WO2021149617A1 - サーマルプリントヘッドおよびサーマルプリントヘッドの製造方法 - Google Patents

サーマルプリントヘッドおよびサーマルプリントヘッドの製造方法 Download PDF

Info

Publication number
WO2021149617A1
WO2021149617A1 PCT/JP2021/001292 JP2021001292W WO2021149617A1 WO 2021149617 A1 WO2021149617 A1 WO 2021149617A1 JP 2021001292 W JP2021001292 W JP 2021001292W WO 2021149617 A1 WO2021149617 A1 WO 2021149617A1
Authority
WO
WIPO (PCT)
Prior art keywords
print head
thermal print
main surface
layer
heat storage
Prior art date
Application number
PCT/JP2021/001292
Other languages
English (en)
French (fr)
Inventor
藤田 明良
吾郎 仲谷
一也 中久保
保博 不破
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN202180010463.4A priority Critical patent/CN115003510B/zh
Priority to JP2021573130A priority patent/JPWO2021149617A1/ja
Publication of WO2021149617A1 publication Critical patent/WO2021149617A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads

Definitions

  • This disclosure relates to a thermal print head and a method for manufacturing the thermal print head.
  • Patent Document 1 discloses an example of a conventional thermal print head.
  • the thermal print head includes a plurality of heat generating portions arranged in the main scanning direction on the head substrate.
  • Each heat generating portion exposes a part of the resistor layer formed on the head substrate via the heat storage layer so that the upstream electrode layer and the downstream electrode layer face each other at their ends. It is formed by laminating.
  • the exposed portion (heating portion) of the resistor layer generates heat.
  • the heat storage layer is provided, for example, to prevent the heat generated by the heat generating portion from unnecessarily leaking to the head substrate or the like, and to efficiently raise the temperature of the heat generating portion.
  • the thermal printhead disclosed in the same document also uses Si (silicon) as a substrate, and forms each component including a resistor layer by a semiconductor process.
  • the heat storage layer is formed by sputtering using SiO 2 (silicon dioxide) or a CVD method, but it takes a considerable amount of time to form a heat storage layer having a sufficient thickness, and the manufacturing efficiency of the thermal print head is improved. There is a problem of getting worse.
  • the thermal printhead provided by the first aspect of the present disclosure has a main surface facing one side in the thickness direction, is formed on a base material made of a single crystal semiconductor and the main surface, and has a main scanning direction.
  • a heat storage layer is provided, and the heat storage layer is a glaze made of a glass material.
  • the method for manufacturing a thermal printhead includes a preparation step of preparing a base material made of a single crystal semiconductor, an etching step of performing anisotropic etching on the base material, and the base material. After arranging the glass paste on the glass paste, the glass paste is fired to form a glaze forming step of forming a glaze having a predetermined thickness, and a plurality of heat generating portions arranged in the main scanning direction are formed on the glaze. It has a heat generating portion forming step to be performed.
  • a heat storage layer can be easily formed.
  • FIG. 5 is an enlarged cross-sectional view of a main part showing a thermal print head according to a third modification of the first embodiment. It is an enlarged sectional view of the main part which shows the thermal print head which concerns on 4th modification of 1st Embodiment. It is an enlarged sectional view of the main part which shows the thermal print head which concerns on 2nd Embodiment.
  • thermal print head of the present disclosure A preferred embodiment of the thermal print head of the present disclosure and a method for manufacturing the same will be described below with reference to the drawings.
  • something A is formed on a certain thing B
  • something A is formed on a certain thing B
  • something B means “there is a certain thing A” unless otherwise specified. It includes “being formed directly on the object B” and “being formed on the object B with the object A while interposing another object between the object A and the object B”.
  • something A is placed on something B” and “something A is placed on something B” means “something A is placed on something B” unless otherwise specified. It includes "being placed directly on B” and “being placed on a certain thing B while having another thing intervening between a certain thing A and a certain thing B".
  • something A is located on something B
  • something A is in contact with something B and some thing A is on something B
  • something B unless otherwise specified.
  • What you are doing and "The thing A is located on the thing B while another thing is intervening between the thing A and the thing B”.
  • something A overlaps with some thing B when viewed in a certain direction means “something A overlaps with all of some thing B” and “something A overlaps” unless otherwise specified. "Overlapping a part of a certain object B" is included.
  • the thermal print head A1 includes a head substrate 1, a connection substrate 5, a plurality of wires 61 and 62, a plurality of driver ICs 7, a protective resin 78, and a heat radiating member 8.
  • the thermal print head A1 is incorporated in a printer that prints on a print medium (not shown) conveyed by the platen roller 91.
  • the print medium include thermal paper for creating a barcode sheet and a receipt.
  • the head substrate 1 and the connecting substrate 5 are mounted on the heat radiating member 8 so as to be adjacent to each other in the sub-scanning direction y.
  • a plurality of heat generating portions 41 arranged in the main scanning direction x are formed on the head substrate 1 according to the configuration described in detail later.
  • the heating unit 41 is selectively heat-driven by the driver IC 7 mounted on the connection board 5, and is pressed against the heat-generating unit 41 by the platen roller 91 according to a print signal transmitted from the outside via the connector 59. Print on the medium.
  • FIG. 1 is a plan view showing the thermal print head A1.
  • FIG. 2 is an enlarged plan view of a main part showing the thermal print head A1.
  • FIG. 3 is an enlarged plan view of a main part showing the thermal print head A1.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a partially enlarged cross-sectional view of a part of FIG. 4.
  • FIG. 6 is a partially enlarged cross-sectional view of a part of FIG. 4.
  • the protective layer 2 is omitted.
  • the protective resin 78 is omitted.
  • the wire 61 is omitted.
  • the main scanning direction is the x direction
  • the sub scanning direction is the y direction
  • the thickness direction of the head substrate 1 is the z direction.
  • the print medium is fed in the direction indicated by the arrow in the drawing in the sub-scanning direction y.
  • the direction indicated by the arrow in the figure is the downstream direction
  • the opposite direction is the upstream direction.
  • the thickness direction z the direction indicated by the arrow in the figure is upward, and the opposite direction is downward.
  • the head substrate 1 includes a base material 10, a heat storage layer 15, an insulating layer 19, a protective layer 2, an electrode layer 3, and a resistor layer 4.
  • the base material 10 is made of a single crystal semiconductor. Si is suitable as the single crystal semiconductor. As shown in FIG. 1, the base material 10 has an elongated rectangular shape with the main scanning direction x as the longitudinal direction and the sub-scanning direction y as the lateral direction in the thickness direction z.
  • the size of the base material 10 is not limited, but for example, the dimension of the main scanning direction x is, for example, 40 mm or more and 150 mm or less, and the dimension of the sub-scanning direction y is, for example, 1.0 mm or more and 5.0 mm or less, and the thickness.
  • the dimension of the direction z is, for example, 725 ⁇ m.
  • the side closer to the driver IC 7 in the sub-scanning direction y is the upstream side, and the side far from the driver IC 7 is the downstream side.
  • the print medium is conveyed from the upstream side to the downstream side in the sub-scanning direction y by the platen roller 91.
  • the base material 10 has a main surface 11 and a convex portion 12 as shown in FIGS. 1, 2, 5 and 6.
  • the main surface 11 faces upward in the thickness direction z.
  • the main surface 11 extends along the xy plane and is a plane substantially parallel to the xy plane.
  • the main surface 11 is a (100) surface (displayed by the Miller index; the same applies hereinafter).
  • the convex portion 12 protrudes from the main surface 11 in the thickness direction z.
  • the convex portion 12 extends in the main scanning direction x.
  • the convex portion 12 is formed closer to the downstream side of the main surface 11.
  • the shape of the cross section of the convex portion 12 along the yz plane is uniform in the main scanning direction x.
  • the convex portion 12 the dimension H1 in the sub-scanning direction y at the end on the lower side in the thickness direction z is, for example, 500 ⁇ m, and the dimension H3 in the sub-scanning direction y at the end on the upper side in the thickness direction is, for example, 200 ⁇ m. be. Further, the convex portion 12 has a dimension H2 in the thickness direction z of, for example, 150 ⁇ m.
  • the dimensions H1, H2, and H3 are not limited to the above examples.
  • the convex portion 12 includes a top portion 13 and a pair of inclined portions 14.
  • the top portion 13 is a portion of the convex portion 12 in which the distance in the thickness direction z from the main surface 11 is relatively large.
  • the top portion 13 has a top surface 131 parallel to the main surface 11.
  • the top surface 131 is a substantially flat surface.
  • the top surface 131 has an elongated rectangular shape that extends long in the main scanning direction x in the thickness direction z.
  • the dimension H2 is the separation distance between the top surface 131 and the main surface 11 in the thickness direction z.
  • the pair of inclined portions 14 are inclined with respect to the main surface 11 and the apex surface 131 so as to be lower in the convex portion 12 as the distance from the apex portion 13 in the sub-scanning direction y. It is a part.
  • the pair of inclined portions 14 are connected to the main surface 11 and the top portion 13, respectively, and are sandwiched between them in the sub-scanning direction y.
  • the pair of inclined portions 14 include an inclined portion 14 on the upstream side and an inclined portion 14 on the downstream side with respect to the top portion 13.
  • Each of the pair of inclined portions 14 has an inclined surface 141 inclined with respect to the main surface 11 and the top surface 131.
  • Each inclined surface 141 is a substantially flat surface.
  • the inclination angle ⁇ 1 of each inclined surface 141 with respect to the main surface 11 is, for example, 54.7 degrees.
  • Each inclined surface 141 is a (111) surface.
  • the heat storage layer 15 is a glaze made of a glass material such as amorphous glass.
  • the glaze heat storage layer 15
  • the heat storage layer 15 is formed, for example, by firing a glass paste.
  • the heat storage layer 15 is arranged on the top 13 of the convex portion 12.
  • the heat storage layer 15 is in contact with the top surface 131, and in the present embodiment, the heat storage layer 15 is not in contact with the inclined surface 141.
  • the heat storage layer 15 may be in contact with both the top surface 131 and the inclined surface 141. That is, the heat storage layer 15 may be formed so as to extend from the top surface 131 (top portion 13) to one or both of the pair of inclined surfaces 141 (inclined portion 14).
  • the heat storage layer 15 extends in the main scanning direction x and is formed over the entire width of the top surface 131 in the sub-scanning direction y.
  • the thickness (maximum thickness) of the heat storage layer 15 is, for example, 10 ⁇ m or more and 200 ⁇ m or less (preferably 30 ⁇ m or more and 50 ⁇ m or less).
  • a pair of round portions 151 are formed on both ends of the sub-scanning direction y on the upper surface of the heat storage layer 15.
  • Each of the pair of round portions 151 is a portion curved so as to swell.
  • the surface of the heat storage layer 15 is smoothly continuous with each of the inclined surfaces 141 of the pair of inclined portions 14 (convex portions 12) by the pair of round portions 151.
  • Each round portion 151 is formed by firing the glass paste when forming the heat storage layer 15.
  • the upper surface of the heat storage layer 15 has a substantially flat surface interposed between the pair of round portions 151 in the sub-scanning direction y, but there is no such substantially flat surface, and a pair of rounds.
  • the parts 151 may be connected to each other.
  • the upper surface of the heat storage layer 15 is a convex surface curved upward in the thickness direction z.
  • the insulating layer 19 is formed on the main surface 11 of the base material 10 and covers the base material 10 and the heat storage layer 15.
  • the insulating layer 19 is in contact with the main surface 11, the pair of inclined surfaces 141 of the convex portions 12, and the upper surface of the heat storage layer 15.
  • the insulating layer 19 is made of an insulating material, for example, SiO 2 , SiN (silicon nitride) or TEOS (tetraethyl orthosilicate), and TEOS is preferably adopted.
  • the thickness of the insulating layer 19 is not particularly limited, and is, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • the resistor layer 4 is formed on the insulating layer 19 and covers the insulating layer 19.
  • the resistor layer 4 is formed over the main surface 11 and the convex portion 12 with the insulating layer 19 interposed therebetween.
  • the resistor layer 4 is made of, for example, TaN (tantalum nitride).
  • the resistor layer 4 may be made of TiSiO 2 or TaSiN instead of TaN.
  • the thickness of the resistor layer 4 is not particularly limited, and is, for example, 0.02 ⁇ m or more and 0.1 ⁇ m or less (preferably about 0.08 ⁇ m).
  • the resistor layer 4 includes a plurality of heat generating portions 41.
  • the plurality of heat generating portions 41 are portions of the resistor layer 4 that are exposed without being covered by the electrode layer 3, which will be described later.
  • the plurality of heat generating portions 41 are arranged in the main scanning direction x, and the formed region in the sub-scanning direction y is a region including a part or all of the sub-scanning direction y of the top portion 13 (top surface 131) of the convex portion 12. It is said that.
  • the electrode layer 3 constitutes a conduction path for energizing a plurality of heat generating portions 41.
  • the electrode layer 3 is laminated on the resistor layer 4 and supported by the base material 10.
  • the electrode layer 3 is made of a metal material having a resistance value smaller than that of the resistor layer 4, and is made of, for example, Cu (copper).
  • the electrode layer 3 may have a configuration in which a Cu layer and a Ti (titanium) layer are laminated. In this case, the Ti layer is interposed between the Cu layer and the resistor layer 4, and has a thickness of, for example, about 100 nm.
  • the thickness of the electrode layer 3 is not particularly limited, and is, for example, 0.3 ⁇ m or more and 2.0 ⁇ m or less.
  • the electrode layer 3 includes a plurality of individual electrodes 31 and a common electrode 32.
  • the portion exposed from the electrode layer 3 between the plurality of individual electrodes 31 and the common electrode 32 is a plurality of heat generating portions 41.
  • the shapes of the individual electrodes 31 and the common electrodes 32 in the thickness direction z direction, that is, the formation regions of the individual electrodes 31 and the common electrodes 32 are not limited to the examples of FIGS. 2 and 3.
  • Each of the plurality of individual electrodes 31 has a band shape extending in the sub-scanning direction y.
  • Each individual electrode 3 1 is arranged on the side upstream of the sub-scanning direction y from each heat generating portion 41.
  • the tip of each individual electrode 31 on the downstream side in the sub-scanning direction y extends to the inclined portion 14 on the upstream side in the sub-scanning direction, but the tip thereof. May extend to the top 13.
  • An electrode pad portion 311 is formed at the tip of each individual electrode 31 on the upstream side in the sub-scanning direction y.
  • the electrode pad portion 311 is a portion connected to the driver IC 7 mounted on the connection board 5 by a wire 61.
  • Each individual electrode 31 is an example of the “upstream conductive layer”.
  • the common electrode 32 includes a common portion 323 and a plurality of comb tooth portions 324.
  • the common portion 323 connects a plurality of comb tooth portions 324 in common.
  • the common portion 323 extends in the main scanning direction x.
  • the common portion 323 is located on the downstream side in the sub-scanning direction y of the plurality of comb tooth portions 324.
  • Each comb tooth portion 324 has a strip shape extending in the sub-scanning direction y from the upstream edge of the common portion 323.
  • the plurality of comb tooth portions 324 are separated from each other and are aligned in the main scanning direction x.
  • each comb tooth portion 324 on the upstream side in the sub-scanning direction y is opposed to the tip of each individual electrode 31 at a predetermined interval. Therefore, the resistor layer 4 is exposed from the electrode layer 3 between the tip on the sub-scanning direction y upstream side of each comb tooth portion 324 and the tip on the sub-scanning direction y downstream side of each individual electrode 31.
  • the tip of each comb tooth portion 324 on the sub-scanning direction y upstream side extends to the inclined portion 14 on the sub-scanning direction y downstream side, but the tip extends to the top 13. It may be extended. As shown in FIG.
  • each comb tooth portion 324 is formed on the main surface 11.
  • the comb tooth portions 324 may be formed on the inclined surface 141 (inclined portion 14) instead of the main surface 11, and the common portion 323 is also formed on the inclined surface 141 (inclined portion 14) instead of the main surface 11. It may have been done.
  • the common electrode 32 is an example of the “downstream conductive layer”.
  • the protective layer 2 covers the electrode layer 3 and the resistor layer 4.
  • the protective layer 2 is made of an insulating material, and is made of, for example, SiO 2 , SiC, SiC (silicon carbide), AlN (aluminum nitride), or a laminate of two or more thereof.
  • the thickness of the protective layer 2 is, for example, 1.0 ⁇ m or more and 10 ⁇ m or less.
  • the protective layer 2 has a pad opening 21 penetrating in the thickness direction z.
  • the pad opening 21 exposes the electrode pad portions 311 provided on the plurality of individual electrodes 31.
  • connection board 5 is arranged adjacent to the head board 1 on the upstream side in the sub-scanning direction y.
  • the connection board 5 is, for example, a PCB board.
  • the connection board 5 is equipped with the driver IC 7 and the connector 59.
