid / Nb) of the organic acid concentration to the Nb concentration of the niobium compound in the niobium compound-containing aqueous solution is 0.00 or more and 2.00 or less. Production method.
  • the solid niobium raw material contains niobium acid.
  • the organic acid contains one or more carboxylic acid compounds selected from the group consisting of a dicarboxylic acid, an anhydride of a dicarboxylic acid, a hydrate of a dicarboxylic acid, and an oxycarboxylic acid.
  • a composition for producing a catalyst containing a niobium compound but in which the amount of an acid substance such as oxalic acid used is suppressed a production method capable of efficiently obtaining the composition for producing a catalyst, and a production method thereof. It is possible to provide a production method for producing an oxide catalyst using the catalyst production composition.
  • the upper part is a diagram showing a Raman spectrum of an aqueous solution (composition for catalyst production according to Comparative Example 2) containing a niobium compound using an organic acid (oxalic acid) without using hydrogen peroxide by Raman spectroscopy. ..
  • the lower part is a diagram showing a Raman spectrum of an aqueous solution (composition for catalyst production according to Example 4) containing a niobium compound using hydrogen peroxide and an organic acid (oxalic acid) by Raman spectroscopy.
  • the present embodiment will be described in detail.
  • the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
  • the method for producing a composition for producing a catalyst of the present embodiment is a method for producing a composition for producing a catalyst used for producing a catalyst for gas phase contact oxidation reaction or a catalyst for gas phase contact hydrogen peroxide reaction, and is a solid niobium raw material. And hydrogen peroxide to prepare a solid niobium raw material dispersion, and an aqueous solution containing the niobium compound by dissolving the solid niobium raw material in the solid niobium raw material dispersion (hereinafter referred to as "niobium compound-containing aqueous solution").
  • the molar ratio of hydrogen peroxide (hydrogen peroxide / Nb) to the Nb concentration in the niobium compound-containing aqueous solution is 0.01 or more and 50 or less, and the temperature of the dissolution step is It is 40 ° C. or higher and 70 ° C. or lower.
  • the composition for producing a catalyst in the present embodiment refers to a composition as a material for producing a catalyst for a gas phase contact oxidation reaction or a catalyst for a gas phase contact ammoxidation reaction, and contains a niobium compound obtained by the above step. It is an aqueous solution to be used.
  • the "solid niobium raw material” means a solid material of a niobium raw material such as a powdered niobium raw material before being mixed with a hydrogen peroxide aqueous solution when a composition for catalyst production is obtained. ..
  • the “solid niobium raw material dispersion” is a dispersion in which the solid niobium raw material and hydrogen peroxide are simply mixed, and refers to a state before the hydrogen peroxide solution dissolves the solid niobium raw material.
  • niobium compound means a niobium raw material in a state in which a solid niobium raw material is dissolved in a niobium compound-containing aqueous solution or a composition for producing a catalyst.
  • niobium compound-containing aqueous solution or a composition for producing a catalyst.
  • examples thereof include a hydrogen oxide complex, a niobium-oxalate complex, and an aggregate containing two or more of them.
  • an aqueous solution containing a niobium compound is obtained from a solid niobium raw material and hydrogen peroxide.
  • an aqueous solution containing a niobium compound can be obtained without excessive use of an acid substance such as oxalic acid.
  • the solid niobium raw material is not particularly limited as long as it is a compound containing a niobium element.
  • the solid niobium raw material is not limited to the following, and is also described as, for example, niobium hydrogen oxalate, niobium ammonium oxalate, NbCl 3 , NbCl 5 , Nb 2 (C 2 O 4 ) 5 , and niobium oxide (Nb 2 O 5 ). ), Niobium acid, Nb (OC 2 H 5 ) 5 , niobium halide, niobium ammonium halide salt and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the niobium acid may contain niobium hydroxide and niobium oxide (Nb 2 O 5).
  • the solid niobium raw material those immediately after the production of the solid niobium raw material may be used, or those containing the solid niobium raw material that has been altered by long-term storage or the progress of dehydration may be used.
  • the solid niobium raw material may be a solid or a suspension.
  • niobic acid when niobic acid is used, niobic acid having a small particle size is preferable from the viewpoint of further improving the solubility. Niobic acid can also be washed with aqueous ammonia and / or water before use.
  • the particle size of the solid niobium raw material is preferably 0.2 ⁇ m or more and 20 ⁇ m or less.
  • the particle size is 0.2 ⁇ m or more, the adhesiveness between the fine particles of the solid niobium raw material becomes large, and the drying of the surface of the solid niobium raw material is suppressed, so that the solubility tends to increase.
  • the particle size is 20 ⁇ m or less, the surface area of the solid niobium raw material becomes large, so that the solubility tends to be improved.
  • the particle size of the solid niobium raw material is more preferably 0.7 ⁇ m or more and 15.0 ⁇ m or less, and further preferably 2.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the molar ratio of hydrogen peroxide (hydrogen peroxide / Nb) to the Nb concentration in the niobium compound-containing aqueous solution is 0.01 or more and 50 or less, preferably 0.5 or more and 10 or less. Is.
  • the solubility of the solid niobium raw material in water tends to increase.
  • the solubility tends to be enhanced without affecting the functionality of the obtained catalyst.
  • the lower limit of the molar ratio (hydrogen peroxide / Nb) is preferably 0.5 or more, more preferably 1.0 or more, and further preferably 2.0 or more.
  • the upper limit of the molar ratio (hydrogen peroxide / Nb) is preferably 45.0 or less, more preferably 30.0 or less.
  • an organic acid may be further added when obtaining an aqueous solution containing a niobium compound. Therefore, one of the present embodiments is a production method including further mixing an organic acid in the step of obtaining a niobium compound-containing aqueous solution.
  • the organic acid in the present embodiment is not particularly limited, and for example, one or more carboxylic acid compounds selected from the group consisting of a dicarboxylic acid, an anhydride of a dicarboxylic acid, a hydrate of a dicarboxylic acid, and an oxycarboxylic acid.
  • a dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • oxalic acid is preferable from the viewpoint of suppressing overreduction of metal oxides during catalyst production.
  • the oxalic acid is preferably oxalic anhydride or oxalic acid dihydrate.
  • the oxycarboxylic acid is a compound having a hydroxy group and a carboxyl group in one molecule.
  • Examples of the oxycarboxylic acid include 2-hydroxymalonic acid, DL-malic acid, L-malic acid, D-malic acid, tartaric acid, citric acid, isocitric acid and the like.
  • the upper limit of the molar ratio (organic acid / Nb) of the amount of the organic acid added to the Nb concentration of the niobium compound-containing aqueous solution is particularly high. Although not limited, it is preferably 2.50 or less, more preferably 2.30 or less, still more preferably 2.00 or less, even more preferably 1.80 or less, and even more preferably 1. It is 50 or less, and particularly preferably 1.00 or less.
  • the lower limit of the molar ratio (organic acid / Nb) is 0.00 or more. The molar ratio (organic acid / Nb) is 0.00, that is, 0 means that no organic acid is added.
  • the amount of an organic acid that acts as a reducing agent such as oxalic acid can be suppressed.
  • the composite metal oxide catalyst obtained from the niobium compound-containing aqueous solution in which the amount of oxalic acid and the like is suppressed is suppressed from being overreduced, the activity of the catalyst is enhanced, and the yield of the reaction product is improved. It is conceivable to do. Therefore, for example, when an organic acid that acts as a reducing agent such as oxalic acid is used as the organic acid, the activity of the composite metal oxide catalyst obtained from the niobium compound-containing aqueous solution is enhanced by reducing the content of the organic acid. , There is a tendency that the yield of the reaction product can be improved.
  • the production method of the present embodiment includes a mixing step of mixing a solid niobium raw material and hydrogen peroxide to prepare a solid niobium raw material dispersion.
  • an organic acid may be added as needed to prepare a solid niobium raw material dispersion containing the organic acid.
  • the temperature of the mixing step is not particularly limited, but is usually room temperature, and may be 40 ° C. or higher and 70 ° C. or lower, similar to the temperature of the melting step described later. In the present specification, "room temperature” means a temperature in the range of 15 ° C. or higher and 25 ° C. or lower.
  • an organic acid are mixed and dissolved under the conditions of 40 ° C. or higher and 70 ° C. or lower. Includes a dissolution step.
  • the temperature is 40 ° C. or higher, the dissolution of the solid niobium raw material tends to be promoted.
  • the temperature is 70 ° C. or lower, the decomposition of hydrogen peroxide tends to be suppressed, and when the mixture contains an additive such as an organic acid, the organic substance formed in the composition for producing a catalyst is formed.
  • the complex of the acid and Nb tends to stabilize, and sufficient dispersibility tends to be ensured even at a high concentration of Nb.
  • the temperature is more preferably 60 ° C. or lower.
  • the heating method is not particularly limited. At the time of heating, it is preferable to perform stirring together with heating.
  • the dissolution step is preferably carried out in 0.2 hours or more and 20 hours or less, and 0.3 hours or more and 15 hours or less. It is more preferable to carry out in 0.5 hours or more and 10 hours or less.
  • the temperature of water used in the mixing step in the present embodiment is not particularly limited, but is preferably 10 ° C. or higher and 50 ° C. or lower.
  • the temperature of water is 10 ° C. or higher, the dissolution of the solid niobium raw material tends to proceed more easily in the dissolution step.
  • the temperature of the water is 50 ° C. or lower, it is possible to prevent the periphery of the inlet from getting wet with steam, and it becomes easier to add the solid niobium raw material.
  • the temperature at which the solid niobium raw material, hydrogen peroxide, and the organic acid added as needed are not particularly limited, and it is preferable to add them at 50 ° C. or lower for the same reason as described above.
  • the production method of the present embodiment is not particularly limited as long as an aqueous solution containing a niobium compound can be obtained, and a solid niobium raw material, hydrogen peroxide, water, and if necessary, an organic acid may be blended in any order.
  • the solid niobium raw material From the viewpoint of preventing the solid niobium raw material from remaining undissolved, it is preferable to add the solid niobium raw material, hydrogen peroxide, and an organic acid which may be optionally added to the system in which water is present while stirring. It is preferable to heat the resulting mixture to a range of 40 ° C. or higher and 70 ° C. or lower thereafter.
  • the rate of temperature rise is not particularly limited, and may be usually 1 ° C./hr or more and 60 ° C./hr or less.
  • the temperature lowering rate at that time is preferably 0.002 ° C./min or more and 3 ° C./min or less.
  • the temperature lowering rate is 0.002 ° C./min or more, reprecipitation of niobium tends to be suppressed.
  • the temperature lowering rate is 3 ° C./min or less, the precipitation of niobium due to the sudden temperature lowering can be prevented, and a homogeneous liquid tends to be obtained.
  • a niobium compound-containing aqueous solution obtained by mixing a solid niobium raw material, hydrogen peroxide and water may be used as a composition for producing a catalyst, and the solid niobium raw material, hydrogen peroxide and water may be used as a composition.
  • a mixture containing Nb obtained by mixing may be supplied to a filter, filtered, and the obtained niobium compound-containing aqueous solution may be used as a composition for producing a catalyst.
  • the filter paper to be used can be appropriately used as long as it has a finer mesh of 5 types A or more.
  • a No. 3250 manufactured by Azumi Filter Paper Co., Ltd. can be used.
  • the solid niobium raw material it is preferable to add the solid niobium raw material so that the Nb concentration in the niobium compound-containing aqueous solution is 0.10 mol / kg or more.
  • the Nb concentration is preferably 1.00 mol / kg or less from the viewpoint of suppressing the precipitation of niobium in the niobium compound-containing aqueous solution and improving the storage stability. From these viewpoints, the Nb concentration is more preferably 0.20 mol / kg or more and 1.00 mol / kg or less, and further preferably 0.20 mol / kg or more and 0.70 mol / kg or less.
  • the hydrogen peroxide concentration in the niobium compound-containing aqueous solution is not particularly limited, usually, 0 It is 0.3 mol / kg or more and 9.0 mol / kg or less.
  • the upper limit of the hydrogen peroxide concentration in the niobium compound-containing aqueous solution is preferably 10.0 mol / kg or less, and more preferably 9.0 mol / kg or less.
  • the lower limit of the hydrogen peroxide concentration is preferably 0.2 mol / kg or more, and more preferably 0.3 mol / kg or more.
  • one of the catalyst production compositions of the present embodiment is a catalyst production composition used for producing a catalyst for gas phase contact oxidation reaction or a catalyst for gas phase contact ammoxidation reaction, and is a composition for catalyst production.
  • the substance is an aqueous solution containing a niobium compound and hydrogen peroxide and optionally containing an organic acid, and the molar ratio (organic acid / Nb) of the amount of the organic acid to the Nb concentration in the composition for catalyst production is 0.00 or more.
  • the composition for catalyst production is 2.00 or less, and the molar ratio of hydrogen peroxide (hydrogen peroxide / Nb) to the Nb concentration in the composition for catalyst production is 0.01 or more and 50 or less.
  • the molar ratio (organic acid / Nb) in the composition for producing a catalyst of the present embodiment is preferably 1.80 or less, more preferably 1.50 or less, still more preferably 1.00 or less, and particularly. It is preferably less than 1.00.
  • the lower limit of the molar ratio (organic acid / Nb) is 0.00 or more.
  • the molar ratio (organic acid / Nb) of 0.00 means that the case where the content of the organic acid is 0 is included. When the molar ratio (organic acid / Nb) is 2.00 or less, an aqueous solution containing Nb tends to be obtained while suppressing the amount of the organic acid.
  • the molar ratio (organic acid / Nb) and the molar ratio (hydrogen peroxide / Nb) in the catalyst production composition of the present embodiment are the Nb concentration and the organic acid concentration (Ox concentration) in the catalyst production composition, respectively. ) And hydrogen peroxide concentration (H 2 O 2 concentration).
  • Each concentration may be measured using a composition that has passed an arbitrary time from the preparation of the composition, and is measured, for example, after standing for one day. There is no significant difference in each molar ratio even after standing for 1 day.
  • each of the above concentrations can be measured by the method described in Examples described later. Further, as a method of setting the molar ratio (organic acid / Nb) to 2.00 or less, for example, a method of adjusting by the method for producing the composition for catalyst production of the present embodiment described above can be mentioned.
  • the molar ratio of hydrogen peroxide (hydrogen peroxide / Nb) to the Nb concentration is 0.01 or more and 50 or less.
  • the lower limit of the molar ratio (hydrogen peroxide / Nb) is preferably 0.5 or more, more preferably 1.0 or more, and further preferably 2.0 or more.
  • the upper limit of the molar ratio (hydrogen peroxide / Nb) is preferably 45.0 or less, more preferably 30.0 or less.
  • the Nb concentration is not particularly limited as long as the above molar ratio (organic acid / Nb) and molar ratio (hydrogen peroxide / Nb) are satisfied, but is usually 0.2 mol / kg. It is 1.0 mol / kg or less.
  • the upper limit of the Nb concentration in the composition for producing a catalyst is preferably 1.2 mol / kg or less, and more preferably 1.0 mol / kg or less.
  • the lower limit of the Nb concentration is preferably 0.1 mol / kg or more, and more preferably 0.2 mol / kg or more.
  • the hydrogen peroxide concentration (H 2 O 2 concentration) is not particularly limited as long as the above molar ratio (hydrogen peroxide / Nb) is satisfied, but is usually 0.3 mol / kg. It is 9.0 mol / kg or less.
  • the upper limit of the hydrogen peroxide concentration in the composition for producing a catalyst is preferably 10.0 mol / kg or less, and more preferably 9.0 mol / kg or less.
  • the lower limit of the hydrogen peroxide concentration is preferably 0.2 mol / kg or more, and more preferably 0.3 mol / kg or more.
  • the organic acid concentration (Ox concentration) is not particularly limited as long as the above molar ratio (organic acid / Nb) is satisfied, but is usually 0 mol / kg or more and 1.5 mol / kg or less. Is.
  • the upper limit of the organic acid concentration in the composition for producing a catalyst is preferably 1.6 mol / kg or less, and more preferably 1.5 mol / kg or less.
  • the lower limit of the organic acid concentration is preferably 0 mol / kg or more, more preferably 0.1 mol / kg or more.
