WO2021151260A1 - 窗式空调器 - Google Patents

窗式空调器 Download PDF

Info

Publication number
WO2021151260A1
WO2021151260A1 PCT/CN2020/078637 CN2020078637W WO2021151260A1 WO 2021151260 A1 WO2021151260 A1 WO 2021151260A1 CN 2020078637 W CN2020078637 W CN 2020078637W WO 2021151260 A1 WO2021151260 A1 WO 2021151260A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresh air
air
heat exchanger
indoor
section
Prior art date
Application number
PCT/CN2020/078637
Other languages
English (en)
French (fr)
Inventor
周俊华
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010079434.0A external-priority patent/CN113203131A/zh
Priority claimed from CN202020159431.3U external-priority patent/CN211650517U/zh
Priority claimed from CN202020150174.7U external-priority patent/CN211650512U/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021151260A1 publication Critical patent/WO2021151260A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • F24F1/027Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle mounted in wall openings, e.g. in windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/03Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements
    • F24F1/031Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements penetrating a wall or window

Definitions

  • This application relates to the field of air conditioning technology, and in particular to a window air conditioner.
  • PTAC Packaged Terminal Air Conditioner
  • window machine as the refrigeration system most commonly used in high-end hotels in the US market, also has a strong demand.
  • a fresh air duct connecting indoor and outdoor is provided in the window air conditioner to meet people's ventilation requirements when using the window air conditioner.
  • the size of the window air conditioner itself is small, and the indoor and outdoor sides of the air conditioner need to be equipped with corresponding heat exchange ducts and air inlets and outlets, so that the front and rear sides of the air conditioner can be opened for fresh air inlets and fresh air outlets.
  • the area of the fresh air inlet and the fresh air outlet of the air duct is usually small.
  • the main purpose of this application is to propose a window air conditioner, which aims to solve one or more technical problems mentioned above.
  • the window air conditioner proposed in this application includes:
  • a fresh air device installed on the chassis and used to deliver fresh air indoors.
  • the fresh air device includes a fresh air casing extending from the outside to the inside.
  • the fresh air casing is provided with a fresh air inlet communicating with the outside and a fresh air outlet communicating with the room.
  • a fresh air duct connected to the fresh air inlet and the fresh air outlet, the fresh air shell has an air inlet section adjacent to the fresh air inlet, an air outlet section adjacent to the fresh air outlet, and is arranged in the air inlet section and
  • the maximum ventilation area of the transition section is at least the maximum ventilation area of the air inlet section and the air outlet section, so that the airflow has the lowest flow velocity in the transition section and Do not exceed the flow velocity at both ends of the transition section.
  • the ratio between the maximum ventilation area S of the transition section and the maximum ventilation area S1 of the air inlet section is at least 1.4 and does not exceed 1.6; and/or,
  • the ratio between the maximum ventilation area S of the transition section and the maximum ventilation area S2 of the air outlet section is at least 3.5 and not more than 4.
  • the transition section includes a connected flaring area and a pressurizing area, the flaring area is butted with the air inlet section, the pressurizing area is butted with the air outlet, and the flaring area From the air inlet section to the pressurization zone, the pressurization zone is gradually expanded from the flaring zone to the air outlet section; or,
  • the ratio between the extension length D2 of the transition section in the air supply direction of the fresh air duct and the extension length D1 of the air inlet section in the air supply direction is at least 1.4 and not more than 1.6; or,
  • the fresh air device further includes a fresh air fan, and the fresh air fan is arranged at the fresh air inlet.
  • the chassis has a first edge and a second edge extending in a front-to-rear direction, the cross-section of the fresh air duct extends along the first edge to the second edge for a cross-sectional width, and
  • the section height of the air inlet section is greater than that of the air outlet section, the section width of the air outlet section is greater than that of the air inlet section, and the section height of the transition section is at least partially from the air inlet section to the air outlet section. It is gradually reduced, and the cross-sectional width of the transition section is at least partially gradually increased from the air inlet section to the air outlet section.
  • the section height of the air inlet section is H1
  • the section height of the air outlet section is H2
  • the ratio between H1 and H2 is at least 4.1 and not more than 5.1;
  • the cross-sectional width of the air inlet section is L1
  • the cross-sectional width of the air outlet section is L2
  • the ratio between L1 and L2 is at least 0.48 and not more than 0.58.
  • the top wall of the transition section is at least partially arranged in an outwardly convex arc surface.
  • the bending radius R of the inner top wall of the transition section is at least 160 mm and not more than 200 mm.
  • the multiple fresh air casings are joined to each other to form the fresh air duct.
  • the splicing surface between two adjacent fresh air casings forms a splicing line on the outer wall surface of the fresh air casing, and the splicing line extends along the air supply direction of the fresh air duct;
  • the splicing surface between two adjacent pieces of the fresh air shell forms a splicing line on the outer wall of the fresh air shell, the splicing line extends along the air supply direction of the fresh air duct, and the splicing line is along the air supply
  • the wind direction is set in a bend; or,
  • the splicing surface between two adjacent pieces of the fresh air shell forms a splicing line on the outer wall of the fresh air shell, the splicing line extends along the air supply direction of the fresh air duct, and the splicing line is along the air supply
  • the wind direction is arranged in a bend, and the splicing line has a plurality of straight sections extending along the blowing direction, and an inclined section provided between the plurality of straight sections; or,
  • the splicing surface between two adjacent pieces of the fresh air shell forms a splicing line on the outer wall of the fresh air shell, the splicing line extends along the air supply direction of the fresh air duct, and the splicing line is along the air supply
  • the wind direction is arranged in a bend, the splicing line has a plurality of straight sections extending along the blowing direction, and an inclined section arranged between the plurality of straight sections, and the inclined section is connected to the blowing direction The angle between them is not at least 30 degrees and not more than 80 degrees.
  • a first splicing surface and a second splicing surface are provided between two adjacent fresh air shells, the first splicing surface is provided with a boss, and the second splicing surface is provided with a A groove adapted to the boss, the boss and the groove both extend along the air supply direction, and the boss is correspondingly embedded in the groove; or,
  • a sealing device is provided between the splicing surfaces of two adjacent fresh air casings; or,
  • the multiple fresh air casings include an upper fresh air casing and a lower fresh air casing, and the upper fresh air casing and the lower fresh air casing are stacked up and down; or,
  • the multiple fresh air casings include an upper fresh air casing and a lower fresh air casing.
  • the upper fresh air casing and the lower fresh air casing are stacked up and down, wherein the side walls of the upper fresh air casing and the lower fresh air casing are respectively
  • a connecting structure is protruded outwards, so that the upper fresh air casing and the lower fresh air casing are connected and fixed by the connection structure; or,
  • the multiple fresh air casings include an upper fresh air casing and a lower fresh air casing.
  • the upper fresh air casing and the lower fresh air casing are stacked up and down, wherein the side walls of the upper fresh air casing and the lower fresh air casing are respectively
  • a connecting structure is protruding outwardly so that the upper fresh air casing and the lower fresh air casing are connected and fixed by the connection structure, and the connection structure includes a screw mounting portion and a snap mounting portion, the screw mounting portion And the snap-fit installation parts are provided on both sides of the fresh air casing in the air supply direction, and the screw connection installation parts include an upper installation plate and a lower installation which are separately arranged on the upper fresh air casing and the lower fresh air casing
  • the upper mounting plate is screwed to the lower mounting plate
  • the clip mounting portion includes a clip and a clip separately provided on the upper fresh air casing and the lower fresh air casing.
  • the clip and the lower Snap snap connection is provided.
  • the window air conditioner further includes an indoor air duct shell and an indoor side heat exchanger
  • the indoor air duct shell is installed on the front side of the chassis, and an indoor side air duct is formed in the indoor air duct shell
  • the indoor side heat exchanger is installed on the chassis, and is arranged corresponding to the air inlet end of the indoor side air duct, the end of the air outlet section forms the fresh air outlet, and the fresh air outlet is adjacent to the indoor side
  • the windward side of the heat exchanger is set.
  • the air outlet section of the fresh air casing is at least partially located between the lower end of the indoor air duct casing and the chassis.
  • the window air conditioner further includes a shell mounted on the chassis, the indoor air duct shell and the indoor side heat exchanger are located in the shell, and the front wall surface of the shell is provided with There are indoor air inlets;
  • the end of the air outlet section is located outside the front wall surface of the housing, and the fresh air outlet is arranged adjacent to the indoor air inlet; or,
  • the indoor side heat exchanger and the front wall surface of the casing are arranged at intervals, the end of the air outlet section is located between the indoor side heat exchanger and the front wall surface of the casing, and the The fresh air outlet is communicated with the indoor side air duct.
  • the opening of the fresh air outlet is arranged upward; or,
  • the opening of the fresh air outlet is set forward.
  • the window air conditioner further includes a shell mounted on the chassis, the indoor air duct shell and the indoor side heat exchanger are located in the shell, and the front wall surface of the shell is provided with There is an indoor air inlet, the indoor side heat exchanger includes a first indoor heat exchanger and a second indoor heat exchanger set corresponding to the indoor air inlet, and the window air conditioner has a constant temperature dehumidification mode. In the dehumidification mode, one of the first indoor heat exchanger and the second indoor heat exchanger is in a heating mode, and the other is in a cooling mode.
  • the first indoor heat exchanger and the second indoor heat exchanger are stacked along the air inlet direction of the indoor side air duct; or,
  • the first indoor heat exchanger and the second indoor heat exchanger are arranged side by side in the direction perpendicular to the indoor side air duct, so that part of the airflow entering from the indoor air inlet is blown toward the The other part of the first indoor heat exchanger is blown to the second indoor heat exchanger.
  • the window air conditioner further includes an outdoor heat exchanger, a refrigerant circulation pipeline, a first valve and a second valve;
  • the refrigerant outlet of the compressor of the window air conditioner is provided with a discharge pipe, and the refrigerant inlet is provided with a suction pipe;
  • the discharge pipe, the outdoor heat exchanger, the first indoor heat exchanger, the second indoor heat exchanger, and the suction pipe are connected in sequence through the refrigerant circulation pipeline;
  • the first valve is serially connected to the refrigerant circulation pipeline between the outdoor heat exchanger and the first indoor heat exchanger
  • the second valve is serially connected to the first indoor heat exchanger and the first indoor heat exchanger.
  • the refrigerant circulation pipeline includes a first pipe connecting the discharge pipe and the outdoor heat exchanger, and a second pipe connecting the suction pipe and the second indoor heat exchanger; a window type
  • the air conditioner also includes a switching device;
  • the switching device is serially connected to the first pipe and the second pipe, and the switching device has a first switching state and a second switching state;
  • the first pipe connected to both ends of the switching device is conducted, and the second pipe connected to both ends of the switching device is conducted;
  • the first pipe between the discharge pipe and the switching device is connected to the second pipe between the switching device and the second indoor heat exchanger
  • the first pipe between the outdoor heat exchanger and the switching device is connected to the second pipe between the suction pipe and the switching device.
  • the window air conditioner further has a controller, and the controller is electrically connected to the switching device, the first valve, and the second valve;
  • the controller When the window air conditioner is in a constant temperature dehumidification mode, the controller is used to control the switching device to be in a first switching state, and to control the first valve to be fully opened and the second valve to be partially opened; and /or,
  • the window air conditioner also has a full cooling mode.
  • the controller is used to control the switching device to be in a first switching state, and to control the first valve Partially opened, the second valve is fully opened; and/or,
  • the window air conditioner also has a full heating mode.
  • the controller is used to control the switching device to be in a second switching state, and to control the first
  • the second valve is fully opened and the first valve is partially opened.
  • the window air conditioner provided by this application includes a chassis and a fresh air device.
  • the fresh air device includes a fresh air casing extending from the outside to the inside.
  • the fresh air casing is provided with a fresh air inlet connected to the outside, a fresh air outlet connected to the room, and a fresh air inlet and fresh air.
  • the fresh air duct at the outlet, the fresh air shell has an air inlet section adjacent to the fresh air inlet, an air outlet section adjacent to the fresh air outlet, and a transition section between the air inlet section and the air outlet section.
  • the maximum ventilation area of the transition section is larger than the air inlet section.
  • the maximum ventilation area of the section and the air outlet section is such that the lowest flow velocity of the airflow in the transition section is smaller than the flow velocity at both ends of the transition section.
  • the window air conditioner provided by the present application, after the outdoor air enters the air inlet section, it flows through the transition section with a larger ventilation area, which reduces the overall wind speed in the fresh air duct, reduces the wind resistance in the entire fresh air duct, and thereby reduces the air volume Loss, reduce noise.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of an embodiment of a window air conditioner according to the present application
  • Fig. 2 is a schematic diagram of the three-dimensional structure of the window air conditioner in Fig. 1; wherein the casing is removed;
  • Fig. 3 is a schematic view of the three-dimensional structure of the window air conditioner in Fig. 2 from another angle;
  • Fig. 4 is a schematic top view of the structure of the window air conditioner in Fig. 2 after being aligned;
  • Fig. 5 is a schematic diagram of the left side structure of the window air conditioner in Fig. 2;
  • Figure 6 is a schematic diagram of the assembly structure of the chassis, fresh air device and part of the indoor air duct shell of the window air conditioner in Figure 2;
  • Fig. 7 is a perspective structural diagram of the window air conditioner in Fig. 6 from another angle;
  • Fig. 8 is a three-dimensional structural diagram of the fresh air device of the window air conditioner in Fig. 2;
  • Fig. 9 is a schematic view of the three-dimensional structure of the fresh air device in Fig. 8 from another angle;
  • Fig. 10 is a left side view of the fresh air device in Fig. 8;
  • Figure 11 is a top view of the fresh air device in Figure 8.
  • Figure 12 is a cross-sectional view of the fresh air device in Figure 10;
  • Figure 13 is a cross-sectional view of the fresh air device in Figure 8.
  • Fig. 14 is an enlarged schematic view of A in Fig. 13;
  • Fig. 15 is an exploded schematic view of the three-dimensional structure of the fresh air device in Fig. 8;
  • Fig. 16 is an exploded schematic view of the three-dimensional structure of the fresh air device in Fig. 8 from another angle;
  • Fig. 17 is an enlarged schematic diagram of B in Fig. 16;
  • FIG. 18 is a schematic structural diagram of still another embodiment of a window-type air conditioner according to the present application.
  • Fig. 19 is a schematic structural diagram of another embodiment of a window-type air conditioner according to the present application.
  • Label name Label name
  • Label name 100 Chassis 415 Inlet section 12 Lower mounting plate 101 First edge 416 Transition twenty one Jam 102 Second edge 416a Flare area twenty two Snap 200 Indoor duct shell 416b Pressurized zone 500 case 210 Indoor side air duct 421 Top wall 510 Indoor air inlet 300 Indoor side heat exchanger 422 Outer wall 600 compressor
  • This application proposes a window air conditioner.
  • the window air conditioner includes a chassis 100 and a fresh air device 400.
  • the fresh air device 400 is installed on the chassis 100 and is configured to deliver fresh air indoors.
  • the fresh air device 400 includes The fresh air casing 410 extending from the outside to the inside.
  • the fresh air casing 410 is provided with a fresh air inlet 411 communicating with the outside, a fresh air outlet 412 communicating with the room, and a fresh air duct 413 communicating with the fresh air inlet 411 and the fresh air outlet 412.
  • the fresh air casing 410 has adjacent The inlet section 415 of the fresh air inlet 411, the outlet section 414 adjacent to the fresh air outlet 412, and the transition section 416 between the inlet section 415 and the outlet section 414.
  • the maximum ventilation area of the transition section 416 is larger than the inlet section 415
  • the maximum ventilation area of the air outlet section 414 so that the lowest flow velocity of the airflow in the transition section 416 is smaller than the flow velocity at both ends of the transition section 416.
  • the chassis 100 provides installation and support for the internal structure of the window air conditioner.
  • the window type air conditioner also includes a housing 500, which is mounted on the chassis 100, so that the housing 500 and the chassis 100 form the outer frame of the entire window type air conditioner indoor unit.
  • the components of the window type air conditioner are installed in the housing 500 and the chassis 100.
  • the shape of the housing 500 can be square, cylindrical, etc., and can be selected according to specific usage requirements, and is not specifically limited here. Generally, in order to facilitate manufacturing and molding, the shape of the housing 500 is roughly square.
  • the housing 500 is provided with an indoor air duct shell 200 and an outdoor air duct shell, the indoor air duct shell 200 is installed on the front side of the chassis 100, and an indoor side air duct 210 is formed in the indoor air duct shell 200.
  • the indoor side heat exchanger 300 is installed on the chassis 100 and is set corresponding to the air inlet end of the indoor side air duct 210.
  • the indoor side heat exchanger 300 can be installed in the indoor air duct shell 200, or it can be installed outside the indoor air duct shell 200 at the position corresponding to the air inlet end of the indoor side air duct 210, and only the airflow blown from the indoor side air duct 210 is required. It can be the air flow after heat exchange through the indoor side heat exchanger 300.
