WO2021145586A1 - 국소 지방 감소용 기체 발포형 마이셀 - Google Patents

국소 지방 감소용 기체 발포형 마이셀 Download PDF

Info

Publication number
WO2021145586A1
WO2021145586A1 PCT/KR2020/019197 KR2020019197W WO2021145586A1 WO 2021145586 A1 WO2021145586 A1 WO 2021145586A1 KR 2020019197 W KR2020019197 W KR 2020019197W WO 2021145586 A1 WO2021145586 A1 WO 2021145586A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
polyethylene glycol
peptide
micelles
Prior art date
Application number
PCT/KR2020/019197
Other languages
English (en)
French (fr)
Inventor
이근용
김충구
Original Assignee
주식회사 슈퍼노바 바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 슈퍼노바 바이오 filed Critical 주식회사 슈퍼노바 바이오
Priority to EP20914157.1A priority Critical patent/EP4091602A4/en
Priority to CN202080093166.6A priority patent/CN115003285B/zh
Priority to AU2020422088A priority patent/AU2020422088B2/en
Priority to US17/758,877 priority patent/US20230096668A1/en
Priority to JP2022543134A priority patent/JP7485405B2/ja
Priority to CA3163942A priority patent/CA3163942A1/en
Priority to MX2022008595A priority patent/MX2022008595A/es
Publication of WO2021145586A1 publication Critical patent/WO2021145586A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0291Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/06Preparations for care of the skin for countering cellulitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/91Injection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers

Definitions

  • the present invention relates to a gas-foaming type micelle for local fat reduction.
  • Treatments for reducing subcutaneous fat include liposuction in which a cannula is inserted into the subcutaneous fat to suck the fat, a freezing procedure in which a cooling pad is attached to the skin surface to cool and necrosis the subcutaneous fat, and radiofrequency or ultrasound is applied to the subcutaneous tissue.
  • a thermal heating procedure that removes subcutaneous fat by irradiating and heating a carboxytherapy procedure that removes fat by gradually injecting carbon dioxide (CO 2 ) into the subcutaneous fat with an injection needle to promote blood circulation and lymph circulation in adipose tissue
  • mesotherapy which injects drugs for the treatment of obesity into subcutaneous fat.
  • Liposuction which is known to be the most effective among procedures, has disadvantages in the pain accompanying the procedure and future management. Typically, there is bleeding during liposuction and pain during the procedure. This can cause pain even after the procedure, so it may be necessary to take painkillers depending on the individual. In addition, compression garments must be worn for at least a week after the suction operation, and management is required for about a month after the procedure.
  • the freezing procedure is simple, but has a disadvantage in that the effect of the procedure is low.
  • Korean Patent Laid-Open Publication No. 10-2011-0119640 an invasive procedure in which a probe cooled by circulating a refrigerant inside is inserted into the subcutaneous fat was used.
  • the procedure time is shortened compared to the non-invasive cooling procedure, but it has a disadvantage in that it requires a considerably long procedure time to prevent necrosis of the subcutaneous fat due to cooling.
  • carboxytherapy is a procedure that intensively treats areas where fat is excessively accumulated, and in Korean Patent No. 10-0772961, mesotherapy and carboxytherapy are performed parametrically to increase fat removal efficiency.
  • the patent uses a separate syringe needle for each procedure, the internal structure is complicated and a separate incision is made by each needle.
  • Belkyra a drug approved as a lipolysis supplement, kills fat cells by destroying the cell membrane of local fat cells.
  • Belkyra has the disadvantage that it can be used only for double chin surgery.
  • these drugs non-specifically destroy cell membranes, it is reported that the risk of breast cancer or colorectal cancer is increased because it has a large effect on surrounding cells as well as adipocytes, and may have adverse effects on surrounding tissues.
  • the present invention is intended to provide a local lipolysis supplement or diet beauty product that can be manufactured as an injectable formulation and that decomposes local fat in order to solve the above problems.
  • the present invention includes a compound represented by the following formula (1),
  • a gas foaming type micelle for reducing fat in which adipocytes are destroyed by carbon dioxide generated by hydrolysis of the compound.
  • p is an integer from 12 to 227
  • q is an integer from 2 to 14;
  • n is an integer from 0 to 5
  • L is an adipocyte targeting sequence (ATS) peptide or R9 (arginine) peptide.
  • ATS adipocyte targeting sequence
  • R9 arginine
  • the present invention also comprises the steps of synthesizing a polyethylene glycol derivative as a compound represented by Formula 4 by mixing polyethylene glycol and alkyl chloroformate;
  • ATS adipocyte targeting sequence
  • r9 arginine
  • a method for preparing a gas-foaming type micelle for reducing fat including a compound represented by the following formula (1).
  • R 1 is hydrogen, a C1 to 5 alkyl group, an amine group, a C1 to 5 alkylamine group, a carboxyl group, or a C1 to 5 alkylcarboxyl group,
  • p is an integer from 12 to 227
  • q is an integer from 2 to 14
  • n is an integer from 0 to 3
  • L is an adipocyte targeting sequence (ATS) peptide or R9 (arginine) peptide.
  • ATS adipocyte targeting sequence
  • R9 arginine
  • the present invention also provides a fat reduction composition comprising the above-described gas foaming micelles for fat reduction.
  • the gas foaming micelles for reducing fat according to the present invention are locally administered and deposited in adipocytes to generate carbon dioxide, thereby decomposing fats through apoptosis of adipocytes.
  • a ligand peptide
  • the effect on surrounding tissues and cells can be minimized, and by doing so, side effects to drugs can be minimized, and safer procedures are possible. product development is possible.
  • the micelles can be generally applied to areas such as the chin, thigh, arm, and stomach, which have a high frequency of treatment.
  • gas foaming type micelles for fat reduction according to the present invention can be manufactured as an injectable formulation, and are applied to the field of diet beauty and obesity treatment, and are a local lipolysis supplement that decomposes local fat through the death of local fat, formulation correction It can be used as an agent or diet beauty product.
  • FIG. 1 is a schematic diagram showing the accumulation of gas foaming micelles in adipocytes and fat reduction through gas foaming according to an example of the present invention.
  • Figure 2 is a schematic diagram showing the binding of polyethylene glycol alkyl carbonate and peptide.
  • FIG. 3 is a schematic diagram showing a manufacturing process of a gas foaming type micelles according to an example of the present invention.
  • FIG. 4 is a photograph of air bubbles (gas) generated in micelles prepared according to an example of the present invention.
  • 5 is a graph analyzing polyethylene glycol alkyl carbonate prepared according to an example of the present invention using FT-IR.
  • FIG. 6 is a graph analyzing polyethylene glycol alkyl carbonate into which a peptide prepared according to an example of the present invention is introduced using FT-IR.
  • FIG. 7 is a graph showing the results of NMR confirmation of gas generation of polyethylene glycol alkyl carbonate into which a peptide prepared according to an example of the present invention is introduced.
  • FIG. 8 is a photograph showing the result of measuring the gas generation rate of polyethylene glycol alkyl carbonate prepared according to an example of the present invention.
  • 9 is an optical microscope image of measuring gas evolution from polyethylene glycol alkyl carbonate prepared according to an example of the present invention.
  • FIG. 10 is a graph showing the cytotoxicity evaluation results of polyethylene glycol alkyl carbonate prepared according to an example of the present invention.
  • FIG. 11 is a graph showing the evaluation result of the adipocyte killing effect of the gas foaming type micelles prepared according to an example of the present invention according to the amount of peptide introduced.
  • FIG. 12 is a graph showing the evaluation results of the adipocyte killing effect according to the micelle concentration and the peptide combination.
  • FIG. 13 is a graph showing the evaluation results of apoptosis effects other than fat cells of the gas foaming micelles prepared according to an example of the present invention.
  • the present invention relates to a gas foaming type micelle for reducing fat, including a compound represented by the following formula (1), wherein adipocytes are destroyed by carbon dioxide generated by hydrolysis of the compound.
  • micelles are formed using materials with high biocompatibility, and peptides, i.e., cell-targeting ligands, are introduced on the surface of micelles, thereby minimizing delivery to surrounding cells and tissues other than adipocytes and reducing the delivery into adipocytes. transmission can be maximized. Through this, it can be used as a lipolysis supplement that minimizes the side effects of existing products. In addition, since it induces cell damage by using a gas harmless to the human body (eg carbon dioxide), safety can be improved compared to other chemical preparations.
  • a gas harmless to the human body eg carbon dioxide
  • Gas foaming micelles for fat reduction (hereinafter, referred to as gas foaming micelles or micelles) for fat reduction of the present invention include a compound represented by the following Chemical Formula 1 (hereinafter, expressed as a compound of Chemical Formula 1).
  • p is an integer from 12 to 227
  • q is an integer from 2 to 14;
  • n is an integer from 0 to 5
  • L may be an adipocyte targeting sequence (ATS) peptide or an r9 (arginine) peptide.
  • ATS adipocyte targeting sequence
  • r9 arginine
  • q may be an integer from 4 to 10, an integer from 4 to 8, an integer from 6 to 10, or an integer from 8 to 10, and n may be an integer from 1 to 3.
  • the molecular weight of the compound of Formula 1 is 550 to 10,000 Da (g/mol), 1,000 to 10,000 Da, 2,000 to 6,000 Da, 1,500 to 3,000 Da, 2,000 to 2,500 Da, 4,500 to 6,000 Da, or 5,000 to 5,500 Da.
  • the diameter of the micelles may be 150 to 500 nm, or 200 to 400 nm. If the diameter is small, the desired effect of apoptosis cannot be obtained, and if the diameter is too large, it is not suitable for injection into the body, so it is preferable to adjust the diameter within the above range.
  • the term 'micelle' generally refers to a compound having a spherical structure formed of low molecular weight substances having an amphiphilic property, for example, a hydrophilic group and a hydrophobic group at the same time.
  • the micelles have thermodynamically stable properties. When a water-insoluble (hydrophobic) drug is dissolved in the compound having the micelle structure and injected, the drug is present inside the micelles.
  • the micelles of the present invention include a compound in which an alkyl chloroformate is conjugated with a hydroxyl group of polyethylene glycol to form a carbonate group.
  • the above compound may be expressed as a derivative below.
  • the micelles have a carbonate bond between the alkyl chloroformate present in the hydrophobic core and the hydrophilic polyethylene glycol located on the surface (or shell, shell). Accordingly, in the derivative, the alkyl chloroformate moiety is located inside the micelles, and the polyethylene glycol moiety is located on the surface.
  • the micelles of the present invention have a structure in which a peptide is bound to the surface of the micelles.
  • the peptide is a targeting ligand, and may be one or more peptides selected from an adipocyte targeting sequence (ATS) peptide and an r9 (arginine) peptide.
  • ATS adipocyte targeting sequence
  • r9 arginine
  • the peptide may form a strong bond by binding to the end portion of polyethylene glycol present on the surface of micelles.
  • the carboxyl group of the peptide and the amine group at the end of the polyethylene glycol may form a bond .
  • the micelles of the present invention may have target orientation.
  • the term 'ligand' refers to a molecule that binds to a ligand-binding protein and causes a structural change.
  • the ligand may be at least one selected from an adipocyte targeting sequence (ATS) peptide and an r9 (arginine) peptide.
  • ATS adipocyte targeting sequence
  • r9 arginine
  • the compound of Formula 1 contained in the micelles of the present invention may be a compound represented by the following Formula 2 (hereinafter, expressed as a compound of Formula 2).
  • the compound of Formula 1 may be a compound represented by the following Formula 3 (hereinafter, represented as a compound of Formula 3).
  • the compound of Formula 2 is a compound to which an adipocyte targeting sequence (ATS) peptide is bound
  • the compound of Formula 3 is a compound to which an r9 (arginine) peptide is bound.
  • p and q may be the same as p and q in Formula 1.
  • the micelles may further include a compound represented by Formula 4 (hereinafter, a compound of Formula 4) in addition to the compound represented by Formula 1.
  • a compound represented by Formula 4 hereinafter, a compound of Formula 4
  • R 1 may be hydrogen, a C1 to 5 alkyl group, an amine group, a C1 to 5 alkylamine group, a carboxyl group, or a C1 to 5 alkylcarboxyl group, and p and q are p and q in Formula 1 can be the same
  • the present invention relates to a method for producing the above-described gas foaming type micelles for reducing fat.
  • Gas foaming micelles for reducing fat include the steps of synthesizing a polyethylene glycol derivative as a compound represented by Formula 4 by mixing polyethylene glycol and alkyl chloroformate;
  • ATS adipocyte targeting sequence
  • r9 arginine
  • the solvent After dissolving the polyethylene glycol derivative and the polyethylene glycol derivative to which the peptide is bound in one or two or more mixed solvents selected from acetonitrile, methylene chloride, chloroform and methanol, the solvent is evaporated to synthesize micelles. can be manufactured.
  • R 1 is hydrogen, a C1 to 5 alkyl group, an amine group, a C1 to 5 alkylamine group, a carboxyl group, or a C1 to 5 alkylcarboxyl group,
  • p is an integer from 12 to 227
  • q is an integer from 2 to 14
  • n is an integer from 0 to 5
  • L is an adipocyte targeting sequence (ATS) peptide or R9 (arginine) peptide.
  • ATS adipocyte targeting sequence
  • R9 arginine
  • q of the compound may be an integer of 4 to 10, an integer of 4 to 8, an integer of 6 to 10, or an integer of 8 to 10, and n may be an integer of 1 to 3.
  • FIGS. 2 and 3 the gas foaming type micellar manufacturing method of the present invention will be described in detail ( FIGS. 2 and 3 ).
  • polyethylene glycol derivatives for forming micelles Prior to preparing micelles, polyethylene glycol derivatives for forming micelles are first prepared.
  • a polyethylene glycol solution and an alkyl chloroformate solution are prepared by dissolving each of polyethylene glycol and alkyl chloroformate in acetonitrile. After adding the alkyl chloroformate solution to the prepared polyethylene glycol solution, it is stirred. Pyridine is added to the stirred mixture and then reacted to prepare polyethylene glycol-alkyl carbonate.
