WO2020019838A1 - 成像模组、摄像头组件和电子装置 - Google Patents

成像模组、摄像头组件和电子装置 Download PDF

Info

Publication number
WO2020019838A1
WO2020019838A1 PCT/CN2019/087759 CN2019087759W WO2020019838A1 WO 2020019838 A1 WO2020019838 A1 WO 2020019838A1 CN 2019087759 W CN2019087759 W CN 2019087759W WO 2020019838 A1 WO2020019838 A1 WO 2020019838A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
imaging module
camera assembly
mounting base
image sensor
Prior art date
Application number
PCT/CN2019/087759
Other languages
English (en)
French (fr)
Inventor
张弓
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821192353.6U external-priority patent/CN208424562U/zh
Priority claimed from CN201810829417.7A external-priority patent/CN108600599B/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020019838A1 publication Critical patent/WO2020019838A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets

Definitions

  • the present application relates to the field of electronic devices, and in particular, to an imaging module, a camera assembly, and an electronic device.
  • the camera of the mobile phone uses a periscope lens.
  • the periscope camera can perform, for example, three times the optical focal length to obtain a better-quality image.
  • the periscope camera includes a reflective element, which is used to redirect the light incident into the periscope lens and conduct it to the image sensor so that the image sensor acquires an image outside the periscope lens. How to drive the movement of the reflective element to realize the periscope lens to achieve optical image stabilization has become a technical problem to be solved.
  • the application provides an imaging module, a camera assembly and an electronic device.
  • An imaging module includes a housing provided with a light inlet, and a reflective element, a mounting base, and an image sensor all disposed in the housing.
  • the reflective element is fixed on the mounting base, and the reflective element is used to redirect the incident light incident from the light inlet to the image sensor to make the image sensor sense the imaging module.
  • the mounting base can rotate relative to the housing about a rotation axis, and an axial direction of the rotation axis is perpendicular to an optical axis of the light inlet.
  • the imaging module further includes a driving device for applying a driving force deviating from the rotation axis to the mounting base, and the driving force drives the mounting base to rotate about the rotation axis, so that the imaging The module realizes optical image stabilization in the optical axis direction of the light inlet.
  • the camera assembly according to the embodiment of the present application includes a decoration member and the imaging module of the above embodiment, and the decoration member is disposed above the light inlet of the imaging module.
  • the electronic device includes a casing and the camera assembly of the above embodiment, and the camera assembly is disposed on the casing.
  • FIG. 1 is a schematic plan view of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic perspective view of a camera assembly according to an embodiment of the present application.
  • FIG. 3 is an exploded schematic view of a camera assembly according to an embodiment of the present application.
  • FIG. 4 is a schematic perspective view of a decoration piece according to an embodiment of the present application.
  • FIG. 5 is an exploded schematic view of a first imaging module according to an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional view of a first imaging module according to an embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional view of a first imaging module according to another embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view in the A-A direction of the camera assembly of FIG. 2;
  • FIG. 9 is a schematic cross-sectional view of a second imaging module according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of cooperation between an imaging module and a decoration member according to some embodiments.
  • FIG. 11 is a schematic cross-sectional view of the electronic device of FIG. 1 along the B-B direction;
  • FIG. 12 is a schematic perspective view of a reflective element according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of light reflection imaging of a first imaging module in the related art
  • FIG. 14 is a schematic diagram of light reflection imaging of a first imaging module according to an embodiment of the present application.
  • 15 is a schematic structural diagram of an imaging module according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of an imaging module according to another embodiment of the present application.
  • Electronic device 1000 casing 102, camera assembly 100, decoration 10, through hole 11, first sub-hole 111, second sub-hole 112, decorative ring 12, convex edge 13, first imaging module 20, housing 21, Light inlet 211, groove 212, top wall 213, side wall 214, reflective element 22, light incident surface 222, backlight surface 224, reflective surface 226, light exit surface 228, mount 23, first lens assembly 24, lens 241 , Moving element 25, clip 222, first image sensor 26, driving mechanism 27, driving device 28, magnetic element 282, coil 284, piezoelectric element 286, spring 287, rotating shaft 29, second imaging module 30, second The lens assembly 31, the second image sensor 32, and the holder 40.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of said features.
  • the meaning of "a plurality” is two or more, unless specifically defined otherwise.
  • a first imaging module 20 provided by an embodiment of the present application includes a housing 21, a reflective element 22, a mounting base 23, and a first image sensor 26.
  • the housing 21 is provided with a light inlet 211.
  • the light-reflecting element 22, the mounting base 23, and the first image sensor 26 are all disposed in the housing 21.
  • the light-reflecting element 22 is fixed on the mounting base 23.
  • An image sensor 26 is used to make the first image sensor 26 sense the incident light outside the first imaging module 20.
  • the mounting base 23 can rotate relative to the housing 21 about a rotation axis 29. axis.
  • the first imaging module 20 further includes a driving device 28.
  • the driving device 28 is configured to apply a driving force deviating from the rotation shaft 29 to the mounting base 23, and the driving force drives the mounting base 23 to rotate about the rotation shaft 29, thereby enabling the first imaging module 20 to achieve Optical image stabilization in the optical axis direction of the optical port 211.
  • the driving device 28 includes a piezoelectric element 286 connected to the mounting base 23.
  • the piezoelectric element 286 is used to generate a driving force after a voltage is applied.
  • the driving device 28 includes a magnetic element 282 disposed on the mounting base 23 and a coil 284 disposed in the housing 21 with respect to the magnetic element 282. 282 acts to generate driving force.
  • the direction of the driving force is the tangential direction of the rotating shaft 29.
  • the number of driving forces is two. One driving force is directed to the optical axis direction of the light inlet 211, and the other driving force is perpendicular to the optical axis direction of the light inlet 211.
  • the light reflecting element 22 has a light incident surface 222, a backlight surface 224, a light reflecting surface 226, and a light emitting surface 228.
  • the light incident surface 222 is close to and faces the light entrance 211.
  • the backlight surface 224 is far from the light entrance 211 and is opposite to the light entrance 222.
  • the light reflecting surface 226 is connected to the light incident surface 222 and the backlight surface 224, and the light reflecting surface 226 is inclined with respect to the light incident surface 222.
  • the light exit surface 228 is connected to the light entrance surface 222 and the backlight surface 224, and the light exit surface 228 is disposed opposite to the reflective surface 226.
  • the light incident surface 222, the backlight surface 224, the reflective surface 226, and the light emitting surface 228 are all hardened to form a hardened layer.
  • the light incident surface 222 is disposed parallel to the backlight surface 224.
  • the first imaging module 20 further includes a moving element 25, a first lens assembly 24 and a driving mechanism 27.
  • the moving element 25 is disposed on the side of the first image sensor 26 and is housed in the casing 21.
  • the first lens assembly 24 is fixed on the moving element 25.
  • the driving mechanism 27 is connected to the housing 21 and the moving element 25. The driving mechanism 27 is used to drive the moving element 25 to move along the optical axis of the first lens assembly 24 to make the first lens assembly 24 focus and image on the first image sensor 26.
  • the moving element 25 is cylindrical, and the plurality of lenses 241 in the first lens assembly 24 are fixed in the moving element 25 along the axial interval of the moving element 25; or
  • the element 25 includes two clips 222, and the first lens assembly 24 is sandwiched between the two clips 222.
  • a camera assembly 100 includes the first imaging module 20 and a decoration member 10 of any one of the foregoing embodiments.
  • the decoration member 10 covers a light inlet of the first imaging module 20. Above 211.
  • the housing 21 is formed with a groove 212 on one side of the light inlet 211, and the decorative member 10 is partially caught in the groove 212.
  • a through hole is formed, the light inlet 211 is exposed through the through hole, and the first imaging module 20 collects external images through the through hole.
  • the groove 212 has a long shape, and the groove 212 extends along a length direction of the first imaging module 20.
  • the housing 21 includes a top wall 213 and a side wall 214 extending from a side of the top wall 213.
  • the light inlet 211 is formed on the top wall 213 and the groove 212 is formed.
  • the decorative member 10 abuts on the top wall 213.
  • the number of the side walls 214 is two, and the top wall 213 includes two side edges opposite to each other. Each side wall 214 extends from a corresponding side edge, and each side wall 214 and the top wall 213 Grooves 212 are formed at the connection points.
  • the decorative element 10 includes a decorative ring 12 and a convex edge 13.
  • the convex edge 13 extends from the bottom of the decorative ring 12 in a direction away from the decorative ring 12.
  • the camera assembly 100 includes a bracket 40.
  • the first imaging module 20 is disposed in the bracket 40 and is fixedly connected to the bracket 40.
  • the decoration 10 is disposed above the bracket 40.