  • the connection substrate 5 has a rectangular shape with the main scanning direction x as the longitudinal direction in the thickness direction z-view.
  • the connector 59 is used to connect the thermal print head A1 to a printer (not shown). As shown in FIG. 4, the connector 59 is attached to the connection board 5 and is connected to the wiring pattern (not shown) of the connection board 5.
  • the driver IC 7 is mounted on the connection board 5 and is provided to individually energize a plurality of heat generating portions 41. As shown in FIGS. 4 and 5, the driver IC 7 is connected to each electrode pad portion 311 of each individual electrode 31 by a plurality of wires 61, respectively. The driver IC 7 is connected to the wiring pattern formed on the connection board 5 by the plurality of wires 62. A print signal transmitted from the outside is input to the driver IC 7 via the connector 59. The plurality of heat generating units 41 are selectively energized according to the print signal to selectively generate heat.
  • the driver IC 7 and the plurality of wires 61 and 62 are covered with the protective resin 78 so as to straddle the head substrate 1 and the connection substrate 5.
  • the protective resin 78 a black insulating material such as an epoxy resin is used.
  • the heat radiating member 8 supports the head substrate 1 and the connecting substrate 5, and is provided to dissipate a part of the heat generated by the plurality of heat generating portions 41 to the outside.
  • the heat radiating member 8 is made of metal such as aluminum.
  • FIGS. 7 to 14 are cross-sectional views showing one step of the manufacturing method of the thermal print head A1, and correspond to the cross section shown in FIG.
  • the base material 10A is prepared.
  • the base material 10A is made of a single crystal semiconductor, for example, a Si wafer.
  • the base material 10A has a main surface 11A.
  • the main surface 11A is substantially flat and faces upward in the thickness direction z.
  • the main surface 11A is the (100) surface. This process is an example of the “preparation process”.
  • the convex portion 12 is formed.
  • a predetermined mask layer is formed on a part of the main surface 11A (for example, a region shown by an imaginary line in FIG. 7).
  • anisotropic etching using an alkaline aqueous solution is performed.
  • this alkaline aqueous solution include KOH (potassium hydroxide) and TMAH (tetramethylammonium hydroxide).
  • KOH potassium hydroxide
  • TMAH tetramethylammonium hydroxide
  • the convex portion 12 includes a top portion 13 having a top surface 131 and a pair of inclined portions 14 each having an inclined surface 141.
  • the pair of inclined surfaces 141 are (111) surfaces, respectively, and are inclined with respect to the main surface 11 and the top surface 131.
  • the inclination angle ⁇ 1 of each inclined surface 141 is, for example, 54.7 degrees.
  • the heat storage layer 15 is formed.
  • glass paste 15A is screen-printed or dispensed on the top surface 131 (top 13) of the convex portion 12. do.
  • the glass paste 15A has substantially equal thickness and a rectangular cross section in yz in the main scanning direction x-view, but the surfaces of both ends in the sub-scanning direction y. May have a curved semi-cylindrical shape.
  • the heat storage layer 15 is formed as shown in FIG.
  • This step is an example of a "glaze forming step". Round portions 151 are formed on the surface of the formed heat storage layer 15 at both ends in the sub-scanning direction y.
  • the insulating layer 19 is formed.
  • the insulating layer 19 is formed by depositing TEOS using, for example, CVD.
  • the insulating layer 19 covers the main surface 11, the pair of inclined portions 14 (inclined surfaces 141) of the convex portions 12, and the heat storage layer 15.
  • a resistor film 4A is formed.
  • the resistor film 4A is formed, for example, by forming a thin film of TaN on the insulating layer 19 by sputtering.
  • the resistor film 4A covers the entire surface of the insulating layer 19.
  • the conductive film 3A is formed.
  • the conductive film 3A is formed by, for example, forming a layer made of Cu by plating or sputtering.
  • the conductive film 3A covers the entire surface of the resistor film 4A.
  • the conductive film 3A may be formed by forming a Ti layer on the resistor film 4A and then forming a Cu layer.
  • the conductive film 3A and the resistor film 4A are partially removed by selectively etching the conductive film 3A and the resistor film 4A.
  • the resistor layer 4 separated in the main scanning direction x, and the plurality of individual electrodes 31 and the common electrode 32 that cover the resistor layer 4 while leaving the plurality of heat generating portions 41 are formed.
  • a step of forming the resistor film 4A, forming the conductive film 3A, and partially removing the conductive film 3A and the resistor film 4A is an example of the "heating portion forming step".
  • the protective layer 2 is formed.
  • the protective layer 2 is formed by, for example, using CVD to deposit, for example, SiN on each of the insulating layer 19, the electrode layer 3, and the resistor layer 4. Then, in order to form the pad opening 21, the protective layer 2 is partially removed by etching or the like.
  • FIG. 1 The thermal printhead A1 shown in FIGS. 1 to 6 is manufactured.
  • the above manufacturing method is an example, and is not limited to this.
  • a glass paste is formed (printed or coated) before the convex portion 12 is formed, and the glass paste is fired. Then, anisotropic etching may be performed using the fired body of the glass paste as a mask layer.
  • the manufacturing method according to this modification will be described with reference to FIGS. 15 to 19.
  • 15 to 19 are enlarged cross-sectional views of a main part showing one step of the manufacturing method according to the present modification, and correspond to the cross section shown in FIG.
  • the base material 10A shown in FIG. 7 is prepared in the same manner as in the above manufacturing method.
  • a glass paste is screen-printed (or dispensed) on the entire surface (or a part) of the main surface 11A of the base material 10A, and this is dried to form a glaze layer 150A.
  • the glaze layer 150A is a state in which the glass paste is dried, and has a thickness of, for example, 20 ⁇ m or more and 400 ⁇ m or less (preferably 60 ⁇ m or more and 100 ⁇ m or less).
  • screen printing is preferable, but dispenser coating may be used.
  • the resist 159 is attached to the surface of the glaze layer 150A by, for example, a photolithography method.
  • the forming region of the resist 159 corresponds to the region to be the top portion 13 (top surface 131) of the convex portion 12 in the thermal print head A1.
  • the glaze layer 150A is wet-etched using the resist 159 as a mask to remove the glaze layer 150A in the region of the glaze layer 150A that is not covered with the resist 159.
  • the resist 159 is removed.
  • the glaze layer 150A glass paste
  • the resist 159 shown in FIG. 16 is formed and the glaze shown in FIG. 17 is formed. It is not necessary to perform the partial removal of the layer 150A and the removal of the resist 159 in this step.
  • the glaze layer 150A is fired to turn the glaze layer 150A into a glaze intermediate 150B.
  • anisotropic etching is performed on the base material 10A using an alkaline aqueous solution (for example, KOH or TMAH) using the glaze intermediate 150B as a mask.
  • an alkaline aqueous solution for example, KOH or TMAH
  • the base material 10 is formed from the base material 10A, and the convex portion 12 extending in a substantially uniform cross section in the main scanning direction x is formed.
  • the convex portion 12 includes the above-mentioned top portion 13 and a pair of inclined portions 14. This process is an example of an "etching process".
  • the heat storage layer 15 (glaze) is formed by refiring the glaze intermediate 150B (see FIG. 10).
  • the heat storage layer 15 is formed on the convex portion 12 (top portion 13), and a pair of round portions 151 whose surfaces are smoothly connected to the pair of inclined surfaces 141 are formed at both ends in the sub-scanning direction y.
  • the thermal print head A1 is formed by partially removing the body film 4A (see FIG. 14) and forming the protective layer 2 in this order.
  • thermal print head A1 The actions and effects of the thermal print head A1 according to the first embodiment are as follows.
  • the thermal print head A1 includes a heat storage layer 15 formed between the base material 10 and the resistor layer 4.
  • the resistor layer 4 includes a plurality of heat generating portions 41. That is, the heat storage layer 15 is formed between the plurality of heat generating portions 41 and the base material 10.
  • the Si wafer which is the material of the base material 10, has relatively good thermal conductivity, and in a configuration without the heat storage layer 15, the heat generated by each heat generating portion 41 is wastedly leaked toward the heat radiating member 8, so that it is low. It was not suitable for printing with electric power.
  • the thermal print head A1 since a heat storage layer 15 having a sufficient thickness is formed below the heat generating portion 41, wasteful leakage of heat generated by the heat generating portion 41 is prevented, and the heat generating portion 41 efficiently. The temperature can be raised. Therefore, the thermal print head A1 becomes suitable for printing with low power consumption.
  • the heat storage layer 15 is a glaze made of a glass material, and the glaze is formed by firing the glass paste. Therefore, for example, it can be formed with an overwhelming thickness and an overwhelmingly short time as compared with the case where SiO 2 as a heat storage layer is adhered and formed by CVD, which means that the thermal print head A1 can be formed. It greatly contributes to the improvement of manufacturing efficiency and cost reduction.
  • the base material 10 has a convex portion 12, and the plurality of heat generating portions 41 are formed on the top portion 13 (top surface 131) of the convex portion 12.
  • the print medium is surely pressed against the heat generating portion 41 via the platen roller 91.
  • the convex portion 12 is formed by performing anisotropic etching on the single crystal semiconductor, its yz cross section becomes uniform in the main scanning direction x. That is, the pressing contact state of the print medium with respect to the heat generating portion 41 is constant in the main scanning direction x each place. This does not change even if the production lot of the head substrate 1 is different, so that variations in print quality can be suppressed.
  • FIG. 20 shows the thermal print head A2 according to the first modification of the first embodiment.
  • FIG. 20 is an enlarged cross-sectional view of a main part of the thermal print head A2, which corresponds to the cross section shown in FIG. Unlike the thermal print head A1, the thermal print head A2 has a groove 132 formed on the top 13.
  • the groove portion 132 is recessed from the top surface 131 of the top portion 13.
  • the groove portion 132 extends in the main scanning direction x and is V-shaped in the main scanning direction x view (yz cross section).
  • the groove portion 132 has a pair of inclined surfaces 132A. Each of the pair of inclined surfaces 132A is connected to the top surface 131. Each inclined surface 132A is inclined with respect to the main surface 11 and the top surface 131. Each inclined surface 132A is a (111) surface, and the inclination angle ⁇ 2 of each 132A with respect to the top surface 131 is, for example, 54.7 degrees.
  • the edge on the lower side in the thickness direction z is connected to each other, and the edge on the upper side in the thickness direction z is connected to the top surface 131.
  • the groove portion 132 is filled with the heat storage layer 15.
  • FIG. 21 shows the thermal print head A3 according to the second modification of the first embodiment.
  • FIG. 21 is an enlarged cross-sectional view of a main part of the thermal print head A3, and corresponds to the cross section shown in FIG. Unlike the thermal print head A1, the thermal print head A3 has a groove portion 133 formed on the top portion 13.
  • the groove portion 133 is recessed from the top surface 131 of the top portion 13.
  • the groove portion 133 extends in the main scanning direction x and has a trapezoidal shape in the main scanning direction x view (yz cross section).
  • the groove portion 133 has a pair of inclined surfaces 133A and a bottom surface 133B.
  • the pair of inclined surfaces 133A are connected to the top surface 131 and the bottom surface 133B, respectively.
  • Each inclined surface 133A is inclined with respect to the main surface 11 and the top surface 131.
  • Each inclined surface 133A is a (111) surface, and the inclination angle ⁇ 3 of each inclined surface 132A with respect to the top surface 131 is, for example, 54.7 degrees.
  • the pair of inclined surfaces 133A are located at both ends of the groove portion 133 in the sub-scanning direction y.
  • the bottom surface 133B is sandwiched between a pair of inclined surfaces 133A in the sub-scanning direction y.
  • the bottom surface 133B is substantially parallel to the xy plane.
  • the groove portion 133 is filled with the heat storage layer 15.
  • FIG. 22 shows the thermal print head A4 according to the third modification of the first embodiment.
  • FIG. 22 is an enlarged cross-sectional view of a main part of the thermal print head A4, which corresponds to the cross section shown in FIG. Unlike the thermal print head A1, the thermal print head A4 has a plurality of groove portions 134 formed on the top portion 13.
  • each of the plurality of groove portions 134 is recessed from the top surface 131 of the top portion 13.
  • Each groove 134 extends in the main scanning direction x and is V-shaped in the main scanning direction x view (yz cross section).
  • the plurality of groove portions 134 and the top surface 131 are alternately arranged in the sub-scanning direction y. Due to the plurality of grooves 134, the top 13 is serrated in the main scanning direction x view (yz cross section).
  • Each of the plurality of grooves 134 has a pair of inclined surfaces 134A, as shown in FIG.
  • Each of the pair of inclined surfaces 134A is connected to the top surface 131.
  • Each inclined surface 134A is inclined with respect to the main surface 11 and the top surface 131.
  • Each inclined surface 134A is a (111) surface, and the inclination angle ⁇ 4 of each inclined surface 134A with respect to the top surface 131 is, for example, 54.7 degrees.
  • the pair of inclined surfaces 134A are located at both ends of the sub-scanning direction y of each groove portion 134.
  • the groove 134 is filled with the heat storage layer 15.
  • FIG. 23 shows the thermal print head A5 according to the fourth modification of the first embodiment.
  • FIG. 23 is an enlarged cross-sectional view of a main part of the thermal print head A5, which corresponds to the cross section shown in FIG.
  • the thermal print head A5 has a step on the top 13 of the convex portion 12.
  • the top portion 13 has a first top surface 135, a second top surface 136, and a connecting surface 137.
  • the first top surface 135 and the second top surface 136 are substantially parallel to the main surface 11, respectively.
  • the second top surface 136 is closer to the main surface 11 than the first top surface 135 in the thickness direction z, and is located downstream of the first top surface 135 in the sub-scanning direction y.
  • the first top surface 135 is connected to the inclined surface 141 on the upstream side in the sub-scanning direction y, and the second top surface 136 is connected to the inclined surface 141 on the downstream side in the sub-scanning direction y.
  • the first top surface 135 and the second top surface 136 are (100) planes, respectively.
  • the connecting surface 137 is connected to the first top surface 135 and the second top surface 136, and is sandwiched between them in the sub-scanning direction y.
  • the connecting surface 137 is inclined with respect to each of the first top surface 135 and the second top surface 136.
  • the connecting surface 137 is a (111) surface, and the inclination angle ⁇ 5 of the connecting surface 137 with respect to the first top surface 135 is, for example, 54.7 degrees.
  • the tip of each individual electrode 31 on the downstream side in the sub-scanning direction extends to the top 13, and the sub-scanning direction y of each comb tooth portion 324 of the common electrode 32.
  • the tip on the upstream side extends to the inclined portion 14 like the thermal print head A1.
  • the convex portions 12 (top 13) on the thermal print heads A2 to A5 are formed, that is, the convex portions 12 having the groove portions 132 to 134 and the convex portions 12 having the steps, respectively, as follows.
  • NS In the method of forming the convex portion 12 (see thermal printheads A2 to A4) having the groove portions 132 to 134, the glaze forming step (see FIGS. 9 and 10) is performed after the convex portion forming step (see FIG. 8). (See) Before, a mask layer is formed in a region other than the groove portions 132 to 134 of the top surface 131.
  • the convex portion 12 (top 13) has the first top surface 135, the second top surface 136, and the connecting surface 137 (that is, a step). Is formed.
  • the convex portions 12 (each groove portions 132 to 134 and the stepped structure) according to the first modification to the fourth modification are appropriately formed according to the arrangement and size of the mask layer forming region, the etching time, and the like. ..
  • the groove portions 132 to 134 are formed on the main surface 11A of the base material 10A before the convex portion forming step (see FIG. 8). It is also possible. Further, in the method of forming the convex portion 12 having the groove portions 132 and 134, it is also possible to collectively perform the formation of the groove portions 132 and 134 and the convex portion forming step.
  • the thermal print heads A2 to A5 can further improve the heat storage performance as compared with the thermal print heads A1.
  • the thickness of the heat storage layer 15 is different between the upstream side and the downstream side in the sub scanning direction y in the main scanning direction x view. That is, the heat storage layer 15 has a difference in heat storage performance between the upstream side and the downstream side in the sub-scanning direction y. Therefore, as shown in FIG. 23, by appropriately adjusting the forming range of the electrode layer 3 (each comb tooth portion 324 of each individual electrode 31 and the common electrode 32), each heat generating portion 41 does not impair the heat storage performance. The center of heat generated by the above can be shifted to the downstream side in the sub-scanning direction y. As a result, the heat generating center of each heat generating portion 41 can be arranged on, for example, the round portion 151, so that the thermal print head A5 can correspond to a straight pass.
  • FIG. 24 is an enlarged cross-sectional view of a main part showing the thermal print head B1 and corresponds to the cross section shown in FIG. Unlike the thermal print head A1, the thermal print head B1 has a pair of inclined portions 14 in the convex portions 12 inclined in two stages.