  • the polyethylene glycol has, but is not limited to, a molecular weight of 550 to 10,000 Da (g/mol), 1,000 to 10,000 Da, 2,000 to 6,000 Da, 1,500 to 3,000 Da, 2,000 to 2,500 Da, 4,500 to 6,000 Da or 5,000 to 5,500 Da.
  • the alkyl chloroformate may be an aliphatic compound, and may be a chloroformate having an alkyl group having 4 to 10 carbon atoms, 4 to 8 carbon atoms, 6 to 10 carbon atoms, or 8 to 10 carbon atoms.
  • butyl chloroformate, octyl chloroformate, or dodecyl chloroformate may be used as the alkyl chloroformate, but is not limited thereto.
  • the polyethylene glycol solution may be prepared by dissolving 0.2 to 0.8 mmol of polyethylene glycol in 2 to 6 ml of acetonitrile, and the alkyl chloroformate solution is 1 to 3 mmol of alkyl chloroformate and 3 to 7 mmol of acetonitrile. It can be prepared by dissolving in ml.
  • stirring may be performed for 2 to 10 minutes, 3 to 8 minutes, 4 to 6 minutes, or 5 minutes.
  • nitrogen gas may flow during the stirring. Since the reactant is vulnerable to moisture in the atmosphere, in the present invention, by flowing nitrogen gas with low reactivity, the reaction can be induced to be stably performed.
  • 1.5 to 3.5 mmol of pyridine is added to the stirred mixture, followed by reaction at 0 to 5° C. for 20 to 40 minutes, followed by reaction at room temperature for 24 hours to prepare a polyethylene glycol derivative.
  • Such polyethylene glycol derivatives are polyethylene glycol-alkyl carbonates.
  • the synthesis of the polyethylene glycol derivative can be confirmed through FT-IR spectroscopy and NMR analysis.
  • the target directivity to adipocytes can be improved by introducing the peptide into the polyethylene glycol derivative prepared in 1.
  • the compound having an amino group may be aminoethylene glycol, and the peptide may be one or more selected from the group consisting of an adipocyte targeting sequence (ATS) peptide and an r9 (arginine) peptide.
  • ATS adipocyte targeting sequence
  • r9 arginine
  • the molar ratio of the compound having an amino group and the peptide may be 1:0.1 to 1:10, or 1:0.5 to 1:3, and the polyethylene glycol derivative to which the peptide is bound through the EDC/NHS reaction can be prepared.
  • polyethylene glycol to which the peptide is bound after preparing polyethylene glycol to which the peptide is bound, it may be dialyzed, and impurities and unreacted substances may be removed through a filter.
  • the synthesis of the peptide-bound polyethylene glycol derivative can be confirmed through FT-IR spectroscopy and NMR analysis.
  • micellar particles prepared using solvent evaporation
  • the polyethylene glycol derivative prepared in 1. and the polyethylene glycol derivative into which the peptide prepared in 2. is introduced can be prepared in micelles through solvent evaporation.
  • micelles can be prepared by dissolving a polyethylene glycol derivative and a polyethylene glycol derivative introduced with a peptide in an organic solvent, performing a solvent evaporation method to volatilize the solvent, and then redispersing it in a hydrophilic solution.
  • Micell can be formed by using the above derivative and a polyethylene glycol derivative, which is a compound of formula (4).
  • the molar ratio of the compound of Formula 2 and the compound of Formula 4 is 99.5:0.5 to 95.0:5.0, 99.5:0.5 to 96.0: 4.0, 99.0:1.0 to 97.0:3.0 or 99.0:1.0 to 98.0:2.0.
  • the molar ratio of the compound of Formula 3 and the compound of Formula 4 is 99.5:0.5 to 95.0:5.0, 99.5:0.5 to 96.0: 4.0, 99.0:1.0 to 97.0:3.0 or 99.0:1.0 to 98.0:2.0.
  • the molar ratio of the compound of Formula 2, the compound of Formula 3, and the compound of Formula 4 is 99: 0.5:0.5 to 90.0:5.0:5.0, 99:0.5:0.5 to 97.0:1.5:1.5 or 99.0:0.5:0.5 to 98.0:1.0:1.0.
  • a polyethylene glycol derivative and a polyethylene glycol derivative introduced with a peptide may be dissolved in an organic solvent.
  • the organic solvent may be a conventionally used organic solvent, for example, acetonitrile, methylene chloride, chloroform and methanol.
  • the organic solvent may be a mixed solvent of methylene chloride and acetonitrile, a mixed solvent of methylene chloride and chloroform, or a mixed solvent of methylene chloride and methanol.
  • the mixed solvent used in the present invention may have a ratio of methylene chloride to another solvent of 3 to 1: 1 to 3.
  • a polyethylene glycol derivative and a polyethylene glycol derivative into which a peptide is introduced in an organic solvent 100 to 300 rpm, 150 to 200 rpm or 180 rpm, 25 to 45° C., 30 to using a concentrator in a vacuum.
  • Coating may be performed on the glass wall at 40°C or 37°C for about 5 to 10 minutes.
  • by performing the coating using a concentrator it is possible to induce a uniform coating on the glass wall.
  • the hydrophilic solution may include PBS and distilled water.
  • the present invention relates to a fat reduction composition
  • a fat reduction composition comprising the above-described gas foaming micelles for fat reduction.
  • the gas foamed micelles for reducing fat according to the present invention include carbonate groups in their structure, and under water-soluble conditions, the carbonate groups of the micelles are broken due to hydrolysis to generate carbon dioxide gas. Therefore, the gas foaming micelles for reducing fat of the present invention are locally administered in the form of nanoparticles and deposited in the fat cells to generate gas. The necrosis of adipocytes occurs through cell strike by the generated carbon dioxide, thereby reducing fat (FIG. 1).
  • the cell strike may be generated after the micelles are endocytosed by controlling the structure of the gas-foaming micelles, and controlling the amount and time of generation of carbon dioxide to be generated.
  • composition for reducing fat according to the present invention may include the compound of Formula 1 described above.
  • composition for reducing fat according to the present invention may include at least one compound selected from the group consisting of a compound of Formula 2 and a compound of Formula 3 below, and a gas foaming micelle including a compound of Formula 4 below.
  • R 1 is hydrogen, a C1 to 3 alkyl group, an amine group, a C1 to 3 alkylamine group, a carboxyl group, or a C1 to 3 alkylcarboxyl group,
  • P and q may be the same as p and q in the compound of Formula 1.
  • the composition for reducing fat comprises a gas foaming micelle comprising the compound of Formula 2 and the compound of Formula 4
  • the molar ratio of the compound of Formula 2 and the compound of Formula 4 is 99.5:0.5 to 95.0: 5.0, 99.5:0.5 to 96.0:4.0, 99.0:1.0 to 97.0:3.0 or 99.0:1.0 to 98.0:2.0.
  • the composition for reducing fat comprises a gas foaming micelle comprising the compound of Formula 3 and the compound of Formula 4
  • the molar ratio of the compound of Formula 3 and the compound of Formula 4 is 99.5:0.5 to 95.0: 5.0, 99.5:0.5 to 96.0:4.0, 99.0:1.0 to 97.0:3.0 or 99.0:1.0 to 98.0:2.0.
  • composition for reducing fat includes a gas foaming micelle including the compound of Formula 2, the compound of Formula 3, and the compound of Formula 4, the compound of Formula 2, the compound of Formula 3, and Formula 4
  • the molar ratio of the compound of may be 99:0.5:0.5 to 90.0:5.0:5.0, 99:0.5:0.5 to 97.0:1.5:1.5 or 99.0:0.5:0.5 to 98.0:1.0:1.0.
  • the content of the gas foaming micelles in the composition for reducing fat may vary depending on the application site, etc., for example, may be 0.01 to 1.0 parts by weight or 0.1 to 0.5 parts by weight based on the total weight of the composition.
  • the composition for reducing fat according to the present invention can be used for topical or intravenous injection, and is generally applicable to areas such as the chin, thigh, arm, and stomach, which have a high frequency of treatment.
  • the composition for reducing fat according to the present invention may be used as a local lipolysis supplement, a formulation corrector, or a diet cosmetic product.
  • Polyethylene glycol was purchased from Sigma Aldrich and used.
  • the number average molecular weight (Mn) of the usable polyethylene glycol is 550 to 20,000, and among them, polyethylene glycol having a number average molecular weight of 5,000 is preferable for the production of gas foaming micelles, and this was used in this experiment.
  • alkyl chloroformate a chain aliphatic compound octyl chloroformate (Sigma Aldrich) was used.
  • Polyethylene glycol and alkyl chloroformate were respectively dissolved in acetonitrile. Specifically, 0.5 mmol of polyethylene glycol was dissolved in 4 ml of acetonitrile to prepare a polyethylene glycol solution, and 2 mmol of alkyl chloroformate was added to 5 ml of acetonitrile to prepare an alkyl chloroformate solution.
  • the synthesized solution was precipitated in diethyl ether, filtered through a filter, and then dried in a vacuum dryer for 3 to 7 days to obtain a synthetic polymer, a polyethylene glycol derivative, that is, polyethylene glycol-alkyl carbonate.
  • polyethylene glycol-alkyl carbonates may be prepared.
  • polyethylene glycol 5000-octyl carbonate is prepared, which can be expressed as PEG 5000 -octylcarbonate.
  • Figure 4 shows the result of confirming the gas bubble from PEG 5000 -octylcarbonate under a microscope. As shown in FIG. 4, it can be confirmed that when the derivative powder is added to the DW, bubbles are observed.
  • an amino polyethylene glycol derivative having an amino group and a peptide were subjected to an EDC/NHS reaction in a molar ratio of 1:1 to prepare a peptide-bound polyethylene glycol derivative. Thereafter, dialysis was performed for 4 days, impurities and unreacted substances were removed through a filter, and then freeze-drying was performed.
  • adipocyte targeting sequence (ATS) peptide when used as the peptide, it may be expressed as ATS-PEG 5000 -octylcarbonate.
  • the derivative has a number average molecular weight of 5000 polyethylene glycol and uses octyl chloroformate.
  • the micelles were prepared by solvent evaporation using a mixed solvent containing methylene chloride and acetonitrile in a ratio of 2:1.
  • micellar particles were prepared according to the composition of the derivative used.
  • micelles B(9r) micelles prepared with 2% by weight of polyethylene glycol derivative into which 9r peptide is introduced and 98% by weight of polyethylene glycol derivative
  • ATS - micelles C
  • - micelles D micelles prepared with 1% by weight of polyethylene glycol derivative into which 9r peptide is introduced, 1% by weight of polyethylene glycol derivative into which ATS peptide and 98% by weight of polyethylene glycol derivative
  • the gas generation rate in the polyethylene glycol derivative prepared in (1) of Example 1 was confirmed, which was confirmed through an ultrasonic device (SONON 300L). Specifically, the N gas generation rate of four types of polyethylene glycol derivatives : mPEG 2000 -Butylcarbonate, mPEG 2000 -Octylcarbonate, mPEG 5000 -Butylcarbonate, and mPEG 5000 -Octylcarbonate was confirmed.
  • the gas generation rate differs depending on the type of derivative constituting the micelles, and it can be seen that micelles composed of mPEG 5000 -Octylcarbonate show the highest stability (Fig. 8). ).
  • the cytotoxicity of the polyethylene glycol derivative was analyzed, which was performed according to the MTS assay method.
  • 3T3-11 cells were cultured or differentiated in a 96-well plate at 2x10 3 cells/plate, and micelles were treated at a concentration of 0.5 mg/ml to 5 mg/ml. Then, incubated for 24 hours at 37° C. under 5% CO 2 . The cultured cells were washed once with PBS, treated with MTS solution for 1 hour, and then absorbance analysis was performed at 490 nm through a UV/VIS spectrometer to confirm cytotoxicity.
  • adipocyte killing ability according to the concentration of the peptide was analyzed. At this time, the amount of peptide introduced was 0% to 4% based on the total weight (weight) of the derivative.
  • the killing ability was performed according to the MTS assay method.
  • 3T3-11 cells were seeded in a 96-well plate at 2x10 3 cells/plate, followed by differentiation for 2 to 3 weeks. After that, the concentration of the derivative was 0.2 wt%, and after 24 hours, it was washed once with PBS. Absorbance was analyzed 1 hour after MTS solution treatment (analyzed in the same manner as in Experimental Example 6).
  • the appropriate concentration of the peptide-introduced derivative in the preparation of micelles for apoptosis of adipocytes is 1% to 3% by weight of the basic derivative.
  • micelles A to D prepared in (3) of Example 1 the micelles were treated at a concentration of 0.1 to 0.3wt% to evaluate the cell killing ability.
  • ATS is for adipocyte target and was used as a peptide for 9r intracellular penetration.
  • PEG 5000 -octylcarbonate micells are micelles A
  • r9-PEG 5000 -octylcarbonate micells are micelles B
  • ATS-PEG 5000 -octylcarbonate micells are micelles C
  • ATS-r9-PEG 5000 -octylcarbonate micells are micelles D
  • the cell viability was greater than 90%.
  • Control denotes micelle A
  • r9 denotes micelle B
  • ATS denotes micelle C
  • ATS/r9 denotes micelle D.
  • the r9 peptide showed a similar tendency to apoptosis regardless of the cell type, and it can be confirmed that the ATS peptide has a higher apoptosis rate in adipocytes compared to other cells.
  • ATS/r9 it can be seen that adipocytes have a higher apoptosis rate than other cells, and have a superior cell death rate in adipocytes than when ATS and r9 are used alone.
  • the gas foamed micelles for fat reduction according to the present invention can be manufactured as an injectable preparation, and are applied to the field of diet beauty and obesity treatment, and are used as local lipolysis supplements, formulation correctors, or It can be used as a diet beauty product and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Obesity (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Biophysics (AREA)
  • Nanotechnology (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 국소지방 감소용 기체 발포형 마이셀에 관한 것이다. 본 발명에서는 생체친화성이 높은 재료를 이용하여 마이셀을 형성하고, 또한 마이셀의 표면에 세포 표적 리간드(펩타이드)를 도입함으로써, 지방세포 이외의 주변 세포 및 조직으로 전달을 최소화하고 지방세포 내로의 전달을 최대화할 수 있다. 본 발명에 따른 국소지방 감소용 기체 발포형 마이셀은 주사 가능한 제제로 제작 가능하고, 국소 지방을 분해하는 국소 지방 분해 보완재 또는 다이어트 미용 제품으로 적용될 수 있다.