  • the decorative member 10 abuts on the bracket 40; or, the decorative member 10 is spaced from the bracket 40.
  • an electronic device 1000 includes a casing 102 and a camera assembly 100 according to any one of the foregoing embodiments.
  • the camera assembly 100 is disposed on the casing 102.
  • an electronic device 1000 includes a casing 102 and a camera assembly 100.
  • the camera assembly 100 is disposed on the casing 102.
  • the electronic device 1000 may be a mobile phone, a tablet computer, a notebook computer, a smart bracelet, a smart watch, a smart helmet, smart glasses, or the like.
  • the embodiment of the present application uses the electronic device 1000 as a mobile phone as an example for description. It can be understood that the specific form of the electronic device 1000 may be other, and is not limited herein.
  • the casing 102 is an external component of the electronic device 1000 and plays a role of protecting the internal components of the electronic device 1000.
  • the casing 102 may be a rear cover of the electronic device 1000, which covers components such as a battery of the electronic device 1000.
  • the camera assembly 100 is rear-mounted, or the camera assembly 100 is disposed on the back of the electronic device 1000 so that the electronic device 1000 can perform rear-side imaging.
  • the camera assembly 100 is disposed at the upper left corner of the casing 102.
  • the camera assembly 100 may be disposed at other positions such as the upper middle position or the upper right position of the casing 102.
  • the position where the camera assembly 100 is disposed in the casing 102 is not limited to the examples of the present application.
  • the camera assembly 100 includes a decoration 10, a first imaging module 20, a second imaging module 30, and a bracket 40.
  • the decorative member 10 is disposed on the casing 102 and protrudes from the surface of the casing 102.
  • the first imaging module 20 and the second imaging module 30 are both disposed inside the casing 102.
  • the first imaging module 20 and the second imaging module 30 are both disposed near the decoration member 10.
  • the first imaging module 20 and the second imaging module 30 are both disposed in the bracket 40 and fixedly connected to the bracket 40.
  • the decorative member 10 is disposed above the bracket 40. Specifically, the decorative member 10 may abut against the bracket 40 or may be disposed at a distance from the bracket 10.
  • the bracket 40 can reduce the impact on the first imaging module 20 and the second imaging module 30 and increase the life of the first imaging module 20 and the second imaging module 30.
  • the decorative element 10 may be made of a metal material, for example, the material of the decorative element 10 is stainless steel, and the decorative element 10 may be processed by a polishing process to form a bright surface, so that the decorative element 10 is more beautiful.
  • the decoration member 10 is formed with a through hole 11, and the first imaging module 20 and the second imaging module 30 are exposed from the through hole 11 to the decoration member 10, or the first imaging module 20 and the second imaging module 30 are exposed from the through hole 11.
  • the imaging module 30 collects external images through the through hole 11.
  • the through-hole 11 includes a first sub-hole 111 and a second sub-hole 112, and the first sub-hole 111 and the second sub-hole 112 are disposed at intervals. In other words, the first sub-hole 111 and the second sub-hole 112 are not connected.
  • the first sub-hole 111 and the second sub-hole 112 may communicate with each other to form a whole hole.
  • the first imaging module 20 acquires external images through the first sub-hole 111
  • the second imaging module 30 acquires external images through the second sub-hole 112.
  • the first sub-hole 111 is a circular hole
  • the second sub-hole 112 is a square hole.
  • the shapes of the first sub-hole 111 and the second sub-hole 112 are not limited to the shapes shown in the drawings.
  • the first sub-hole 111 and the second sub-hole 112 are both circular holes; for another example, the first sub-hole 111 and the second sub-hole 112 are square holes.
  • the decorative element 10 includes a decorative ring 12 and a convex edge 13.
  • the convex edge 13 extends from the bottom of the decorative ring 12 in a direction away from the decorative ring 12.
  • the through hole 11 is formed in the decorative ring 12 and penetrates the decorative ring 12 and the convex edge 13.
  • the decorative ring 12 is mounted on the casing 102, and the convex edge 13 abuts on the casing 102, as shown in FIG. 11. In this way, the convex edge 13 can restrict the position of the decorative member 10 and prevent the decorative member 10 from moving outside the casing 102.
  • the decorative member 10 when the decorative member 10 is installed, the decorative member 10 is inserted outward from the inside of the casing 102, and when the convex edge 13 abuts against the inner surface of the casing 102, the decorative member 10 is installed to a predetermined position.
  • the decorative element 10 may be fixed on the casing 102 by using adhesive, or the decorative element 10 and the casing 102 may be interference fit, so that the decorative element 10 is not easy to fall off from the casing 102.
  • the decoration part 10 may be an integrally formed structure formed by the decoration ring 12 and the convex edge 13.
  • the decoration part 10 is manufactured by cutting.
  • the decorative ring 12 and the convex edge 13 may also be separate structures, or the decorative ring 12 and the convex edge 13 may form two independent components, and then be assembled together by welding or other processes to form the decorative part 10.
  • the convex edge 13 may be omitted, that is, in this embodiment, the decorative member 10 includes only the structure of the decorative ring 12.
  • the first imaging module 20 and the second imaging module 30 are arranged side by side, that is, the second imaging module 30 is disposed on the side of the first imaging module 20.
  • the first imaging module 20 and the second imaging module 30 are arranged in a font, or the first imaging module 20 and the second imaging module 30 are arranged along the same straight line.
  • the first imaging module 20 and the second imaging module 30 may be arranged in an L shape.
  • the first imaging module 20 and the second imaging module 30 may be disposed at intervals, or may abut against each other.
  • the first imaging module 20 is located on the right side of the second imaging module 30, or the first imaging module 20 is closer to the middle position of the electronic device 1000 than the second imaging module 30.
  • the positions of the first imaging module 20 and the second imaging module 30 may be interchanged, or the first imaging module 20 is located on the left side of the second imaging module 30.
  • one of the imaging modules may be a black and white camera, and the other imaging module is an RGB camera; or one imaging module is an infrared camera, and the other imaging module is RGB camera; or one imaging module is an RGB camera, and the other imaging module is also an RGB camera; or one imaging module is a wide-angle camera, and the other imaging module is a telephoto camera.
  • the second imaging module 30 may be omitted, or the electronic device 1000 may include more than three imaging modules.
  • the first imaging module 20 includes a housing 21, a reflective element 22, a mounting base 23, a first lens assembly 24, a moving element 25, a first image sensor 26, and a driving mechanism 27.
  • the light-reflecting element 22, the mounting base 23, the first lens assembly 24, the moving element 25, the first image sensor 26 and the driving mechanism 27 are all disposed in the housing 21.
  • the reflective element 22 is disposed on the mounting base 23, and the first lens assembly 24 is housed in the moving element 25.
  • the moving element 25 is provided on the first image sensor 26 side.
  • the driving mechanism 27 connects the moving element 25 and the casing 21. After the incident light enters the housing 21, it is turned by the reflecting element 22, and then reaches the first image sensor 26 through the first lens assembly 24, so that the first image sensor 26 obtains an external image.
  • the driving mechanism 27 drives the moving element 25 to drive the movement of the first lens assembly 24, so that the first imaging module 20 achieves the focusing effect.
  • the housing 21 is substantially square.
  • the housing 21 is provided with a light inlet 211.
  • the incident light enters the first imaging module 20 through the light inlet 211.
  • the light reflecting element 22 is configured to redirect the incident light incident from the light entrance 211 to the first image sensor 26. Therefore, it can be understood that the first imaging module 20 is a periscope lens module.
  • the height of the periscope lens module is smaller, so that the overall thickness of the electronic device 1000 can be reduced.
  • the vertical lens module means that the optical axis of the lens module is a straight line, or that the incident light is transmitted to the photosensitive device of the lens module along the direction of the straight optical axis.
  • the light inlet 211 is exposed through the through hole 11 so that external light enters the first imaging module 20 from the light inlet 211 after passing through the through hole 11.
  • the housing 21 in the width direction of the first imaging module 20, the housing 21 is formed with a groove 212 on one side of the light entrance 211, and the decorative member 10 is disposed above the light entrance 211 and Partially snaps into the groove 212.
  • the periscope imaging module 20a partially extends into the decoration 10a in the width direction. Compared with the vertical imaging module, the width of the decorative element 10a is larger at this time, which is not conducive to the aesthetic appearance of the electronic device and makes the electronic device not compact enough.
  • the groove 212 is formed on one side of the light entrance 211, and the decorative member 10 is disposed above the light entrance 211 and partially engages in the groove 212. Making the width dimension of the decorative member 10 smaller can also reduce the overall height dimension of the camera assembly 100, which is beneficial to the compactness and miniaturization of the camera assembly 100.
  • the housing 21 includes a top wall 213 and a side wall 214.
  • the side wall 214 extends from a side 2131 of the top wall 213.
  • the top wall 213 includes two opposite side edges 2131, and the number of the side walls 214 is two.
  • Each side wall 214 extends from a corresponding one of the side edges 2131.