  • each of the pair of inclined portions 14 has a first inclined surface 142 and a second inclined surface 143.
  • the first inclined surface 142 and the second inclined surface 143 are aligned in the sub-scanning direction y.
  • the first inclined surface 142 and the second inclined surface 143 have different inclination angles with respect to the main surface 11.
  • the first inclined surface 142 has an inclination angle ⁇ 6 with respect to the main surface 11 of, for example, 54.7 degrees.
  • the second inclined surface 143 has an inclination angle ⁇ 7 with respect to the main surface 11 of, for example, 30.1 degrees.
  • the first inclined surface 142 is connected to the main surface 11 and the second inclined surface 143 and is sandwiched between them.
  • the second inclined surface 143 is connected to the first inclined surface 142 and the top surface 131 (top 13), and is sandwiched between them.
  • the first inclined surface 142 is a (111) surface.
  • the convex portion 12 of the thermal print head B1 is formed by, for example, after the convex portion forming step (see FIG. 8) in the manufacturing method of the thermal print head A1, further etching with an alkaline aqueous solution.
  • an alkaline aqueous solution KOH or TMAH is used.
  • the convex portion 12 is subjected to anisotropic etching with an alkaline aqueous solution.
  • the base material 10 of the portion drawn with dots in FIG. 25 is removed, and a pair of inclined portions 14 each having a first inclined surface 142 and a second inclined surface 143 are formed.
  • An example of the "etching step” is a step of forming the convex portion 12 and then performing an anisotropic etching.
  • thermal print head B1 The actions and effects of the thermal print head B1 according to the second embodiment are as follows.
  • the thermal print head B1 As in the thermal print head A1, a heat storage layer 15 having a sufficient thickness is formed below the heat generating portion 41, so that wasteful leakage of heat generated by the heat generating portion 41 can be prevented.
  • the temperature of the heat generating unit 41 can be raised efficiently. That is, the thermal print head B1 becomes suitable for printing with low power consumption. Further, since the heat storage layer 15 is formed by firing the glass paste, it can be formed with a sufficient thickness and for a short time.
  • the thermal print head B1 can exhibit the same effect as the thermal print head A1 due to the configuration common to that of the thermal print head A1.
  • each inclined portion 14 has a first inclined surface 142 and a second inclined surface 143 having different inclination angles with respect to the main surface 11.
  • the inclination angle ⁇ 7 of the second inclined surface 143 with respect to the main surface 11 is smaller than the inclination angle ⁇ 6 of the first inclined surface 142 with respect to the main surface 11. Therefore, the convex portion 12 of the thermal print head B1 can make the inclination angle of the inclined surface connected to the top surface 131 smaller than that of the convex portion 12 of the thermal print head A1.
  • This inclined surface is the second inclined surface 143 in the thermal print head B1 and is the inclined surface 141 in the thermal print head A1.
  • FIG. 26 shows the thermal print head B2 according to the first modification of the second embodiment.
  • FIG. 26 is an enlarged cross-sectional view of a main part of the thermal print head B2, which corresponds to the cross section shown in FIG. Similar to the thermal print head A2, the thermal print head B2 has a groove portion 132 formed on the top portion 13.
  • FIG. 27 shows the thermal print head B3 according to the second modification of the second embodiment.
  • FIG. 27 is an enlarged cross-sectional view of a main part of the thermal print head B3, which corresponds to the cross section shown in FIG. Similar to the thermal print head A3, the thermal print head B3 has a groove portion 133 formed on the top portion 13.
  • FIG. 28 shows the thermal print head B4 according to the third modification of the second embodiment.
  • FIG. 28 is an enlarged cross-sectional view of a main part of the thermal print head B4, which corresponds to the cross section shown in FIG. Similar to the thermal print head A4, the thermal print head B4 has a plurality of groove portions 134 formed on the top portion 13.
  • FIG. 29 shows the thermal print head B5 according to the third modification of the second embodiment.
  • FIG. 29 is an enlarged cross-sectional view of a main part of the thermal print head B5, which corresponds to the cross section shown in FIG.
  • the thermal print head B5 has a step on the top 13 like the thermal print head A5. That is, the top 13 of the thermal print head B5 has a first top surface 135, a second top surface 136, and a connecting surface 137.
  • the thermal print heads B2 to B5 each have the same effect as the thermal print head B1. Further, since the heat storage layer 15 is partially thicker than the thermal print head B1 in each of the thermal print heads B2 to B5, the heat storage performance is improved. Further, in the thermal print head B5, as in the case of the thermal print head A5, the center of each heat generating portion 41 can be tilted to the downstream side, so that a straight pass can be supported.
  • the heat storage layer 15 may be formed on, for example, one or both of the pair of second inclined surfaces 143 of the inclined portion 14. That is, the heat storage layer 15 may be formed so as to extend from the top surface 131 (top portion 13) to the second inclined surface 143 (tilted portion 14). Further, it may be formed on one or both of the pair of first inclined surfaces 142 of the inclined portion 14. That is, the heat storage layer 15 may be formed so as to extend from the top surface 131 (top portion 13) to the second inclined surface 143 and the first inclined surface 142 (tilted portion 14).
  • FIG. 30 is an enlarged cross-sectional view of a main part showing an example of the thermal print head according to such a modification.
  • the heat storage layer 15 is above the top portion 13 and above the second inclined surface 143 on the downstream side in the sub-scanning direction. The case where it is formed straddling is shown.
  • FIG. 30 is an enlarged cross-sectional view of a main part showing the thermal print head according to the present modification, and corresponds to the cross section shown in FIG. By doing so, it is also possible to shift the heat generating center of each heat generating portion 41 to the downstream side in the sub-scanning direction to correspond to the straight path.
  • FIG. 31 is an enlarged cross-sectional view of a main part showing the thermal print head C1 and corresponds to the cross section shown in FIG.
  • the base material 10 does not include the convex portion 12, but the base material 10 is formed with a groove portion 171 recessed from the main surface 11.
  • the groove portion 171 is recessed from the main surface 11 in the thickness direction z.
  • the groove portion 171 extends in the main scanning direction x and forms a V shape in the main scanning direction x view (yz cross section).
  • the heat storage layer 15 rises from the main surface 11 while being filled in the groove portion 171.
  • the groove portion 171 has a pair of inclined surfaces 171A.
  • the pair of inclined surfaces 171A are inclined with respect to the main surface 11.
  • Each inclined surface 171A is a (111) surface, and the inclination angle ⁇ 8 of each 171A with respect to the main surface 11 is, for example, 54.7 degrees.
  • the edge on the lower side in the thickness direction z is connected to each other, and the edge on the upper side in the thickness direction z is connected to the main surface 11.
  • the groove portion 171 is filled with the heat storage layer 15. As shown in FIG. 31, the heat storage layer 15 rises from the main surface 11.
  • the base material 10 of the thermal print head C1 is prepared by preparing the base material 10A, forming a predetermined mask layer 109 on the main surface 11A, and then performing anisotropic etching.
  • anisotropic etching By this anisotropic etching, the base material 10A of the dot-drawn portion of FIG. 32 is removed, and the base material 10 having the groove portion 171 is formed from the base material 10A.
  • This process is an example of an "etching process”.
  • a glass paste is formed (screen printing, dispenser coating, etc.) so as to fill the groove 171 and fired to form the heat storage layer 15.
  • This step is an example of a "glaze forming step”.
  • the thermal printhead C1 shown in FIG. 31 is formed by forming the resistor film 4A, forming the conductive film 3A, partially removing the conductive film 3A and the resistor film 4A, and forming the protective layer 2 in this order. Will be done.
  • thermal print head C1 The actions and effects of the thermal print head C1 according to the third embodiment are as follows.
  • the thermal print head C1 As in the thermal print head A1, a heat storage layer 15 having a sufficient thickness is formed below the heat generating portion 41, so that wasteful leakage of heat generated by the heat generating portion 41 can be prevented.
  • the temperature of the heat generating unit 41 can be raised efficiently. That is, the thermal print head C1 becomes suitable for printing with low power consumption.
  • the heat storage layer 15 is formed by firing the glass paste, it can be formed with a sufficient thickness and in a short time.
  • the thermal print head C1 can exhibit the same effect as the thermal print head A1 due to the configuration common to that of the thermal print head A1.
  • FIG. 33 shows the thermal print head C2 according to the first modification of the third embodiment.
  • FIG. 33 is an enlarged cross-sectional view of a main part of the thermal print head C2, which corresponds to the cross section shown in FIG. Unlike the thermal print head C1, the thermal print head C2 has a groove portion 172 formed on the base material 10 instead of the groove portion 171.
  • the groove portion 172 is recessed from the main surface 11 in the thickness direction z.
  • the groove portion 172 extends in the main scanning direction x and has a trapezoidal shape in the main scanning direction x view (yz cross section).
  • the groove portion 172 has a pair of inclined surfaces 172A and a bottom surface 172B.
  • the pair of inclined surfaces 172A are inclined with respect to the main surface 11 and the bottom surface 172B, respectively.
  • Each inclined surface 172A is a (111) surface, and each inclined angle ⁇ 9 of each inclined surface 172A with respect to the main surface 11 is, for example, 54.7 degrees.
  • the pair of inclined surfaces 172A are located at both ends of the groove portion 172 in the sub-scanning direction y.
  • the bottom surface 172B is sandwiched between a pair of inclined surfaces 172A in the sub-scanning direction y.
  • the bottom surface 172B is substantially parallel to the main surface 11.
  • the groove portion 172 is filled with the heat storage layer
  • FIG. 34 shows the thermal print head C3 according to the second modification of the third embodiment.
  • FIG. 34 is an enlarged cross-sectional view of a main part of the thermal print head C3, which corresponds to the cross section shown in FIG.
  • the thermal print head C3 has a plurality of groove portions 173 formed on the base material 10 instead of the groove portions 171.
  • Each of the plurality of groove portions 173 is recessed from the main surface 11 in the thickness direction z.
  • Each groove portion 173 extends in the main scanning direction x and is V-shaped in the main scanning direction x view (yz cross section).
  • the plurality of groove portions 173 and the main surface 11 are alternately arranged in the sub-scanning direction y.
  • Each of the plurality of grooves 173 has a pair of inclined surfaces 173A, as shown in FIG. 34.
  • Each of the pair of inclined surfaces 173A is connected to the main surface 11.
  • Each of the pair of inclined surfaces 173A is inclined with respect to the main surface 11.
  • Each inclined surface 173A is a (111) surface, and the inclination angle ⁇ 10 of each inclined surface 173A with respect to the main surface 11 is, for example, 54.7 degrees.
  • the heat storage layer 15 is formed between the base material 10 and the insulating layer 19 is shown, but the present invention is not limited thereto.
  • it may be formed between the insulating layer 19 and the resistor layer 4. That is, the insulating layer 19, the heat storage layer 15, and the resistor layer 4 may be laminated in this order on the base material 10.
  • FIG. 35 is an enlarged cross-sectional view of a main part showing an example of the thermal print head according to such a modification.
  • an insulating layer 19, a heat storage layer 15, and a resistor layer are formed on the base material 10 of the thermal print head A1.
  • the insulating layer 19 may be composed of a SiO 2 film obtained by thermally oxidizing the base material 10.
  • the common electrode 32 and the plurality of individual electrodes 31 are located in a plan view with the plurality of heat generating portions 41 interposed therebetween in the sub-scanning direction y.
  • the common electrode 32 and the plurality of individual electrodes 31 may be arranged on the same side with respect to the plurality of heat generating portions 41 in the sub-scanning direction y.
  • the thermal print head and the method for manufacturing the thermal print head according to the present disclosure are not limited to the above-described embodiment.
  • the specific configuration of each part of the thermal printhead of the present disclosure and the specific processing of each step of the method of manufacturing the thermal printhead of the present disclosure can be variously redesigned.
  • the thermal print head and the method for manufacturing the thermal print head according to the present disclosure include embodiments relating to the following appendices.
  • Appendix 1 A base material made of a single crystal semiconductor having a main surface facing one side in the thickness direction, A resistor layer formed on the main surface and containing a plurality of heat generating portions arranged in the main scanning direction, An insulating layer formed between the base material and the resistor layer, A heat storage layer formed between the base material and the plurality of heat generating portions, Is equipped with The heat storage layer is a thermal print head which is a glaze made of a glass material.
  • the base material further includes a convex portion that protrudes from the main surface and extends in the main scanning direction.
  • the heat storage layer is formed on the top of the convex portion, and is formed on the top of the convex portion.
  • the resistor layer is formed so as to straddle the main surface, the convex portion, and the heat storage layer.
  • the thermal print head according to Appendix 1 wherein each of the plurality of heat generating portions is arranged on one side in the thickness direction with respect to the top portion.
  • the thermal print head according to Appendix 2 wherein the top surface has a top surface parallel to the main surface.
  • the top has a groove further recessed from the top.
  • the thermal print head according to Appendix 3, wherein the groove portion is filled with the heat storage layer.
  • the apex has a first apex and a second apex, each parallel to the main surface, and a connecting surface that connects to the first apex and the second apex.
  • the thermal printhead according to Appendix 2 wherein the second top surface is closer to the main surface than the first top surface in the thickness direction.
  • the thermal print head according to Appendix 5 The thermal print head according to Appendix 5, wherein the connecting surface is inclined with respect to each of the first top surface and the second top surface.
  • Appendix 7 The thermal print head according to Appendix 5 or Appendix 6, wherein the second top surface is located downstream of the first top surface in the sub-scanning direction.
  • the first inclined surface is connected to the main surface and is sandwiched between the main surface and the second inclined surface.
  • the second inclined surface is connected to the top and is sandwiched between the first inclined surface and the top.
  • the thermal print head according to Appendix 9 or 10 wherein the inclination angle of the second inclined surface with respect to the main surface is smaller than the inclination angle of the first inclined surface with respect to the main surface.
  • the base material further has a groove portion recessed from the main surface.
  • [Appendix 15] The thermal print head according to any one of Supplementary note 1 to Supplementary note 14, wherein the insulating layer covers the heat storage layer.
  • the single crystal semiconductor is made of Si and is made of Si.
  • [Appendix 17] The preparation process for preparing a base material made of a single crystal semiconductor, and An etching process in which the base material is anisotropically etched, and A glaze forming step of forming a glaze of a predetermined thickness by arranging the glass paste on the base material and then firing the glass paste.
  • a method for manufacturing a thermal print head which comprises a heat generating portion forming step of forming a plurality of heat generating portions arranged in the main scanning direction on the glaze.
  • the etching step is performed before the glaze forming step. In the etching step, a main surface facing one side in the thickness direction and a convex portion protruding from the main surface are formed on the base material by the anisotropic etching.
  • the etching step is performed after the glaze forming step.
  • etching step by performing the anisotropic etching using the glaze as a mask layer, a main surface facing one side in the thickness direction and a convex portion protruding from the main surface are formed on the base material.
  • the method for manufacturing a thermal printhead according to Appendix 17. [Appendix 20] The base material has a main surface facing one side in the thickness direction. In the etching step, a groove portion recessed from the main surface is formed on the base material by the anisotropic etching. The method for manufacturing a thermal print head according to Appendix 17, wherein in the glaze forming step, the groove portion is filled and the glaze is formed so as to bulge from the main surface.
  • A1 to A5, B1 to B5, C1 to C3 Thermal print head 1: Head substrate 10, 10A: Base material 109: Mask layer 11, 11A: Main surface 12: Convex portion 13: Top 131: Top surface 132, 133 134: Grooves 132A, 133A, 134A: Inclined surface 133B: Bottom surface 135: First top surface 136: Second top surface 137: Connecting surface 14: Inclined portion 141: Inclined surface 142: First inclined surface 143: Second inclined surface 15: Heat storage layer 15A: Glass paste 150A: Glaze layer 150B: Glaze intermediate 151: Round portion 159: Resistor 171, 172, 173: Groove portion 171A, 172A, 173A: Inclined surface 172B: Bottom surface 19: Insulation layer 2: Protective layer 21: Pad opening 3: Electrode layer 31: Individual electrode 311: Electrode pad part 32: Common electrode 323: Common part 324: Comb tooth part 3A: Conductive film 4: Resistor