  • the catalyst production composition of the present embodiment and the catalyst production composition obtained by the production method of the present embodiment have a solubility of the solid niobium raw material by using hydrogen peroxide when preparing an aqueous solution of the solid niobium raw material. Can be enhanced. It is considered that one of the reasons for this is that by using hydrogen peroxide, a complex different from the case where only the organic acid is used is formed, and this complex contributes to the improvement of solubility.
  • Examples of the complex formed in the present embodiment include complexes represented by the following formulas (I) to (III) (Inorg. Chem., Vol. 43 (19), 5999, 2004, ACS. See Catal., Vol.8, 4645, 2018, etc.).
  • composition for producing a catalyst of the present embodiment may contain a complex represented by the above formula (III) or a complex having another structure.
  • composition for producing a catalyst of the present embodiment may contain at least one of the above formulas (I) to (III) or a complex having another structure.
  • the measurement of the catalyst production composition in the present embodiment by Raman spectroscopy can be one of the identification methods of the catalyst production composition of the present embodiment.
  • one of the catalyst production compositions of the present embodiment is a catalyst production composition used for producing a catalyst for gas phase contact oxidation reaction or a catalyst for gas phase contact ammoxidation reaction.
  • the composition for producing a catalyst is an aqueous solution containing a niobium compound and hydrogen peroxide and optionally containing an organic acid, and the Raman spectrum obtained when the composition for producing a catalyst is measured by Raman spectroscopy is 500 cm -1 or more. 650 cm -1 for the ratio of the largest peak intensity X observed in the range, the ratio of the intensity Y of the largest peak observed in the range of 890 cm -1 or more 1000 cm -1 or less (Y / X) is, 0 It is preferably 1.0 or more.
  • the ratio (Y / X) is 1.0 or less, the solubility of Nb in water tends to be enhanced.
  • the ratio (Y / X) is preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.4 or less, and particularly preferably 0.3 or less.
  • the lower limit of the ratio (X / Y) is not particularly limited, but is usually 0.0 or more.
  • a ratio (X / Y) of 0.0 means that 0.0 does not contain a complex when only an organic acid is used.
  • the composition for producing a catalyst of the present embodiment preferably has a peak in the range of 685 cm -1 or more and 785 cm -1 or less in the Raman spectrum obtained by Raman spectroscopy. Having a peak in the range of 685cm -1 or 785 cm -1 or less means that the structure of Nb-O-Nb many exist. Since the structure of Nb—O—Nb is likely to be formed in an aqueous solution having a high Nb concentration, this can be confirmed by a peak in the range of 685 cm -1 or more and 785 cm -1 or less. An aqueous solution having such a high Nb concentration is desirable because it can be easily adjusted to appropriate conditions in the catalyst manufacturing process. In particular, when the Nb concentration is high in the drying step, the shape of the produced catalyst particles approaches a sphere and becomes better.
  • the peak of X corresponds to Nb-O regardless of whether or not oxalic acid is coordinated. It corresponds to the vibration of the bond (see J. Raman. Spec., Vol. 22, 83-89, 1991, etc.).
  • the composition for producing a catalyst of the present embodiment has both a composition of a molar ratio (organic acid / Nb) and a molar ratio (hydrogen peroxide / Nb) and a composition of a ratio (Y / X). May be good.
  • the niobium compound and the organic acid in the composition for producing a catalyst the same ones as those described in the method for producing a composition for producing a catalyst can be mentioned.
  • One of the present embodiments is a method for producing an oxide catalyst for a gas phase contact oxidation reaction or a gas phase contact ammoxidation reaction used for producing an unsaturated acid or an unsaturated nitrile.
  • the method for producing the oxide catalyst of the present embodiment is not particularly limited as long as it uses the composition for producing the catalyst of the present embodiment or includes the steps of the method for producing the composition for producing the catalyst of the present embodiment. That is, the method for producing an oxide catalyst of the present embodiment is a method for producing an oxide catalyst used for producing an unsaturated acid or an unsaturated nitrile, and oxidation is performed using the composition for producing a catalyst of the present embodiment. Includes the step of obtaining a material catalyst.
  • the method for producing an oxide catalyst of the present embodiment is a method for producing an oxide catalyst used for producing an unsaturated acid or an unsaturated nitrile, and is a step of the method for producing a composition for producing a catalyst of the present embodiment. including.
  • Specific examples of the method for producing a catalyst according to the present embodiment include a step of preparing an aqueous mixed solution containing a Mo raw material, a V raw material, and an Sb raw material, and a precursor by mixing a catalyst production composition and an aqueous mixed solution. It is preferable to include a step of preparing the body slurry, a drying step of drying the precursor slurry to obtain dried particles, and a firing step of calcining the dried particles to obtain calcined particles.
  • a step of preparing a composition for catalyst production by the method for producing a composition for producing a catalyst of the present embodiment and an aqueous mixture containing a Mo raw material, a V raw material and an Sb raw material are used.
  • the catalyst obtained by these methods is preferably a catalyst for producing acrylonitrile containing Mo, V, Sb and Nb.
  • a catalyst for producing acrylonitrile containing Mo, V, Sb and Nb Each step will be described below, but the step of preparing the catalyst production composition in the method for producing the catalyst production composition of the present embodiment will be omitted because it is as described above.
  • Precursor slurry preparation step As a method for producing a catalyst according to the present embodiment, as a first step, a catalyst production composition of the present embodiment and / or a catalyst production composition obtained by the production method of the catalyst production composition of the present embodiment is used. It may include a precursor slurry preparation step for preparing a precursor slurry containing.
  • the precursor slurry preparation step includes a step of preparing an aqueous mixed solution containing a Mo raw material, a V raw material, and an Sb raw material, and a step of mixing a catalyst production composition and an aqueous mixed solution to prepare a precursor slurry. ..
  • the raw material for preparing the precursor slurry other than the solid niobium raw material and the organic acid which may be optionally contained is not particularly limited, and for example, the following compounds can be used.
  • the raw material of Mo include molybdenum oxide, ammonium dimolybdate, ammonium heptamolybdate, phosphomolybdic acid, and silicate molybdic acid, and among them, ammonium heptamolybdate can be preferably used.
  • the raw material of V include vanadium pentoxide, ammonium metavanadate, and vanadyl sulfate, and among them, ammonium metavanadate can be preferably used.
  • Antimony oxide can be preferably used as a raw material for Sb.
  • ammonium heptamolybdate, ammonium metavanadate, and diantimony trioxide powder are added to water and heated to 80 ° C. or higher to prepare an aqueous mixture.
  • the catalyst contains Ce
  • the compounds containing Ce can be mixed at the same time.
  • the compound containing Ce for example, cerium nitrate hexahydrate is preferably used.
  • the composition for catalyst production of the present embodiment prepared above and the aqueous mixed solution are mixed according to the target composition to obtain a precursor slurry.
  • a compound containing W or a compound containing Ce is preferably mixed to obtain a precursor slurry.
  • the compound containing W for example, ammonium metatungstate is preferably used.
  • the compound containing Ce for example, cerium nitrate hexahydrate is preferably used.
  • the compound containing W and Ce can be added to the aqueous mixture, or can be added at the same time when the composition for producing a catalyst and the aqueous mixture are mixed.
  • a precursor slurry can be prepared so as to contain a silica raw material, and in this case, the silica raw material can be appropriately added.
  • silica raw material for example, silica sol is preferably used.
  • H 2 O 2 / Sb molar ratio
  • H 2 O 2 / Sb molar ratio
  • the precursor slurry thus obtained may be a uniform mixed solution, but is usually a slurry.
  • the drying step the precursor slurry obtained in the above step is dried to obtain dried particles.
  • the drying can be carried out by a known method, for example, by spray drying or evaporative drying, but it is preferable to obtain fine spherical dry particles by spray drying.
  • the spraying in the spray drying method can be performed by a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method.
  • As the drying heat source air heated by steam, an electric heater, or the like can be used.
  • the dryer inlet temperature of the spray dryer is preferably 150 ° C. or higher and 300 ° C. or lower, and the dryer outlet temperature is preferably 100 ° C. or higher and 160 ° C. or lower.
  • the dried particles obtained in the drying step are fired to obtain fired particles.
  • a rotary furnace rotary kiln
  • the shape of the firing device is not particularly limited, but a tubular shape is preferable because continuous firing can be performed.
  • the shape of the firing tube is not particularly limited, but it is preferably cylindrical.
  • the heating method is preferably an external heat method, and an electric furnace can be preferably used.
  • the size, material, etc. of the firing tube can be appropriately selected according to the firing conditions and the production amount, but the inner diameter thereof is preferably 70 mm or more and 2000 mm or less, more preferably 100 mm or more and 1200 mm or less, and the inner diameter thereof is preferably 70 mm or more and 2000 mm or less.
  • the length is preferably 200 mm or more and 10000 mm or less, and more preferably 800 mm or more and 8000 mm or less.
  • the wall thickness of the firing device is preferably 2 mm or more, more preferably 4 mm or more, and the impact is sufficient to the inside of the firing device from the viewpoint of having a sufficient thickness so as not to be damaged by the impact. It is preferably 100 mm or less, more preferably 50 mm or less, from the viewpoint of being transmitted to.
  • the material of the firing device is not particularly limited except that it has heat resistance and strength not to be damaged by impact, and SUS can be preferably used.
  • a weir plate having a hole for the particles to pass through in the center may be provided perpendicular to the flow of the particles to partition the firing tube into two or more areas.
  • the number of weir plates may be one or more.
  • the material of the weir plate is preferably metal, and the same material as the firing pipe can be preferably used.
  • the height of the weir plate can be adjusted according to the residence time to be secured.
  • the weir plate when particles are supplied at 250 g / hr in a rotary furnace having a SUS firing tube having an inner diameter of 150 mm and a length of 1150 mm, the weir plate is preferably 5 mm or more and 50 mm or less, more preferably 10 mm or more and 40 mm or less, and further preferably 13 mm. It is 35 mm or more and 35 mm or less.
  • the thickness of the weir plate is not particularly limited, and it is preferable to adjust the thickness according to the size of the firing pipe.
  • the thickness of the firing tube is preferably 0.3 mm or more and 30 mm or less, and more preferably 0.5 mm or more and 15 mm or less.
  • the rotation speed of the firing tube is preferably 0.1 rpm or more and 30 rpm or less, more preferably 0.5 rpm or more and 20 rpm or less, and further preferably 1 rpm or more and 10 rpm or less.
  • the heating temperature of the dry particles may be raised continuously or intermittently from a temperature lower than 400 ° C. to a temperature within the range of 550 ° C. or higher and 800 ° C. or lower. preferable.
  • the firing atmosphere may be an air atmosphere or an air flow, but it is preferable to carry out at least a part of the firing while flowing an inert gas that does not substantially contain oxygen such as nitrogen.
  • the supply amount of the inert gas is 50 NL or more, preferably 50 NL or more and 5000 NL or less, and more preferably 50 NL or more and 3000 NL or less per 1 kg of dry particles (NL is standard temperature and pressure conditions, that is, 0 ° C., 1 ° C., 1 Means L measured at atmospheric pressure).
  • the inert gas and the dry particles may be countercurrent or parallel, but in consideration of the gas component generated from the dry particles and the air mixed in a small amount together with the dry particles, countercurrent contact is preferable.
  • the firing step can be carried out in one stage, but the firing consists of the pre-stage firing and the main firing, the pre-stage firing is performed in a temperature range of 250 ° C. or higher and 400 ° C. or lower, and the main firing is performed in a temperature range of 550 ° C. or higher and 800 ° C. or lower. It is preferable to carry out with.
  • the pre-stage firing and the main firing may be continuously performed, or the main firing may be performed again after the pre-stage firing is completed once. Further, each of the first-stage firing and the main-stage firing may be divided into several stages.
  • the pre-stage firing is preferably carried out under the flow of an inert gas at a heating temperature of 250 ° C. or higher and 400 ° C. or lower, preferably 300 ° C. or higher and 400 ° C. or lower. It is preferable to keep the temperature within a temperature range of 250 ° C. or higher and 400 ° C. or lower, but the temperature may fluctuate within a range of 250 ° C. or higher and 400 ° C. or lower, or the temperature may be gradually raised or lowered.
  • the holding time of the heating temperature is preferably 30 minutes or more, more preferably 3 hours or more and 12 hours or less.
  • the temperature rise pattern until the pre-stage firing temperature is reached may be raised linearly, or may be raised by drawing a convex arc upward or downward.
  • the average heating rate at the time of raising the temperature until the first stage firing temperature is reached is not particularly limited, but is usually about 0.1 ° C./min or more and 15 ° C./min or less, preferably 0.5 ° C./min or more and 5 ° C./min or less, more preferably 1 ° C./min or more and 2 ° C./min.
  • the main firing is preferably carried out at 550 ° C. or higher and 800 ° C. or lower, preferably 580 ° C. or higher and 750 ° C. or lower, more preferably 600 ° C. or higher and 720 ° C. or lower, and further preferably 620 ° C. or higher and 700 ° C. or lower under the flow of an inert gas. .. It is preferable to keep the temperature within the temperature range of 620 ° C. or higher and 700 ° C. or lower, but the temperature may fluctuate within the temperature range of 620 ° C. or higher and 700 ° C. or lower, or the temperature may be gradually raised or lowered.
  • the main firing time is 0.5 hours or more and 20 hours or less, preferably 1 hour or more and 15 hours or less.
  • the dry particles and / or the composite oxide catalyst continuously pass through at least two areas, preferably 2 or more and 20 or less, more preferably 4 or more and 15 or less. Temperature control can be performed using one or more controllers, but it is preferable to install and control heaters and controllers in each area separated by these weirs in order to obtain the desired firing pattern. .. For example, when seven weir plates are installed so as to divide the length of the portion of the firing tube into the heating furnace into eight equal parts and the firing tube is divided into eight areas, the dry particles and / or the composite oxide catalyst are used.
  • a heater and a controller in which eight areas are installed for each area so that the temperature of the above becomes a desired firing temperature pattern.
  • an oxidizing component for example, oxygen
  • a reducing component for example, ammonia
  • the temperature rise pattern until reaching the main firing temperature may be raised linearly, or may be raised by drawing a convex arc upward or downward.
  • the average heating rate at the time of raising the temperature until reaching the main firing temperature is not particularly limited, but is generally 0.1 ° C./min or more and 15 ° C./min or less, preferably 0.5 ° C./min or more and 10 ° C./min or more. Hereinafter, it is more preferably 1 ° C./min or more and 8 ° C./min or less.
  • the average temperature lowering rate after the completion of the main firing is preferably 0.05 ° C./min or more and 100 ° C./min or less, and more preferably 0.1 ° C./min or more and 50 ° C./min or less. It is also preferable to temporarily hold the temperature lower than the main firing temperature.
  • the holding temperature is 10 ° C., preferably 50 ° C., more preferably 100 ° C. lower than the main firing temperature.
  • the holding time is 0.5 hours or more, preferably 1 hour or more, more preferably 3 hours or more, still more preferably 10 hours or more.
  • the time required for low-temperature treatment is the size, wall thickness, material, and catalyst of the firing device. It is possible to appropriately adjust the production amount, a series of periods for continuously firing the dried particles and / or the composite oxide catalyst, the fixing rate, the fixing amount, and the like.
  • a SUS firing tube having an inner diameter of 500 mm, a length of 4500 mm, and a wall thickness of 20 mm is used, it is preferably within 30 days, more preferably within 15 days, and further during a series of continuous firing of the catalyst. It is preferably within 3 days, particularly preferably within 2 days.