  • the outdoor air duct shell is located on the rear side of the chassis 100.
  • An outdoor side air duct is formed in the outdoor air duct shell.
  • An outdoor fan and an outdoor heat exchanger 700 are provided in the outdoor side air duct.
  • the outdoor fan is configured to drive the outdoor airflow into the outdoor side wind.
  • the outdoor heat exchanger 700 dissipates heat in the tunnel.
  • the rear wall surface of the casing 500 is provided with an outdoor air inlet and a fresh air inlet, and the fresh air inlet is connected with the fresh air inlet 411.
  • the housing 500 is provided with an indoor air inlet 510 and an indoor air outlet, the air inlet end of the indoor side air duct 210 communicates with the indoor air inlet 510, and the air outlet end of the indoor side air duct 210 communicates with the indoor air outlet.
  • Both the indoor air inlet 510 and the indoor air outlet may be opened on the front wall surface of the housing 500.
  • the indoor air inlet 510 is located on the front side wall surface of the housing 500, and the indoor air outlet is located on the top surface of the housing 500. It is also possible to make the indoor air outlet located at the junction of the front side wall surface and the top surface of the housing 500.
  • An indoor fan may also be provided in the indoor side air duct 210, and the indoor fan may be a centrifugal fan or a cross flow fan.
  • the fresh air and indoor air flow are introduced from the indoor air inlet 510 through the indoor fan, and flow through the indoor side air duct 210 after heat exchange through the indoor side heat exchanger 300, and blow out from the indoor air outlet.
  • the fresh air inlet 411 and the fresh air outlet 412 may be rectangular, circular, elongated, elliptical, or may be multiple micro holes, which are not specifically limited here.
  • the fresh air device 400 may also include a fresh air fan configured to guide the air flow from the fresh air inlet 411 to the fresh air outlet 412.
  • the fresh air fan is installed at the fresh air inlet 411, and the fresh air fan can be an axial flow fan, a cross flow fan or a centrifugal fan, etc., as long as it can promote the flow of air from the fresh air inlet 411 to the fresh air outlet 412. That is, so as to ensure the air supply volume of the fresh air device 400.
  • the fresh air inlet 411 may be connected to the outdoor side air duct, and an outdoor fan is used to blow the outdoor air flow into the fresh air duct 413 and out from the fresh air outlet 412.
  • the fresh air casing 410 extends from the outdoors to the inside, that is, the fresh air casing 410 extends from the side of the outdoor air duct casing to the side of the indoor duct casing 200.
  • the fresh air inlet 411 of the fresh air casing 410 located on the side of the outdoor air duct casing is connected to the outdoors, and the fresh air outlet 412 located on the side of the indoor duct casing 200 is connected to the room, and the outdoor air flow is directly introduced into the room through the independent fresh air duct 413.
  • the fresh air outlet 412 is connected to the room, which means that the air flow from the fresh air blows directly into the room instead of blowing into the indoor side air duct 210, and indirectly blows into the room through the indoor side air duct 210.
  • the window type air conditioner itself is small in size, the space in the housing 500 is limited, and the indoor side and outdoor side of the air conditioner itself need to be provided with corresponding indoor side air duct 210, indoor heat exchanger, and indoor side.
  • the indoor side structure such as the wind wheel, and the outdoor side structure such as the outdoor side air duct, the outdoor side heat exchanger and the outdoor side wind wheel, make the front and rear sides of the air conditioner have limited locations for opening the fresh air inlet 411 and the fresh air outlet 412, resulting in fresh air.
  • the area of the fresh air inlet 411 and the fresh air outlet 412 of the duct 413 is usually small.
  • the fresh air casing 410 in this implementation has a transition section 416.
  • the lowest flow rate in section 416 is less than the flow rate at both ends of transition section 416.
  • the outdoor air enters the air inlet section 415 through the fresh air inlet 411, it has a larger flow rate, and then flows into the transition section 416. Due to the large ventilation area of the transition section 416, the flow velocity of the airflow in the transition section 416 is reduced, and then It enters the air outlet section 414, and finally flows out from the fresh air outlet 412.
  • the setting of the transition section 416 of the fresh air casing 410 utilizes the space between the indoor side air duct 210 and the outdoor side air duct of the window air conditioner, locally increasing the air passage area of the fresh air duct 413 and reducing the fresh air.
  • the overall wind speed in the air duct 413 is proportional to the wind speed.
  • the maximum ventilation area of the transition section 416 there is a certain ratio between the maximum ventilation area of the transition section 416 and the maximum ventilation area of the air inlet section 415 and the air outlet section 414.
  • the maximum ventilation area of the transition section 416 is too large, it may As a result, the wind speed is too low, but the ventilation volume of the fresh air duct 413 cannot be guaranteed.
  • the maximum ventilation area of the transition section 416 is too small, it will not be able to reduce the wind speed, wind resistance and noise.
  • the ratio between the maximum ventilation area S of the transition section 416 of the ventilation air volume and the maximum ventilation area S1 of the air inlet section 415 is at least 1.4 and does not exceed 1.6, and/or the maximum ventilation area S of the transition section 416 and the outlet air
  • the ratio between the maximum ventilation area S2 of section 414 is at least 3.5 and does not exceed 4
  • the ventilation volume is large, the noise is small, and the ventilation effect is better.
  • the transition section 416 includes a flaring area 416a and a pressurizing area 416b connected to each other.
  • the flaring area 416a is connected to the air inlet section 415
  • the pressurizing area 416b is connected to the air outlet section 414. Butted, the flaring area 416a is gradually expanded from the air inlet section 415 to the pressurizing area 416b, and the pressurizing area 416b is gradually contracted from the flaring area 416a to the air outlet section 414.
  • the flaring area 416a of the transition section 416 is gradually expanded from the air inlet section 415 to the pressurizing section 416b, and when the air flows from the air inlet section 415 into the transition section 416, it can expand through the flaring area 416a. , Thereby effectively reducing noise.
  • the pressurization area 416b connects the flaring area 416a and the air outlet section 414.
  • the pressurization area 416b so that the airflow from the flaring area 416a into the air outlet section 414 can be buffered in the pressurization area 416b and increased
  • the guidance of the nip 416b drives the airflow to the direction of the fresh air outlet 412, which makes the flow of the airflow smoother, reduces wind resistance and wind loss, and avoids noise caused by a sudden drop in size.
  • the air inlet section 415 and the air outlet section 414 of the fresh air duct 413 are preferably arranged oppositely in the front and rear direction, and the closer the shape and size are, the better. This can reduce the cross-sectional change of the fresh air duct 413 and reduce the wind
  • the positions where the air inlet section 415 and the air outlet section 414 can be set are limited, and it is generally impossible to ensure that the shapes and sizes of the two are consistent.
  • the air inlet section 415 is arranged on the outdoor side with ample space, and the air outlet section 414 is arranged on the indoor side with a relatively small space.
  • the air inlet section 415 has a larger area than the air outlet section 414.
  • the section height of the inlet section 415 is greater than the section height of the outlet section 414, and the section of the outlet section 414 The width is greater than the cross-sectional width of the air inlet section 415.
  • the cross section of the fresh air duct 413 refers to the cross section of the fresh air duct 413 perpendicular to the air supply direction
  • the section height refers to the net size of the inner wall of the fresh air duct 413 in the direction perpendicular to the chassis 100.
  • the chassis 100 has a first edge 101 and a second edge 102 extending in the front-to-rear direction.
  • the cross-sectional width refers to the distance that the section of the fresh air duct 413 extends from the first edge 101 to the second edge 102, and it is also the fresh air duct 413.
  • the cross-sectional height of the transition section 416 is at least partially gradually reduced from the air inlet section 415 to the air outlet section 414, and the cross-sectional width of the transition section 416 is from the air inlet section 415.
  • the air outlet section 414 is at least partially gradually increased. In this way, the transition section 416 not only functions to locally increase the wind passing area, reduce the wind speed, and increase the air volume.
  • the cross-sectional dimensions of the fresh air casing 410 in the air inlet section 415 and the air outlet section 414 are generally basically unchanged along the air supply direction, but can also be changed locally as required.
  • the cross-sectional height and cross-sectional width of the air inlet section 415 and the air outlet section 414 refer to the size of the cross section of the end adjacent to the transition section 416 of the air inlet section 415 and the air outlet section 414, and when the section is rectangular, the section height and section width are the corresponding dimensions of each side of the rectangle.
  • the section height section refers to the maximum net size of the air duct section in the direction perpendicular to the chassis 100
  • the section width is The maximum net size of the air duct section in the direction from the first edge 101 to the second edge 102 of the chassis 100.
  • the section height of the inlet section 415 is H1
  • the section height of the outlet section 414 is H2
  • the ratio between H1 and H2 is at least 4.1 and not more than 5.1
  • the section width of the section 415 is L1
  • the section width of the air outlet section 414 is L2
  • the ratio between L1 and L2 is at least 0.48 and not more than 0.58.
  • the top wall 421 of the transition section 416 is at least partially arranged in an outwardly convex arc surface.
  • the bending radius R of the top wall 421 in the transition section 416 is at least 160 mm and not more than 200 mm. In this way, the airflow is guided to flow along the arc-shaped wall surface, so that the flow is smoother, the wind resistance and wind loss are smaller, and the noise can be reduced.
  • the curved top surface on the outside of the fresh air duct 413 can also fully adhere to the indoor air duct shell 200, which effectively utilizes the internal space of the air conditioner and is stronger.
  • the ratio between the extension length D2 of the transition section 416 in the air supply direction of the fresh air duct 413 and the extension length D1 of the air inlet section 415 in the air supply direction is at least 1.4 and not more than 1.6. .
  • the extension length of the air inlet section 415 is the distance from the starting end of the fresh air inlet 411 to the place where the cross section of the air duct begins to widen
  • the extension length of the transition section 416 is the distance from the air inlet section 415 of the fresh air duct 413 The distance from the end to the point where the section height of the air duct no longer decreases continuously.
  • the fresh air casing 410 is generally arranged in a cylindrical shape, and the cross section of the fresh air duct 413 changes greatly along the air supply direction.
  • the fresh air casing 410 is usually an injection molded part. If the fresh air casing 410 is integrally formed as a whole, it can have better sealing properties, but it is difficult to demold during manufacturing. For this reason, in this implementation, for ease of manufacture, please refer to FIGS. 15 to 17, the fresh air casing 410 is divided into multiple pieces, and the multiple fresh air casings 410 are joined to each other to form a fresh air duct 413. In this way, the whole fresh air casing 410 can be divided into multiple fresh air casings 410 with a simpler shape and structure. Each fresh air casing 410 can be more easily formed by injection molding, and then the multiple fresh air casings 410 are processed and connected to form fresh air.
  • the air duct 413 has a simpler manufacturing process and a lower cost.
  • the fresh air casing 410 can be divided into multiple pieces in the axial direction or radially.
  • the splicing surface between the two adjacent fresh air casings 410 is in the fresh air.
  • a splicing line 430 is formed on the outer wall surface 422 of the shell 410, and the splicing line 430 extends along the circumferential direction of the fresh air duct 413. In this embodiment, referring to FIGS.
  • the fresh air casing 410 is divided into multiple pieces in the radial direction, and the splicing surface between two adjacent fresh air casings 410 forms a splicing line 430 on the outer wall surface 422 of the fresh air casing 410 ,
  • the splicing line 430 extends along the air supply direction of the fresh air duct 413.
  • the cylindrical fresh air casing 410 can be divided into a plurality of pieces in the radial direction, and each fresh air casing 410 is no longer in a closed cylindrical shape, so that it is easy to demold.
  • the multiple fresh air casings 410 can be separately injection molded and then spliced into one body, thereby facilitating manufacturing.
  • the fresh air casing 410 is easily affected by the airflow and vibrated during the air supply process.
  • the air outlet section of the fresh air casing 410 The 414 is arranged on the side close to the indoor side air duct 210, which causes the fresh air casing 410 to have a temperature difference in the air supply direction, so that the fresh air casing 410 is prone to axial deformation.
  • the air in the fresh air duct 413 is introduced from the outside, and the end of the fresh air duct 413 close to the indoor side air duct 210 is set close to the indoor side air duct 210, and is affected by the temperature inside the indoor side air duct 210, making the inside and outside of the fresh air duct 413 The temperature difference is large, and it is prone to deformation in the radial direction. If the splicing line 430 is arranged in a smooth straight line, on the one hand, the two adjacent fresh air casings 410 are likely to slide against each other under the action of vibration and deformation, resulting in air leakage of the fresh air duct 413. On the other hand, there is a lack of fresh air between the two fresh air casings 410.
  • the axial and circumferential limits of the channel 413 are easily misaligned under the action of vibration and deformation, resulting in air leakage.
  • the splicing line 430 is arranged in a bend along the air supply direction.
  • the splicing surfaces between two adjacent fresh air casings 410 are mutually limited and supported in the axial and circumferential directions of the fresh air duct 413, thereby reducing the impact of vibration and deformation on the splicing between the fresh air casings 410 and improving the fresh air duct The tightness of 413.
  • the splicing line 430 arranged in a bend has a plurality of straight sections extending along the air supply direction, and is arranged between the plurality of straight sections to connect the inclined sections of the plurality of straight sections, optionally
  • the angle between the sloping section and the air supply direction is at least 30 degrees and no more than 80 degrees, which can provide axial and circumferential support, and better adapt to the deformation of the fresh air casing 410 to reduce air leakage. .
  • two adjacent fresh air casings 410 have a first joint surface 431 and a second joint surface 432 that are joined to each other, and the first joint surface 431 is provided with a boss 4310 ,
  • the second splicing surface 432 is provided with a groove adapted to the boss 4310, the boss 4310 and the groove both extend along the air supply direction, and the boss 4310 is correspondingly embedded in the groove.
  • the first splicing surface 431 and the second splicing surface 432 are arranged oppositely, and the first splicing surface 431 and the second splicing surface 432 are attached to each other, so that two adjacent fresh air casings 410 are assembled together.
  • the two adjacent fresh air casings 410 are staggered and fitted in the radial direction of the fresh air duct 413, so that the fresh air casing 410 is integrated
  • the possibility of through seams can be reduced, thereby enhancing the sealing performance of the fresh air duct 413.
  • a sealing device is provided between the splicing surfaces of two adjacent fresh air casings 410.
  • the sealing device may be a kind of sealing material, which plays a role of isolating the air circulation inside and outside the fresh air duct 413, and may be rubber or the like, for example.
  • it can also be a kind of sealant, for example, it can be glass glue, polyurethane, etc., which has a certain adhesiveness and good deformability, so that the adhesion between the fresh air shells 410 is closer, and the fresh air is blocked.
  • the gap between the shells 410 improves the sealing performance of the fresh air duct 413.
  • Multiple fresh air shells 410 can be spliced in many ways.
  • the bottom plate is divided into two pieces in the direction from the first edge 101 to the second edge 102, and the splicing line is provided on the top wall 421 and the bottom of the air duct.
  • the multiple fresh air casings 410 include an upper fresh air casing 401 and a lower fresh air casing 402, and the upper fresh air casing 401 and the lower fresh air casing 402 are stacked up and down. In this way, the upper fresh air casing 401 and the lower fresh air casing 402 are more closely attached under the action of gravity, the sealing performance is improved, and the assembly is easier.
  • the side walls of the upper fresh air casing 401 and the lower fresh air casing 402 are respectively provided with connecting structures outwardly, so that the upper fresh air casing 401 and the lower fresh air casing 402 Connect and fix by connecting structure.
  • the connection between adjacent fresh air casings 410 can be arranged on the side walls of the fresh air casings 410.
  • the side space of the fresh air casings 410 is relatively abundant and can be avoided well.
  • the indoor side structure and outdoor side structure of the air conditioner are also easy to assemble the fresh air casing 410.
  • connection structure includes a screw connection installation part and a clamping installation part.
  • the screw connection installation part and the clamping installation part are arranged on both sides of the fresh air casing 410 in the air supply direction.
  • the screw connection installation part includes a separate installation on the upper fresh air casing.
  • the upper mounting plate 11 and the lower mounting plate 12 on the 401 and the lower fresh air housing 402, the upper mounting plate 11 and the lower mounting plate 12 are screwed together, and the clamping installation part includes a clamping block 21 separately arranged on the upper fresh air housing 401 and the lower fresh air housing 402 It is connected with the buckle 22, the buckle 21 and the buckle 22.
  • the clip 21 and the buckle 22 between the upper and lower fresh air casings 402 can be clamped and limited, and then connected by bolts, which can ensure the connection strength between the upper and lower fresh air casings 402 and facilitate assembly. Improve the production efficiency of air conditioners.
  • a fresh air outlet 412 is formed at the end of the air outlet section 415, and the fresh air outlet 412 is disposed adjacent to the windward surface of the indoor heat exchanger 300.
  • the indoor side heat exchanger 300 can be used for dehumidification during fresh air dehumidification, without the need for an additional fresh air evaporator, which greatly reduces manufacturing costs and improves efficiency.
  • the air flow blown out from the fresh air outlet 412 can immediately flow through the indoor side heat exchanger 300 and be sucked into the indoor side air duct 210, and then blown out from the indoor air outlet, so that most of the fresh air without dehumidification can be fully mixed with the indoor air flow.
  • Dehumidification is carried out through the indoor side heat exchanger 300 and then blown into the room, which greatly reduces the circulation path of the fresh air and reduces the mixing rate of the fresh air that has not been dehumidified and the indoor air, so that the fresh air has a smaller impact on the indoor temperature and humidity, thereby The user's use comfort is better.