Description

국소 지방 감소용 기체 발포형 마이셀
본 발명은 국소 지방 감소용 기체 발포형 마이셀에 관한 것이다.
피부의 표피와 진피 아래에 존재하는 피하지방의 감소는 미용 처리의 가장 중요한 분야 중 하나이며, 이러한 미용 처리의 목적을 위해 다양한 시술 방법이 사용되고 있다.
피하지방 감소를 위한 시술로는 피하지방에 캐뉼라(cannula)를 삽입하여 지방을 흡입하는 지방 흡입술, 냉각 패드를 피부표면에 부착하여 피하지방을 냉각 괴사시키는 냉동 시술, 고주파 또는 초음파를 피하지방 조직에 조사하여 가열에 의해 피하지방을 제거하는 열적 가열 시술, 이산화탄소(CO 2)를 주사바늘로 피하지방에 서서히 주입하여 지방조직의 혈류 순환 및 림프 순환을 촉진함으로써 지방을 제거하는 카복시테라피(Carboxytherapy) 시술, 피하지방에 비만 치료용 약물을 주입하는 메조테라피(Mesotherapy) 시술 등이 있다.
시술 중 가장 효과가 높다고 알려진 지방 흡입술은 시술시 동반되는 고통 및 향후 관리에서 단점을 가진다. 대표적으로 지방 흡입시 출혈이 있으며, 시술 시 통증을 동반한다. 이는 시술 이후에도 통증을 유발하여 개개인에 따라 진통제를 복용해야하는 경우도 생기게 된다. 이와 더불어 흡입 수술 이후 압박복을 일주일 이상 착용해야하며, 시술 후 한달 정도의 관리를 필요로 한다.
또한, 냉동 시술은 시술이 간편하지만 시술 효과가 낮은 단점을 가진다. 한국 공개특허 제10-2011-0119640호에서는 냉매를 내부로 순환시켜 냉각되는 프로브를 피하지방에 삽입하는 침습적 시술을 사용하였다. 하지만, 침습적 냉각 시술을 사용할 경우 시술 시간이 비침습적 냉각 시술보다 단축되기는 하지만, 냉각에 의한 피하지방의 괴사를 방지하기위해 상당히 긴 시술 시간을 요하는 단점을 가진다.
한편, 카복시테라피는 지방이 과도하게 축적된 부위를 집중적으로 치료하는 시술로서, 한국 등록특허 제10-0772961에서는 메조테라피 시술과 카복시테라피 시술을 모수 수행하여 지방 제거 효율을 높였다. 그러나, 상기 특허는 각 시술에 대해 별도의 주사기 바늘을 사용하고 있어, 내부 구조가 복잡하고 각각의 바늘에 의해 별도의 절개창이 생기는 단점을 가진다.
현재 식품의약품안전처의 허가가 완료된 국소 지방분해 보완재는 용도가 매우 한정적이고, 현재 시중에서는 오프라벨 시술이 빈번하게 시행되고 있는 실정이다. 이러한 오프라벨 시술은 안전성 및 유효성에 대한 근거가 부족하고, 비급여 영역이기 때문에 안전 사용관리의 사각지대에 놓여있으며, 제도적인 관리가 미흡하다.
지방 분해 보완재로 허가를 받은 약물로 국소 지방세포의 세포막을 파괴함으로써 지방세포를 사멸시키는 벨카이라가 있다. 그러나, 벨카이라는 이중 턱 시술에만 한정적으로 이용 가능하다는 단점을 가진다. 또한, 이러한 약물은 비특이적으로 세포막을 파괴하므로 지방세포만이 아닌 주변 세포에 대한 영향이 커서, 주변 조직에 부작용을 미칠 수 있기 때문에 현재 유방함 또는 대장암의 위험성이 증가한다고 보고되고 있다.
본 발명은 전술한 문제점을 해결하기 위하여, 주사 가능한 제제로 제작이 가능하고, 국소 지방을 분해하는 국소 지방 분해 보완재 또는 다이어트 미용 제품을 제공하고자 한다.
본 발명은 하기 화학식 1로 표현되는 화합물을 포함하며,
상기 화합물의 가수분해에 의해 발생된 이산화탄소에 의해 지방세포가 파괴되는 지방 감소용 기체 발포형 마이셀을 제공한다.
[화학식 1]
Figure PCTKR2020019197-appb-img-000001
상기 화학식 1에서,
p는 12 내지 227의 정수이고,
q는 2 내지 14의 정수이며
n은 0 내지 5의 정수이고,
L은 지방세포 표적 서열(ATS) 펩타이드 또는 R9(arginine) 펩타이드이다.
본 발명은 또한, 폴리에틸렌 글리콜(polyethylene glycol) 및 알킬 클로로포메이트(alkyl chloroformate)를 혼합하여 화학식 4로 표현되는 화합물인 폴리에틸렌 글리콜 유도체를 합성하는 단계;
상기 폴리에틸렌 글리콜 유도체에 지방세포 표적 서열(ATS) 펩타이드 및 r9(arginine) 펩타이드로 이루어진 그룹으로부터 선택된 하나 이상의 펩타이드를 결합시켜 펩타이드가 결합된 폴리에틸렌 글리콜 유도체를 합성하는 단계; 및
상기 폴리에틸렌 글리콜 유도체 및 상기 펩타이드가 결합된 폴리에틸렌 글리콜 유도체를 아세토니트릴, 메틸렌 클로라이드, 클로로포름 및 메탄올에서 선택되는 1종 또는 2종 이상의 혼합용매에 용해시킨 후 용매를 증발시켜 마이셀을 합성하는 단계;를 포함하는
하기 화학식 1로 표현되는 화합물을 포함하는 지방 감소용 기체 발포형 마이셀의 제조방법을 제공한다.
[화학식 4]
Figure PCTKR2020019197-appb-img-000002
[화학식 1]
Figure PCTKR2020019197-appb-img-000003
상기 화학식 1 또는 4에서,
R 1은 수소, C1 내지 5의 알킬기, 아민기, C1 내지 5의 알킬아민기, 카르복실기 또는 C1 내지 5의 알킬카르복실기이고,
p는 12 내지 227의 정수이며,
q는 2 내지 14의 정수이고
n은 0 내지 3의 정수이며,
L은 지방세포 표적 서열(ATS) 펩타이드 또는 R9(arginine) 펩타이드이다.
본 발명은 또한, 전술한 지방 감소용 기체 발포형 마이셀을 포함하는 지방 감소용 조성물을 제공한다.
본 발명에 따른 지방 감소용 기체 발포형 마이셀은 국소 투여되어 지방세포 부위에 침적되어 이산화탄소를 발생시킴으로써, 지방세포를 사멸을 통해 지방을 분해시킬 수 있다. 특히, 본 발명에서는 리간드(펩타이드)를 사용하여 지방세포로의 표적이 가능하므로, 주변 조직 및 세포에 대한 영향을 최소화할 수 있으며, 이를 틍해 약물에 대한 부작용을 최소화 할 수 있고, 더욱 안전한 시술이 가능한 제품 개발이 가능하다. 상기 마이셀은 일반적으로 시술 빈도가 높은 턱, 허벅지, 팔, 배 등의 부위에 적용이 가능하다.
또한, 본 발명에 따른 지방 감소용 기체 발포형 마이셀은 주사 가능한 제제로 제작가능하고, 다이어트 미용 분야 및 비만치료제 분야에 적용되어 국소 지방의 사멸을 통해 국소 지방을 분해하는 국소 지방 분해 보완재, 제형 교정제 또는 다이어트 미용 제품 등으로 사용될 수 있다.
도 1은 본 발명의 일례에 따른 기체 발포형 마이셀의 지방세포에의 축적 및 기체 발포를 통한 지방 감소를 보여주는 모식도이다.
도 2는 폴리에틸렌 글리콜 알킬 카보네이트와 펩타이드의 결합을 나타내는 모식도이다.
도 3은 본 발명의 일례에 따른 기체 발포형 마이셀의 제조 공정을 나타내는 모식도이다.
도 4는 본 발명의 일례에 따라 제조된 마이셀에서 발생된 기포(기체)의 사진이다.
도 5는 FT-IR을 이용하여 본 발명의 일례에 따라 제조된 폴리에틸렌 글리콜 알킬 카보네이트를 분석한 그래프이다.
도 6은 FT-IR을 이용하여 본 발명의 일례에 따라 제조된 펩타이드가 도입된 폴리에틸렌 글리콜 알킬 카보네이트를 분석한 그래프이다.
도 7은 본 발명의 일례에 따라 제조된 펩타이드가 도입된 폴리에틸렌 글리콜 알킬 카보네이트의 기체 발생을 NMR로 확인한 결과를 나타내는 그래프이다.
도 8은 본 발명의 일례에 따라 제조된 폴리에틸렌 글리콜 알킬 카보네이트의 기체 발생 속도를 측정한 결과를 나타내는 사진이다.
도 9는 본 발명의 일례에 따라 제조된 폴리에틸렌 글리콜 알킬 카보네이트로부터의 기체 발생을 측정한 광학 현미경 이미지이다.
도 10은 본 발명의 일례에 따라 제조된 폴리에틸렌 글리콜 알킬 카보네이트의 세포독성 평가 결과를 나타내는 그래프이다.
도 11은 펩타이드 도입량에 따른 본 발명의 일례에 따라 제조된 기체 발포형 마이셀의 지방세포 사멸효과 평가 결과를 나타내는 그래프이다.
도 12는 마이셀 농도 및 펩타이드 조합에 따른 지방세포 사멸효과 평가 결과를 나타내는 그래프이다.
도 13은 본 발명의 일례에 따라 제조된 기체 발포형 마이셀의 지방 세포 이외에서의 세포 사멸효과 평가 결과를 나타내는 그래프이다.
본 발명은 하기 화학식 1로 표현되는 화합물을 포함하며, 상기 화합물의 가수분해에 의해 발생된 이산화탄소에 의해 지방세포가 파괴되는 지방 감소용 기체 발포형 마이셀에 관한 것이다.
[화학식 1]
Figure PCTKR2020019197-appb-img-000004
본 발명에서는 생체친화성이 높은 재료를 이용하여 마이셀을 형성하고, 또한 마이셀의 표면에 펩타이드, 즉, 세포 표적 리간드를 도입함으로써, 지방세포 이외의 주변 세포 및 조직으로 전달을 최소화하고 지방세포 내로의 전달을 최대화할 수 있다. 이를 통해, 기존 제품의 부작용을 최소화시킨 지방 분해 보완재로 이용 가능하다. 또한 인체에 무해한 기체(예: 이산화탄소)를 이용하여 세포 타격을 유도하므로, 다른 화학약품 제재에 비하여 안전성을 개선시킬 수 있다.
이하, 본 발명의 지방 감소용 기체 발포형 마이셀을 보다 상세하게 설명한다.
본 발명의 지방 감소용 기체 발포형 마이셀(이하, 기체 발포형 마이셀 또는 마이셀로 표현)은 하기 화학식 1로 표현되는 화합물(이하, 화학식 1의 화합물로 표현)을 포함한다.
[화학식 1]
Figure PCTKR2020019197-appb-img-000005
상기 화학식 1에서,
p는 12 내지 227의 정수이고,
q는 2 내지 14의 정수이며
n은 0 내지 5의 정수이고,
L은 지방세포 표적 서열(ATS) 펩타이드 또는 r9(arginine) 펩타이드일 수 있다.
일 구체예에서, q는 4 내지 10의 정수, 4 내지 8의 정수, 6 내지 10의 정수 또는 8 내지 10의 정수일 수 있으며, n은 1 내지 3의 정수일 수 있다.
일 구체예에서, 상기 화학식 1의 화합물의 분자량은 550 내지 10,000 Da(g/mol), 1,000 내지 10,000 Da, 2,000 내지 6,000 Da, 1,500 내지 3,000 Da, 2,000 내지 2,500 Da, 4,500 내지 6,000 Da 또는 5,000 내지 5,500 Da일 수 있다.
일 구체예서, 상기 마이셀의 직경은 150 내지 500 nm, 또는 200 내지 400 nm 일 수 있다. 직경이 작으면 목적하는 지방세포 사멸 효과를 얻을 수 없으며, 너무 크면 체내 주입용으로 적용하기 부적절하므로 직경을 상기 범위로 조절하는 것이 좋다.
본 발명에서 용어 '마이셀(micelle)'은 일반적으로 양친성, 예컨대 친수성기와 소수성기를 동시에 갖는 저분자량의 물질들이 이루는 구형의 구조의 화합물을 의미한다. 상기 마이셀은 열역학적으로 안정한 특성을 가진다. 상기 마이셀 구조를 갖는 화합물에 비수용성(소수성) 약물을 녹여 투입하는 경우 상기 약물은 마이셀 내부에 존재하게 된다.
본 발명의 마이셀은 알킬 클로로포메이트가 폴리에틸렌 글라이콜의 하이드록시기와 컨쥬게이트 되어 카보네이트기가 형성된 화합물을 포함한다. 본 발명에서는 이하 상기 화합물을 유도체라 표현할 수 있다.
구체적으로, 상기 마이셀은 소수성 코어(core)에 존재하는 알킬 클로로포메이트와 표면(또는 쉘, shell)에 위치하는 친수성 폴리에틸렌 글라이콜 간의 카보네이트 결합을 가진다. 따라서, 유도체에서 알킬 클로로포메이트 부분은 마이셀의 내부에 위치하고, 폴리에틸렌 글라이콜 부분은 표면에 위치하고 있는 형태를 가진다.
또한, 본 발명의 마이셀은 상기 마이셀의 표면에 펩타이드가 결합된 구조를 가진다. 상기 펩타디드는 표적지향 리간드로서, 지방세포 표적 서열(ATS) 펩타이드 및 r9(arginine) 펩타이드 중에서 선택된 하나 이상의 펩타이드일 수 있다. 상기 펩타이드는 마이셀 표면에 존재하는 폴리에틸렌 글라이콜의 말단 부위에 결합하여 강한 결합을 형성할 수 있는데, 일 구체예에서, 펩타이드의 카르복실기와 폴리에틸렌 글라이콜의 말단의 아민기가 결합을 형성할 수 있다. 펩타이드의 특성에 따라 본 발명의 마이셀은 표적지향성을 가질 수 있다. 본 발명에서 용어 '리간드(ligand)'는 리간드 결합단백질에 결합하여 구조적인 변화를 일으키는 분자를 의미한다. 상기 리간드는 지방세포 표적 서열(ATS) 펩타이드 및 r9(arginine) 펩타이드 중에서 선택된 하나 이상일 수 있다. 상기 지방세포 표적 서열(ATS) 펩타이드를 통해 지방세포, 특히, 백색지방에 대한 표적률을 향상시킬 수 있으며, r9(arginine) 펩타이드를 통해 세포 투과율을 향상시킬 수 있다.
일 구체예에서, 본 발명의 마이셀에 포함되는 화학식 1의 화합물은 하기 화학식 2로 표현되는 화합물(이하, 화학식 2의 화합물로 표현)일 수 있다. 또한, 화학식 1의 화합물은 하기 화학식 3으로 표현되는 화합물(이하, 화학식 3의 화합물로 표현)일 수 있다. 상기 화학식 2의 화합물은 지방세포 표적 서열(ATS) 펩타이드가 결합된 화합물이며, 화학식 3의 화합물은 r9(arginine) 펩타이드가 결합된 화합물이다.
[화학식 2]
Figure PCTKR2020019197-appb-img-000006
[화학식 3]
Figure PCTKR2020019197-appb-img-000007