  • the dry particles are supplied at a speed of 35 kg / hr while rotating at 6 rpm by a rotary furnace having a SUS firing tube having an inner diameter of 500 mm, a length of 4500 mm, and a wall thickness of 20 mm, and the main firing temperature is set to 645 ° C.
  • the step of raising the temperature to 645 ° C. can be performed in about one day.
  • firing can be performed while stably maintaining the oxide layer temperature.
  • the catalyst obtained by the method for producing a catalyst according to the present embodiment is, for example, a catalyst containing a composite metal oxide represented by the formula (1).
  • Mo 1 V a Nb b Sb c Y d O n (1)
  • Y represents at least one element selected from Mn, W, B, Ti, Al, Te, alkali metal, alkaline earth metal and rare earth metal, and represents a, b, c, d and n.
  • Mo molybdenum
  • Mo molybdenum
  • the atomic ratios a, b, c, and d per Mo1 atom are 0.1 ⁇ a ⁇ 1, 0.01 ⁇ b ⁇ 1, 0.01 ⁇ c ⁇ 1, and 0 ⁇ d ⁇ 1, respectively.
  • 0.1 ⁇ a ⁇ 0.5, 0.01 ⁇ b ⁇ 0.5, 0.1 ⁇ c ⁇ 0.5, 0.0001 ⁇ d ⁇ 0.5 are more preferable, and 0. It is more preferable that 15 ⁇ a ⁇ 0.3, 0.05 ⁇ b ⁇ 0.2, 0.15 ⁇ c ⁇ 0.3, and 0.0002 ⁇ d ⁇ 0.2.
  • the catalyst is preferably a catalyst in which a metal composite oxide is supported on a silica carrier.
  • the mass of the silica carrier is preferably 10% by mass or more and 80% by mass or less, more preferably 20% by mass or more in terms of SiO 2 , with respect to the total mass of the composite metal oxide and the silica carrier. It is 60% by mass or less, more preferably 30% by mass or more and 55% by mass or less.
  • the mass of silica as a carrier is relative to the total mass of composite metal oxide and silica from the standpoints of strength and prevention of pulverization, ease of stable operation when using a catalyst, and reduction of replenishment of lost catalyst.
  • the catalyst is preferably 10% by mass or more, and preferably 80% by mass or less with respect to the total mass of the composite metal oxide and silica from the viewpoint of achieving sufficient catalytic activity.
  • the specific gravity of the silica-supported catalyst is appropriate, and it is easy to create a good fluidized state.
  • One of the present embodiments is a method for producing acrylonitrile, and the production method uses a catalyst obtained by the method for producing a catalyst according to the present embodiment.
  • a catalyst is prepared by the above-mentioned method, and propane, ammonia and oxygen (molecular oxygen) are contacted with the obtained catalyst in the gas phase (gas-phase contact ammoxidation reaction) to make acrylonitrile. It is preferable that it is a method for producing.
  • the raw materials for supplying propane and ammonia do not necessarily have to be of high purity, and industrial grade gas can be used.
  • the supply oxygen source air, pure oxygen, or air enriched with pure oxygen can be used.
  • helium, neon, argon, carbon dioxide gas, water vapor, nitrogen and the like may be supplied as the diluting gas.
  • the molar ratio of ammonia supplied to the reaction system to propane is 0.3 or more and 1.5 or less, preferably 0.8 or more and 1.2 or less.
  • the molar ratio of molecular oxygen supplied to the reaction system to propane is 0.1 or more and 6 or less, preferably 0.1 or more and 4 or less.
  • the reaction pressure is 0.5 atm or more and 5 atm or less, preferably 1 atm or more and 3 atm or less
  • the reaction temperature is 350 ° C. or more and 500 ° C. or less, preferably 380 ° C. or more and 470 ° C. or less.
  • the contact time is 0.1 sec ⁇ g / cc or more and 10 sec ⁇ g / cc or less, preferably 0.5 sec ⁇ g / cc or more and 5 sec ⁇ g / cc or less.
  • the contact time is defined by the following equation.
  • the propane conversion rate and the acrylonitrile yield follow the following definitions, respectively.
  • reaction method conventional methods such as a fixed bed, a fluidized bed, and a moving bed can be adopted, but the heat of reaction can be easily removed, the temperature of the catalyst layer can be maintained almost uniformly, and the catalyst is extracted from the reactor during operation.
  • a fluidized bed reaction is preferred because it is possible, a catalyst can be added, and so on.
  • Example 1 (Preparation of composition for catalyst production) 137.49 kg of water was added into the mixing tank, after which the water was heated to 50 ° C. Then, while stirring, was charged oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ] 1.14 kg, was dissolved. Further, 5.74 kg of hydrogen peroxide solution (35.5 mass% aqueous solution) was added, and then 5.3 kg of niobic acid (75.0 mass% in terms of Nb 2 O 5) was added. This solution was heated and stirred at 50 ° C. for 6 hours to obtain a uniform mixed solution. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 1.
  • the crucible is precisely weighed catalyst composition for producing 10 g, after drying for 2 hours at 120 ° C., the composition for a catalyst prepared from the weight of the 2-hour heat treatment was solid Nb 2 O 5 obtained at 600 ° C.
  • composition for catalyst production was precisely weighed in a 300 mL glass beaker, 20 mL of hot water at about 80 ° C. was added, and then 10 mL of 1: 1 sulfuric acid was added.
  • the mixed solution thus obtained was titrated with 1/4 standard KMnO 4 under stirring while keeping the liquid temperature at 70 ° C. in a water bath. The end point was a point where a faint pale pink color due to KMnO 4 continued for about 30 seconds or longer.
  • the total concentration of oxalic acid and hydrogen peroxide was calculated from the titration according to the following formula.
  • ion chromatography analysis was performed using Tosoh's ion chromatography system IC-2010 and a suppressor method using the column TSKgel SuperIC-AZ (4.6 mmI.D. ⁇ 15 cm). 30 ⁇ L of a 500-fold diluted sample was injected, and the concentration was analyzed by the absolute calibration curve method. The concentration of hydrogen peroxide was calculated from the difference between the total concentration of oxalic acid and hydrogen peroxide determined by titration and the concentration of oxalic acid determined by ion chromatography.
  • Example 2 The amount of water 57.95kg, 86.03kg the amount of hydrogen peroxide solution, except that the 0.38kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ] , A uniform mixed solution was obtained in the same manner as in Example 1. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 2.
  • Example 3 A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of water was 15.32 kg, the amount of hydrogen peroxide solution added was 129.05 kg, and oxalic acid dihydrate was not added.
  • the water-soluble mixed solution thus obtained was used as a catalyst production composition according to Example 3.
  • Example 4 The amount of niobic acid and 12.20Kg, the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ] 13.09Kg, the amount of water 98.00Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount was 26.38 kg. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 4.
  • Example 5 The amount of niobic acid and 12.20kg, 13.09kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ], the amount of water and 111.19Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of the mixture added was 13.19 kg. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 5.
  • Example 6 The amount of niobic acid and 12.20Kg, 0.87 kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ], the amount of water and 4.68Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of the mixture added was 131.92 kg. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 6.
  • Example 7 The amount of niobic acid and 17.24kg, 12.33kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ], the amount of water and 82.82Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of the mixture added was 37.28 kg. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 7.
  • Example 8 The amount of niobium added was 18.61 kg, the amount of water was 10.68 kg, the amount of hydrogen peroxide solution was 120.71 kg, and the same as in Example 1 except that oxalic acid dihydrate was not added. To obtain a uniform mixed solution. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 8.
  • Example 9 The amount of niobic acid and 18.61kg, 6.65kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ], the amount of water and 24.15Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of the mixture added was 100.59 kg. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 9.
  • Example 10 The amount of niobic acid and 18.61kg, 19.96kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ], the amount of water and 101.38Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of the mixture added was 10.06 kg. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 10.
  • Example 11 The amount of niobic acid and 18.61kg, 21.29kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ], the amount of water and 9.51Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of the mixture added was 100.59 kg. The water-soluble mixed solution thus obtained was used as the catalyst production composition according to Example 11.
  • Example 12 The amount of niobic acid and 18.61kg, 22.62kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ], the amount of water and 98.72Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of the mixture added was 10.06 kg. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 12.
  • Example 13 The amount of niobic acid and 18.61kg, 23.95kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ], the amount of water and 97.39Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of the mixture added was 10.06 kg. The water-soluble mixed solution thus obtained was used as the catalyst production composition according to Example 13.
  • Example 14 The amount of niobic acid and 18.57kg, 26.55kg the amount of oxalic acid dihydrate [H 2 C 2 O 4 ⁇ 2H 2 O ], the amount of water and 99.56Kg, hydrogen peroxide A uniform mixed solution was obtained in the same manner as in Example 1 except that the amount of the mixture added was 5.02 kg. The water-soluble mixed solution thus obtained was used as the composition for producing a catalyst according to Example 14.
  • aqueous mixture (B1) After cooling the obtained aqueous mixture (B1) to 70 ° C., 7.04 kg of a silica sol containing 34.0% by mass of SiO 2 was added to the aqueous mixture (B1), and further 35.5 was added. 1.78 kg of hydrogen peroxide solution containing mass% H 2 O 2 was added, and stirring was continued at 55 ° C. for 30 minutes. Further, 17.01 kg of the composition for producing a catalyst obtained in Example 1 ( containing 0.45 kg of niobium oxide as a weight converted to niobium oxide (Nb 2 O 5 )) and powdered silica (containing 0.45 kg of niobium oxide) were added to the liquid.
  • a fired body (F1) was obtained.
  • the protrusions existing on the surface of the catalyst particles were removed by the following method. 50 g of the fired body (F1) was put into a vertical tube (inner diameter 41.6 mm, length 70 cm) provided with a perforated disk having three holes with a diameter of 1/64 inch at the bottom and a paper filter at the top. At this time, the airflow length in the direction in which the airflow flowed was 52 mm, and the average linear velocity of the airflow was 310 m / s. No protrusions were present in the composite oxide catalyst (G1) obtained after 24 hours.
  • the catalyst production example was the same as that of the catalyst production example 1 except that 17.01 kg of the catalyst production composition according to Examples 2 to 3 was used instead of 17.01 kg of the catalyst production composition according to Example 1. The catalysts of 2 to 3 were produced respectively.
  • Catalyst production examples 4 to 6 instead of 17.01 kg of the catalyst production composition according to Example 1 corresponding to 0.45 kg of the weight of the niobium oxide, the catalyst production according to Examples 4 to 6 corresponding to the weight of 0.45 kg of the niobium oxide.
  • the catalysts according to Catalyst Production Examples 4 to 6 were produced in the same manner as in Catalyst Production Example 1 except that 7.40 kg of the composition was used.
  • Catalyst production example 7 Instead of 17.01 kg of the catalyst production composition according to Example 1 corresponding to 0.45 kg of the weight of the niobium oxide, the catalyst production composition according to Example 7 corresponding to 0.45 kg of the weight of the niobium oxide.
  • the catalysts according to Catalyst Production Example 7 were produced in the same manner as in Catalyst Production Example 1 except that 5.24 kg of the product was used.
  • Catalyst production examples 8 to 14 instead of 17.01 kg of the catalyst production composition according to Example 1 corresponding to 0.45 kg of the weight of the niobium oxide, the catalyst production according to Examples 8 to 14 corresponding to the weight of 0.45 kg of the niobium oxide.
  • the catalysts according to the catalyst production examples 8 to 14 were produced in the same manner as in the catalyst production example 1 except that 4.86 kg of the composition was used.
  • Catalyst production example 15 In the catalyst production example 10, the composition of the composite metal oxide is Mo 1 V 0.17 Nb 0.14 Sb 0.27 W 0.03 Ce 0.005 in the same manner as in the catalyst production example 10 except that the preparation of the precursor slurry is changed as follows. O n (n is determined by the valence of the element other than oxygen) as a catalyst was manufactured according to the catalyst preparation example 15.
  • aqueous mixture (B1) After cooling the obtained aqueous mixture (B1) to 70 ° C., 7.04 kg of a silica sol containing 34.0% by mass of SiO 2 was added to the aqueous mixture (B1), and further 35.5 was added. 1.78 kg of hydrogen peroxide solution containing mass% H 2 O 2 was added, and stirring was continued at 55 ° C. for 30 minutes. Further, in the liquid, 4.70 kg of the composition for producing a catalyst obtained in Example 10 ( containing 0.44 kg of niobium oxide as a weight converted to niobium oxide (Nb 2 O 5 )) and powdered silica (contains 0.44 kg of niobium oxide).
  • Catalyst production example 16 In the catalyst production example 10, the composition of the composite metal oxide is Mo 1 V 0.24 Nb 0.19 Sb 0.18 W 0.005 Ce 0.005 in the same manner as in the catalyst production example 10 except that the preparation of the precursor slurry is changed as follows. O n (n is determined by the valence of the element other than oxygen) as a catalyst was manufactured according to the catalyst preparation example 16.
  • aqueous mixture (B1) After cooling the obtained aqueous mixture (B1) to 70 ° C., 7.04 kg of a silica sol containing 34.0% by mass of SiO 2 was added to the aqueous mixture (B1), and further 35.5 was added. 1.78 kg of hydrogen peroxide solution containing mass% H 2 O 2 was added, and stirring was continued at 55 ° C. for 30 minutes. Further, in the liquid, 6.54 kg of the composition for producing a catalyst obtained in Example 10 ( containing 0.61 kg of niobium oxide as a weight converted to niobium oxide (Nb 2 O 5 )) and powdered silica (contains 0.61 kg of niobium oxide).
  • Catalyst production example 17 In the catalyst production example 10, the composition of the composite metal oxide is Mo 1 V 0.25 Nb 0.1 Sb 0.27 W 0.05 Ce 0.005 in the same manner as in the catalyst production example 10 except that the preparation of the precursor slurry is changed as follows. O n (n is determined by the valence of the element other than oxygen) as a catalyst was manufactured according to the catalyst preparation example 17.
  • aqueous mixture (B1) After cooling the obtained aqueous mixture (B1) to 70 ° C., 7.04 kg of a silica sol containing 34.0% by mass of SiO 2 was added to the aqueous mixture (B1), and further 35.5 was added. 1.78 kg of hydrogen peroxide solution containing mass% H 2 O 2 was added, and stirring was continued at 55 ° C. for 30 minutes. Further, in the liquid, 3.26 kg of the composition for producing a catalyst obtained in Example 10 (containing 0.30 kg of niobium oxide as a weight converted to niobium oxide (Nb 2 O 5)) and powdered silica (containing niobium oxide).
  • Catalyst production example 18 In the catalyst production example 10, the composition of the composite metal oxide is Mo 1 V 0.25 Nb 0.14 Sb 0.26 W 0.05 Ti 0.05 in the same manner as in the catalyst production example 10 except that the preparation of the precursor slurry is changed as follows. Mn 0.03 Ce 0.01 O n (n is determined by the valence of the element other than oxygen) as a catalyst was manufactured according to the catalyst preparation example 18.
  • aqueous mixture (B1) After cooling the obtained aqueous mixture (B1) to 70 ° C., 7.04 kg of a silica sol containing 34.0% by mass of SiO 2 was added to the aqueous mixture (B1), and further 35.5 was added. 1.78 kg of hydrogen peroxide solution containing mass% H 2 O 2 was added, and stirring was continued at 55 ° C. for 30 minutes. Further, in the liquid, 4.47 kg of the composition for producing a catalyst obtained in Example 10 ( containing 0.42 kg of niobium oxide as a weight converted to niobium oxide (Nb 2 O 5 )) and powdered silica (contains 0.42 kg of niobium oxide).
  • a bicor glass fluidized bed type reaction tube having an inner diameter of 25 mm was filled with 35 g of an oxide catalyst, the reaction temperature was set to 440 ° C., and the reaction pressure was set to normal pressure.
  • Propane: ammonia: oxygen: helium 1: 1: 3: 18
  • a mixed gas having a molar ratio of 2.8 (sec ⁇ g / cc) was supplied.
  • the catalyst production composition obtained in each of the above examples was used for measurement by Raman spectroscopy.
  • the Raman spectroscope used RENISHAW in Via Qontor to perform measurements with an excitation laser wavelength of 532 nm, a laser output of 27.1 mW, an exposure time of 5 sec, and an integration number of 10 times.
  • the Raman spectra of Example 4 and Comparative Example 2 obtained by the measurement are shown in FIG.
  • the peak intensity Y / X ratio is the ratio of the Raman signal intensity of the corresponding peak, that is, the ratio of the peak heights. However, if signals derived from other compounds overlap as the background in the corresponding range, peak separation is performed, the corresponding peak is separated, and then the background intensity is subtracted from the height of the corresponding peak to obtain the corresponding peak intensity. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物であって、前記触媒製造用組成物は、ニオブ化合物及び過酸化水素を含み、且つ任意に有機酸を含む水溶液であり、Nb濃度に対する前記有機酸濃度のモル比(有機酸/Nb)が0.00以上2.00以下であり、Nb濃度に対する前記過酸化水素のモル比(過酸化水素/Nb)が0.01以上50以下である、触媒製造用組成物。

