WO2021147802A1 - 摄像模组 - Google Patents

摄像模组 Download PDF

Info

Publication number
WO2021147802A1
WO2021147802A1 PCT/CN2021/072416 CN2021072416W WO2021147802A1 WO 2021147802 A1 WO2021147802 A1 WO 2021147802A1 CN 2021072416 W CN2021072416 W CN 2021072416W WO 2021147802 A1 WO2021147802 A1 WO 2021147802A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
aperture
circuit board
lens group
coil
Prior art date
Application number
PCT/CN2021/072416
Other languages
English (en)
French (fr)
Inventor
戎琦
王启
袁栋立
俞丝丝
刘佳
郑雪莹
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202180009263.7A priority Critical patent/CN115336246A/zh
Publication of WO2021147802A1 publication Critical patent/WO2021147802A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • This application relates to the technical field of optical elements, and more specifically, to a camera module.
  • a camera module is often provided on a portable electronic product to realize a camera function.
  • the camera function of portable electronic products is generally required in the market to become more and more powerful and more complete, and this usually leads to more and more complex designs of the camera module structure and larger size.
  • portable electronic products are generally required to be smaller in size in the market, and this limits the installation space of various components of the portable electronic products.
  • Portable electronic products sometimes have strict restrictions in a certain direction.
  • the thickness of a mobile phone is relatively thin, which makes the components in the mobile phone more restrictive in the thickness direction.
  • the size of the camera module in the thickness direction of the mobile phone is limited.
  • the variable aperture component forms a variable aperture in the camera module. The size of the light input of the light beam obtained by the camera module can be adjusted by adjusting the size of the variable aperture formed by the variable aperture component.
  • the volume of the iris assembly is generally large, so that the camera module with the iris function has a larger volume and a longer length along the optical axis, which is not conducive to the miniaturization of the camera module.
  • the embodiment of the present application provides a camera module, the camera module includes: a lens group; and a variable aperture assembly, the variable aperture assembly includes: a movement mechanism, the movement mechanism is arranged in the direction of the object side of the lens group, movement The mechanism has an iris aperture, and the aperture of the iris aperture changes with the movement state of the motion mechanism; and an electric actuator, which is arranged on the radially outer side of the iris aperture and is located at the diameter of the iris aperture.
  • a mounting cavity is formed on the outer side, and the electric actuator is used to drive the movement mechanism; wherein, at least a part of the lens group is arranged in the mounting cavity.
  • the movement mechanism includes at least one aperture blade, and the at least one aperture blade can move and surround a variable aperture hole that changes with the movement.
  • the electric actuator has: a first fixed end; and a first moving end, the first moving end is driven to move relative to the first fixed end, and the first moving end is connected with the aperture blade to drive the aperture blade move.
  • the electric actuator includes a first coil and a first magnet, the first coil and the first magnet are disposed oppositely; the first fixed end is disposed in one of the first coil and the first magnet, The first moving end is provided in the other.
  • the electric actuator includes a shape memory alloy wire, and the shape memory alloy wire has a first fixed end and a first moving end.
  • the optical axis of the lens group overlaps with the geometric center axis of the iris aperture.
  • it further includes: a photosensitive chip arranged in the image side direction of the lens group; and a filter arranged between the lens group and the photosensitive chip.
  • a second anti-shake driver for driving the lens group is further included.
  • the second anti-vibration driver is a voice coil motor or a piezoelectric motor.
  • the electric actuator is also used to drive the lens group.
  • the camera module further includes: a reflective component, which is arranged in the object side direction of the variable aperture component, and the reflective component is used to reflect light incident perpendicular to the optical axis of the lens group to exit along the optical axis of the lens group Light.
  • a reflective component which is arranged in the object side direction of the variable aperture component, and the reflective component is used to reflect light incident perpendicular to the optical axis of the lens group to exit along the optical axis of the lens group Light.
  • the height of the variable aperture component in the direction of the incident light is less than or equal to 1.2 times the height of the reflective component in the direction of the incident light.
  • the iris assembly has a height n in the direction of the incident light, and a length m perpendicular to the direction of the incident light and located in the vertical plane of the optical axis of the lens group, and the movement mechanism satisfies 0.75 ⁇ n /m ⁇ 1.
  • the electric actuators are arranged on both sides in the direction where the length m of the iris assembly is located.
  • the reflective component includes: a carrier, the carrier includes a mounting surface; a reflective element is arranged on the mounting surface of the carrier, and the reflective element is used to reflect incident light by ninety degrees and emit it; and a first anti-shake driver for Drive carrier.
  • the reflective element is a prism or a plane mirror.
  • the thickness a of the movement mechanism along the optical axis direction of the lens group satisfies: 1.5mm ⁇ a ⁇ 3.5mm; the distance between the object side end of the lens group and the light-emitting surface of the reflective element for emitting light b satisfies: 2mm ⁇ b ⁇ 4mm.
  • the height H of the light exit surface of the reflective element for emitting light satisfies H ⁇ 11mm; the aperture h of the iris aperture satisfies 3.5mm ⁇ h ⁇ 8.5mm.
  • the first anti-shake driver includes: a second coil and a second magnet, one of the second coil and the second magnet is fixedly connected to the carrier; the third coil and the third magnet, the third coil One of the two and the third magnet is fixedly connected to the carrier; the relative movement direction of the second coil and the second magnet is not parallel to the relative movement direction of the third coil and the third magnet.
  • it further includes a first circuit board, the first circuit board is data-connected with the electric actuator; a second circuit board, the second circuit board is data-connected with the first anti-shake driver; a photosensitive chip, the photosensitive chip is arranged in The image side direction of the lens group; the third circuit board, the third circuit board is connected to the photosensitive chip for data; the extension circuit board, the extension circuit board is data connected to the first circuit board, the second circuit board and the third circuit board respectively; connector , The connector includes two ports, one of the two ports is connected to the third circuit board for data.
  • the extension circuit board and the third circuit board are data connected through the first flexible board, and the connector and the third circuit board are data connected through the second flexible board; the extension circuit board is provided with a processing chip.
  • the electric actuator is arranged on the radially outer side of the iris aperture.
  • the thickness of the corresponding position of the variable aperture hole in the axial direction is relatively thin.
  • a periscope camera module is formed.
  • the distance between the iris aperture and the lens group is relatively short, which is beneficial to reduce the distance between the reflective component and the lens, and thus is beneficial to reduce The height dimension of the reflective component in the radially incident light direction. It is beneficial to reduce the thickness of the periscope camera module in the direction of incident light.
  • Fig. 1 shows a schematic structural diagram of a variable aperture assembly according to an embodiment of the present application
  • Fig. 2 shows a schematic diagram of a large aperture state of a variable aperture assembly according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of a small aperture state of a variable aperture assembly according to an embodiment of the present application
  • Fig. 4 shows a schematic structural diagram of an electric actuator and an aperture blade according to an embodiment of the present application
  • Fig. 5 shows a schematic structural diagram of another variable aperture assembly according to an embodiment of the present application.
  • Fig. 6 shows a schematic structural diagram of a camera module according to an embodiment of the present application
  • Fig. 7 shows a schematic structural diagram of a dimming component according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the size relationship of a camera module according to an embodiment of the present application.
  • Fig. 9 shows a top view of another camera module according to an embodiment of the present application.
  • Fig. 10 shows a schematic structural diagram of a lens assembly according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of the lens assembly along the optical axis direction according to an embodiment of the present application
  • Fig. 12 shows a schematic structural diagram of a photosensitive chip according to an embodiment of the present application
  • FIG. 13 shows a schematic structural diagram of another camera module according to an embodiment of the present application.
  • FIG. 14 shows a schematic structural diagram of another camera module according to an embodiment of the present application.
  • Figure 15 shows an expanded view of the first soft board and the second soft board in Figure 13;
  • FIG. 16 shows a schematic structural diagram of another camera module according to an embodiment of the present application.
  • FIG. 17 shows a schematic structural diagram of another camera module according to an embodiment of the present application.
  • FIG. 18 shows a schematic structural diagram of another camera module according to an embodiment of the present application.
  • FIG. 19 shows a schematic structural diagram of another camera module according to an embodiment of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first circuit board discussed below may also be referred to as the second circuit board. vice versa.
  • the embodiment of the present application provides a camera module, which includes a variable aperture assembly 1 and a lens assembly 3.
  • the iris assembly 1 is arranged in the object side direction of the lens assembly 3.
  • variable aperture assembly 1 includes: at least one aperture blade 12 and an electric actuator 13.
  • the variable aperture assembly 1 may include a first housing 11 for wrapping the aperture blade 12 and the electric actuator 13.
  • the first housing 11 may have a frame-shaped structure, and may be square or circular.
  • the aperture blades 12 can move or rotate and surround the variable aperture hole 1201. As the aperture blades 12 move, the shape and area of the variable aperture holes 1201 surrounded by the aperture blades 12 can be changed.
  • the aperture blade 12 when there is only one aperture blade 12, the aperture blade 12 includes an oblong hole with different diameters at both ends of the oblong hole. By moving the aperture blade 12, different positions of the oblong hole are used as the variable aperture hole 1201.
  • the variable aperture assembly 1 further includes a fixed baffle, and a hole may be opened on the fixed baffle.
  • the aperture blade 12 surrounds a part of the variable aperture hole 1201 and cooperates with the hole on the fixed baffle to surround the variable aperture hole 1201.
  • the iris aperture 1201 generally has a central axis, and the cross section of the iris aperture 1201 may be circular, or of course, it may not be circular, for example, formed by connecting four segments of arcs.
  • the aperture blade 12 of the iris assembly 1 can be driven by the electric actuator 13 to continuously change, that is, the aperture of the iris aperture 1201 can be continuously changed from large to small or from small to large.
  • the aperture value of the iris aperture 1201 is a continuously variable value, thereby providing multiple sets of aperture values for the camera module.
  • the iris aperture 1201 can also achieve two-stage or multi-stage changes, that is, the iris assembly 1 can achieve two or more changes in the aperture of the iris, and the size of the aperture of the iris hole 1201 is not necessarily Continuously changing.
  • the electric actuator 13 is provided on the radially outer side of the iris aperture 1201. Specifically, referring to FIGS. 1 and 4, the electric actuator 13 may be disposed on the outer side of the diaphragm blade 12 in the radial direction.
  • the aperture blade 12 is disposed in the first housing 11 and located at the front 1101 of the internal space of the first housing 11.