상기 화학식 2 내지 3에서, p 및 q은 화학식 1의 p 및 q와 같을 수 있다.
일 구체예에서, 마이셀은 화학식 1로 표현되는 화합물 외에 화학식 4로 표현되는 화합물(이하, 화학식 4의 화합물)을 추가로 포함할 수 있다.
[화학식 4]
Figure PCTKR2020019197-appb-img-000008
상기 화학식 4에서, R 1은 수소, C1 내지 5의 알킬기, 아민기, C1 내지 5의 알킬아민기, 카르복실기 또는 C1 내지 5의 알킬카르복실기일 수 있고, p 및 q은 화학식 1의 p 및 q와 같을 수 있다.
또한, 본 발명은 전술한 지방 감소용 기체 발포형 마이셀의 제조 방법에 관한 것이다.
본 발명에 따른 지방 감소용 기체 발포형 마이셀은 폴리에틸렌 글리콜(polyethylene glycol) 및 알킬 클로로포메이트(alkyl chloroformate)를 혼합하여 화학식 4로 표현되는 화합물인 폴리에틸렌 글리콜 유도체를 합성하는 단계;
상기 폴리에틸렌 글리콜 유도체에 지방세포 표적 서열(ATS) 펩타이드 및 r9(arginine) 펩타이드로 이루어진 그룹으로부터 선택된 하나 이상의 펩타이드를 결합시켜 펩타이드가 결합된 폴리에틸렌 글리콜 유도체를 합성하는 단계; 및
상기 폴리에틸렌 글리콜 유도체 및 상기 펩타이드가 결합된 폴리에틸렌 글리콜 유도체를 아세토니트릴, 메틸렌 클로라이드, 클로로포름 및 메탄올에서 선택되는 1종 또는 2종 이상의 혼합용매에 용해시킨 후, 용매를 증발시켜 마이셀을 합성하는 단계를 통해 제조될 수 있다.
[화학식 4]
Figure PCTKR2020019197-appb-img-000009
[화학식 1]
Figure PCTKR2020019197-appb-img-000010
상기 화학식 1 또는 4에서,
R 1은 수소, C1 내지 5의 알킬기, 아민기, C1 내지 5의 알킬아민기, 카르복실기 또는 C1 내지 5의 알킬카르복실기이고,
p는 12 내지 227의 정수이며,
q는 2 내지 14의 정수이고
n은 0 내지 5의 정수이며,
L은 지방세포 표적 서열(ATS) 펩타이드 또는 R9(arginine) 펩타이드이다.
일 구체예에서, 상기 화합물의 q는 4 내지 10의 정수, 4 내지 8의 정수, 6 내지 10의 정수 또는 8 내지 10의 정수일 수 있으며, n은 1 내지 3의 정수일 수 있다.
이하, 본 발명의 기체 발포형 마이셀 제조방법을 상세히 살펴본다(도 2 및 도 3).
1. 폴리에틸렌 글리콜 유도체 합성
마이셀 제조에 앞서, 마이셀을 이루기 위한 폴리에틸렌 글리콜 유도체를 먼저 제조한다.
우선, 폴리에틸렌 글리콜과 알킬 클로로포메이트 각각을 아세토니트릴에 용해시켜 폴리에틸렌 글리콜 용액 및 알킬 클로로포메이트 용액을 준비한다. 준비된 폴리에틸렌 글리콜 용액에 알킬 클로로포메이트 용액을 첨가한 후 교반한다. 상기 교반이 완료된 혼합물에 피리딘을 첨가한 후 반응시켜 폴리에틸렌 글리콜-알킬 카보네이트를 제조한다.
일 구체예에서, 폴리에틸렌 글리콜은 이에 제한되는 것은 아니나, 분자량이 550 내지 10,000 Da(g/mol), 1,000 내지 10,000 Da, 2,000 내지 6,000 Da, 1,500 내지 3,000 Da, 2,000 내지 2,500 Da, 4,500 내지 6,000 Da 또는 5,000 내지 5,500 Da일 수 있다.
일 구체예에서, 알킬 클로로포메이트는 지방족 화합물일 수 있으며, 탄소수 4 내지 10, 탄소수 4 내지 8, 탄소수 6 내지 10 또는 탄소수 8 내지 10의 알킬기를 가지는 클로로포메이트일 수 있다. 예를들어, 알킬 클로로포메이트로 부틸 클로로포메이트, 옥틸 클로로포메이트 또는 도데실 클로로포메이트가 사용될 수 있으나 이에 제한되는 것은 아니다.
일 구체예에서, 폴리에틸렌 글리콜 용액은 폴리에틸렌 글리콜 0.2 내지 0.8 mmol을 아세토니트릴 2 내지 6 ml에 용해시켜 준비될 수 있고, 알킬 클로로포메이트 용액은 알킬 클로로포메이트 1 내지 3 mmol을 아세토니트릴 3 내지 7 ml에 용해시켜 준비될 수 있다.
일 구체예에서, 폴리에틸렌 글리콜 용액에 알킬 클로로포메이트 용액을 첨가한 뒤, 2 내지 10 분, 3 내지 8 분, 4 내지 6 분 또는 5 분 동안 교반을 수행할 수 있다.
일 구체예에서, 상기 교반시 질소 가스를 흘려줄 수 있다. 반응물은 대기 중의 수분에 취약하므로, 본 발명에서는 반응성이 낮은 질소 가스를 흘려줌으로써, 반응이 안정적으로 이루어질 수 있도록 유도할 수 있다.
일 구체예에서, 상기 교반이 완료된 혼합물에 피리딘 1.5 내지 3.5 mmol을 첨가한 후, 0 내지 5℃ 에서 20 내지 40 분간 반응시킨 뒤, 상온에서 24 시간 반응시켜 폴리에틸렌 글리콜 유도체를 제조할 수 있다.
이러한, 폴리에틸렌 글리콜 유도체는 폴리에틸렌 글리콜-알킬 카보네이트이다.
폴리에틸렌 글리콜 유도체의 합성은 FT-IR 분광법 및 NMR 분석을 통하여 확인할 수 있다.
2. 펩티아드가 도입된 폴리에틸렌 글리콜 유도체 합성
상기 1.에서 제조된 폴리에틸렌 글리콜 유도체에 펩타이드를 도입하여 지방 세포로의 표적 지향성을 향상시킬 수 있다.
아미노기를 가지는 화합물과 펩타이드를 EDC/NHS 반응시켜, 펩타이드가 결합된 폴리에틸렌 글리콜을 제조한다.
일 구체예에서, 아미노기를 가지는 화합물은 아미노에틸렌 글리콜(aminopolyethylene glycol)일 수 있으며, 펩타이드는 지방세포 표적 서열(ATS) 펩타이드 및 r9(arginine) 펩타이드로 이루어진 그룹으로부터 선택된 하나 이상일 수 있다.
일 구체예에서, 아미노기를 가지는 화합물과 펩타이드의 몰비는 1:0.1 내지 1:10, 또는 1:0.5 내지 1:3일 수 있으며, EDC/NHS 반응을 통해 펩타이드가 결합된 폴리에틸렌 글리콜 유도체를 제조할 수 있다.
일 구체예에서, 펩타이드가 결합된 폴리에틸렌 글리콜을 제조한 후, 투석하고, 필터를 통해 불순물 및 미반응 물질을 제거할 수 있다.
펩타이드가 결합된 폴리에틸렌 글리콜 유도체의 합성은 FT-IR 분광법 및 NMR 분석을 통하여 확인할 수 있다.
3. 용매증발법을 이용한 마이셀 입자 제조
상기 1. 에서 제조된 폴리에틸렌 글리콜 유도체 및 상기 2.에서 제조된 펩타이드가 도입된 폴리에틸렌 글리콜 유도체는 용매증발법을 통하여 마이셀로 제조할 수 있다.
구체적으로, 폴리에틸렌 글리콜 유도체 및 펩타이드가 도입된 폴리에틸렌 글리콜 유도체를 유기용매에 녹이고, 용매를 휘발시키는 용매증발법을 수행한 후, 친수성 용액에 재분산 시켜 마이셀을 제조할 수 있다.
일 구체예에서, 상기 단계에서는 화학식 2의 화합물인 지방세포 표적 서열(ATS) 펩타이드가 도입된 폴리에틸렌 글리콜 유도체 및 화학식 3의 화합물인 r9(arginine) 펩타이드가 도입된 폴리에틸렌 글리콜 유도체로 이루어진 그룹으로부터 선택된 하나 이상의 유도체와 화학식 4의 화합물인 폴리에틸렌 글리콜 유도체를 사용하여 마이셀을 형성할 수 있다.
일 구체예에서, 화학식 2의 화합물 및 화학식 4의 화합물을 사용하여 마이셀을 제조할 경우, 화학식 2의 화합물 및 화학식 4의 화합물의 몰 비율은 99.5:0.5 내지 95.0:5.0, 99.5:0.5 내지 96.0:4.0, 99.0:1.0 내지 97.0:3.0 또는 99.0:1.0 내지 98.0:2.0일 수 있다.
일 구체예에서, 화학식 3의 화합물 및 화학식 4의 화합물을 사용하여 마이셀을 제조하는 경우, 화학식 3의 화합물 및 화학식 4의 화합물의 몰 비율은 99.5:0.5 내지 95.0:5.0, 99.5:0.5 내지 96.0:4.0, 99.0:1.0 내지 97.0:3.0 또는 99.0:1.0 내지 98.0:2.0일 수 있다.
또한, 일 구체예에서, 화학식 2의 화합물, 화학식 3의 화합물 및 화학식 4의 화합물을 사용하여 마이셀을 제조하는 경우, 화학식 2의 화합물, 화학식 3의 화합물 및 화학식 4의 화합물의 몰 비율은 99:0.5:0.5 내지 90.0:5.0:5.0, 99:0.5:0.5 내지 97.0:1.5:1.5 또는 99.0:0.5:0.5 내지 98.0:1.0:1.0일 수 있다.
일 구체예에서, 폴리에틸렌 글리콜 유도체 및 펩타이드가 도입된 폴리에틸렌 글리콜 유도체 5 내지 15 mg을 유기용매에 녹일 수 있다. 상기 유기용매는 통상적으로 사용되는 유기용매일 수 있으며 예를들면, 아세토니트릴, 메틸렌 클로라이드, 클로로포름 및 메탄올일 수 있다.
또한, 유기용매는 메틸렌 클로라이드 및 아세토니트릴의 혼합용매, 메틸렌 클로라이드 및 클로로포름의 혼합용매, 메틸렌 클로라이드 및 메탄올의 혼합용매일 수 있다.
본 발명에서 사용되는 혼합용매는 메틸렌 클로라이드와 다른 용매의 비율이 3 내지 1 : 1 내지 3 일 수 있다.
일 구체예에서, 폴리에틸렌 글리콜 유도체 및 펩타이드가 도입된 폴리에틸렌 글리콜 유도체를 유기용매에 녹인 후, 농축기를 이용하여 진공속에서 100 내지 300 rpm, 150 내지 200 rpm 또는 180 rpm, 25 내지 45℃, 30 내지 40℃ 또는 37℃에서 약 5 내지 10 분 간 유리 벽면에 코팅을 진행할 수 있다. 본 발명에서는 농축기를 이용하여 코팅을 진행함으로써, 유리 벽면에 코팅이 균일하게 이루어지도록 유도할 수 있다. 질소를 이용한 용매 증발법의 경우, 수작업을 통해 용매를 증발시키므로, 회전 속도 및 회전 각도를 일정하게 조절하기 위한 추가의 노력이 필요하나, 본 발명에서는 농축기를 이용하여 코팅을 수행함으로써, 계속적이며 균일한 코팅이 가능하다는 장점을 가진다.
또한, 일 구체예에서, 친수성 용액은 PBS 및 증류수를 포함할 수 있다.
또한, 본 발명은 전술한 지방 감소용 기체 발포형 마이셀을 포함하는 지방 감소용 조성물에 관한 것이다.
본 발명에 따른 지방 감소용 기체 발포형 마이셀은 그 구조 내에 카보네이트기를 포함하며, 수용성 조건에서 상기 마이셀의 카보네이트기는 가수분해로 인해 끊어지면서 이산화탄소 기체를 생성하는 반응을 일으키게 된다. 따라서, 본 발명의 지방 감소용 기체 발포형 마이셀은 나노입자의 형태로 국소 투여되고 지방 세포에 침적되어 기체가 발생한다. 상기 발생된 이산화탄소에 의한 세포 타격을 통해 지방세포의 괴사가 일어나고, 이를 통해 지방을 감소시킬 수 있다(도 1).
상기 세포 타격은 기체 발포형 마이셀의 구조를 조절하여, 생성되는 이산화탄소의 발생량과 발생 시간을 조절하여, 상기 마이셀이 세포 내 이입된 후 발생시킬 수 있다.
본 발명에 따른 지방 감소용 조성물은 전술한 화학식 1의 화합물을 포함할 수 있다.
또한, 본 발명에 따른 지방 감소용 조성물은 하기 화학식 2의 화합물 및 하기 화학식 3의 화합물로 이루어진 그룹으로부터 선택된 하나 이상의 화합물, 및 하기 화학식 4의 화합물을 포함하는 기체 발포형 마이셀을 포함할 수 있다.
[화학식 2]
Figure PCTKR2020019197-appb-img-000011
[화학식 3]
Figure PCTKR2020019197-appb-img-000012
[화학식 4]
Figure PCTKR2020019197-appb-img-000013
상기 화학식 2 내지 4에서,
R 1은 수소, C1 내지 3의 알킬기, 아민기, C1 내지 3의 알킬아민기, 카르복실기 또는 C1 내지 3의 알킬카르복실기이고,
P 및 q는화학식 1의 화합물에서의 p 및 q와 같을 수 있다.
일 구체예에서, 지방 감소용 조성물이 화학식 2의 화합물 및 화학식 4의 화합물을 포함하는 기체 발포형 마이셀을 포함하는 경우, 화학식 2의 화합물 및 화학식 4의 화합물의 몰 비율은 99.5:0.5 내지 95.0:5.0, 99.5:0.5 내지 96.0:4.0, 99.0:1.0 내지 97.0:3.0 또는 99.0:1.0 내지 98.0:2.0일 수 있다.
일 구체예에서, 지방 감소용 조성물이 화학식 3의 화합물 및 화학식 4의 화합물을 포함하는 기체 발포형 마이셀을 포함하는 경우, 화학식 3의 화합물 및 화학식 4의 화합물의 몰 비율은 99.5:0.5 내지 95.0:5.0, 99.5:0.5 내지 96.0:4.0, 99.0:1.0 내지 97.0:3.0 또는 99.0:1.0 내지 98.0:2.0일 수 있다.
또한, 일 구체예에서, 지방 감소용 조성물이 화학식 2의 화합물, 화학식 3의 화합물 및 화학식 4의 화합물을 포함하는 기체 발포형 마이셀을 포함하는 경우, 화학식 2의 화합물, 화학식 3의 화합물 및 화학식 4의 화합물의 몰 비율은 99:0.5:0.5 내지 90.0:5.0:5.0, 99:0.5:0.5 내지 97.0:1.5:1.5 또는 99.0:0.5:0.5 내지 98.0:1.0:1.0일 수 있다.
일 구체예에서, 지방 감소용 조성물에서 기체 발포형 마이셀의 함량은 적용 부위 등에 따라 달라질 수 있으며, 예를 들어, 조성물 전체 중량 대비 0.01 내지 1.0 중량부 또는 0.1 내지 0.5 중량부일 수 있다.
일 구체예에서, 본 발명에 따른 지방 감소용 조성물은 국소 또는 정맥 주사용으로 사용될 수 있으며, 일반적으로 시술 빈도가 높은 턱, 허벅지, 팔, 배 등의 부위에 적용이 가능하다.