Landscapes

  • Electronic Switches (AREA)

Abstract

発熱部の下位に設けられる蓄熱層の形成が簡易なサーマルプリントヘッドが提供される。当該サーマルプリントヘッドは、基材と、抵抗体層と、絶縁層と、蓄熱層とを備えている。前記基材は、厚さ方向の一方を向く主面を有し、単結晶半導体からなる。前記抵抗体層は、前記主面の上に形成され且つ主走査方向に配列された複数の発熱部を含む。前記絶縁層は、前記基材と前記抵抗体層との間に形成されている。前記蓄熱層は、前記基材と前記複数の発熱部との間に形成されている。前記蓄熱層は、ガラス材料からなる。

Description

サーマルプリントヘッドおよびサーマルプリントヘッドの製造方法
 本開示は、サーマルプリントヘッドと、サーマルプリントヘッドの製造方法とに関する。
 特許文献1には、従来のサーマルプリントヘッドの一例が開示されている。一般に、サーマルプリントヘッドは、ヘッド基板上に主走査方向に並ぶ複数の発熱部を備えている。各発熱部は、ヘッド基板に蓄熱層を介して形成した抵抗体層上に、その一部を露出させるようにして、上流側電極層と下流側電極層とをそれらの端部を対向させて積層することにより形成されている。上流側電極層と下流側電極層との間を通電することにより、上記抵抗体層の露出部(発熱部)が発熱する。蓄熱層は、たとえば、発熱部が発する熱が無駄にヘッド基板等に漏出することを抑制して、効率的に発熱部の温度を上昇するために設けられている。
 同文献に開示されたサーマルプリントヘッドはまた、基板としてSi(シリコン)を用い、半導体プロセスにより抵抗体層を含む各構成部を形成している。この場合、蓄熱層は、SiO2(二酸化ケイ素)を用いたスパッタリングやCVD法により形成されるが、十分な厚みの蓄熱層を形成するには相当時間を要し、サーマルプリントヘッドの製造効率が悪化するという問題がある。
特開2017-7203号公報
 本開示は、上記した事情のもとで考え出されたものであり、その目的は、発熱部の下位に設けられる蓄熱層を簡易に形成することができるサーマルプリントヘッドを提供することにある。また、そのサーマルプリントヘッドの製造方法を提供することにある。
 本開示の第1の側面によって提供されるサーマルプリントヘッドは、厚さ方向の一方を向く主面を有し、単結晶半導体からなる基材と、前記主面の上に形成され且つ主走査方向に配列された複数の発熱部を含む抵抗体層と、前記基材と前記抵抗体層との間に形成された絶縁層と、前記基材と前記複数の発熱部との間に形成された蓄熱層と、を備えており、前記蓄熱層は、ガラス材料からなるグレーズである。
 本開示の第2の側面によって提供されるサーマルプリントヘッドの製造方法は、単結晶半導体からなる基材を用意する用意工程と、前記基材に異方性エッチングを施すエッチング工程と、前記基材の上にガラスペーストを配置した後、当該ガラスペーストを焼成することで、所定厚みのグレーズを形成するグレーズ形成工程と、前記グレーズの上に、主走査方向に配列された複数の発熱部を形成する発熱部形成工程と、を有する。
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
 本開示のサーマルプリントヘッドによれば、たとえば、蓄熱層を簡易に形成することができる。
第1実施形態にかかるサーマルプリントヘッドを示す平面図である。 第1実施形態にかかるサーマルプリントヘッドを示す要部拡大平面図である。 第1実施形態にかかるサーマルプリントヘッドを示す要部拡大平面図である。 図1のIV-IV線に沿う断面図である。 図4の一部を拡大した部分拡大断面図である。 図4の一部を拡大した部分拡大断面図である。 第1実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる他の製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる他の製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる他の製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる他の製造方法の一工程を示す要部拡大断面図である。 第1実施形態にかかる他の製造方法の一工程を示す要部拡大断面図である。 第1実施形態の第1変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第1実施形態の第2変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第1実施形態の第3変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第1実施形態の第4変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第2実施形態にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第2実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第2実施形態の第1変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第2実施形態の第2変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第2実施形態の第3変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第2実施形態の第4変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第2実施形態の他の変形例にかかるサーマルプリントヘッドを示す要部拡 大断面図である。 第3実施形態にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第3実施形態にかかる製造方法の一工程を示す要部拡大断面図である。 第3実施形態の第1変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 第3実施形態の第2変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。 変形例にかかるサーマルプリントヘッドを示す要部拡大断面図である。
 本開示のサーマルプリントヘッドおよびその製造方法の好ましい実施の形態について、図面を参照して、以下に説明する。
 本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接して、ある物Aがある物B上に位置していること」、および、「ある物Aとある物Bとの間に他の物が介在しつつ、ある物Aがある物B上に位置していること」を含む。また、「ある物Aがある物Bにある方向に見て重なる」とは、特段の断りのない限り、「ある物Aがある物Bのすべてに重なること」、および、「ある物Aがある物Bの一部に重なること」を含む。
<第1実施形態>
 第1実施形態にかかるサーマルプリントヘッドA1について、図1~図6を参照して説明する。図1~図6に示すように、サーマルプリントヘッドA1は、ヘッド基板1、接続基板5、複数のワイヤ61,62、複数のドライバIC7、保護樹脂78および放熱部材8を備えている。
 サーマルプリントヘッドA1は、プラテンローラ91によって搬送される印刷媒体(図示略)に印刷を施すプリンタに組み込まれるものである。印刷媒体としては、たとえばバーコードシートやレシートを作成するための感熱紙が挙げられる。図4に示すように、サーマルプリントヘッドA1において、ヘッド基板1および接続基板5は、放熱部材8上に副走査方向yに隣接させて搭載されている。ヘッド基板1には、後に詳説する構成により、主走査方向xに配列される複数の発熱部41が形成されている。この発熱部41は、接続基板5に搭載されたドライバIC7により選択的に発熱駆動され、コネクタ59を介して外部から送信される印字信号にしたがって、プラテンローラ91によって発熱部41に押圧される印刷媒体に印字を行う。
 図1は、サーマルプリントヘッドA1を示す平面図である。図2は、サーマルプリントヘッドA1を示す要部拡大平面図である。図3は、サーマルプリントヘッドA1を示す要部拡大平面図である。図4は、図1のIV-IV線に沿う断面図である。図5は、図4の一部を拡大した部分拡大断面図である。図6は、図4の一部を拡大した部分拡大断面図である。図1~図3において、保護層2を省略している。図1および図2において、保護樹脂78を省略している。図1および図2においては、ワイヤ61を省略している。理解の便宜上、図1~図6において、主走査方向をx方向、副走査方向をy方向、ヘッド基板1の厚さ方向をz方向としている。印刷時において、印刷媒体は、副走査方向yの図中矢印が指す方向に送られる。副走査方向yにおいて、図中矢印が指す方向を下流とし、その反対方向を上流とする。また、厚さ方向zにおいて、図中矢印が指す方向を上方とし、その反対方向を下方とする。
 ヘッド基板1は、図1~図6に示すように、基材10、蓄熱層15、絶縁層19、保護層2、電極層3、および、抵抗体層4を備えている。
 基材10は、単結晶半導体からなる。単結晶半導体としては、Siが好適である。基材10は、図1に示すように、厚さ方向z視において、主走査方向xを長手方向とし、副走査方向yを短手方向とする細長矩形状である。基材10の大きさは限定されないが、一例を挙げると、主走査方向xの寸法は、たとえば40mm以上150mm以下、副走査方向yの寸法は、たとえば1.0mm以上5.0mm以下、厚さ方向zの寸法は、たとえば725μmである。基材10において、副走査方向yのドライバIC7に近い側が上流側であり、ドライバIC7から遠い側が下流側である。印刷媒体は、プラテンローラ91によって、副走査方向yの、上流側から下流側に搬送される。
 基材10は、図1、図2、図5および図6に示すように、主面11および凸部12を有している。主面11は、厚さ方向zの上方を向く。本開示では、主面11は、x-y平面に沿って広がっており、x-y平面に略平行な平面である。主面11は、(100)面(ミラー指数による表示。以下同様。)である。凸部12は、主面11から厚さ方向zに突き出ている。凸部12は、主走査方向xに延びている。凸部12は、主面11の下流側寄りに形成されている。凸部12は、y-z平面に沿う断面の形状が、主走査方向xに一様である。以下では、y-z平面に沿う断面を「y-z断面」という。凸部12は、厚さ方向z下方側の端部における副走査方向yの寸法H1が、たとえば500μmであり、厚さ方向上方側の端部における副走査方向yの寸法H3が、たとえば200μmである。また、凸部12は、厚さ方向zの寸法H2は、たとえば150μmである。各寸法H1,H2,H3は、上記した例に限定されない。凸部12は、図6に示すように、頂部13および一対の傾斜部14を含んでいる。
 頂部13は、図5および図6に示すように、凸部12のうち、主面11からの厚さ方向zの距離が相対的に大きい部分である。頂部13は、主面11と平行な頂面131を有する。頂面131は、略平面である。頂面131は、厚さ方向z視において、主走査方向xに長く延びる細長矩形状である。上記寸法H2は、頂面131と主面11との厚さ方向zにおける離間距離である。
 一対の傾斜部14は、図5および図6に示すように、凸部12のうち、頂部13から副走査方向yに離れるほど低位となるように主面11および頂面131に対して傾斜する部分である。一対の傾斜部14はそれぞれ、主面11と頂部13とに繋がり、副走査方向yにおいてこれらに挟まれている。一対の傾斜部14には、頂部13に対して上流側の傾斜部14と下流側の傾斜部14とがある。一対の傾斜部14はそれぞれ、主面11および頂面131に対して傾斜した傾斜面141を有する。各傾斜面141は、略平面である。主面11に対する各傾斜面141の傾斜角α1は、たとえば54.7度である。各傾斜面141は、(111)面である。
 蓄熱層15は、たとえば非晶質ガラスなどのガラス材料からなるグレーズである。当該グレーズ(蓄熱層15)は、たとえばガラスペーストを焼成することにより形成される。図5および図6に示すように、蓄熱層15は、凸部12の頂部13の上に配置されている。蓄熱層15は、頂面131に接しており、本実施形態では、蓄熱層15は、傾斜面141には接していない。なお、蓄熱層15は、頂面131と傾斜面141との双方に接して いてもよい。つまり、蓄熱層15は、頂面131(頂部13)から一対の傾斜面141の一方あるいは両方(傾斜部14)に跨って形成されていてもよい。蓄熱層15は、主走査方向xに延びており、頂面131の副走査方向yの全幅にわたって形成されている。蓄熱層15の厚さ(最大厚さ)は、たとえば10μm以上200μm以下(好ましくは30μm以上50μm以下)である。
 図6に示すように、蓄熱層15には、その上面において、副走査方向y両端に一対のラウンド部151が形成されている。一対のラウンド部151はそれぞれ、盛り上がるように湾曲した部分である。一対のラウンド部151により、蓄熱層15の表面が、一対の傾斜部14(凸部12)の各傾斜面141にかけて滑らかに連続させられている。各ラウンド部151は、蓄熱層15を形成する際にガラスペーストを焼成することにより形成される。図6の例示においては、蓄熱層15の上面は、副走査方向yにおいて、一対のラウンド部151の間に略平坦な面が介在しているが、この略平坦な面がなく、一対のラウンド部151同士が繋がっていてもよい。この場合、蓄熱層15の上面は、厚さ方向z上方に湾曲した凸面である。
 絶縁層19は、図5および図6に示すように、基材10の主面11上に形成され、基材10および蓄熱層15を覆う。絶縁層19は、主面11、凸部12の一対の傾斜面141および蓄熱層15の上面に接する。絶縁層19は、絶縁性材料からなり、たとえばSiO2、SiN(窒化ケイ素)またはTEOS(オルトケイ酸テトラエチル)からなり、好適にはTEOSが採用される。絶縁層19の厚さは特に限定されず、たとえば1μm以上10μm以下である。
