WO2021151262A1 - 窗式空调器 - Google Patents

窗式空调器 Download PDF

Info

Publication number
WO2021151262A1
WO2021151262A1 PCT/CN2020/080456 CN2020080456W WO2021151262A1 WO 2021151262 A1 WO2021151262 A1 WO 2021151262A1 CN 2020080456 W CN2020080456 W CN 2020080456W WO 2021151262 A1 WO2021151262 A1 WO 2021151262A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
fresh air
indoor
air conditioner
Prior art date
Application number
PCT/CN2020/080456
Other languages
English (en)
French (fr)
Inventor
周俊华
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020150221.8U external-priority patent/CN212319923U/zh
Priority claimed from CN202010078313.4A external-priority patent/CN113203128A/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021151262A1 publication Critical patent/WO2021151262A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • F24F1/027Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle mounted in wall openings, e.g. in windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/03Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements
    • F24F1/031Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements penetrating a wall or window

Definitions

  • This application relates to the technical field of air conditioners, in particular to a window air conditioner.
  • Window air conditioners are usually installed on the window frame of the wall to cool or heat the indoor environment. With people's demand for healthy air, a window air conditioner with fresh air function has emerged.
  • This type of window air conditioner usually adds a fresh air casing to the casing to introduce fresh air from the outdoor environment into the indoor environment through the fresh air casing.
  • this conventional fresh air casing is usually designed in a cylindrical shape. With the flow of airflow, the air pressure at the outlet section of the fresh air casing gradually decreases, which reduces the wind speed of the fresh air, which in turn leads to a smaller amount of fresh air.
  • the main purpose of this application is to propose a window air conditioner, which aims to increase the wind speed of the fresh air, thereby increasing the air volume of the fresh air.
  • the window air conditioner includes a casing and a fresh air casing, the casing includes an indoor part and an outdoor part, and the fresh air casing is installed in the casing.
  • the fresh air casing is configured with a fresh air inlet located in the outdoor part and a fresh air outlet located in the indoor part, and a fresh air duct connecting the fresh air inlet and the fresh air outlet is formed inside the fresh air casing, so
  • the fresh air duct is suitable for sending air from an outdoor environment into an indoor environment.
  • the fresh air duct includes an air inlet section corresponding to the fresh air inlet and an air outlet section corresponding to the fresh air outlet, and the ventilation cross-sectional area of the air outlet section is smaller than that of the air inlet section. Sectional area.
  • the window-type air conditioner further includes an indoor heat exchanger installed in the indoor part;
  • the air outlet section includes a first air outlet section connected to the air inlet section and extending in a horizontal direction, and A second air outlet connected to the first air outlet and extending longitudinally;
  • the part of the first air outlet is located below the indoor heat exchanger, and the part of the second air outlet is located on the air inlet side of the indoor heat exchanger.
  • the portion of the fresh air casing corresponding to the first air outlet is provided in a flat shape, so that the portion of the fresh air casing corresponding to the first air outlet is embedded in the chassis of the casing and the Between the bottom of the indoor heat exchanger.
  • the casing is configured with an indoor air inlet on the front of the indoor part, and an outdoor air outlet is configured on the top surface corresponding to the indoor part; the fresh air outlet of the fresh air casing is configured at the second On the side wall of the air outlet, the fresh air outlet is suitable for supplying air to the air inlet side of the indoor heat exchanger or to the indoor air inlet.
  • the air inlet section includes an air inlet part arranged in a cylindrical shape, and an air guide part connecting the air inlet part and the air outlet section, and the ventilation cross section of the air guide part is from the inlet
  • the wind part is arranged in a tapered shape toward the wind outlet section.
  • the fresh air shell includes a bottom shell and a shell cover covering the bottom shell, the top wall of the shell cover is configured with an air guiding wall at a portion corresponding to the air guiding portion, and the air guiding wall is self-contained
  • the top and bottom are arranged in an arc shape, so that the air guiding part is arranged in a tapered shape.
  • the shell cover is provided with a convex hull protruding upward on the part corresponding to the air outlet section, the convex hull is close to the air guide wall, and the shell cover is located far from the convex hull.
  • An installation groove for corresponding installation of the indoor heat exchanger of the window air conditioner is formed on one side of the air guiding part.
  • the shell cover is formed with an expansion groove on the inner side of the convex hull, and the expansion groove is butted with the air guide portion.
  • the chassis structure is formed with a water receiving groove corresponding to the indoor part of the cabinet, and the bottom shell of the fresh air housing is formed with a protrusion at a position corresponding to the water receiving groove, and the protrusion is connected to the water receiving groove.
  • the water receiving grooves are matched correspondingly.
  • the chassis structure is formed with a sink groove corresponding to the outdoor heat exchanger of the window air conditioner, and the chassis is formed with a first boss between the sink groove and the water receiving tank, so
  • the bottom shell of the fresh air housing is formed with a first recess at a position corresponding to the first boss, and the first recess corresponds to the first boss.
  • the chassis is further configured with a second boss between one side of the sink and the first boss, the second boss is higher than the first boss, and the fresh air
  • the bottom shell of the casing is formed with a second recess at a position corresponding to the sink, the second recess is supported by the second boss, and the bottom shell of the fresh air casing is spaced from the bottom of the sink open.
  • a support frame is protrudingly provided on the lower surface of the second concave portion, and the support frame is suitable for holding the bottom of the sink groove to support the fresh air casing.
  • the window air conditioner further includes a water receiving pan installed in the water receiving tank, one end of the water receiving pan extends above the fresh air casing and is connected to the upper surface of the fresh air casing. Corresponding cooperation.
  • the window-type air conditioner further includes a backing plate arranged in the water receiving tank, the backing plate is located on one side of the fresh air casing and is connected to the fresh air casing located in the water receiving groove. The part is flush with the part of the fresh air shell located in the water receiving groove to support the water receiving pan.
  • the water receiving pan is configured with a drainage groove, and the drainage groove extends from the water receiving pan toward the sink groove for draining water into the sink groove of the chassis.
  • the window air conditioner further includes a compressor, a switch, and a dehumidification heat exchanger, and the compressor, the switch, the outdoor heat exchanger, the indoor heat exchanger, and the dehumidification heat exchanger adopt The refrigerant pipe is connected to form a refrigerant circulation loop; wherein the dehumidification heat exchanger is arranged on the air inlet side of the indoor heat exchanger.
  • the front of the cabinet is provided with an indoor air inlet
  • the window air conditioner further includes an indoor side heat exchanger
  • the indoor heat exchanger includes a first indoor heat exchange provided corresponding to the indoor air inlet
  • a second indoor heat exchanger the window air conditioner has a constant temperature dehumidification mode, and in the constant temperature dehumidification mode, one of the first indoor heat exchanger and the second indoor heat exchanger is in Heating mode, the other is in cooling mode.
  • the first indoor heat exchanger and the second indoor heat exchanger are stacked along the air inlet direction of the indoor air inlet; or,
  • the first indoor heat exchanger and the second indoor heat exchanger are arranged side by side in an air inlet direction perpendicular to the indoor air inlet.
  • the window type air conditioner further includes an outdoor heat exchanger, a refrigerant circulation pipeline, a first valve and a second valve;
  • the refrigerant outlet of the compressor of the window type air conditioner is provided with a discharge pipe, and the refrigerant inlet is provided There is a suction pipe;
  • the discharge pipe, the outdoor heat exchanger, the first indoor heat exchanger, the second indoor heat exchanger, and the suction pipe are sequentially connected through the refrigerant circulation pipeline;
  • the first valve is connected in series on the refrigerant circulation pipeline between the outdoor heat exchanger and the first indoor heat exchanger, and the second valve is connected in series between the first indoor heat exchanger and the second indoor heat exchanger.
  • the refrigerant circulation pipeline includes a first pipe connecting the discharge pipe and the outdoor heat exchanger, and a second pipe connecting the suction pipe and the second indoor heat exchanger; a window type
  • the air conditioner also includes a switching device;
  • the switching device is serially connected to the first pipe and the second pipe, and the switching device has a first switching state and a second switching state;
  • the first pipe connected to both ends of the switching device is conducted, and the second pipe connected to both ends of the switching device is conducted;
  • the first pipe between the discharge pipe and the switching device is connected to the second pipe between the switching device and the second indoor heat exchanger
  • the first pipe between the outdoor heat exchanger and the switching device is connected to the second pipe between the suction pipe and the switching device.
  • the window air conditioner further has a controller, and the controller is electrically connected to the switching device, the first valve, and the second valve;
  • the controller When the window air conditioner is in a constant temperature dehumidification mode, the controller is used to control the switching device to be in a first switching state, and to control the first valve to be fully opened and the second valve to be partially opened; and /or,
  • the window air conditioner also has a full cooling mode.
  • the controller is used to control the switching device to be in a first switching state, and to control the first valve Partially opened, the second valve is fully opened; and/or,
  • the window air conditioner also has a full heating mode.
  • the controller is used to control the switching device to be in a second switching state, and to control the first
  • the second valve is fully opened and the first valve is partially opened.
  • the ventilation cross-sectional area of the outlet section of the fresh air duct is smaller than the ventilation cross-sectional area of its inlet section, so that the airflow enters the air outlet section from the inlet section to the outlet section.
  • the air flow is squeezed and compressed into the outlet section, and the fresh air in the outlet section is squeezed to increase the air pressure.
  • the fresh air with higher air pressure flows quickly to the fresh air outlet, making the fresh air obtain a higher wind speed, and then quickly from the fresh air outlet Blow out, effectively increase the volume of fresh air.
  • Fig. 1 is a schematic structural diagram of an embodiment of a window air conditioner according to the present application
  • Figure 2 is a front view of a partial structure of the window air conditioner in Figure 1;
  • Figure 3 is a rear view of the partial structure of the window air conditioner in Figure 2;
  • Figure 4 is a schematic diagram of the assembly of the fresh air shell and the chassis of the window-type air conditioner of the application;
  • Fig. 5 is a schematic diagram of the assembly structure of the fresh air casing and the chassis in Fig. 4 from another perspective;
  • Figure 6 is a schematic diagram of the assembly of the fresh air shell, the chassis and the water tray in Figure 5;
  • Figure 7 is a top view of the assembly structure of the fresh air casing, the chassis, and the water tray in Figure 6;
  • Figure 8 is a cross-sectional view taken along line I-I in Figure 7;
  • Fig. 9 is a schematic diagram of the structure of the fresh air casing of the window-type air conditioner of this application.
  • Fig. 10 is a schematic diagram of another view of the fresh air casing in Fig. 9;
  • Fig. 11 is a schematic diagram of another perspective of the fresh air casing in Fig. 9;
  • FIG. 12 is a schematic structural diagram of still another embodiment of a window-type air conditioner according to the present application.
  • Fig. 13 is a schematic structural diagram of another embodiment of a window air conditioner according to the present application.
  • the directional indication is only used to explain that it is in a specific posture ( As shown in the figure), the relative positional relationship and movement conditions of the components under the following, if the specific posture changes, the directional indication will also change accordingly.
  • FIGS 1 to 13 are drawings of embodiments of a window air conditioner according to the present application.
  • the window type air conditioner is made by integrating an indoor unit and an outdoor unit. Environmental cooling or heating.
  • the window air conditioner can also introduce outdoor fresh air into the room, and the wind speed at which it introduces the fresh air is relatively high, and the fresh air volume is relatively large.
  • embodiments of the window air conditioner will be introduced and explained.
  • the window type air conditioner 100 includes a casing 110 and a fresh air casing 200, and the casing 110 includes an indoor part 101 and an outdoor part 102, and the fresh air
  • the casing 200 is installed in the casing 110.
  • the fresh air casing 200 is constructed with a fresh air inlet 201 located in the outdoor part 102 and a fresh air outlet 202 located in the indoor part 101.
  • a fresh air duct connecting the fresh air inlet 201 and the fresh air outlet 202 is formed inside the fresh air casing 200.
  • the fresh air duct It is suitable for sending air from outdoor environment into indoor environment.
  • the fresh air duct includes an inlet section 230 corresponding to the fresh air inlet 201 and an outlet section 240 corresponding to the fresh air outlet 202.
  • the ventilation cross-sectional area of the outlet section 240 is smaller than that of the inlet section 230. .
  • the casing 110 has a front surface, a back surface, a side surface, and a top surface.