  • the light inlet 211 is formed on the top wall 213, the groove 212 is formed at the connection between the top wall 213 and the side wall 214, and the decorative member 10 abuts on the top wall 213. In this way, the groove 212 is easily formed, which is beneficial to the manufacture of the casing 21.
  • the groove 212 is a profile of the housing 21, that is, the groove 212 may be formed by stamping.
  • a part of the bottom of the decorative ring 12 is received in the groove 212, and the decorative ring 12 partially abuts on the top wall 213.
  • the decorative ring 12 and the casing 21 form a complementary structure, and the decorative ring 12 and the casing 21 are fitted to each other to make the fitting structure of the decorative member 10 and the casing 21 more compact.
  • a groove 212 is formed at a joint between each of the side walls 214 and the top wall 213.
  • the number of the grooves 212 is two.
  • the number of the grooves 212 may also be a single number, that is, the grooves 212 are formed at the joints of one of the side walls 214 and the top wall 213.
  • the groove 212 is elongated, and the groove 212 extends along the length direction of the first imaging module 20. In this way, the groove 212 fits more compactly with the decorative member 10.
  • the groove 212 may be arc-shaped, and the arc-shaped groove 212 surrounds the light inlet 211.
  • the structure and shape of the groove 212 are not limited to the above examples, as long as the decorative member 10 and the first imaging module 20 form a complementary structure to reduce the size of the decorative member 10.
  • the reflecting element 22 is a prism or a plane mirror.
  • the prism may be a triangular prism, and the cross section of the prism is a right-angled triangle. The light is incident from one of the right-angled sides of the right-angled triangle and is reflected by the hypotenuse to form another right-angle Shooting from the side. It can be understood that, of course, the incident light can be refracted after being refracted by the prism, but not reflected.
  • the prism can be made of glass, plastic and other materials with good light transmission.
  • a reflective material such as silver may be coated on one surface of the prism to reflect incident light.
  • the reflective element 22 is a flat mirror
  • the flat mirror reflects the incident light to realize the turning of the incident light.
  • the light reflecting element 22 has a light incident surface 222, a backlight surface 224, a light reflecting surface 226, and a light emitting surface 228.
  • the light entrance surface 222 is close to and faces the light entrance 211
  • the backlight surface 224 is far from the light entrance 211 and is opposite to the light entrance surface 222
  • the reflective surface 226 is connected to the light entrance surface 222 and the backlight surface 224
  • the light exit surface 228 is connected to the light entrance surface 222
  • the reflective surface 226 is disposed obliquely with respect to the light incident surface 222
  • the light exit surface 228 is disposed opposite the reflective surface 226.
  • the light passes through the light inlet 211 and enters the light-reflecting element 22 from the light-entering surface 222, and then is reflected through the light-reflecting surface 226. Finally, the light-reflecting element 22 is reflected from the light-emitting surface 228 to complete the light conversion During the process, the backlight surface 224 and the mounting base 23 are fixedly arranged, so that the reflective element 22 is kept stable.
  • the reflective surface 226a of the reflective element 22a is inclined with respect to the horizontal direction, and the reflective element 22a has an asymmetric structure in the direction of light reflection, so the reflective element 22a
  • the actual optical area below the light reflecting element 22a is relatively small. It can be understood that the part of the light reflecting surface 226a far from the light entrance is less or unable to reflect light.
  • the reflective element 22 cuts off the edges and corners far from the light entrance port relative to the reflective element 22 a in the related art. This not only does not affect the effect of the reflected light of the reflective element 22, but also reduces the reflective light.
  • the overall thickness of the element 22 is not only does not affect the effect of the reflected light of the reflective element 22, but also reduces the reflective light.
  • the angle ⁇ of the reflective surface 226 relative to the light incident surface 222 is inclined by 45 degrees.
  • the incident light is better reflected and converted, and has a better light conversion effect.
  • the light-reflecting element 22 may be made of a material having good light transmittance, such as glass or plastic.
  • a reflective material such as silver may be coated on one surface of the reflective element 22 to reflect incident light.
  • the light incident surface 222 is disposed parallel to the backlight surface 224.
  • the reflecting element 22 can be kept stable, and the light incident surface 222 is also flat. Conversion efficiency is better.
  • the cross section of the light reflecting element 22 is substantially trapezoidal, or in other words, the light reflecting element 22 is substantially trapezoidal.
  • the light incident surface 222 and the backlight surface 224 are both perpendicular to the light emitting surface 228.
  • a relatively regular light reflecting element 22 can be formed, so that the optical path of the incident light is relatively straight, and the conversion efficiency of the light is improved.
  • the distance between the light incident surface 222 and the backlight surface 224 ranges from 4.8 to 5.0 mm.
  • the distance between the light incident surface 222 and the backlight surface 224 may be 4.85 mm, 4.9 mm, 4.95 mm, and the like.
  • the distance between the light incident surface 222 and the backlight surface 224 can be understood as the height of the reflective element 22 is 4.8-5.0 mm.
  • the reflecting element 22 formed by the light incident surface 222 and the backlight surface 224 in the above distance range is moderate in volume, and can be well integrated into the first imaging module 20 to form a more compact and miniaturized first imaging module 20,
  • the camera assembly 100 and the electronic device 1000 satisfy more demands of consumers.
  • the light incident surface 222, the backlight surface 224, the reflective surface 226, and the light emitting surface 228 are all hardened to form a hardened layer.
  • the material of the reflective element 22 itself is relatively fragile. 228 is hardened, and more can be hardened on all surfaces of the reflective element to further improve the strength of the reflective element.
  • the hardening treatments include infiltration of lithium ions, and coating the above surfaces without affecting the light conversion of the reflective element 22.
  • the angle at which the reflecting element 22 turns the incident light incident from the light entrance 211 is 90 degrees.
  • the incident angle of the incident light on the emission surface of the reflective element 22 is 45 degrees, and the reflection angle is also 45 degrees.
  • the angle at which the reflecting element 22 turns the incident light may also be other angles, such as 80 degrees, 100 degrees, etc., as long as the incident light can be turned to reach the first image sensor 26.
  • the number of the reflective elements 22 is one, and at this time, the incident light is transmitted to the first image sensor 26 after one turn. In other embodiments, the number of the reflective elements 22 is multiple. At this time, the incident light is transmitted to the first image sensor 26 after being turned at least twice.
  • the mounting base 23 is used for mounting the reflective element 22, or the mounting base 23 is a carrier of the reflective element 22, and the reflective element 22 is fixed on the mounting base 23. In this way, the position of the reflective element 22 can be determined, which is beneficial for the reflective element 22 to reflect or refract incident light.
  • the light-reflecting element 22 may be fixed on the mounting base 23 with adhesive to achieve fixed connection with the mounting base 23.
  • the mounting base 23 can be movably disposed in the casing 21, and the mounting base 23 can be rotated relative to the casing 21 to adjust the direction in which the reflective element 22 turns incident light.
  • the mounting base 23 can drive the reflecting element 22 to rotate together in the opposite direction of the shaking of the first imaging module 20, thereby compensating the incident deviation of the incident light of the light inlet 211, and achieving the effect of optical image stabilization.
  • the first lens assembly 24 is housed in the moving element 25. Further, the first lens assembly 24 is disposed between the reflective element 22 and the first image sensor 26. The first lens assembly 24 is used to image incident light on the first image sensor 26. This allows the first image sensor 26 to obtain a better quality image.
  • the first lens assembly 24 When the first lens assembly 24 is moved along its optical axis as a whole, it can form an image on the first image sensor 26 so as to achieve the focus of the first imaging module 20.
  • the first lens assembly 24 includes a plurality of lenses 241. When at least one lens 241 moves, the overall focal length of the first lens assembly 24 changes, thereby achieving the zoom function of the first imaging module 20, and more, driven by the driving mechanism 27.
  • the moving element 25 moves in the casing 21 to achieve the purpose of zooming.
  • the moving element 25 is cylindrical, and the plurality of lenses 241 in the first lens assembly 24 are fixed in the moving element 25 at intervals along the axial direction of the moving element 25; or as shown in FIG. 7.
  • the moving element 25 includes two clips 252. The two clips 252 sandwich the lens 241 between the two clips 252.
  • the moving element 25 since the moving element 25 is used for fixedly setting a plurality of lenses 241, the length of the required moving element 25 is relatively large.
  • the moving element 25 can be cylindrical, square cylindrical, and other shapes with a certain cavity.
  • the element 25 is cylindrically mounted, so that a plurality of lenses 241 can be better set, and the lenses 241 can be better protected in the cavity, so that the lenses 241 are not easily shaken.
  • the moving element 25 holds a plurality of lenses 241 between the two clips 252, which not only has a certain stability, but also reduces the weight of the moving element 25 and reduces the driving of the driving mechanism 27.
  • the power required by the moving element 25 is relatively low, and the design difficulty of the moving element 25 is relatively low.