 抵抗体層4は、図5および図6に示すように、絶縁層19上に形成され、絶縁層19を覆う。抵抗体層4は、絶縁層19を挟んで、主面11および凸部12にわたって形成されている。抵抗体層4は、たとえばTaN(窒化タンタル)からなる。抵抗体層4は、TaNではなく、TiSiO2あるいはTaSiNなどで構成されていてもよい。抵抗体層4の厚さは特に限定されず、たとえば0.02μm以上0.1μm以下(好ましくは0.08μm程度)である。
 抵抗体層4は、図3、図5および図6に示すように、複数の発熱部41を含む。複数の発熱部41は、抵抗体層4のうち後述する電極層3に覆われずに露出する部分である。複数の発熱部41は、主走査方向xに配列され、その副走査方向yにおける形成領域は、凸部12の頂部13(頂面131)の副走査方向yの一部または全部を含んだ領域とされる。
 電極層3は、複数の発熱部41に通電するための導通経路を構成する。電極層3は、抵抗体層4に積層され、基材10に支持されている。電極層3は、抵抗体層4よりも抵抗値が小さい金属材料からなり、たとえばCu(銅)からなる。電極層3は、Cu層と、Ti(チタン)層とが積層された構成であってもよい。この場合、Ti層は、Cu層と抵抗体層4との間に介在し、たとえば厚さ100nm程度である。電極層3の厚さは特に限定されず、たとえば0.3μm以上2.0μm以下である。
 電極層3は、図2、図3、図5および図6に示すように、複数の個別電極31および共通電極32を含んでいる。抵抗体層4のうち、複数の個別電極31と共通電極32との間において電極層3から露出した部分が、複数の発熱部41となっている。厚さ方向z方向視における各個別電極31および共通電極32の各形状、すなわち、各個別電極31および共通電極32の形成領域は、図2および図3の例示に限定されない。
 複数の個別電極31はそれぞれ、概ね副走査方向yに延びる帯状である。各個別電極3 1は、各発熱部41よりも副走査方向y上流側に配置されている。図3および図6に表れているように、本実施形態では、各個別電極31の副走査方向y下流側の先端は、副走査方向y上流側の傾斜部14まで延びているが、当該先端が頂部13まで延びていてもよい。各個別電極31の副走査方向y上流側の先端には、電極パッド部311が形成されている。電極パッド部311は、接続基板5に搭載されるドライバIC7とワイヤ61により接続される部分である。各個別電極31が、「上流側導電層」の一例である。
 共通電極32は、図2および図3に示すように、共通部323および複数の櫛歯部324を含んでいる。共通部323は、複数の櫛歯部324を共通に繋げる。共通部323は、主走査方向xに延びている。共通部323は、複数の櫛歯部324の副走査方向y下流側に位置する。各櫛歯部324は、共通部323の上流側の端縁から副走査方向yに延びる帯状である。複数の櫛歯部324は、互いに離間し、主走査方向xに並んでいる。各櫛歯部324の副走査方向y上流側の先端は、各個別電極31の先端に対して所定間隔を隔てて対向させられている。よって、各櫛歯部324の副走査方向y上流側の先端と、各個別電極31の副走査方向y下流側の先端との間において、抵抗体層4が電極層3から露出する。図3および図6に表れているように、各櫛歯部324の副走査方向y上流側の先端は、副走査方向y下流側の傾斜部14まで延びているが、当該先端が頂部13まで延びていてもよい。各櫛歯部324の副走査方向y下流側部分と共通部323とは、図2に示すように、主面11上に形成されている。なお、各櫛歯部324は、主面11ではなく傾斜面141(傾斜部14)に形成されていてもよいし、共通部323も主面11ではなく傾斜面141(傾斜部14)に形成されていてもよい。共通電極32が、「下流側導電層」の一例である。
 保護層2は、図5および図6に示すように、電極層3および抵抗体層4を覆っている。保護層2は、絶縁性の材料からなり、たとえばSiO2、SiN、SiC(炭化ケイ素)、AlN(窒化アルミニウム)のいずれかあるいはそれら2つ以上の積層体からなる。保護層2の厚さは、たとえば1.0μm以上10μm以下である。
 保護層2は、図5に示すように、厚さ方向zに貫通するパッド用開口21を有する。パッド用開口21は、複数の個別電極31に設けた電極パッド部311をそれぞれ露出させている。
 接続基板5は、図1および図4に示すように、ヘッド基板1に対して副走査方向y上流側に隣接して配置されている。接続基板5は、たとえばPCB基板である。接続基板5は、図1および図4に示すように、ドライバIC7やコネクタ59が搭載される。接続基板5は、たとえば、図1に示すように、厚さ方向z視において、主走査方向xを長手方向とする矩形状である。
 コネクタ59は、サーマルプリントヘッドA1をプリンタ(図示略)に接続するために用いられる。コネクタ59は、図4に示すように、接続基板5に取り付けられており、接続基板5の配線パターン(図示略)に接続されている。
 ドライバIC7は、図1および図4に示すように、接続基板5上に搭載されており、複数の発熱部41に個別に通電させるために設けられている。ドライバIC7は、図4および図5に示すように、複数のワイヤ61によって、各個別電極31の各電極パッド部311にそれぞれ接続される。ドライバIC7は、複数のワイヤ62によって、接続基板5上に形成された配線パターンに接続される。ドライバIC7にはコネクタ59を介して外部から送信される印字信号が入力される。複数の発熱部41は、印字信号にしたがって個別に通電されることにより、選択的に発熱させられる。
 ドライバIC7および複数のワイヤ61,62は、図4および図5に示すように、ヘッド基板1と接続基板5とに跨るようにして保護樹脂78で覆われている。保護樹脂78は、エポキシ樹脂などの黒色の絶縁性材料が用いられている。
 放熱部材8は、図4に示すように、ヘッド基板1および接続基板5を支持しており、複数の発熱部41により生じた熱の一部を外部へと放熱するために設けられる。放熱部材8はたとえばアルミ等の金属製である。
 次に、サーマルプリントヘッドA1の製造方法の一例について、図7~図14を参照して、説明する。図7~図14はそれぞれ、サーマルプリントヘッドA1の製造方法の一工程を示す断面図であって、図6に示す断面に対応する。
 まず、図7に示すように、基材10Aを用意する。基材10Aは、単結晶半導体からなり、たとえばSiウエハである。基材10Aは、主面11Aを有する。主面11Aは、略平坦であり、厚さ方向zの上方を向く。主面11Aは(100)面である。この工程が、「用意工程」の一例である。
 次いで、図8に示すように、凸部12を形成する。凸部12を形成する工程(凸部形成工程)では、主面11Aの一部(たとえば図7において想像線で示す領域)に所定のマスク層を形成する。そして、たとえばアルカリ水溶液を用いた異方性エッチングを行う。このアルカリ水溶液としては、たとえばKOH(水酸化カリウム)やTMAH(水酸化テトラメチルアンモニウム)などが挙げられる。これにより、図8に示すように、主面11および凸部12を有する基材10が基材10Aから形成される。主面11は、主面11Aと同じく(100)面である。凸部12は、頂面131を有する頂部13、および、各々が傾斜面141を有する一対の傾斜部14を含んでいる。一対の傾斜面141はそれぞれ、(111)面であり、主面11および頂面131に対して傾斜している。各傾斜面141の傾斜角α1は、たとえば54.7度である。その後、上述のマスク層を除去する。当該凸部形成工程が、「エッチング工程」の一例である。
 次いで、図9および図10に示すように、蓄熱層15を形成する。蓄熱層15を形成する工程(蓄熱層形成工程)では、まず、図9に示すように、凸部12の頂面131(頂部13)上に、たとえばガラスペースト15Aをスクリーン印刷するかあるいはディスペンサー塗布する。この時点では、図9に示すように、ガラスペースト15Aは、主走査方向x視において、厚さが略均等であり、y-z断面が矩形状であるが、副走査方向y両端部分の表面が湾曲したカマボコ形状であってもよい。なお、頂面131上にガラスペースト15Aを形成する上では、形成精度が比較的高いディスペンサー塗布が好ましい。その後、ガラスペースト15Aを焼成することによって、図10に示すように、蓄熱層15が形成される。この工程が、「グレーズ形成工程」の一例である。形成された蓄熱層15は、その表面の副走査方向y両端部分にラウンド部151が形成されている。
 次いで、図11に示すように、絶縁層19を形成する。絶縁層19の形成は、たとえばCVDを用いてTEOSを堆積させることにより行う。絶縁層19は、主面11、凸部12の一対の傾斜部14(傾斜面141)および蓄熱層15を覆う。
 次いで、図12に示すように、抵抗体膜4Aを形成する。抵抗体膜4Aの形成は、たとえばスパッタリングにより絶縁層19上にTaNの薄膜を形成することによって行う。抵抗体膜4Aは、絶縁層19の全面を覆う。
 次いで、図13に示すように、導電膜3Aを形成する。導電膜3Aの形成は、たとえばめっきやスパッタリングによりCuからなる層を形成することによって行う。導電膜3Aは、抵抗体膜4Aの全面を覆う。なお、導電膜3Aの形成では、抵抗体膜4A上にTi層を形成した後、Cu層を形成した構成でもよい。
 次いで、図14に示すように、導電膜3Aおよび抵抗体膜4Aに選択的なエッチングを施すことにより、導電膜3Aおよび抵抗体膜4Aを部分的に除去する。これにより、主走査方向xに分離された抵抗体層4と、複数の発熱部41を残して抵抗体層4を覆う複数の個別電極31および共通電極32とが形成される。抵抗体膜4Aの形成、導電膜3Aの形成、および、導電膜3Aおよび抵抗体膜4Aの部分除去をあわせた工程が、「発熱部形成工程」の一例である。
 次いで、保護層2を形成する。保護層2の形成は、たとえばCVDを用いて、絶縁層19、電極層3および抵抗体層4のそれぞれの上にたとえばSiNを堆積させることにより行われる。その後、パッド用開口21を形成するために、保護層2をエッチング等により部分的に除去する。
 そして、放熱部材8上へのヘッド基板1および接続基板5の組付け、接続基板5へのドライバIC7の搭載、複数のワイヤ61,62のボンディング、保護樹脂78の形成等を行うことにより、図1~図6に示したサーマルプリントヘッドA1が製造される。
 上記した製造方法は一例であり、これに限定されない。たとえば、凸部12を形成する前にガラスペーストを形成(印刷あるいは塗布)し、当該ガラスペーストを焼成する。そして、ガラスペーストの焼成体をマスク層として、異方性エッチングを行ってもよい。この変形例にかかる製造方法について、図15~図19を参照して、説明する。図15~図19はそれぞれ、本変形例にかかる製造方法の一工程を示す要部拡大断面図であって、図6に示す断面に対応する。
 本変形例に係る製造方法においては、まず、上記製造方法と同様に、図7に示す基材10Aを用意する。
 次いで、図15に示すように、基材10Aの主面11Aの全面(あるいは部分的)にガラスペーストをスクリーン印刷(あるいはディスペンサー塗布)し、これを乾燥させることにより、グレーズ層150Aを形成する。このグレーズ層150Aは、ガラスペーストが乾燥した状態のものであり、厚さがたとえば20μm以上400μm以下(好ましくは60μm以上100μm以下)である。本工程では、主面11Aの全面をガラスペーストで覆うため、スクリーン印刷が好ましいが、ディスペンサー塗布であってよい。
 次いで、図16に示すように、グレーズ層150Aの表面に対して、たとえばフォトリソグラフィ法によりレジスト159を付着させる。レジスト159の形成領域は、サーマルプリントヘッドA1における上記凸部12の頂部13(頂面131)となるべき領域に対応させる。
 次いで、図17に示すように、レジスト159をマスクとしてグレーズ層150Aにウェットエッチングを施し、グレーズ層150Aのうち、レジスト159で覆われていない領域のグレーズ層150Aを除去する。
 次いで、図18に示すように、レジスト159を除去する。なお、上述のグレーズ層150Aを形成する工程(図15参照)において、グレーズ層150A(ガラスペースト)を部分的に形成した場合には、図16に示すレジスト159の形成、図17に示すグレー ズ層150Aの部分除去、および、本工程のレジスト159の除去の各処理は不要である。そして、グレーズ層150Aを焼成することで、グレーズ層150Aをグレーズ中間体150Bにする。
 次いで、図19に示すように、グレーズ中間体150Bをマスクとして、基材10Aに対して、アルカリ水溶液(たとえばKOHやTMAH)を用いた異方性エッチングを行う。これにより、基材10Aから基材10が形成され、主走査方向xに略一様断面で延びる凸部12が形成される。凸部12は、上述する頂部13および一対の傾斜部14を含んでいる。この工程が、「エッチング工程」の一例である。
 次いで、グレーズ中間体150Bを再焼成することにより、蓄熱層15(グレーズ)が形成される(図10参照)。蓄熱層15は、凸部12(頂部13)上に形成され、副走査方向y両端に、表面が一対の傾斜面141に滑らかに繋がる一対のラウンド部151が形成されている。
 その後は、上記した製造方法と同様に、絶縁層19の形成(図11参照)、抵抗体膜4Aの形成(図12参照)、導電膜3Aの形成(図13参照)、導電膜3Aおよび抵抗体膜4Aの部分除去(図14参照)、および、保護層2の形成の処理を、順に経ることで、サーマルプリントヘッドA1が形成される。
 第1実施形態にかかるサーマルプリントヘッドA1の作用・効果は、次の通りである。
 サーマルプリントヘッドA1では、基材10と抵抗体層4との間に形成された蓄熱層15を備えている。抵抗体層4は、複数の発熱部41を含んでいる。つまり、複数の発熱部41と基材10との間に蓄熱層15が形成されている。基材10の材料であるSiウエハは、比較的熱伝導性が良く、蓄熱層15を備えてない構成では、各発熱部41が発する熱を無駄に放熱部材8に向けて漏出させるため、低電力での印字に不向きであった。一方、サーマルプリントヘッドA1は、発熱部41の下方に十分な厚さの蓄熱層15が形成されるため、発熱部41が発する熱の無駄な漏出が防がれ、効率的に発熱部41の温度を上げることができる。よって、サーマルプリントヘッドA1は、低電力での印字に適するようになる。