  • the top surface can be a plane designed entirely horizontally, or it can be composed of a plane and an inclined surface connected to the front end of the plane.
  • the front surface of the cabinet 110 is provided with an indoor air inlet 103, and the front end (ie, the inclined surface) of the top surface of the cabinet 110 is provided with an indoor air outlet 104.
  • the back of the casing 110 is provided with an outdoor air inlet, and the side of the casing 110 is provided with an outdoor air outlet.
  • the window air conditioner 100 further includes an indoor air duct shell 160 and an outdoor air duct shell 170.
  • the indoor air duct shell 160 is installed in the indoor part 101 of the cabinet 110 to form an indoor air duct connecting the indoor air inlet 103 and the indoor air outlet 104.
  • the outdoor air duct shell 170 is installed on the outdoor part 102 of the cabinet 110 to form an outdoor air duct connecting the outdoor air inlet and the outdoor air outlet.
  • the window air conditioner 100 further includes an indoor heat exchanger 120 and an outdoor heat exchanger 130.
  • the indoor heat exchanger 120 is installed in the indoor part 101 of the casing 110 and corresponds to the indoor air inlet 103; the outdoor heat exchanger 130 is installed in the outdoor part 102 of the casing 110 and corresponds to the outdoor air inlet.
  • the window air conditioner 100 also includes an indoor fan 140 and an outdoor fan 150.
  • the indoor fan 140 is installed in the indoor air duct to drive air from the indoor air outlet into the indoor air duct, and then exchange heat with the indoor heat exchanger 120 and blow it out from the indoor air outlet.
  • the outdoor fan 150 is installed in the outdoor air duct to drive air from the outdoor wind into the outdoor air duct, and then exchange heat with the outdoor heat exchanger 130 and blow it out from the outdoor air outlet.
  • the fresh air casing 200 can be installed on the left or right side of the casing 110, and the fresh air casing 200 extends from the outdoor part 102 of the casing 110 to the indoor part 101 thereof.
  • the window air conditioner 100 turns on the fresh air mode
  • the fresh air in the outdoor environment enters from the fresh air inlet 201 of the fresh air shell 200, and then flows through the air inlet section 230 and the air outlet section 240 of the fresh air duct to the fresh air outlet 202, and finally from The fresh air outlet 202 blows out.
  • the air blown from the fresh air outlet 202 can be directly blown out from the indoor air inlet 103 of the casing 110 to the indoor room; or, it can also be blown from the air blown out from the fresh air outlet 202
  • heat exchange or dehumidification by the indoor heat exchanger 120 is blown out from the indoor air outlet 104 to the indoor environment.
  • the ventilation cross-sectional area of the outlet section 240 of the fresh air duct is smaller than the ventilation cross-sectional area of the inlet section 230, so that the air flow enters from the inlet section 230 to the outlet section 240.
  • the airflow is squeezed and compressed into the outlet section 240, and the fresh air in the outlet section 240 is squeezed to increase the air pressure.
  • the fresh air with higher air pressure quickly flows to the fresh air outlet 202, so that the fresh air gets higher
  • the wind speed is then quickly blown out from the fresh air outlet 202, effectively increasing the fresh air volume.
  • the ventilation cross-sectional area of the air outlet section 240 of the fresh air duct is smaller than the ventilation cross-sectional area of the air inlet section 230 thereof. The details will be described in detail later.
  • the fresh air blown from the fresh air shell 200 can be directly blown out from the indoor air duct through the indoor air outlet 104, or it can be blown straight to the air inlet side of the indoor heat exchanger 120 first. , After the heat is exchanged by the indoor heat exchanger 120, it blows out from the indoor air duct through the indoor air outlet 104, or directly blows out from the indoor air inlet 103.
  • the window air conditioner 100 further includes an indoor heat exchanger 120 installed in the indoor part 101;
  • the air outlet section 240 includes a first air outlet 241 connected to the air inlet section 230 and extending in a horizontal direction, and
  • the second air outlet 242 is connected to the first air outlet 241 and extends longitudinally.
  • the part of the first air outlet 241 is located below the indoor heat exchanger 120, and the part of the second air outlet 242 is located on the air inlet side of the indoor heat exchanger 120.
  • the first air outlet 241 and the second air outlet 242 of the air outlet section 240 are substantially L-shaped, and the fresh air outlet 202 of the fresh air casing 200 corresponds to the second air outlet 242. Since the part of the fresh air casing 200 corresponding to the second air outlet 242 is located on the air inlet side of the indoor heat exchanger 120, the fresh air blown out from the fresh air outlet 202 of the fresh air casing 200 can be directly blown out from the front side of the window air conditioner 100, Or, enter the indoor air duct through the indoor heat exchanger 120 through the air inlet side of the indoor heat exchanger 120, and then blow out from the indoor air outlet 104.
  • the volume of the fresh air housing 200 corresponding to the air outlet section 240 can also be designed to be relatively small, so that it is easy to install under the indoor heat exchanger 120, occupying The space is small, so there is no need to reserve a place between the indoor fan 140 and the indoor heat exchanger 120 for the installation of the fresh air casing 200.
  • the casing 110 is configured with an indoor air inlet 103 on the front of the indoor part 101, and an outdoor air outlet is configured on the top surface of the corresponding indoor part 101; the fresh air outlet 202 of the fresh air casing 200 is configured at the second air outlet On the side wall of 242, the fresh air outlet 202 is suitable for blowing out to the air inlet side of the indoor heat exchanger 120 or blowing air to the indoor air inlet 103.
  • the portion of the fresh air casing 200 corresponding to the first air outlet portion 241 is flat, so that the thickness of the portion of the fresh air casing 200 corresponding to the first air outlet portion 241 is small.
  • the portion of the fresh air casing 200 corresponding to the first air outlet 241 can be embedded between the chassis 111 of the casing 110 and the bottom of the indoor heat exchanger 120.
  • this design can also make the first air outlet portion 241 narrower than the air inlet section 250, which helps increase the air pressure of the first air outlet portion 241, thereby driving the airflow to accelerate the blowing.
  • the shape of the air inlet section 250 of the fresh air duct in the fresh air housing 200 can be a straight cylinder with a constant ventilation cross section, or it can be a ventilated cross section. Irregular shape with gradual cross-section.
  • the air inlet section 250 is designed in a straight cylindrical shape, and the first air outlet portion 241 of the air outlet section 240 connected to the air inlet section 250 is of flat design, then the air inlet section 250 and the air outlet section There will be a sudden change in cross-sectional area between 240 (similar to a cliff-like decrease in the cross-sectional area from the inlet section 250 to the outlet section 240), and a large wind resistance will be formed at the position of the cross-sectional area abrupt, which is not conducive to air flow. .
  • the air inlet section 250 can optionally adopt an irregular design with a gradual change in the ventilation cross section.
  • the air inlet section 250 includes an air inlet portion 231 arranged in a cylindrical shape, and an air guide portion 252 connecting the air inlet portion 231 and the air outlet section 240.
  • the ventilation cross section of the air guide portion 252 is from the air inlet portion.
  • the section 231 is arranged in a tapered shape toward the air outlet section 240.
  • the air passes through the air inlet portion 231 and enters the air guide portion 252, is guided by the air guide portion 252 into the air outlet section 240, and finally blows out from the fresh air outlet 202 of the air outlet section 240.
  • the ventilation cross-sectional area of the air guide portion 252 is tapered from the air inlet portion 231 to the air outlet section 240, it is possible to avoid the occurrence of a transverse direction between the air inlet section 250 and the first air outlet section 241 of the air outlet section 240.
  • the sudden change of the cross-sectional area avoids the formation of a large wind resistance at this position, so that the air flow can smoothly enter the air outlet section 240 from the air inlet section 250.
  • the fresh air housing 200 includes a bottom housing 210 and a housing cover 220 covering the bottom housing 210.
  • the top wall of the housing cover 220 is configured with an air guide wall 221 at a portion corresponding to the air guide portion 252, and the air guide wall 221 is from top to bottom. It is arranged in an arc shape, so that the air guiding portion 252 is arranged in a tapered shape.
  • the air guide wall 221 is designed in an arc shape, which can also make the air guide wall 221 have better strength and is not easy to be deformed.
  • a convex hull 222 may be protrudingly formed on the part of the housing cover 220 corresponding to the air outlet section 240, and the convex hull 222 is close to the air guide wall 221.
  • An installation groove 223 for correspondingly installing the indoor heat exchanger 120 of the window air conditioner 100 is formed on the shell cover 220 on the side of the convex hull 222 away from the air guide portion 232.
  • the convex hull 222 is close to the air guiding wall 221, so that the convex hull 222 can be used as a reinforcing structure of the air guiding wall 221 to strongly support the air guiding wall 221 so that the air guiding wall 221 is not easily deformed.
  • the convex hull 222 is formed by partially swelling upwards from the shell cover 220 of the fresh air housing 200, so that the shell cover 220 is formed with an expansion groove inside the convex hull 222, and the expansion groove is abutted with the air guiding portion 232, so that the expansion groove is formed Part of the fresh air duct.
  • the existence of the expansion groove can make up the air duct space occupied by the first recess of the bottom shell 210, so that the ventilation cross-sectional area before and after the air outlet section 240 is basically the same.
  • the expansion groove is located at the turning position between the air inlet section 230 and the air outlet section 240, so that the air duct space at the turning position between the air inlet section 230 and the air outlet section 240 can be increased, which helps to reduce the turning point.
  • the resistance of the position to the airflow allows the airflow to smoothly enter the airflow section 240 from the air inlet section 230 to increase the air volume; and it can also prevent the airflow from colliding with the inner wall of the air duct at the turning point, thereby avoiding loud noise.
  • the window air conditioner 100 further includes a fresh air fan 300, and the fresh air fan 300 may be installed outside the fresh air casing 200 or inside the fresh air casing 200.
  • the fresh air fan 300 is installed inside the fresh air casing 200 and is located at the air inlet portion 231 of the air inlet section 230 of the fresh air casing 200, so that the fresh air fan 300 is formed relatively large in the air inlet section 230 of the fresh air casing 200. Therefore, more fresh air is driven into the fresh air shell 200 and the fresh air volume is increased.
  • the shape of the upper surface of the chassis 111 is usually irregular, and an uneven surface is formed on the chassis 111, so to ensure The fresh air casing 200 is stable in installation, and the bottom casing 210 of the fresh air casing 200 and the chassis 111 can be roughly matched in shape.
  • the corresponding design can be made according to the concave and convex positions of the chassis 111.
  • the chassis 111 is configured to form a water receiving groove 11 corresponding to the indoor portion 101 of the casing 110, and the bottom shell 210 of the fresh air housing 200 is formed with a protrusion at a position corresponding to the water receiving groove 11.
  • the rising portion 211 and the protruding portion 211 are correspondingly matched with the water receiving groove 11.
  • the water receiving tank 11 is correspondingly provided for the indoor air duct shell 160 and the indoor heat exchanger 120 to be installed.
  • the bottom shell 210 of the fresh air housing 200 is matched with one end of the water receiving groove 11 through a protrusion 211 corresponding to the surface contact with the bottom surface of the water receiving groove 11, which increases the bottom shell 210 of the fresh air housing 200 and the water receiving groove.
  • the mating area of 11 makes it difficult for the fresh air casing 200 to shake at the water receiving groove 11 and enhances the stability of the installation of the fresh air casing 200.
  • the chassis 111 is configured with a sink 14 corresponding to the outdoor portion 102 of the cabinet 110, the chassis 111 is formed with a first boss 12 between the sink 14 and the water receiving tank 11, and the bottom shell 210 of the fresh air shell 200 is The corresponding first boss 12 is correspondingly matched.
  • the water receiving tank 11 and the sink tank 14 are separated by the first boss 12, so that the water in the sink tank 14 is not easy to overflow back into the water receiving tank 11, so as to avoid overflowing into the indoor room.
  • the water in the sink 14 may enter the fresh air duct from the fresh air inlet 201 of the fresh air casing 200, thereby causing The fresh air is too humid or there is water blowing phenomenon.
  • a second boss 13 can be further constructed between the side of the sink groove 14 and the first boss 12 of the chassis 111, and the second boss 13 is higher than The first boss 12, the bottom shell 210 of the fresh air housing 200 is formed with a second recess 213 at a position corresponding to the sink groove 14. The second recess 213 is supported by the second boss 13, and the bottom housing 210 of the fresh air housing 200 and the sink The groove bottoms of the grooves 14 are spaced apart.
  • supporting the second recess 213 of the fresh air housing 200 through the second boss 13 is equivalent to raising the fresh air inlet 201 of the fresh air housing 200 through the second boss 13, so that the water in the sink 14 is not easily removed from the fresh air.
  • the fresh air inlet 201 of the shell 200 enters into the fresh air duct, so as to prevent the fresh air from being too humid or blowing water.
  • the combination of the water receiving groove 11 of the chassis 111, the first boss 12, and the second boss 13 are generally arranged in a stepped shape; accordingly, the boss 211 on the bottom shell 210 of the fresh air housing 200
  • the combination of the concave portion 212 and the second concave portion 213 is also generally designed in a stepped shape, so that the fresh air casing 200 can be basically adapted to the shape of the chassis 111.
  • the end of the fresh air casing 200 close to the fresh air inlet 201 will extend from the sink 14 to the outdoor air inlet, that is, the first end of the fresh air casing 200