  • the lens 241 is also easier to install on the moving element 25.
  • the moving element 25 is not limited to the cylindrical shape and the two clips 252 mentioned above.
  • the moving element 25 may include three or four more clips 252 to form a more stable structure. Or a simpler structure such as a clip 252; or various regular or irregular shapes with a cavity such as a rectangular or circular body to accommodate the lens 241.
  • specific selections can be made.
  • the first image sensor 26 may use a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide, Semiconductor) light sensor or a charge-coupled device (CCD, Charge-coupled Device) light sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the driving mechanism 27 is an electromagnetic driving mechanism, a piezoelectric driving mechanism, or a memory alloy driving mechanism.
  • the electromagnetic driving mechanism includes a magnetic field and a conductor. If the magnetic field moves relative to the conductor, an induced current will be generated in the conductor. The induced current causes the conductor to be subjected to the ampere force, which moves the conductor.
  • the conductor here is electromagnetic.
  • the part of the driving mechanism that drives the moving element 25; the piezoelectric driving mechanism is based on the inverse piezoelectric effect of the piezoelectric ceramic material: if a voltage is applied to the piezoelectric material, mechanical stress is generated, that is, the conversion between electrical energy and mechanical energy occurs. Controlling its mechanical deformation to produce rotary or linear motion has the advantages of simple structure and low speed.
  • the driving of the memory alloy driving mechanism is based on the characteristics of the shape memory alloy: a shape memory alloy is a special alloy. Once it has memorized any shape, even if it deforms, it can be restored to a certain temperature when heated. The shape before deformation, in order to achieve the purpose of driving, has the characteristics of rapid displacement and free direction.
  • the first imaging module 20 further includes a driving device 28.
  • the driving device 28 is configured to apply a driving force to the mounting base 23 away from the rotation shaft 29, and the driving force drives the mounting base 23 to rotate about the rotation shaft 29. This enables the first imaging module 20 to achieve optical image stabilization in the optical axis direction of the light inlet 211.
  • the first imaging module 20 can realize optical image stabilization in the optical axis direction of the light inlet 211 and can improve the accuracy of image stabilization.
  • the width direction of the first imaging module 20 is defined as the X direction
  • the height direction is defined as the Y direction
  • the length direction is defined as the Z direction. Therefore, the optical axis of the light inlet 211 is in the Y direction, the light receiving direction of the first image sensor 26 is in the Z direction, and the axial direction of the rotation shaft 29 is in the X direction.
  • the driving device 28 drives the mounting base 23 to rotate, so that the reflective element 22 rotates around the X direction, so that the first imaging module 20 achieves the Y-direction optical image stabilization effect.
  • the driving device 28 drives the mounting base 23 to move in the axial direction of the rotation shaft 29, so that the first imaging module 20 achieves an X-axis optical image stabilization effect.
  • the first lens assembly 24 may be along the Z direction to achieve the first lens assembly 24 focusing on the first image sensor 26.
  • the reflective element 22 when the reflective element 22 is rotated around the X direction, the light reflected by the reflective element 22 moves in the Y direction, so that the first image sensor 26 forms different images in the Y direction to achieve the anti-shake effect in the Y direction.
  • the light reflecting element 22 moves in the X direction
  • the light reflected by the light reflecting element 22 moves in the X direction, so that the first image sensor 26 forms different images in the X direction to achieve the anti-shake effect in the X direction.
  • the direction of the driving force is the tangential direction of the rotating shaft 29. In this way, the driving force can cause the mounting base 23 to move around the rotation shaft 29, thereby driving the reflective element 22 to rotate around the rotation shaft 29.
  • the driving device 28 includes a magnetic element 282 and a coil 284.
  • the magnetic element 282 is disposed on the mounting base 23, and the coil 284 is disposed on the housing 21 with respect to the magnetic element 282.
  • the coil 284 is used to generate a driving force by acting on the magnetic element 282 after a voltage is applied. In this way, the driving device 28 drives the mounting base 23 to rotate by electromagnetic means.
  • the driving device 28 is provided with a coil 284 at the bottom of the housing 21, and an electromagnetic piece 282 corresponding to the coil 284 is fixed to the mounting base 23.
  • a coil 284 is also provided on the side wall of the casing 21, and an electromagnetic piece 282 corresponding to the coil 284 is fixed on the mounting seat 23. After the coil 284 is energized, the coil 284 can generate a magnetic field to drive the electromagnetic piece 282 to move, thereby driving the mounting base 23 and the reflective element 22 to rotate together.
  • the driving device 28 includes a piezoelectric element 286 connected to the mounting base 23.
  • the piezoelectric element 286 is used to generate a driving force after a voltage is applied. In this way, the driving device 28 can drive the mounting base 23 to move in a piezoelectric driving manner.
  • the driving device 28 can also drive the mounting base 23 by a memory alloy driving method. Please refer to the above description for the piezoelectric driving method and the memory alloy driving method, which will not be repeated here.
  • the number of driving forces is two, and one of the driving forces is in the direction of the optical axis of the light entrance 211, and the other direction of the driving force is perpendicular to the light in the light entrance 211.
  • the direction of one driving force is the Y direction
  • the direction of the other driving force is the Z direction.
  • the magnitudes of the two driving forces may be equal or unequal.
  • the two driving forces may be generated by the aforementioned electromagnetic driving method, piezoelectric driving method, memory alloy driving method, or other methods. It can be understood that, due to the influence of the driving force, the mounting base 23 rotates around the rotating shaft 29. After the mounting base 23 to which the driving force is applied is stable, the mounting base 23 is balanced by the force and the deflection angle of the reflective element 22 is stable.
  • one of the two driving forces can be used as power to rotate the reflective element 22 to a preset position to achieve image stabilization, and the other of the two driving forces can be used as a restoring force.
  • the deflected reflecting element 22 is returned to its original position.
  • two driving forces are applied to the reflective element 22, namely F1 and F2.
  • F1 can be used as the power and F2 as the restoring force.
  • F2 can be used as the power and F1 can be used as the restoring force.
  • the elastic force generated by the deformation of the spring 287 can be used as the restoring force.
  • the state of the spring 287 is the original state, that is, when the reflecting element 22 is in the original position, the spring 287 is neither stretched nor compressed. No deformation or elasticity.
  • the reflective element 22 When the reflective element 22 needs to rotate counterclockwise, power F3 is applied to the reflective element 22, and the reflective element 22 rotates counterclockwise around the rotation axis 29 and compresses the spring 287. When the reflective element 22 needs to return to the original position, F3 can be removed, and The compressed spring 287 generates an elastic force to urge the reflective element 22 to rotate clockwise to the original position about the rotation axis 29.
  • the spring 287 when the reflective element 22 is in the original position, the spring 287 may be in a compressed state or a stretched state.
  • the second imaging module 30 is a vertical lens module.
  • the second imaging module 30 may also be a periscope lens module.
  • the second imaging module 30 includes a second lens module 31 and a second image sensor 32.
  • the second lens module 31 is configured to image light on the second image sensor 32.
  • the incident optical axis of the second imaging module 30 and the second The optical axes of the lens components 31 are coincident.
  • the second imaging module 30 is a fixed focus lens module. Therefore, there are fewer lenses 241 of the second lens assembly 31 so that the height of the second imaging module 30 is low, which is beneficial to reducing the electronic device 1000. thickness of.
  • the type of the second image sensor 32 may be the same as that of the first image sensor 26, and details are not described herein again.
  • the first imaging module 20 includes a housing 21 provided with a light inlet 211, a reflective element 22, a mounting base 23, and a first image sensor 26 all disposed in the housing 21.
  • the light-reflecting element 22 is fixed on the mounting base 23.
  • the light-reflecting element 22 is used to redirect the incident light incident from the light inlet 211 to the first image sensor 26 so that the first image sensor 26 senses the outside of the first imaging module 20.
  • the mounting base 23 can rotate relative to the housing 21 about a rotation axis 29, and the axis of the rotation axis 29 is perpendicular to the optical axis of the light inlet 211.
  • the first imaging module 20 further includes a driving device 28.
  • the driving device 28 is configured to apply a driving force deviating from the rotation shaft 29 to the mounting base 23, and the driving force drives the mounting base 23 to rotate about the rotation shaft 29, thereby enabling the first imaging module 20 to achieve advancement.
  • the first imaging module 20 can realize optical image stabilization in the optical axis direction of the light inlet 211 and can improve the accuracy of image stabilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种成像模组(20)、摄像头组件(100)与电子装置(1000)。成像模组(20)包括开设有进光口(211)的外壳(21)以及均设置在外壳(21)内的反光元件(22)、安装座(23)和图像传感器(26)。反光元件(22)固定在安装座(23)上,反光元件(22)用于将从进光口(211)入射的入射光转向后传至图像传感器(26)以使图像传感器(26)感测成像模组(20)外部的入射光,安装座(23)能够相对于外壳(21)绕转轴(29)转动,转轴(29)的轴向垂直于进光口(211)的光轴。成像模组(20)还包括驱动装置(28),驱动装置(28)用于向安装座(23)施加偏离转轴(29)的驱动力,驱动力驱动安装座(23)绕转轴(29)转动,从而使得成像模组(20)实现进光口(211)的光轴方向上的光学防抖。