 しかも、蓄熱層15は、ガラス材料からなるグレーズであり、当該グレーズは、ガラスペーストを焼成することによって形成される。そのため、たとえば蓄熱層としてのSiO2をCVDで付着させて形成することに比較し、圧倒的な厚みで、かつ圧倒的に短時間で形成することができ、このことは、サーマルプリントヘッドA1の製造効率の向上およびコスト低減に大いに寄与する。
 サーマルプリントヘッドA1では、基材10が凸部12を有しており、複数の発熱部41は、凸部12の頂部13(頂面131)上に形成されている。これにより、印刷媒体は、プラテンローラ91を介して確実に発熱部41に押圧される。また、凸部12は、単結晶半導体に対して異方性エッチングを施すことにより形成されるため、そのy-z断面は主走査方向xについて一様となる。つまり、印刷媒体の発熱部41に対する押圧接触状態は、主走査方向x各所において一定となる。このことは、ヘッド基板1の製造ロットが異なっても変わらないので、印字品質のバラツキを抑制できる。
 <第1実施形態の各変形例>
 第1実施形態の変形例にかかるサーマルプリントヘッドについて、図20~図23を参照して説明する。
 図20は、第1実施形態の第1変形例にかかるサーマルプリントヘッドA2を示している。図20は、サーマルプリントヘッドA2の要部拡大断面図であり、図6に示す断面に対応する。サーマルプリントヘッドA2は、サーマルプリントヘッドA1と異なり、頂部13に溝部132が形成されている。
 溝部132は、図20に示すように、頂部13の頂面131から凹んでいる。溝部132は、主走査方向xに延びており、主走査方向x視(y-z断面)においてV字状である。溝部132は、図20に示すように、一対の傾斜面132Aを有する。一対の傾斜面132Aはそれぞれ、頂面131に繋がる。各傾斜面132Aは、主面11および頂面131に対して傾斜している。各傾斜面132Aは、(111)面であり、頂面131に対する各132Aの傾斜角α2は、たとえば54.7度である。一対の傾斜面132Aは、厚さ方向z下方側の端縁が互いに繋がっており、厚さ方向z上方側の端縁が頂面131に繋がっている。溝部132には、蓄熱層15が充填されている。
 図21は、第1実施形態の第2変形例にかかるサーマルプリントヘッドA3を示している。図21は、サーマルプリントヘッドA3の要部拡大断面図であり、図6に示す断面に対応する。サーマルプリントヘッドA3は、サーマルプリントヘッドA1と異なり、頂部13に溝部133が形成されている。
 溝部133は、図21に示すように、頂部13の頂面131から凹んでいる。溝部133は、主走査方向xに延びており、主走査方向x視(y-z断面)において、台形状である。溝部133は、図21に示すように、一対の傾斜面133Aおよび底面133Bを有する。一対の傾斜面133Aはそれぞれ、頂面131および底面133Bに繋がる。各傾斜面133Aは、主面11および頂面131に対して傾斜している。各傾斜面133Aは、(111)面であり、頂面131に対する各傾斜面132Aの傾斜角α3は、たとえば54.7度である。一対の傾斜面133Aは、溝部133の副走査方向y両端に位置する。底面133Bは、副走査方向yにおいて、一対の傾斜面133Aに挟まれている。底面133Bは、x-y平面に略平行である。溝部133には、蓄熱層15が充填されている。
 図22は、第1実施形態の第3変形例にかかるサーマルプリントヘッドA4を示している。図22は、サーマルプリントヘッドA4の要部拡大断面図であり、図6に示す断面に対応する。サーマルプリントヘッドA4は、サーマルプリントヘッドA1と異なり、頂部13に複数の溝部134が形成されている。
 複数の溝部134はそれぞれ、図22に示すように、頂部13の頂面131から凹んでいる。各溝部134は、主走査方向xに延びており、主走査方向x視(y-z断面)において、V字状である。複数の溝部134と頂面131とは、副走査方向yにおいて、交互に配列されている。複数の溝部134により、頂部13は主走査方向x視(y-z断面)において鋸状である。複数の溝部134はそれぞれ、図22に示すように、一対の傾斜面134Aを有する。一対の傾斜面134Aはそれぞれ、頂面131に繋がる。各傾斜面134Aは、主面11および頂面131に対して傾斜している。各傾斜面134Aは、(111)面であり、頂面131に対する各傾斜面134Aの傾斜角α4は、たとえば54.7度である。一対の傾斜面134Aは、各溝部134の副走査方向y両端に位置する。溝部134には、蓄熱層15が充填されている。
 図23は、第1実施形態の第4変形例にかかるサーマルプリントヘッドA5を示している。図23は、サーマルプリントヘッドA5の要部拡大断面図であり、図6に示す断面に対応する。サーマルプリントヘッドA5は、サーマルプリントヘッドA1と異なり、凸部12の頂部13に段差がある。当該頂部13は、図23に示すように、第1頂面135、 第2頂面136および連結面137を有する。
 第1頂面135および第2頂面136はそれぞれ、主面11に略平行である。第2頂面136は、厚さ方向zにおいて第1頂面135よりも主面11に近く、かつ、副走査方向yにおいて第1頂面135よりも下流側に位置する。第1頂面135は、副走査方向y上流側の傾斜面141に繋がり、第2頂面136は、副走査方向y下流側の傾斜面141に繋がっている。第1頂面135および第2頂面136はそれぞれ、(100)面である。
 連結面137は、第1頂面135と第2頂面136とに繋がり、副走査方向yにおいてこれらに挟まれている。連結面137は、第1頂面135および第2頂面136のそれぞれに対して傾斜している。連結面137は、(111)面であり、第1頂面135に対する連結面137の傾斜角α5は、たとえば54.7度である。
 サーマルプリントヘッドA5においては、図23に示すように、各個別電極31の副走査方向y下流側の先端が、頂部13まで延びており、共通電極32の各櫛歯部324の副走査方向y上流側の先端は、サーマルプリントヘッドA1と同様に傾斜部14まで延びている。
 サーマルプリントヘッドA2~A5にかかる凸部12(頂部13)はそれぞれ、すなわち、各溝部132~134がある凸部12、および、段差がある凸部12はそれぞれ、たとえば、次のように形成される。各溝部132~134がある凸部12(サーマルプリントヘッドA2~A4参照)の形成方法においては、上記凸部形成工程(図8参照)後であって、上記グレーズ形成工程(図9および図10参照)前において、頂面131のうち溝部132~134の形成領域以外にマスク層を形成する。そして、アルカリ性水溶液(たとえばKOHやTMAHなど)を用いた異方性エッチングを行うことで、凸部12(頂部13)に溝部132~134が形成される。この工程が、「エッチング工程」の一例である。また、段差がある凸部12(サーマルプリントヘッドA5参照)の形成方法においては、上記凸部形成工程(図8参照)後であって、上記グレーズ形成工程(図9および図10参照)前において、頂面131のうち第1頂面135の形成領域にマスク層を形成する。そして、アルカリ性水溶液(たとえばKOHやTMAHなど)を用いた異方性エッチングを行うことで、凸部12(頂部13)に第1頂面135、第2頂面136および連結面137(つまり段差)が形成される。第1変形例ないし第4変形例にかかる凸部12(各溝部132~134および段差構造)は、マスク層の形成領域の配置や大きさ、および、エッチング時間などに応じて、適宜形成される。なお、各溝部132~134がある凸部12の形成方法においては、凸部形成工程(図8参照)前であって、基材10Aの主面11Aに各溝部132~134を形成しておくことも可能である。また、各溝部132,134がある凸部12の形成方法においては、各溝部132,134の形成と凸部形成工程とを一括して行うことも可能である。
 サーマルプリントヘッドA2~A5においても、サーマルプリントヘッドA1と同様の効果を奏することができる。さらに、サーマルプリントヘッドA2~A5はそれぞれ、頂部13に形成された溝部132~134あるいは段差構造により、蓄熱層15の厚さが部分的にサーマルプリントヘッドA1の蓄熱層15の厚さよりも相対的に大きい。そのため、サーマルプリントヘッドA2~A5は、サーマルプリントヘッドA1よりも蓄熱性能をさらに向上させることができる。
 サーマルプリントヘッドA5においては、主走査方向x視において、副走査方向yの上流側と下流側とで、蓄熱層15の厚さが異なっている。つまり、蓄熱層15は、副走査方向yにおいて、上流側と下流側での蓄熱性能に差がある。そのため、図23に示すように、電極層3(各個別電極31および共通電極32の各櫛歯部324)の形成範囲を適宜調 整することで、蓄熱性能を損なうことなく、各発熱部41による発熱中心を、副走査方向y下流側にずらすことができる。これにより、各発熱部41による発熱中心を、たとえばラウンド部151上に配置することができので、サーマルプリントヘッドA5は、ストレートパスに対応可能となる。
 <第2実施形態>
 第2実施形態にかかるサーマルプリントヘッドB1について、図24を参照して説明する。図24は、サーマルプリントヘッドB1を示す要部拡大断面図であって、図6に示す断面に対応する。サーマルプリントヘッドB1は、サーマルプリントヘッドA1と異なり、凸部12における一対の傾斜部14がそれぞれ2段階に傾斜している。
 一対の傾斜部14はそれぞれ、図24に示すように、第1傾斜面142および第2傾斜面143を有する。第1傾斜面142と第2傾斜面143とは、副走査方向yに並んでいる。第1傾斜面142および第2傾斜面143は、互いに主面11に対する傾斜角が異なる。第1傾斜面142は、主面11に対する傾斜角α6がたとえば54.7度である。一方、第2傾斜面143は、主面11に対する傾斜角α7がたとえば30.1度である。第1傾斜面142は、主面11と第2傾斜面143とに繋がり、これらに挟まれている。第2傾斜面143は、第1傾斜面142と頂面131(頂部13)とに繋がり、これらに挟まれている。第1傾斜面142は、(111)面である。
 サーマルプリントヘッドB1における凸部12は、たとえばサーマルプリントヘッドA1の製造方法における凸部形成工程(図8参照)後において、さらに、もう一度アルカリ水溶液によるエッチングを施すことで形成される。当該アルカリ水溶液は、KOHあるいはTMAHが用いられる。具体的には、図8に示すように凸部12を形成した後、この凸部12にアルカリ水溶液による異方性エッチングを施す。これにより、図25でドット描画した部分の基材10が除去され、各々が第1傾斜面142および第2傾斜面143を有する一対の傾斜部14が形成される。凸部12を形成する工程と、その後に異方性エッチングを施す工程とをあわせた工程が、「エッチング工程」の一例である。
 第2実施形態にかかるサーマルプリントヘッドB1の作用・効果は、次の通りである。
 サーマルプリントヘッドB1においても、サーマルプリントヘッドA1と同様に、発熱部41の下方に十分な厚さの蓄熱層15が形成されるため、発熱部41が発する熱の無駄な漏出が防がれ、効率的に発熱部41の温度を上げることができる。つまり、サーマルプリントヘッドB1は、低電力での印字に適するようになる。また、蓄熱層15は、ガラスペーストを焼成することによって形成されるため、十分な厚みで、かつ、短時間が形成できる。その他、サーマルプリントヘッドB1は、サーマルプリントヘッドA1と共通する構成により、サーマルプリントヘッドA1と同様の効果を奏することができる。
 サーマルプリントヘッドB1では、凸部12において、一対の傾斜部14はそれぞれ、2段階に傾斜している。つまり、各傾斜部14は、主面11に対する傾斜角が異なる第1傾斜面142および第2傾斜面143を有している。主面11に対する第2傾斜面143の傾斜角α7は、主面11に対する第1傾斜面142の傾斜角α6よりも小さい。このため、サーマルプリントヘッドB1の凸部12は、頂面131に繋がる傾斜面の傾斜角を、サーマルプリントヘッドA1の凸部12よりも小さくできる。この傾斜面は、サーマルプリントヘッドB1においては、第2傾斜面143であり、サーマルプリントヘッドA1においては、傾斜面141である。この構成によると、プラテンローラ91によって印刷媒体が搬送されたとき、凸部12への当たりを抑制できる。これにより、紙カスなどの付着防止、保護層2の摩耗防止、および、印字品質の向上などに寄与する。
 <第2実施形態の各変形例>
 第2実施形態の変形例にかかるサーマルプリントヘッドについて、図26~図29を参照して説明する。
 図26は、第2実施形態の第1変形例にかかるサーマルプリントヘッドB2を示している。図26は、サーマルプリントヘッドB2の要部拡大断面図であり、図6に示す断面に対応する。サーマルプリントヘッドB2は、サーマルプリントヘッドA2と同様に、頂部13に溝部132が形成されている。
 図27は、第2実施形態の第2変形例にかかるサーマルプリントヘッドB3を示している。図27は、サーマルプリントヘッドB3の要部拡大断面図であり、図6に示す断面に対応する。サーマルプリントヘッドB3は、サーマルプリントヘッドA3と同様に、頂部13に溝部133が形成されている。
 図28は、第2実施形態の第3変形例にかかるサーマルプリントヘッドB4を示している。図28は、サーマルプリントヘッドB4の要部拡大断面図であり、図6に示す断面に対応する。サーマルプリントヘッドB4は、サーマルプリントヘッドA4と同様に、頂部13に複数の溝部134が形成されている。
 図29は、第2実施形態の第3変形例にかかるサーマルプリントヘッドB5を示している。図29は、サーマルプリントヘッドB5の要部拡大断面図であり、図6に示す断面に対応する。サーマルプリントヘッドB5は、サーマルプリントヘッドA5と同様に、頂部13に段差がある。つまり、サーマルプリントヘッドB5の頂部13は、第1頂面135、第2頂面136および連結面137を有する。
 サーマルプリントヘッドB2~B5はそれぞれ、サーマルプリントヘッドB1と同様の効果を奏する。さらに、サーマルプリントヘッドB2~B5はそれぞれ、部分的に、サーマルプリントヘッドB1よりも蓄熱層15の厚さが相対的に大きいため、蓄熱性能が向上される。また、サーマルプリントヘッドB5においては、サーマルプリントヘッドA5と同様に、各発熱部41の中心を下流側に傾けることができるので、ストレートパスに対応可能である。