  • the part of the two recesses 213 will be suspended above the sink groove 14, so there is a possibility that the fresh air casing 200 may fall into the sink groove 14.
  • a support frame 214 can be protrudingly provided on the lower surface of the second recess 213.
  • the support frame 214 is suitable for holding the bottom of the sink groove 14 to support the fresh air casing 200, so that the fresh air casing 200 is not easy to Pouring to the sink 14 greatly improves the stability of the installation of the fresh air casing 200.
  • the window air conditioner 100 further includes a water receiving tray 400 installed in the water receiving tank 11, and the water receiving tray 400 is suitable for receiving the condensed water generated by the indoor heat exchanger 120.
  • the water receiving tray 400 can be extended above the fresh air casing 200 to prevent the condensed water from directly falling onto the fresh air casing 200 and wet the fresh air casing 200.
  • it corresponds to the upper surface of the fresh air casing 200.
  • the cover 220 of the fresh air housing 200 is protrudingly provided with a convex hull 222, and correspondingly, the bottom surface of the water receiving tray 400 is configured with a receiving groove for correspondingly accommodating the convex hull 222.
  • the window air conditioner 100 further includes a backing plate arranged in the water receiving tank 11, the backing plate is located on one side of the fresh air casing 200 and is flush with the part of the fresh air casing 200 located in the water receiving tank 11.
  • the water receiving tray 400 is supported in cooperation with the portion of the fresh air housing 200 located in the water receiving tank 11.
  • the backing plate can be made of an elastic or flexible material such as foam or sponge, so that it can be in closer contact with the bottom surface of the water tray 400 and has higher stability.
  • a drainage groove 410 is constructed in the water receiving pan 400, and the drainage groove 410 extends from the water receiving pan 400 toward the sink 14 for the sink 14 of the bottom plate 111. discharge. Finally, it is discharged to the outdoor environment through the sink 14.
  • the casing of the window air conditioner is provided with an indoor air inlet 103 on the front of the casing 112.
  • the front surface of the housing 112 should refer to the side of the window air conditioner facing the user.
  • the indoor side heat exchanger 120 of the window air conditioner includes a first indoor heat exchanger 121 and a second indoor heat exchanger 122.
  • the window air conditioner has a constant temperature dehumidification mode. In the constant temperature dehumidification mode, the first indoor heat exchanger 121 One of and the second indoor heat exchanger 122 is in a heating mode, and the other is in a cooling mode.
  • the indoor side heat exchanger 120 by making the indoor side heat exchanger 120 have a first indoor heat exchanger 121 and a second indoor heat exchanger 122, and in the constant temperature dehumidification mode, the first indoor heat exchanger 121 and the second indoor heat exchanger One of the heat exchangers 122 is in a heating mode, and the other is in a cooling mode.
  • the airflow passing through the indoor side heat exchanger 120 can be heated and dehumidified at the same time.
  • the temperature of the mixed air after heating and dehumidification is suitable, and there will be no cool breeze.
  • the indoor side heat exchanger 120 can be fully utilized during dehumidification, and there is no need to additionally provide a fresh air condenser and a fresh air evaporator, which greatly reduces the manufacturing cost.
  • the first indoor heat exchanger 121 and the second indoor heat exchanger 122 are stacked along the air inlet direction of the indoor side air duct 210.
  • the indoor air or fresh air entering from the indoor air inlet 103 first passes through the first indoor heat exchanger 121 dehumidification/heating, and then heating/dehumidifying by the second indoor heat exchanger 122, the indoor fan sends the heated and dehumidified air flow into the room from the indoor air outlet to achieve constant temperature dehumidification of the whole house.
  • first indoor heat exchanger 121 and the second indoor heat exchanger 122 are stacked along the air inlet direction, all the airflow blown out from the indoor air inlet 103 can be heated at the same time, and then dehumidified at the same time, thereby eliminating the need for heating and dehumidifying components.
  • the mixing steps are reduced, and the temperature and humidity of the airflow blowing from the indoor air outlet are more uniform and comfortable.
  • the first indoor heat exchanger 121 and the second indoor heat exchanger 122 are arranged side by side in the direction of the vertical indoor side air duct 210, so as to allow entry from the indoor air inlet 103 Part of the airflow blows toward the first indoor heat exchanger 121, and the other part blows toward the second indoor heat exchanger 122.
  • the air inlet direction of the indoor air inlet 103 is usually the front-rear direction, and the direction perpendicular to the air inlet direction of the indoor air inlet 103 may be the left-right and up-down directions.
  • the first indoor heat exchanger 121 and the second indoor heat exchanger 122 can be arranged up and down or left and right.
  • the fresh air or indoor air entering from the indoor air inlet 103 is partially heated by the first indoor heat exchanger 121/ Dehumidification, the other part is dehumidified/heated by the second indoor heat exchanger 122, and then mixed in the indoor side air duct 210 to form a dry airflow with a suitable temperature, and then a constant temperature dry airflow is sent into the room from the indoor air outlet by the indoor fan. Realize constant temperature dehumidification of the whole house.
  • the upper part of the first indoor heat exchanger 121 can be divided into the first indoor heat exchanger 121 only by installing one indoor heat exchanger, and the lower part can be divided into the first indoor heat exchanger 121.
  • Divided into the second indoor heat exchanger 122 one of the upper heat exchanger and the lower heat exchanger is controlled to be in a heating state and the other is in a cooling state through a control valve. In this way, the occupied space of the indoor side heat exchanger 120 can be greatly reduced, thereby making the overall structure more compact and the entire machine smaller in size.
  • the thickness of the indoor heat exchanger 120 can be greatly reduced, and the space in the height direction of the housing 112 can be fully utilized, thereby reducing the indoor
  • the space occupied by the side heat exchanger 120 reduces the volume and weight of the whole machine.
  • the window air conditioner further includes an outdoor heat exchanger 130, a refrigerant circulation pipeline, a first valve 510 and a second valve 520, and the refrigerant outlet of the compressor 180 of the window air conditioner
  • a discharge pipe 181 is provided, and a suction pipe 182 is provided at the refrigerant inlet.
  • the discharge pipe 181, the outdoor heat exchanger 130, the first indoor heat exchanger 121, the second indoor heat exchanger 122, and the suction pipe 182 are connected in sequence through the refrigerant circulation pipeline.
  • the first valve 510 is serially connected to the refrigerant circulation pipeline between the outdoor heat exchanger 130 and the first indoor heat exchanger 121
  • the second valve 520 is serially connected to the first indoor heat exchanger 121 and the second indoor heat exchanger On the refrigerant circulation pipeline between the compressors 122.
  • the compressor 180 may be an inverter compressor 180 or a fixed frequency compressor 180.
  • the first valve 510 and the second valve 520 may be solenoid valves, electronic expansion valves, or throttle valves, which can control the on-off or flow rate of the piping where they are located.
  • first valve 510 and the second valve 520 it is possible to control whether the refrigerant flows into the first indoor heat exchanger 121 and the second indoor heat exchanger 122, thereby controlling the first indoor heat exchanger 121 and the second indoor heat exchanger 122 Whether to participate in cooling or heating.
  • the high-temperature refrigerant from the compressor 180 enters the outdoor heat exchanger 130 (condenser), so that the high-temperature refrigerant from the outdoor heat exchanger 130 reaches the first valve 510.
  • the first valve 510 can be all Or mostly open, so that the temperature of the outdoor heat exchanger 130 is equal to or slightly lower than the temperature of the first indoor heat exchanger 121.
  • the first indoor heat exchanger 121 is a condenser, which functions as a heating airflow, and then flows out of the first indoor heat exchanger 121.
  • the sub-high temperature refrigerant of an indoor heat exchanger 121 reaches the second valve 520, and the second valve 520 is partially opened to act as capillary throttling. After throttling, the refrigerant becomes a low temperature refrigerant and flows through the second indoor heat exchanger 122. At this time, the second indoor heat exchanger 122 is an evaporator, which plays a role of cooling, that is, dehumidification, and the refrigerant flowing out of the second indoor heat exchanger 122 returns to the compressor 180.
  • the first indoor heat exchanger 121 can also be used as an evaporator
  • the second indoor heat exchanger 122 can be used as a condenser, which can also achieve the purpose of constant temperature dehumidification.
  • the high-temperature refrigerant flowing out of the compressor 180 enters the outdoor heat exchanger 130 (condenser), so that the high-temperature refrigerant from the outdoor heat exchanger 130 reaches the first valve 510.
  • the first valve 510 is opened in a small part to play the role of small flow, so that the temperature of the first indoor heat exchanger 121 is much lower than the temperature of the outdoor heat exchanger 130.
  • the first indoor heat exchanger 121 is an evaporator.
  • the low-temperature refrigerant flowing out of the first indoor heat exchanger 121 reaches the second valve 520, and the second valve 520 is fully or mostly opened, which plays a role of completely passing or throttling.
  • the refrigerant flows through the second indoor heat exchanger 122.
  • the second indoor heat exchanger 122 is an evaporator and plays a role of secondary cooling.
  • the refrigerant flowing out of the second indoor heat exchanger 122 returns to the compressor 180. In this way, the fresh air and indoor air are mixed and cooled by the first indoor heat exchanger 121, and then cooled by the second indoor heat exchanger 122 for a second time. After entering the indoor side air duct 210, it is blown out from the indoor air outlet, thereby achieving rapid indoor cooling. the goal of.
  • the refrigerant circulation pipeline includes a first pipe 610 connecting the discharge pipe 181 and the outdoor heat exchanger 130, and a second pipe connecting the suction pipe 182 and the second indoor heat exchanger 122 620.
  • the window air conditioner further includes a switching device 700, which is connected in series to the first pipe 610 and the second pipe 620, and the switching device 700 has a first switching state and a second switching state. In the first switching state, the first pipe 610 connected to both ends of the switching device 700 is turned on, and the second pipe 620 connected to both ends of the switching device 700 is turned on.
  • the first pipe 610 between the discharge pipe 181 and the switching device 700 and the second pipe 620 between the switching device 700 and the second indoor heat exchanger 122 are conducted, and the outdoor heat exchanger 130 is connected to the switching device.
  • the first pipe 610 between the devices 700 conducts with the second pipe 620 between the suction pipe 182 and the switching device 700.
  • the window air conditioner also has a controller, which is electrically connected to the first valve 510, the second valve 520, and the switching device 700, thereby controlling the switching state of the switching device 700 and each The opening and closing of the valve.
  • the switching device 700 may be a four-way valve or other switching device 700 that prevents the refrigerant from entering the outdoor heat exchanger 130 and the second indoor heat exchanger 122 at the same time. With the switching device 700, the function of the air conditioner can be increased. It can be understood that the switching device 700 is connected in series to the first pipe 610 and the second pipe 620, that is, two ends of the switching device 700 are connected to the first pipe 610, and both ends are connected to the second pipe 620.
  • the switching device 700 When the switching device 700 is in the first switching state, the high-temperature refrigerant flowing out of the discharge pipe 181 of the compressor 180 flows to the outdoor heat exchanger 130 through the first pipe 610, and then flows into the first indoor heat exchanger 121 and the second indoor heat exchanger in sequence The compressor 122 finally flows back to the compressor 180 through the second pipe 620 and the suction pipe 182.
  • the first indoor heat exchanger 121 can be controlled to be in a cooling state or a heating state, so that the entire system can be controlled to be in a constant temperature dehumidification mode or a full cooling system.
  • the first valve 510 and the second valve 520 control whether the first indoor heat exchanger 121 is in a cooling state or a heating state, which is similar to the above embodiment without a switching state, and will not be repeated here.
  • the switching device 700 When the switching device 700 is in the second switching state, the high-temperature refrigerant flowing out of the discharge pipe 181 of the compressor 180 flows into the second indoor heat exchanger 122 through the first pipe 610 and the second pipe 620, and then flows to the first indoor heat exchanger 121 And the outdoor heat exchanger 130 finally flows back to the compressor 180 through the first pipe 610, the second pipe 620, and the suction pipe 182.
  • the opening of the first valve 510 and the second valve 520 can be controlled to control whether the first indoor heat exchanger 121 is in a cooling state or a heating state, thereby controlling whether the entire system is in a constant temperature dehumidification mode or a full heating state.
  • the switching device 700 When the full heating mode is turned on, the switching device 700 is in the second switching state, and the high-temperature refrigerant flowing out of the discharge pipe 181 of the compressor 180 flows into the second indoor heat exchanger 122 through the first pipe 610 and the second pipe 620.
  • the second indoor heat exchanger 122 plays the role of condenser heating, so that the high-temperature refrigerant from the second indoor heat exchanger 122 reaches the second valve 520. At this time, the second valve 520 is fully opened, and the high-temperature refrigerant continues to flow out into the first indoor.
  • Heater 121, the first indoor heat exchanger 121 plays the role of reheating.
  • the first valve 510 can function as capillary throttling. After throttling, the refrigerant becomes a low temperature refrigerant. , It flows through the outdoor heat exchanger 130 and then returns to the compressor 180. In this way, the purpose of rapid indoor heating can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