Description

触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法
 本発明は、触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法に関する。
 従来、アクリロニトリルを製造する際に用いられる触媒として、モリブデン、バナジウム等の複数の金属を含む複合金属酸化物が利用されている。複合金属酸化物触媒の一般的な製造方法としては、例えば、触媒を構成する金属塩を含むスラリーを調製し、それを噴霧乾燥し、焼成する工程を含む方法が挙げられる。このとき、金属塩を含むスラリーが不均一であると、得られる触媒も不均一になるため、所望の組成を有する複合金属酸化物を得られない。したがって、金属塩が均一に溶解したスラリーを調製することが望まれる。
 金属塩は当該金属塩中の金属種によって難溶性を示し、スラリーから複合金属酸化物を得る際にこの難溶性の金属塩を十分に溶解させる必要がある。例えば、触媒原料として使用される金属の中でもニオブ(Nb)は、触媒中で活性点となる骨格を形成し、また、ニオブを含む触媒を反応に用いた場合、生成物の分解抑制等にも寄与することが知られている。触媒原料のNb源としては、安価かつ安定である、酸化ニオブ(Nb25)が汎用されている。しかしながら、Nb25は難水溶性であるため、触媒性能を十分高めることができる量のNb25を触媒原料スラリーに添加する場合、均一なスラリーが得られ難い。そこで、複合金属酸化物触媒の製造のため、ニオブを含む均一なスラリーを得るための方法が検討されている。
 例えば、特許文献1には、耐腐食性を有し、かつ攪拌手段、加熱手段及び冷却手段が設けられた混合槽と、溶け残ったNb化合物及び析出したジカルボン酸をろ過するためのろ過器を備え、加圧下でろ過を行う製造装置を用いることにより、ニオブ化合物含有水溶液を調製する方法が開示されている。特許文献1の方法では、Nb25を、シュウ酸等のカルボン酸をキレート剤として含む水溶液と共に加熱して、シュウ酸Nb錯体を形成させシュウ酸Nb錯体水溶液として得て、当該シュウ酸Nb錯体水溶液よりスラリーを得る手法が用いられる。特許文献1の方法によれば、得られるNb化合物とジカルボン酸との水性混合液において、Nb化合物の溶け残りや析出を低減でき、Nbの回収率及び混合液の生産性を高められるとされている。
国際公開第2012/105543号
 特許文献1において、触媒製造に用いることができる、固体ニオブ原料とシュウ酸との水性混合液は、上述のとおり、シュウ酸等の酸物質をキレート剤として含む水溶液と共に固体ニオブ原料であるNb25を加熱してシュウ酸Nb錯体を形成させ、シュウ酸ニオブ錯体水溶液として得る。ここで、シュウ酸は還元剤として作用するため、上記水溶液から得られる複合金属酸化物触媒が過還元の状態となるおそれがあり、触媒の活性を低下させる懸念がある。したがって、シュウ酸の使用量を極力抑える必要があるが、ニオブ量に対するシュウ酸の使用量を抑えるとNb化合物の溶解性低下を招来する。
 特許文献1においては、具体的には、まず、加熱しながらシュウ酸を含む水溶液を調製し、そこにNb25を添加して加熱しながら攪拌することにより水性混合液を得る。次にこの水性混合液を自然放冷、静置、さらに冷却、及び静置の工程を経て、過剰に存在するシュウ酸を固体として析出させる。さらに析出した固体を濾過により除去することにより、シュウ酸ニオブ錯体水溶液を得る。
 上記の方法によれば、過剰に存在するシュウ酸を除去することができるが、依然としてシュウ酸Nb錯体水溶液はシュウ酸を冷却工程温度における飽和状態で含んでおり、不要なシュウ酸を十分に除きれないという問題がある。また、固体として除かれるシュウ酸は廃棄されるため、コスト軽減や、環境負荷軽減の観点から、また、劇物であることから、シュウ酸の使用量を抑えることが求められている。
 さらに、シュウ酸Nb錯体水溶液の製造工程には冷却、及び固体を除去する工程を含み、その製造プロセスが煩雑であることから、簡便にシュウ酸ニオブ錯体水溶液を得られる方法が求められている。
 そこで、本発明は、ニオブ化合物を含みながらシュウ酸等の酸物質の使用量が抑えられた触媒製造用組成物、及びその触媒製造用組成物を効率的に得ることのできる製造方法、並びに、該触媒製造用組成物を用いた酸化物触媒を製造する製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、固体ニオブ原料と過酸化水素とを用いることにより、ニオブ化合物を含む水溶液を、シュウ酸等の酸物質の使用量を抑えながら、効率的に得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
〔1〕
 気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物であって、
 前記触媒製造用組成物は、ニオブ化合物及び過酸化水素を含み、且つ任意に有機酸を含む水溶液であり、
 前記触媒製造用組成物中のNb濃度に対する前記有機酸濃度のモル比(有機酸/Nb)が0.00以上2.00以下であり、
 前記触媒製造用組成物中のNb濃度に対する前記過酸化水素のモル比(過酸化水素/Nb)が0.01以上50以下である、
 触媒製造用組成物。
〔2〕
 前記有機酸が、ジカルボン酸、ジカルボン酸の無水物、ジカルボン酸の水和物、及びオキシカルボン酸からなる群より選ばれる1種以上のカルボン酸化合物である、
 〔1〕に記載の触媒製造用組成物。
〔3〕
 前記触媒製造用組成物のラマン分光法によるラマンスペクトルにおいて、
 500cm-1以上650cm-1以下の範囲に観察される最も大きなピークの強度Xの比に対する、890cm-1以上1000cm-1以下の範囲に観察される最も大きなピークの強度Yの比(Y/X)が、0以上1.0以下である、
 〔1〕又は〔2〕のいずれか一項に記載の触媒製造用組成物。
〔4〕
 前記触媒製造用組成物のラマン分光法によるラマンスペクトルにおいて、685cm-1以上785cm-1以下の範囲にピークを有する、
 〔1〕~〔3〕のいずれか一項に記載の触媒製造用組成物。
〔5〕
 気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物であって、
 前記触媒製造用組成物が、ニオブ化合物及び過酸化水素を含み、任意に有機酸を含む水溶液であり、
 前記触媒製造用組成物のラマン分光法によるラマンスペクトルにおいて、
 500cm-1以上650cm-1以下の範囲に観察される最も大きなピークの強度Xの比に対する、890cm-1以上1000cm-1以下の範囲に観察される最も大きなピークの強度Yの比(Y/X)が、0以上1.0以下である、
 触媒製造用組成物。
〔6〕
 前記触媒製造用組成物中のNb濃度に対する前記有機酸濃度のモル比(有機酸/Nb)が0.00以上2.00以下であり、
 前記触媒製造用組成物中のNb濃度に対する前記過酸化水素のモル比(過酸化水素/Nb)が0.01以上50以下である、
 〔5〕に記載の触媒製造用組成物。
〔7〕
 不飽和酸又は不飽和ニトリルの製造に用いられる気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造方法であって、
 Mo原料、V原料及びSb原料を含む水性混合液を調製する工程と、
 〔1〕~〔6〕のいずれかに一項に記載の触媒製造用組成物と前記水性混合液とを混合し前駆体スラリーを調製する工程と、
 前記前駆体スラリーを用いて乾燥し乾燥粒子を得る乾燥工程と、
 前記乾燥粒子を焼成し焼成粒子を得る焼成工程と、を有する、
 酸化物触媒の製造方法。
〔8〕
 気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物の製造方法であって、
 固体ニオブ原料及び過酸化水素水を混合し固体ニオブ原料分散液を調製する混合工程と、
 前記固体ニオブ原料分散液中の前記固体ニオブ原料を溶解させニオブ化合物含有水溶液を調製する溶解工程とを有し、
 前記ニオブ化合物含有水溶液中のニオブ化合物のNb濃度に対する過酸化水素のモル比(過酸化水素/Nb)が、0.01以上50以下であり、
 前記溶解工程の温度が40℃以上70℃以下である、
 触媒製造用組成物の製造方法。
〔9〕
 前記混合工程おいて、有機酸をさらに混合し、
 前記ニオブ化合物含有水溶液中の前記ニオブ化合物のNb濃度に対する前記有機酸濃度のモル比(有機酸/Nb)が0.00以上2.00以下である
 〔8〕に記載の触媒製造用組成物の製造方法。
〔10〕
 前記固体ニオブ原料が、ニオブ酸を含む、
 〔8〕又は〔9〕に記載の触媒製造用組成物の製造方法。
〔11〕
 前記有機酸が、ジカルボン酸、ジカルボン酸の無水物、ジカルボン酸の水和物、及びオキシカルボン酸からなる群より選ばれる1種以上のカルボン酸化合物を含む、
 〔8〕~〔10〕のいずれか一項に記載の触媒製造用組成物の製造方法。
〔12〕
 〔8〕~〔11〕のいずれか一項に記載の触媒製造用組成物の製造方法により前記触媒製造用組成物を調製する工程と、
 Mo原料、V原料及びSb原料を含む水性混合液を調製する工程と、
 前記触媒製造用組成物と前記水性混合液とを混合し前駆体スラリーを調製する工程と、
 前記前駆体スラリーを用いて乾燥し乾燥粒子を得る乾燥工程と、
 前記乾燥粒子を焼成し焼成粒子を得る焼成工程と、を有する、
 不飽和酸又は不飽和ニトリルの製造に用いられる気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造方法。
 本発明によれば、ニオブ化合物を含みながらシュウ酸等の酸物質の使用量が抑えられた触媒製造用組成物、及びその触媒製造用組成物を効率的に得ることのできる製造方法、並びに、該触媒製造用組成物を用いた酸化物触媒を製造する製造方法を提供することができる。
上段は、過酸化水素を使用せず、有機酸(シュウ酸)を用いたニオブ化合物を含有する水溶液(比較例2に係る触媒製造用組成物)のラマン分光法によるラマンスペクトルを示す図である。下段は、過酸化水素及び有機酸(シュウ酸)を用いたニオブ化合物を含有する水溶液(実施例4に係る触媒製造用組成物)のラマン分光法によるラマンスペクトルを示す図である。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に制限されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[触媒製造用組成物の製造方法]
 本実施形態の触媒製造用組成物の製造方法は、気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物の製造方法であって、固体ニオブ原料及び過酸化水素を混合し固体ニオブ原料分散液を調製する混合工程と、固体ニオブ原料分散液中の固体ニオブ原料を溶解させニオブ化合物を含有する水溶液(以下、「ニオブ化合物含有水溶液」と称することがある)を調製する溶解工程を有し、ニオブ化合物含有水溶液中のNb濃度に対する過酸化水素のモル比(過酸化水素/Nb)が、0.01以上50以下であり、溶解工程の温度が40℃以上70℃以下である。
 本実施形態における触媒製造用組成物とは、気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒を作製するための材料としての組成物を指し、上記工程により得られるニオブ化合物を含有する水溶液である。
 ここで、本明細書においては、「固体ニオブ原料」とは、触媒製造用組成物を得る際に、過酸化水素水溶液と混合する前の粉末状ニオブ原料などのニオブ原料の固体物を意味する。「固体ニオブ原料分散液」とは、固体ニオブ原料及び過酸化水素を単に混合した状態の分散液であり、過酸化水素水が固体ニオブ原料を溶解する前の状態をいう。
 また、「ニオブ化合物」とは、ニオブ化合物含有水溶液又は触媒製造用組成物中において固体ニオブ原料が溶解した状態のニオブ原料を意味し、例えば、ニオブ-過酸化水素-シュウ酸錯体、ニオブ-過酸化水素錯体、ニオブ-シュウ酸錯体及びこれらのうち2以上を含む凝集体などが挙げられる。
 本実施形態の製造方法では、固体ニオブ原料と過酸化水素とからニオブ化合物を含有する水溶液を得る。過酸化水素水を用いてニオブ化合物含有水溶液を調製することにより、シュウ酸等の酸物質を過剰に使用せずに、ニオブ化合物を含有する水溶液を得ることができる。また、本実施形態の製造方法によって、従来ニオブ化合物含有水溶液の調製に行っていた、余剰の酸物質を析出させ除去するステップを省くことができる。したがって、本実施形態の製造方法によれば、酸物質を過剰に使用せずに、効率的にニオブ化合物含有水溶液を得ることが可能となる。
 固体ニオブ原料としては、ニオブ元素を含む化合物であれば特に限定されない。固体ニオブ原料としては、以下に限定されないが、例えば、シュウ酸水素ニオブ、シュウ酸ニオブアンモニウム、NbCl3、NbCl5、Nb2(C245、酸化ニオブ(Nb25とも記載する)、ニオブ酸、Nb(OC255、ニオブのハロゲン化物、ニオブのハロゲン化アンモニウム塩等を挙げることができる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの中でも、触媒製造用組成物に他の金属を添加する場合に、他の金属への影響を低減する観点から、Nb25、ニオブ酸及びシュウ酸水素ニオブが好ましい。なお、ニオブ酸は水酸化ニオブ及び酸化ニオブ(Nb25)を含んでいてもよい。固体ニオブ原料としては、固体ニオブ原料製造直後のものを用いてもよく、長期保存や脱水の進行によって変質した固体ニオブ原料を含むものを用いてもよい。
 触媒製造用組成物の調製に際して、固体ニオブ原料は、固体でもよく、懸濁液の形態であってもよい。例えば、ニオブ酸を使用する場合、溶解性をより向上させる観点から、粒径が小さいニオブ酸が好ましい。ニオブ酸は使用前にアンモニア水及び/又は水によって洗浄することもできる。
 本実施形態の製造方法において、固体ニオブ原料の粒径は、好ましくは0.2μm以上20μm以下である。粒子径が0.2μm以上であることにより、固体ニオブ原料の微粒子同士の粘着性が大きくなり、固体ニオブ原料の表面の乾燥が抑えられているため、溶解性が高まる傾向にある。粒子径が20μm以下であることにより、固体ニオブ原料の表面積が大きくなるため、溶解性を高められる傾向にある。固体ニオブ原料の粒径は、より好ましくは0.7μm以上15.0μm以下であり、さらに好ましくは2.0μm以上10.0μm以下である。
 本実施形態の製造方法において、ニオブ化合物含有水溶液中のNb濃度に対する、過酸化水素のモル比(過酸化水素/Nb)は、0.01以上50以下であり、好ましくは0.5以上10以下である。モル比(過酸化水素/Nb)が0.01以上であることにより、固体ニオブ原料の水に対する溶解性が高まる傾向にある。モル比(過酸化水素/Nb)が50以下であることにより、得られる触媒の機能性に影響を与えることなく溶解性を高められる傾向にある。
 モル比(過酸化水素/Nb)の下限は、好ましくは0.5以上であり、より好ましくは1.0以上であり、更に好ましくは2.0以上である。一方で、モル比(過酸化水素/Nb)の上限は、好ましくは45.0以下であり、より好ましくは30.0以下である。
 本実施形態の製造方法において、ニオブ化合物含有水溶液を得る際に、さらに有機酸を添加してもよい。したがって、本実施形態の一つは、ニオブ化合物含有水溶液を得る工程において、さらに有機酸を混合することを含む、製造方法である。ニオブ化合物含有水溶液に有機酸を混合することにより、固体ニオブ原料の水に対する溶解性をさらに高められる傾向にある。
 本実施形態における有機酸としては、特に限定されないが、例えば、ジカルボン酸、ジカルボン酸の無水物、ジカルボン酸の水和物、及びオキシカルボン酸からなる群より選ばれる1種以上のカルボン酸化合物等を挙げることができる。ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、触媒製造時における金属酸化物の過還元を抑制する観点から、シュウ酸が好ましい。シュウ酸は、シュウ酸無水物、シュウ酸二水和物であることが好ましい。
 上記オキシカルボン酸とは、1分子中にヒドロキシ基とカルボキシル基を有する化合物である。オキシカルボン酸としては、例えば、2-ヒドロキシマロン酸、DL-リンゴ酸、L-リンゴ酸、D-リンゴ酸、酒石酸、クエン酸、イソクエン酸等が挙げられる。
 本実施形態の製造方法において、有機酸を含む固体ニオブ原料分散液を調製する場合、ニオブ化合物含有水溶液のNb濃度に対する、有機酸の添加量のモル比(有機酸/Nb)の上限は、特に制限されないが、好ましくは2.50以下であり、より好ましくは2.30以下であり、さらに好ましくは2.00以下であり、よりさらに好ましくは1.80以下であり、さらにより好ましくは1.50以下であり、特に好ましくは1.00以下である。一方で、モル比(有機酸/Nb)の下限は、0.00以上である。モル比(有機酸/Nb)が0.00とは、すなわち、0は有機酸を添加しない場合を意味する。
 本実施形態の製造方法では、シュウ酸等の還元剤として作用する有機酸の使用量を抑えることができる。シュウ酸等の量が抑えられたニオブ化合物含有水溶液から得られる複合金属酸化物触媒は、過還元の状態になることが抑えられ、触媒の活性が高まり、反応生成物の収率の向上に寄与することが考えられる。したがって、例えば、特に有機酸としてシュウ酸等の還元剤として作用する有機酸を用いる場合、有機酸の含有量を低減させることで当該ニオブ化合物含有水溶液から得られる複合金属酸化物触媒の活性を高め、反応生成物の収率を向上できる傾向にある。
 本実施形態の製造方法は、固体ニオブ原料及び過酸化水素を混合し固体ニオブ原料分散液を調製する混合工程を含む。混合工程においては、必要に応じて有機酸を添加し、有機酸を含有する固体ニオブ原料分散液を調製してもよい。混合工程の温度は、特に限定されないが、通常、常温であり、また、後述する溶解工程の温度と同様に40℃以上70℃以下としてもよい。本明細書中、「常温」は15℃以上25℃以下の範囲程度の温度を意味する。
 本実施形態の製造方法は、ニオブ化合物含有水溶液を得るために、固体ニオブ原料と過酸化水素と水、及び必要に応じて有機酸を混合して、40℃以上70℃以下の条件下で溶解する溶解工程を含む。温度を40℃以上とすることにより、固体ニオブ原料の溶解を促進する傾向にある。また、温度を70℃以下とすることにより、過酸化水素の分解が抑制される傾向にあり、また、混合物が有機酸等の添加剤を含む場合、触媒製造用組成物中で形成される有機酸とNbとの錯体が安定化し、Nbが高濃度であっても十分な分散性がより確保される傾向にある。温度は60℃以下であることがより好ましい。
 本実施形態における溶解工程においては、加熱方法は特に限定されない。加熱時に、加熱と共に攪拌を行うことが好ましい。
