WO2021145300A1 - 無電解めっきプロセス及び二層めっき皮膜 - Google Patents

無電解めっきプロセス及び二層めっき皮膜 Download PDF

Info

Publication number
WO2021145300A1
WO2021145300A1 PCT/JP2021/000623 JP2021000623W WO2021145300A1 WO 2021145300 A1 WO2021145300 A1 WO 2021145300A1 JP 2021000623 W JP2021000623 W JP 2021000623W WO 2021145300 A1 WO2021145300 A1 WO 2021145300A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
plating
plating film
electroless
gold
Prior art date
Application number
PCT/JP2021/000623
Other languages
English (en)
French (fr)
Inventor
秀人 渡邊
友人 加藤
Original Assignee
小島化学薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小島化学薬品株式会社 filed Critical 小島化学薬品株式会社
Priority to US17/792,643 priority Critical patent/US20230050310A1/en
Priority to EP21740992.9A priority patent/EP4092157A4/en
Priority to KR1020227023880A priority patent/KR20220114034A/ko
Priority to CN202180007857.4A priority patent/CN114901867A/zh
Publication of WO2021145300A1 publication Critical patent/WO2021145300A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12889Au-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • the present invention relates to an electroless plating process for forming a gold plating film on the surface of a copper material by an electroless plating method, and a two-layer plating film.
  • a printed wiring board such as a resin substrate and a ceramic substrate for mounting these electronic components is required to be mounted at a higher density. Therefore, the wiring pattern on the printed wiring board is being miniaturized, and the advanced mounting technology of electronic components is required with the miniaturization of the wiring pattern.
  • mounting technology using solder or wire bonding has been established as a technology for mounting electronic components and terminal components on a printed wiring board.
  • the wiring pad which is the component mounting portion of the wiring pattern on the printed wiring board, is plated as a surface treatment.
  • a plating process there is a technique in which nickel plating and replacement gold plating are sequentially performed after a palladium catalyst is attached to a wiring pattern formed of copper having low electrical resistance.
  • nickel plating, palladium plating, and gold plating are sequentially performed after attaching a palladium catalyst.
  • This nickel plating film prevents erosion of copper wiring by solder.
  • the palladium plating film is for preventing the nickel constituting the nickel plating film from diffusing into the gold plating film.
  • the gold plating film is provided in order to obtain good solder wetting characteristics while achieving low electrical resistance.
  • Patent Document 1 discloses a plating method by a step of performing degreasing, etching, palladium catalyst addition, electroless nickel plating, electroless palladium plating, and electroless gold plating. ..
  • a palladium catalyst is applied before the formation of the electroless nickel plating film.
  • the addition of the palladium catalyst is generally a necessary step for forming an electroless nickel plating film on the surface of the copper material.
  • the palladium catalyst not only acts on the precipitation of nickel on the surface of the copper material, but also the palladium catalyst that tends to remain in the insulating region between the wiring patterns causes nickel to precipitate in the inter-circuit gap of the wiring pattern. There's a problem. When such a phenomenon occurs, there is a tendency that a problem that good plating on a fine wiring pattern cannot be performed occurs.
  • the electroless plating process according to the present invention it is possible to plate a fine wiring pattern, and it is possible to suppress the manufacturing cost in obtaining a plating film having various excellent solder mounting characteristics and wire bonding characteristics. It is an object of the present invention to provide an electroless plating process.
  • the electroless plating process according to the present invention is an electroless plating process in which a nickel plating film and a gold plating film are sequentially deposited on the surface of a copper material by an electroless plating method, and is a reduction electroless nickel strike plating method. It is characterized by including a step of forming a nickel plating film containing boron and a step of forming a gold plating film by a reduction electroless gold plating method.
  • the two-layer plating film according to the present invention is a two-layer plating film formed by the above-mentioned electroless plating process, and is characterized in that it is composed of a boron-containing nickel plating film and a gold plating film. ..