一种窗式空调器,所述窗式空调器包括机壳(110)和新风壳(200),所述机壳(110)包括室内部分(102)和室外部分(101),所述新风壳(200)安装于所述机壳(110)内。所述新风壳(200)构造有位于所述室外部分(101)的新风入口(201),以及位于所述室内部分(102)的新风出口(202),所述新风壳(200)的内部形成有将所述新风入口(201)和所述新风出口(202)连通的新风风道,所述新风风道适用于将室外环境的空气送入室内环境。其中,所述新风风道包括与所述新风入口(201)对应的进风段(230),以及与所述新风出口(202)对应的出风段(240),所述出风段(240)的通风横截面面积小于所述进风段(230)的通风横截面面积。

Description

窗式空调器
优先权信息
本申请要求2020年2月1日申请的、“申请号为202010078313.4、名称为窗式空调器”、“申请号为202020150221.8、名称为窗式空调器”的两个中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调器技术领域,特别涉及一种窗式空调器。
背景技术
窗式空调器通常是安装在墙体的窗框上,用于对室内环境进行制冷或制热。随着人们对健康空气的需求,目前出现一种具有新风功能的窗式空调器。这种窗式空调器通常是在其机壳内增加一个新风壳,以通过该新风壳将室外环境的新风空气引入道室内环境中。然而,这种常规的新风壳通常是呈筒状设计,随着气流的流动,在新风壳的出风段气压逐渐减小,使得新风的风速降低,进而导致新风风量较小。
发明概述
技术问题
问题的解决方案
技术解决方案
本申请的主要目的是提出一种窗式空调器,旨在提高新风的风速,进而增大新风风量。
为实现上述目的,本申请提出一种窗式空调器。所述窗式空调器包括机壳和新风壳,所述机壳包括室内部分和室外部分,所述新风壳安装于所述机壳内。所述新风壳构造有位于所述室外部分的新风入口,以及位于所述室内部分的新风出口,所述新风壳的内部形成有将所述新风入口和所述新风出口连通的新风风道,所述新风风道适用于将室外环境的空气送入室内环境。其中,所述新风风道包括与所述新风入口对应的进风段,以及与所述新风出口对应的出风段,所 述出风段的通风横截面面积小于所述进风段的通风横截面面积。
可选地,所述窗式空调器还包括安装于所述室内部分的室内换热器;所述出风段包括与所述进风段连接并沿水平向延伸的第一出风部,以及与所述第一出风部连接并呈纵向延伸的第二出风部;
其中,所述第一出风部的部分位于所述室内换热器的下方,第二出风部的部分位于所述室内换热器进风侧。
可选地,所述新风壳的对应所述第一出风部的部分呈扁平状设置,以使该新风壳的对应所述第一出风部的部分嵌入至所述机壳的底盘和所述室内换热器的底部之间。
可选地,所述机壳于所述室内部分的正面构造有室内进风口,并在对应所述室内部分的顶面构造有室外出风口;所述新风壳的新风出口构造于所述第二出风部的侧壁上,所述新风出口适用于向所述室内换热器的进风侧送风或向所述室内进风口送风。
可选地,所述进风段包括呈筒状设置的进风部,以及连接所述进风部和所述出风段的导风部,所述导风部的通风横截面自所述进风部向所述出风段呈渐缩状设置。
可选地,所述新风壳包括底壳及盖合所述底壳的壳盖,所述壳盖的顶壁在对应所述导风部的部分构造有导风壁,所述导风壁自上向下呈弧形设置,以使所述导风部呈渐缩状设置。
可选地,所述壳盖在对应所述出风段的部分朝上凸设形成有凸包,所述凸包靠近所述导风壁,所述壳盖在所述凸包的远离所述导风部的一侧形成有供所述窗式空调器的室内换热器对应安装的安装槽。
可选地,所述壳盖在所述凸包的内侧形成有扩容凹槽,所述扩容凹槽与所述导风部对接。
可选地,所述底盘构造形成有与所述机壳的室内部分对应的接水槽,所述新风壳的底壳在对应所述接水槽的位置形成有凸起部,所述凸起部与所述接水槽对应配合。
可选地,所述底盘构造形成有与所述窗式空调器的室外换热器对应的沉槽,所 述底盘在所述沉槽和所述接水槽之间形成有第一凸台,所述新风壳的底壳在对应所述第一凸台的位置形成有第一凹部,所述第一凹部与所述第一凸台对应配合。
可选地,所述底盘在所述沉槽的一侧和所述第一凸台之间还构造有第二凸台,所述第二凸台高于所述第一凸台,所述新风壳的底壳在对应所述沉槽的位置形成有第二凹部,所述第二凹部由所述第二凸台支撑,而将所述新风壳的底壳与所述沉槽的槽底间隔开。
可选地,所述第二凹部的下表面凸设有支撑架,所述支撑架适用于与所述沉槽的槽底坻持,而支撑所述新风壳。
可选地,所述窗式空调器还包括安装于所述接水槽的接水盘,所述接水盘的一端延伸至所述新风壳的上方,并与所述新风壳的上方的上表面对应配合。
可选地,所述窗式空调器还包括设置在所述接水槽内的垫板,所述垫板位于所述新风壳的一侧,并与所述新风壳的位于所述接水槽内的部分平齐,以与该新风壳的位于所述接水槽内的部分配合支撑所述接水盘。
可选地,所述接水盘构造有排水槽,所述排水槽自所述接水盘朝向所述沉槽延伸,以用于向所述底盘的沉槽排水。
可选地,所述窗式空调器还包括压缩机、切换器,以及除湿换热器,所述压缩机、与所述切换器、室外换热器、室内换热器及除湿换热器采用冷媒管连接形成有冷媒循环回路;其中,所述除湿换热器设置在所述室内换热器的进风侧。
可选地,所述机壳的正面设有室内进风口,所述窗式空调器还包括室内侧换热器,所述室内换热器包括对应所述室内进风口设置的第一室内换热器及第二室内换热器,所述窗式空调器具有恒温除湿模式,在所述恒温除湿模式下,所述第一室内换热器及所述第二室内换热器的其中一者处于制热模式,另一者处于制冷模式。
可选地,所述第一室内换热器及所述第二室内换热器沿所述室内进风口的进风方向层叠设置;或者,
所述第一室内换热器及所述第二室内换热器在垂直所述室内进风口的进风方向上呈并排设置。
可选地,所述窗式空调器还包括室外换热器、冷媒循环管路、第一阀及第二阀;所述窗式空调器的压缩机的冷媒出口设置有排出管,冷媒入口设置有吸入管;所述排出管、所述室外换热器、所述第一室内换热器、所述第二室内换热器、所述吸入管通过所述冷媒循环管路依次连通;所述第一阀串接在所述室外换热器与所述第一室内换热器之间的冷媒循环管路上,所述第二阀串接在所述第一室内换热器与所述第二室内换热器之间的冷媒循环管路上。
可选地,所述冷媒循环管路包括连接所述排出管与所述室外换热器的第一配管,以及连接所述吸入管与所述第二室内换热器的第二配管;窗式空调器还包括切换装置;
所述切换装置串接于所述第一配管及所述第二配管上,所述切换装置具有第一切换状态及第二切换状态;
在所述第一切换状态下,连接于所述切换装置两端的所述第一配管导通,连接于所述切换装置两端的所述第二配管导通;
在所述第二切换状态下,所述排出管和所述切换装置之间的所述第一配管与所述切换装置和所述第二室内换热器之间的所述第二配管导通,所述室外换热器和所述切换装置之间的所述第一配管与所述吸入管和所述切换装置之间的所述第二配管导通。
可选地,所述窗式空调器还具有控制器,所述控制器与所述切换装置、所述第一阀及所述第二阀均电连接;
在所述窗式空调器处于恒温除湿模式时,所述控制器用以控制所述切换装置处于第一切换状态,且用以控制所述第一阀完全打开、所述第二阀部分打开;和/或,
所述窗式空调器还具有全制冷模式,在所述窗式空调器处于全制冷模式时,所述控制器用以控制所述切换装置处于第一切换状态,且用以控制所述第一阀部分打开、所述第二阀完全打开;和/或,
所述窗式空调器还具有全制热模式,在所述窗式空调器处于全制热模式时,所述控制器用以控制所述切换装置处于第二切换状态,且用以控制所述第二阀完全打开、所述第一阀部分打开。
本申请的技术方案,通过将所述新风风道的出风段的通风横截面面积小于其进风段的通风横截面面积,以使得气流在从进风段进入到出风段的过程中,气流被挤压压缩到出风段内,出风段内的新风空气被挤压使得气压升高,气压较高的新风空气快速流向新风出口,使得新风获得较高的风速,进而快速从新风出口吹出,有效增大新风风量。
发明的有益效果
对附图的简要说明
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请窗式空调器一实施例的结构示意图;
图2为图1中窗式空调器部分结构的前视图;
图3为图2中窗式空调器部分结构的后视图;
图4为本申请窗式空调器的新风壳与底盘装配的示意图;
图5为图4中新风壳与底盘装配结构另一视角的是示意图;
图6为图5中新风壳与底盘、接水盘三者装配的示意图;
图7为图6中新风壳与底盘、接水盘三者装配结构的俯视图;
图8为图7中沿I-I线的剖视图;
图9为本申请窗式空调器的新风壳的结构示意图;
图10为图9中新风壳另一视角的示意图;
图11为图9中新风壳再一视角的示意图;
图12为本申请窗式空调器再一实施例的结构示意图;
图13为本申请窗式空调器还一实施例的结构示意图。
附图标号说明:
[Table 1]
标号 名称 标号 名称
100 窗式空调器 210 底壳
110 机壳 211 凸起部
111 底盘 212 第一凹部
11 接水槽 213 第二凹部
12 第一凸台 214 支撑架
13 第二凸台 220 壳盖
14 沉槽 221 导风壁
112 壳体 222 凸包
120 室内换热器 223 安装槽
121 第一室内换热器 230 进风段
122 第二室内换热器 231 进风部
130 室外换热器 232 导风部
140 室内风机 240 出风段
150 室外风机 241 第一出风部
160 室内风道壳 242 第二出风部
170 室外风道壳 201 新风入口
180 压缩机 202 新风出口
181 排出管 300 新风风机
182 吸入管 400 接水盘
101 室外部分 410 排水槽
102 室内部分 510 第一阀
103 室内进风口 520 第二阀
104 室内出风口 610 第一配管
200 新风壳 620 第二配管
    700 切换装置
本申请目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
发明实施例
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后......),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
图1至图13为本申请窗式空调器的实施例附图。本申请所提供的窗式空调器的实施例中,所述窗式空调器是将室内机及室外机一体式制成,窗式空调器整机安装在建筑的窗框上,可实现对室内环境制冷或制热。所述窗式空调器还能够将室外的新风空气引入到室内,且其引入新风的风速较高,新风风量较大。下文将对所述窗式空调器的实施例进行介绍说明。