Description

成像模组、摄像头组件和电子装置
优先权信息
本申请请求2018年7月25日向中国国家知识产权局提交的、专利申请号为201810829417.7的专利申请的优先权和权益,以及2018年7月25日向中国国家知识产权局提交的、专利申请号为201821192353.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及电子装置领域,尤其涉及一种成像模组、摄像头组件和电子装置。
背景技术
在相关技术中,为了提高手机的拍照效果,手机的摄像头采用潜望式镜头,潜望式摄像头例如可以进行三倍光学焦距以获取品质更佳的图像。潜望式摄像头包括一反光元件,反光元件用于将入射至潜望式镜头内的光线转向后传导至图像传感器以使图像传感器获取潜望式镜头外部的图像。如何驱动反光元件运动以实现潜望式镜头实现光学防抖成为待解决的技术问题。
发明内容
本申请提供一种成像模组、摄像头组件和电子装置。
本申请实施方式的成像模组包括开设有进光口的外壳以及均设置在所述外壳内的反光元件、安装座和图像传感器。所述反光元件固定在所述安装座上,所述反光元件用于将从所述进光口入射的入射光转向后传至所述图像传感器以使所述图像传感器感测所述成像模组外部的所述入射光,所述安装座能够相对于所述外壳绕转轴转动,所述转轴的轴向垂直于所述进光口的光轴。所述成像模组还包括驱动装置,所述驱动装置用于向所述安装座施加偏离所述转轴的驱动力,所述驱动力驱动所述安装座绕所述转轴转动,从而使得所述成像模组实现所述进光口的光轴方向上的光学防抖。
本申请实施方式的摄像头组件包括装饰件和以上实施方式的成像模组,所述装饰件罩设在所述成像模组的进光口上方。
本申请实施方式的电子装置包括机壳和以上实施方式的摄像头组件,所述摄像头组件设置在所述机壳上。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的电子装置的平面示意图;
图2是本申请实施方式的摄像头组件的立体示意图;
图3是本申请实施方式的摄像头组件的分解示意图;
图4是本申请实施方式的装饰件的立体示意图;
图5是本申请实施方式的第一成像模组的分解示意图;
图6是本申请实施方式的第一成像模组的剖面示意图;
图7是本申请另一实施方式的第一成像模组的剖面示意图;
图8是图2的摄像头组件的A-A向的截面示意图;
图9是本申请实施方式的第二成像模组的剖面示意图;
图10是一些实施方式的成像模组与装饰件配合的结构示意图;
图11是图1的电子装置沿B-B向的截面示意图;
图12是本申请实施方式的反光元件的立体示意图。
图13是相关技术中的第一成像模组的光线反射成像示意图;
图14是本申请实施方式的第一成像模组的光线反射成像示意图;
图15是本申请实施方式的成像模组的结构示意图;
图16是本申请另一实施方式的成像模组的结构示意图。
主要元件符号说明:
电子装置1000、机壳102、摄像头组件100、装饰件10、通孔11、第一子孔111、第二子孔112、装饰圈12、凸边13、第一成像模组20、外壳21、进光口211、凹槽212、顶壁213、侧壁214、反光元件22、入光面222、背光面224、反光面226、出光面228、安装座23、第一镜片组件24、镜片241、运动元件25、夹片222、第一图像传感器26、驱动机构27、驱动装置28、磁性元件282、线圈284、压电元件286、弹簧287、转轴29、第二成像模组30、第二镜片组件31、第二图像传感器32、支架40。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特 征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图6,本申请实施方式提供的第一成像模组20包括外壳21、反光元件22、安装座23和第一图像传感器26。外壳21开设有进光口211。反光元件22、安装座23和第一图像传感器26均设置在外壳21内,反光元件22固定在安装座23上,反光元件22用于将从进光口211入射的入射光转向后传至第一图像传感器26以使第一图像传感器26感测第一成像模组20外部的入射光,安装座23能够相对于外壳21绕转轴29转动,转轴29的轴向垂直于进光口211的光轴。第一成像模组20还包括驱动装置28,驱动装置28用于向安装座23施加偏离转轴29的驱动力,驱动力驱动安装座23绕转轴29转动,从而使得第一成像模组20实现进光口211的光轴方向上的光学防抖。
请参阅图7,在某些实施方式中,驱动装置28包括连接安装座23的压电元件286,压电元件286用于施加电压后产生驱动力。
请参阅图6,在某些实施方式中,驱动装置28包括设置在安装座23上的磁性元件282和相对于磁性元件282设置在外壳21的线圈284,线圈284用于施加电压后与磁性元件282作用而产生驱动力。
在某些实施方式中,驱动力的方向为转轴29的切向。
在某些实施方式中,驱动力的数量为两个,其中一个驱动力的方向为进光口211的光轴方向,另一个驱动力的方向垂直于进光口211的光轴方向。
请参阅图12,在某些实施方式中,反光元件22具有入光面222、背光面224、反光面226和出光面228。入光面222靠近且朝向进光口211。背光面224远离进光口211且与入光面222相背。反光面226连接入光面222及背光面224,反光面226相对于入光面222倾斜设置。出光面228连接入光面222及背光面224,出光面228与反光面226相背设置。
在某些实施方式中,入光面222、背光面224、反光面226和出光面228均硬化处理形成有硬化层。
在某些实施方式中,入光面222与背光面224平行设置。
请参阅图6,在某些实施方式中,第一成像模组20还包括运动元件25、第一镜片组件24和驱动机构27。运动元件25设置在第一图像传感器26一侧的且收容于外壳21内。第一镜片组件24固定在运动元件25上。驱动机构27连接外壳21和运动元件25,驱动机构27用于驱动运动元件25沿第一镜片组件24的光轴移动以使第一镜片组件24在第一图像传感器26上对焦成像。
请参阅图6和图7,在某些实施方式中,运动元件25呈筒状,第一镜片组件24中的多个镜片241沿运动元件25的轴向间隔固定在运动元件25内;或运动元件25包括两个夹片222,将第一镜片组件24夹设在两个夹片222之间。
请参阅图2和图3,本申请实施方式的摄像头组件100包括上述任一实施方式的第一成像模组20和装饰件10,装饰件10罩设在第一成像模组20的进光口211上方。
请参阅图5,在某些实施方式中,在第一成像模组20的宽度方向上,外壳21在进光口211的一侧形成有凹槽212,装饰件10部分地卡入凹槽212中,装饰件10形成有通孔,进光口211通过通孔露出,第一成像模组20通过通孔采集外界图像。
在某些实施方式中,凹槽212呈长条状,凹槽212沿第一成像模组20的长度方向延伸。
请参阅图3和图5,在某些实施方式中,外壳21包括顶壁213以及自顶壁213的侧边延伸形成的侧壁214,进光口211形成于顶壁213,凹槽212形成在顶壁213和侧壁214的连接处,装饰件10抵靠在顶壁213上。
在某些实施方式中,侧壁214的数量为两个,顶壁213包括相背的两个侧边,每个侧壁214自对应的一个侧边延伸,每个侧壁214与顶壁213的连接处均形成有凹槽212。
请参阅图4,在某些实施方式中,装饰件10包括装饰圈12和凸边13,凸边13自装饰圈12的底部向远离装饰圈12的方向延伸。
请参阅图3,在某些实施方式中,摄像头组件100包括支架40,第一成像模组20设置在支架40内并与支架40固定连接。
在某些实施方式中,装饰件10设置在支架40的上方。
在某些实施方式中,装饰件10抵靠在支架40上;或,装饰件10与支架40间隔设置。
请参阅图1,本申请实施方式的电子装置1000包括机壳102和上述任一实施方式的摄像头组件100,摄像头组件100设置在机壳102上。
请参阅图1,本申请实施方式的电子装置1000包括机壳102和摄像头组件100。摄像头组件100设置在机壳102上。电子装置1000可以是手机、平板电脑、笔记本电脑、智能手环、智能手表、智能头盔、智能眼镜等。本申请实施方式以电子装置1000是手机为例进行说明,可以理解,电子装置1000的具体形式可以是其他,在此不作限制。
具体地,机壳102为电子装置1000的外部零部件,其起到了保护电子装置1000的内部零件的作用。机壳102可以为电子装置1000的后盖,其覆盖电子装置1000的电池等零部件。本实施方式中,摄像头组件100后置,或者说,摄像头组件100设置在电子装置1000的背面以使得电子装置1000可以进行后置摄像。如图1的示例中,摄像头组件100设置在机壳102的左上角落 部位。当然,可以理解,摄像头组件100可以设置在机壳102的中上位置或右上位置等其他位置。摄像头组件100设置在机壳102的位置不限制于本申请的示例。
请参阅图2及图3,摄像头组件100包括装饰件10、第一成像模组20、第二成像模组30和支架40。装饰件10设置在机壳102上,并凸出于机壳102的表面。第一成像模组20和第二成像模组30均设置在机壳102内部。第一成像模组20和第二成像模组30均靠近装饰件10设置。第一成像模组20和第二成像模组30均设置在支架40内并与支架40固定连接。
装饰件10设置在支架40的上方,具体地,装饰件10可以抵靠在支架40上,也可以与支架10间隔设置。支架40可以减少第一成像模组20、第二成像模组30受到的冲击,提高第一成像模组20和第二成像模组30寿命。
装饰件10可以采用金属材料制成,例如装饰件10的材料为不锈钢,装饰件10可以通过抛光工艺处理以形成光亮的表面,以使装饰件10更加美观。
请结合图4,装饰件10形成有通孔11,第一成像模组20和第二成像模组30均从通孔11露出于装饰件10,或者说,第一成像模组20和第二成像模组30均通过通孔11采集外界图像。具体地,本实施方式中,通孔11包括第一子孔111和第二子孔112,第一子孔111和第二子孔112间隔设置。或者说,第一子孔111和第二子孔112是不连通的。
当然,在其他实施方式中,第一子孔111和第二子孔112可以连通而形成一个整体孔。第一成像模组20通过第一子孔111采集外界图像,第二成像模组30通过第二子孔112采集外界图像。本实施方式中,第一子孔111为圆形孔,第二子孔112为方形孔。
在其他实施方式中,第一子孔111和第二子孔112的形状不限于图示中的形状。例如,第一子孔111和第二子孔112均为圆形孔;又如,第一子孔111和第二子孔112均为方形孔。
装饰件10包括装饰圈12和凸边13,凸边13自装饰圈12的底部向远离装饰圈12的方向延伸。通孔11形成于装饰圈12,并贯穿装饰圈12和凸边13,装饰圈12安装在机壳102上,凸边13抵靠在机壳102上,如图11所示。如此,凸边13可以限制装装饰件10的位置,防止装饰件10向机壳102外移动。
在一个例子中,在安装装饰件10时,装饰件10从机壳102的内部向外插装,在凸边13抵靠机壳102的内表面时,装饰件10安装到预定位置。装饰件10可以使用粘胶固定在机壳102上,也可以使装饰件10与机壳102过盈配合,从而使得装饰件10不易从机壳102上脱落。
装饰件10可以为装饰圈12与凸边13形成的一体成型结构,例如,装饰件10采用切削加工的方式制造形成。另外,装饰圈12与凸边13也可以为分体结构,或者说,装饰圈12与凸边13先形成两个独立的元件,然后通过焊接等工艺组装在一起从而形成装饰件10。
需要指出的是,在其他实施方式中,凸边13可以省略,也就是说,在此实施方式中,装饰件10只包括装饰圈12的结构。
第一成像模组20和第二成像模组30并列排布,也即是说,第二成像模组30设置在第一成像模组20一侧。本实施方式中,第一成像模组20和第二成像模组30排列成一字型,或者说,第一成像模组20和第二成像模组30沿同一直线排布。在其他实施方式中,第一成像模组20和 第二成像模组30可以排列成L型。第一成像模组20和第二成像模组30可以间隔设置,也可以相互抵靠在一起。