  • the electroless plating process according to the present invention is an electroless plating process in which a nickel plating film and a gold plating film are sequentially deposited on the surface of a copper material by an electroless plating method, and is a reduction electroless nickel strike plating method. It includes a step of forming a nickel plating film containing boron and a step of forming a gold plating film by a reduction electroless gold plating method. That is, since the nickel plating film can be directly formed on the surface of the copper material without applying the palladium catalyst, it is possible to plate the fine wiring pattern.
  • the reduction electroless gold plating method it is possible to suppress local corrosion of nickel and form a gold plating film on the surface of the nickel plating film without providing a palladium plating film, so that the cost of the plating film can be suppressed. It can be manufactured.
  • the two-layer plating film according to the present invention is a two-layer plating film composed of a nickel plating film containing boron and a gold plating film, and by containing boron in the nickel plating film, the gold plating film of copper can be obtained. It has various excellent solder mounting characteristics and wire bonding characteristics without suppressing diffusion and increasing the thickness of the gold plating film.
  • an electroless plating process for forming a two-layer plating film according to the present invention in which nickel plating is performed on the surface of a copper material by a reduction electroless nickel strike plating method without using a palladium catalyst.
  • This is an electroless plating process including a step of forming a film and a step of forming a gold plating film by a reduction electroless gold plating method.
  • a process of forming a two-layer plating film according to the present invention by forming a nickel plating film 13 and a gold plating film 14 on the surface of a copper material in order will be described.
  • FIG. 1 shows a flowchart of the electroless plating process of this embodiment.
  • a degreasing step (S1), an etching step (S2), and a smut removing step (S3) are performed as pretreatments before forming a nickel plating film.
  • the nickel plating film 13 is formed on the surface of the copper material by the reduction type electroless nickel strike plating step (S4).
  • the gold plating film 14 is formed by the reduction type electroless gold plating step (S5).
  • a washing process is performed. The water washing treatment is preferably performed three times.
  • Embodiment of the degreasing step (S1) In the degreasing step (S1), pollutants, oils and fats and the like adhering to the surface of the copper material are removed by immersing the copper material in an acidic solution.
  • Embodiment of the etching step (S2) In the etching step (S2), the copper material subjected to the degreasing step (S1) is immersed in a persulfuric acid-based, hydrogen peroxide-based, thiol-based etching solution or the like to obtain the copper material. Removes excess copper oxide film formed on the surface of the etching film.
  • the smut (S3) the smut (Smat) adhering to the surface of the copper material is obtained by immersing the copper material subjected to the etching step (S2) in, for example, 10% sulfuric acid. The components that remain on the surface during the etching process) are removed.
  • Embodiment of the reducing electroless nickel strike plating step (S4) In the reducing electroless nickel strike plating step (S4), a water-soluble nickel salt of 0.002 g / L or more and 1 g / L or less in terms of nickel and a carboxylic acid or The salt and "one or more reducing agents selected from the group of dimethylamine borane, trimethylamine borane, and sodium borohydride" are included, and the pH is 6.0 or more and pH 10.0 or less, and the bath temperature is 20 ° C or more and 55 ° C. The reducing electroless nickel strike plating solution adjusted below is used.
  • a nickel plating film is formed on the surface of the copper material by immersing the copper material subjected to the smut removal step (S3) in the reduction electroless nickel strike plating solution. 13 is to be formed.
  • Reduction-type electroless nickel-strike plating solution The reduction-type electroless nickel-strike plating solution is prepared by mixing a water-soluble nickel salt and a carboxylic acid or a salt thereof and water to prepare an aqueous solution containing a nickel complex, and then using this aqueous solution. It is prepared by mixing a reducing agent with and stirring the mixture.
  • the reducing agent contains one or more selected from the group of dimethylamine borane, trimethylamine borane, and sodium borohydride.
  • the reducing agent contains boron in the nickel plating film formed by containing one or more selected from the group of dimethylamine borane, trimethylamine borane, and sodium borohydride.