 第2実施形態(各変形例を含む)においては、蓄熱層15が頂部13の上に形成された場合を示したが、これに限定されない。蓄熱層15は、たとえば、傾斜部14の一対の第2傾斜面143の一方あるいは両方の上にも形成されていてもよい。つまり、蓄熱層15は、頂面131(頂部13)から第2傾斜面143(傾斜部14)に跨って形成されていてもよい。さらに、傾斜部14の一対の第1傾斜面142の一方あるいは両方の上にも形成されていてもよい。つまり、蓄熱層15は、頂面131(頂部13)から第2傾斜面143および第1傾斜面142(傾斜部14)に跨って形成されていてもよい。図30は、このような変形例にかかるサーマルプリントヘッドの一例を示す要部拡大断面図であり、たとえば蓄熱層15が頂部13の上から副走査方向y下流側の第2傾斜面143の上に跨って形成された場合を示している。図30は、本変形例にかかるサーマルプリントヘッドを示す要部拡大断面図であり、図6に示す断面に相当する。このようにすることで、各発熱部41による発熱中心を副走査方向y下流側にずらして、ストレートパスに対応させることも可能である。
 <第3実施形態>
 第3実施形態にかかるサーマルプリントヘッドC1について、図31を参照して説明する。図31は、サーマルプリントヘッドC1を示す要部拡大断面図であって、図6に示す 断面に対応する。
 サーマルプリントヘッドC1は、サーマルプリントヘッドA1と異なり、基材10が凸部12を含んでいないが、基材10に主面11から窪んだ溝部171が形成されている。溝部171は、主面11から厚さ方向zに凹んでいる。溝部171は、主走査方向xに延びており、主走査方向x視(y-z断面)において、V字状をなす。蓄熱層15は、この溝部171に充填されつつ、主面11から隆起している。溝部171は、図31に示すように、一対の傾斜面171Aを有する。一対の傾斜面171Aは、主面11に対して傾斜している。各傾斜面171Aは、(111)面であり、主面11に対する各171Aの傾斜角α8は、たとえば54.7度である。一対の傾斜面171Aは、厚さ方向z下方側の端縁が互いに繋がっており、厚さ方向z上方側の端縁が主面11に繋がっている。溝部171には、蓄熱層15が充填されている。蓄熱層15は、図31に示すように、主面11から盛り上がっている。
 サーマルプリントヘッドC1の基材10は、図32に示すように、基材10Aを用意し、主面11A上に所定のマスク層109を形成した後に、異方性エッチングを行う。この異方性エッチングにより、図32のドット描画した部分の基材10Aが除去され、溝部171を有する基材10が基材10Aから形成される。この工程が、「エッチング工程」の一例である。その後は、溝部171を埋めるようにガラスペーストを形成(スクリーン印刷あるいはディスペンサー塗布など)し、焼成することで、蓄熱層15を形成する。この工程が、「グレーズ形成工程」の一例である。そして、抵抗体膜4Aの形成、導電膜3Aの形成、導電膜3Aおよび抵抗体膜4Aの部分除去、および、保護層2の形成を順に行うことで、図31に示すサーマルプリントヘッドC1が形成される。
 第3実施形態にかかるサーマルプリントヘッドC1の作用・効果は、次の通りである。
 サーマルプリントヘッドC1においても、サーマルプリントヘッドA1と同様に、発熱部41の下方に十分な厚さの蓄熱層15が形成されるため、発熱部41が発する熱の無駄な漏出が防がれ、効率的に発熱部41の温度を上げることができる。つまり、サーマルプリントヘッドC1は、低電力での印字に適するようになる。また、蓄熱層15は、ガラスペーストを焼成することによって形成されるため、十分な厚みで、かつ、短時間が形成できる。その他、サーマルプリントヘッドC1は、サーマルプリントヘッドA1と共通する構成により、サーマルプリントヘッドA1と同様の効果を奏することができる。
 <第3実施形態の各変形例>
 第3実施形態の変形例にかかるサーマルプリントヘッドについて、図33および図34を参照して説明する。
 図33は、第3実施形態の第1変形例にかかるサーマルプリントヘッドC2を示している。図33は、サーマルプリントヘッドC2の要部拡大断面図であって、図6に示す断面に対応する。サーマルプリントヘッドC2は、サーマルプリントヘッドC1と異なり、基材10に、溝部171の代わりに溝部172が形成されている。
 溝部172は、主面11から厚さ方向zに凹んでいる。溝部172は、主走査方向xに延びており、主走査方向x視(y-z断面)において、台形状である。溝部172は、図33に示すように、一対の傾斜面172Aおよび底面172Bを有している。一対の傾斜面172Aはそれぞれ、主面11および底面172Bに対して傾斜している。各傾斜面172Aは、(111)面であり、主面11に対する各傾斜面172Aの各傾斜角α9は、たとえば54.7度である。一対の傾斜面172Aは、溝部172の副走査方向y両端に 位置する。底面172Bは、副走査方向yにおいて、一対の傾斜面172Aに挟まれている。底面172Bは、主面11に略平行である。溝部172には、蓄熱層15が充填されている。
 図34は、第3実施形態の第2変形例にかかるサーマルプリントヘッドC3を示している。図34は、サーマルプリントヘッドC3の要部拡大断面図であって、図6に示す断面に対応する。サーマルプリントヘッドC3は、サーマルプリントヘッドC1と異なり、基材10に、溝部171の代わりに複数の溝部173が形成されている。
 複数の溝部173はそれぞれ、主面11から厚さ方向zに凹んでいる。各溝部173は、主走査方向xに延びており、主走査方向x視(y-z断面)において、V字状である。複数の溝部173と主面11とは、副走査方向yにおいて、交互に配列されている。複数の溝部173はそれぞれ、図34に示すように、一対の傾斜面173Aを有する。一対の傾斜面173Aはそれぞれ、主面11に繋がる。一対の傾斜面173Aはそれぞれ、主面11に対して傾斜している。各傾斜面173Aは、(111)面であり、主面11に対する各傾斜面173Aの傾斜角α10は、たとえば54.7度である。
 第1実施形態ないし第3実施形態(これらの各変形例を含む)においては、蓄熱層15が基材10と絶縁層19との間に形成された場合を示したが、これに限定されない。たとえば、絶縁層19と抵抗体層4との間に形成されていてもよい。つまり、基材10上に、絶縁層19、蓄熱層15、抵抗体層4の順で積層されていてもよい。図35は、このような変形例にかかるサーマルプリントヘッドの一例を示す要部拡大断面図であり、たとえばサーマルプリントヘッドA1にかかる基材10上に、絶縁層19、蓄熱層15、抵抗体層4(発熱部41)の順に積層した場合を示している。図35に示すサーマルプリントヘッドにおいては、絶縁層19が、基材10を熱酸化させることで得られるSiO2膜で構成されていてもよい。
 第1実施形態ないし第3実施形態(これらの各変形例を含む)においては、共通電極32と複数の個別電極31とが、平面視において、複数の発熱部41を挟んで副走査方向yの両側に配置されている場合(図3および図6参照)を示したが、これに限定されない。たとえば、共通電極32と複数の個別電極31とは、副走査方向yにおいて、複数の発熱部41を基準に同じ側に配置されていてもよい。
 本開示にかかるサーマルプリントヘッドおよびサーマルプリントヘッドの製造方法は、上記した実施形態に限定されるものではない。本開示のサーマルプリントヘッドの各部の具体的な構成、および、本開示のサーマルプリントヘッドの製造方法の各工程の具体的な処理は、種々に設計変更自在である。
 本開示にかかるサーマルプリントヘッドおよびサーマルプリントヘッドの製造方法は、以下の付記に関する実施形態を含む。
[付記1]
 厚さ方向の一方を向く主面を有し、単結晶半導体からなる基材と、
 前記主面の上に形成され且つ主走査方向に配列された複数の発熱部を含む抵抗体層と、
 前記基材と前記抵抗体層との間に形成された絶縁層と、
 前記基材と前記複数の発熱部との間に形成された蓄熱層と、
を備えており、
 前記蓄熱層は、ガラス材料からなるグレーズである、サーマルプリントヘッド。
[付記2]
 前記基材は、前記主面から突き出し、かつ、前記主走査方向に延びる凸部をさらに含んでおり、
 前記蓄熱層は、前記凸部の頂部に形成され、
 前記抵抗体層は、前記主面、前記凸部および前記蓄熱層に跨って形成され、
 前記複数の発熱部の各々は、前記頂部よりも前記厚さ方向の一方側に配置される、付記1に記載のサーマルプリントヘッド。
[付記3]
 前記頂部は、前記主面と平行な頂面を有する、付記2に記載のサーマルプリントヘッド。
[付記4]
 前記頂部は、前記頂面から窪んだ溝部をさらに有しており、
 前記溝部には、前記蓄熱層が充填されている、付記3に記載のサーマルプリントヘッド。
[付記5]
 前記頂部は、各々が前記主面に平行な第1頂面および第2頂面と、前記第1頂面および前記第2頂面に繋がる連結面とを有しており、
 前記第2頂面は、前記厚さ方向において、前記第1頂面よりも前記主面に近い、付記2に記載のサーマルプリントヘッド。
[付記6]
 前記連結面は、前記第1頂面および前記第2頂面のそれぞれに対して傾斜している、付記5に記載のサーマルプリントヘッド。
[付記7]
 前記第2頂面は、前記第1頂面よりも副走査方向の下流側に位置する、付記5または付記6に記載のサーマルプリントヘッド。
[付記8]
 前記蓄熱層は、前記頂部の副走査方向の全幅にわたって形成されている、付記2ないし付記7のいずれか1つに記載のサーマルプリントヘッド。
[付記9]
 前記凸部は、前記頂部と前記主面とに繋がり、前記主面に対して傾斜した傾斜部を有する、付記2ないし付記8のいずれか1つに記載のサーマルプリントヘッド。
[付記10]
 前記蓄熱層は、前記凸部の頂部から前記傾斜部に跨って形成されている、付記9に記載のサーマルプリントヘッド。
[付記11]
 前記傾斜部は、互いに繋がる第1傾斜面および第2傾斜面を有し、
 前記第1傾斜面は、前記主面に繋がり、かつ、前記主面と前記第2傾斜面とに挟まれ、
 前記第2傾斜面は、前記頂部に繋がり、かつ、前記第1傾斜面と前記頂部とに挟まれており、
 前記主面に対する前記第2傾斜面の傾斜角は、前記主面に対する前記第1傾斜面の傾斜角よりも小さい、付記9または付記10に記載のサーマルプリントヘッド。
[付記12]
 前記基材は、前記主面から窪んだ溝部をさらに有しており、
 前記溝部には、前記蓄熱層が充填されている、付記1に記載のサーマルプリントヘッド。
[付記13]
 前記蓄熱層は、当該蓄熱層の上面において、副走査方向の両端が盛り上がるように湾曲している、付記1ないし付記12のいずれか1つに記載のサーマルプリントヘッド。
[付記14]
 前記抵抗体層を介して相互間を通電可能な上流側導電層および下流側導電層と、をさらに備えており、
 前記上流側導電層および前記下流側導電層は、前記抵抗体層の一部を露出させて前記抵 抗体層上に積層されており、
 前記複数の発熱部はそれぞれ、前記抵抗体層のうち前記上流側導電層および前記下流側導電層から露出する部分である、付記1ないし付記13のいずれか1つに記載のサーマルプリントヘッド。
[付記15]
 前記絶縁層は、前記蓄熱層を覆う、付記1ないし付記14のいずれか1つに記載のサーマルプリントヘッド。
[付記16]
 前記単結晶半導体は、Siからなり、
 前記主面は、(100)面である、付記1ないし付記15のいずれか1つに記載のサーマルプリントヘッド。
[付記17]
 単結晶半導体からなる基材を用意する用意工程と、
 前記基材に異方性エッチングを施すエッチング工程と、
 前記基材の上にガラスペーストを配置した後、当該ガラスペーストを焼成することで、所定厚みのグレーズを形成するグレーズ形成工程と、
 前記グレーズの上に、主走査方向に配列された複数の発熱部を形成する発熱部形成工程と、を有するサーマルプリントヘッドの製造方法。
[付記18]
 前記エッチング工程は、前記グレーズ形成工程よりも前に行われ、
 前記エッチング工程では、前記異方性エッチングにより、前記基材に、厚さ方向の一方を向く主面と、当該主面から突き出た凸部とを形成し、
 前記グレーズ形成工程では、前記凸部の頂部に前記グレーズを形成する、付記17に記載のサーマルプリントヘッドの製造方法。
[付記19]
 前記エッチング工程は、前記グレーズ形成工程よりも後に行われ、
 前記エッチング工程では、前記グレーズをマスク層として前記異方性エッチングを施すことで、前記基材に、厚さ方向の一方を向く主面と、当該主面から突き出た凸部とを形成する、付記17に記載のサーマルプリントヘッドの製造方法。
[付記20]
 前記基材は、厚さ方向の一方を向く主面を有しており、
 前記エッチング工程では、前記異方性エッチングにより、前記基材に、前記主面から窪んだ溝部を形成し、
 前記グレーズ形成工程では、前記溝部を充填し、かつ、前記主面から盛り上がるように前記グレーズを形成する、付記17に記載のサーマルプリントヘッドの製造方法。
A1~A5,B1~B5,C1~C3:サーマルプリントヘッド
1    :ヘッド基板
10,10A:基材
109  :マスク層
11,11A:主面
12   :凸部
13   :頂部
131  :頂面
132,133,134:溝部
132A,133A,134A:傾斜面
133B :底面
135  :第1頂面
136  :第2頂面
137  :連結面
14   :傾斜部
141  :傾斜面
142  :第1傾斜面
143  :第2傾斜面
15   :蓄熱層
15A  :ガラスペースト
150A :グレーズ層
150B :グレーズ中間体
151  :ラウンド部
159  :レジスト
171,172,173:溝部
171A,172A,173A:傾斜面
172B :底面
19   :絶縁層
2    :保護層
21   :パッド用開口
3    :電極層
31   :個別電極
311  :電極パッド部
32   :共通電極
323  :共通部
324  :櫛歯部
3A   :導電膜
4    :抵抗体層
41   :発熱部
4A   :抵抗体膜
5    :接続基板
59   :コネクタ
61,62:ワイヤ
7    :ドライバIC
78   :保護樹脂
8    :放熱部材
91   :プラテンローラ