일 구체예에서, 본 발명에 따른 지방 감소용 조성물은 국소 지방 분해 보완재, 제형 교정제 또는 다이어트 미용 제품 등으로 사용될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
<참고> 실험 재료
폴리에틸렌 글리콜은 Sigma Aldrich로부터 구입하여 사용하였다. 사용 가능한 폴리에틸렌 글리콜의 수평균 분자량(Mn)은 550 내지 20,000이고, 이 중 수평균 분자량이 5,000인 폴리에틸렌 글리콜이 기체 발포형 마이셀 제조에 바람직하여, 이를 본 실험에 사용하였다.
알킬 클로로포메이트로서 사슬형 지방족 화합물인 옥틸 클로로포메이트(Sigma Aldrich)를 사용하였다.
실시예 1. 기체 발포형 마이셀 제조
(1) 폴리에틸렌 글리콜 유도체 합성
폴리에틸렌 글리콜과 알킬 클로로포메이트를 아세토니트릴에 각각 용해시켰다. 구체적으로, 폴리에틸렌 글리콜 0.5 mmol을 아세토니트릴 4 ml에 용해시켜 폴리에틸렌 글리콜 용액을 준비하였고, 알킬 클로로포메이트 2 mmol을 아세토니트릴 5 ml에 첨가하여 알킬 클로로포메이트 용액을 준비하였다.
준비된 폴리에틸렌 글리콜 용액에 알킬 클로로포메이트 용액을 첨가한 후, 5 분간 교반하였다. 상기 교반 시 반응성이 낮은 질소 가스를 흘려주었다. 상기 교반이 완료된 혼합물에 피리딘 2.5 mmol을 첨가한 후 0℃에서 30분간 반응시켰다. 반응이 완료된 후, 상온에서 24시간 교반하여 합성을 완료하였다.
상기 합성이 완료된 용액을 디에틸에테르에 침전시킨 후, 필터를 통해 여과한 다음, 진공 건조기에서 3 내지 7일 동안 건조시켜 합성 고분자인 폴리에틸렌 글리콜 유도체, 즉, 폴리에틸렌 글리콜-알킬 카보네이트를 수득하였다.
폴리에틸렌 글리콜의 수평균 분자량 및 알킬 클로로포메이트의 알킬의 종류에 따라 다른 종류의 폴리에틸렌 글리콜 유도체, 즉, 폴리에틸렌 글리콜-알킬 카보네이트가 제조될 수 있다. 예를 들어, 폴리에틸렌 글리콜의 수평균 분자량이 5000이고, 옥틸 클로로포메이트를 사용할 경우 폴리에틸렌 글리콜5000-옥틸카보네이트가 제조되며, 이는 PEG 5000-octylcarbonate라 표현할 수 있다.
도 4는 PEG 5000-octylcarbonate로부터 기체 발포를 현미경으로 확인한 결과를 나타낸다. 상기 도 4에 나타난 바와 같이, 유도체 분말을 DW에 넣으면 기포가 관찰되는 것을 확인할 수 있다.
(2) 폴리에틸렌 글리콜 유도체에 펩타이드(리간드) 도입
폴리에틸렌 글리콜 유도체에 펩타이드의 도입은 하기와 같이 수행하였다.
먼저, 아미노기를 가지는 아미노폴리에틸렌 글리콜 유도체와 펩타이드를 몰비 1:1의 비율로 EDC/NHS 반응시켜, 펩타이드가 결합된 폴리에틸렌 글리콜 유도체를 제조하였다. 그 후, 4일간 투석하고, 필터를 통해 불순물 및 미반응 물질을 제거한 후, 동결건조를 수행하였다.
본 발명에서는 펩타이드의 종류에 따라, 펩타이드로 지방세포 표적 서열(ATS) 펩타이드를 사용할 경우, ATS-PEG 5000-octylcarbonate라 표현할 수 있다. 상기 유도체는 폴리에틸렌 글리콜의 수평균 분자량이 5000이고, 옥틸 클로로포메이트를 사용한다.
(3) 용매증발법을 이용한 마이셀 입자 제조
마이셀은 메틸렌 클로라이드 및 아세토니트릴을 2:1의 비율로 포함하는 혼합용매를 이용한 용매증발법으로 제조하였다.
전술한 (1)에서 제조된 폴리에틸렌 글리콜 유도체 및/또는 (2)에서 제조된 펩타이드가 도입된 폴리에틸렌 글리콜 유도체를 혼합용매에 녹인 후, 농축기(N-1300)를 이용하여 진공속에서 180 rpm, 37℃에서 약 5 내지 10분간 유리 벽면에 코팅을 진행하였으며, 유리 표면에 유도체 입자가 코팅되었다(용매 증발).
용매 증발 후 친수성 용액(PBS 및 증류수 포함)를 넣음으로써 자가 조립이 수행되며, 마이셀을 제조하였다.
본 발명에서는 사용된 유도체의 구성에 따라 4 종류의 마이셀 입자를 제조하였다.
- 마이셀 A(Non): (1)에서 제조된 폴리에틸렌 글리콜 유도체로 제조된 마이셀
- 마이셀 B(9r): 9r 펩타이드가 도입된 폴리에틸렌 글리콜 유도체 2 중량% 및 폴리에틸렌 글리콜 유도체 98 중량%로 제조된 마이셀
- 마이셀 C(ATS): ATS 펩타이드가 도입된 폴리에틸렌 글리콜 유도체 2 중량% 및 폴리에틸렌 글리콜 유도체 98 중량%로 제조된 마이셀
- 마이셀 D(ATS/9r): 9r 펩타이드가 도입된 폴리에틸렌 글리콜 유도체 1 중량%, ATS 펩타이드가 도입된 폴리에틸렌 글리콜 유도체 1 중량% 및 폴리에틸렌 글리콜 유도체 98 중량%로 제조된 마이셀
실험예 1. 폴리에틸렌 글리콜 유도체 합성 확인
실시예 1의 (1)에서 제조된 폴리에틸렌 글리콜 유도체의 합성 여부를 확인하였고, 이는 FT-IR 분광기(Nicholet iS50, Thermo)를 이용하여 확인하였다.
폴리에틸렌 글리콜-알킬 카보네이트의 카보네이트 결합 도입 여부에 대해 FT-IR 분광법을 이용하여 분석한 결과, 파수(wave number) 1742cm -1과 1653cm -1에서 카보네이트 연결 그룹(C=O)을 확인함으로써, 폴리에틸렌 글리콜-알킬 카보네이트에 카보네이트 결합이 도입된 것을 확인하였다(도 5).
실험예 2. 폴리에틸렌 글리콜 유도체에 펩타이드 도입 확인
실시예 1의 (2)에서 제조된 펩타이드가 결합된 폴리에틸렌 글리콜 유도체의 펩타이드 도입 여부를 확인하였고, 이는 FT-IR 분광기(Nicholet iS50, Thermo)를 이용하여 확인하였다.
상기 펩타이드 도입 여부에 대해 FT-IR 분광법을 이용하여 분석한 결과, 펩타이드가 도입될 경우 1차 아민(NH 2) 픽이 1650~1580cm -1에서 2차 아마이드(C=O) 픽이 1680cm -1 및 1760cm -1에서 관찰됨을 확인할 수 있다(도 6).
실험예 3. 폴리에틸렌 글리콜 유도체를 이용한 마이셀의 성질 분석
실시예 1의 (3)에서 제조된 마이셀 A 내지 D의 성질을 분석하였다.
그 결과를 하기 표 1에 나타내었다.
Size
(nM)
PDI Potential
(mV)
Non 150.5 0.154 -11.8
9r 188.1 0.088 -0.967
ATS 187.7 0.336 -0.905
ATS/9r 179.1 0.136 -0.720
상기 표 1에 나타난 바와 같이, 펩타이드가 도입된 경우 도입되지 않은 마이셀(마이셀 A. Non)에 비하여 나노입자의 크기가 커짐을 확할 수 있다. 또한, 펩타이드 도입에 의해 표면 전하 올라가는 것을 확인할 수 있다.
실험예 4. 폴리에틸렌 글리콜 유도체의 기체 발생 확인
실시예 1의 (1)에서 제조된 폴리에틸렌 글리콜 유도체에서의 기체 발생을 확인하였고, 이는 NMR 분석을 통해 확인하였다. 구체적으로, mPEG 5000 및 폴리에틸렌 글리콜 유도체의 NMR을 측정했으며, 상기 유도체를 수용성 용액에 보관 후 24 시간 후 NMR을 재측정하였다.
상기 기체 발생에 대해 NMR을 이용하여 분석한 결과, mPEG 5000의 하이드록실기의 신호(-OH score)가 유도체 합성 후 사라지는 것을 확인할 수 있으며, (4.56 ppm) 수용성 용액에 보관 후 재측정시 4.56 ppm 근방에서 하이드록실기의 신호가 다시 회복되는 것을 확인할 수 있다. 이를 통해 유도체에서의 기체 발생을 확인할 수 있다(도 7).
실험예 5. 폴리에틸렌 글리콜 유도체의의 기체 발생 속도 확인
실시예 1의 (1)에서 제조된 폴리에틸렌 글리콜 유도체에서의 기체 발생 속도를 확인하였고, 이는 초음파 기기(SONON 300L)를 통해 확인하였다. 구체적으로, mPEG 2000-Butylcarbonate, mPEG 2000-Octylcarbonate, mPEG 5000-Butylcarbonate 및 mPEG 5000-Octylcarbonate의 4 종류의 폴리에틸렌 글리콜 유도체의 N기체 발생 속도를 확인하였다.
상기 기체 발생 속도에 대해 초음파 기기를 이용하여 분석한 결과, 마이셀을 구성하는 유도체의 종류에 따라 기체 발생속도가 다르며, mPEG 5000-Octylcarbonate로 구성된 마이셀이 가장 높은 안정성을 보이는 것을 확인할 수 있다(도 8).
또한, 높은 안정성을 보이는 mPEG 5000-Octylcarbonate로 구성된 마이셀의 기체 발생을 현광 현미경을 이용하여 확인하였다.
현광 현미경을 이용하여 확인한 결과, 마이셀에서 기체가 안정적으로 방출되는 것을 확인할 수 있다(도 9).
실험예 6. 폴리에틸렌 글리콜 유도체의 세포독성 분석
폴리에틸렌 글리콜 유도체의 세포독성을 분석하였으며, 이는 MTS assay 방식에 따라 수행하였다.
3T3-l1 세포를 96-well 플레이트에 2x10 3 cell/plate로 배양 혹은 분화시키고, 마이셀의 농도를 0.5 mg/ml ~ 5 mg/ml로 처리하였다. 그 후, 37℃, 5% CO 2 하에서 24 시간동안 배양하였다. 배양된 세포를 PBS를 이용하여 1회 세척하고, MTS 용액을 1시간 처리한 후, UV/VIS 분광기를 통하여 490 nm에서 흡광도 분석을 진행하여 세포 독성을 확인하였다.
그 결과를 도 10에 나타내었다.
상기 도 10에 나타난 바와 같이, 본 발명의 실시예 1의 (1)에서 제조된 폴리에틸렌 글리콜-알킬카보네이트(mPEG 5000-Octylcarbonate)를 지방세포 분화 전과 분화 후 세포에 처리한 결과, 독성이 거의 없는 것을 확인할 수 있다.
실험예 7. 펩타이드가 도입된 마이셀의 지방세포 사멸능 분석
펩타이드(r9 펩타이드 또는 ATS 펩타이드)가 도입된 폴리에틸렌 글리콜 유도체를 사용하여 제조된 마이셀에 대하여, 펩타이드의 농도에 따른 지방세포 사멸능을 분석하였다. 이때, 펩타이드의 도입량은 전체 유도체 중량(무게) 대비 0% 내지 4%로 하였다.
상기 사멸능은 MTS assay 방식을 따라 수행하였다.
3T3-l1 세포를 96-well 플레이트에 2x10 3 cell/plate로 분주 후, 2 내지 3 주간 분화를 진행하였다. 그 후 유도체의 농도는 0.2 wt%로 하여 처리하고, 24 시간 뒤 PBS를 이용하여 1회 세척하였다. MTS 용액 처리후 1시간 뒤 흡광도를 분석하였다(실험예 6과 같은 방식으로 분석).
그 결과를 도 11에 나타내었다.
도 11에 나타난 바와 같이, 펩타이드의 도입량에 따라 경향성 있는 세포 사멸효과가 나타남을 확인할 수 있다. 다만, r9 펩타이드의 경우, 도입량이 4%일 경우 세포 사멸 효과가 저해되는 것으로 나타났다.
이를 통해, 지방세포 사멸을 위한 마이셀 제조에 있어 적정 펩타이드 도입 유도체의 농도는 기본 유도체의 중량 대비 1% 내지 3%임을 확인할 수 있다.
실험예 8. 펩타이드 조합 및 마이셀 농도에 따른 지방세포 사멸능
실시예 1의 (3)에서 제조된 마이셀 A 내지 D에 대하여, 상기 마이셀을 0.1 내지 0.3wt% 농도로 처리하여 세포 사멸능을 평가하였다.
이때, ATS는 지방세포 타겟을 위함이며, 9r 세포내 침투를 위한 펩타이드로 이용하였다.
그 결과를 도 12에 나타내었다. 상기 도 12에서 PEG 5000-octylcarbonate micells는 마이셀 A를, r9-PEG 5000-octylcarbonate micells는 마이셀 B를, ATS-PEG 5000-octylcarbonate micells는 마이셀 C를, ATS-r9-PEG 5000-octylcarbonate micells는 마이셀 D를 나타낸다.
도 12에 나타난 바와 같이, 펩타이드가 도입되지 않은 마이셀 A의 경우 90% 이상의 세포 생존율을 보였다.
반면, 펩타이드가 도입된 마이셀은 농도가 높아짐에 따라 세포 사멸효과가 증가함을 확인할 수 있다. 특히, 마이셀 D의 경우, 0.3 wt%에서 가장 높은 사멸 결과를 보이는 것을 확인할 수 있다.
실험예 9. 펩타이드 효능 확인
실시예 1의 (3)에서 제조된 마이셀 A 내지 D에 대하여, 다양한 세포(fibroblast, myoblast, adipocyte)에서 상기 마이셀의 표적지향 효능을 평가하였다.
그 결과를 도 13에 나타내었다. 상기 도 13에서 Control는 마이셀 A를, r9는 마이셀 B를, ATS는 마이셀 C를, ATS/r9 는 마이셀 D를 나타낸다.
도 13에 나타난 바와 같이, r9 펩타이드는 세포의 종류와 상관없이 세포 사멸율은 비슷한 경향을 보였으며, ATS 펩타이드의 경우 지방세포에서 타 세포에 비해 높은 사멸율을 가지는 것을 확인할 수 있다. ATS/r9의 경우, 지방세포에서 타 세포에 비해 높은 사멸율을 가지며, 지방세포에서 ATS 및 r9을 단독 사용할 경우보다 우수한 세포 사멸율을 가지는 것을 확인할 수 있다.
본 발명에 따른 지방 감소용 기체 발포형 마이셀은 주사 가능한 제제로 제작가능하고, 다이어트 미용 분야 및 비만치료제 분야에 적용되어 국소 지방의 사멸을 통해 국소 지방을 분해하는 국소 지방 분해 보완재, 제형 교정제 또는 다이어트 미용 제품 등으로 사용될 수 있다.