  • the aperture blade 12 may be close to the front end of the first housing 11, or may be spaced apart from the front end.
  • the light can pass through the iris aperture 1201 and pass through the first housing 11.
  • the electric actuator 13 is located at the outer peripheral portion 1102 of the inner space of the first housing 11, and the radially inner side of the outer peripheral portion 1102 of the inner space surrounds the installation cavity 1103 of the inner space.
  • the projection of the mounting cavity 1103 in the axial direction covers the iris aperture 1201.
  • the diameter of the mounting cavity 1103 is larger than the diameter of the iris aperture 1201 in the maximum state and is substantially coaxial.
  • the diameter of the mounting cavity 1103 may also be smaller than that of the iris aperture 1201, but at least a part of the overlapped area between the two can pass light.
  • the mounting cavity 1103 in the inner space of the first housing 11 can be used to mount at least a part of the lens assembly 3. Specifically, at least a part of the lens group 31 may be installed.
  • the first housing 11 may have a rectangular end surface having a length m in the horizontal direction and a height n in the vertical direction as shown in the figure.
  • the ratio of the height n to the length m is between 0.75 and 1.
  • the housing 11 may also have a rectangular-like end surface, for example, a rounded rectangular end surface.
  • the first housing 11 can also be regarded as a part of the movement mechanism, for example, a sliding rail that limits the aperture blade 12 is provided on the first housing 11.
  • the size of the first housing 11 is the size of the movement mechanism. Referring to FIG. 4, the electric actuator 13 is used to drive the movement of the aperture blades 12.
  • the aperture blades 12 may be provided with sliding rails to limit the movement trajectory between each other, or a sliding rail for limiting the aperture blades 12 may be provided on the first housing 11.
  • the electric actuator 13 is connected to the aperture blade 12 through a connecting device and drives the aperture blade 12.
  • One electric actuator 13 may drive all the aperture blades 12, or a plurality of electric actuators 13 may cooperate to drive all the aperture blades 12.
  • the thickness of the corresponding position of the variable aperture hole 1201 in the axial direction is relatively thin.
  • the iris diaphragm assembly 1 When the iris diaphragm assembly 1 is assembled with an external device, at least a part of the external assembly may be disposed in the installation cavity 1103 of the inner space of the first housing 11. The distance between the external component and the iris aperture 1201 is relatively short, so that the size of the assembled device in the axial direction can be reduced. Miniaturize the assembled device.
  • the electric actuator 13 of the iris diaphragm assembly 1 has: a first fixed end and a first moving end.
  • the first fixed end may be fixed to the first housing 11, or a fixing mechanism may be provided to be fixedly connected to the external component.
  • the first moving end is driven to move relative to the first fixed end, and the first moving end is connected with the aperture blade 12 to drive the aperture blade 12 to move.
  • the specific movement mode can be translation or rotation.
  • the electric actuator 13 includes a first coil 131 and a first magnet 132 that are disposed oppositely.
  • the first housing 11 is respectively provided with first magnets 132 on the left inner wall as shown in the figure and the right inner wall as shown in the figure.
  • the first magnet 132 on the left is provided with a first coil 131 correspondingly, and when the coil 131 is energized, the aperture blade 12 on the left can be driven to move.
  • the first magnet 132 on the right is provided with a first coil 131 correspondingly, and the corresponding first coil 131 can drive the aperture blade 12 on the right to move after being energized.
  • the first fixed end of the electric actuator 13 of this embodiment is disposed on the first magnet 132, and the first moving end is disposed on the first coil 131.
  • the connection between the first moving end and the aperture blade 12 may be a fixed connection or a sliding connection.
  • the first coil 131 may also be disposed in the first housing 11, and the first magnet 132 is driven by the first coil 131, so that the first magnet 132 drives the diaphragm blade 12 to move. That is, the first fixed end is disposed on the first coil 131, and the first moving end is disposed on the first magnet 132.
  • the electric actuator 13 includes a shape memory alloy wire, and the two ends of the shape memory alloy wire are a first fixed end and a first moving end, respectively. Since the length of the shape memory alloy wire can be changed under control, the relative position of the two ends of the shape memory alloy wire can be controlled by adjusting the length and contraction of the shape memory alloy wire, that is, to drive the relative movement between the first moving end and the first fixed end.
  • the electric actuator 13 includes at least two shape memory alloy wires, and each shape memory alloy wire drives one aperture blade 12 to move.
  • the shape memory alloy wire occupies a small space, which is beneficial to the miniaturization of the iris assembly 1. Moreover, it is more convenient for the shape memory alloy wire to be arranged on the outer circumference of the aperture blade 12, so that the part corresponding to the aperture 1201 in the aperture assembly 1 can have a smaller size in the axial direction.
  • the electric actuator 13 is provided at the outer circumference 1102 of the inner space of the first housing 11, specifically, the electric actuator 13 is provided at the left and right sides at the outer circumference of the aperture blade 12. In this way, the upper and lower sides of the outer circumference of the aperture blade 12 in the figure are thinner, which frees up more installation space.
  • the space between the electric actuators 13 is still used as the installation cavity 1103 for installing the lens assembly 3. Since the electric actuators 13 are arranged on the left and right sides of the outer circumference of the aperture blade 12, this will increase the accommodating space of the mounting cavity 1103, can accommodate lens components with larger apertures, and improve the photographing quality of the camera module.
  • the upper and lower sides of the outer circumference of the aperture blade 12 are thinner to reduce the thickness of the camera module.
  • these aperture blades 12 form a movement mechanism with a variable aperture hole 1201.
  • the iris aperture 1201 is not limited to the iris aperture 1201 formed by the aperture blade 12 in the above embodiment, and can also be implemented as an iris aperture 1201 formed by a liquid crystal dimming device or formed by an electro-deformable sheet.
  • the iris aperture 1201 and the like, that is, the components driven by the electric actuator 13 to change the amount of light can be implemented as a movement mechanism with the iris aperture 1201.
  • the size of the camera module in the optical axis direction is relatively thin and suitable For installation in equipment with a compact installation space.
  • the lens assembly 3 includes: a lens group 31 and a photosensitive chip 33.
  • the photosensitive chip 33 is arranged in the image side direction of the lens group 31, and is used for receiving the imaging light irradiated from the lens group 31 and forming an image.
  • the iris assembly 1 is arranged on the object side of the lens assembly 3 and at least covers a part of the lens assembly 3. Specifically, at least a part of the lens group 31 is located at the radially inner side of the electric actuator 13 in a direction perpendicular to the optical axis, and overlaps the electric actuator 13 in a direction parallel to the optical axis to be closer to the iris diaphragm. ⁇ 1201.
  • the optical axis of the lens group 31 overlaps with the geometric center axis of the iris aperture 1201.
  • the movement of the aperture blade 12 is usually symmetrical. Therefore, when the iris aperture 1201 changes between a large aperture state or a small aperture state, the position of its geometric center usually remains unchanged.
  • the optical axis of the lens group 31 to substantially overlap the geometric center axis of the iris aperture 1201 so that the outer circumference of the iris aperture 1201 changes, the amount of light entering each field of view of the lens assembly 3 can be adjusted more uniformly.
  • the lens assembly 3 further includes a filter 32 disposed between the lens group 31 and the photosensitive chip 33.
  • a filter 32 By providing the filter 32, a part of the imaging light can be removed, so that the remaining light can form a better image at the photosensitive chip 33.
  • the filter 32 is fixed by a support 35.
  • the camera module provided by the embodiment of the present application may be a periscope type camera module, including: a lens assembly 3, a variable aperture assembly 1 and a reflective assembly 2.
  • the variable aperture assembly 1 is arranged in the object side direction of the lens assembly 3
  • the reflective assembly 2 is arranged in the object side direction of the variable aperture assembly 1.
  • the light reflecting assembly 2 is arranged in the object side direction of the variable aperture assembly 1 and is used to reflect light incident perpendicular to the optical axis of the lens group 31 into light emitted along the optical axis of the lens group 31.
  • the periscope camera module has a longer size in the horizontal direction and a shorter size in the vertical direction.
  • its vertical direction is set in the thickness direction of the mobile phone, so that the mobile phone can have a thinner size. And it also takes up less installation space inside the mobile phone in the length direction.
  • the periscope camera module provided in this application can not only realize the shooting mode of large aperture and telephoto, so as to achieve the effect of blurring the background during portrait shooting, so that the portrait is more prominent; it can also realize the shooting mode of small aperture and telephoto, Realize multiple long-range shooting.
  • the reflective assembly 2 includes a carrier 21, a reflective element 22, and a first anti-shake driver.
  • the carrier 21 includes a mounting surface 211, and the mounting surface 211 is used for setting the reflective element 22. Specifically, it may be that the edge of the reflective element 22 is bonded to the mounting surface 211, or the carrier 21 is provided with an engaging structure for fixing the reflective element 22.
  • the reflective element 22 is used to reflect the incident light by ninety degrees and emit it.
  • the reflective element 22 is a prism or a plane mirror.
  • the specific implementation of the reflective element 22 is not limited, and the incident light can be deflected by 90° in a suitable reflection or refraction manner.
  • the first anti-shake driver may be arranged on the back of the mounting surface 211 of the carrier 21.
  • the first anti-shake driver is used to drive the carrier 21, and then drive the carrier 21 and the reflective element 22 to rotate, so as to eliminate the deviation of the reflective element 22 relative to the optical axis of the lens group 31 when the periscope camera module shakes.
  • the reflective assembly 2 further includes a second housing 23.
  • the second housing 23 wraps the carrier 21 and the reflective element 22, and the second housing 23 is connected to the carrier 21 through structures such as elastic pieces, rotating shafts, and balls.
  • the second housing 23 is also provided with a first opening 201 for passing incident light and a second opening 202 for passing reflected light.
  • the first housing 11 and the second housing 23 are fixedly connected.
  • the second housing 23 can make the periscope camera module as a whole easy to assemble into mobile phones and other devices, but it is also possible to assemble the first anti-shake driver and other components directly with external components.
  • the assembly must ensure the periscope camera module.
  • the first anti-shake driver includes two pairs of coils and magnets.
  • the second coil 261 and the second magnet 262 are configured as a pair and are disposed on the carrier 21 at a position opposite to the first opening 201;
  • the third coil 263 and the third magnet 264 are configured as a pair and are arranged on the carrier 21 opposite to the second opening 202.
  • the second coil 261 and the third coil 263 are fixedly connected to the carrier 21, and the second magnet 262 and the third magnet 264 are fixedly connected to the second housing 23.
  • the second magnet 262 and the third magnet 264 may be fixedly connected to the carrier 21.
  • the relative movement direction of the second coil 261 and the second magnet 262 and the relative movement direction of the third coil 263 and the third magnet 264 are located in the reflection plane of the light, and the relative movement direction of the second coil 261 and the second magnet 262 is the same as the first
  • the relative movement directions of the three coils 263 and the third magnet 264 are not parallel.
  • the moving direction of the second coil 261 and the second magnet 262 may be in the vertical direction, that is, approximately parallel to the direction of the incident light