  • Water-soluble nickel salt As the water-soluble nickel salt used in the reduced electrolytic non-electrolytic nickel strike plating solution, for example, nickel sulfate, nickel chloride, nickel carbonate, nickel acetate, nickel hypophosphite, nickel sulfamate, nickel citrate and other organic acids are used. Can be mentioned. These may be used alone or in combination of two or more. In the present invention, it is most preferable to use nickel sulfate hexahydrate as the water-soluble nickel salt.
  • the water-soluble nickel salt contained in the reduced electroless nickel strike plating solution is preferably 0.002 g / L or more and 1 g / L or less in terms of nickel.
  • the reduced electroless nickel strike plating solution realizes the electroless nickel strike plating method on the surface of the copper material to which the palladium catalyst is not applied.
  • a nickel plating film can be directly formed.
  • the content of the water-soluble nickel salt (nickel equivalent) is less than 0.002 g / L, the precipitation rate becomes excessively slow, so it is necessary to lengthen the immersion time in order to obtain a nickel plating film of a desired film thickness. Therefore, it is not preferable because the industrial productivity cannot be satisfied.
  • the content of the water-soluble nickel salt (nickel equivalent) exceeds 1 g / L, the precipitation rate becomes excessively high, and the nickel plating film 13 having a uniform surface may not be obtained, which is not preferable.
  • the content of the water-soluble nickel salt (in terms of nickel) is more preferably 0.01 g / L or more and 0.5 g / L or less in consideration of the nickel precipitation rate, and the nickel precipitation rate and a uniform precipitation surface can be stably obtained. From this viewpoint, 0.03 g / L or more and 0.1 g / L or less is most preferable.
  • Carboxylic acid or its salt contains a carboxylic acid or a salt thereof. These are complexing agents and also act as pH regulators.
  • carboxylic acids include monocarboxylic acids (gilic acid, acetic acid, propionic acid, butylic acid, etc.), dicarboxylic acids (oxalic acid, malonic acid, succinic acid, gluconic acid, adipic acid, fumaric acid, maleic acid, succinic acid, etc.), Tricarboxylic acid (aconytic acid, etc.), hydroxycarboxylic acid (citrate, lactic acid, malic acid, etc.), aromatic carboxylic acid (benzoic acid, phthalic acid, salicylic acid, etc.), oxocarboxylic acid (pyrubic acid, etc.), and amino acids (arginine) , Asparagin, aspartic acid, cysteine, glutamic acid, glycine, etc.) can be used.
  • the total content of the carboxylic acid or its salt is preferably 0.5 g / L or more and 5 g / L or less, and more preferably 0.8 g / L or more and 2 g / L or less from the viewpoint of solution stability.
  • the reduced electroless nickel strike plating solution of the present embodiment has a low content of carboxylic acid or a salt thereof.
  • the content of carboxylic acid or its salt depends on the type, if the content is less than 0.5 g / L, it does not sufficiently act as a complexing agent and nickel ions in the reduced electroless nickel strike plating solution are complexed. However, it is not stable and precipitation may occur, which is not preferable.
  • even if the content of the carboxylic acid or a salt thereof exceeds 5 g / L not only a special effect cannot be obtained, but also resources are wasted, which is not preferable.
  • the reduced electroless nickel strike plating solution contains one or more reducing agents selected from the group of dimethylamine borane, trimethylamine borane, and sodium borohydride.
  • the reduced electroless nickel strike plating solution according to the present application can realize nickel precipitation on the surface of a copper material to which a palladium catalyst is not applied by using these substances as a reducing agent.
  • the reducing agent is preferably used in an amount of 2 g / L or more and 10 g / L or less, and more preferably 4 g / L or more and 8 g / L or less. If the content of the reducing agent is less than 2 g / L, a sufficient reducing action cannot be obtained and nickel precipitation on the copper surface may not proceed, which is not preferable. If the content of the reducing agent exceeds 10 g / L, nickel may be deposited on a surface other than copper such as an insulating base material (selective precipitation on the circuit may be deteriorated), or a reduced electroless nickel strike plating solution may be used. Decomposition may occur and the concentration stability may be impaired, which is not preferable.