请参阅图1至图3,在本申请的窗式空调器100的一实施例中,窗式空调器100包 括机壳110和新风壳200,机壳110包括室内部分101和室外部分102,新风壳200安装于机壳110内。新风壳200构造有位于室外部分102的新风入口201,以及位于室内部分101的新风出口202,新风壳200的内部形成有将新风入口201和新风出口202连通的新风风道,所述新风风道适用于将室外环境的空气送入室内环境。其中,所述新风风道包括与新风入口201对应的进风段230,以及与新风出口202对应的出风段240,出风段240的通风横截面面积小于进风段230的通风横截面面积。
具体说来,机壳110具有前表面、背面、侧面及顶面。顶面可以是一整个呈水平状设计的平面,也可以由一平面和与所述平面的前端连接的倾斜面组成。在此,机壳110的前表面设有室内进风口103,机壳110的顶面前端(即倾斜面)设有室内出风口104。机壳110的背面设有室外进风口,机壳110的侧面设有室外出风口。
窗式空调器100还包括室内风道壳160和室外风道壳170。其中,所述室内风道壳160安装于机壳110的室内部分101,用以形成将室内进风口103和室内出风口104连通的室内风道。室外风道壳170安装于机壳110的室外部分102,用于形成将室外进风口和室外出风口连通的室外风道。窗式空调器100还包括室内换热器120和室外换热器130。其中,室内换热器120安装于机壳110的室内部分101,并与室内进风口103对应;室外换热器130安装于机壳110的室外部分102,并与所述室外进风口对应。窗式空调器100还包括室内风机140和室外风机150。其中,室内风机140安装于所述室内风道,用以驱动空气从室内风口进入到室内风道,而后与室内换热器120换热后从室内出风口吹出。室外风机150安装于所述室外风道,用以驱动空气从室外风进入到室外风道,而后与室外换热器130换热后从室外出风口吹出。
对于新风壳200而言,新风壳200可以安装在机壳110的左侧或右侧,新风壳200自机壳110的室外部分102延伸至其室内部分101。当窗式空调器100开启新风模式时,室外环境的新风空气从新风壳200的新风入口201进入,而后依次经新风风道的进风段230、出风段240流动到新风出口202,最后从新风出口202吹出。通过合理设计新风壳200的新风出口202的位置,可以使得从新风出口202吹出的 空气可以直接从机壳110的室内进风口103吹出到室内房间;或者,也可以从新风出口202吹出的空气吹向室内换热器120的进风侧,经室内换热器120换热或除湿后从室内出风口104吹出到室内环境。
本申请的技术方案,通过将所述新风风道的出风段240的通风横截面面积小于其进风段230的通风横截面面积,以使得气流在从进风段230进入到出风段240的过程中,气流被挤压压缩到出风段240内,出风段240内的新风空气被挤压使得气压升高,气压较高的新风空气快速流向新风出口202,使得新风获得较高的风速,进而快速从新风出口202吹出,有效增大新风风量。至于新风壳200的形状结构则不设限定,要求所述新风风道的出风段240的通风横截面面积小于其进风段230的通风横截面面积即可。具体在后文还有详细介绍。
请参阅图1、图2及图8,在一实施例中,新风壳200吹出的新风可以直接从室内风道经室内出风口104吹出,也可以先吹直室内换热器120的进风侧、以由室内换热器120换热后从室内风道经室内出风口104吹出,还可以直接从室内进风口103直接吹出。在本实施例中,窗式空调器100还包括安装于室内部分101的室内换热器120;出风段240包括与进风段230连接并沿水平向延伸的第一出风部241,以及与第一出风部241连接并沿纵向延伸的第二出风部242。其中,第一出风部241的部分位于室内换热器120的下方,第二出风部242的部分位于室内换热器120进风侧。
具体说来,出风段240的第一出风部241和第二出风部242大致呈L形设置,新风壳200的新风出口202与第二出风部242对应。由于新风壳200的对应第二出风部242的部分位于室内换热器120进风侧,从而使得从新风壳200的新风出口202吹出的新风可以直接从窗式空调器100的前侧吹出,或经室内换热器120的进风侧通过室内换热器120而进入到室内风道中,进而从室内出风口104吹出。
此外,由于出风段240的通风横截面面积较小,从而新风壳200的对应出风段240的部分体积也相应可设计得较小,进而将容易安装到室内换热器120的下方,占用空间较小,从而无需在室内风机140和室内换热器120之间预留供新风壳200安装的位置。
进一步地,机壳110于室内部分101的正面构造有室内进风口103,并在对应室 内部分101的顶面构造有室外出风口;新风壳200的新风出口202构造于所述第二出风部242的侧壁上,新风出口202适用于向室内换热器120的进风侧吹出或向室内进风口103送风。
在一实施例中,为方便安装新风壳200,新风壳200的对应第一出风部241的部分呈扁平状设置,以使得新风壳200的对应第一出风部241的部分厚度较小,从而使得该新风壳200的对应第一出风部241的部分可嵌入至机壳110的底盘111和室内换热器120的底部之间。此外,这样设计还可以使得第一出风部241相较于进风段250狭窄,有助于增大第一出风部241的气压,进而可以驱动气流加速吹出。
请参阅图1、图2及图8,基于上述任意一实施例,新风壳200内新风风道的进风段250的形状,可以是通风横截面保持不变的直筒状,也可以是通风横截面渐变的非规则状。在此考虑到,如果进风段250呈直筒状设计,而出风段240的与该进风段250连接的第一出风部241呈扁平状设计,那么在进风段250和出风段240之间会出现横截面面积突变(类似于横截面面积从进风段250到出风段240断崖式变小),在该横截面面积突变的位置会形成较大的风阻,不利于气流流动。
鉴于此,进风段250可选采用通风横截面渐变的非规则状设计。在此可选地,进风段250包括呈筒状设置的进风部231,以及连接进风部231和出风段240的导风部252,导风部252的通风横截面自进风部231向出风段240呈渐缩状设置。
具体说来,空气从进风部231通过并进入到导风部252,而后由导风部252引导进入到出风段240,最后从出风段240的新风出口202吹出。由于导风部252的通风横截面面积自进风部231向出风段240呈渐缩状设置,从而可避免在进风段250和出风段240的第一出风部241之间出现横截面面积突变,进而避免在该位置形成较大的风阻,使得气流可以顺利从进风段250进入出风段240。
进一步地,新风壳200包括底壳210及盖合底壳210的壳盖220,壳盖220的顶壁在对应导风部252的部分构造有导风壁221,导风壁221自上向下呈弧形设置,以使导风部252呈渐缩状设置。此外,导风壁221呈弧形设计,也可以使得导风壁221具有较佳的强度,不易发生变形。
请参阅图8至图10,为了增强导风壁221的强度,还可以在壳盖220在对应出风 段240的部分朝上凸设形成有凸包222,凸包222靠近导风壁221,在壳盖220在凸包222的远离导风部232的一侧形成有供窗式空调器100的室内换热器120对应安装的安装槽223。
具体说来,凸包222靠近导风壁221,从而凸包222可作为导风壁221的加强结构,用以强力支撑导风壁221,使得导风壁221不易发生变形。凸包222由新风壳200的壳盖220局部向上隆起形成,从而在壳盖220在凸包222的内侧形成有扩容凹槽,所述扩容凹槽与导风部232对接,从而扩容凹槽形成新风风道的一部分。该扩容凹槽的存在,可以弥补底壳210的第一凹部占用的风道空间,从而使得出风段240前后的通风横截面面积基本一致。并且,该扩容凹槽位于进风段230和出风段240之间转折位置,从而可以增大进风段230和出风段240之间转折位置的风道空间,有助于减小该转折位置对气流流动的阻力,使得气流可以顺利从进风段230进入到出风段240,增大风量;并且,还可以避免气流在转折碰撞到风道内壁,进而避免产生较大的噪音。
在一实施例中,窗式空调器100还包括新风风机300,新风风机300可以安装在新风壳200的外侧,也可以安装在新风壳200的内侧。具体在此,新风风机300安装在新风壳200的内侧,并且位于于新风壳200的进风段230的进风部231,以使得新风风机300在新风壳200的进风段230形成有较大的气压,从而驱动更多的新风空气进入新风壳200内,增大新风风量。
请参阅图5至图7,基于上述任意一实施例,由于新风壳200安装于底盘111上,而底盘111的上表面形状通常不规则,在底盘111上形成有凹凸不平的表面,故为确保新风壳200安装稳定,可选将新风壳200的底壳210和底盘111形状大致适配,具体可依据底盘111的凹凸位置进行相应设计。
请参阅图8至图10,在一实施例中,底盘111构造形成有与机壳110的室内部分101对应的接水槽11,新风壳200的底壳210在对应接水槽11的位置形成有凸起部211,凸起部211与接水槽11对应配合。其中,接水槽11对应供室内风道壳160和室内换热器120安装。新风壳200的底壳210通过凸起部211对应与该接水槽11的一端配合,该凸起部211与接水槽11的底面形成有面接触,增了新风壳200的底壳210与接水槽11的配合面积,从而使得新风壳200不易在该接水槽11处发生晃 动,增强新风壳200安装的稳定性。
进一步地,底盘111构造形成有与机壳110的室外部分102对应的沉槽14,底盘111在沉槽14和接水槽11之间形成有第一凸台12,新风壳200的底壳210在对应第一凸台12对应配合。通过第一凸台12将接水槽11和沉槽14分隔开,使得沉槽14的水不易溢流回到接水槽11中,减少避免溢流到室内房间。
在此考虑到,如果新风壳200的对应进风段230的部分与沉槽14对应配合,那么,沉槽14中的水可能会从新风壳200的新风入口201进入到新风风道中,进而导致新风过于潮湿或出现吹水现象。
请参阅图8至图11,为避免上述情况的出现,可在底盘111在沉槽14的一侧和第一凸台12之间还构造有第二凸台13,第二凸台13高于第一凸台12,新风壳200的底壳210在对应沉槽14的位置形成有第二凹部213,第二凹部213由第二凸台13支撑,而将新风壳200的底壳210与沉槽14的槽底间隔开。
具体说来,通过第二凸台13支撑新风壳200的第二凹部213,相当于通过第二凸台13将新风壳200的新风入口201抬高,使得沉槽14中中的水不易从新风壳200的新风入口201进入到新风风道中,进而避免新风过于潮湿或出现吹水现象。
综上所述,底盘111的接水槽11和第一凸台12、第二凸台13组合大致呈阶梯状设置;相应地,将新风壳200的底壳210上的凸起部211和第一凹部212、第二凹部213组合也大致呈阶梯状设计,从而使得新风壳200可与底盘111形状基本适配。