  • the moving direction of the third coil 263 and the third magnet 264 may be in the horizontal direction, that is approximately parallel to the reflected light. Light.
  • the reflective element 22 is a prism, and the height of the reflective element 22 in the vertical direction is H (specifically, the height of the light exit surface of the prism is H; if the reflective element is a mirror, a light exit surface can be imaginary according to the optical path) .
  • the distance between the light entrance surface of the lens group 31 and the light exit surface of the reflective element 22 in the periscope camera module provided by the present application is b, and the thickness of the movement mechanism along the optical axis direction of the lens group 31 is a.
  • the lens group 31 has a field of view angle range (which can be a cone in space), and the field angle range has a viewable range (which can be a circular surface) in the vertical plane of the optical axis.
  • the field angle range and the light exit surface of the reflective element 22 form an intersecting circle, and the intersecting circle has a diameter R.
  • the intersecting circle is the visible range at the light-emitting surface of the reflective element 22. The farther the visible range is from the lens group 31, that is, the farther the reflective element 22 is from the lens group 31, the larger the R; Near, that is, the closer the reflective element 22 is to the lens group 31, the smaller the R is.
  • the aperture of the iris aperture 1201 of the iris assembly 1 has a diameter h, and the maximum diameter of the aperture h is h max .
  • the diameter R of the intersecting circle is not greater than the height H of the reflective element 22, so as to ensure that there is light passing through the visible range of the lens group 31, to ensure the imaging integrity of the lens group 31 and the improvement of the imaging quality; if R >H, there will be a part of the area within the visible range of the lens group 31 that no light passes through, which will cause imaging defects, which is usually an undesirable situation in this application.
  • the maximum diameter h max of the aperture h of the iris aperture 1201 is equal to or slightly larger than the visible range diameter R.
  • h may be slightly smaller than R.
  • the maximum diameter h max of the iris aperture 1201 can be smaller. In this way, the overall height of the iris assembly 1 can be reduced. Smaller, it is beneficial to reduce the overall thickness of the periscope camera module in the direction of incident light.
  • the electric actuator 13 in the iris diaphragm assembly 1 is located on the radially outer side of the iris diaphragm hole 1201, specifically, is located on the outer side of the lens group 31.
  • the thickness of the electric actuator 13 is removed from the dimension a of the iris assembly 1 of the present application, so that the light entrance surface of the lens assembly 31 is closer to the light exit end surface of the iris aperture 1201. It also makes the a size and the b size smaller, and then makes the h size and the H size smaller.
  • the periscope camera module has a thinner thickness in the direction of incident light, and can be better installed in thinner devices such as mobile phones.
  • the height n of the variable aperture assembly 1 does not exceed 1.2 times the height of the reflective assembly 2. Further, the height of the variable aperture assembly 1 is less than or equal to the height of the reflective assembly 2, so that the periscope camera module has a thinner thickness in the direction of incident light.
  • the thickness a of the motion mechanism can be in the range of 1.5 to 3.5 mm; the distance b between the lens group 31 and the reflective element 22 can be in the range of 2 to 4 mm; the height H of the light-emitting surface of the reflective element 22 can be in the range ⁇ 11mm; the range of the diameter h of the iris aperture 1201 can be: 3.5 ⁇ 8.5mm.
  • a first glue layer 14 is included between the lens assembly 3 and the iris assembly 1 for a fixed connection, and the reflective assembly 2 and the iris assembly 1 include The second glue layer 24 is for fixed connection. Glue bonding is easier to operate and light in weight.
  • the lens assembly 3 has a third housing 34.
  • the welding method is relatively firm.
  • a locking mechanism is fixedly connected between the two.
  • the snap-fit connection method facilitates the disassembly between the lens assembly 3 and the iris assembly 1.
  • FIG. 9 is a view of the periscope camera module along the direction of incident light.
  • the electric actuators 13 are provided on both sides of the reflective surface where the incident light rays are located. This allows the iris assembly 1 to have a thinner thickness in the direction of the incident light. In turn, the periscope camera module occupies less installation space in the direction of the incident light.
  • the lens assembly 3 further includes a second anti-shake driver 37 for driving the lens group 31.
  • a second anti-shake driver 37 for driving the lens group 31.
  • the lens group 31 is connected to the third housing 34 through the second anti-shake driver 37.
  • the second fixed end of the second anti-shake driver is fixedly connected to the third housing 34, and the second moving end of the second anti-shake driver is connected to the lens group 31. The movement of the second moving end relative to the second fixed end can drive the lens group 31 to move in a direction perpendicular to the optical axis for anti-shake.
  • the second anti-shake driver 37 is a voice coil motor or a piezoelectric motor.
  • the second anti-shake driver 37 includes a fourth coil 371 and a fourth magnet 372.
  • the fourth coil 371 is fixedly connected to the third housing 34, and the fourth magnet 372 is fixedly connected to the lens group 31; or the fourth coil 371 is fixedly connected to the lens group 31, and the fourth magnet 372 is fixedly connected to the third housing 34 .
  • the lens assembly 3 further includes a focus driver for driving the lens group 31.
  • the lens group 31 is connected to the third housing 34 through a focus driver.
  • the third fixed end of the focus driver is fixedly connected to the third housing 34, and the third moving end is connected to the lens group 31. The movement of the third moving end relative to the third fixed end can drive the lens group 31 to move along the optical axis for focusing.
  • the lens assembly 3 includes a third circuit board 36 and a fourth circuit board 38, the third circuit board 36 is in data connection with the photosensitive chip 33, and the fourth circuit board 38 and the focus driver And/or the second anti-shake driver 37 is data connected.
  • the third circuit board 36 is disposed on the object side of the photosensitive chip 33, and the fourth circuit board 38 is disposed on the lower part of the lens assembly 3, that is, the side facing away from the object in the direction of incident light.
  • the variable aperture assembly 1 includes a first circuit board 15, and the first circuit board 15 is in data connection with the electric actuator 13. Specifically, the first circuit board 15 is located at the lower part of the iris assembly 1.
  • the light-reflecting assembly 2 includes a second circuit board 25, and the second circuit board 25 is in data connection with the first anti-shake driver. Specifically, the second circuit board 25 is located at the lower part of the light reflecting assembly 2.
  • the periscope camera module also includes an extension circuit board 44 and a connector 41, the extension circuit board 44 and the first circuit board 15, the second circuit board 25, the third circuit board 36 and the fourth circuit
  • the boards 38 are respectively connected with data
  • the connector 41 includes two ports, and one of the two ports is connected with the third circuit board 36 for data.
  • the extension circuit board 44 and the third circuit board 36 are data connected through the first flexible board 43, and the connector 41 and the third circuit board 36 are data connected through the second flexible board 42.
  • the soft board has better bending performance and can better arrange the connection lines between the various circuit boards.
  • the processing chip 45 is provided in the extension wiring board 44.
  • the periscope camera module provided in the present application can be data connected to the main board of an external device through the connector 41, and at the same time obtain power and communicate with the external device through the connector 41, and then drive the electric actuator 13 through the first circuit board 15
  • the first anti-shake driver is driven by the second circuit board 25 to realize the anti-shake of the carrier 21 and the reflective element 22, and the second anti-shake driver 37 or the focus driver is driven by the fourth circuit board 38 to realize the lens
  • the anti-shake or focus adjustment of the group 31 realizes the imaging of the photosensitive chip 33 through the third circuit board 36.
  • the pins of the first circuit board 15, the pins of the second circuit board 25, and the pins of the fourth circuit board 38 are soldered to the extension circuit board 44. 13 and 14, the welding method is suitable for assembly. After the iris assembly 1, the lens assembly 3 and the reflective assembly 2 are assembled into one body, the first circuit board 15, the second circuit board 25, and the fourth circuit board 38 are all assembled. Located at the lower part, the pins of the three can be located on the same side, so that the extension circuit board 44 can be soldered to the three at one time. In the present application, the connection between the pins and the circuit board can also be combined with a solder ball or conductive adhesive to achieve electrical conduction, but the present application is not limited to this.
  • the filter 32 is fixed to the third housing 34 by a support 35.
  • the filter 32 is fixedly connected to the third circuit board 36 through a support 35.
  • the third circuit board 36, the photosensitive chip 33, the support 35 and the filter 32 are fixedly connected to facilitate assembly.
  • the electric actuator 13 is also used to drive the lens group 31.
  • the electric actuator 13 By using the electric actuator 13 to simultaneously drive the aperture blade 12 and the lens group 31, the components of the periscope camera module are reduced, and the volume of the periscope camera module is reduced.
  • the lens assembly 3 is integrally installed in the first housing 11.
  • the iris assembly 1 includes a first circuit board 15, which is in data connection with the electric actuator 13;
  • the reflective assembly 2 includes a second circuit board 25, the second circuit board 25 and the first anti-shake driver Data connection;
  • the lens assembly 3 includes a third circuit board 36, the third circuit board 36 and the photosensitive chip 33 data connection.
  • the periscope camera module also includes an extension circuit board 44 and a connector 41.
  • the extension circuit board 44 is data-connected to the first circuit board 15, the second circuit board 25, and the third circuit board 36.
  • the connector 41 includes two ports. , One of the two ports is connected to the third circuit board 36 for data.
  • the electric actuator 13 is arranged on the outer side of the aperture blade 12, and both on the object side and the image side of the aperture blade 12, the electric actuator 13 surrounds the installation space.
  • the electric actuator 13 forms a mounting cavity 1301 outside the iris aperture 1201, but the mounting cavity 1301 is divided into two parts.
  • the mounting cavity 1301 is located outside the axis of the iris hole 1201 and can cover the iris hole 1201 in the radial direction.
  • the lens group 31 can be divided into a front lens group 21b and a rear lens group 31a.
  • the front lens group 31b is arranged in the object side direction of the aperture blade 12, so that the light entrance surface of the front lens group 31b and the light reflecting assembly 2 are closer to each other.
  • the rear lens group 31 a is arranged in the image side direction of the diaphragm blade 12, and at least a part is located on the radial inner side of the electric actuator 13.
  • the lens assembly 3 is integrally installed in the first housing 11.
  • the electric actuator 13 can drive the front lens group 31b and the rear lens group 31a while driving the aperture blade 12.
  • the aforementioned light reflecting component 2 can be assembled into other devices that need to deflect light.
  • the reflector assembly 2 provided in this embodiment can control the rotation of the reflector element 22 of the reflector assembly 2 to achieve automatic anti-shake so as to improve the image quality, and the rotating structure is relatively simple, which can realize the miniaturization of the reflector assembly 2.
  • an embodiment of the present application also provides a periscope camera module.
  • a periscope camera module Including the aforementioned reflector assembly 2 and lens assembly 3.
  • the light reflecting assembly 2 is arranged in the object side direction of the lens assembly 3.
  • it also includes an aperture assembly, such as a variable aperture assembly 1 arranged between the reflective assembly 2 and the lens assembly 3, or a fixed aperture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