  • the reduced electroless nickel strike plating solution is prepared by mixing the above-mentioned components with water and stirring to dissolve them.
  • the water-soluble nickel salt, the carboxylic acid or a salt thereof, and water are mixed and stirred. Therefore, it is more preferable that the solution is prepared by preparing an aqueous solution containing a nickel complex, then mixing the reducing agent with the aqueous solution and stirring the mixture.
  • the nickel complex can be stably present for a long period of time, and excellent solution stability can be obtained.
  • the reduced electroless nickel strike plating solution may contain components such as sulfate, boric acid, and chloride salts in addition to the components described above.
  • the reduction electroless nickel strike plating solution is preferably adjusted to a neutral region having a pH of 6.0 or more and a pH of 10.0 or less.
  • the pH is less than 6, the nickel deposition rate is lowered, the film forming property of the nickel plating film 13 is lowered, and precipitation defects such as holes and recesses (holes) may occur on the surface of the nickel plating film, which is preferable. do not have.
  • the pH exceeds 10
  • the nickel precipitation rate becomes excessively high, making it difficult to control the film thickness of the nickel plating film 13, and the crystal state of the precipitated nickel may not be densified, which is not preferable.
  • the bath temperature of the reduced electroless nickel strike plating solution is preferably adjusted to 20 ° C. or higher and 55 ° C. or lower.
  • the bath temperature is less than 20 ° C., the nickel precipitation rate decreases and the film forming property of the nickel plating film 13 deteriorates, and holes and recesses (holes) are formed on the surface of the nickel plating film 13 or nickel is not deposited. May occur, which is not preferable.
  • the bath temperature exceeds 55 ° C., the solution stability of the electroless nickel strike plating solution is lowered and the solution life is shortened, which is not preferable.
  • the nickel precipitation rate is appropriate. Therefore, the nickel plating film 13 can be directly formed on the surface of the copper material by the reduction electroless nickel strike plating method. At this time, since the nickel precipitation rate is appropriate, nickel can be uniformly deposited on the surface of the copper material. As a result, since the film thickness is uniform, the nickel plating film 13 that reliably covers the surface of the copper material can be formed even if the film thickness is thin.
  • the obtained nickel plating film 13 has an excellent barrier property of preventing the diffusion of copper as compared with the nickel plating film obtained by the conventional electroless plating process.
  • the content of the water-soluble nickel salt (nickel equivalent) in the reduction electroless nickel strike plating solution is as low as 0.002 g / L or more and 1 g / L or less. , It is possible to prevent the decomposition of the reduced electroless nickel strike plating solution from occurring. Further, since the reduced electroless nickel strike plating solution does not contain stabilizers such as lead salt and bismuth salt, a nickel plating film containing no heavy metals such as lead and bismuth can be obtained.
  • Embodiment of the reduction type electroless gold plating step (S5) In the reduction type electroless gold plating step (S5) of this embodiment, a water-soluble gold compound, citric acid or citrate, ethylenediamine tetraacetic acid or ethylenediamine tetraacetic acid It contains a salt, hexamethylenetetramine, and "chain polyamine containing an alkyl group having 3 or more carbon atoms and an amino group having 3 or more carbon atoms", and has a pH of 7.0 or more and a pH of 9.0 or less, and a bath temperature of 40 ° C. or more and 90 ° C. or more.
  • Gold plating is performed by immersing a copper material in which a nickel plating film 13 is formed by an electroless nickel strike plating method in a reduction electroless gold plating solution using a reduction electroless gold plating solution adjusted to °C or less.
  • a reduction electroless gold plating method is used in which the film 14 is formed.
  • nickel may be eluted and through holes may be formed in the nickel plating film, so that the substitution type electroless plating method is not adopted.