Claims (20)

  1.  厚さ方向の一方を向く主面を有し、単結晶半導体からなる基材と、
     前記主面の上に形成され且つ主走査方向に配列された複数の発熱部を含む抵抗体層と、
     前記基材と前記抵抗体層との間に形成された絶縁層と、
     前記基材と前記複数の発熱部との間に形成された蓄熱層と、
    を備えており、
     前記蓄熱層は、ガラス材料からなるグレーズである、
    サーマルプリントヘッド。
  2.  前記基材は、前記主面から突き出し、かつ、前記主走査方向に延びる凸部をさらに含んでおり、
     前記蓄熱層は、前記凸部の頂部に形成され、
     前記抵抗体層は、前記主面、前記凸部および前記蓄熱層に跨って形成され、
     前記複数の発熱部の各々は、前記頂部よりも前記厚さ方向の一方側に配置される、
    請求項1に記載のサーマルプリントヘッド。
  3.  前記頂部は、前記主面と平行な頂面を有する、
    請求項2に記載のサーマルプリントヘッド。
  4.  前記頂部は、前記頂面から窪んだ溝部をさらに有しており、
     前記溝部には、前記蓄熱層が充填されている、
    請求項3に記載のサーマルプリントヘッド。
  5.  前記頂部は、各々が前記主面に平行な第1頂面および第2頂面と、前記第1頂面および前記第2頂面に繋がる連結面とを有しており、
     前記第2頂面は、前記厚さ方向において、前記第1頂面よりも前記主面に近い、
    請求項2に記載のサーマルプリントヘッド。
  6.  前記連結面は、前記第1頂面および前記第2頂面のそれぞれに対して傾斜している、
    請求項5に記載のサーマルプリントヘッド。
  7.  前記第2頂面は、前記第1頂面よりも副走査方向の下流側に位置する、
    請求項5または請求項6に記載のサーマルプリントヘッド。
  8.  前記蓄熱層は、前記頂部の副走査方向の全幅にわたって形成されている、
    請求項2ないし請求項7のいずれか1つに記載のサーマルプリントヘッド。
  9.  前記凸部は、前記頂部と前記主面とに繋がり、前記主面に対して傾斜した傾斜部を有する、
    請求項2ないし請求項8のいずれか1つに記載のサーマルプリントヘッド。
  10.  前記蓄熱層は、前記凸部の頂部から前記傾斜部に跨って形成されている、
    請求項9に記載のサーマルプリントヘッド。
  11.  前記傾斜部は、互いに繋がる第1傾斜面および第2傾斜面を有し、
     前記第1傾斜面は、前記主面に繋がり、かつ、前記主面と前記第2傾斜面とに挟まれ、
     前記第2傾斜面は、前記頂部に繋がり、かつ、前記第1傾斜面と前記頂部とに挟まれており、
     前記主面に対する前記第2傾斜面の傾斜角は、前記主面に対する前記第1傾斜面の傾斜角よりも小さい、
    請求項9または請求項10に記載のサーマルプリントヘッド。
  12.  前記基材は、前記主面から窪んだ溝部をさらに有しており、
     前記溝部には、前記蓄熱層が充填されている、
    請求項1に記載のサーマルプリントヘッド。
  13.  前記蓄熱層は、当該蓄熱層の上面において、副走査方向の両端が盛り上がるように湾曲している、
    請求項1ないし請求項12のいずれか1つに記載のサーマルプリントヘッド。
  14.  前記抵抗体層を介して相互間を通電可能な上流側導電層および下流側導電層と、をさらに備えており、
     前記上流側導電層および前記下流側導電層は、前記抵抗体層の一部を露出させて前記抵抗体層上に積層されており、
     前記複数の発熱部はそれぞれ、前記抵抗体層のうち前記上流側導電層および前記下流側導電層から露出する部分である、
    請求項1ないし請求項13のいずれか1つに記載のサーマルプリントヘッド。
  15.  前記絶縁層は、前記蓄熱層を覆う、
    請求項1ないし請求項14のいずれか1つに記載のサーマルプリントヘッド。
  16.  前記単結晶半導体は、Siからなり、
     前記主面は、(100)面である、
    請求項1ないし請求項15のいずれか1つに記載のサーマルプリントヘッド。
  17.  単結晶半導体からなる基材を用意する用意工程と、
     前記基材に異方性エッチングを施すエッチング工程と、
     前記基材の上にガラスペーストを配置した後、当該ガラスペーストを焼成することで、所定厚みのグレーズを形成するグレーズ形成工程と、
     前記グレーズの上に、主走査方向に配列された複数の発熱部を形成する発熱部形成工程と、
    を有するサーマルプリントヘッドの製造方法。
  18.  前記エッチング工程は、前記グレーズ形成工程よりも前に行われ、
     前記エッチング工程では、前記異方性エッチングにより、前記基材に、厚さ方向の一方を向く主面と、当該主面から突き出た凸部とを形成し、
     前記グレーズ形成工程では、前記凸部の頂部に前記グレーズを形成する、
    請求項17に記載のサーマルプリントヘッドの製造方法。
  19.  前記エッチング工程は、前記グレーズ形成工程よりも後に行われ、
     前記エッチング工程では、前記グレーズをマスク層として前記異方性エッチングを施すことで、前記基材に、厚さ方向の一方を向く主面と、当該主面から突き出た凸部とを形成する、
    請求項17に記載のサーマルプリントヘッドの製造方法。
  20.  前記基材は、厚さ方向の一方を向く主面を有しており、
     前記エッチング工程では、前記異方性エッチングにより、前記基材に、前記主面から窪んだ溝部を形成し、
     前記グレーズ形成工程では、前記溝部を充填し、かつ、前記主面から盛り上がるように前記グレーズを形成する、
    請求項17に記載のサーマルプリントヘッドの製造方法。
PCT/JP2021/001292 2020-01-23 2021-01-15 サーマルプリントヘッドおよびサーマルプリントヘッドの製造方法 WO2021149617A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180010463.4A CN115003510B (zh) 2020-01-23 2021-01-15 热敏打印头和热敏打印头的制造方法
JP2021573130A JPWO2021149617A1 (ja) 2020-01-23 2021-01-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-008915 2020-01-23
JP2020008915 2020-01-23

Publications (1)

Publication Number Publication Date
WO2021149617A1 true WO2021149617A1 (ja) 2021-07-29

Family

ID=76992252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001292 WO2021149617A1 (ja) 2020-01-23 2021-01-15 サーマルプリントヘッドおよびサーマルプリントヘッドの製造方法

Country Status (3)

Country Link
JP (1) JPWO2021149617A1 (ja)
CN (1) CN115003510B (ja)
WO (1) WO2021149617A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472723A (en) * 1982-04-23 1984-09-18 Oki Electric Industry Co., Ltd. Thermal head
JPH04288244A (ja) * 1991-03-18 1992-10-13 Alps Electric Co Ltd サーマルヘッド
JP2004181788A (ja) * 2002-12-03 2004-07-02 Alps Electric Co Ltd 擬似端面型サーマルヘッド及びその製造方法
JP2015039785A (ja) * 2013-08-20 2015-03-02 ローム株式会社 サーマルプリントヘッド、サーマルプリンタ
JP2017114056A (ja) * 2015-12-25 2017-06-29 ローム株式会社 サーマルプリントヘッド
JP2017114057A (ja) * 2015-12-25 2017-06-29 ローム株式会社 サーマルプリントヘッド
JP2019166824A (ja) * 2018-02-26 2019-10-03 ローム株式会社 サーマルプリントヘッド

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325786B2 (ja) * 1996-10-09 2002-09-17 アルプス電気株式会社 サーマルヘッドおよびその製造方法
US6767081B2 (en) * 2001-12-03 2004-07-27 Alps Electric Co., Ltd. Thermal head
JP6367962B2 (ja) * 2014-10-30 2018-08-01 京セラ株式会社 サーマルヘッド、およびサーマルプリンタ
US10632760B2 (en) * 2018-02-26 2020-04-28 Rohm Co., Ltd. Thermal printhead

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472723A (en) * 1982-04-23 1984-09-18 Oki Electric Industry Co., Ltd. Thermal head
JPH04288244A (ja) * 1991-03-18 1992-10-13 Alps Electric Co Ltd サーマルヘッド
JP2004181788A (ja) * 2002-12-03 2004-07-02 Alps Electric Co Ltd 擬似端面型サーマルヘッド及びその製造方法
JP2015039785A (ja) * 2013-08-20 2015-03-02 ローム株式会社 サーマルプリントヘッド、サーマルプリンタ
JP2017114056A (ja) * 2015-12-25 2017-06-29 ローム株式会社 サーマルプリントヘッド
JP2017114057A (ja) * 2015-12-25 2017-06-29 ローム株式会社 サーマルプリントヘッド
JP2019166824A (ja) * 2018-02-26 2019-10-03 ローム株式会社 サーマルプリントヘッド

Also Published As

Publication number Publication date
CN115003510B (zh) 2024-04-16
CN115003510A (zh) 2022-09-02
JPWO2021149617A1 (ja) 2021-07-29

Similar Documents

Publication Publication Date Title
JP7204492B2 (ja) サーマルプリントヘッド
JP2023030169A (ja) サーマルプリントヘッド
JP7413066B2 (ja) サーマルプリントヘッドの製造方法、サーマルプリントヘッドおよびサーマルプリンタ
JP7545858B2 (ja) サーマルプリントヘッド、および、サーマルプリントヘッドの製造方法
WO2021149617A1 (ja) サーマルプリントヘッドおよびサーマルプリントヘッドの製造方法
JP7269802B2 (ja) サーマルプリントヘッドおよびその製造方法
KR100395086B1 (ko) 서멀헤드 및 그 제조방법
JP7284640B2 (ja) サーマルプリントヘッド
JP7151054B2 (ja) サーマルプリントヘッド、および、その製造方法
JP2022175561A (ja) サーマルプリントヘッド、およびサーマルプリントヘッドの製造方法
JP2022040509A (ja) サーマルプリントヘッド、サーマルプリントヘッドの製造方法、およびサーマルプリンタ
JP2023082289A (ja) サーマルプリントヘッド、および、サーマルプリントヘッドの製造方法
JP7297564B2 (ja) サーマルプリントヘッドおよびその製造方法
JP7557320B2 (ja) サーマルプリントヘッド
JP7481158B2 (ja) サーマルプリントヘッドおよびサーマルプリンタ
JP7393218B2 (ja) サーマルプリントヘッドの製造方法およびサーマルプリントヘッド
JP7297594B2 (ja) サーマルプリントヘッド
JP7398244B2 (ja) 蓄熱層の形成方法及びサーマルプリントヘッドの製造方法
US11305553B2 (en) Thermal print head and method of manufacturing thermal print head
US12036801B2 (en) Thermal print head, thermal printer and methods fabricating thereof
JP7310069B2 (ja) サーマルプリントヘッド
JP7385481B2 (ja) サーマルプリントヘッドの製造方法
JP2024024913A (ja) サーマルプリントヘッドおよびサーマルプリンタ
JP2022112463A (ja) サーマルプリントヘッド、サーマルプリンタおよびサーマルプリントヘッドの製造方法
JP4978042B2 (ja) サーマルヘッド及び印画装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573130

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21743746

Country of ref document: EP

Kind code of ref document: A1