  • the indoor temperature sensing device and the humidity sensing device it can be determined by the indoor temperature sensing device and the humidity sensing device.
  • the indoor air duct shell 200 and the indoor side structure are usually adapted to the length of the chassis 100. In this way, in order to make the overall structure More compact.
  • the fresh air casing 410 is installed on the chassis 100 and extends from the outdoor to the indoor side.
  • the fresh air casing 410 can be installed directly through the indoor duct casing 200, and a sealing structure is provided at the connection between the fresh air casing 410 and the indoor duct casing 200 And so on to achieve sealing.
  • the air outlet section 414 of the fresh air casing 410 is at least partially located between the lower end of the indoor air duct casing 200 and the chassis 100.
  • Part of the fresh air casing 410 is located below the indoor air duct casing 200, that is, the fresh air casing 410 is introduced into the room from below the indoor duct casing 200.
  • the fresh air casing 410 will not interfere with the indoor side air duct 210, and it is not necessary to perforate the indoor air duct casing 200 and provide a sealing structure, which simplifies the manufacturing process and the difficulty of installation.
  • the occupied space of the fresh air casing 410 is reduced, and the structure of the whole machine is more compact, which does not increase the volume of the whole machine while satisfying the independent air discharge of fresh air.
  • the fresh air casing 410 located below the indoor air duct casing 200 and the lower end of the indoor air duct casing 200 are spaced apart. It should be noted that the gap between the fresh air housing 410 and the lower end of the indoor air duct housing 200 should be minimized so that the gravity of the indoor air duct housing 200 is not transmitted to the fresh air housing 410, so that air leakage can be avoided. Phenomenon. Generally, the gap between the fresh air casing 410 and the lower end of the indoor air duct casing 200 is made less than or equal to 5 mm.
  • the fresh air casing 410 By making the fresh air casing 410 and the lower end of the indoor air duct casing 200 arranged in a gap, the fresh air casing 410 will not bear the force, thereby making the fresh air casing 410 not easily damaged.
  • the fresh air casing 410 may also be in contact with or connected to the indoor air duct casing 200. In this way, reinforcing ribs may be provided on the fresh air casing 410 or the structural strength of the fresh air casing 410 may be increased, so that the fresh air casing 410 can withstand Partial gravity of the indoor air duct shell 200.
  • the window air conditioner further includes a housing 500 installed on the chassis 100.
  • the indoor air duct housing 200 and the indoor side heat exchanger 300 are located in the housing 500.
  • the front wall surface of 500 is provided with an indoor air inlet 510.
  • the end of the air outlet section 414 is located outside the front wall surface of the housing 500, and the fresh air outlet 412 is disposed adjacent to the indoor air inlet 510.
  • the housing 500 is also provided with an indoor air outlet, and the indoor air outlet can be specifically arranged at the junction of the front side wall surface and the top surface of the housing 500, so that the indoor air outlet blows air obliquely upward. On the one hand, it can prevent the wind from blowing directly on the user and the ceiling. On the other hand, the airflow can be blown farther, so that the mixed flow effect is better, and the indoor temperature distribution is more uniform.
  • the indoor heat exchanger 300 can be directly attached to the front wall surface of the housing 500, so that the airflow entering from the indoor air inlet 510 can be directly It enters into the indoor side heat exchanger 300 to improve the heat exchange efficiency.
  • the air outlet section 414 is arranged outside the housing 500, which can increase the fresh air circulation rate, thereby ensuring sufficient fresh air volume.
  • the fresh air outlet 412 is arranged adjacent to the indoor air inlet 510, the fresh air near the indoor air inlet 510 can be quickly sucked into the housing 500 for dehumidification and then blown out from the indoor air outlet, and the fresh air that has not been dehumidified will not be blown away from the window. Therefore, it is difficult to mix with the indoor air far away from the indoor unit of the window type air conditioner, and it will not greatly or hardly affect the air flow in the room.
  • the indoor side heat exchanger 300 and the front wall surface of the casing 500 are spaced apart, the air outlet section 414 is located between the indoor side heat exchanger 300 and the front wall surface of the casing 500, and the fresh air outlet 412 communicates with the indoor side air duct 210.
  • the air outlet section 414 By arranging the air outlet section 414 between the indoor heat exchanger and the front wall surface of the casing 500, the gap between the indoor heat exchanger 300 and the front wall surface of the casing 500 can be used to make the air outlet section 414 The blown out fresh air flow can be quickly blown to the indoor side heat exchanger 300 for heat exchange.
  • the indoor wind wheel can suck the indoor air and the fresh air blown out from the fresh air outlet 412 into the indoor side air duct 210 together, and dehumidify through the indoor side air duct 210.
  • the fresh air is not only dehumidified, but the effect of the fresh air on the room is reduced.
  • the influence of wind, and the airflow of the whole house can only be dehumidified, thereby increasing the dehumidification efficiency.
  • the fresh air outlet 412 is arranged toward the windward side of the indoor heat exchanger 300. In this way, all the air flow blown out from the fresh air outlet 412 without dehumidification can be directly blown to the indoor side heat exchanger 300 without being blown into the room, thereby not affecting the indoor temperature and humidity.
  • the opening direction of the fresh air outlet 412 can be various. If the fresh air outlet 412 is arranged toward the windward surface of the indoor heat exchanger 300 or the indoor air inlet 510, it is necessary to make a large gap between the indoor heat exchanger 300 and the front wall surface of the housing 500, or to make the outlet
  • the structure of the wind section 414 is relatively complicated, so it will increase the volume of the whole machine to a certain extent.
  • the fresh air outlet 412 is arranged directly opposite to the front wall surface of the indoor heat exchanger 300 or the housing 500, and the wind resistance is large, which will reduce the flow rate of fresh air circulation. In one embodiment, referring to Figs. 1 to 5, the opening of the fresh air outlet 412 is arranged upwards.
  • the opening of the fresh air outlet 412 is set forward, so that the fresh air flows in the direction of the room. Most of the fresh air is sucked into the indoor side air duct 210 under the action of the indoor side wind wheel and passes through the room. The side air duct 210 is dehumidified. The rest of the fresh air enters the room forward, triggering indoor air circulation, making the user feel the fresh air more obviously, thereby enhancing the user's sense of experience.
  • the window air conditioner further includes a compressor 600 installed on the chassis 100, and the fresh air device 400 and the compressor 600 are separately provided on both sides of the chassis 100 in the longitudinal direction.
  • the compressor 600 occupies a large space and has a large weight.
  • the window air conditioner further includes a housing 500 installed on the chassis 100, the indoor air duct housing 200 and the indoor side heat exchanger 300 are located in the housing 500, and the housing 500
  • the front wall surface of 500 is provided with an indoor air inlet 510.
  • the indoor side heat exchanger 300 includes a corresponding first indoor heat exchanger 310 and a second indoor heat exchanger 320.
  • the window air conditioner has a constant temperature dehumidification mode, and in the constant temperature dehumidification mode , One of the first indoor heat exchanger 310 and the second indoor heat exchanger 320 is in the heating mode, and the other is in the cooling mode.
  • the indoor heat exchanger 300 has a first indoor heat exchanger 310 and a second indoor heat exchanger 320, and in the constant temperature dehumidification mode, the first indoor heat exchanger 310 and the second indoor heat exchanger One of the heat exchangers 320 is in a heating mode, and the other is in a cooling mode.
  • the airflow passing through the indoor side heat exchanger 300 can be heated and dehumidified at the same time.
  • the temperature of the mixed air after heating and dehumidification is suitable, and there will be no cool breeze.
  • the indoor side heat exchanger 300 can be fully utilized during dehumidification, and there is no need to additionally provide a fresh air condenser and a fresh air evaporator, which greatly reduces the manufacturing cost.
  • the first indoor heat exchanger 310 and the second indoor heat exchanger 320 are stacked along the air inlet direction of the indoor side air duct 210.
  • the indoor air or fresh air entering from the indoor air inlet 510 first passes through the first indoor heat exchanger 310 dehumidification/heating, and then heating/dehumidifying through the second indoor heat exchanger 320.
  • the indoor fan sends the heated and dehumidified air flow into the room from the indoor air outlet to achieve constant temperature dehumidification throughout the house.
  • the first indoor heat exchanger 310 and the second indoor heat exchanger 320 are stacked in the direction of the air intake, all the airflow blown out from the indoor air inlet 510 can be heated at the same time, and then dehumidified at the same time, thereby eliminating the need for heating and dehumidifying components.
  • the mixing steps are reduced, and the temperature and humidity of the airflow blowing from the indoor air outlet are more uniform and comfortable.
  • the first indoor heat exchanger 310 and the second indoor heat exchanger 320 are arranged side by side in the direction of the vertical indoor side air duct 210, so as to allow entry from the indoor air inlet 510 Part of the airflow blows toward the first indoor heat exchanger 310, and the other part blows toward the second indoor heat exchanger 320.
  • the air inlet direction of the indoor side air duct 210 is usually the front-rear direction.
  • the direction perpendicular to the air inlet direction can be left and right and up and down directions.
  • the first indoor heat exchanger 310 and the second indoor heat exchanger 320 can be arranged up and down or left and right.
  • the fresh air or indoor air entering from the indoor air inlet 510 is partially heated by the first indoor heat exchanger 310.
  • Dehumidification the other part is dehumidified/heated by the second indoor heat exchanger 320, and then mixed in the indoor side air duct 210 to form a dry airflow with a suitable temperature, and then a constant temperature dry airflow is sent into the room from the indoor air outlet by the indoor fan.
  • first indoor heat exchanger 310 and the second indoor heat exchanger 320 are arranged up and down, only one indoor heat exchanger can be installed, and the upper part of the first indoor heat exchanger 310 can be divided into the first indoor heat exchanger 310.
  • Divided into the second indoor heat exchanger 320 one of the upper heat exchanger and the lower heat exchanger is controlled to be in the heat exchange mode and the other is in the cooling mode through the control valve. In this way, the occupied space of the indoor side heat exchanger 300 can be greatly reduced, thereby making the overall structure more compact and the entire machine smaller in size.
  • the thickness of the indoor heat exchanger 300 can be greatly reduced, and the space in the height direction of the housing 500 can be fully utilized, thereby reducing indoor
  • the space occupied by the side heat exchanger 300 reduces the volume and weight of the whole machine.
  • the window air conditioner further includes an outdoor heat exchanger 700, a refrigerant circulation pipeline, a first valve 810 and a second valve 820, and the refrigerant outlet of the compressor 600 of the window air conditioner
  • a discharge pipe 610 is provided, and a suction pipe 620 is provided at the refrigerant inlet.
  • the discharge pipe 610, the outdoor heat exchanger 700, the first indoor heat exchanger 310, the second indoor heat exchanger 320, and the suction pipe 620 are connected in sequence through the refrigerant circulation pipeline.
  • the first valve 810 is connected in series to the refrigerant circulation pipeline between the outdoor heat exchanger 700 and the first indoor heat exchanger 310
  • the second valve 820 is connected in series to the first indoor heat exchanger 310 and the second indoor heat exchanger 320 on the refrigerant circulation pipeline.
  • the compressor 600 may be an inverter compressor 600 or a fixed frequency compressor 600.
  • the first valve 810 and the second valve 820 may be solenoid valves, electronic expansion valves, or throttle valves, which can control the on-off or flow rate of the pipe where they are located.
  • first valve 810 and the second valve 820 By setting the first valve 810 and the second valve 820, it is possible to control whether the refrigerant flows into the first indoor heat exchanger 310 and the second indoor heat exchanger 320, thereby controlling the first indoor heat exchanger 310 and the second indoor heat exchanger 320 Whether to participate in cooling or heating.
  • the high-temperature refrigerant flowing out of the compressor 600 enters the outdoor heat exchanger 700 (condenser), so that the high-temperature refrigerant from the outdoor heat exchanger 700 reaches the first valve 810.
  • the first valve 810 can be all Or mostly open, so that the temperature of the outdoor heat exchanger 700 is equal to or slightly lower than the temperature of the first indoor heat exchanger 310.
  • the first indoor heat exchanger 310 is a condenser, which plays the role of heating the airflow, and then flows out of the first indoor heat exchanger 310.
  • the sub-high temperature refrigerant of an indoor heat exchanger 310 reaches the second valve 820, and the second valve 820 is partially opened to act as capillary throttling. After throttling, the refrigerant becomes a low temperature refrigerant and flows through the second indoor heat exchanger 320. At this time, the second indoor heat exchanger 320 is an evaporator, which plays a role of cooling, that is, dehumidification, and the refrigerant flowing out of the second indoor heat exchanger 320 returns to the compressor 600.
  • the first indoor heat exchanger 310 can also be used as an evaporator
  • the second indoor heat exchanger 320 can be used as a condenser, which can also achieve the purpose of constant temperature dehumidification.
  • the high-temperature refrigerant flowing out of the compressor 600 enters the outdoor heat exchanger 700 (condenser), so that the high-temperature refrigerant coming out of the outdoor heat exchanger 700 reaches the first valve 810.
  • the first valve 810 is opened in a small part to play the role of small flow, so that the temperature of the first indoor heat exchanger 310 is much lower than the temperature of the outdoor heat exchanger 700.
  • the first indoor heat exchanger 310 is an evaporator.
  • the low-temperature refrigerant flowing out of the first indoor heat exchanger 310 reaches the second valve 820, and the second valve 820 is fully or mostly opened, which plays a role of completely passing or throttling.
  • the refrigerant flows through the second indoor heat exchanger 320.
  • the second indoor heat exchanger 320 is an evaporator, which plays a role of secondary cooling.
  • the refrigerant flowing out of the second indoor heat exchanger 320 returns to the compressor 600. In this way, the fresh air and indoor air are mixed and cooled by the first indoor heat exchanger 310, and then cooled by the second indoor heat exchanger 320 for a second time. After entering the indoor side air duct 210, it is blown out from the indoor air outlet, thereby achieving rapid indoor cooling. the goal of.
  • the refrigerant circulation pipeline includes a first pipe 830 connecting the discharge pipe 610 and the outdoor heat exchanger 700, and a second pipe connecting the suction pipe 620 and the second indoor heat exchanger 320 840.
  • the window air conditioner further includes a switching device 900, which is connected in series to the first pipe 830 and the second pipe 840, and the switching device 900 has a first switching state and a second switching state. In the first switching state, the first pipe 830 connected to both ends of the switching device 900 is turned on, and the second pipe 840 connected to both ends of the switching device 900 is turned on.
  • the first pipe 830 between the discharge pipe 610 and the switching device 900 and the second pipe 840 between the switching device 900 and the second indoor heat exchanger 320 are conducted, and the outdoor heat exchanger 700 is connected to the switching device.
  • the first pipe 830 between the devices 900 and the second pipe 840 between the suction pipe 620 and the switching device 900 are conducted.
  • the window air conditioner also has a controller, and the controller is electrically connected to the first valve 810, the second valve 820, and the switching device 900, thereby controlling the switching state and each of the switching device 900.
  • the opening and closing of the valve may be a four-way valve or other switching device 900 that prevents the refrigerant from entering the outdoor heat exchanger 700 and the second indoor heat exchanger 320 at the same time. With the switching device 900, the function of the air conditioner can be increased. It can be understood that the switching device 900 is connected in series to the first pipe 830 and the second pipe 840, that is, two ends of the switching device 900 are connected to the first pipe 830, and both ends are connected to the second pipe 840.
  • the switching device 900 When the switching device 900 is in the first switching state, the high-temperature refrigerant flowing out of the discharge pipe 610 of the compressor 600 flows to the outdoor heat exchanger 700 through the first pipe 830, and then flows into the first indoor heat exchanger 310 and the second indoor heat exchanger in sequence The compressor 320 finally flows back to the compressor 600 through the second pipe 840 and the suction pipe 620.
  • the first indoor heat exchanger 310 can be controlled to be in a cooling state or a heating state, so that the entire system can be controlled to be in a constant temperature dehumidification mode or a full cooling system.
  • the first valve 810 and the second valve 820 control whether the first indoor heat exchanger 310 is in a cooling state or a heating state, which is similar to the foregoing embodiment without a switching state, and will not be repeated here.
  • the switching device 900 When the switching device 900 is in the second switching state, the high-temperature refrigerant flowing out of the discharge pipe 610 of the compressor 600 flows into the second indoor heat exchanger 320 through the first pipe 830 and the second pipe 840, and then flows to the first indoor heat exchanger 310 And the outdoor heat exchanger 700 finally flows back to the compressor 600 through the first pipe 830, the second pipe 840 and the suction pipe 620.
  • the opening of the first valve 810 and the second valve 820 can be controlled to control whether the first indoor heat exchanger 310 is in a cooling state or a heating state, thereby controlling whether the entire system is in a constant temperature dehumidification mode or a full heating state.
  • the switching device 900 When the full heating mode is turned on, the switching device 900 is in the second switching state, and the high-temperature refrigerant flowing out of the discharge pipe 610 of the compressor 600 flows into the second indoor heat exchanger 320 through the first pipe 830 and the second pipe 840.
  • the second indoor heat exchanger 320 plays the role of condenser heating, so that the high-temperature refrigerant from the second indoor heat exchanger 320 reaches the second valve 820. At this time, the second valve 820 is fully opened, and the high-temperature refrigerant continues to flow into the first indoor for exchange.
  • Heater 310, the first indoor heat exchanger 310 plays a role of reheating.
  • the first valve 810 can be used for capillary throttling. After throttling, the refrigerant becomes a low temperature refrigerant. , Flows through the outdoor heat exchanger 220 and then returns to the compressor 600. In this way, the purpose of rapid indoor heating can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