  • Reduction-type electroless gold plating solution The reduced-type electroless gold plating solution of the present embodiment is used for forming a gold plating film 14 on the surface of an object to be plated, and is a water-soluble gold compound and citric acid or citric acid. It contains a salt, ethylenediamine tetraacetic acid or ethylenediamine tetraacetate, hexamethylenetetramine, and a chain polyamine containing an alkyl group having 3 or more carbon atoms and an amino group having 3 or more carbon atoms.
  • the water-soluble gold compound used in the reduced electroless gold plating solution of the present embodiment is a cyan-based gold salt or a non-cyanaceous gold salt as long as it is soluble in the plating solution and a predetermined concentration can be obtained.
  • Any water-soluble gold compound can be used.
  • Specific examples of the water-soluble gold compound of the cyanated gold salt include potassium gold cyanide, sodium gold cyanide, and ammonium gold cyanide.
  • gold chloride salt, gold sulfite, gold thiosulfate and the like can be exemplified. Of these, potassium gold cyanide is particularly preferable.
  • the water-soluble gold compound may be used alone or in combination of two or more. The water-soluble gold compound is not limited to the gold compounds exemplified here.
  • the concentration of the water-soluble gold compound in the reduced electroless gold plating solution of the present embodiment is preferably 0.0025 mol / L or more and 0.0075 mol / L or less. This is because if the concentration of the water-soluble gold compound is less than 0.0025 mol / L, the gold precipitation rate is slow and it is difficult to obtain the gold-plated film 14 having a desired film thickness. This is because if the concentration of the water-soluble gold compound exceeds 0.0075 mol / L, the stability of the plating solution may decrease, and it is economically disadvantageous.
  • Citric acid or citrate contains citric acid or citrate. These citric acids or citrates are used as complexing agents capable of forming a complex with gold ions.
  • the concentration of citric acid or citrate in the reduced electroless gold plating solution according to the present invention is preferably 0.05 mol / L or more and 0.15 mol / L or less. If the concentration of these citric acids or citrates used as the complexing agent is less than 0.05 mol / L, gold will precipitate in the plating solution and the solution stability will be inferior, which is more than 0.15 mol / L. In this case, the complex formation proceeds excessively, the gold precipitation rate decreases, and it is difficult to obtain the gold-plated film 14 having a desired film thickness.
  • Ethylenediaminetetraacetic acid (EDTA) or ethylenediaminetetraacetic acid contains ethylenediaminetetraacetic acid (EDTA) or ethylenediaminetetraacetic acid salt.
  • EDTA ethylenediaminetetraacetic acid
  • This ethylenediaminetetraacetic acid or ethylenediaminetetraacetic acid salt is a complexing agent used in combination with the above-mentioned citric acid or citrate.
  • the concentration of ethylenediaminetetraacetic acid or ethylenediaminetetraacetate in the reduced electroless gold plating solution is preferably 0.03 mol / L or more and 0.1 mol / L or less.
  • the concentration of ethylenediamine tetraacetic acid or ethylenediamine tetraacetate used as a complexing agent is less than 0.03 mol / L, gold will precipitate in the plating solution and the solution stability will be inferior. If it exceeds the limit, the complex formation proceeds excessively, the gold precipitation rate decreases, and it is difficult to obtain the gold-plated film 14 having a desired film thickness.
  • Hexamethylenetetramine The reduced electroless gold plating solution of the present embodiment contains hexamethylenetetramine.
  • the hexamethylenetetramine is used as a reducing agent that reduces gold ions in the plating solution to precipitate gold on the surface of the object to be plated.
  • the concentration of hexamethylenetetramine in the reduced electroless gold plating solution of the present embodiment is preferably 0.003 mol / L or more and 0.009 mol / L or less. If the concentration of hexamethylenetetramine is less than 0.003 mol / L, the gold precipitation rate is slow and it is difficult to obtain a gold-plated film 14 having a desired thickness. If it exceeds 0.009 mol / L, the reduction reaction proceeds rapidly. However, the gold salt in the plating solution may be abnormally precipitated, which is inferior in solution stability and economically disadvantageous.
  • the reduced electroless gold plating solution of the present embodiment contains a chain polyamine containing an alkyl group having 3 or more carbon atoms and an amino group having 3 or more carbon atoms.