Claims (12)

  1. 하기 화학식 1로 표현되는 화합물을 포함하며,
    상기 화합물의 가수분해에 의해 발생된 이산화탄소에 의해 지방세포가 파괴되는
    지방 감소용 기체 발포형 마이셀:
    [화학식 1]
    Figure PCTKR2020019197-appb-img-000014
    상기 화학식 1에서,
    p는 12 내지 227의 정수이고,
    q는 2 내지 14의 정수이며
    n은 0 내지 5의 정수이고,
    L은 지방세포 표적 서열(ATS) 펩타이드 또는 r9(arginine) 펩타이드이다.
  2. 제1항에 있어서,
    마이셀은 직경이 150 내지 500 nm인 지방 감소용 기체 발포형 마이셀.
  3. 제1항에 있어서,
    화학식 1로 표현되는 화합물은 하기 화학식 2로 표현되는 화합물인 지방 감소용 기체 발포형 마이셀.
    [화학식 2]
    Figure PCTKR2020019197-appb-img-000015
  4. 제1항에 있어서,
    화학식 1로 표현되는 화합물은 하기 화학식 3으로 표현되는 화합물인 지방 감소용 기체 발포형 마이셀.
    [화학식 3]
    Figure PCTKR2020019197-appb-img-000016
  5. 폴리에틸렌 글리콜(polyethylene glycol) 및 알킬 클로로포메이트(alkyl chloroformate)를 혼합하여 화학식 4로 표현되는 화합물인 폴리에틸렌 글리콜 유도체를 합성하는 단계;
    상기 폴리에틸렌 글리콜 유도체에 지방세포 표적 서열(ATS) 펩타이드 및 r9(arginine) 펩타이드로 이루어진 그룹으로부터 선택된 하나 이상의 펩타이드를 결합시켜 펩타이드가 결합된 폴리에틸렌 글리콜 유도체를 합성하는 단계; 및
    상기 폴리에틸렌 글리콜 유도체 및 상기 펩타이드가 결합된 폴리에틸렌 글리콜 유도체를 아세토니트릴, 메틸렌 클로라이드, 클로로포름 및 메탄올에서 선택되는 1종 또는 2종 이상의 혼합용매에 용해시킨 후 용매를 증발시켜 마이셀을 합성하는 단계;를 포함하는
    하기 화학식 1로 표현되는 화합물을 포함하는 지방 감소용 기체 발포형 마이셀의 제조방법:
    [화학식 4]
    Figure PCTKR2020019197-appb-img-000017
    [화학식 1]
    Figure PCTKR2020019197-appb-img-000018
    상기 화학식 1 또는 4에서,
    R 1은 수소, C1 내지 5의 알킬기, 아민기, C1 내지 5의 알킬아민기, 카르복실기 또는 C1 내지 5의 알킬카르복실기이고,
    p는 12 내지 227의 정수이며,
    q는 2 내지 14의 정수이고
    n은 0 내지 3의 정수이며,
    L은 지방세포 표적 서열(ATS) 펩타이드 또는 R9(arginine) 펩타이드이다.
  6. 제 5 항에 있어서,
    펩타이드가 결합된 폴리에틸렌 글리콜 유도체는 하기 화학식 2로 표현되는 화합물 및 하기 화학식 3으로 표현되는 화합물로 이루어진 그룹으로부터 선택된 하나 이상을 포함하는 것인 기체 발포형 마이셀 제조방법.
    [화학식 2]
    Figure PCTKR2020019197-appb-img-000019
    [화학식 3]
    Figure PCTKR2020019197-appb-img-000020
  7. 제5항에 있어서,
    혼합용매는 메틸렌 클로라이드와 아세토니트릴의 혼합용매이고,
    혼합비율은 3 내지 1 : 1 내지 3인 기체 발포형 마이셀 제조방법.
  8. 제5항에 있어서,
    폴리에틸렌 글리콜의 분자량(Mn)은 550 내지 10000인 기체 발포형 마이셀 제조방법.
  9. 제1항에 따른 지방 감소용 기체 발포형 마이셀을 포함하는 지방 감소용 조성물.
  10. 제9항에 있어서,
    지방 감소용 조성물은 하기 화학식 2로 표현되는 화합물 및 하기 화학식 3으로 표현되는 화합물로 이루어진 그룹으로부터 선택된 하나 이상의 화합물; 및 하기 화학식 4로 표현되는 화합물을 포함하는 기체 발포형 마이셀을 포함하는 것인 지방 감소용 조성물:
    [화학식 2]
    Figure PCTKR2020019197-appb-img-000021
    [화학식 3]
    Figure PCTKR2020019197-appb-img-000022
    [화학식 4]
    Figure PCTKR2020019197-appb-img-000023
    상기 화학식 2 내지 4에서,
    R 1은 수소, C1 내지 3의 알킬기, 아민기, C1 내지 3의 알킬아민기, 카르복실기 또는 C1 내지 3의 알킬카르복실기이고,
    p는 12 내지 227의 정수이며,
    q는 2 내지 14의 정수이다.
  11. 제10항에 있어서,
    지방 감소용 조성물이 화학식 2로 표현되는 화합물 및 화학식 4로 표현되는 화합물을 포함하는 기체 발포형 마이셀을 포함하는 경우, 화학식 2로 표현되는 화합물 및 화학식 4로 표현되는 화합물의 몰 비율은 99.5:0.5 내지 95.0:5.0이고,
    지방 감소용 조성물이 화학식 3으로 표현되는 화합물 및 화학식 4로 표현되는 화합물을 포함하는 기체 발포형 마이셀을 포함하는 경우, 화학식 3으로 표현되는 화합물 및 화학식 4로 표현되는 화합물의 몰 비율은 99.5:0.5 내지 95.0:5.0이며,
    지방 감소용 조성물이 화학식 2로 표현되는 화합물, 화학식 3으로 표현되는 화합물 및 화학식 4로 표현되는 화합물을 포함하는 기체 발포형 마이셀을 포함하는 경우, 화학식 2로 표현되는 화합물, 화학식 3으로 표현되는 화합물 및 화학식 4로 표현되는 화합물의 몰 비율은 99:0.5:0.5 내지 90.0:5.0:5.0인 것인 지방 감소용 조성물
  12. 제9항에 있어서,
    국소 또는 정맥 주사용으로 사용되는 것인 지방 감소용 조성물.
PCT/KR2020/019197 2020-01-15 2020-12-28 국소 지방 감소용 기체 발포형 마이셀 WO2021145586A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20914157.1A EP4091602A4 (en) 2020-01-15 2020-12-28 GAS GENERATING MICELLE FOR REDUCING LOCAL FAT
CN202080093166.6A CN115003285B (zh) 2020-01-15 2020-12-28 用于减少局部脂肪的气体发泡型胶束
AU2020422088A AU2020422088B2 (en) 2020-01-15 2020-12-28 Gas-generating micelle for reducing localized fat
US17/758,877 US20230096668A1 (en) 2020-01-15 2020-12-28 Gas-generating micelle for reducing localized fat
JP2022543134A JP7485405B2 (ja) 2020-01-15 2020-12-28 局所脂肪減少用気体発泡型ミセル
CA3163942A CA3163942A1 (en) 2020-01-15 2020-12-28 Gas-generating micelle for reducing localized fat
MX2022008595A MX2022008595A (es) 2020-01-15 2020-12-28 Micela generadora de gas para reducir grasa localizada.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0005470 2020-01-15
KR20200005470 2020-01-15