一种窗式空调器,包括底盘(100)和新风装置(400),新风装置(400)安装于底盘(100),且被配置为向室内输送新风,新风装置(400)包括自室外向室内延伸的新风壳(410),新风壳(410)设有与室外连通的新风入口(411)、与室内连通的新风出口(412)及连通新风入口(411)及新风出口(412)的新风风道(413),新风壳(410)具有邻近新风入口(412)的进风段(415)、邻近新风出口(412)的出风段(414)、以及设于进风段(415)与出风段(414)之间的过渡段(416),过渡段(416)的最大通风面积至少是进风段(415)及出风段(414)的最大通风面积,以使得气流在过渡段(416)的最低流速且不超过在过渡段(416)两端的流速。

Description

窗式空调器
相关申请
本申请要求2020年2月1日申请的,申请号为202010079434.0,发明名称为“窗式空调器”、申请号为202020159431.3,实用新型名称为“窗式空调器”、及申请号为202020150174.7,实用新型名称为“窗式空调器”中国专利申请的优先权。
技术领域
本申请涉及空气调节技术领域,特别涉及一种窗式空调器。
背景技术
现在生活中,人们对于新风的要求越来越多,PTAC(Packaged Terminal Air Conditioner,包装末端空调设备)窗机作为美国市场中,中高端酒店宾馆最常使用的制冷系统同样也有很强烈的需求。为此,示例性技术中,窗式空调器内设置连通室内外的新风风道,满足人们使用窗式空调器时的换气需求。然而窗式空调器本身尺寸较小,且空调器的室内侧和室外侧都需要设置相应的换热风道和进出风口,使得空调器前后侧能够供开设新风入口和新风出口的位置有限,导致新风风道的新风入口和新风出口面积通常较小。在此基础上,为了满足新风换气的风量需求,可能需要提供较大的风速,这将导致新风风道内风阻较大、风量损失大,且容易产生噪音。
技术解决方案
本申请的主要目的是提出一种窗式空调器,旨在解决上述提出的一个或多个技术问题。
为实现上述目的,本申请提出的窗式空调器包括:
底盘;
新风装置,安装于所述底盘,且用于向室内输送新风,所述新风装置包括自室外向室内延伸的新风壳,所述新风壳设有与室外连通的新风入口、与室内连通的新风出口及连通所述新风入口及所述新风出口的新风风道,所述新风壳具有邻近所述新风入口的进风段、邻近所述新风出口的出风段、以及设于所述进风段与所述出风段之间的过渡段,所述过渡段的最大通风面积至少是所述进风段及所述出风段的最大通风面积,以使得气流在所述过渡段中的最低流速且不超过在所述过渡段两端的流速。
可选地,所述过渡段的最大通风面积S与所述进风段的最大通风面积S1之间的比值至少是1.4,且不超过1.6;和/或,
所述过渡段的最大通风面积S与所述出风段的最大通风面积S2之间的比值至少是3.5,且不超过4。
可选地,所述过渡段包括相连的扩口区及增压区,所述扩口区与所述进风段对接,所述增压区与所述出风段对接,所述扩口区自所述进风段向所述增压区呈渐扩设置,所述增压区自所述扩口区向所述出风段呈渐缩设置;或者,
所述过渡段在所述新风风道送风方向上延伸长度D2与所述进风段在所述送风方向上的延伸长度D1之间的比值至少是1.4,且不超过1.6;或者,
所述新风装置还包括新风风机,所述新风风机设于所述新风入口处。
可选地,所述底盘具有沿前后向延伸的第一边沿及第二边沿,所述新风风道的截面沿所述第一边沿向所述第二边沿方向延伸的距离为截面宽度,所述进风段的截面高度大于所述出风段,所述出风段的截面宽度大于所述进风段,所述过渡段的截面高度自所述进风段向所述出风段至少部分地呈逐渐减小设置,且所述过渡段的截面宽度自所述进风段向所述 出风段至少部分地呈逐渐增大设置。
可选地,所述进风段的截面高度为H1,所述出风段的截面高度为H2,H1与H2之间的比值至少是4.1,且不超过5.1;和/或,
所述进风段的截面宽度为L1,所述出风段的截面宽度为L2,L1与L2之间的比值至少是0.48,且不超过0.58。
可选地,所述过渡段的顶壁至少部分地呈向外凸的弧面设置。
可选地,所述过渡段内顶壁的弯曲半径R至少是160mm,且不超过200mm。
可选地,所述多块新风壳相互拼接以形成所述新风风道。
可选地,相邻两块所述新风壳之间的拼接面在所述新风壳的外壁面上形成拼接线,所述拼接线沿所述新风风道的送风方向延伸;或者,
相邻两块所述新风壳之间的拼接面在所述新风壳的外壁面上形成拼接线,所述拼接线沿所述新风风道的送风方向延伸,所述拼接线沿所述送风方向呈弯折设置;或者,
相邻两块所述新风壳之间的拼接面在所述新风壳的外壁面上形成拼接线,所述拼接线沿所述新风风道的送风方向延伸,所述拼接线沿所述送风方向呈弯折设置,所述拼接线具有沿所述送风方向延伸的多个直线段,以及设于所述多个直线段之间的倾斜段;或者,
相邻两块所述新风壳之间的拼接面在所述新风壳的外壁面上形成拼接线,所述拼接线沿所述新风风道的送风方向延伸,所述拼接线沿所述送风方向呈弯折设置,所述拼接线具有沿所述送风方向延伸的多个直线段,以及设于所述多个直线段之间的倾斜段,所述倾斜段与所述送风方向之间的夹角不至少是30度,且不超过80度。
可选地,相邻两块所述新风壳之间具有相互拼接的第一拼接面和第二拼接面,所述第一拼接面上设有凸台,所述第二拼接面上设有与所述凸台相适配的凹槽,所述凸台与所述凹槽均沿所述送风方向延伸,且所述凸台对应嵌接于所述凹槽;或者,
相邻两块所述新风壳的拼接面之间设有密封装置;或者,
所述多块新风壳包括上新风壳和下新风壳,所述上新风壳和所述下新风壳在上下向叠设;或者,
所述多块新风壳包括上新风壳和下新风壳,所述上新风壳和所述下新风壳在上下向叠设,其中,所述上新风壳和所述下新风壳的侧壁上分别向外凸设有连接结构,以使得所述上新风壳和所述下新风壳通过所述连接结构连接固定;或者,
所述多块新风壳包括上新风壳和下新风壳,所述上新风壳和所述下新风壳在上下向叠设,其中,所述上新风壳和所述下新风壳的侧壁上分别向外凸设有连接结构,以使得所述上新风壳和所述下新风壳通过所述连接结构连接固定,所述连接结构包括螺接安装部和卡接安装部,所述螺接安装部和所述卡接安装部分设于所述新风壳在送风方向上的两侧,所述螺接安装部包括分设于所述上新风壳和所述下新风壳上的上安装板和下安装板,所述上安装板与所述下安装板螺接,所述卡接安装部包括分设于所述上新风壳和所述下新风壳的卡块和卡扣,所述卡块和所述卡扣卡接。
可选地,所述窗式空调器还包括室内风道壳和室内侧换热器,所述室内风道壳安装于所述底盘的前侧,所述室内风道壳内形成有室内侧风道,所述室内侧换热器安装于所述底盘,且对应所述室内侧风道的进风端设置,所述出风段的末端形成所述新风出口,所述新风出口邻近所述室内侧换热器的迎风面设置。
可选地,所述新风壳的所述出风段至少部分地位于所述室内风道壳的下端与所述底盘之间。
可选地,所述窗式空调器还包括安装于所述底盘的壳体,所述室内风道壳及所述室内侧换热器位于所述壳体内,所述壳体的前侧壁面设有室内进风口;
所述出风段的末端位于所述壳体的前侧壁面的外侧,且所述新风出口邻近所述室内进风口设置;或者,
所述室内侧换热器与所述壳体的前侧壁面呈间隔设置,所述出风段的末端位于所述室内侧换热器与所述壳体的前侧壁面之间,且所述新风出口与所述室内侧风道相连通。
可选地,所述新风出口的开口朝上设置;或者,
所述新风出口的开口朝前设置。
可选地,所述窗式空调器还包括安装于所述底盘的壳体,所述室内风道壳及所述室内侧换热器位于所述壳体内,所述壳体的前侧壁面设有室内进风口,所述室内侧换热器包括对应所述室内进风口设置的第一室内换热器及第二室内换热器,所述窗式空调器具有恒温除湿模式,在所述恒温除湿模式下,所述第一室内换热器及所述第二室内换热器的其中一者处于制热模式,另一者处于制冷模式。
可选地,所述第一室内换热器及所述第二室内换热器沿所述室内侧风道的进风方向层叠设置;或者,
所述第一室内换热器及所述第二室内换热器在垂直所述室内侧风道的进风方向上呈并排设置,以使从所述室内进风口进入的气流一部分吹向所述第一室内换热器,另一部分吹向所述第二室内换热器。
可选地,所述窗式空调器还包括室外换热器、冷媒循环管路、第一阀及第二阀;
所述窗式空调器的压缩机的冷媒出口设置有排出管,冷媒入口设置有吸入管;
所述排出管、所述室外换热器、所述第一室内换热器、所述第二室内换热器、所述吸入管通过所述冷媒循环管路依次连通;
所述第一阀串接在所述室外换热器与所述第一室内换热器之间的冷媒循环管路上,所述第二阀串接在所述第一室内换热器与所述第二室内换热器之间的冷媒循环管路上。
可选地,所述冷媒循环管路包括连接所述排出管与所述室外换热器的第一配管,以及连接所述吸入管与所述第二室内换热器的第二配管;窗式空调器还包括切换装置;
所述切换装置串接于所述第一配管及所述第二配管上,所述切换装置具有第一切换状态及第二切换状态;
在所述第一切换状态下,连接于所述切换装置两端的所述第一配管导通,连接于所述切换装置两端的所述第二配管导通;
在所述第二切换状态下,所述排出管和所述切换装置之间的所述第一配管与所述切换装置和所述第二室内换热器之间的所述第二配管导通,所述室外换热器和所述切换装置之间的所述第一配管与所述吸入管和所述切换装置之间的所述第二配管导通。
可选地,所述窗式空调器还具有控制器,所述控制器与所述切换装置、所述第一阀及所述第二阀均电连接;
在所述窗式空调器处于恒温除湿模式时,所述控制器用以控制所述切换装置处于第一切换状态,且用以控制所述第一阀完全打开、所述第二阀部分打开;和/或,
所述窗式空调器还具有全制冷模式,在所述窗式空调器处于全制冷模式时,所述控制器用以控制所述切换装置处于第一切换状态,且用以控制所述第一阀部分打开、所述第二阀完全打开;和/或,
所述窗式空调器还具有全制热模式,在所述窗式空调器处于全制热模式时,所述控制 器用以控制所述切换装置处于第二切换状态,且用以控制所述第二阀完全打开、所述第一阀部分打开。
本申请提供的窗式空调器,包括底盘和新风装置,新风装置包括自室外向室内延伸的新风壳,新风壳设有与室外连通的新风入口、与室内连通的新风出口及连通新风入口及新风出口的新风风道,新风壳具有邻近新风入口的进风段、邻近新风出口的出风段、以及设于进风段与出风段之间的过渡段,过渡段的最大通风面积大于进风段及出风段的最大通风面积,以使得气流在所述过渡段中的最低流速小于在所述过渡段两端的流速。本申请提供的窗式空调器中,室外侧空气进入进风段后,流经通风面积更大的过渡段,降低了新风风道中的整体风速,减小整个新风风道内的风阻,从而减少风量损失,降低噪音。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请窗式空调器一实施例的立体结构示意图;
图2为图1中窗式空调器的立体结构示意图;其中,壳体被移除;
图3为图2中窗式空调器另一角度的立体结构示意图;
图4为图2中窗式空调器摆正后的俯视结构示意图;
图5为图2中窗式空调器的左视结构示意图;
图6为图2中窗式空调器的底盘、新风装置及部分室内风道壳的装配结构示意图;
图7为图6中窗式空调器另一角度的立体结构示意图;
图8为图2中窗式空调器的新风装置的立体结构示意图;
图9为图8中新风装置另一角度的立体结构示意图;
图10为图8中新风装置的左视图;
图11为图8中新风装置的俯视图;
图12为图10中新风装置的剖视图;
图13为图8中新风装置的截面剖视图;
图14为图13中A处的放大示意图;
图15为图8中新风装置的立体结构分解示意图;
图16为图8中新风装置另一角度的立体结构分解示意图;
图17为图16中B处的放大示意图;
图18为本申请窗式空调器再一实施例的结构示意图;
图19为本申请窗式空调器还一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称 标号 名称
100 底盘 415 进风段 12 下安装板
101 第一边沿 416 过渡段 21 卡块
102 第二边沿 416a 扩口区 22 卡扣
200 室内风道壳 416b 增压区 500 壳体
210 室内侧风道 421 顶壁 510 室内进风口
300 室内侧换热器 422 外壁面 600 压缩机
310 第一室内换热器 430 拼接线 610 排出管
320 第二室内换热器 431 第一拼接面 620 吸入管
400 新风装置 432 第二拼接面 700 室外换热器
410 新风壳 4310 凸台 810 第一阀
411 新风入口 4320 凹槽 820 第二阀
412 新风出口 401 上新风壳 830 第一配管
413 新风风道 402 下新风壳 840 第二配管
414 出风段 11 上安装板 900 切换装置
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本申请的实施方式
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。
本申请提出一种窗式空调器。
在本申请实施例中,如图1至图7所示,该窗式空调器包括底盘100和新风装置400,新风装置400安装于底盘100,且被配置为向室内输送新风,新风装置400包括自室外向室内延伸的新风壳410,新风壳410设有与室外连通的新风入口411、与室内连通的新风出口412及连通新风入口411及新风出口412的新风风道413,新风壳410具有邻近新风入口411的进风段415、邻近新风出口412的出风段414、以及设于进风段415与出风段414之间的过渡段416,过渡段416的最大通风面积大于进风段415及出风段414的最大通风面积,以使得气流在过渡段416中的最低流速小于在过渡段416两端的流速。
底盘100为窗式空调器的内部结构提供安装和支撑。窗式空调器还包括壳体500,壳体500安装于底盘100,以使得壳体500和底盘100形成整个窗式空调室内器的外框架,窗式空调器各部件均安装在壳体500和底盘100形成的容纳空间内。壳体500的形状可以呈方形、筒形等,可根据具体使用需求进行选择,在此不做具体限定。通常,为了方便制造和成型,壳体500的形状大致呈方形设置。壳体500内设有室内风道壳200和室外风道壳,室内风道壳200安装于底盘100的前侧,室内风道壳200内形成有室内侧风道210。室内侧换热器300,安装于底盘100,且对应室内侧风道210的进风端设置。室内侧换热器300可以安装在室内风道壳200内,也可以安装在室内风道壳200外对应室内侧风道210的进风端的位置,只需使得从室内侧风道210吹出的气流为经过室内侧换热器300换热后的气流即可。室外风道壳位于底盘100后侧,室外风道壳内形成有室外侧风道,室外侧风道内设有室外风机及室外换热器700,室外风机被配置为驱动室外气流进入室外侧风道内为室外换热器700进行散热。壳体500的后侧壁面设有室外进风口及新风口,新风口与新风入口411相连通。