  • the chain polyamine is an amine compound that acts as a reduction aid that assists in the reduction of gold ions in the plating solution.
  • the chain polyamine 3,3'-diamino-N-methyldipropylamine or N, N'-bis (3-aminopropyl) ethylenediamine is preferable. This is because it is particularly preferable from the viewpoint of the obtained plating film performance and economy.
  • the concentration of the chain polyamine in the reduced electroless gold plating solution of the present embodiment is preferably 0.02 mol / L or more and 0.06 mol / L or less.
  • concentration of the chain polyamine in the range of 0.02 mol / L or more and 0.06 mol / L or less, it is possible to maintain a high precipitation rate without affecting the film thickness of the underlying metal film. Further, it is possible to improve the circumstance of the gold plating film 14, and it is possible to thicken the gold plating film 14 by 0.2 ⁇ m or more. Further, the solution stability can be remarkably improved.
  • the reduced electroless gold plating solution of the present embodiment contains the above-mentioned water-soluble gold compound, citric acid or citrate, ethylenediaminetetraacetic acid or ethylenediaminetetraacetic acid salt, hexamethylenetetramine, and carbon number of 3 or more.
  • a precipitation accelerator may be contained. Examples of the precipitation accelerator used here include thallium compounds and lead compounds. It is preferable to use a thallium compound from the viewpoint of thickening the obtained gold plating film.
  • the concentration of the thallium compound as a precipitation accelerator in the reduced electroless gold plating solution of the present embodiment is preferably 1 mg / L or more and 10 mg / L or less. If the concentration of the thallium compound as a precipitation accelerator is less than 1 mg / L, it becomes difficult to thicken the gold plating film 14. Further, if the concentration of the thallium compound as the precipitation accelerator exceeds 10 mg / L, the film cannot be further thickened, which is economically disadvantageous.
  • the reduced electroless gold plating solution of the present embodiment can contain additives such as a pH adjuster, an antioxidant, a surfactant, and a brightener in addition to the above-mentioned essential components.
  • the pH adjuster is not particularly limited, and examples thereof include potassium hydroxide, sodium hydroxide, an aqueous ammonia solution, sulfuric acid, and phosphoric acid.
  • the reduced electroless gold plating solution of the present embodiment is preferably maintained at pH 7.0 or higher and pH 9.0 or lower by using a pH adjuster. When the pH of the reduced electroless gold plating solution is lower than 7.0, the plating solution is easily decomposed, and when the pH is higher than 9.0, the plating solution becomes too stable and the plating precipitation rate becomes slower. This is because it takes a lot of time to thicken the gold plating film.
  • the pH condition 7.0 or more and 9.0 or less, it is possible to perform a plating treatment for an object to be plated made of a material weak to alkali.
  • known additives such as antioxidants, surfactants and brighteners can be used.
  • the gold plating conditions using the reduced electroless gold plating solution of the present embodiment are not particularly limited, but the liquid temperature is preferably 40 ° C. or higher and 90 ° C. or lower, and is 75 from the viewpoint of gold precipitation rate and solution stability. It is particularly preferable that the temperature is °C or more and 85 °C or less.
  • the plating time is not particularly limited, but is preferably 1 minute or more and 2 hours or less, and particularly preferably 2 minutes or more and 1 hour or less.
  • the reduction-type electroless gold plating method of the present embodiment will be described.
  • the surface of the object to be plated is subjected to electroless gold plating treatment using any of the above-mentioned reduction type electroless gold plating solutions to form a gold plating film 14.
  • the plating treatment is performed by immersing the object to be plated in the electroless gold plating solution in the same manner as the usual reduction type electroless plating treatment method.
  • any of copper, gold, and nickel is present on the surface of the object to be treated.
  • the presence form may be any case.
  • gold cobalt can be mentioned.