进一步地,考虑到新风壳200的新风入口201需要靠近室外进风口,故新风壳200的靠近新风入口201的一端会从沉槽14上方向室外进风口延伸,也就是说,新风壳200的第二凹部213部分会悬空于沉槽14上方,这样会存在新风壳200向沉槽14倾倒的可能。为避免这种情况发生,可在第二凹部213的下表面凸设有支撑架214,支撑架214适用于与沉槽14的槽底坻持,而支撑新风壳200,从而使得新风壳200不易向沉槽14倾倒,大大提高新风壳200安装的稳定性。
请参阅图6至图8,基于上述任意一实施例,窗式空调器100还包括安装于接水槽11的接水盘400,接水盘400适用于承接室内换热器120产生的冷凝水。在此,可将接水盘400的一端延伸至新风壳200的上方,以避免冷凝水直接落入到新风 壳200上,打湿新风壳200。可选地,并与新风壳200的上方的上表面对应配合。例如,新风壳200的壳盖220凸设有凸包222,相应地,接水盘400的底面构造有供凸包222对应容置的容置槽。
由于接水盘400的一端延伸至新风壳200的上方,如果接水盘400的远离新风壳200的一端悬空,则会使得接水盘400晃动不稳定。为解决该问题,窗式空调器100还包括设置在接水槽11内的垫板,所述垫板位于新风壳200的一侧,并与新风壳200的位于接水槽11内的部分平齐,以与该新风壳200的位于接水槽11内的部分配合支撑接水盘400。所述垫板可以是泡沫或海绵等具有弹性或柔性的材料,这样可以与接水盘400的底面接触更紧密,稳定性更高。
进一步地,为了将接水盘400的水排出,在接水盘400构造有排水槽410,所述排水槽410自接水盘400朝向沉槽14延伸,以用于向底盘111的沉槽14排出。最后通过沉槽14向室外环境排出。
请参照图3和图12,基于上述任意一实施例,窗式空调器的机壳在其壳体112的正面设有室内进风口103。在此,所述壳体112的正面应当指的是窗式空调器面向用户的一面。窗式空调器的室内侧换热器120包括第一室内换热器121及第二室内换热器122,窗式空调器具有恒温除湿模式,在恒温除湿模式下,第一室内换热器121及第二室内换热器122的其中一者处于制热模式,另一者处于制冷模式。
在本实施例中,通过使得室内侧换热器120具有第一室内换热器121及第二室内换热器122,且在恒温除湿模式下,使得第一室内换热器121及第二室内换热器122的其中一者处于制热模式,另一者处于制冷模式。经过室内侧换热器120的气流能够同时被加热和除湿,经过加热和除湿后的混合风温度适宜,不会有凉风感受,往复循环后不仅能将所有的室内风及新风重新除湿,且使得窗式空调器在除湿模式下整个室内温度不会下降,能够达到对全屋恒温除湿的目的。同时,除湿时能够充分利用室内侧换热器120,不用另外设置新风冷凝器及新风蒸发器,则大大降低了制造成本。
在一实施例中,请参照图3和图12,第一室内换热器121与第二室内换热器122沿室内侧风道210的进风方向层叠设置。当第一室内换热器121及第二室内换热 器122沿室内侧风道210的进风方向层叠设置时,从室内进风口103进入的室内风或新风,先经过第一室内换热器121除湿/加热,再经过第二室内换热器122加热/除湿,室内风机将经过加热除湿后的气流从室内出风口送入室内,实现全屋恒温除湿。使得第一室内换热器121和第二室内换热器122沿进风方向层叠设置,则从室内进风口103吹出的全部气流能够被同时加热,随后同时被除湿,从而无需使得加热和除湿分为两股不同的气流,减少了混合步骤,使得从室内出风口吹出的气流温度及湿度更加均匀、舒适。
在另一实施中,请参照图13,第一室内换热器121及第二室内换热器122在垂直室内侧风道210的进风方向上呈并排设置,以使从室内进风口103进入的气流一部分吹向第一室内换热器121,另一部分吹向第二室内换热器122。
在本实施例中,室内进风口103的进风方向通常为前后方向,则垂直于室内进风口103的进风方向的方向可为左右和上下方向。如此,第一室内换热器121及第二室内换热器122可以呈上下排布或左右排布,从室内进风口103进入的新风或室内风,部分经过第一室内换热器121加热/除湿,另一部分经过第二室内换热器122除湿/加热,然后在室内侧风道210内混合后形成温度适宜的干燥气流,再由室内风机将恒温的干燥气流从室内出风口送入室内,实现全屋恒温除湿。当第一室内换热器121及第二室内换热器122呈上下排布设置时,可以仅通过设置一个室内换热器,而将其上部划分为第一室内换热器121,将其下部划分为第二室内换热器122,通过控制阀控制上部换热器及下部换热器中的其中一者处于制热状态,另一者处于制冷状态。如此,能够大大减小室内侧换热器120的占用空间,从而使得整体结构更加紧凑,整机体积更小。通过使得第一室内换热器121及第二室内换热器122沿上下或左右排布,能够大大减小室内侧换热器120的厚度,充分利用壳体112高度方向的空间,从而减少室内侧换热器120的占用空间,减小整机体积和重量。
在一实施例中,如图18所示,窗式空调器还包括室外换热器130、冷媒循环管路、第一阀510及第二阀520,窗式空调器的压缩机180的冷媒出口设置有排出管181,冷媒入口设置有吸入管182,排出管181、室外换热器130、第一室内换热器121、第二室内换热器122、吸入管182通过冷媒循环管路依次连通,第一阀51 0串接在室外换热器130与第一室内换热器121之间的冷媒循环管路上,第二阀520串接在第一室内换热器121与第二室内换热器122之间的冷媒循环管路上。
在本实施例中,压缩机180可以为变频式压缩机180或定频式压缩机180。通过使得压缩机180为变频式压缩机180,能够更佳的实现制冷及恒温除湿双系统,节约了一个压缩机180,从而使得整体结构更加简单,降低成本和功率,大大提高了能效。第一阀510及第二阀520可以为电磁阀、电子膨胀阀或节流阀,能够控制其所在配管的通断或流量。通过设置第一阀510及第二阀520,能够控制冷媒是否流入第一室内换热器121及第二室内换热器122,从而控制第一室内换热器121及第二室内换热器122是否参与制冷或制热。
当需要开启除湿模式时,压缩机180流出的高温冷媒进入到室外换热器130(冷凝器),从而室外换热器130出来的高温冷媒到达第一阀510,此时第一阀510可以全部或大部分打开,让室外换热器130的温度等于或略小于第一室内换热器121的温度,此时第一室内换热器121为冷凝器,起到加热气流的作用,然后流出第一室内换热器121的次高温冷媒到达第二阀520,第二阀520部分打开,起到毛细管节流的作用,节流后冷媒变为低温冷媒,流过第二室内换热器122,此时第二室内换热器122为蒸发器,起到降温的作用,也即除湿,从第二室内换热器122流出的冷媒再回到压缩机180。如此,新风和室内风混合后部分经过第一室内换热器121加热,部分经过第二室内换热器122降温除湿,进入室内侧风道210混合后形成温度适宜的干燥气流,随后由室内出风口吹出,从而达到室内即除湿又不会吹冷风的目的,且除湿效果更佳。当然,第一室内换热器121也可以作为蒸发器,则第二室内换热器122作为冷凝器,同样可以实现恒温除湿的目的。
当不需要除湿,仅需开启全制冷模式时,使得压缩机180流出的高温冷媒进入到室外换热器130(冷凝器),从而室外换热器130出来的高温冷媒到达第一阀510,此时第一阀510小部分打开起到毛细节流的作用,让第一室内换热器121的温度大大小于室外换热器130的温度,此时第一室内换热器121为蒸发器,起到降温的作用,然后流出第一室内换热器121的低温冷媒到达第二阀520,第二阀520完全或大部分开启,起到完全通过或者再节流的作用,通过第二阀520的冷媒流过第二室内换热器122,此时第二室内换热器122为蒸发器,起到二次降温的 作用,从第二室内换热器122流出的冷媒再回到压缩机180。如此,新风和室内风混合后经过第一室内换热器121降温,然后经过第二室内换热器122二次降温,进入室内侧风道210后由室内出风口吹出,从而能达到室内快速降温的目的。
在一实施例中,如图19所示,冷媒循环管路包括连接排出管181与室外换热器130的第一配管610,以及连接吸入管182与第二室内换热器122的第二配管620。窗式空调器还包括切换装置700,切换装置700串接于第一配管610及第二配管620上,切换装置700具有第一切换状态及第二切换状态。在第一切换状态下,连接于切换装置700两端的第一配管610导通,连接于切换装置700两端的第二配管620导通。在第二切换状态下,排出管181和切换装置700之间的第一配管610与切换装置700和第二室内换热器122之间的第二配管620导通,室外换热器130和切换装置700之间的第一配管610与吸入管182和切换装置700之间的第二配管620导通。
在本实施例中,可以理解的是,窗式空调器还具有控制器,控制器与第一阀510、第二阀520及切换装置700均电连接,从而控制切换装置700的切换状态及各个阀的开关及开度。切换装置700可以为四通阀或其他使得冷媒不会同时进入室外换热器130和第二室内换热器122的切换装置700。通过切换装置700,能够使得空调器的功能增加。可以理解的是,切换装置700串接在第一配管610及第二配管620上,也即切换装置700的两端连通第一配管610,两端连通第二配管620。
在切换装置700处于第一切换状态时,压缩机180的排出管181流出的高温冷媒通过第一配管610流向室外换热器130,然后依次流入第一室内换热器121及第二室内换热器122,最后经第二配管620及吸入管182流回压缩机180。通过控制第一阀510及第二阀520的开度,能够控制第一室内换热器121为制冷状态或制热状态,从而能够控制整个系统处于恒温除湿模式或全制冷系统。第一阀510及第二阀520控制第一室内换热器121是处于制冷状态或制热状态,与上述没有切换状态的实施例相似,在此不做赘述。
在切换装置700处于第二切换状态时,压缩机180的排出管181流出的高温冷媒通过第一配管610及第二配管620流入第二室内换热器122,随后流向第一室内换 热器121及室外换热器130,最后通过第一配管610、第二配管620及吸入管182流回压缩机180。可以通过控制第一阀510及第二阀520的开度,进而控制第一室内换热器121是处于制冷状态或制热状态,从而控制整个系统是处于恒温除湿模式还是处于全制热状态。
当开启全制热模式时,切换装置700处于第二切换状态,压缩机180的排出管181流出的高温冷媒通过第一配管610及第二配管620流入第二室内换热器122,此时第二室内换热器122起到冷凝器加热的作用,从而第二室内换热器122出来的高温冷媒到达第二阀520,此时第二阀520全部打开,高温冷媒继续流出到第一室内换热器121,第一室内换热器121起到再次加热的作用,次高温冷媒到达第一阀510后,可使得第一阀510起到毛细管节流的作用,节流后冷媒变为低温冷媒,流经室外换热器130后回到压缩机180。如此,能实现室内快速制热的目的。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (21)