 本実施形態の製造方法において、固体ニオブ原料を十分に溶解させる観点から、混合してからの時間を十分にとることが望ましい。ニオブ化合物含有水溶液におけるNb濃度が高い場合であっても十分な分散性を確保する観点から、溶解工程を0.2時間以上20時間以下で実施することが好ましく、0.3時間以上15時間以下で実施することがより好ましく、0.5時間以上10時間以下で実施することがさらに好ましい。
 本実施形態における混合工程で用いる水の温度としては特に限定されないが、10℃以上50℃以下であることが好ましい。水の温度が10℃以上であることにより、溶解工程において固体ニオブ原料の溶解がより進みやすくなる傾向にある。水の温度が50℃以下であることにより、投入口の周囲が水蒸気で濡れることを防止でき、固体ニオブ原料を投入しやすくなる。
 固体ニオブ原料、過酸化水素、必要に応じて添加される有機酸を添加するときの温度も特に限定されず、上記と同様の理由により50℃以下で添加することが好ましい。
 本実施形態の製造方法は、ニオブ化合物含有水溶液を得られる限り特に限定されず、固体ニオブ原料と過酸化水素と水、及び必要に応じて有機酸を任意の順番で配合すればよい。
 固体ニオブ原料が溶け残ることを防ぐ観点から、水が存在する系に、攪拌しながら固体ニオブ原料及び過酸化水素、並びに任意で添加してもよい有機酸を添加することが好ましい。得られる混合物をその後40℃以上70℃以下の範囲まで昇温することが好ましい。昇温スピードは、特に限定されず、通常1℃/hr以上60℃/hr以下とすればよい。
 40℃超過に加熱を行った場合、加熱後の混合物を40℃以下まで降温することが好ましい、その際の降温速度は0.002℃/min以上3℃/min以下が好ましい。降温速度が0.002℃/min以上であることにより、ニオブの再析出を抑制できる傾向にある。降温速度が3℃/min以下であることにより、急な降温に起因するニオブの析出を防止でき、均質な液が得られる傾向にある。
 本実施形態の製造方法において、固体ニオブ原料と過酸化水素と水とを混合して得られたニオブ化合物含有水溶液を触媒製造用組成物としてもよく、固体ニオブ原料と過酸化水素と水とを混合して得られたNbを含む混合物を濾過機に供給して、濾過を行い、得られたニオブ化合物含有水溶液を触媒製造用組成物としてもよい。具体的には、上記Nbを含む混合物を濾過器に供給して、濾過する工程を有することが好ましい。これにより、混合物中のニオブの未溶解分、有機酸の未溶解分、析出分等の固形分を除去することができる。使用する濾紙は、5種A以上に目の細かいものであれば適宜使用可能であるが、例えば、安曇濾紙株式会社製A No3250を用いることができる。濾過工程においては、上記混合物を1kg/hr以上100kg/hr以下の速度で析出物を濾過によって濾別し、均一な溶液を得ることが好ましい。濾過している間は、濾液の温度を一定に保持するために、濾過器の外側に設けられたジャケットに冷却水を通水してもよい。
 本実施形態の製造方法において、ニオブ化合物含有水溶液におけるNb濃度が、0.10mol/kg以上になるように固体ニオブ原料を添加することが好ましい。Nb濃度が0.10mol/kg以上であることにより、触媒製造用組成物として十分なNb濃度が確保される傾向にある。ニオブ化合物含有水溶液中におけるニオブの析出を抑制し保存性を向上させる観点から、Nb濃度は、1.00mol/kg以下であることが好ましい。これらの観点から、Nb濃度は、0.20mol/kg以上1.00mol/kg以下であることがより好ましく、0.20mol/kg以上0.70mol/kg以下であることがさらに好ましい。
 また、本実施形態の製造方法において、ニオブ化合物含有水溶液における過酸化水素濃度(H濃度)は、上記モル比(過酸化水素/Nb)を満たす限り、特に限定されないが、通常、0.3mol/kg以上9.0mol/kg以下である。ニオブ化合物含有水溶液における過酸化水素濃度の上限は、好ましくは10.0mol/kg以下であり、より好ましくは9.0mol/kg以下である。一方で、過酸化水素濃度の下限は、好ましくは0.2mol/kg以上であり、より好ましくは0.3mol/kg以上である。
[触媒製造用組成物]
 上述のとおり、ニオブ化合物含有水溶液の製造において、本発明者らは過酸化水素水を用いることにより有機酸を用いずに固体ニオブ原料を溶解させニオブ化合物含有水溶液を得られることを見出し、有機酸等の酸物質の使用量が抑えられたニオブ化合物を含有する水溶液を得ることが初めてできた。
 ニオブ化合物含有水溶液を調製する際に過酸化水素を用いることにより、有機酸/Nbを2.00以下のように小さくしながら、水溶液中のNb濃度を大きくすることができる。
 したがって、本実施形態の触媒製造用組成物の一つは、気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物であって、触媒製造用組成物は、ニオブ化合物及び過酸化水素を含み、且つ任意に有機酸を含む水溶液であり、触媒製造用組成物中のNb濃度に対する有機酸量のモル比(有機酸/Nb)が0.00以上2.00以下であり、触媒製造用組成物中のNb濃度に対する過酸化水素のモル比(過酸化水素/Nb)が0.01以上50以下である、触媒製造用組成物である。
 本実施形態の触媒製造用組成物におけるモル比(有機酸/Nb)は、好ましくは1.80以下であり、より好ましくは1.50以下であり、更に好ましくは1.00以下であり、特に好ましくは1.00未満である。また、モル比(有機酸/Nb)の下限は、0.00以上である。モル比(有機酸/Nb)が0.00とは、すなわち、有機酸の含有量が0である場合を含むことを意味する。モル比(有機酸/Nb)が2.00以下であることにより、有機酸の量を抑えながらNbを含む水溶液を得られる傾向にある。
 なお、本実施形態の触媒製造用組成物におけるモル比(有機酸/Nb)及びモル比(過酸化水素/Nb)は、それぞれ、触媒製造用組成物中のNb濃度、有機酸濃度(Ox濃度)及び過酸化水素濃度(H濃度)に基づいて算出することとする。それぞれの濃度の測定は、当該組成物の調製から任意時間経過したものを用いて行えばよいが、例えば1日静置後に測定する。なお、1日静置後であっても各モル比に有意な差はみられない。
 上記各濃度は、具体的には、後述する実施例に記載の方法により測定することができる。
 また、モル比(有機酸/Nb)を2.00以下とする方法としては、例えば、上述の本実施形態の触媒製造用組成物の製造方法により調整する方法が挙げられる。
 本実施形態の触媒製造用組成物において、Nb濃度に対する、過酸化水素のモル比(過酸化水素/Nb)は、0.01以上50以下である。モル比(過酸化水素/Nb)の下限は、好ましくは0.5以上であり、より好ましくは1.0以上であり、更に好ましくは2.0以上である。一方で、モル比(過酸化水素/Nb)の上限は、好ましくは45.0以下であり、より好ましくは30.0以下である。モル比(過酸化水素/Nb)が0.01以上であることにより、有機酸の量を抑えながらNbを含む水溶液を得られる傾向にある。また、モル比(過酸化水素/Nb)が50以下であることにより、触媒製造によって得られる触媒の機能性に影響を与えることなく溶解性を高められる傾向にある。
 本実施形態の触媒製造用組成物において、Nb濃度は、上記モル比(有機酸/Nb)及びモル比(過酸化水素/Nb)を満たす限り、特に限定されないが、通常、0.2mol/kg以上1.0mol/kg以下である。触媒製造用組成物におけるNb濃度の上限は、好ましくは1.2mol/kg以下であり、より好ましくは1.0mol/kg以下である。一方で、Nb濃度の下限は、好ましくは0.1mol/kg以上であり、より好ましくは0.2mol/kg以上である。
 本実施形態の触媒製造用組成物において、過酸化水素濃度(H濃度)は、上記モル比(過酸化水素/Nb)を満たす限り、特に限定されないが、通常、0.3mol/kg以上9.0mol/kg以下である。触媒製造用組成物における過酸化水素濃度の上限は、好ましくは10.0mol/kg以下であり、より好ましくは9.0mol/kg以下である。一方で、過酸化水素濃度の下限は、好ましくは0.2mol/kg以上であり、より好ましくは0.3mol/kg以上である。
 本実施形態の触媒製造用組成物において、有機酸濃度(Ox濃度)は、上記モル比(有機酸/Nb)を満たす限り、特に限定されないが、通常、0mol/kg以上1.5mol/kg以下である。触媒製造用組成物における有機酸濃度の上限は、好ましくは1.6mol/kg以下であり、より好ましくは1.5mol/kg以下である。一方で、有機酸濃度の下限は、好ましくは0mol/kg以上であり、より好ましくは0.1mol/kg以上である。
 本実施形態の触媒製造用組成物及び本実施形態の製造方法により得られる触媒製造用組成物は、固体ニオブ原料の水溶液とする際に過酸化水素を用いることで、固体ニオブ原料の溶解性が高められる。この理由の一つとして、過酸化水素を用いることにより、有機酸のみを用いた場合とは異なる錯体が形成され、この錯体が溶解性の向上に寄与しているためであると考えられる。
 本実施形態において形成される錯体としては、例えば、以下の式(I)~(III)で表される錯体等が挙げられる(Inorg. Chem., Vol. 43(19), 5999, 2004、ACS Catal., vol.8, 4645, 2018等参照)。
Figure JPOXMLDOC01-appb-C000001
(Oxは、有機酸による配位子を表す。)
 上記式(I)~(III)の構造は次のように説明される。
 式(I):シュウ酸1分子及び過酸化水素2分子が配位したニオブ錯体
 式(II):シュウ酸1分子が配位したニオブ錯体
 式(III)過酸化水素1分子が配位したニオブ錯体
 本実施形態の触媒製造用組成物は、有機酸を含まない場合は、上記式(III)で表される錯体又はその他の構造の錯体が含まれ得る。有機酸を含む場合は、本実施例形態の触媒製造用組成物は、上記式(I)~(III)のうち少なくとも1つ又はその他の構造の錯体が含まれ得る。
 実際、本実施形態の触媒製造用組成物及び本実施形態の製造方法により得られる触媒製造用組成物をラマン分光法により測定したとき、有機酸のみを用いた場合の錯体とは異なるラマンスペクトルが取得される(図1参照)。したがって、本実施形態における触媒製造用組成物のラマン分光法による測定は、本実施形態の触媒製造用組成物の同定方法の一つとすることができる。
 このような観点から、本実施形態の触媒製造用組成物の一つは、気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物であって、触媒製造用組成物が、ニオブ化合物及び過酸化水素を含み、任意に有機酸を含む水溶液であり、当該触媒製造用組成物をラマン分光法により測定したとき得られるラマンスペクトルにおいて、500cm-1以上650cm-1以下の範囲に観察される最も大きなピークの強度Xの比に対する、890cm-1以上1000cm-1以下の範囲に観察される最も大きなピークの強度Yの比(Y/X)が、0以上1.0以下であることが好ましい。
 比(Y/X)が1.0以下であることにより、Nbの水に対する溶解性を高められる傾向にある。比(Y/X)は、好ましくは0.8以下であり、より好ましくは0.6以下であり、さらに好ましくは0.4以下であり、特に好ましくは0.3以下である。比(X/Y)の下限は、特に制限されないが、通常0.0以上である。比(X/Y)が0.0とは、すなわち、0.0は有機酸のみを用いた場合の錯体を含まない場合を意味する。
 また、本実施形態の触媒製造用組成物は、そのラマン分光法によるラマンスペクトルにおいて、685cm-1以上785cm-1以下の範囲にピークを有することが好ましい。685cm-1以上785cm-1以下の範囲にピークを有することは、Nb-O-Nbの構造が多く存在することを意味する。Nb濃度が高い水溶液においてはNb-O-Nbの構造が形成されやすいため、685cm-1以上785cm-1以下の範囲のピークによってこのことを確認できる。そして、このようにNb濃度が高い水溶液は、触媒の製造工程において適切な条件に整えやすくなるため望ましい。特に乾燥工程においてNb濃度が高い方が製造される触媒粒子の形状が球形に近づき、良好になる。
 なお、Yのピークについては、シュウ酸が配位したNbに生じるNb=O結合の振動に対応するものであり、Xのピークについては、シュウ酸が配位するかどうかに関わらずNb-O結合の振動に対応するものである(J. Raman. Spec., Vol. 22, 83-89, 1991等参照)。
 なお、本実施形態の触媒製造用組成物は、モル比(有機酸/Nb)とモル比(過酸化水素/Nb)による構成と、比(Y/X)による構成を共に有するものであってもよい。
 また、触媒製造用組成物におけるニオブ化合物及び有機酸については、上記触媒製造用組成物の製造方法において述べたものと同様のものを上げることができる。
[触媒の製造方法]
 本実施形態の一つは、不飽和酸又は不飽和ニトリルの製造に用いられる気相接触酸化反応用又は気相接触アンモ酸化反応用の酸化物触媒の製造方法である。本実施形態の酸化物触媒の製造方法は、本実施形態の触媒製造用組成物を使用するもの、あるいは、本実施形態の触媒製造用組成物の製造方法の工程を含むものである限り特に限定されない。すなわち、本実施形態の酸化物触媒の製造方法は、不飽和酸又は不飽和ニトリルの製造に用いられる酸化物触媒の製造方法であって、本実施形態の触媒製造用組成物を使用して酸化物触媒を得る工程を含む。また、本実施形態の酸化物触媒の製造方法は、不飽和酸又は不飽和ニトリルの製造に用いられる酸化物触媒の製造方法であって、本実施形態の触媒製造用組成物の製造方法の工程を含む。
 本実施形態に係る触媒の製造方法としては、具体的には、Mo原料、V原料及びSb原料を含む水性混合液を調製する工程と、触媒製造用組成物と水性混合液とを混合し前駆体スラリーを調製する工程と、前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程と、乾燥粒子を焼成し焼成粒子を得る焼成工程と、を含むことが好ましい。
 また、本実施形態に係る触媒の製造方法としては、本実施形態の触媒製造用組成物の製造方法により触媒製造用組成物を調製する工程と、Mo原料、V原料及びSb原料を含む水性混合液を調製する工程と、触媒製造用組成物と水性混合液とを混合し前駆体スラリーを調製する工程と、前駆体スラリーを乾燥して乾燥粒子を得る乾燥工程と、乾燥粒子を焼成し焼成粒子を得る焼成工程と、を含むことが好ましい。
 これら方法により得られる触媒としては、Mo、V、Sb及びNbを含有するアクリロニトリル製造用の触媒であることが好ましい。以下各工程について説明するが、本実施形態の触媒製造用組成物の製造方法に触媒製造用組成物を調製する工程については、前述のとおりであるため省略する。
(前駆体スラリー調製工程)
 本実施形態に係る触媒の製造方法としては、最初の工程として、本実施形態の触媒製造用組成物及び/又は本実施形態の触媒製造用組成物の製造方法により得られる触媒製造用組成物を含む前駆体スラリーを調製する前駆体スラリー調製工程を含んでいてもよい。
 前駆体スラリー調製工程は、Mo原料、V原料及びSb原料を含む水性混合液を調製する工程と、触媒製造用組成物と水性混合液とを混合し前駆体スラリーを調製する工程と、を含む。
 ここで、固体ニオブ原料及び任意で含んでいてもよい有機酸以外の前駆体スラリーを調製するための原料としては、特に限定されず、例えば、下記の化合物を用いることができる。Moの原料としては、例えば、酸化モリブデン、ジモリブデン酸アンモニウム、ヘプタモリブデン酸アンモニウム、リンモリブデン酸、ケイモリブデン酸が挙げられ、中でも、ヘプタモリブデン酸アンモニウムを好適に用いることができる。Vの原料としては、例えば、五酸化バナジウム、メタバナジン酸アンモニウム、硫酸バナジルが挙げられ、中でも、メタバナジン酸アンモニウムを好適に用いることができる。Sbの原料としては、アンチモン酸化物を好適に用いることができる。
 以下、一例として、Mo、V、Nb、Sbを含む前駆体スラリーを調製する場合を挙げ、具体的に説明する。まず、ヘプタモリブデン酸アンモニウム、メタバナジン酸アンモニウム、三酸化二アンチモン粉末を水に添加し、80℃以上に加熱して水性混合液を調製する。このとき、例えば触媒がCeを含む場合は、Ceを含む化合物を同時に混合することができる。Ceを含む化合物としては、例えば、硝酸セリウム・6水和物が好適に用いられる。
 次に、目的とする組成に合わせて、先に調製した本実施形態の触媒製造用組成物と水性混合液を混合して、前駆体スラリーを得る。例えば触媒がWやCeを含む場合は、Wを含む化合物やCeを含む化合物を好適に混合して前駆体スラリーを得る。
 Wを含む化合物としては、例えば、メタタングステン酸アンモニウムが好適に用いられる。Ceを含む化合物としては、例えば、硝酸セリウム・6水和物が好適に用いられる。WやCeを含む化合物は、水性混合液の中に添加することもできるし、触媒製造用組成物と水性混合液を混合する際に同時に添加することもできる。
 触媒が複合金属酸化物をシリカ担体に担持した触媒である場合は、シリカ原料を含むように前駆体スラリーを調製することができ、この場合、シリカ原料は適宜添加することができる。シリカ原料としては、例えばシリカゾルが好適に用いられる。
 また、アンチモンを用いる場合は、水性混合液又は調合途中の水性混合液の成分を含む液に、過酸化水素を添加することが好ましい。このとき、H22/Sb(モル比)は、好ましくは0.01以上5以下であり、より好ましくは0.05以上4以下である。またこのとき、30℃以上70℃以下で、30分以上2時間以下撹拌を続けることが好ましい。このようにして得られる前駆体スラリーは均一な混合液の場合もあるが、通常はスラリーである。
(乾燥工程)
 乾燥工程においては、上述の工程で得られた前駆体スラリーを乾燥して、乾燥粒子を得る。乾燥は公知の方法で行うことができ、例えば、噴霧乾燥又は蒸発乾固によって行うことができるが、噴霧乾燥により微小球状の乾燥粒子を得ることが好ましい。噴霧乾燥法における噴霧化は、遠心方式、二流体ノズル方式、又は高圧ノズル方式によって行うことができる。乾燥熱源は、スチーム、電気ヒーターなどによって加熱された空気を用いることができる。噴霧乾燥装置の乾燥機入口温度は150℃以上300℃以下が好ましく、乾燥機出口温度は100℃以上160℃以下が好ましい。
(焼成工程)
 焼成工程においては、乾燥工程で得られた乾燥粒子を焼成し、焼成粒子を得る。焼成装置としては、回転炉(ロータリーキルン)を使用することができる。焼成器の形状は特に限定されないが、管状であると、連続的な焼成を実施することができるため好ましい。焼成管の形状は特に限定されないが、円筒であるのが好ましい。加熱方式は外熱式が好ましく、電気炉を好適に使用できる。