Publications (1)

Publication Number Publication Date
WO2021145586A1 true WO2021145586A1 (ko) 2021-07-22

Family

ID=76864551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019197 WO2021145586A1 (ko) 2020-01-15 2020-12-28 국소 지방 감소용 기체 발포형 마이셀

Country Status (9)

Country Link
US (1) US20230096668A1 (ko)
EP (1) EP4091602A4 (ko)
JP (1) JP7485405B2 (ko)
KR (1) KR20210092131A (ko)
CN (1) CN115003285B (ko)
AU (1) AU2020422088B2 (ko)
CA (1) CA3163942A1 (ko)
MX (1) MX2022008595A (ko)
WO (1) WO2021145586A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270865A1 (ko) * 2021-06-24 2022-12-29 한양대학교 산학협력단 이산화탄소 발생형 나노소재

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772961B1 (ko) 2006-08-07 2007-11-02 (주)엠큐어 메조테라피/카복시테라피 시술용 복합기
KR20110075054A (ko) * 2008-07-29 2011-07-05 나노캬리아 가부시키가이샤 약물 내포 액티브 타겟형 고분자 미셀, 의약 조성물
KR20110119640A (ko) 2008-12-22 2011-11-02 마이오우사이언스, 인크. 냉매 공급원과 전원이 통합된 한랭수술 시스템
JP2014510758A (ja) * 2011-03-30 2014-05-01 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム ほ乳類において脂肪細胞を標的とするための方法および組成物
US20150359751A1 (en) * 2014-06-13 2015-12-17 Industry-University Cooperation Foundation, Hanyang University Gas-generating nanoparticle
KR20180107745A (ko) * 2017-03-22 2018-10-02 한양대학교 산학협력단 기체 발포형 마이셀 및 이의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447901B1 (ko) * 2013-04-16 2014-10-16 한양대학교 산학협력단 지방세포 표적 비바이러스성 유전자 전달체
KR101494193B1 (ko) * 2013-08-23 2015-02-23 (주)대성정밀 지방분해 복합 시술장치
US10869941B2 (en) * 2017-03-22 2020-12-22 Industry-University Cooperation Gas-generating polymer micells and manufacturing method of the same
KR102112702B1 (ko) * 2019-12-19 2020-05-19 (주)슈퍼노바 바이오 표면 개질된 가스-생성 나노입자를 이용한 지방 분해용 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772961B1 (ko) 2006-08-07 2007-11-02 (주)엠큐어 메조테라피/카복시테라피 시술용 복합기
KR20110075054A (ko) * 2008-07-29 2011-07-05 나노캬리아 가부시키가이샤 약물 내포 액티브 타겟형 고분자 미셀, 의약 조성물
KR20110119640A (ko) 2008-12-22 2011-11-02 마이오우사이언스, 인크. 냉매 공급원과 전원이 통합된 한랭수술 시스템
JP2014510758A (ja) * 2011-03-30 2014-05-01 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム ほ乳類において脂肪細胞を標的とするための方法および組成物
US20150359751A1 (en) * 2014-06-13 2015-12-17 Industry-University Cooperation Foundation, Hanyang University Gas-generating nanoparticle
KR20180107745A (ko) * 2017-03-22 2018-10-02 한양대학교 산학협력단 기체 발포형 마이셀 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE JUNG OK, KIM DONGIN, KWAG DONG SUP, LEE UNG YEOL, OH KYUNG TAEK, YOUN YU SEOK, OH YOUNG TAIK, PARK JIN WOO, LEE EUN SEONG: "Gas-forming poly(ethylene glycol)- b -poly(L-lactic acid) micelles : GAS-FORMING MICELLES", POLYMERS FOR ADVANCED TECHNOLOGIES, vol. 24, no. 6, 1 June 2013 (2013-06-01), GB, pages 551 - 556, XP055828664, ISSN: 1042-7147, DOI: 10.1002/pat.3116 *
See also references of EP4091602A4

Also Published As

Publication number Publication date
CN115003285B (zh) 2024-05-14
KR20210092131A (ko) 2021-07-23
EP4091602A4 (en) 2024-03-06
JP7485405B2 (ja) 2024-05-16
EP4091602A1 (en) 2022-11-23
JP2023510896A (ja) 2023-03-15
MX2022008595A (es) 2022-08-10
AU2020422088B2 (en) 2024-02-01
AU2020422088A1 (en) 2022-07-28
US20230096668A1 (en) 2023-03-30
CA3163942A1 (en) 2021-07-22
CN115003285A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2018128360A1 (ko) 암 및 피부질환 치료를 위한 생체 적합성 광열용 조성물
WO2012008722A2 (ko) 조직 증강용 충전 조성물
WO2021145586A1 (ko) 국소 지방 감소용 기체 발포형 마이셀
WO2020226348A1 (ko) 신규한 금속 층상수산화물 복합체 및 이의 제조방법
WO2016159734A1 (ko) 카테콜 기 및 산화된 카테콜 기가 도입되어 가교된 키토산으로 코팅된 무출혈 주사바늘
KR20190038579A (ko) 개선된 물리화학적 특성을 갖는 자기 안정화 링커를 구비한 약물 접합체
WO2017188731A1 (ko) 경구 투여용 유전자 전달을 위한 나노입자 및 이를 포함하는 약학 조성물
WO2020222461A1 (ko) 면역항암 보조제
WO2021194298A1 (ko) 약물 이합체를 포함하는 나노입자 및 이의 용도
WO2020096318A1 (ko) pH 민감성 탄소 나노입자, 이의 제조방법 및 이를 이용한 약물전달
WO2024025396A1 (ko) 신규 오리스타틴 전구약물
WO2021201654A1 (ko) Glp-2 유도체 또는 이의 지속형 결합체를 포함하는 방사선요법, 화학요법, 또는 이들의 조합으로 유발된 점막염의 예방 또는 치료용 약학적 조성물
WO2015137777A1 (ko) 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
WO2022270865A1 (ko) 이산화탄소 발생형 나노소재
WO2023136688A1 (ko) 생분해성 이황화 결합을 포함하는 이온화 가능한 지질 및 이를 포함하는 지질나노입자
WO2019088378A1 (en) Lipolytic composition containing phosphocholine derivatives
WO2021206428A1 (ko) 로즈마린산 유도체, 로즈마린산-유래 입자 및 이를 포함하는 염증성 질환 치료용 조성물
WO2022164204A1 (en) Liquid formulation of protein and methods of preparing the same
WO2020080912A1 (ko) 치료 효능을 개선한 핵산 변형체 및 이를 포함하는 항암용 약학 조성물
WO2022177151A1 (ko) 일산화질소 감응성 하이드로겔
WO2020085734A1 (ko) 히알루론산 말단의 알데하이드 그룹을 이용하여 제조한 약물 접합체
WO2024111844A1 (ko) 암 표적 펩티드, 이를 포함하는 전구약물 나노입자 및 이를 포함하는 암 예방 또는 치료용 약학적 조성물
WO2022169329A1 (ko) 초음파 감응성 리포좀을 유효성분으로 포함하는 혈액-뇌 장벽 투과용 조성물
WO2023080364A1 (ko) 실리콘 고분자 화합물 및 이를 포함하는 경피 전달 시스템
WO2024107038A1 (ko) 에틸 페닐알라닌 아미도 콜라겐 및 이를 포함하는 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163942

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022543134

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020422088

Country of ref document: AU

Date of ref document: 20201228

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020914157

Country of ref document: EP

Effective date: 20220816