  1. 一种窗式空调器,其中,所述窗式空调器包括:
    机壳,所述机壳包括室内部分和室外部分;以及
    新风壳,所述新风壳安装于所述机壳内,所述新风壳构造有位于所述室外部分的新风入口,以及位于所述室内部分的新风出口,所述新风壳的内部形成有将所述新风入口和所述新风出口连通的新风风道,所述新风风道适用于将室外环境的空气送入室内环境;
    其中,所述新风风道包括与所述新风入口对应的进风段,以及与所述新风出口对应的出风段,所述出风段的通风横截面面积小于所述进风段的通风横截面面积。
  2. 如权利要求1所述的窗式空调器,其中,所述窗式空调器还包括安装于所述室内部分的室内换热器;所述出风段包括与所述进风段连接并沿水平向延伸的第一出风部,以及与所述第一出风部连接并沿纵向延伸的第二出风部;
    其中,所述第一出风部的部分位于所述室内换热器的下方,所述第二出风部的部分位于所述室内换热器进风侧。
  3. 如权利要求2所述的窗式空调器,其中,所述新风壳的对应所述第一出风部的部分呈扁平状设置,以使该新风壳的对应所述第一出风部的部分嵌入至所述机壳的底盘和所述室内换热器的底部之间。
  4. 如权利要求2所述的窗式空调器,其中,所述机壳于所述室内部分的正面构造有室内进风口,并在对应所述室内部分的顶面构造有室外出风口;所述新风壳的新风出口构造于所述第二出风部的侧壁上,所述新风出口适用于向所述室内换热器的进风侧送风或向所述室内进风口送风。
  5. 如权利要求1所述的窗式空调器,其中,所述进风段包括呈筒状设置的进风部,以及连接所述进风部和所述出风段的导风部,所述 导风部的通风横截面自所述进风部向所述出风段呈渐缩状设置。
  6. 如权利要求5所述的窗式空调器,其中,所述窗式空调器还包括新风风机,所述新风风机安装于所述进风段的进风部内。
  7. 如权利要求5所述的窗式空调器,其中,所述新风壳包括底壳及盖合所述底壳的壳盖,所述壳盖的顶壁在对应所述导风部的部分构造有导风壁,所述导风壁自上向下呈弧形设置,以使所述导风部呈渐缩状设置。
  8. 如权利要求7所述的窗式空调器,其中,所述壳盖在对应所述出风段的部分朝上凸设形成有凸包,所述凸包靠近所述导风壁,所述壳盖在所述凸包的远离所述导风部的一侧形成有供所述窗式空调器的室内换热器对应安装的安装槽。
  9. 如权利要求8所述的窗式空调器,其中,所述壳盖在所述凸包的内侧形成有扩容凹槽,所述扩容凹槽与所述导风部对接。
  10. 如权利要求1所述的窗式空调器,其中,所述底盘构造形成有与所述机壳的室内部分对应的接水槽,所述新风壳的底壳在对应所述接水槽的位置形成有凸起部,所述凸起部与所述接水槽对应配合。
  11. 如权利要求10所述的窗式空调器,其中,所述底盘构造形成有与所述窗式空调器的室外换热器对应的沉槽,所述底盘在所述沉槽和所述接水槽之间形成有第一凸台,所述新风壳的底壳在对应所述第一凸台的位置形成有第一凹部,所述第一凹部与所述第一凸台对应配合。
  12. 如权利要求11所述的窗式空调器,其中,所述底盘在所述沉槽的一侧和所述第一凸台之间还构造有第二凸台,所述第二凸台高于所述第一凸台,所述新风壳的底壳在对应所述沉槽的位置形成有第二凹部,所述第二凹部由所述第二凸台支撑,而将所述新风壳的底壳与所述沉槽的槽底间隔开。
  13. 如权利要求12所述的窗式空调器,其中,所述第二凹部的下表面 凸设有支撑架,所述支撑架适用于与所述沉槽的槽底坻持,而支撑所述新风壳。
  14. 如权利要求13所述的窗式空调器,其中,所述窗式空调器还包括安装于所述接水槽的接水盘,所述接水盘的一端延伸至所述新风壳的上方,并与所述新风壳的上方的上表面对应配合。
  15. 如权利要求14所述的窗式空调器,其中,所述窗式空调器还包括设置在所述接水槽内的垫板,所述垫板位于所述新风壳的一侧,并与所述新风壳的位于所述接水槽内的部分平齐,以与该新风壳的位于所述接水槽内的部分配合支撑所述接水盘。
  16. 如权利要求15所述的窗式空调器,其中,所述接水盘构造有排水槽,所述排水槽自所述接水盘朝向所述沉槽延伸,以用于向所述底盘的沉槽排水。
  17. 如权利要求1所述的窗式空调器,其中,所述机壳的正面设有室内进风口,所述窗式空调器还包括室内侧换热器,所述室内换热器包括对应所述室内进风口设置的第一室内换热器及第二室内换热器,所述窗式空调器具有恒温除湿模式,在所述恒温除湿模式下,所述第一室内换热器及所述第二室内换热器的其中一者处于制热状态,另一者处于制冷状态。
  18. 如权利要求17所述的窗式空调器,其中,所述第一室内换热器及所述第二室内换热器沿所述室内进风口的进风方向层叠设置;或者,所述第一室内换热器及所述第二室内换热器在垂直所述室内进风口的进风方向上呈并排设置。
  19. 如权利要求17所述的窗式空调器,其中,所述窗式空调器还包括室外换热器、冷媒循环管路、第一阀及第二阀;所述窗式空调器的压缩机的冷媒出口设置有排出管,冷媒入口设置有吸入管;所述排出管、所述室外换热器、所述第一室内换热器、所述第二室内换热器、所述吸入管通过所述冷媒循环管路依次连通;所述第一阀串接在所述室外换热器与所述第一室内换热器之间的冷媒循 环管路上,所述第二阀串接在所述第一室内换热器与所述第二室内换热器之间的冷媒循环管路上。
  20. 如权利要求19所述的窗式空调器,其中,所述冷媒循环管路包括连接所述排出管与所述室外换热器的第一配管,以及连接所述吸入管与所述第二室内换热器的第二配管;窗式空调器还包括切换装置;所述切换装置串接于所述第一配管及所述第二配管上,所述切换装置具有第一切换状态及第二切换状态;
    在所述第一切换状态下,连接于所述切换装置两端的所述第一配管导通,连接于所述切换装置两端的所述第二配管导通;
    在所述第二切换状态下,所述排出管和所述切换装置之间的所述第一配管与所述切换装置和所述第二室内换热器之间的所述第二配管导通,所述室外换热器和所述切换装置之间的所述第一配管与所述吸入管和所述切换装置之间的所述第二配管导通。
  21. 如权利要求20所述的窗式空调器,其中,所述窗式空调器还具有控制器,所述控制器与所述切换装置、所述第一阀及所述第二阀均电连接;
    在所述窗式空调器处于恒温除湿模式时,所述控制器用以控制所述切换装置处于第一切换状态,且用以控制所述第一阀完全打开、所述第二阀部分打开;和/或,
    所述窗式空调器还具有全制冷模式,在所述窗式空调器处于全制冷模式时,所述控制器用以控制所述切换装置处于第一切换状态,且用以控制所述第一阀部分打开、所述第二阀完全打开;和/或,
    所述窗式空调器还具有全制热模式,在所述窗式空调器处于全制热模式时,所述控制器用以控制所述切换装置处于第二切换状态,且用以控制所述第二阀完全打开、所述第一阀部分打开。
PCT/CN2020/080456 2020-02-01 2020-03-20 窗式空调器 WO2021151262A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020150221.8U CN212319923U (zh) 2020-02-01 2020-02-01 窗式空调器
CN202020150221.8 2020-02-01
CN202010078313.4A CN113203128A (zh) 2020-02-01 2020-02-01 窗式空调器
CN202010078313.4 2020-02-01