 焼成管の大きさ、材質等は焼成条件や製造量に応じて適当なものを選択することができるが、その内径は、好ましくは70mm以上2000mm以下、より好ましくは100mm以上1200mm以下であり、その長さは、好ましくは200mm以上10000mm以下、より好ましくは800mm以上8000mm以下である。焼成器に衝撃を与える場合、焼成器の肉厚は衝撃により破損しない程度の十分な厚みを持つという観点から、好ましくは2mm以上、より好ましくは4mm以上であり、また衝撃が焼成器内部まで十分に伝わるという観点から、好ましくは100mm以下、より好ましくは50mm以下である。焼成器の材質としては、耐熱性があり衝撃により破損しない強度を持つものであること以外は特に限定されず、SUSを好適に使用できる。
 焼成管の中には、粒子が通過するための穴を中心部に有する堰板を、粒子の流れと垂直に設けて焼成管を2つ以上の区域に仕切ることもできる。堰板を設置することにより焼成管内滞留時間を確保しやすくなる。堰板の数は1つでも複数でもよい。堰板の材質は金属が好ましく、焼成管と同じ材質のものを好適に使用できる。堰板の高さは確保すべき滞留時間に合わせて調整することができる。例えば内径150mm、長さ1150mmのSUS製の焼成管を有する回転炉で250g/hrで粒子を供給する場合、堰板は好ましくは5mm以上50mm以下、より好ましくは10mm以上40mm以下、さらに好ましくは13mm以上35mm以下である。堰板の厚みは特に限定されず、焼成管の大きさに合わせて調整することが好ましい。例えば内径150mm、長さ1150mmのSUS製の焼成管を有する回転炉の場合、焼成管の厚みは、好ましくは0.3mm以上30mm以下、より好ましくは0.5mm以上15mm以下である。
 乾燥粒子の割れ、ひび等を防ぐと共に、均一に焼成するために、焼成管を回転させるのが好ましい。焼成管の回転速度は、好ましくは0.1rpm以上30rpm以下、より好ましくは0.5rpm以上20rpm以下、さらに好ましくは1rpm以上10rpm以下である。
 乾燥粒子の焼成には、乾燥粒子の加熱温度を、400℃より低い温度から昇温を始めて、550℃以上800℃以下の範囲内にある温度まで連続的に又は断続的に昇温することが好ましい。
 焼成雰囲気は、空気雰囲気下でも空気流通下でもよいが、焼成の少なくとも一部を、窒素等の実質的に酸素を含まない不活性ガスを流通させながら実施することが好ましい。不活性ガスの供給量は乾燥粒子1kg当たり、50NL以上であり、好ましくは50NL以上5000NL以下であり、より好ましくは50NL以上3000NL以下である(NLは、標準温度及び圧力条件、即ち0℃、1気圧で測定したLを意味する)。このとき、不活性ガスと乾燥粒子は向流でも並流でも問題ないが、乾燥粒子から発生するガス成分や、乾燥粒子とともに微量混入する空気を考慮すると、向流接触が好ましい。
 焼成工程は、1段でも実施可能であるが、焼成が前段焼成と本焼成からなり、前段焼成を250℃以上400℃以下の温度範囲で行い、本焼成を550℃以上800℃以下の温度範囲で行うことが好ましい。前段焼成と本焼成を連続して実施してもよいし、前段焼成を一旦完了してからあらためて本焼成を実施してもよい。また、前段焼成及び本焼成のそれぞれが数段に分かれていてもよい。
 前段焼成は、好ましくは不活性ガス流通下、加熱温度250℃以上400℃以下、好ましくは300℃以上400℃以下の範囲で行う。250℃以上400℃以下の温度範囲内の一定温度で保持することが好ましいが、250℃以上400℃以下の範囲内で温度が変動する、若しくは緩やかに昇温、降温してもよい。加熱温度の保持時間は、好ましくは30分以上、より好ましくは3時間以上12時間以下である。
 前段焼成温度に達するまでの昇温パターンは直線的に上げてもよいし、上又は下に凸なる弧を描いて昇温してもよい。
 前段焼成温度に達するまでの昇温時の平均昇温速度には特に限定はないが、通常0.1℃/min以上15℃/min以下程度であり、好ましくは0.5℃/min以上5℃/min以下、より好ましくは1℃/min以上2℃/minである。
 本焼成は、好ましくは不活性ガス流通下、550℃以上800℃以下、好ましくは580℃以上750℃以下、より好ましくは600℃以上720℃以下、さらに好ましくは620℃以上700℃以下で実施する。620℃以上700℃以下の温度範囲内の一定温度で保持することが好ましいが、620℃以上700℃以下の範囲内で温度が変動する、若しくは緩やかに昇温、降温しても構わない。本焼成の時間は0.5時間以上20時間以下、好ましくは1時間以上15時間以下である。
 焼成管を堰板で区切る場合、乾燥粒子及び/又は複合酸化物触媒は少なくとも2つ、好ましくは2以上20以下、より好ましくは4以上15以下の区域を連続して通過する。温度の制御は1つ以上の制御器を用いて行うことができるが、所望の焼成パターンを得るために、これら堰で区切られた区域ごとにヒーターと制御器を設置し、制御することが好ましい。例えば、堰板を焼成管の加熱炉内に入る部分の長さを8等分するように7枚設置し、8つの区域に仕切った焼成管を用いる場合、乾燥粒子及び/又は複合酸化物触媒の温度が所望の焼成温度パターンとなるよう8つの区域を各々の区域について設置したヒーターと制御器により設定温度を制御することが好ましい。なお、不活性ガス流通下の焼成雰囲気には、所望により、酸化性成分(例えば酸素)又は還元性成分(例えばアンモニア)を添加してもかまわない。
 本焼成温度に達するまでの昇温パターンは直線的に上げてもよいし、上又は下に凸なる弧を描いて昇温してもよい。
 本焼成温度に達するまでの昇温時の平均昇温速度には特に限定はないが、一般に0.1℃/min以上15℃/min以下、好ましくは0.5℃/min以上10℃/min以下、より好ましくは1℃/min以上8℃/min以下である。
 本焼成終了後の平均降温速度は、好ましくは0.05℃/min以上100℃/min以下、より好ましくは0.1℃/min以上50℃/min以下である。また、本焼成温度より低い温度で一旦保持することも好ましい。保持する温度は、本焼成温度より10℃、好ましくは50℃、より好ましくは100℃低い温度である。保持する時間は、0.5時間以上、好ましくは1時間以上、より好ましくは3時間以上、さらに好ましくは10時間以上である。
 前段焼成を一旦完了してからあらためて本焼成を実施する場合は、本焼成で低温処理を行うことが好ましい。
 低温処理に要する時間、すなわち乾燥粒子及び/又は複合酸化物触媒の温度を低下させた後、昇温して焼成温度にするまでに要する時間は、焼成器の大きさ、肉厚、材質、触媒生産量、連続的に乾燥粒子及び/又は複合酸化物触媒を焼成する一連の期間、固着速度、固着量等により適宜調整することが可能である。例えば、内径500mm、長さ4500mm、肉厚20mmのSUS製焼成管を使用する場合においては、連続的に触媒を焼成する一連の期間中に好ましくは30日以内、より好ましくは15日以内、さらに好ましくは3日以内、特に好ましくは2日以内である。
 例えば、内径500mm、長さ4500mm、肉厚20mmのSUS製の焼成管を有する回転炉により6rpmで回転しながら35kg/hrの速度で乾燥粒子を供給し、本焼成温度を645℃に設定する場合、温度を400℃まで低下させた後、昇温して645℃にする工程を1日程度で行うことができる。1年間連続的に焼成する場合、このような低温処理を1ヶ月に1回の頻度で実施することで、安定して酸化物層温度を維持しながら焼成することができる。
[触媒]
 本実施形態に係る触媒の製造方法により得られる触媒は、例えば、式(1)で示される複合金属酸化物を含む触媒である。
  Mo1aNbbSbcdn   (1)
(式中、Yは、Mn、W、B、Ti、Al、Te、アルカリ金属、アルカリ土類金属及び希土類金属から選ばれる少なくとも1種以上の元素を示し、a、b、c、d及びnは、それぞれ、V、Nb、Sb、Yのモリブデン(Mo)1原子当たりの原子比を示し、0.1≦a≦1、0.01≦b≦1、0.01≦c≦1、0≦d≦1であり、nは酸素以外の構成元素の原子価によって決定される酸素原子の数を示す。)
 Mo1原子当たりの原子比a、b、c、dは、それぞれ、0.1≦a≦1、0.01≦b≦1、0.01≦c≦1、0≦d≦1であることが好ましく、0.1≦a≦0.5、0.01≦b≦0.5、0.1≦c≦0.5、0.0001≦d≦0.5であることがより好ましく、0.15≦a≦0.3、0.05≦b≦0.2、0.15≦c≦0.3、0.0002≦d≦0.2であることがさらに好ましい。
 触媒を流動床で用いる場合には、充分な強度が要求されるので、触媒は、シリカ担体に金属複合酸化物が担持されている触媒が好ましい。本実施形態において、複合金属酸化物とシリカ担体との合計の全質量に対し、シリカ担体の質量は、SiO2換算で、好ましくは10質量%以上80質量%以下、より好ましくは20質量%以上60質量%以下、さらに好ましくは30質量%以上55質量%以下である。担体であるシリカの質量は、強度と粉化防止、触媒を使用する際の安定運転の容易さ及びロスした触媒の補充を低減する観点から、複合金属酸化物とシリカの合計の全質量に対し、10質量%以上であることが好ましく、十分な触媒活性を達成する観点から、複合金属酸化物とシリカとの合計の全質量に対し80質量%以下であることが好ましい。特に触媒を流動床で用いる場合、シリカの量が80質量%以下であると、シリカ担持触媒(複合金属酸化物+シリカ担体)の比重が適切で、良好な流動状態をつくり易い。
[アクリロニトリルの製造方法]
 本実施形態の一つはアクリロニトリルの製造方法であって、当該製造方法は、本実施形態に係る触媒の製造方法により得られる触媒を用いる。本実施形態のアクリロニトリルの製造方法は、上述の方法により触媒を調製し、得られた触媒にプロパン、アンモニア及び酸素(分子状酸素)を気相で接触(気相接触アンモ酸化反応)させてアクリロニトリルを製造する方法であることが好ましい。
 プロパン及びアンモニアの供給原料は必ずしも高純度である必要はなく、工業グレードのガスを使用できる。供給酸素源としては、空気、純酸素又は純酸素で富化した空気を用いることができる。さらに、希釈ガスとしてヘリウム、ネオン、アルゴン、炭酸ガス、水蒸気、窒素等を供給してもよい。
 アンモ酸化反応の場合は、反応系に供給するアンモニアのプロパンに対するモル比は0.3以上1.5以下、好ましくは0.8以上1.2以下である。酸化反応とアンモ酸化反応のいずれについても、反応系に供給する分子状酸素のプロパンに対するモル比は0.1以上6以下、好ましくは0.1以上4以下である。
 また、酸化反応とアンモ酸化反応のいずれについても、反応圧力は0.5atm以上5atm以下、好ましくは1atm以上3atm以下であり、反応温度は350℃以上500℃以下、好ましくは380℃以上470℃以下であり、接触時間は0.1sec・g/cc以上10sec・g/cc以下、好ましくは0.5sec・g/cc以上5sec・g/cc以下である。
 本実施形態において、接触時間は次式で定義される。
接触時間(sec・g/cc)=(W/F)×273/(273+T)×P
ここで、
W=触媒の質量(g)、
F=標準状態(0℃、1atm)での原料混合ガス流量(Ncc/sec)、
T=反応温度(℃)、
P=反応圧力(atm)である。
 プロパン転化率及びアクリロニトリル収率は、それぞれ次の定義に従う。
 プロパン転化率(%)=(反応したプロパンのモル数)/(供給したプロパンのモル数)×100
 アクリロニトリル収率(%)=(生成したアクリロニトリルのモル数)/(供給したプロパンのモル数)×100
 反応方式は、固定床、流動床、移動床等の従来の方式を採用できるが、反応熱の除熱が容易で触媒層の温度がほぼ均一に保持できること、触媒を反応器から運転中に抜き出すことが可能である、触媒を追加することができる等の理由から、流動床反応が好ましい。
 以下に実施例を挙げて本実施形態をより具体的に説明するが、本実施形態はこれらの実施例により何ら限定されるものではない。
[実施例1]
(触媒製造用組成物の調製)
 水137.49kgを混合槽内に加え、その後、水を50℃まで加熱した。次に、攪拌しながら、シュウ酸二水和物〔H224・2H2O〕1.14kgを投入し、溶解させた。さらに過酸化水素水(35.5質量%水溶液)5.74kgを投入し、続いてニオブ酸(Nb25換算で75.0質量%)5.3kgを添加した。この液を50℃で6時間加熱撹拌することによって、均一な混合液を得た。これによって得られた水溶性混合液を実施例1に係る触媒製造用組成物とした。
(触媒製造用組成物におけるNb濃度、シュウ酸濃度、及び過酸化水素濃度)
 まず、るつぼに、触媒製造用組成物10gを精秤し、120℃で2時間乾燥した後、600℃で2時間熱処理して得られた固体のNb25の重さから触媒製造用組成物のNb濃度を下記の様に算出した。
[焼成後に得られる固体の重量(単位:g) ]÷(265.8÷2)÷[精秤した触媒製造用組成物の重量(単位:kg)]=[触媒製造用組成物のNb濃度(単位:mol/kg) ]
なお、265.8はNbの分子量(単位:g/mol)である。
 また、300mLのガラスビーカーに触媒製造用組成物3gを精秤し、約80℃の熱水20mLを加え、続いて1:1硫酸10mLを加えた。このようにして得られた混合液をウォーターバス中で液温70℃に保ちながら、攪拌下、1/4規定KMnO4を用いて滴定した。KMnO4によるかすかな淡桃色が約30秒以上続く点を終点とした。シュウ酸及び過酸化水素の合計濃度は、滴定量から次式に従って算出した。
 2KMnO4+3H2SO4+5H224→K2SO4+2MnSO4+10CO2+8H2
 2KMnO4+3H2SO4+5H22→K2SO4+2MnSO4+5O2+8H2
 なお、上記測定において、触媒製造用組成物に沈殿が見られた場合、デカンテーションにより沈殿物と上澄みに分離し、当該上澄み部分の濃度を測定することとした。
 シュウ酸濃度は、イオンクロマトグラフィーによって定量した。
 イオンクロマトグラフィーは、東ソー社のイオンクロマトグラフィーシステムIC-2010を使用し、サプレッサー方式でカラム TSKgel SuperIC‐AZ(4.6 mmI.D.×15 cm)を用いて分析を行った。500倍に希釈した試料を30μL注入し、絶対検量線法で濃度を分析した。
 過酸化水素の濃度は、滴定によって求めたシュウ酸と過酸化水素の合計濃度と、イオンクロマトグラフィーによって求めたシュウ酸濃度の差分から算出した。
 上記の要領にて、得られた触媒製造用組成物のNb濃度、過酸化水素濃度、及びシュウ酸濃度を測定し、モル比(シュウ酸/Nb;表中で「Ox/Nb」と表記、過酸化水素/Nb;表中で「H/Nb」と表記)を算出した。
 後述するように調製された実施例2~5及び比較例1~3に係る触媒製造用組成物についても、実施例1と同様に各成分の濃度を測定した。
[実施例2]
 水の量を57.95kg、過酸化水素水の添加量を86.03kg、シュウ酸二水和物〔H224・2H2O〕の添加量を0.38kgとすること以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例2に係る触媒製造用組成物とした。
[実施例3]
 水の量を15.32kg、過酸化水素水の添加量を129.05kgとし、シュウ酸二水和物を添加しないこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例3に係る触媒製造用組成物とした。
[実施例4]
 ニオブ酸の添加量を12.20kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を13.09kg、水の量を98.00kg、過酸化水素水の量を26.38kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例4に係る触媒製造用組成物とした。
[実施例5]
 ニオブ酸の添加量を12.20kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を13.09kg、水の量を111.19kgとし、過酸化水素水の添加量を13.19kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例5に係る触媒製造用組成物とした。
[実施例6]
 ニオブ酸の添加量を12.20kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を0.87kg、水の量を4.68kgとし、過酸化水素水の添加量を131.92kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例6に係る触媒製造用組成物とした。
[実施例7]
 ニオブ酸の添加量を17.24kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を12.33kg、水の量を82.82kgとし、過酸化水素水の添加量を37.28kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例7に係る触媒製造用組成物とした。
[実施例8]
 ニオブ酸の添加量を18.61kg、水の量を10.68kg、過酸化水素水の添加量を120.71kgとし、シュウ酸二水和物を添加しないこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例8に係る触媒製造用組成物とした。
[実施例9]
 ニオブ酸の添加量を18.61kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を6.65kg、水の量を24.15kgとし、過酸化水素水の添加量を100.59kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例9に係る触媒製造用組成物とした。
[実施例10]
 ニオブ酸の添加量を18.61kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を19.96kg、水の量を101.38kgとし、過酸化水素水の添加量を10.06kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例10に係る触媒製造用組成物とした。
[実施例11]
 ニオブ酸の添加量を18.61kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を21.29kg、水の量を9.51kgとし、過酸化水素水の添加量を100.59kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例11に係る触媒製造用組成物とした。
[実施例12]