壳体500上设有室内进风口510及室内出风口,室内侧风道210的进风端与室内进风口510连通,室内侧风道210的出风端与室内出风口连通。室内进风口510及室内出风口 均可以开设在壳体500的前侧壁面。或者使得室内进风口510位于壳体500的前侧壁面,室内出风口位于壳体500的顶面。还可以使得室内出风口位于壳体500的前侧壁面与顶面的交界处。室内侧风道210内还可以设置室内风机,该室内风机可以是离心风机或贯流风机等。通过室内风机将新风及室内气流从室内进风口510引入,经过室内侧换热器300换热后流经室内侧风道210,并从室内出风口吹出。
在本实施例中,新风入口411及新风出口412可以为矩形、圆形、长条形、椭圆形,也可以为多个微孔,在此不做具体限定。新风装置400还可以包括新风风机,新风风机被配置为将气流从新风入口411引向新风出口412。在一实施例中,新风风机设于所述新风入口411处,新风风机可以是轴流风轮、贯流风轮或离心风轮等,只要能够起到促使气流从新风入口411向新风出口412流动即可,从而保证新风装置400的送风量。在另一些实施例中,还可以使得新风入口411与室外侧风道连通,利用室外风机,将室外气流吹向新风风道413内,并从新风出口412吹出。可以理解的是,新风壳410自室外向室内延伸,也即新风壳410自室外风道壳一侧延伸至室内风道壳200一侧。如此,新风壳410位于室外风道壳一侧的新风入口411与室外连通,位于室内风道壳200一侧的新风出口412与室内连通,通过独立的新风风道413将室外气流直接引入室内。需要说明的是,新风出口412与室内连通,指的是从新风出吹出的气流直接吹向室内,而非是吹向室内侧风道210,通过室内侧风道210间接吹向室内。
本领域技术人员清楚地知道,窗式空调器本身尺寸较小,壳体500内空间有限,且空调器的室内侧和室外侧本身需要设置相应的室内侧风道210、室内换热器、室内侧风轮等室内侧结构,以及室外侧风道、室外侧换热器及室外侧风轮等室外侧结构,使得空调器前后侧能够供开设新风入口411和新风出口412的位置有限,导致新风风道413的新风入口411和新风出口412面积通常较小。在此基础上,为了满足新风换气的风量需求,保障较大的风量,通常需要提供较大的风速,而过大的风速将导致新风风道413内摩擦风阻较大、风量损失大,且容易产生噪音。
因此,为了保证新风装置400的通风量,本实施中的新风壳410具有过渡段416,过渡段416的最大通风面积大于进风段415及出风段414的最大通风面积,以使得气流在过渡段416中的最低流速小于在过渡段416两端的流速。如此,室外侧空气通过新风入口411进入进风段415时,具有较大的流速,之后流入过渡段416,由于过渡段416的通风面积较大,气流在过渡段416中的流速降低,之后再进入出风段414,最后从新风出口412流出。在本实施中,新风壳410过渡段416的设置,利用了窗式空调器室内侧风道210和室外侧风道之间的空间,局部加大了新风风道413的过风面积,降低了新风风道413中的整体风速。本领域技术人员理解,风道内的摩擦风阻与风速呈正比,通过降低风道内的整体风速能够减小整个新风风道413内的风阻,从而减少风量损失,降低噪音。
在上一实施例的基础上,过渡段416的最大通风面积与进风段415及出风段414的最大通风面积之间具有一定的比例,当过渡段416的最大通风面积过大时,可能导致风速过低,反而无法保证新风风道413的通风量。而过渡段416的最大通风面积过小,则无法起到降低风速、减小风阻和噪音的作用。当通风风量的过渡段416的最大通风面积S与进风段415的最大通风面积S1之间的比值至少是1.4,且不超过1.6,和/或,过渡段416的最大通风面积S与出风段414的最大通风面积S2之间的比值至少是3.5,且不超过4时,通风风量较大,且噪音较小,通风效果较好。
在一实施例中,请参阅图8至图11,过渡段416包括相连的扩口区416a及增压区416b, 扩口区416a与进风段415对接,增压区416b与出风段414对接,扩口区416a自进风段415向增压区416b呈渐扩设置,增压区416b自扩口区416a向出风段414呈渐缩设置。在本实施例中,过渡段416的扩口区416a自进风段415向增压区416b呈渐扩设置,则空气从进风段415流入过渡段416时,能够经过扩口区416a扩流,从而有效减小噪音。增压区416b连接扩口区416a和出风段414,因此,通过设置增压区416b使得从扩口区416a流入出风段414的气流,能够在增压区416b内进行缓冲,并且经过增压区416b的引导,驱动气流向新风出口412方向流动,使得气流的流通更加顺畅,减小风阻及风损,且避免因尺寸的骤降引起的噪音。
本领域技术人员理解,新风风道413的进风段415和出风段414最好在前后向呈相对设置,且形状尺寸越接近越好,如此能够减少新风风道413的截面变化,减少风损、但是由于窗式空调器壳体500内室内侧结构和室外侧结构的设置,进风段415和出风段414能够设置的位置有限,通常无法确保两者的形状尺寸一致。进风段415设置在空间比较充裕的室外侧,而出风段414设置在空间比较狭小的室内侧,一般而言,进风段415的过风面积较出风段414大。为了避让窗式空调器的室内侧结构和室外侧结构,在本实施例中,请参阅图8至图11,进风段415的截面高度大于出风段414的截面高度,出风段414的截面宽度大于进风段415的截面宽度。在本实施例中,新风风道413的截面指新风风道413在垂直于送风方向上的截面,截面高度指新风风道413的内壁在垂直于底盘100方向上的净尺寸。且底盘100具有沿前后向延伸的第一边沿101及第二边沿102,截面宽度指新风风道413的截面沿第一边沿101向第二边沿102方向延伸的距离,且同样为新风风道413内壁面之间的净尺寸。
一实施例中,请参阅图8至图12,过渡段416的截面高度自进风段415向出风段414至少部分地呈逐渐减小设置,且过渡段416的截面宽度自进风段415向出风段414至少部分地呈逐渐增大设置。如此,过渡段416不仅起到局部增大过风面积、降低风速、增加风量的作用。还能够以渐变的方式连接形状尺寸有差异的进风段415和出风段414,使得整个新风风道413的截面沿送风方向逐渐变化,避免因尺寸的骤变造成的局部风阻,使气流流动更加顺畅,减小风损和噪音。
本领域技术人员可以理解,新风壳410在进风段415和出风段414内的截面尺寸沿送风方向通常基本不变,但也可以根据需要局部变化。在本实施例中,进风段415和出风段414的截面高度和截面宽度,均指进风段415和出风段414与过渡段416相邻接的一端的截面的尺寸,且当该截面呈矩形时,截面高度和截面宽度为矩形各边之对应尺寸,而当截面呈不规则形状时,截面高度截面在指风道截面在垂直于底盘100方向上的最大净尺寸,截面宽度为风道截面在底盘100第一边沿101到第二边沿102方向上的最大净尺寸。
在上一实施例的基础上,进风段415和出风段414之间的截面尺寸相差越大,对送风效果越不利,而截面尺寸相差过小,则无法避开窗式空调器内部的室内侧结构和室外侧结构。可选地,请参阅图12,进风段415的截面高度为H1,出风段414的截面高度为H2,H1与H2之间的比值至少是4.1且不超过5.1;和/或,进风段415的截面宽度为L1,出风段414的截面宽度为L2,L1与L2之间的比值至少是0.48且不超过0.58。如此,能够很好地避让窗式空调器内部本身的结构,同时使得新风入口411和新风出口412面积较为接近,以保障新风风道413的通风风量。
具体地,过渡段416的顶壁421至少部分地呈向外凸的弧面设置,可选地,过渡段416内顶壁421的弯曲半径R至少是160mm,且不超过200mm。如此,引导气流沿弧形地壁 面流动,从而流动更加顺畅,风阻及风损更小,且能够降低噪音。并且弧形的顶面在新风风道413外侧还能够充分贴合与室内风道壳200,有效地利用了空调器内部空间,且更加牢固。
本领域技术人员理解,空气从新风入口411进入新风风道413内时,需要截面变化较小的进风段415进行引导,一方面能够避让室外侧结构,另一方面也能够起到整流的作用。而与进风段415连接的过渡段416也需要一定的延伸长度,才能够实现降低风速且稳定地连通进风段415和出风段414。当过渡段416延伸长度过长时,进风段415的长度无法保证,进入新风风道413内的气流无法经过充分整流,气流方向紊乱,且风速下降过快,不利于气流向新风出口412流动。而当过渡段416延伸长度过短,则无法充分降低风速,且新风风道413截面变化过快,增加风阻。为此,在本实施例中,过渡段416在新风风道413送风方向上延伸长度D2与进风段415在送风方向上的延伸长度D1之间的比值至少是1.4,且不超过1.6。如此,既能够对进入新风入口411的气流充分整流,又能够避免风道截面变化过快,同时使风速降低到合适范围,增加风量,降低风损,具有更好的通风效果。本领域技术人员可以理解,进风段415的延伸长度为新风入口411的起始端到风道截面开始变宽处的距离,而过渡段416的延伸长度为新风风道413自进风段415的末端至风道截面高度不再持续降低处的距离。
本领域技术人员可以理解,新风壳410大致呈筒状设置,且新风风道413的截面沿送风方向变化较大。新风壳410通常为注塑件,若新风壳410整体上一体成型设置,则能够具有较佳的密封性,但制造时难以脱模。为此在本实施中,为了便于制造,请参阅图15至图17,新风壳410分为多块,多块新风壳410相互拼接以形成新风风道413。如此,可以将整块的新风壳410分为形状结构更加简单多块新风壳410,每块新风壳410可以通过注塑等方式更加简单地成型,之后再将多块新风壳410加工连接,形成新风风道413,制造工艺更加简单,成本更低。
新风壳410可以在轴向上分为多块,也可以径向上分为多块,当新风壳410在轴向上分为多块时,相邻两块新风壳410之间的拼接面在新风壳410的外壁面422上形成拼接线430,拼接线430沿新风风道413的周向延伸。在本实施例中,请参阅图8和图9,新风壳410在径向上分为多块,相邻两块新风壳410之间的拼接面在新风壳410的外壁面422上形成拼接线430,拼接线430沿新风风道413的送风方向延伸。如此,能够将筒状的新风壳410在径向上分为多块,每块新风壳410都不再呈封闭的筒状,从而易于脱模。多块新风壳410可分别注塑成型后,再拼接为一体,从而方便制造。
在上一实施例的基础上,新风壳410容易在送风过程中受到气流的影响而震动,同时由于新风壳410的进风端设置在靠近室外的一侧,而新风壳410的出风段414设置在靠近室内侧风道210的一侧,导致新风壳410在送风方向上具有温差,使得新风壳410容易发生轴向上的变形。且新风风道413内的空气从外部引入,而新风风道413靠近室内侧风道210的一端贴近室内侧风道210设置,受到室内侧风道210内温度的影响,使得新风风道413内外温差较大,容易发生径向上的变形。若拼接线430呈光滑的直线设置,一方面相邻两新风壳410容易在震动和变形的作用下相互滑动,导致新风风道413漏风,另一方面,两新风壳410之间缺乏在新风风道413轴向和周向上的限位,容易在震动变形的作用下相互错位,导致漏风。为此,请参阅图9、图10及图15和图16,拼接线430沿送风方向呈弯折设置。使得相邻两新风壳410之间的拼接面在新风风道413的轴向和周向上相互限位支承,从而减少震动和变形给新风壳410之间的拼接带来的影响,提高新风风道413的密 封性。
在一实施例中,呈弯折设置的拼接线430具有沿送风方向延伸的多个直线段,以及设于多个直线段之间,以用于连接多个直线段的倾斜段,可选地倾斜段与送风方向之间的夹角至少是30度,且不超过80度,从而能够提供轴向及周向上的支撑,以及更好地适应新风壳410的变形,减少漏风情况的发生。
在一实施例中,请参阅图14和图17,相邻两块新风壳410之间具有相互拼接的第一拼接面431和第二拼接面432,第一拼接面431上设有凸台4310,第二拼接面432上设有与凸台4310相适配的凹槽,凸台4310与凹槽均沿送风方向延伸,且凸台4310对应嵌接于凹槽。在本实施例中,第一拼接面431和第二拼接面432呈相对设置,通过使第一拼接面431和第二拼接面432相互贴合,使得相邻两块新风壳410组装在一起。通过在第一拼接面431和第二拼接面432上凸台4310和凹槽4320的设置,使得相邻两块新风壳410在新风风道413的径向上错缝贴合,使得新风壳410整体在径向上发生变形时,能够减少通缝产生的可能性,从而增强新风风道413的密封性。
可选地,相邻两块新风壳410的拼接面之间设有密封装置。密封装置可以是一种密封材料,起到隔绝新风风道413内外空气流通的作用,例如可以是橡胶等。具体地还可以是一种密封胶,例如,可以是玻璃胶、聚氨酯等具有一定粘合性且具有较好变形能力的粘胶,使得新风壳410之间的粘合更加紧密,且封堵新风壳410之间的缝隙,从而提高新风风道413的密封性。
多块新风壳410拼接的方式可以有多种,例如在底板第一边沿101朝向第二边沿102的方向上分为左右两块,拼接线设于风道的顶壁421和底部。而在本实施例中,多块新风壳410包括上新风壳401和下新风壳402,上新风壳401和下新风壳402在上下向叠设。如此,使得上新风壳401和下新风壳402在重力的作用下贴合更紧密,提升密封性能,并且易于组装。
在上一实施例的基础上,请参阅图15和图16,上新风壳401和下新风壳402的侧壁上分别向外凸设有连接结构,以使得上新风壳401和下新风壳402通过连接结构连接固定。如此,相对于左右拼接的新风壳410,相邻新风壳410之间的连接处可以设置在新风壳410的侧壁上,一方面新风壳410侧边的空间相对充裕,能够很好地避开空调器的室内侧结构和室外侧结构,另一方面也易于对新风壳410进行组装。
可选地,连接结构包括螺接安装部和卡接安装部,螺接安装部和卡接安装部分设于新风壳410在送风方向上的两侧,螺接安装部包括分设于上新风壳401和下新风壳402上的上安装板11和下安装板12,上安装板11与下安装板12螺接,卡接安装部包括分设于上新风壳401和下新风壳402的卡块21和卡扣22,卡块21和卡扣22卡接。如此,在组装时可以先将上下新风壳402之间的卡块21和卡扣22卡住限位,再通过螺栓连接,既能够保证上下新风壳402之间的连接强度,又便于组装,能够提升空调器的生成效率。
在一实施例中,请参阅图2至图5,出风段415的末端形成新风出口412,新风出口412邻近室内侧换热器300的迎风面设置。通过使得新风出口412邻近室内侧换热器300的迎风面设置,则在新风除湿时,能够利用室内侧换热器300进行除湿,不用另外设置新风蒸发器,则大大降低了制造成本,提高了能效。并且从新风出口412吹出的气流能够立即流经室内侧换热器300吸入室内侧风道210内,再由室内出风口吹出,从而大部分未经除湿的新风在和室内气流充分混合前,能够先通过室内侧换热器300进行除湿,然后吹入室内,大大缩减了新风的流通路径,降低未经过除湿的新风与室内风的混合率,使得新风对室内温 度及湿度的影响更小,从而用户的使用舒适度更佳。判断窗式空调器是否需要开启除湿模式,可以通过室内的温度感温装置和湿度感知装置共同来判断。