本申请提供了一种摄像模组。该摄像组包括:透镜组;以及可变光圈组件,可变光圈组件包括运动机构,运动机构设置于透镜组的物侧方向,运动机构具有可变光圈孔,可变光圈孔的孔径随运动机构的运动状态而变化;以及电致动器,电致动器设置于可变光圈孔的径向外侧,并在可变光圈孔的外侧形成安装腔,电致动器用于驱动运动机构;其中,安装腔中设置透镜组的至少一部分。

Description

摄像模组
相关申请的交叉引用
本申请要求于2020年1月22日提交于中国国家知识产权局(CNIPA)的、专利申请号为202010074854.X的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及光学元件技术领域,更具体的,涉及一种摄像模组。
背景技术
便携式电子产品上经常设置有摄像模组以实现摄像功能。一方面,市场上通常需求便携式电子产品的摄像功能越来越强大并越来越完善,而这通常导致摄像模组的结构被设计的越来越复杂且尺寸会变大。另一方面,市场上通常需求便携式电子产品的尺寸更小,而这会使得便携式电子产品的各个组件的安装空间受到限制。
便携式电子产品有时会在某一特定方向具有较严格的限制,例如手机的厚度较薄,这使得手机中的组件在厚度方向上受到的限制较重。例如摄像模组在手机的厚度方向上的尺寸就受到限制。可变光圈组件在摄像模组中形成可变光圈。可以通过调整可变光圈组件形成的可变光圈的大小来调整摄像模组获取的光束的进光量的大小。
但是可变光圈组件的体积普遍较大,使得具有可变光圈功能的摄像模组的体积较大且沿光轴方向的长度较长,进而不利于摄像模组的小型化。
发明内容
本申请的实施例提供了一种摄像模组,该摄像模组,包括:透镜组;以及可变光圈组件,可变光圈组件包括:运动机构,运动机构设置于透镜组的物侧方向,运动机构具有可变光圈孔,可变光圈孔的孔径随运动机构的运动状态而变化;以及电致动器,电致动器设置于可 变光圈孔的径向外侧,并在可变光圈孔的外侧形成安装腔,电致动器用于驱动运动机构;其中,安装腔中设置透镜组的至少一部分。
在一个实施方式中,运动机构包括至少一个光圈叶片,至少一个光圈叶片能够移动并环绕出随移动而变化的可变光圈孔。
在一个实施方式中,电致动器具有:第一固定端;以及第一运动端,第一运动端相对第一固定端受驱动地移动,且第一运动端与光圈叶片连接以驱动光圈叶片移动。
在一个实施方式中,电致动器包括第一线圈和第一磁铁,第一线圈和第一磁铁相对设置;第一固定端设置在第一线圈和第一磁铁二者中的一者中,第一运动端设置在另一者中。
在一个实施方式中,电致动器包括形状记忆合金线,形状记忆合金线具有第一固定端和第一运动端。
在一个实施方式中,透镜组的光轴与可变光圈孔的几何中心轴重叠。
在一个实施方式中,还包括:感光芯片,设置于透镜组的像侧方向;滤光片,设置于透镜组与感光芯片之间。
在一个实施方式中,还包括用于驱动透镜组的第二防抖驱动器。
在一个实施方式中,第二防抖驱动器是音圈马达或压电马达。
在一个实施方式中,电致动器还用于驱动透镜组。
在一个实施方式中,摄像模组还包括:反光组件,设置于可变光圈组件的物侧方向,反光组件用于将垂直于透镜组的光轴入射的光线反射为沿透镜组的光轴出射的光线。
在一个实施方式中,可变光圈组件在入射的光线方向上的高度小于或等于反光组件在入射的光线方向上的高度的1.2倍。
在一个实施方式中,可变光圈组件具有在入射的光线方向上的高度n,和垂直于入射的光线方向上并且位于透镜组的光轴的垂面内的长度m,运动机构满足0.75≤n/m≤1。
在一个实施方式中,电致动器设置于可变光圈组件的长度m所在方向上的两侧。
在一个实施方式中,反光组件包括:载体,载体包括安装面;反 射元件,设置于载体的安装面,反射元件用于将入射的光线反射九十度射出;以及第一防抖驱动器,用于驱动载体。
在一个实施方式中,反射元件是棱镜或平面镜。
在一个实施方式中,运动机构的沿透镜组的光轴方向的厚度a满足:1.5mm≤a≤3.5mm;透镜组的物侧端与反射元件的用于射出光线的出光面之间的距离b满足:2mm≤b≤4mm。
在一个实施方式中,反射元件的用于射出光线的出光面的高度H满足H≤11mm;可变光圈孔的孔径h满足3.5mm≤h≤8.5mm。
在一个实施方式中,第一防抖驱动器包括:第二线圈和第二磁铁,第二线圈和第二磁铁二者中的一者与载体固定连接;第三线圈和第三磁铁,第三线圈和第三磁铁二者中的一者与载体固定连接;第二线圈和第二磁铁的相对运动方向与第三线圈和第三磁铁的相对运动方向不平行。
在一个实施方式中,还包括第一线路板,第一线路板与电致动器数据连接;第二线路板,第二线路板与第一防抖驱动器数据连接;感光芯片,感光芯片设置于透镜组的像侧方向;第三线路板,第三线路板与感光芯片数据连接;延伸线路板,延伸线路板与第一线路板、第二线路板以及第三线路板分别数据连接;连接器,连接器包括两个端口,两个端口中的一个端口与第三线路板数据连接。
在一个实施方式中,延伸线路板与第三线路板通过第一软板数据连接,连接器与第三线路板通过第二软板数据连接;延伸线路板中设置有处理芯片。
本申请的实施例提供的摄像模组,电致动器设置于可变光圈孔的径向外侧。使得可变光圈孔对应位置在轴向上的厚度比较薄。当运动机构与透镜组装配时,可变光圈孔与透镜组之间的距离较近,进而使得摄像模组在透镜组的轴向方向上具有较短的尺寸。
当摄像模组还设置有反光组件时形成了潜望式的摄像模组,可变光圈孔与透镜组之间的距离较近,有利于缩小反光组件与透镜之间的距离,进而有利于缩小反光组件在径向入射的光线方向上的高度尺寸。有利于缩小潜望式的摄像模组在入射光线方向上的厚度。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1示出了根据本申请实施例的可变光圈组件示意性结构图;
图2示出了根据本申请实施例的可变光圈组件的大光圈状态的示意图;
图3示出了根据本申请实施例的可变光圈组件的小光圈状态的示意图;
图4示出了根据本申请实施例的一种电致动器与光圈叶片示意性结构图;
图5示出了根据本申请实施例的另一种可变光圈组件示意性结构图;
图6示出了根据本申请实施例的摄像模组示意性结构图;
图7示出了根据本申请实施例的调光组件的示意性结构图;
图8示出了根据本申请实施例的摄像模组的尺寸关系示意图;
图9示出了根据本申请实施例的另一种摄像模组的俯视图;
图10示出了根据本申请实施例的镜头组件示意性结构图;
图11示出了根据本申请实施例的镜头组件沿光轴方向的示意图;
图12示出了根据本申请实施例的感光芯片的示意性结构图;
图13示出了根据本申请实施例的另一种摄像模组示意性结构图;
图14示出了根据本申请实施例的另一种摄像模组示意性结构图;
图15示出了图13中第一软板和第二软板的展开图;
图16示出了根据本申请实施例的另一种摄像模组示意性结构图;
图17示出了根据本申请实施例的另一种摄像模组示意性结构图;
图18示出了根据本申请实施例的另一种摄像模组示意性结构图;以及
图19示出了根据本申请实施例的另一种摄像模组示意性结构图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一线路板也可被称作第二线路板。反之亦然。
在附图中,为了便于说明,已稍微调整了部件的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。例如,可变光圈组件的厚度和透镜组的长度等尺寸并非按照实际生产中的比例。如在本文中使用的,用语“大致”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有措辞(包括工程术语和科技术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,除非本申请中有明确的说明,否则在常用词典中定义的词语应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义解释。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限于所记载的顺序,而 可以任意顺序执行或并行地执行。下面将参考附图并结合实施例来详细说明本申请。
参考图1至图7。本申请实施例提供一种摄像模组,其包括可变光圈组件1和镜头组件3。可变光圈组件1设置于镜头组件3的物侧方向。
参考图1至图4。可变光圈组件1,包括:至少一个光圈叶片12和电致动器13。示例性地,可变光圈组件1可包括第一外壳11,用于包裹光圈叶片12和电致动器13。第一外壳11可具有框形结构,可为方形或圆形等。
这些光圈叶片12能够通过移动或者转动并环绕出可变光圈孔1201。随着光圈叶片12的移动,这些光圈叶片12所环绕出的可变光圈孔1201的外形和面积可变。示例性地,当只有一个光圈叶片12时,该光圈叶片12包括一个长圆孔且长圆孔两端的直径不同,通过移动光圈叶片12以使长圆孔的不同位置被使用为可变光圈孔1201。示例性地,可变光圈组件1还包括固定挡板,固定挡板上可以开设有孔。光圈叶片12环绕出可变光圈孔1201的一部分,并与固定挡板上的孔配合以环绕出可变光圈孔1201。可变光圈孔1201通常具有一中心轴线,可变光圈孔1201的横截面可为圆形,当然也可不是圆形,例如由四段弧线连接而成。
可变光圈组件1的光圈叶片12可以受电致动器13的驱动进行连续变化,也就是说,可变光圈孔1201的孔径可以实现从大到小或由小到大的连续性变化,可变光圈孔1201的孔径数值是连续可变的数值,进而为摄像模组提供多组光圈数值。