 ニオブ酸の添加量を18.61kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を22.62kg、水の量を98.72kgとし、過酸化水素水の添加量を10.06kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例12に係る触媒製造用組成物とした。
[実施例13]
 ニオブ酸の添加量を18.61kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を23.95kg、水の量を97.39kgとし、過酸化水素水の添加量を10.06kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例13に係る触媒製造用組成物とした。
[実施例14]
 ニオブ酸の添加量を18.57kgとし、シュウ酸二水和物〔H224・2H2O〕の添加量を26.55kg、水の量を99.56kgとし、過酸化水素水の添加量を5.02kgとしたこと以外は、実施例1と同様にして、均一な混合液を得た。これによって得られた水溶性混合液を実施例14に係る触媒製造用組成物とした。
[比較例1]
(触媒製造用組成物の調製)
 水83.12kgを混合槽内に加え、その後、水を40℃まで加熱した。次に、攪拌しながら、シュウ酸二水和物〔H224・2H2O〕52.27kgを投入し、続いてNb25として75.0質量%を含有するニオブ酸14.62kgを投入し、両者を水中で混合した。この液を95℃で4時間加熱撹拌することによって得られた水性混合液を攪拌しながら自然放冷することによって40℃まで冷却した。その後、-10℃/hrで2℃まで冷却し、1時間放置した。次いで、濾過機に析出した固体と混合液の混合体を注ぎ込み、析出した固体を濾過することにより均一な混合液を得た。これによって得られた水溶性混合液を比較例1に係る触媒製造用組成物とした。
[比較例2]
(触媒製造用組成物の調製)
 水75.14kgを混合槽内に加え、その後、水を50℃まで加熱した。次に、攪拌しながら、シュウ酸二水和物〔H224・2H2O〕57.4kgを投入し、続いてNb25として76.3質量%を含有するニオブ酸17.49kgを投入し、両者を水中で混合した。この液を90℃で6時間加熱撹拌することによって得られた水性混合液を攪拌しながら自然放冷することによって40℃まで冷却した。その後、-10℃/hrで2℃まで冷却し、1時間放置した。次いで、濾過機に析出した固体と混合液の混合体を注ぎ込み、析出した固体を濾過することにより均一な混合液を得た。これによって得られた水溶性混合液を比較例2に係る触媒製造用組成物とした。
[比較例3]
(触媒製造用組成物の調製)
 水76.38kgを混合槽内に加え、その後、水を50℃まで加熱した。次に、攪拌しながら、シュウ酸二水和物〔H224・2H2O〕54.74kgを投入し、続いてNb25として76.0質量%を含有するニオブ酸18.89kgを投入し、両者を水中で混合した。この液を95℃で3時間加熱撹拌することによって得られた水性混合液を攪拌しながら自然放冷することによって40℃まで冷却した。その後、-10℃/hrで2℃まで冷却し、1時間放置した。次いで、濾過機に析出した固体と混合液の混合体を注ぎ込み、析出した固体を濾過することにより均一な混合液を得た。これによって得られた水溶性混合液を比較例3に係る触媒製造用組成物とした。
[比較例4]
(触媒製造用組成物の調製)
 水4.08kgおよび過酸化水素水(35.5質量%水溶液)79.04gを混合槽内に加え、その後、水を40℃まで加熱した。次に、攪拌しながら、シュウ酸二水和物〔H224・2H2O〕52.3kgを投入し、続いてNb25として75.0質量%を含有するニオブ酸14.62kgを投入し、両者を水中で混合した。この液を95℃で4時間加熱撹拌することによって得られた水性混合液を攪拌しながら自然放冷することによって40℃まで冷却した。その後、-10℃/hrで2℃まで冷却し、1時間放置した。次いで、濾過機に析出した固体と混合液の混合体を注ぎ込み、析出した固体を濾過することにより均一な混合液を得た。これによって得られた水溶性混合液を比較例4に係る触媒製造用組成物とした。
(触媒の製造)
[触媒製造例1]
 実施例1に係る触媒製造用組成物を用いて、次のように複合金属酸化物の組成がMo0.24Nb0.15Sb0.270.03Ce0.005On(nは酸素以外の構成元素の原子価によって決定される)となるように触媒を製造した。
 (前駆体スラリーの調製)
 水24.27kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を4.03kg、メタバナジン酸アンモニウム〔NHVO〕を0.64kg、三酸化二アンチモン〔Sb〕を0.89kg、及び硝酸セリウムを0.05kg加え、攪拌しながら95℃で1時間加熱して水性混合液(B1)を調製した。
 得られた水性混合液(B1)を70℃に冷却した後に、その水性混合液(B1)に、34.0質量%のSiOを含有するシリカゾル7.04kgを添加し、さらに、35.5質量%のHを含有する過酸化水素水1.78kgを添加し、55℃で30分間撹拌を続けた。さらにその液に、実施例1で得た触媒製造用組成物を17.01kg(酸化ニオブ(Nb)に換算した重量として0.45kgの酸化ニオブを含有する)と、粉体シリカ(日本アエロジル社製、商品名「アエロジル200」)2.4kgを水21.6kgに分散させた分散液と、酸化タングステンとして50.2重量%含むメタタングステン酸アンモニウム液0.319kgとを順次添加した後に、50℃で2.5時間攪拌し、前駆体スラリー(D1)を得た。
 (乾燥粒子(E1)の調製)
 次に、上述のようにして得られた前駆体スラリー(D1)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状で平均粒子径51μmの乾燥粒子(E1)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
 (乾燥粒子(E1)の焼成)
 上述のようにして得られた乾燥粒子(E1)500gを内径3インチ(76mm)、長さ300mm、肉厚3mmのSUS製焼成管に充填し、5.0NL/minの窒素ガス流通下、焼成管をその長さ方向を軸として回転させながら前段焼成及び本焼成を行った。前段焼成では、室温から昇温速度0.75℃/分で340℃まで昇温し、340℃で1時間焼成した。続けて、本焼成では、340℃から昇温速度3℃/分で670℃まで昇温し、670℃で2時間保持した後、350℃まで降温速度1℃/分で降温することにより焼成し焼成体(F1)を得た。
 (突起体の除去)
 下記の方法で触媒粒子表面に存在する突起体を除去した。底部に直径1/64インチの3つの穴のある穴あき円盤を備え、上部にペーパーフィルターを設けた垂直チューブ(内径41.6mm、長さ70cm)に焼成体(F1)を50g投入した。この時の気流が流れる方向における気流長さは52mm、気流の平均線速は310m/sであった。24時間後に得られた複合酸化物触媒(G1)中には突起体が存在しなかった。
[触媒製造例2~3]
 実施例1に係る触媒製造用組成物17.01kgに代えて実施例2~3に係る触媒製造用組成物17.01kgを用いたことを除き、触媒製造例1と同様にして、触媒製造例2~3に係る触媒をそれぞれ製造した。
[触媒製造例4~6]
 ニオブ酸化物の重量として0.45kgに相当する実施例1に係る触媒製造用組成物17.01kgに代えて、ニオブ酸化物の重量として0.45kgに相当する実施例4~6に係る触媒製造用組成物を7.40kg用いたことを除き、触媒製造例1と同様にして、触媒製造例4~6に係る触媒をそれぞれ製造した。
[触媒製造例7]
 ニオブ酸化物の重量として0.45kgに相当する実施例1に係る触媒製造用組成物17.01kgに代えて、ニオブ酸化物の重量として0.45kgに相当する実施例7に係る触媒製造用組成物を5.24kg用いたことを除き、触媒製造例1と同様にして、触媒製造例7に係る触媒をそれぞれ製造した。
[触媒製造例8~14]
 ニオブ酸化物の重量として0.45kgに相当する実施例1に係る触媒製造用組成物17.01kgに代えて、ニオブ酸化物の重量として0.45kgに相当する実施例8~14に係る触媒製造用組成物を4.86kg用いたことを除き、触媒製造例1と同様にして、触媒製造例8~14に係る触媒をそれぞれ製造した。
[比較触媒製造例1]
 ニオブ酸化物の重量として0.45kgに相当する実施例1に係る触媒製造用組成物17.01kgに代えて、ニオブ酸化物の重量として0.45kgに相当する比較例1に係る触媒製造用組成物を4.54kg用いたことを除き、触媒製造例1と同様にして、比較触媒製造例1に係る触媒を製造した。
[比較触媒製造例2]
 ニオブ酸化物の重量として0.45kgに相当する実施例1に係る触媒製造用組成物17.01kgに代えて、ニオブ酸化物の重量として0.45kgに相当する比較例2に係る触媒製造用組成物を3.78kg用いたことを除き、触媒製造例1と同様にして、比較触媒製造例2に係る触媒を製造した。
[比較触媒製造例3]
 ニオブ酸化物の重量として0.45kgに相当する実施例1に係る触媒製造用組成物17.01kgに代えて、ニオブ酸化物の重量として0.45kgに相当する比較例3に係る触媒製造用組成物を4.73kg用いたことを除き、触媒製造例1と同様にして、比較触媒製造例3に係る触媒を製造した。
[比較触媒製造例4]
 ニオブ酸化物の重量として0.45kgに相当する実施例1に係る触媒製造用組成物17.01kgに代えて、ニオブ酸化物の重量として0.45kgに相当する比較例4に係る触媒製造用組成物を4.48kg用いたことを除き、触媒製造例1と同様にして、比較触媒製造例4に係る触媒を製造した。
[触媒製造例15]
 触媒製造例10において、前駆体スラリーの調製を次のように変更したこと以外は、触媒製造例10と同様にして、複合金属酸化物の組成がMo10.17Nb0.14Sb0.270.03Ce0.005n(nは酸素以外の構成元素の原子価によって決定される)となるように、触媒製造例15に係る触媒を製造した。
 (前駆体スラリーの調製)
 水22.13gにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を4.17kg、メタバナジン酸アンモニウム〔NHVO〕を0.47kg、三酸化二アンチモン〔Sb〕を0.93kg、及び硝酸セリウムを0.05kg加え、攪拌しながら95℃で1時間加熱して水性混合液(B1)を調製した。
 得られた水性混合液(B1)を70℃に冷却した後に、その水性混合液(B1)に、34.0質量%のSiOを含有するシリカゾル7.04kgを添加し、さらに、35.5質量%のHを含有する過酸化水素水1.78kgを添加し、55℃で30分間撹拌を続けた。さらにその液に、実施例10で得た触媒製造用組成物を4.70kg(酸化ニオブ(Nb)に換算した重量として0.44kgの酸化ニオブを含有する)と、粉体シリカ(日本アエロジル社製、商品名「アエロジル200」)2.4kgを水21.6kgに分散させた分散液と、酸化タングステンとして50.2重量%含むメタタングステン酸アンモニウム液0.325kgとを順次添加した後に、50℃で2.5時間攪拌し、前駆体スラリー(D1)を得た。
[比較触媒製造例5]
 実施例10に係る触媒製造用組成物に代えて、比較例2で得た触媒製造用組成物を4.90kg(酸化ニオブ(Nb)に換算した重量として0.44kgの酸化ニオブを含有する)用いたことを除き、触媒製造例15と同様にして、比較触媒製造例5に係る触媒を製造した。
[触媒製造例16]
 触媒製造例10において、前駆体スラリーの調製を次のように変更したこと以外は、触媒製造例10と同様にして、複合金属酸化物の組成がMo10.24Nb0.19Sb0.180.005Ce0.005n(nは酸素以外の構成元素の原子価によって決定される)となるように、触媒製造例16に係る触媒を製造した。
 (前駆体スラリーの調製)
 水20.91gにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を4.28kg、メタバナジン酸アンモニウム〔NHVO〕を0.68kg、三酸化二アンチモン〔Sb〕を0.63kg、及び硝酸セリウムを0.05kg加え、攪拌しながら95℃で1時間加熱して水性混合液(B1)を調製した。
 得られた水性混合液(B1)を70℃に冷却した後に、その水性混合液(B1)に、34.0質量%のSiOを含有するシリカゾル7.04kgを添加し、さらに、35.5質量%のHを含有する過酸化水素水1.78kgを添加し、55℃で30分間撹拌を続けた。さらにその液に、実施例10で得た触媒製造用組成物を6.54kg(酸化ニオブ(Nb)に換算した重量として0.61kgの酸化ニオブを含有する)と、粉体シリカ(日本アエロジル社製、商品名「アエロジル200」)2.4kgを水21.6kgに分散させた分散液と、酸化タングステンとして50.2重量%含むメタタングステン酸アンモニウム液0.056kgとを順次添加した後に、50℃で2.5時間攪拌し、前駆体スラリー(D1)を得た。
[比較触媒製造例6]
 実施例10に係る触媒製造用組成物に代えて、比較例2で得た触媒製造用組成物を6.83kg(酸化ニオブ(Nb)に換算した重量として0.61kgの酸化ニオブを含有する)用いたことを除き、触媒製造例16と同様にして、比較触媒製造例6に係る触媒を製造した。
[触媒製造例17]
 触媒製造例10において、前駆体スラリーの調製を次のように変更したこと以外は、触媒製造例10と同様にして、複合金属酸化物の組成がMo10.25Nb0.1Sb0.270.05Ce0.005n(nは酸素以外の構成元素の原子価によって決定される)となるように、触媒製造例17に係る触媒を製造した。
 (前駆体スラリーの調製)
 水23.99gにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を4.05kg、メタバナジン酸アンモニウム〔NHVO〕を0.67kg、三酸化二アンチモン〔Sb〕を0.90kg、及び硝酸セリウムを0.05kg加え、攪拌しながら95℃で1時間加熱して水性混合液(B1)を調製した。
 得られた水性混合液(B1)を70℃に冷却した後に、その水性混合液(B1)に、34.0質量%のSiOを含有するシリカゾル7.04kgを添加し、さらに、35.5質量%のHを含有する過酸化水素水1.78kgを添加し、55℃で30分間撹拌を続けた。さらにその液に、実施例10で得た触媒製造用組成物を3.26kg(酸化ニオブ(Nb)に換算した重量として0.30kgの酸化ニオブを含有する)と、粉体シリカ(日本アエロジル社製、商品名「アエロジル200」)2.4kgを水21.6kgに分散させた分散液と、酸化タングステンとして50.2重量%含むメタタングステン酸アンモニウム液0.526kgとを順次添加した後に、50℃で2.5時間攪拌し、前駆体スラリー(D1)を得た。
[比較触媒製造例7]
 実施例10に係る触媒製造用組成物に代えて、比較例2で得た触媒製造用組成物を3.40kg(酸化ニオブ(Nb)に換算した重量として0.30kgの酸化ニオブを含有する)用いたことを除き、触媒製造例17と同様にして、比較触媒製造例7に係る触媒を製造した。
[触媒製造例18]
 触媒製造例10において、前駆体スラリーの調製を次のように変更したこと以外は、触媒製造例10と同様にして、複合金属酸化物の組成がMo10.25Nb0.14Sb0.260.05Ti0.05Mn0.03Ce0.01n(nは酸素以外の構成元素の原子価によって決定される)となるように、触媒製造例18に係る触媒を製造した。
 (前駆体スラリーの調製)
 水25.45gにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を3.97kg、メタバナジン酸アンモニウム〔NHVO〕を0.65kg、三酸化二アンチモン〔Sb〕を0.85kg、シュウ酸チタニルアンモニウム1水和物を0.328kg、硝酸マンガン6水和物を0.192kg及び硝酸セリウムを0.10kg加え、攪拌しながら95℃で1時間加熱して水性混合液(B1)を調製した。
 得られた水性混合液(B1)を70℃に冷却した後に、その水性混合液(B1)に、34.0質量%のSiOを含有するシリカゾル7.04kgを添加し、さらに、35.5質量%のHを含有する過酸化水素水1.78kgを添加し、55℃で30分間撹拌を続けた。さらにその液に、実施例10で得た触媒製造用組成物を4.47kg(酸化ニオブ(Nb)に換算した重量として0.42kgの酸化ニオブを含有する)と、粉体シリカ(日本アエロジル社製、商品名「アエロジル200」)2.4kgを水21.6kgに分散させた分散液と、酸化タングステンとして50.2重量%含むメタタングステン酸アンモニウム液0.516kgとを順次添加した後に、50℃で2.5時間攪拌し、前駆体スラリー(D1)を得た。
[比較触媒製造例8]
 実施例10に係る触媒製造用組成物に代えて、比較例2で得た触媒製造用組成物を4.67kg(酸化ニオブ(Nb)に換算した重量として0.42kgの酸化ニオブを含有する)用いたことを除き、触媒製造例18と同様にして、比較触媒製造例7に係る触媒を製造した。
(アクリロニトリル収率の測定)
 各触媒製造例及び比較触媒製造例で得られた触媒を用いて、次のようにアクリロニトリルを製造した。結果を表-1乃至表-5に示す。
 内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度を440℃、反応圧力を常圧に設定して、プロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<ラマン分光法による解析>
 上記各例により得られた触媒製造用組成物を用いてラマン分光法による測定を行った。ラマン分光装置は、RENISHAW in Via Qontorを用い、励起レーザ波長532nm、レーザ出力27.1mW、露光時間5sec、積算回数10回で測定を行った。測定により得られた実施例4及び比較例2のラマンスペクトルを図1に示す。
 500cm-1以上650cm-1以下の範囲に観察される最も大きなピークの強度X、890cm-1以上1000cm-1以下の範囲に観察される最も大きなピークの強度Yから、Y/Xを算出した。また、685cm-1以上785cm-1以下の範囲におけるピークの有無を確認した。なお、上記励起レーザ波長において試料が蛍光を発する場合は、正確な測定が不可能であるため、異なる励起レーザ波長(例えば735nmや405nm)の中から、蛍光を発しない波長を選択して用いることとする。また、ピーク強度Y/Xの比とは該当ピークのラマン信号強度の比、すなわちピークの高さの比とする。ただし、該当範囲にバックグラウンドとして他の化合物に由来する信号が重なる場合、ピーク分離を行い、該当ピークを分離したのち、該当ピークの高さからバックグラウンド強度を差し引いたものを該当ピーク強度とする。