本实施方式中,第一成像模组20位于第二成像模组30的右侧,或者说,第一成像模组20相较于第二成像模组30更加靠近电子装置1000的中间位置。当然,可以理解,在其他实施方式中,第一成像模组20和第二成像模组30的位置可以互换,或者说,第一成像模组20位于第二成像模组30的左侧。
在第一成像模组20和第二成像模组30中,其中一个成像模组可以为黑白摄像头,另外一个成像模组为RGB摄像头;或者一个成像模组为红外摄像头,另外一个成像模组为RGB摄像头;或者一个成像模组为RGB摄像头,另外一个成像模组也为RGB摄像头;或者一个成像模组为广角摄像头,另外一个成像模组为长焦摄像头等。
在其他实施方式中,第二成像模组30可以省略,或者电子装置1000可以包括三个以上的成像模组。
请参阅图5-7,本实施方式中,第一成像模组20包括外壳21、反光元件22、安装座23、第一镜片组件24、运动元件25、第一图像传感器26和驱动机构27。
反光元件22、安装座23、第一镜片组件24、运动元件25、第一图像传感器26和驱动机构27均设置在外壳21内。反光元件22设置在安装座23上,第一镜片组件24收容于运动元件25内。运动元件25设置在第一图像传感器26一侧。
驱动机构27连接运动元件25与外壳21。入射光进入外壳21后,经过反光元件22转向,然后透过第一镜片组件24到达第一图像传感器26,从而使得第一图像传感器26获得外界图像。而驱动机构27驱动运动元件25以带动第一镜片组件24的运动,使第一成像模组20达到对焦的效果。
外壳21大致呈方块形,外壳21开设有进光口211,入射光从进光口211进入第一成像模组20内。也就是说,反光元件22用于将从进光口211入射的入射光转向后传至第一图像传感器26。因此可以理解,第一成像模组20为潜望式镜头模组,相较于立式镜头模组,潜望式镜头模组的高度较小,从而可以降低电子装置1000的整体厚度。立式镜头模组指的是镜头模组的光轴为一条直线,或者说,入射光沿着一直线光轴的方向传导至镜头模组的感光器件上。
可以理解,进光口211通过通孔11露出以使外界光线经过通孔11后从进光口211进入第一成像模组20内。
请结合图8,本实施方式中,在第一成像模组20的宽度方向上,外壳21在进光口211的一侧形成有凹槽212,装饰件10罩设在进光口211上方并部分地卡入凹槽212。
请参阅图10,如果省略凹槽,为了使得电子装置的整体厚度较薄,潜望式成像模组20a在宽度方向上部分伸入装饰件10a内,由于潜望式成像模组20a的宽度相较于立式的成像模组的宽度大,那么此时,装饰件10a的尺寸则较大,不利于电子装置美观,也使得电子装置不够紧凑。
请再次参阅图5及图8,而本实施方式中,凹槽212形成在进光口211的一侧,装饰件10罩设在进光口211上方并部分地卡入凹槽212中,不仅使得装饰件10的宽度尺寸较小,还可以使 得摄像头组件100的整体高度尺寸减小,有利于摄像头组件100结构紧凑、小型化。
具体地,外壳21包括顶壁213和侧壁214。侧壁214自顶壁213的侧边2131延伸形成。顶壁213包括相背的两个侧边2131,侧壁214的数量为两个,每个侧壁214自对应的一个侧边2131延伸,或者说,侧壁214分别连接顶壁213相背的两侧。进光口211形成于顶壁213,凹槽212形成在顶壁213和侧壁214的连接处,装饰件10抵靠在顶壁213上。如此,凹槽212容易形成,有利于外壳21制造。在一个例子中,凹槽212为外壳21的压型,即,凹槽212可以通过冲压的方式形成。
在一个例子中,装饰圈12的部分底部收容于凹槽212中,装饰圈12部分抵靠在顶壁213上。或者说,装饰圈12与外壳21形成互补的结构,装饰圈12与外壳21相互嵌合,以使装饰件10与外壳21的配合结构更加紧凑。
本实施方式中,每个侧壁214与顶壁213的连接处均形成有凹槽212。或者说,凹槽212的数量为两个。当然,在其实施方式中,凹槽212的数量也可为单个,即是说,其中一个侧壁214与顶壁213的连接处形成有凹槽212。
本实施方式中,凹槽212呈长条状,凹槽212沿第一成像模组20的长度方向延伸。如此,凹槽212与装饰件10配合得更加紧凑。在一些实施方式中,凹槽212可呈弧形,弧形的凹槽212围绕进光口211。当然,在其他实施方式中,凹槽212的结构和形状不限于上述的例子,只要使得装饰件10与第一成像模组20形成互补结构以减小装饰件10的尺寸即可。
反光元件22为棱镜或平面镜。在一个例子中,当反光元件22为棱镜时,棱镜可以为三角棱镜,棱镜的截面为直角三角形,其中,光线从直角三角形中的其中一个直角边入射,经过斜边的反射后从而另一个直角边出射。可以理解,当然,入射光可以经过棱镜折射后出射,而不经过反射。棱镜可以采用玻璃、塑料等透光性比较好的材料制成。在一个实施方式中,可以在棱镜的其中一个表面涂布银等反光材料以反射入射光。
可以理解,当反光元件22为平面镜时,平面镜将入射光反射从而实现入射光转向。
更多的,请参阅图6与图12,反光元件22具有入光面222、背光面224、反光面226、出光面228。入光面222靠近且朝向进光口211,背光面224远离进光口211且与入光面222相背,反光面226连接入光面222及背光面224,出光面228连接入光面222及背光面224,反光面226相对于入光面222倾斜设置,出光面228与反光面226相背设置。
具体的,光线的转换过程中,光线穿过进光口211并由入光面222进入反光元件22中,再经由反光面226反射,最后从出光面228反射出反光元件22,完成光线转换的过程,而背光面224与安装座23固定设置,以使反光元件22在保持稳定。
如图13所示,在相关技术中,由于反射入射光线的需要,反光元件22a的反光面226a相对于水平方向倾斜,且在光线的反射方向上反光元件22a为非对称结构,因而反光元件22a的下方相对反光元件22a上方的实际光学面积较小,可以理解为,远离进光口的部分反光面226a较少或无法反射光线。
因此,请参图14,本申请实施方式的反光元件22相对于相关技术中的反光元件22a切除了 远离进光口的棱角,这样不仅没有影响反光元件22的反射光线的效果,还降低了反光元件22的整体厚度。
在某些实施方式中,反光面226相对于入光面222的角度α呈45度倾斜。
如此,使入射的光线更好的反射与转换,具备较好的光线转换效果。
反光元件22可以采用玻璃、塑料等透光性比较好的材料制成。在一个实施方式中,可以在反光元件22的其中一个表面涂布银等反光材料以反射入射光。
在某些实施方式中,入光面222与背光面224平行设置。
如此,将背光面224与安装座23固定设置时,可使反光元件22保持平稳,入光面222也呈现为平面,入射的光线在反光元件22的转换过程也形成规则的光路,使光线的转换效率较好。具体的,沿进光口211的入光方向,反光元件22的截面大致呈梯形,或者说,反光元件22大致呈梯形体。
在某些实施方式中,入光面222和背光面224均垂直于出光面228。
如此,可形成较为规则的反光元件22,使入射光线的光路较为平直,提高光线的转换效率。
在某些实施方式中,入光面222与背光面224的距离范围为4.8-5.0mm。
具体的,入光面222与背光面224之间的距离可以为4.85mm、4.9mm、4.95mm等。或者说,入光面222与背光面224的距离范围可以理解为,反光元件22的高度为4.8-5.0mm。以上距离范围的入光面222与背光面224所形成的反光元件22体积适中,可较好的切合入第一成像模组20中,形成更紧凑性与小型化的第一成像模组20、摄像头组件100与电子装置1000,满足消费者更多的需求。
在某些实施方式中,入光面222、背光面224、反光面226和出光面228均硬化处理形成有硬化层。
反光元件22由玻璃等材质制成时,反光元件22本身的材质较脆,为了提高反光元件22的强度,可在对反光元件22的入光面222、背光面224、反光面226和出光面228做硬化处理,更多的,可对反光元件的所有表面做硬化处理,以进一步提高反光元件的强度。硬化处理如渗入锂离子、在不影响反光元件22转换光线的前提下给以上各个表面贴膜等。
在一个例子中,反光元件22将从进光口211入射的入射光转向的角度为90度。例如,入射光在反光元件22的发射面上的入射角为45度,反射角也为45度。当然,反光元件22将入射光转向的角度也可为其他角度,例如为80度、100度等,只要能将入射光转向后到达第一图像传感器26即可。
本实施方式中,反光元件22的数量为一个,此时,入射光经过一次转向后传至第一图像传感器26。在其他实施方式中,反光元件22的数量为多个,此时,入射光经过至少两次转向后传至第一图像传感器26。
安装座23用于安装反光元件22,或者说,安装座23为反光元件22的载体,反光元件22固定在安装座23上。这样使得反光元件22的位置可以确定,有利于反光元件22反射或折射入射光。反光元件22可以采用粘胶粘接固定在安装座23上以实现与安装座23固定连接。
请参再次参阅图6,在一个例子中,安装座23可活动设置在外壳21内,安装座23能够相对于外壳21转动以调整反光元件22将入射光转向的方向。
安装座23可以带动反光元件22一起朝向第一成像模组20的抖动的反方向转动,从而补偿进光口211的入射光的入射偏差,实现光学防抖的效果。
第一镜片组件24收容于运动元件25内,进一步地,第一镜片组件24设置在反光元件22和第一图像传感器26之间。第一镜片组件24用于将入射光成像在第一图像传感器26上。这样使得第一图像传感器26可以获得品质较佳的图像。
第一镜片组件24沿着其光轴整体移动时可以在第一图像传感器26上成像,从而实现第一成像模组20对焦。第一镜片组件24包括多个镜片241,当至少一个镜片241移动时,第一镜片组件24的整体焦距改变,从而实现第一成像模组20变焦的功能,更多的,由驱动机构27驱动运动元件25在外壳21中运动以达到变焦目的。
在图6的示例中,在某些实施方式中,运动元件25呈筒状,第一镜片组件24中的多个镜片241沿运动元件25的轴向间隔固定在运动元件25内;或如图7,运动元件25包括两个夹片252,两个夹片252将镜片241夹设在两个夹片252之间。
可以理解,由于运动元件25用于固定设置多个镜片241,所需运动元件25的长度尺寸较大,运动元件25可以为圆筒状、方筒状等具备较一定腔体的形状,如此运动元件25呈筒装可更好的设置多个镜片241,并且可更好的保护镜片241于腔体内,使镜片241不易发生晃动。
另外,在图7的示例中,运动元件25将多个镜片241夹持于两个夹片252之间,既具备一定的稳定性,也可降低运动元件25的重量,可以降低驱动机构27驱动运动元件25所需的功率,并且运动元件25的设计难度也较低,镜片241也较易设置于运动元件25上。
当然,运动元件25不限于上述提到的筒状与两个夹片252,在其他的实施方式中,运动元件25如可包括三片、四片等更多的夹片252形成更稳固的结构,或一片夹片252这样更为简单的结构;抑或为矩形体、圆形体等具备腔体以容置镜片241的各种规则或不规则的形状。在保证成像模组10正常成像和运行的前提下,具体选择即可。
第一图像传感器26可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)感光元件或者电荷耦合元件(CCD,Charge-coupled Device)感光元件。
在某些实施方式中,驱动机构27为电磁驱动机构、压电驱动机构或记忆合金驱动机构。
具体地,电磁驱动机构中包括磁场与导体,如果磁场相对于导体运动,在导体中会产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来,此处的导体为电磁驱动机构中带动运动元件25移动的部分;压电驱动机构,基于压电陶瓷材料的逆压电效应:如果对压电材料施加电压,则产生机械应力,即电能与机械能之间发生转换,通过控制其机械变形产生旋转或直线运动,具有结构简单、低速的优点。