可变光圈孔1201也可以实现两段式或多段式变化,即该可变光圈组件1可以实现两种或多种可变光圈孔径的变化,可变光圈孔1201的孔径的大小并不一定是连续变化的。
电致动器13设置于可变光圈孔1201的径向外侧。具体地,参考图1和图4可将电致动器13设置于光圈叶片12在径向上的外侧。参考图1,光圈叶片12设置于第一外壳11内,且位于第一外壳11内部空间的前部1101。光圈叶片12可以贴靠第一外壳11的前端,也可与 该前端间隔一段距离。光线可穿过可变光圈孔1201并穿过第一外壳11。电致动器13位于第一外壳11内部空间的外周部1102,其该内部空间的外周部1102的径向内侧环绕有该内部空间的安装腔1103。安装腔1103在轴向上的投影覆盖可变光圈孔1201,或者说,安装腔1103的直径比可变光圈孔1201的最大状态时的直径大且大致同轴。示例性地,安装腔1103的直径也可以比可变光圈孔1201小,但二者至少有一部分重叠的区域以通过光线。第一外壳11内部空间的安装腔1103可用于安装镜头组件3的至少一部分。具体地,可安装透镜组31的至少一部分。
示例性地,参考图2,第一外壳11可具有一长方形端面,该长方形端面具有图示水平方向的长度m和竖直方向的高度n。该高度n和该长度m的比值在0.75至1之间。在本发明的其他示例中,外壳11还可以具有类长方形端面,例如,圆角长方形端面等。示例性地,第一外壳11也可以看作是运动机构的一部分,例如在第一外壳11上设置限制光圈叶片12的滑轨。第一外壳11的尺寸即是运动机构的尺寸。参考图4,电致动器13用于驱动这些光圈叶片12的移动。光圈叶片12相互之间可设置滑轨以限定移动轨迹,也可以是在第一外壳11上设置限制光圈叶片12的滑轨。在示例性实施方式中,电致动器13通过连接装置与光圈叶片12连接并驱动光圈叶片12。可以是一个电致动器13驱动全部光圈叶片12,也可以是多个电致动器13配合驱动全部光圈叶片12。
本申请的实施例提供的可变光圈组件1,可变光圈孔1201对应位置在轴向上的厚度比较薄。当可变光圈组件1与外部设备装配时,外部组件的至少一部分可设置于第一外壳11内部空间的安装腔1103中。外部组件与可变光圈孔1201的距离较近,进而可减小组装后的装置在轴向上的尺寸。使组装后的装置小型化。
在示例性实施方式中,可变光圈组件1的电致动器13具有:第一固定端和第一运动端。第一固定端可以固定于第一外壳11,也可以设置固定机构以与外部组件固定连接。第一运动端相对第一固定端受驱动地移动,且第一运动端与光圈叶片12连接以驱动光圈叶片12移动。 具体地移动方式可以是平移、转动。通过第一运动端相对第一固定端的移动,可以驱动光圈叶片12移动,继而使得光圈叶片12环绕成的可变光圈孔1201变化,例如由大光圈状态变为小光圈状态。
在示例性实施方式中,电致动器13包括相对设置的第一线圈131和第一磁铁132。参考图4,第一外壳11在图示的左侧内壁上和图示的右侧内壁上分别设置有第一磁铁132。左侧的第一磁铁132对应设置有第一线圈131,当该线圈131通电时可驱动左侧的光圈叶片12移动。右侧的第一磁铁132对应设置有第一线圈131,对应的第一线圈131通电后可驱动右侧的光圈叶片12移动。可以理解的,本实施例的电致动器13的第一固定端设置于第一磁铁132,第一运动端设置于第一线圈131。根据光圈叶片12的实际移动轨迹,第一运动端与光圈叶片12的连接方式可以是固定连接也可以是滑动连接。
示例性地,也可以将第一线圈131设置于第一外壳11,通过使用第一线圈131驱动第一磁铁132,而使第一磁铁132带动光圈叶片12移动。即第一固定端设置于第一线圈131,第一运动端设置于第一磁铁132。
在示例性实施方式中,电致动器13包括形状记忆合金线,形状记忆合金线的两端分别为第一固定端和第一运动端。由于形状记忆合金线的长短可受控制的变化,因此通过调整形状记忆合金线的长短伸缩可以控制器两端的相对位置,即驱动第一运动端与第一固定端之间相对移动。示例性地,电致动器13至少包括两个形状记忆合金线,每根形状记忆合金线驱动一个光圈叶片12移动。形状记忆合金线占用空间较小,有利于可变光圈组件1的小型化。并且形状记忆合金线设置在光圈叶片12的外周是较方便的,可以使可变光圈组件1中,可变光圈孔1201对应的部分在轴向上具有更小的尺寸。
参考图5,电致动器13设置在第一外壳11内部空间的外周部1102,具体地,电致动器13设置于光圈叶片12的外周处的左右两侧。这样图示中光圈叶片12的外周的上下两侧尺寸较薄,空出了更多的安装空间。而电致动器13之间的空间依旧作为安装镜头组件3的安装腔1103。由于电致动器13设置于光圈叶片12的外周处的左右两侧,这 会增加安装腔1103的容纳空间,可以容纳具有更大孔径的镜头组件,提升摄像模组的拍照质量。
光圈叶片12的外周的上下两侧尺寸较薄可以缩小摄像模组的厚度。
在本申请中,这些光圈叶片12形成具有可变光圈孔1201的运动机构。示例性地,可变光圈孔1201并不限于上述实施例中由光圈叶片12构成的可变光圈孔1201,也可以实施为液晶调光装置形成的可变光圈孔1201或由电致变形片构成的可变光圈孔1201等,也就是说,由电致动器13进行驱动以改变进光量的组件均可被实施为具有可变光圈孔1201的运动机构。
本申请实施例提供的摄像模组,由于镜头组件3的至少一部分安装在可变光圈组件1的电致动器13的径向内侧,使得该摄像模组在光轴方向的尺寸较薄,适于安装到安装空间紧凑的设备中。
镜头组件3包括:透镜组31以及感光芯片33。感光芯片33设置于透镜组31的像侧方向,用于接收透镜组31处照射来的成像光线并成像。
可变光圈组件1设置于镜头组件3的物侧,且至少包裹了镜头组件3的一部分。具体地,透镜组31的至少一部分在垂直于光轴的方向上位于电致动器13的径向内侧,并在平行于光轴的方向上与电致动器13重叠以更贴近可变光圈孔1201。
在示例性实施方式中,透镜组31的光轴与可变光圈孔1201的几何中心轴重叠。光圈叶片12的移动通常是对称地,因此可变光圈孔1201在大光圈状态或小光圈状态之间变化时,其几何中心的位置通常保持不变。通过设置透镜组31的光轴与可变光圈孔1201的几何中心轴大致重叠使得可变光圈孔1201外周的变化,可以比较均匀地调节镜头组件3的各个视场的进光量。
在示例性实施方式中,镜头组件3还包括设置于透镜组31与感光芯片33之间的滤光片32。通过设置滤光片32,可以将成像光线中的一部分光线去除,使得剩余的光线在感光芯片33处形成较好的图像。示例性地,滤光片32通过支座35固定。
参考图6和图7,本申请实施例提供的摄像模组可以是潜望式的摄像模组,包括:镜头组件3、可变光圈组件1和反光组件2。其中,可变光圈组件1设置于镜头组件3的物侧方向,反光组件2设置于可变光圈组件1的物侧方向。
反光组件2设置于可变光圈组件1的物侧方向,并用于将垂直于透镜组31的光轴入射的光线反射为沿透镜组31的光轴出射的光线。
通过反射组件2的反射,使得成像光线的光路整体上与入射时是垂直的。图6中,潜望式的摄像模组在水平方向上具有较长的尺寸,而在竖直方向上具有较短的尺寸。当该潜望式的摄像模组组装到手机中时,其竖直方向设置在手机的厚度方向上,可以使手机具有较薄的尺寸。且其长度方向上也占用了手机内部较少的安装空间。
本申请提供的潜望式的摄像模组,既可以实现大光圈加长焦的拍摄模式,以达到人像拍摄时背景虚化的效果,使人像更加突出;也可以实现小光圈加长焦的拍摄模式,实现多倍远景拍摄。
在示例性实施方式中,反光组件2包括:载体21、反射元件22和第一防抖驱动器。载体21包括安装面211,安装面211用于设置反射元件22。具体地,可以是反射元件22的边缘与安装面211粘接,或者载体21设置有固定反射元件22的卡合结构。反射元件22用于将入射的光线反射九十度射出。在示例性实施方式中,反射元件22是棱镜或平面镜。示例性地,反射元件22的具体实施方式并不受到限制,可以以合适的反射或折射方式使入射光线偏折90°。第一防抖驱动器可设置在载体21的安装面211的背面。第一防抖驱动器用于驱动载体21,继而驱动载体21和反射元件22转动,以消除潜望式摄像模组抖动时反射元件22相对透镜组31光轴的偏差。
示例性地,反光组件2还包括第二外壳23。第二外壳23包裹载体21及反射元件22,且第二外壳23通过弹片、转轴、滚珠等结构与载体21连接。第二外壳23还设置有用于通过入射光线的第一开口201和用于通过反射后的光线的第二开口202。示例性地,第一外壳11和第二外壳23固定连接。设置有第二外壳23可以使潜望式的摄像模组作为一个整体易于组装至手机等设备中,但是也可以将第一防抖驱动 器等元件直接与外部组件组装,组装时需保证潜望式的摄像模组的各元件的位置关系和运动关系。第二外壳23的内壁面与载体21以及与反射元件22之间具有间隔,可以避免防抖过程中的摩擦、碰撞。
在示例性实施方式中,第一防抖驱动器包括两对线圈和磁铁,具体地,第二线圈261和第二磁铁262配置为一对并设置于载体21上的背对第一开口201处;第三线圈263和第三磁铁264配置为一对并设置于载体21上的背对第二开口202处。参考图7,第二线圈261和第三线圈263与载体21固定连接,第二磁铁262和第三磁铁264与第二外壳23固定连接。示例性地,可以是第二磁铁262和第三磁铁264与载体21固定连接。
第二线圈261和第二磁铁262的相对运动方向与第三线圈263和第三磁铁264的相对运动方向位于光线的反射平面内,且第二线圈261和第二磁铁262的相对运动方向与第三线圈263和第三磁铁264的相对运动方向不平行。例如,第二线圈261和第二磁铁262的移动方向可沿竖直方向即大致平行于入射光线的方向,第三线圈263和第三磁铁264的移动方向可沿水平方向即大致平行于反射后的光线。