进一步地,请参阅图2和图7,由于室内风道壳200需要足够的空间,因此,室内风道壳200及室内侧结构通常与底盘100的长度相适配,如此,为了使得整机结构更加紧凑。新风壳410安装在底盘100上,且自室外向室内一侧延伸,则新风壳410可以直接穿设室内风道壳200设置,且在新风壳410与室内风道壳200的连接处设置密封结构等实现密封。在另一实施例中,新风壳410的出风段414至少部分地位于室内风道壳200的下端与底盘100之间。使得部分新风壳410位于室内风道壳200的下方,也即使得新风壳410从室内风道壳200的下方引入至室内。如此,新风壳410不会对室内侧风道210产生干涉,且不必在室内风道壳200上穿孔及设置密封结构等,简化了制造工艺及安装难度。同时,减少了新风壳410的占用空间,使得整机结构更加紧凑,在满足新风独立出风的同时不会额外增加整机的体积。
在上一实施例的基础上,进一步地,位于室内风道壳200下方的新风壳410与室内风道壳200的下端呈间隔设置。需要说明的是,新风壳410与室内风道壳200的下端之间的间隙,应在使得室内风道壳200的重力不会传至新风壳410的情况下尽量减小,如此,能够避免漏风现象。通常,使得新风壳410与室内风道壳200的下端之间的间隙小于或等于5mm。通过使得新风壳410与室内风道壳200的下端呈间隙设置,则新风壳410不会承力,进而使得新风壳410不易损坏。在其他实施例中,也可以使得新风壳410与室内风道壳200接触或连接,如此,可以在新风壳410上设置加强筋或增加新风壳410的结构强度等,以使得新风壳410能够承受室内风道壳200的部分重力。
在一实施例中,如图1至图5所示,窗式空调器还包括安装于底盘100的壳体500,室内风道壳200及室内侧换热器300位于壳体500内,壳体500的前侧壁面设有室内进风口510。出风段414的末端位于壳体500的前侧壁面的外侧,且新风出口412邻近室内进风口510设置。
在本实施例中,壳体500上还设有室内出风口,室内出风口具体可以设置在壳体500的前侧壁面和顶面的连接处,则使得室内出风口向斜上方送风,一方面能够避免风直吹用户和天花板,另一方面使得气流能够吹得更远,从而使得混流效果更好,进而使得室内温度分布更加均匀。通过将新风壳410的出风段414设置在壳体500外侧,如此,使得室内侧换热器300可以直接贴合壳体500的前侧壁面,进而使得从室内进风口510进入的气流能够直接进入到室内侧换热器300中,提高换热效率。且出风段414设置在壳体500外,能够提高新风流通率,从而保证足够的新风量。使得新风出口412邻近室内进风口510设置,则在室内进风口510附近的新风能够快速被吸入至壳体500内进行除湿后由室内出风口吹出,未经除湿的新风不会被吹向远离窗式空调器的地方,从而不易和远离窗式空调室内机的地方的室内风混合,进而不会大幅度或几乎不会影响室内的气流。
在另一实施例中,室内侧换热器300与壳体500的前侧壁面呈间隔设置,出风段414位于室内侧换热器300与壳体500的前侧壁面之间,且新风出口412与室内侧风道210相连通。通过将出风段414设置在室内换热器与壳体500的前侧壁面之间,则可利用室内侧换热器300与壳体500的前侧壁面之间的间隙,使得出风段414吹出的新风气流能够快速吹向室内侧换热器300进行换热。也即,室内风轮能够将室内风和从新风出口412吹出的新风一起吸入室内侧风道210内,且经过室内侧风道210除湿,如此,不仅对新风进行除湿,减小了新风对室内风的影响,且使得全屋的气流仅能够进行除湿,从而增大除湿效率。 可选地,使得新风出口412朝向室内侧换热器300的迎风面设置。如此,从新风出口412吹出的未经除湿的全部气流能够直接吹向室内侧换热器300,而不会吹向室内,进而不会影响室内的温度和湿度。
新风出口412的开口方向可以有多种。若使得新风出口412朝向室内侧换热器300的迎风面或室内进风口510设置,则需要使得室内侧换热器300与壳体500的前侧壁面之间具有较大的间隙,或使得出风段414的结构较为复杂,如此,会在一定程度上增大整机体积。且新风出口412正对室内侧换热器300或壳体500的前侧壁面设置,风阻大、会降低新风循环的流速。在一实施例中,请参照1至图5,新风出口412的开口朝上设置,通过使得新风出口412朝上设置,则充分利用室内侧换热器300与壳体500的前侧壁面之间的间隙,增大新风的流通率,且使得从新风出口412吹出的新风能够迅速进入室内侧换热器300中进行除湿。从而在满足新风进风量的同时降低新风对室内气流的影响。在另一实施例中,新风出口412的开口朝前设置,使得新风向室内的方向流动,其中,大部分的新风在室内侧风轮的作用下被吸入室内侧风道210内,且经过室内侧风道210除湿。而其余新风则向前进入室内,引发室内空气流通,令用户更加明显地感觉空气新鲜,从而提升用户的体验感。
在一实施例中,请参照图2至图4,窗式空调器还包括安装于底盘100的压缩机600,新风装置400与压缩机600分设于底盘100长度方向上的两侧。由于压缩机600的占用空间大、且重量较大。通过使得新风装置400及压缩机600分设在底盘100长度方向上的两侧,一方面使得布局更加合理,整体排布更加紧凑,充分利用底盘100上的安装空间,另一方面,使得底盘100上的重量分布更加均匀,防止因重力分布不均匀造成底盘100变形,且便于整机的安装。
在一实施例中,如图3及图5所示,窗式空调器还包括安装于底盘100的壳体500,室内风道壳200及室内侧换热器300位于壳体500内,壳体500的前侧壁面设有室内进风口510,室内侧换热器300包括对应第一室内换热器310及第二室内换热器320,窗式空调器具有恒温除湿模式,在恒温除湿模式下,第一室内换热器310及第二室内换热器320的其中一者处于制热模式,另一者处于制冷模式。
在本实施例中,通过使得室内侧换热器300具有第一室内换热器310及第二室内换热器320,且在恒温除湿模式下,使得第一室内换热器310及第二室内换热器320的其中一者处于制热模式,另一者处于制冷模式。经过室内侧换热器300的气流能够同时被加热和除湿,经过加热和除湿后的混合风温度适宜,不会有凉风感受,往复循环后不仅能将所有的室内风及新风重新除湿,且使得窗式空调器在除湿模式下整个室内温度不会下降,能够达到对全屋恒温除湿的目的。同时,除湿时能够充分利用室内侧换热器300,不用另外设置新风冷凝器及新风蒸发器,则大大降低了制造成本。
在一实施例中,请参照图5,第一室内换热器310与第二室内换热器320沿室内侧风道210的进风方向层叠设置。当第一室内换热器310及第二室内换热器320沿室内侧风道210的进风方向层叠设置时,从室内进风口510进入的室内风或新风,先经过第一室内换热器310除湿/加热,再经过第二室内换热器320加热/除湿,室内风机将经过加热除湿后的气流从室内出风口送入室内,实现全屋恒温除湿。使得第一室内换热器310和第二室内换热器320沿进风方向层叠设置,则从室内进风口510吹出的全部气流能够被同时加热,随后同时被除湿,从而无需使得加热和除湿分为两股不同的气流,减少了混合步骤,使得从室内出风口吹出的气流温度及湿度更加均匀、舒适。
在另一实施中,请参照图3,第一室内换热器310及第二室内换热器320在垂直室内侧风道210的进风方向上呈并排设置,以使从室内进风口510进入的气流一部分吹向第一室内换热器310,另一部分吹向第二室内换热器320。
在本实施例中,室内侧风道210的进风方向通常为前后方向。则垂直进风方向的方向可为左右和上下方向。如此,第一室内换热器310及第二室内换热器320可以呈上下排布或左右排布,从室内进风口510进入的新风或室内风,部分经过第一室内换热器310加热/除湿,另一部分经过第二室内换热器320除湿/加热,然后在室内侧风道210内混合后形成温度适宜的干燥气流,再由室内风机将恒温的干燥气流从室内出风口送入室内,实现全屋恒温除湿。当第一室内换热器310及第二室内换热器320呈上下排布设置时,可以仅通过设置一个室内换热器,而将其上部划分为第一室内换热器310,将其下部划分为第二室内换热器320,通过控制阀控制上部换热器及下部换热器中的其中一者处于换热模式,另一者处于制冷模式。如此,能够大大减小室内侧换热器300的占用空间,从而使得整体结构更加紧凑,整机体积更小。通过使得第一室内换热器310及第二室内换热器320沿上下或左右排布,能够大大减小室内侧换热器300的厚度,充分利用壳体500高度方向的空间,从而减少室内侧换热器300的占用空间,减小整机体积和重量。
在一实施例中,如图18所示,窗式空调器还包括室外换热器700、冷媒循环管路、第一阀810及第二阀820,窗式空调器的压缩机600的冷媒出口设置有排出管610,冷媒入口设置有吸入管620,排出管610、室外换热器700、第一室内换热器310、第二室内换热器320、吸入管620通过冷媒循环管路依次连通,第一阀810串接在室外换热器700与第一室内换热器310之间的冷媒循环管路上,第二阀820串接在第一室内换热器310与第二室内换热器320之间的冷媒循环管路上。
在本实施例中,压缩机600可以为变频式压缩机600或定频式压缩机600。通过使得压缩机600为变频式压缩机600,能够更佳的实现制冷及恒温除湿双系统,节约了一个压缩机600,从而使得整体结构更加简单,降低成本和功率,大大提高了能效。第一阀810及第二阀820可以为电磁阀、电子膨胀阀或节流阀,能够控制其所在配管的通断或流量。通过设置第一阀810及第二阀820,能够控制冷媒是否流入第一室内换热器310及第二室内换热器320,从而控制第一室内换热器310及第二室内换热器320是否参与制冷或制热。
当需要开启除湿模式时,压缩机600流出的高温冷媒进入到室外换热器700(冷凝器),从而室外换热器700出来的高温冷媒到达第一阀810,此时第一阀810可以全部或大部分打开,让室外换热器700的温度等于或略小于第一室内换热器310的温度,此时第一室内换热器310为冷凝器,起到加热气流的作用,然后流出第一室内换热器310的次高温冷媒到达第二阀820,第二阀820部分打开,起到毛细管节流的作用,节流后冷媒变为低温冷媒,流过第二室内换热器320,此时第二室内换热器320为蒸发器,起到降温的作用,也即除湿,从第二室内换热器320流出的冷媒再回到压缩机600。如此,新风和室内风混合后部分经过第一室内换热器310加热,部分经过第二室内换热器320降温除湿,进入室内侧风道210混合后形成温度适宜的干燥气流,随后由室内出风口吹出,从而达到室内即除湿又不会吹冷风的目的,且除湿效果更佳。当然,第一室内换热器310也可以作为蒸发器,则第二室内换热器320作为冷凝器,同样可以实现恒温除湿的目的。
当不需要除湿,仅需开启全制冷模式时,使得压缩机600流出的高温冷媒进入到室外换热器700(冷凝器),从而室外换热器700出来的高温冷媒到达第一阀810,此时第一阀810小部分打开起到毛细节流的作用,让第一室内换热器310的温度大大小于室外换热 器700的温度,此时第一室内换热器310为蒸发器,起到降温的作用,然后流出第一室内换热器310的低温冷媒到达第二阀820,第二阀820完全或大部分开启,起到完全通过或者再节流的作用,通过第二阀820的冷媒流过第二室内换热器320,此时第二室内换热器320为蒸发器,起到二次降温的作用,从第二室内换热器320流出的冷媒再回到压缩机600。如此,新风和室内风混合后经过第一室内换热器310降温,然后经过第二室内换热器320二次降温,进入室内侧风道210后由室内出风口吹出,从而能达到室内快速降温的目的。
在一实施例中,如图19所示,冷媒循环管路包括连接排出管610与室外换热器700的第一配管830,以及连接吸入管620与第二室内换热器320的第二配管840。窗式空调器还包括切换装置900,切换装置900串接于第一配管830及第二配管840上,切换装置900具有第一切换状态及第二切换状态。在第一切换状态下,连接于切换装置900两端的第一配管830导通,连接于切换装置900两端的第二配管840导通。在第二切换状态下,排出管610和切换装置900之间的第一配管830与切换装置900和第二室内换热器320之间的第二配管840导通,室外换热器700和切换装置900之间的第一配管830与吸入管620和切换装置900之间的第二配管840导通。
在本实施例中,可以理解的是,窗式空调器还具有控制器,控制器与第一阀810、第二阀820及切换装置900均电连接,从而控制切换装置900的切换状态及各个阀的开关及开度。切换装置900可以为四通阀或其他使得冷媒不会同时进入室外换热器700和第二室内换热器320的切换装置900。通过切换装置900,能够使得空调器的功能增加。可以理解的是,切换装置900串接在第一配管830及第二配管840上,也即切换装置900的两端连通第一配管830,两端连通第二配管840。
在切换装置900处于第一切换状态时,压缩机600的排出管610流出的高温冷媒通过第一配管830流向室外换热器700,然后依次流入第一室内换热器310及第二室内换热器320,最后经第二配管840及吸入管620流回压缩机600。通过控制第一阀810及第二阀820的开度,能够控制第一室内换热器310为制冷状态或制热状态,从而能够控制整个系统处于恒温除湿模式或全制冷系统。第一阀810及第二阀820控制第一室内换热器310是处于制冷状态或制热状态,与上述没有切换状态的实施例相似,在此不做赘述。
在切换装置900处于第二切换状态时,压缩机600的排出管610流出的高温冷媒通过第一配管830及第二配管840流入第二室内换热器320,随后流向第一室内换热器310及室外换热器700,最后通过第一配管830、第二配管840及吸入管620流回压缩机600。可以通过控制第一阀810及第二阀820的开度,进而控制第一室内换热器310是处于制冷状态或制热状态,从而控制整个系统是处于恒温除湿模式还是处于全制热状态。
当开启全制热模式时,切换装置900处于第二切换状态,压缩机600的排出管610流出的高温冷媒通过第一配管830及第二配管840流入第二室内换热器320,此时第二室内换热器320起到冷凝器加热的作用,从而第二室内换热器320出来的高温冷媒到达第二阀820,此时第二阀820全部打开,高温冷媒继续流出到第一室内换热器310,第一室内换热器310起到再次加热的作用,次高温冷媒到达第一阀810后,可使得第一阀810起到毛细管节流的作用,节流后冷媒变为低温冷媒,流经室外换热器220后回到压缩机600。如此,能实现室内快速制热的目的。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (19)