Publications (1)

Publication Number Publication Date
WO2021151262A1 true WO2021151262A1 (zh) 2021-08-05

Family

ID=77078597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080456 WO2021151262A1 (zh) 2020-02-01 2020-03-20 窗式空调器

Country Status (1)

Country Link
WO (1) WO2021151262A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098796A1 (en) * 2008-03-04 2009-09-09 New Evelino Srl Compact device for air change with heat recovery
CN201844514U (zh) * 2010-11-02 2011-05-25 南车株洲电力机车有限公司 空调超长送风风道
CN202254004U (zh) * 2011-09-20 2012-05-30 广东美的电器股份有限公司 多功能空调窗机
CN105698267A (zh) * 2014-11-29 2016-06-22 青岛海尔空调器有限总公司 具有引流结构的壁挂式空调器
EP3054224A1 (en) * 2015-02-09 2016-08-10 LG Electronics Inc. Air conditioner
CN207196710U (zh) * 2017-08-08 2018-04-06 珠海格力电器股份有限公司 窗式空调器
CN110056969A (zh) * 2019-05-10 2019-07-26 青岛海尔空调器有限总公司 壁挂式空调器室内机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098796A1 (en) * 2008-03-04 2009-09-09 New Evelino Srl Compact device for air change with heat recovery
CN201844514U (zh) * 2010-11-02 2011-05-25 南车株洲电力机车有限公司 空调超长送风风道
CN202254004U (zh) * 2011-09-20 2012-05-30 广东美的电器股份有限公司 多功能空调窗机
CN105698267A (zh) * 2014-11-29 2016-06-22 青岛海尔空调器有限总公司 具有引流结构的壁挂式空调器
EP3054224A1 (en) * 2015-02-09 2016-08-10 LG Electronics Inc. Air conditioner
CN207196710U (zh) * 2017-08-08 2018-04-06 珠海格力电器股份有限公司 窗式空调器
CN110056969A (zh) * 2019-05-10 2019-07-26 青岛海尔空调器有限总公司 壁挂式空调器室内机

Similar Documents

Publication Publication Date Title
CN101932885A (zh) 空调机
CN214949402U (zh) 空调器室内机
WO2021244097A1 (zh) 窗式空调器
CN211233097U (zh) 空调室内机
CN212319923U (zh) 窗式空调器
JPH11201488A (ja) 空気調和機の室内機
WO2021151262A1 (zh) 窗式空调器
CN218721861U (zh) 立式空调室内机
JP3823810B2 (ja) 空気調和機
CN211650516U (zh) 窗式空调器
KR100734362B1 (ko) 공기조화 시스템
CN215062438U (zh) 空调器室内机
CN215001915U (zh) 空调器室内机
CN211650517U (zh) 窗式空调器
CN112923488A (zh) 出风结构以及空气处理装置
CN113203129A (zh) 窗式空调器
WO2021103302A1 (zh) 窗式空调器
WO2021151267A1 (zh) 窗式空调器
CN113203128A (zh) 窗式空调器
CN106440238B (zh) 一种顶出风立式空调器及其控制方法
CN211650515U (zh) 窗式空调器
CN112856601A (zh) 窗式空调器
US11703234B2 (en) Window air conditioner
CN217540929U (zh) 恒湿装置及恒湿设备
WO2021151263A1 (zh) 窗式空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916791

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20916791

Country of ref document: EP

Kind code of ref document: A1