记忆合金驱动机构的驱动基于形状记忆合金的特性:形状记忆合金是一种特殊的合金,一旦使它记忆了任何形状,即使产生变形,但当加热到某一适当温度时,它就能恢复到变形前的形状,以此达到驱动的目的,具有变位迅速、方向自由的特点。
请再次参阅图6,进一步地,第一成像模组20还包括驱动装置28,驱动装置28用于向安装座23施加偏离转轴29的驱动力,驱动力驱动安装座23绕转轴29转动,从而使得第一成像模组20实现进光口211的光轴方向上的光学防抖。
如此,由于驱动装置28向安装座23施加偏离转轴29的驱动力,从而使第一成像模组20实现进光口211光轴方向上的光学防抖并且可以提高防抖的精度。
请参图5和图6,为了方便描述,将第一成像模组20的宽度方向定义为X向,高度方向定义为Y向,长度方向定义为Z向。由此,进光口211的光轴为Y向,第一图像传感器26的感光方向为Z向,转轴29的轴向为X向。
驱动装置28驱动安装座23转动,从而使得反光元件22绕X向转动,以使第一成像模组20实现Y向光学防抖的效果。另外,驱动装置28驱动安装座23沿转轴29的轴向移动,从而使得第一成像模组20实现X向光学防抖的效果。另外,第一镜片组件24可以沿着Z向以实现第一镜片组件24在第一图像传感器26上对焦。
具体地,反光元件22绕X向转动时,反光元件22反射的光线在Y向上移动,从而使得第一图像传感器26在Y向上形成不同的图像以实现Y向的防抖效果。反光元件22沿着X向移动时,反光元件22反射的光线在X向上移动,从而使得第一图像传感器26在X向上形成不同的图像以实现X向的防抖效果。
在某些实施方式中,驱动力的方向为转轴29的切向。如此,驱动力可以使得安装座23绕转轴29运动,从而带动反光元件22绕转轴29转动。
请再次参阅图6,在某些实施方式中,驱动装置28包括磁性元件282和线圈284。磁性元件282设置在安装座23上,线圈284相对于磁性元件282设置在外壳21。线圈284用于施加电压后与磁性元件282作用而产生驱动力。如此,驱动装置28通过电磁的方式驱动安装座23转动。
在图6的例子中,驱动装置28在外壳21的底部设置有线圈284,安装座23上固定有与其对应的电磁片282。外壳21的侧壁也设置有线圈284,安装座23上固定有与其对应的电磁片282。在线圈284通电后,线圈284可以产生磁场以驱动电磁片282运动,从而带动安装座23及反光元件22一起转动。
请再次参阅图7,在某些实施方式中,驱动装置28包括连接安装座23的压电元件286,压电元件286用于施加电压后产生驱动力。如此,驱动装置28可以通过压电驱动的方式驱动安装座23运动。
另外,驱动装置28还可以通过记忆合金驱动的方式驱动安装座23运动。压电驱动的方式和记忆合金驱动的方式请参上述描述,在此不再赘述。
请参阅图15,在某些实施方式中,驱动力的数量为两个,其中一个驱动力的方向为进光口211的光轴方向,另一个驱动力的方向垂直于进光口211的光轴方向。如图6所示,其中一个驱动力的方向为Y向,另一个驱动力的方向为Z向。
具体地,两个驱动力的大小可以相等,也可以不相等。两个驱动力可以通过上述的电磁驱动的方式、压电驱动的方式、记忆合金驱动的方式或者其他方式产生。可以理解,安装座23由于 受到驱动力的影响,会绕转轴29进行转动,施加了驱动力的安装座23在稳定之后,安装座23受力平衡,反光元件22偏转的角度稳定。
当有两个驱动力时,可以将两个驱动力中的一个作为动力,以使反光元件22转动到预设的位置实现防抖,并将两个驱动力中的另一个作为回复力,以使偏转的反光元件22转回原来的位置。
在一个例子中,如图15所示,反光元件22施加有两个驱动力,即F1和F2,当反光元件22需要逆时针旋转时,可以将F1作为动力,将F2作为回复力;当反光元件22需要顺时针旋转时,可以将F2作为动力,将F1作为回复力。
请参阅图16,当驱动力为单个时,可以使用弹簧287形变产生的弹力作为回复力。在图16所示的例子中,反光元件22在原始位置时,弹簧287的状态为原始态,也即是说,反光元件22在原始位置时,弹簧287既没有被拉伸也没有被压缩,没有形变也没有弹力。
当反光元件22需要逆时针旋转时,在反光元件22上施加动力F3,反光元件22绕转轴29逆时针旋转并压缩弹簧287,当反光元件22需要回复到原始位置时,可以将F3撤去,而压缩的弹簧287产生弹力以推动反光元件22绕转轴29顺时针旋转到原始位置。当然,在其他的实施方式中,反光元件22在原始位置时,弹簧287可以处于压缩状态也可以处于拉伸状态。
请参阅图9,本实施方式中,第二成像模组30为立式镜头模组,当然,在其他实施方式中,第二成像模组30也可以潜望式镜头模组。第二成像模组30包括第二镜片组件31和第二图像传感器32,第二镜片组件31用于将光线在第二图像传感器32上成像,第二成像模组30的入射光轴与第二镜片组件31的光轴重合。
本实施方式中,第二成像模组30为定焦镜头模组,因此,第二镜片组件31的镜片241较少,以使第二成像模组30高度较低,有利于减小电子装置1000的厚度。
第二图像传感器32的类型可与第一图像传感器26的类型一样,在此不再赘述。
综合以上,本申请实施方式的第一成像模组20包括开设有进光口211的外壳21以及均设置在外壳21内的反光元件22、安装座23和第一图像传感器26。反光元件22固定在安装座23上,反光元件22用于将从进光口211入射的入射光转向后传至第一图像传感器26以使第一图像传感器26感测第一成像模组20外部的入射光,安装座23能够相对于外壳21绕转轴29转动,转轴29的轴向垂直于进光口211的光轴。第一成像模组20还包括驱动装置28,驱动装置28用于向安装座23施加偏离转轴29的驱动力,驱动力驱动安装座23绕转轴29转动,从而使得第一成像模组20实现进光口211的光轴29方向上的光学防抖。
如此,由于驱动装置28向安装座23施加偏离转轴29的驱动力,从而使第一成像模组20实现进光口211光轴方向上的光学防抖并且可以提高防抖的精度。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在 任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种成像模组,其特征在于,包括:
    外壳,所述外壳开设有进光口;和
    均设置在所述外壳内的反光元件、安装座和图像传感器,所述反光元件固定在所述安装座上,所述反光元件用于将从所述进光口入射的入射光转向后传至所述图像传感器以使所述图像传感器感测所述成像模组外部的所述入射光,所述安装座能够相对于所述外壳绕转轴转动,所述转轴的轴向垂直于所述进光口的光轴;
    所述成像模组还包括驱动装置,所述驱动装置用于向所述安装座施加偏离所述转轴的驱动力,所述驱动力驱动所述安装座绕所述转轴转动,从而使得所述成像模组实现所述进光口的光轴方向上的光学防抖。
  2. 如权利要求1所述的成像模组,其特征在于,所述驱动装置包括连接所述安装座的压电元件,所述压电元件用于施加电压后产生所述驱动力。
  3. 如权利要求1所述的成像模组,其特征在于,所述驱动装置包括:
    设置在所述安装座上的磁性元件;和
    相对于所述磁性元件设置在所述外壳的线圈,所述线圈用于施加电压后与所述磁性元件作用而产生所述驱动力。
  4. 如权利要求1所述的成像模组,其特征在于,所述驱动力的方向为所述转轴的切向。
  5. 如权利要求4所述的成像模组,其特征在于,所述驱动力的数量为两个,其中一个所述驱动力的方向为所述进光口的光轴方向,另一个所述驱动力的方向垂直于所述进光口的光轴方向。
  6. 如权利要求1所述的成像模组,其特征在于,所述反光元件具有:
    靠近且朝向所述进光口的入光面;
    远离所述进光口且与所述入光面相背的背光面;
    连接所述入光面及所述背光面的反光面,所述反光面相对于所述入光面倾斜设置;和
    连接所述入光面及所述背光面的出光面,所述出光面与所述反光面相背设置。
  7. 如权利要求6所述的成像模组,其特征在于,所述入光面、所述背光面、所述反光面和所述出光面均硬化处理形成有硬化层。
  8. 如权利要求6所述的成像模组,其特征在于,所述入光面与所述背光面平行设置。
  9. 如权利要求1所述的成像模组,其特征在于,所述成像模组还包括:
    设置在所述图像传感器一侧的且收容于所述外壳内的运动元件;
    固定在所述运动元件上的镜片组件;和
    连接所述外壳和所述运动元件的驱动机构,所述驱动机构用于驱动所述运动元件沿所述镜片组件的光轴移动以使所述镜片组件在所述图像传感器上对焦成像。
  10. 如权利要求9所述的成像模组,其特征在于,所述运动元件呈筒状,所述镜片组件中的多个镜片沿所述运动元件的轴向间隔固定在所述运动元件内;或
    所述运动元件包括两个夹片,将所述镜片组件夹设在所述两个夹片之间。
  11. 一种摄像头组件,其特征在于,包括:
    权利要求1-10任一项所述的成像模组;和
    装饰件,所述装饰件罩设在所述成像模组的进光口上方。
  12. 如权利要求11所述的摄像头组件,其特征在于,在所述成像模组的宽度方向上,所述外壳在所述进光口的一侧形成有凹槽,所述装饰件部分地卡入所述凹槽中,所述装饰件形成有通孔,所述进光口通过所述通孔露出,所述成像模组通过所述通孔采集外界图像。
  13. 如权利要求12所述的摄像头组件,其特征在于,所述凹槽呈长条状,所述凹槽沿所述成像模组的长度方向延伸。
  14. 如权利要求12所述的摄像头组件,其特征在于,所述外壳包括顶壁以及自所述顶壁的侧边延伸形成的侧壁,所述进光口形成于所述顶壁,所述凹槽形成在所述顶壁和所述侧壁的连接处,所述装饰件抵靠在所述顶壁上。
  15. 如权利要求14所述的摄像头组件,其特征在于,所述侧壁的数量为两个,所述顶壁包括相背的两个所述侧边,每个所述侧壁自对应的一个所述侧边延伸,每个所述侧壁与所述顶壁的连接处均形成有所述凹槽。
  16. 如权利要求11所述的摄像头组件,其特征在于,所述装饰件包括装饰圈和凸边,所述凸边自所述装饰圈的底部向远离所述装饰圈的方向延伸。
  17. 如权利要求11所述的摄像头组件,其特征在于,所述摄像头组件包括支架,所述成像模组设置在所述支架内并与所述支架固定连接。
  18. 如权利要求17所述的摄像头组件,其特征在于,所述装饰件设置在所述支架的上方。
  19. 如权利要求17所述的摄像头组件,其特征在于,所述装饰件抵靠在所述支架上;或,所述装饰件与所述支架间隔设置。
  20. 一种电子装置,其特征在于,包括:
    机壳;和
    权利要求11-19任一项所述的摄像头组件,所述摄像头组件设置在所述机壳上。
PCT/CN2019/087759 2018-07-25 2019-05-21 成像模组、摄像头组件和电子装置 WO2020019838A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810829417.7 2018-07-25
CN201821192353.6U CN208424562U (zh) 2018-07-25 2018-07-25 成像模组、摄像头组件和电子装置
CN201810829417.7A CN108600599B (zh) 2018-07-25 2018-07-25 成像模组、摄像头组件和电子装置
CN201821192353.6 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020019838A1 true WO2020019838A1 (zh) 2020-01-30