  1. 一种窗式空调器,其中,包括:
    底盘;
    新风装置,安装于所述底盘,且被配置为向室内输送新风,所述新风装置包括自室外向室内延伸的新风壳,所述新风壳设有与室外连通的新风入口、与室内连通的新风出口及连通所述新风入口及所述新风出口的新风风道,所述新风壳具有邻近所述新风入口的进风段、邻近所述新风出口的出风段、以及设于所述进风段与所述出风段之间的过渡段,所述过渡段的最大通风面积大于所述进风段及所述出风段的最大通风面积,以使得气流在所述过渡段中的最低流速小于在所述过渡段两端的流速。
  2. 如权利要求1所述的窗式空调器,其中,所述过渡段的最大通风面积S与所述进风段的最大通风面积S1之间的比值至少是1.4,且不超过1.6;和/或,
    所述过渡段的最大通风面积S与所述出风段的最大通风面积S2之间的比值至少是3.5,且不超过4。
  3. 如权利要求1所述的窗式空调器,其中,所述过渡段包括相连的扩口区及增压区,所述扩口区与所述进风段对接,所述增压区与所述出风段对接,所述扩口区自所述进风段向所述增压区呈渐扩设置,所述增压区自所述扩口区向所述出风段呈渐缩设置;或者,
    所述过渡段在所述新风风道送风方向上延伸长度D2与所述进风段在所述送风方向上的延伸长度D1之间的比值至少是1.4,且不超过1.6;或者,
    所述新风装置还包括新风风机,所述新风风机设于所述新风入口处。
  4. 如权利要求1所述的窗式空调器,其中,所述底盘具有沿前后向延伸的第一边沿及第二边沿,所述新风风道的截面沿所述第一边沿向所述第二边沿方向延伸的距离为截面宽度,所述进风段的截面高度大于所述出风段,所述出风段的截面宽度大于所述进风段,所述过渡段的截面高度自所述进风段向所述出风段至少部分地呈逐渐减小设置,且所述过渡段的截面宽度自所述进风段向所述出风段至少部分地呈逐渐增大设置。
  5. 如权利要求4所述的窗式空调器,其中,所述进风段的截面高度为H1,所述出风段的截面高度为H2,H1与H2之间的比值至少是4.1,且不超过5.1;和/或,
    所述进风段的截面宽度为L1,所述出风段的截面宽度为L2,L1与L2之间的比值至少是0.48,且不超过0.58。
  6. 如权利要求4所述的窗式空调器,其中,所述过渡段的顶壁至少部分地呈向外凸的弧面设置。
  7. 如权利要求6所述的窗式空调器,其中,所述过渡段内顶壁的弯曲半径R至少是160mm,且不超过200mm。
  8. 如权利要求1所述的窗式空调器,其中,所述新风壳包括多块,所述多块新风壳相互拼接以形成所述新风风道。
  9. 如权利要求8所述的窗式空调器,其中,相邻两块所述新风壳之间的拼接面在所述新风壳的外壁面上形成拼接线,所述拼接线沿所述新风风道的送风方向延伸;或者,
    相邻两块所述新风壳之间的拼接面在所述新风壳的外壁面上形成拼接线,所述拼接线沿所述新风风道的送风方向延伸,所述拼接线沿所述送风方向呈弯折设置;或者,
    相邻两块所述新风壳之间的拼接面在所述新风壳的外壁面上形成拼接线,所述拼接线沿所述新风风道的送风方向延伸,所述拼接线沿所述送风方向呈弯折设置,所述拼接线具有沿所述送风方向延伸的多个直线段,以及设于所述多个直线段之间的倾斜段;或者,
    相邻两块所述新风壳之间的拼接面在所述新风壳的外壁面上形成拼接线,所述拼接线沿所述新风风道的送风方向延伸,所述拼接线沿所述送风方向呈弯折设置,所述拼接线具有沿所述送风方向延伸的多个直线段,以及设于所述多个直线段之间的倾斜段,所述倾斜段与所述送风方向之间的夹角不至少是30度,且不超过80度。
  10. 如权利要求8所述的窗式空调器,其特征在于,相邻两块所述新风壳之间具有相互拼接的第一拼接面和第二拼接面,所述第一拼接面上设有凸台,所述第二拼接面上设有与所述凸台相适配的凹槽,所述凸台与所述凹槽均沿所述送风方向延伸,且所述凸台对应嵌接于所述凹槽;或者,
    相邻两块所述新风壳的拼接面之间设有密封装置;或者,
    所述多块新风壳包括上新风壳和下新风壳,所述上新风壳和所述下新风壳在上下向叠设;或者,
    所述多块新风壳包括上新风壳和下新风壳,所述上新风壳和所述下新风壳在上下向叠设,其中,所述上新风壳和所述下新风壳的侧壁上分别向外凸设有连接结构,以使得所述上新风壳和所述下新风壳通过所述连接结构连接固定;或者,
    所述多块新风壳包括上新风壳和下新风壳,所述上新风壳和所述下新风壳在上下向叠设,其中,所述上新风壳和所述下新风壳的侧壁上分别向外凸设有连接结构,以使得所述上新风壳和所述下新风壳通过所述连接结构连接固定,所述连接结构包括螺接安装部和卡接安装部,所述螺接安装部和所述卡接安装部分设于所述新风壳在送风方向上的两侧,所述螺接安装部包括分设于所述上新风壳和所述下新风壳上的上安装板和下安装板,所述上安装板与所述下安装板螺接,所述卡接安装部包括分设于所述上新风壳和所述下新风壳的卡块和卡扣,所述卡块和所述卡扣卡接。
  11. 如权利要求1至10任意一项所述的窗式空调器,其中,所述窗式空调器还包括室内风道壳和室内侧换热器,所述室内风道壳安装于所述底盘的前侧,所述室内风道壳内形成有室内侧风道,所述室内侧换热器安装于所述底盘,且对应所述室内侧风道的进风端设置,所述出风段的末端形成所述新风出口,所述新风出口邻近所述室内侧换热器的迎风面设置。
  12. 如权利要求11所述的窗式空调器,其中,所述新风壳的所述出风段至少部分地位于所述室内风道壳的下端与所述底盘之间。
  13. 如权利要求11所述的窗式空调器,其中,所述窗式空调器还包括安装于所述底盘的壳体,所述室内风道壳及所述室内侧换热器位于所述壳体内,所述壳体的前侧壁面设有室内进风口;
    所述出风段的末端位于所述壳体的前侧壁面的外侧,且所述新风出口邻近所述室内进风口设置;或者,
    所述室内侧换热器与所述壳体的前侧壁面呈间隔设置,所述出风段的末端位于所述室内侧换热器与所述壳体的前侧壁面之间,且所述新风出口与所述室内侧风道相连通。
  14. 如权利要求13所述的窗式空调器,其中,所述新风出口的开口朝上设置;或者,
    所述新风出口的开口朝前设置。
  15. 如权利要求11所述的窗式空调器,其中,所述窗式空调器还包括安装于所述底盘的壳体,所述室内风道壳及所述室内侧换热器位于所述壳体内,所述壳体的前侧壁面设有室内进风口,所述室内侧换热器包括对应所述室内进风口设置的第一室内换热器及第二室内换热器,所述窗式空调器具有恒温除湿模式,在所述恒温除湿模式下,所述第一室内换 热器及所述第二室内换热器的其中一者处于制热模式,另一者处于制冷模式。
  16. 如权利要求15所述的窗式空调器,其中,所述第一室内换热器及所述第二室内换热器沿所述室内侧风道的进风方向层叠设置;或者,
    所述第一室内换热器及所述第二室内换热器在垂直所述室内侧风道的进风方向上呈并排设置,以使从所述室内进风口进入的气流一部分吹向所述第一室内换热器,另一部分吹向所述第二室内换热器。
  17. 如权利要求16所述的窗式空调器,其中,所述窗式空调器还包括室外换热器、冷媒循环管路、第一阀及第二阀;
    所述窗式空调器的压缩机的冷媒出口设置有排出管,冷媒入口设置有吸入管;
    所述排出管、所述室外换热器、所述第一室内换热器、所述第二室内换热器、所述吸入管通过所述冷媒循环管路依次连通;
    所述第一阀串接在所述室外换热器与所述第一室内换热器之间的冷媒循环管路上,所述第二阀串接在所述第一室内换热器与所述第二室内换热器之间的冷媒循环管路上。
  18. 如权利要求17所述的窗式空调器,其中,所述冷媒循环管路包括连接所述排出管与所述室外换热器的第一配管,以及连接所述吸入管与所述第二室内换热器的第二配管;窗式空调器还包括切换装置;
    所述切换装置串接于所述第一配管及所述第二配管上,所述切换装置具有第一切换状态及第二切换状态;
    在所述第一切换状态下,连接于所述切换装置两端的所述第一配管导通,连接于所述切换装置两端的所述第二配管导通;
    在所述第二切换状态下,所述排出管和所述切换装置之间的所述第一配管与所述切换装置和所述第二室内换热器之间的所述第二配管导通,所述室外换热器和所述切换装置之间的所述第一配管与所述吸入管和所述切换装置之间的所述第二配管导通。
  19. 如权利要求18所述的窗式空调器,其中,所述窗式空调器还具有控制器,所述控制器与所述切换装置、所述第一阀及所述第二阀均电连接;
    在所述窗式空调器处于恒温除湿模式时,所述控制器用以控制所述切换装置处于第一切换状态,且用以控制所述第一阀完全打开、所述第二阀部分打开;和/或,
    所述窗式空调器还具有全制冷模式,在所述窗式空调器处于全制冷模式时,所述控制器用以控制所述切换装置处于第一切换状态,且用以控制所述第一阀部分打开、所述第二阀完全打开;和/或,
    所述窗式空调器还具有全制热模式,在所述窗式空调器处于全制热模式时,所述控制器用以控制所述切换装置处于第二切换状态,且用以控制所述第二阀完全打开、所述第一阀部分打开。
PCT/CN2020/078637 2020-02-01 2020-03-10 窗式空调器 WO2021151260A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202020159431.3 2020-02-01
CN202010079434.0A CN113203131A (zh) 2020-02-01 2020-02-01 窗式空调器
CN202020159431.3U CN211650517U (zh) 2020-02-01 2020-02-01 窗式空调器
CN202020150174.7U CN211650512U (zh) 2020-02-01 2020-02-01 窗式空调器
CN202010079434.0 2020-02-01
CN202020150174.7 2020-02-01