Claims (12)

  1.  気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物であって、
     前記触媒製造用組成物は、ニオブ化合物及び過酸化水素を含み、且つ任意に有機酸を含む水溶液であり、
     前記触媒製造用組成物中のNb濃度に対する前記有機酸濃度のモル比(有機酸/Nb)が0.00以上2.00以下であり、
     前記触媒製造用組成物中のNb濃度に対する前記過酸化水素のモル比(過酸化水素/Nb)が0.01以上50以下である、
     触媒製造用組成物。
  2.  前記有機酸が、ジカルボン酸、ジカルボン酸の無水物、ジカルボン酸の水和物、及びオキシカルボン酸からなる群より選ばれる1種以上のカルボン酸化合物である、
     請求項1に記載の触媒製造用組成物。
  3.  前記触媒製造用組成物のラマン分光法によるラマンスペクトルにおいて、
     500cm-1以上650cm-1以下の範囲に観察される最も大きなピークの強度Xの比に対する、890cm-1以上1000cm-1以下の範囲に観察される最も大きなピークの強度Yの比(Y/X)が、0以上1.0以下である、
     請求項1又は2のいずれか一項に記載の触媒製造用組成物。
  4.  前記触媒製造用組成物のラマン分光法によるラマンスペクトルにおいて、685cm-1以上785cm-1以下の範囲にピークを有する、
     請求項1~3のいずれか一項に記載の触媒製造用組成物。
  5.  気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物であって、
     前記触媒製造用組成物が、ニオブ化合物及び過酸化水素を含み、任意に有機酸を含む水溶液であり、
     前記触媒製造用組成物のラマン分光法によるラマンスペクトルにおいて、
     500cm-1以上650cm-1以下の範囲に観察される最も大きなピークの強度Xの比に対する、890cm-1以上1000cm-1以下の範囲に観察される最も大きなピークの強度Yの比(Y/X)が、0以上1.0以下である、
     触媒製造用組成物。
  6.  前記触媒製造用組成物中のNb濃度に対する前記有機酸濃度のモル比(有機酸/Nb)が0.00以上2.00以下であり、
     前記触媒製造用組成物中のNb濃度に対する前記過酸化水素のモル比(過酸化水素/Nb)が0.01以上50以下である、
     請求項5に記載の触媒製造用組成物。
  7.  不飽和酸又は不飽和ニトリルの製造に用いられる気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造方法であって、
     Mo原料、V原料及びSb原料を含む水性混合液を調製する工程と、
     請求項1~6のいずれかに一項に記載の触媒製造用組成物と前記水性混合液とを混合し前駆体スラリーを調製する工程と、
     前記前駆体スラリーを用いて乾燥し乾燥粒子を得る乾燥工程と、
     前記乾燥粒子を焼成し焼成粒子を得る焼成工程と、を有する、
     酸化物触媒の製造方法。
  8.  気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造に用いられる触媒製造用組成物の製造方法であって、
     固体ニオブ原料及び過酸化水素水を混合し固体ニオブ原料分散液を調製する混合工程と、
     前記固体ニオブ原料分散液中の前記固体ニオブ原料を溶解させニオブ化合物含有水溶液を調製する溶解工程とを有し、
     前記ニオブ化合物含有水溶液中のニオブ化合物のNb濃度に対する過酸化水素のモル比(過酸化水素/Nb)が、0.01以上50以下であり、
     前記溶解工程の温度が40℃以上70℃以下である、
     触媒製造用組成物の製造方法。
  9.  前記混合工程おいて、有機酸をさらに混合し、
     前記ニオブ化合物含有水溶液中の前記ニオブ化合物のNb濃度に対する前記有機酸濃度のモル比(有機酸/Nb)が0.00以上2.00以下である
     請求項8に記載の触媒製造用組成物の製造方法。
  10.  前記固体ニオブ原料が、ニオブ酸を含む、
     請求項8又は9に記載の触媒製造用組成物の製造方法。
  11.  前記有機酸が、ジカルボン酸、ジカルボン酸の無水物、ジカルボン酸の水和物、及びオキシカルボン酸からなる群より選ばれる1種以上のカルボン酸化合物を含む、
     請求項8~10のいずれか一項に記載の触媒製造用組成物の製造方法。
  12.  請求項8~11のいずれか一項に記載の触媒製造用組成物の製造方法により前記触媒製造用組成物を調製する工程と、
     Mo原料、V原料及びSb原料を含む水性混合液を調製する工程と、
     前記触媒製造用組成物と前記水性混合液とを混合し前駆体スラリーを調製する工程と、
     前記前駆体スラリーを用いて乾燥し乾燥粒子を得る乾燥工程と、
     前記乾燥粒子を焼成し焼成粒子を得る焼成工程と、を有する、
     不飽和酸又は不飽和ニトリルの製造に用いられる気相接触酸化反応用触媒又は気相接触アンモ酸化反応用触媒の製造方法。
PCT/JP2021/000287 2020-01-31 2021-01-07 触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法 WO2021153174A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/796,571 US20230057028A1 (en) 2020-01-31 2021-01-07 Composition for catalyst production, method for producing composition for catalyst production, and production method for producing oxide catalyst
KR1020227026414A KR20220116326A (ko) 2020-01-31 2021-01-07 촉매 제조용 조성물, 촉매 제조용 조성물의 제조 방법, 및 산화물 촉매를 제조하는 제조 방법
JP2021574575A JP7191254B2 (ja) 2020-01-31 2021-01-07 触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法
EP21748195.1A EP4098362A4 (en) 2020-01-31 2021-01-07 COMPOSITION FOR CATALYST MAKING, METHOD FOR MAKING A CATALYST MAKING COMPOSITION, AND METHOD FOR MAKING AN OXIDE CATALYST
CN202180012027.0A CN115038523B (zh) 2020-01-31 2021-01-07 催化剂制造用组合物、催化剂制造用组合物的制造方法和制造氧化物催化剂的制造方法
BR112022013676A BR112022013676A2 (pt) 2020-01-31 2021-01-07 Composição para produção de catalisador, método para produzir composição para produção de catalisador, e método de produção para produzir catalisador de óxido

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-014597 2020-01-31
JP2020014597 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153174A1 true WO2021153174A1 (ja) 2021-08-05

Family

ID=77078360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000287 WO2021153174A1 (ja) 2020-01-31 2021-01-07 触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法

Country Status (8)

Country Link
US (1) US20230057028A1 (ja)
EP (1) EP4098362A4 (ja)
JP (1) JP7191254B2 (ja)
KR (1) KR20220116326A (ja)
CN (1) CN115038523B (ja)
BR (1) BR112022013676A2 (ja)
TW (1) TWI783358B (ja)
WO (1) WO2021153174A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103326A1 (en) * 2006-10-31 2008-05-01 Bruce Irwin Rosen Lithium containing mixed metal oxide catalysts for ammoxidation of propane and isobutane
JP2011529777A (ja) * 2008-08-01 2011-12-15 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 低級アルカン系炭化水素のアンモ酸化及び/又は酸化のための混合金属酸化物触媒の製造方法
WO2012105543A1 (ja) 2011-01-31 2012-08-09 旭化成ケミカルズ株式会社 混合液製造装置及び混合液調製方法
JP2017051934A (ja) * 2015-09-11 2017-03-16 旭化成株式会社 酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407528B1 (ko) * 2000-09-18 2003-11-28 아사히 가세이 가부시키가이샤 산화 또는 가암모니아산화용 산화물 촉매의 제조 방법
PT1632287E (pt) * 2003-06-09 2011-05-12 Asahi Kasei Chemicals Corp Catalisador para oxida??o ou amoxida??o
JP5263855B2 (ja) * 2004-08-17 2013-08-14 旭化成ケミカルズ株式会社 複合酸化物からなる触媒
KR100999983B1 (ko) * 2006-03-20 2010-12-13 아사히 가세이 케미칼즈 가부시키가이샤 산화 또는 암모산화용 촉매 및 그 제조 방법
JP5596979B2 (ja) * 2007-02-16 2014-10-01 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 混合金属酸化物触媒を用いたプロパン及びイソブタンのアンモ酸化方法
US8697596B2 (en) * 2007-04-03 2014-04-15 Ineos Usa Llc Mixed metal oxide catalysts and catalytic conversions of lower alkane hydrocarbons
EP2226121B1 (en) * 2007-12-26 2015-08-26 Asahi Kasei Chemicals Corporation Process for producing oxide catalyst
CN102892502B (zh) * 2010-05-13 2015-08-05 旭化成化学株式会社 混合物催化剂
JP2012105543A (ja) 2012-01-23 2012-05-31 Oriental Motor Co Ltd 電動機の固定子
WO2014050615A1 (ja) * 2012-09-27 2014-04-03 旭化成ケミカルズ株式会社 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
US10179763B2 (en) * 2014-03-06 2019-01-15 Asahi Kasei Kabushiki Kaisha Oxide catalyst and method for producing same, and method for producing unsaturated nitrile
KR101837874B1 (ko) * 2014-03-31 2018-03-12 아사히 가세이 가부시키가이샤 산화물 촉매의 제조 방법 및 불포화 니트릴의 제조 방법
WO2016159085A1 (ja) * 2015-03-31 2016-10-06 旭化成株式会社 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
CN109689210B (zh) * 2016-09-13 2022-04-15 旭化成株式会社 氧化物催化剂的制造方法及不饱和腈的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103326A1 (en) * 2006-10-31 2008-05-01 Bruce Irwin Rosen Lithium containing mixed metal oxide catalysts for ammoxidation of propane and isobutane
JP2011529777A (ja) * 2008-08-01 2011-12-15 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 低級アルカン系炭化水素のアンモ酸化及び/又は酸化のための混合金属酸化物触媒の製造方法
WO2012105543A1 (ja) 2011-01-31 2012-08-09 旭化成ケミカルズ株式会社 混合液製造装置及び混合液調製方法
JP2017051934A (ja) * 2015-09-11 2017-03-16 旭化成株式会社 酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ACS CATAL., vol. 8, 2018, pages 4645
INORG. CHEM., vol. 43, no. 19, 2004, pages 5999
J. RAMAN. SPEC., vol. 22, 1991, pages 83 - 89
See also references of EP4098362A4

Also Published As

Publication number Publication date
EP4098362A1 (en) 2022-12-07
TWI783358B (zh) 2022-11-11
JPWO2021153174A1 (ja) 2021-08-05
BR112022013676A2 (pt) 2022-09-13
KR20220116326A (ko) 2022-08-22
TW202133931A (zh) 2021-09-16
US20230057028A1 (en) 2023-02-23
JP7191254B2 (ja) 2022-12-16
EP4098362A4 (en) 2023-07-19
CN115038523B (zh) 2024-07-09
CN115038523A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
KR101291757B1 (ko) 나노결정 비스무트-몰리브덴 혼합 산화물의 제조 방법
JP6159847B2 (ja) 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
US9827538B2 (en) Apparatus for producing mixed solution and method for preparing mixed solution
US8785675B2 (en) Mixed catalyst
JP5694727B2 (ja) 不飽和酸又は不飽和ニトリルの製造方法
KR101524392B1 (ko) 불포화 니트릴의 제조 방법
CN109689210B (zh) 氧化物催化剂的制造方法及不饱和腈的制造方法
JP5219249B2 (ja) 複合酸化物の製造方法、及び不飽和酸又は不飽和ニトリルの製造方法
WO2021153174A1 (ja) 触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法
JP4666334B2 (ja) 酸化又はアンモ酸化用酸化物触媒の製造方法
WO2018025774A1 (ja) 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
JP6584882B2 (ja) 酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法
JP5785369B2 (ja) 混合物触媒
JP2015171699A (ja) 酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法
JP6827152B1 (ja) 酸化物触媒及び不飽和ニトリルの製造方法
JP5785370B2 (ja) 混合物触媒
WO2022145394A1 (ja) 気相接触アンモ酸化反応用触媒及び気相接触アンモ酸化反応用触媒の製造方法
JP2020157251A (ja) アクリロニトリル合成触媒、アクリロニトリル合成触媒の製造方法及びアクリロニトリルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574575

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022013676

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227026414

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021748195

Country of ref document: EP

Effective date: 20220831

ENP Entry into the national phase

Ref document number: 112022013676

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220708

WWE Wipo information: entry into national phase

Ref document number: 522440019

Country of ref document: SA