Family

ID=69180352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087759 WO2020019838A1 (zh) 2018-07-25 2019-05-21 成像模组、摄像头组件和电子装置

Country Status (1)

Country Link
WO (1) WO2020019838A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653778A (zh) * 2020-11-26 2021-04-13 Oppo广东移动通信有限公司 电子装置
CN113079289A (zh) * 2021-03-26 2021-07-06 维沃移动通信有限公司 摄像模组和电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130021485A1 (en) * 2011-07-22 2013-01-24 Asia Optical Co., Inc. Image-Capturing Device
CN103513412A (zh) * 2013-09-16 2014-01-15 华为终端有限公司 潜望式镜头和终端设备
CN206039030U (zh) * 2016-06-17 2017-03-22 宁波舜宇光电信息有限公司 潜望式摄像模组
CN106990551A (zh) * 2017-04-25 2017-07-28 维沃移动通信有限公司 摄像头及摄像头的防抖方法
CN107357114A (zh) * 2017-08-29 2017-11-17 维沃移动通信有限公司 摄像头、摄像装置及摄像头的防抖方法
CN107490845A (zh) * 2017-09-30 2017-12-19 信利光电股份有限公司 一种可变焦距摄像模组
CN107888834A (zh) * 2017-11-28 2018-04-06 信利光电股份有限公司 一种双摄像头模组及摄像设备
CN108600599A (zh) * 2018-07-25 2018-09-28 Oppo广东移动通信有限公司 成像模组、摄像头组件和电子装置
CN208424562U (zh) * 2018-07-25 2019-01-22 Oppo广东移动通信有限公司 成像模组、摄像头组件和电子装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130021485A1 (en) * 2011-07-22 2013-01-24 Asia Optical Co., Inc. Image-Capturing Device
CN103513412A (zh) * 2013-09-16 2014-01-15 华为终端有限公司 潜望式镜头和终端设备
CN206039030U (zh) * 2016-06-17 2017-03-22 宁波舜宇光电信息有限公司 潜望式摄像模组
CN106990551A (zh) * 2017-04-25 2017-07-28 维沃移动通信有限公司 摄像头及摄像头的防抖方法
CN107357114A (zh) * 2017-08-29 2017-11-17 维沃移动通信有限公司 摄像头、摄像装置及摄像头的防抖方法
CN107490845A (zh) * 2017-09-30 2017-12-19 信利光电股份有限公司 一种可变焦距摄像模组
CN107888834A (zh) * 2017-11-28 2018-04-06 信利光电股份有限公司 一种双摄像头模组及摄像设备
CN108600599A (zh) * 2018-07-25 2018-09-28 Oppo广东移动通信有限公司 成像模组、摄像头组件和电子装置
CN208424562U (zh) * 2018-07-25 2019-01-22 Oppo广东移动通信有限公司 成像模组、摄像头组件和电子装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653778A (zh) * 2020-11-26 2021-04-13 Oppo广东移动通信有限公司 电子装置
CN112653778B (zh) * 2020-11-26 2023-11-10 Oppo广东移动通信有限公司 电子装置
CN113079289A (zh) * 2021-03-26 2021-07-06 维沃移动通信有限公司 摄像模组和电子设备
CN113079289B (zh) * 2021-03-26 2023-07-21 维沃移动通信有限公司 摄像模组和电子设备

Similar Documents

Publication Publication Date Title
CN108600599B (zh) 成像模组、摄像头组件和电子装置
US11245822B2 (en) Camera module, camera assembly and electronic device
CN108600594B (zh) 成像模组、摄像头组件和电子装置
AU2019302963B2 (en) Electronic apparatus
WO2020093820A1 (zh) 成像模组、摄像头组件及电子装置
CN108769325B (zh) 电子装置
CN110879454A (zh) 摄像头模组、潜望式摄像头模组、摄像头组件及电子装置
CN108540704B (zh) 摄像头组件与电子装置
CN108600601B (zh) 摄像头模组、摄像头组件和电子装置
CN111308643B (zh) 摄像头模组、潜望式摄像头模组、摄像头组件及电子装置
US20210124145A1 (en) Camera Module, Camera Assembly, and Electronic Device
CN213338283U (zh) 潜望式摄像头模组、摄像头组件及手机
WO2021213216A1 (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法
WO2020019838A1 (zh) 成像模组、摄像头组件和电子装置
CN108777761B (zh) 成像模组和电子装置
WO2020093821A1 (zh) 成像模组、摄像头组件及电子装置
US11064098B2 (en) Camera module, camera assembly and electronic device
WO2020007085A1 (zh) 摄像头组件、电子装置、移动终端以及电子设备
WO2020093822A1 (zh) 电子装置及其控制方法
CN108810385B (zh) 成像模组、摄像头组件和电子装置
WO2019237905A1 (zh) 摄像头模组、摄像头组件与电子装置
WO2019237881A1 (zh) 成像模组、摄像头组件与电子装置
WO2022087786A1 (zh) 潜望式摄像模组及电子设备
KR20220020020A (ko) 반사모듈 및 이를 구비한 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842240

Country of ref document: EP

Kind code of ref document: A1