Publications (1)

Publication Number Publication Date
WO2021151260A1 true WO2021151260A1 (zh) 2021-08-05

Family

ID=77078021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078637 WO2021151260A1 (zh) 2020-02-01 2020-03-10 窗式空调器

Country Status (1)

Country Link
WO (1) WO2021151260A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233346A (ja) * 1995-02-24 1996-09-13 Matsushita Seiko Co Ltd 消音装置
JP2004034872A (ja) * 2002-07-04 2004-02-05 Inoac Corp ダクトおよびその成形方法
CN203810665U (zh) * 2014-04-21 2014-09-03 天津亚炤科技发展有限公司 中央空调风道
CN104154352A (zh) * 2013-05-14 2014-11-19 株式会社Jsp 管道
CN107044724A (zh) * 2017-06-14 2017-08-15 珠海格力电器股份有限公司 换热风道结构及空调机组
CN109579147A (zh) * 2018-11-29 2019-04-05 广东美的制冷设备有限公司 窗式空调器
CN211650508U (zh) * 2020-02-01 2020-10-09 广东美的制冷设备有限公司 新风装置及窗式空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233346A (ja) * 1995-02-24 1996-09-13 Matsushita Seiko Co Ltd 消音装置
JP2004034872A (ja) * 2002-07-04 2004-02-05 Inoac Corp ダクトおよびその成形方法
CN104154352A (zh) * 2013-05-14 2014-11-19 株式会社Jsp 管道
CN203810665U (zh) * 2014-04-21 2014-09-03 天津亚炤科技发展有限公司 中央空调风道
CN107044724A (zh) * 2017-06-14 2017-08-15 珠海格力电器股份有限公司 换热风道结构及空调机组
CN109579147A (zh) * 2018-11-29 2019-04-05 广东美的制冷设备有限公司 窗式空调器
CN211650508U (zh) * 2020-02-01 2020-10-09 广东美的制冷设备有限公司 新风装置及窗式空调

Similar Documents

Publication Publication Date Title
CN1327162C (zh) 空调系统
CN111288558A (zh) 室内机、空调器及空调器的控制方法
CN103807916A (zh) 空调器
US20060037354A1 (en) Indoor unit of air conditioner
CN106152442A (zh) 空调器的导风组件及空调器
CN113203131A (zh) 窗式空调器
CN211822749U (zh) 室内机、空调器
CN211650517U (zh) 窗式空调器
WO2021151260A1 (zh) 窗式空调器
CN208566884U (zh) 壁挂式空调室内机和空调器
WO2023197569A1 (zh) 立式空调室内机
CN215808848U (zh) 空调器室内机
CN211650516U (zh) 窗式空调器
CN207094827U (zh) 空调室内机及空调器
CN215001914U (zh) 空调器室内机
CN108592219A (zh) 壁挂式空调室内机和空调器
CN204943705U (zh) 一种混流空调
CN113203129A (zh) 窗式空调器
WO2021151267A1 (zh) 窗式空调器
WO2017049447A1 (zh) 一种空调混合出风室内机
WO2021103302A1 (zh) 窗式空调器
CN211650515U (zh) 窗式空调器
CN207094859U (zh) 空调室内机和空调一体机
US11703234B2 (en) Window air conditioner
WO2021151262A1 (zh) 窗式空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917173

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20917173

Country of ref document: EP

Kind code of ref document: A1