参考图8,反射元件22为棱镜,反射元件22在竖直方向的高度为H(具体地,棱镜的出光面高度为H;若反射元件为反射镜,则可以根据光路虚构出一个出光面)。本申请提供的潜望式摄像模组中的透镜组31的进光面与反射元件22的出光面之间的距离为b,运动机构的沿透镜组31的光轴方向的厚度为a。透镜组31具有视场角范围(在空间中可为一圆锥体),该视场角范围在光轴的垂面内具有一可视范围(可为一圆形面)。示例性地,该视场角范围与反射元件22的出光面形成相交圆,该相交圆具有直径R。该相交圆即反射元件22的出光面处的可视范围,该可视范围距离透镜组31越远,即反射元件22距离透镜组31越远,R越大;该可视范围距离透镜组越近,即反射元件22距离透镜组31越近,R越小。此外,可变光圈组件1的可变光圈孔1201的孔径具有直径h,孔径h的最大直径是h max
本申请中,相交圆的直径R不大于反射元件22的高度H,这样可以确保透镜组31的可视范围内都有光线经过,确保透镜组31成像 的完整性和成像质量的提升;若R>H,则透镜组31的可视范围内会有一部分区域没有光线经过,这会造成成像缺陷,这通常是本申请不希望发生的情形。
本发明中,可变光圈孔1201的孔径h的最大直径h max等于或者略大于可视范围直径R,当h逐渐变小,h是可以略小于R的。
由于透镜组31的视场角通常是根据设计确定好的,因此当a越小时,可变光圈孔1201的最大直径h max就可以做到更小这样,可变光圈组件1的整体高度就可以变小,有利于缩小潜望式的摄像模组在入射光线方向上的整体厚度。
由于a≤b,且b的数值主要受到a的数值的影响,所以当a较小时,b也较小,使得可变光圈组件1具有足够小的厚度。而透镜组31与反射元件22的距离越近,R越小,并且R≤H,这样反射元件22的高度H也可以做到更小,使得反射元件22具有足够小的高度,这可以缩小潜望式的摄像模组的高度。
本申请提供的潜望式的摄像模组中,可变光圈组件1中的电致动器13位于可变光圈孔1201的径向外侧,具体地,位于透镜组31的外侧。相比于现有的技术方案,本申请的可变光圈组件1的a尺寸中去掉了电致动器13的厚度,使得透镜组31的进光面更靠近可变光圈孔1201的出光端面。也使得a尺寸和b尺寸较小,继而使h尺寸和H尺寸较小。该潜望式的摄像模组在入射光线的方向上具有较薄的厚度,可以较好的安装于手机等厚度较薄的设备中。
在入射光线的方向,可变光圈组件1的高度n不超过反光组件2的高度的1.2倍。进一步地,可变光圈组件1的高度小于或等于反光组件2的高度,使得潜望式的摄像模组在入射光线的方向上具有较薄的厚度。
本申请中,运动机构的厚度a的范围可为:1.5~3.5mm;透镜组31与反射元件22的距离b的范围可为2~4mm;反射元件22的出光面的高度H的范围可为≤11mm;可变光圈孔1201的直径h的范围可为:3.5~8.5mm。
参考图6、图7和图9,在示例性实施方式中,镜头组件3与可变 光圈组件1之间包括第一胶水层14以固定连接,反光组件2与可变光圈组件1之间包括第二胶水层24以固定连接。胶水粘接的方式比较易于操作,且质量轻。
示例性地,镜头组件3具有第三外壳34。第三外壳34与第一外壳11二者之间可具有焊接后的焊接层。焊接的方式比较牢固。或者,二者之间设置有卡合机构固定连接。卡合的连接方式便于镜头组件3和可变光圈组件1之间的拆卸。
参考图5和图9,图9为潜望式的摄像模组沿入射光线方向的视图。在示例性实施方式中,电致动器13设置于入射的光线所在的反射面的两侧。这使得可变光圈组件1在沿入射光线的方向上具有较薄的厚度。进而使得潜望式的摄像模组在入射光线方向上占用更少的安装空间。
在示例性实施方式中,镜头组件3还包括用于驱动透镜组31的第二防抖驱动器37。当镜头组件3和可变光圈组件1需要分别组装,然后二者在组装到一起时,透镜组31通过第二防抖驱动器37与第三外壳34连接。第二防抖驱动器的第二固定端与第三外壳34固定连接,其第二运动端与透镜组31连接。通过第二运动端相对第二固定端的移动可驱动透镜组31沿着垂直于光轴的方向移动进行防抖。
在示例性实施方式中,第二防抖驱动器37是音圈马达或压电马达。参考图10,第二防抖驱动器37包括第四线圈371和第四磁铁372。可选地,第四线圈371与第三外壳34固定连接,第四磁铁372与透镜组31固定连接;或者第四线圈371与透镜组31固定连接,第四磁铁372与第三外壳34固定连接。
在示例性实施方式中,镜头组件3还包括用于驱动透镜组31的对焦驱动器。透镜组31通过对焦驱动器与第三外壳34连接。对焦驱动器的第三固定端与第三外壳34固定连接,其第三运动端与透镜组31连接。通过第三运动端相对第三固定端的移动可驱动透镜组31沿着光轴方向移动进行对焦。
参考图10至图14,在示例性实施方式中,镜头组件3包括第三线路板36和第四线路板38,第三线路板36与感光芯片33数据连接, 第四电路板38与对焦驱动器和/或第二防抖驱动器37数据连接。具体地,第三线路板36设置于感光芯片33的物侧,第四线路板38设置于镜头组件3的下部,也就是在入射光线方向上背对入被摄物体的一侧。
可变光圈组件1包括第一线路板15,第一线路板15与电致动器13数据连接。具体地,第一线路板15位于可变光圈组件1的下部。
反光组件2包括第二线路板25,第二线路板25与第一防抖驱动器数据连接。具体地,第二线路板25位于反光组件2的下部。
参考图13至15,潜望式的摄像模组还包括延伸线路板44和连接器41,延伸线路板44与第一线路板15、第二线路板25、第三线路板36以及第四线路板38分别数据连接,连接器41包括两个端口,两个端口中的一个端口与第三线路板36数据连接。
在示例性实施方式中,延伸线路板44与第三线路板36通过第一软板43数据连接,连接器41与第三线路板36通过第二软板42数据连接。软板具有较好的弯折性能,可以更好地布置各线路板之间的连接线路。
在示例性实施方式中,延伸线路板44中设置有处理芯片45。
本申请提供的潜望式摄像模组可通过连接器41与外部设备的主板数据连接,同时通过连接器41得到电能以及与外部设备进行通信,进而通过第一线路板15驱动电致动器13以实现光圈叶片12的移动,通过第二线路板25驱动第一防抖驱动器以实现载体21和反射元件22防抖,通过第四线路板38驱动第二防抖驱动器37或者对焦驱动器以实现透镜组31的防抖或调焦,通过第三线路板36实现感光芯片33的成像。
在示例性实施方式中,第一线路板15的引脚、第二线路板25的引脚以及第四线路板38的引脚与延伸线路板44焊接。参考图13和图14,焊接的方式适于组装,可变光圈组件1、镜头组件3和反光组件2组装成一体后,第一线路板15、第二线路板25、第四线路板38都位于下部,三者的引脚可位于同一侧,这样便于延伸线路板44一次就与三者焊接。本申请中,引脚与线路板的连接方式也可以采用点锡球或导电胶粘接的方式结合于一起,实现电性的导通,但本申请不限于此。
在示例性实施方式中,滤光片32通过支座35与第三外壳34固定。示例性地,滤光片32通过支座35与第三线路板36固定连接。第三线路板36、感光芯片33、支座35及滤光片32四者固定连接,可以便于组装。
参考图16和图17。在示例性实施方式中,电致动器13还用于驱动透镜组31。通过使用电致动器13同时驱动光圈叶片12和透镜组31,减少了潜望式的摄像模组的元件,进而减小了潜望式的摄像模组的体积。示例性地,镜头组件3整体安装于第一外壳11内。
进一步的,可变光圈组件1包括第一线路板15,第一线路板15与电致动器13数据连接;反光组件2包括第二线路板25,第二线路板25与第一防抖驱动器数据连接;镜头组件3包括第三线路板36,第三线路板36与感光芯片33数据连接。潜望式摄像模组还包括延伸线路板44和连接器41,延伸线路板44与第一线路板15、第二线路板25以及第三线路板36分别数据连接,连接器41包括两个端口,两个端口中的一个端口与第三线路板36数据连接。
参考图17,示例性地,电致动器13设置在光圈叶片12的外侧,在光圈叶片12的物侧和像侧,电致动器13都环绕出了安装空间。电致动器13在可变光圈孔1201的外侧形成了安装腔1301,只是安装腔1301分成了两部分。安装腔1301位于可变光圈孔1201的轴外侧,可在径向上覆盖可变光圈孔1201。透镜组31可分为前透镜组21b和后透镜组31a。前透镜组31b设置于光圈叶片12的物侧方向,使得前透镜组31b的进光面与反光组件2距离较近。后透镜组31a设置于光圈叶片12的像侧方向,且至少一部分位于电致动器13的径向内侧。示例性地,镜头组件3整体安装于第一外壳11内。电致动器13驱动光圈叶片12的同时可驱动前透镜组31b和后透镜组31a。
本申请实施例中,前述的反光组件2可以组装到其他需要偏折光线的装置中。本实施例提供的反光组件2,可以控制反光组件2的反射元件22进行转动以实现自动防抖从而提升成像质量,而且转动的结构比较简单,可以实现反光组件2的小型化。
参考图18和图19,本申请的实施例还提供一种潜望式摄像模组。 包括前述的反光组件2和镜头组件3。反光组件2设置于镜头组件3的物侧方向。示例性地,还包括光圈组件,例如设置于反光组件2和镜头组件3之间的可变光圈组件1,或者固定光圈。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (21)

  1. 摄像模组,其特征在于,包括:
    透镜组;以及
    可变光圈组件,所述可变光圈组件包括:
    运动机构,所述运动机构设置于所述透镜组的物侧方向,所述运动机构具有可变光圈孔,所述可变光圈孔的孔径随所述运动机构的运动状态而变化;以及
    电致动器,所述电致动器设置于所述可变光圈孔的径向外侧,并在所述可变光圈孔的外侧形成安装腔,所述电致动器用于驱动所述运动机构;
    其中,所述安装腔中设置所述透镜组的至少一部分。
  2. 根据权利要求1所述的摄像模组,其特征在于,所述运动机构包括至少一个光圈叶片,所述至少一个光圈叶片能够移动并环绕出随所述移动而变化的所述可变光圈孔。
  3. 根据权利要求2所述的摄像模组,其特征在于,所述电致动器具有:
    第一固定端;以及
    第一运动端,所述第一运动端相对所述第一固定端受驱动地移动,且所述第一运动端与所述光圈叶片连接以驱动所述光圈叶片移动。
  4. 根据权利要求3所述的摄像模组,其特征在于,所述电致动器包括第一线圈和第一磁铁,所述第一线圈和所述第一磁铁相对设置;
    所述第一固定端设置在所述第一线圈和所述第一磁铁二者中的一者中,所述第一运动端设置在另一者中。
  5. 根据权利要求3所述的摄像模组,其特征在于,所述电致动器包括形状记忆合金线,所述形状记忆合金线具有所述第一固定端和所 述第一运动端。
  6. 根据权利要求1所述的摄像模组,其特征在于,所述透镜组的光轴与所述可变光圈孔的几何中心轴重叠。
  7. 根据权利要求1所述的摄像模组,其特征在于,还包括:
    感光芯片,设置于所述透镜组的像侧方向;
    滤光片,设置于所述透镜组与所述感光芯片之间。
  8. 根据权利要求1所述的摄像模组,其特征在于,还包括用于驱动所述透镜组的第二防抖驱动器。
  9. 根据权利要求8所述的摄像模组,其特征在于,所述第二防抖驱动器是音圈马达或压电马达。
  10. 根据权利要求1所述的摄像模组,其特征在于,所述电致动器还用于驱动所述透镜组。
  11. 根据权利要求1所述的摄像模组,其特征在于,所述摄像模组还包括:
    反光组件,设置于所述可变光圈组件的物侧方向,所述反光组件用于将垂直于所述透镜组的光轴入射的光线反射为沿所述透镜组的光轴出射的光线。
  12. 根据权利要求11所述的摄像模组,其特征在于,所述可变光圈组件在入射的光线方向上的高度小于或等于所述反光组件在入射的光线方向上的高度的1.2倍。
  13. 根据权利要求11所述的摄像模组,其特征在于,所述可变光圈组件具有在入射的光线方向上的高度n,和垂直于所述入射的光线 线方向上并且位于所述透镜组的光轴的垂面内的长度m,所述运动机构满足0.75≤n/m≤1。
  14. 根据权利要求13所述的摄像模组,其特征在于,所述电致动器设置于所述可变光圈组件的长度m所在方向上的两侧。
  15. 根据权利要求11所述的摄像模组,其特征在于,所述反光组件包括:
    载体,所述载体包括安装面;
    反射元件,设置于所述载体的安装面,所述反射元件用于将入射的光线反射九十度射出;以及
    第一防抖驱动器,用于驱动所述载体。
  16. 根据权利要求15所述的摄像模组,其特征在于,所述反射元件是棱镜或平面镜。
  17. 根据权利要求15所述的摄像模组,其特征在于,所述运动机构的沿所述透镜组的光轴方向的厚度a满足:1.5mm≤a≤3.5mm;
    所述透镜组的物侧端与所述反射元件的用于射出光线的出光面之间的距离b满足:2mm≤b≤4mm。
  18. 根据权利要求15所述的摄像模组,其特征在于,所述反射元件的用于射出光线的出光面的高度H满足H≤11mm;
    所述可变光圈孔的孔径h满足3.5mm≤h≤8.5mm。
  19. 根据权利要求15所述的摄像模组,其特征在于,所述第一防抖驱动器包括:
    第二线圈和第二磁铁,所述第二线圈和所述第二磁铁二者中的一者与所述载体固定连接;
    第三线圈和第三磁铁,所述第三线圈和所述第三磁铁二者中的一 者与所述载体固定连接;
    所述第二线圈和所述第二磁铁的相对运动方向与所述第三线圈和所述第三磁铁的相对运动方向不平行。
  20. 根据权利要求15所述的摄像模组,其特征在于,还包括第一线路板,所述第一线路板与所述电致动器数据连接;
    第二线路板,所述第二线路板与所述第一防抖驱动器数据连接;
    感光芯片,所述感光芯片设置于所述透镜组的像侧方向;
    第三线路板,所述第三线路板与所述感光芯片数据连接;
    延伸线路板,所述延伸线路板与所述第一线路板、第二线路板以及第三线路板分别数据连接;
    连接器,所述连接器包括两个端口,所述两个端口中的一个端口与所述第三线路板数据连接。
  21. 根据权利要求20所述的摄像模组,其特征在于,所述延伸线路板与所述第三线路板通过第一软板数据连接,所述连接器与所述第三线路板通过第二软板数据连接;
    所述延伸线路板中设置有处理芯片。
PCT/CN2021/072416 2020-01-22 2021-01-18 摄像模组 WO2021147802A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180009263.7A CN115336246A (zh) 2020-01-22 2021-01-18 摄像模组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010074854.X 2020-01-22
CN202010074854.XA CN113163071B (zh) 2020-01-22 2020-01-22 摄像模组

Publications (1)

Publication Number Publication Date
WO2021147802A1 true WO2021147802A1 (zh) 2021-07-29

Family

ID=76881673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072416 WO2021147802A1 (zh) 2020-01-22 2021-01-18 摄像模组

Country Status (2)

Country Link
CN (3) CN113163077B (zh)
WO (1) WO2021147802A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676650A (zh) * 2021-08-25 2021-11-19 维沃移动通信有限公司 摄像组件和电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163077B (zh) * 2020-01-22 2022-12-09 宁波舜宇光电信息有限公司 摄像模组
CN115022550A (zh) * 2022-06-29 2022-09-06 维沃移动通信有限公司 摄像头模组及电子设备
CN116437175B (zh) * 2023-06-13 2023-09-22 南昌欧菲光电技术有限公司 摄像模组及电子设备

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110032592A1 (en) * 2009-08-04 2011-02-10 Olympus Corporation Light controlling apparatus
CN203465460U (zh) * 2013-08-01 2014-03-05 贾怀昌 一种非接触式永磁驱动可变光圈的光学镜头
CN203858403U (zh) * 2014-05-13 2014-10-01 中山市美景光学信息有限公司 一种非接触式永磁驱动可变光圈的光学镜头
CN108181775A (zh) * 2016-12-08 2018-06-19 三星电子株式会社 相机装置和电子设备
CN108535934A (zh) * 2018-05-02 2018-09-14 中山市美景光学信息有限公司 一种可变光圈的光学镜头
CN108777760A (zh) * 2018-07-25 2018-11-09 宁波舜宇光电信息有限公司 可变光圈结构、摄像模组以及电子设备
CN208581282U (zh) * 2018-05-16 2019-03-05 宁波舜宇光电信息有限公司 光转向组件、潜望式摄像模组、阵列模组以及电子设备
CN110073286A (zh) * 2016-12-08 2019-07-30 三星电子株式会社 包括光圈的相机模块以及包括该相机模块的电子装置
CN110505370A (zh) * 2018-05-16 2019-11-26 宁波舜宇光电信息有限公司 光转向组件及其制造方法以及潜望式摄像模组、潜望式阵列模组和电子设备
CN110703534A (zh) * 2019-10-28 2020-01-17 上海比路电子股份有限公司 一种连续可变光圈装置
CN210323702U (zh) * 2019-05-16 2020-04-14 宁波舜宇光电信息有限公司 可变光圈装置、摄像模组及电子设备
CN210534499U (zh) * 2019-10-28 2020-05-15 上海比路电子股份有限公司 一种连续可变光圈装置
CN111948872A (zh) * 2019-05-16 2020-11-17 宁波舜宇光电信息有限公司 可变光圈装置及摄像模组

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3987047B2 (ja) * 2004-03-05 2007-10-03 ニスカ株式会社 撮像装置及びこれに用いる光量調節装置
JP4680553B2 (ja) * 2004-09-02 2011-05-11 オリンパス株式会社 カメラシステム
CN103647893B (zh) * 2005-12-06 2017-05-17 松下电器产业株式会社 数字相机、相机机身、相机系统及该数字相机的控制方法
CN101232583A (zh) * 2008-01-31 2008-07-30 北京航空航天大学 一种摄像机光圈自适应调节装置及方法
JP2009198861A (ja) * 2008-02-22 2009-09-03 Nikon Corp カメラの絞り制御装置およびカメラ
JP2015169850A (ja) * 2014-03-07 2015-09-28 コニカミノルタ株式会社 レンズユニット及び撮像装置
CN104834157A (zh) * 2015-04-13 2015-08-12 南昌欧菲光电技术有限公司 摄像头模组及其装配结构
KR101708320B1 (ko) * 2016-04-15 2017-02-20 엘지전자 주식회사 이동 단말기
WO2018035944A1 (zh) * 2016-08-24 2018-03-01 宁波舜宇光电信息有限公司 具有镜头和棱镜装置的潜望式摄像模组
WO2018056770A1 (ko) * 2016-09-26 2018-03-29 엘지이노텍 주식회사 카메라 렌즈 배럴, 카메라 모듈 및 광학 장치
KR102100195B1 (ko) * 2018-03-14 2020-04-13 엘지전자 주식회사 이미지 획득 장치
CN208461918U (zh) * 2018-06-15 2019-02-01 Oppo广东移动通信有限公司 摄像头模组、摄像头组件与电子装置
CN208224576U (zh) * 2018-06-26 2018-12-11 惠州大亚湾三美达光学技术有限公司 透镜驱动装置
CN109167909B (zh) * 2018-11-26 2020-07-24 Oppo广东移动通信有限公司 成像模组及电子装置
CN109752897A (zh) * 2019-01-18 2019-05-14 东莞佩斯讯光电技术有限公司 一种长焦镜头的摄像模组
CN209400775U (zh) * 2019-02-20 2019-09-17 南昌欧菲晶润科技有限公司 镜头组件、摄像模组及智能终端
CN110475055B (zh) * 2019-08-26 2021-08-31 Oppo广东移动通信有限公司 光圈组件、摄像头模组和电子设备
CN110488451A (zh) * 2019-09-10 2019-11-22 上海比路电子股份有限公司 光学变焦马达、摄像装置及光学变焦马达的组装方法
CN113163077B (zh) * 2020-01-22 2022-12-09 宁波舜宇光电信息有限公司 摄像模组

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110032592A1 (en) * 2009-08-04 2011-02-10 Olympus Corporation Light controlling apparatus
CN203465460U (zh) * 2013-08-01 2014-03-05 贾怀昌 一种非接触式永磁驱动可变光圈的光学镜头
CN203858403U (zh) * 2014-05-13 2014-10-01 中山市美景光学信息有限公司 一种非接触式永磁驱动可变光圈的光学镜头
CN108181775A (zh) * 2016-12-08 2018-06-19 三星电子株式会社 相机装置和电子设备
CN110073286A (zh) * 2016-12-08 2019-07-30 三星电子株式会社 包括光圈的相机模块以及包括该相机模块的电子装置
CN108535934A (zh) * 2018-05-02 2018-09-14 中山市美景光学信息有限公司 一种可变光圈的光学镜头
CN208581282U (zh) * 2018-05-16 2019-03-05 宁波舜宇光电信息有限公司 光转向组件、潜望式摄像模组、阵列模组以及电子设备
CN110505370A (zh) * 2018-05-16 2019-11-26 宁波舜宇光电信息有限公司 光转向组件及其制造方法以及潜望式摄像模组、潜望式阵列模组和电子设备
CN108777760A (zh) * 2018-07-25 2018-11-09 宁波舜宇光电信息有限公司 可变光圈结构、摄像模组以及电子设备
CN210323702U (zh) * 2019-05-16 2020-04-14 宁波舜宇光电信息有限公司 可变光圈装置、摄像模组及电子设备
CN111948872A (zh) * 2019-05-16 2020-11-17 宁波舜宇光电信息有限公司 可变光圈装置及摄像模组
CN110703534A (zh) * 2019-10-28 2020-01-17 上海比路电子股份有限公司 一种连续可变光圈装置
CN210534499U (zh) * 2019-10-28 2020-05-15 上海比路电子股份有限公司 一种连续可变光圈装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676650A (zh) * 2021-08-25 2021-11-19 维沃移动通信有限公司 摄像组件和电子设备
CN113676650B (zh) * 2021-08-25 2023-11-14 维沃移动通信有限公司 摄像组件和电子设备

Also Published As

Publication number Publication date
CN113163071B (zh) 2022-09-16
CN113163077B (zh) 2022-12-09
CN113163071A (zh) 2021-07-23
CN115336246A (zh) 2022-11-11
CN113163077A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2021147802A1 (zh) 摄像模组
WO2021190186A1 (zh) 一种摄像模组、感光驱动装置及电子设备
JP6114050B2 (ja) 撮像装置
US11297236B2 (en) Camera device with hand shake correction function
JP2014149496A (ja) 撮像装置
WO2020093819A1 (zh) 成像模组、摄像头组件及电子装置
WO2021104402A1 (zh) 一种摄像头模组及电子设备
CN213423566U (zh) 光学系统
WO2021213216A1 (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法
CN112995443B (zh) 潜望式摄像模组及其制造方法
WO2021227819A1 (zh) 一种镜筒、镜头、摄像模组及电子设备
WO2020118752A1 (zh) 双向防抖反射模块及潜望式模组
WO2021052157A1 (zh) 潜望式摄像模组及电子设备
CN211509141U (zh) 摄像模组及电子装置
WO2020093821A1 (zh) 成像模组、摄像头组件及电子装置
US20230221537A1 (en) Lens module, camera module, and terminal
CN113933953A (zh) 光学系统
WO2020019838A1 (zh) 成像模组、摄像头组件和电子装置
CN217689714U (zh) 光学元件驱动机构
CN115480437A (zh) 摄像模组和电子设备
WO2021023234A1 (zh) 光学镜头、相机模组及拍摄设备
CN114079710A (zh) 潜望式连续光变摄像模组及相应的电子设备
CN111953895B (zh) 可对焦成像装置
CN112824964B (zh) 潜望式摄像模组及其组装方法
JP2023522418A (ja) カメラモジュール及び移動端末機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744305

Country of ref document: EP

Kind code of ref document: A1