  • Gold, nickel, copper, or an alloy containing these metals serves as a base metal for electroless gold plating in the present invention, and these metals or alloys are reduced contained in the above-mentioned reduction type electroless gold plating solution. It exerts a catalytic activity on hexamethylenetetramine as an agent.
  • a nickel plating film is directly formed on the surface of the copper material to which the palladium catalyst is not applied by the reduction type electroless nickel strike plating step (S4). Can be filmed. Further, even if the film thickness is thin, the surface of the copper material can be reliably coated, and by containing boron in nickel, a nickel plating film 13 having excellent barrier characteristics to the copper material can be formed. .. Therefore, it is possible to realize a thin film of the nickel plating film. Therefore, a two-layer plating film having excellent selective precipitation can be formed even on fine wiring without applying a palladium catalyst.
  • the thickness of the nickel plating film 13 can be reduced, a two-layer plating film having a thin overall film thickness can be obtained. Further, since the nickel plating film 13 having a uniform film thickness and excellent smoothness can be obtained by the reduction type electroless nickel strike plating step (S4), the gold plating film 14 formed on the nickel plating film 13 is also formed. Further, the film can be formed into a uniform film thickness, and a two-layer plating film having a small variation in film thickness can be formed. Furthermore, the nickel plating film formed by the electroless strike plating method has excellent adhesion to the copper material and also has excellent barrier properties of preventing the diffusion of copper, so that it is a two-layer plating film having excellent mounting characteristics. Can be formed. From having the above characteristics, it is possible to obtain a wiring pattern on a printed wiring board having excellent solder wettability, solder ball mounting characteristics, and wire bonding characteristics.
  • the gold plating film 14 is formed on the surface of the nickel plating film 13 without providing the palladium plating film, so that the nickel plating film 13 is formed. Even when the film thickness is 0.1 ⁇ m or less, the nickel local corrosion phenomenon does not occur.
  • Termination treatment of the electroless plating process of the present embodiment After the completion of the above-mentioned reduction type electroless gold plating step (S5), a water washing treatment is performed and the product is dried. As described above, by performing the electroless plating process shown in FIG. 2, a two-layer plating film can be formed on the surface of the copper material.
  • Embodiment of the two-layer plating film according to the present invention is a two-layer plating film formed by the above-mentioned electroless plating process, and is a nickel plating film containing boron and gold plating. It is preferably a two-layer plating film composed of a film.
  • embodiments of the two-layer plating film of the present embodiment will be described.
  • FIG. 2 shows a schematic cross-sectional view of the two-layer plating film of the present embodiment.
  • the substrate 11 is not particularly limited as long as it is for mounting electronic components and can form a wiring pattern
  • the rigid substrate includes a paper phenol substrate, a paper epoxy substrate, a glass composite substrate, a glass epoxy substrate, a fluororesin substrate, and ceramics. Examples include substrates.
  • a thin film such as polyimide or polyester can be used as a flexible substrate.
  • the means for forming the copper wiring 12 of the embodiment does not matter.
  • a typical example is that of photolithography, which is formed as follows. The resist material coated on the entire surface of the copper foil on the substrate 11 is irradiated with ultraviolet rays through an exposure film, and the resist in the unirradiated portion is removed with a solvent to leave copper as a wiring pattern. A resist pattern is formed on the foil. Then, the copper wiring 12 is formed by removing the copper foil in the portion where the resist pattern is not formed by etching.
  • the two-layer plating film of the present embodiment is a copper wiring when the copper wiring 12 formed as described above is a mounting portion pattern of electronic parts, terminal parts, etc. connected by soldering or bonding.
  • a nickel plating film 13 and a gold plating film 14 are provided in order on the surface of the twelve.
  • the film thickness of the nickel plating film 13 is preferably 0.005 ⁇ m or more and 0.05 ⁇ m or less. If the film thickness of the nickel plating film 13 is less than 0.005 ⁇ m, the solder mountability and the wire bonding characteristics are deteriorated, which is not preferable. If the film thickness of the nickel plating film 13 exceeds 0.05 ⁇ m, nickel precipitation occurs between the copper wirings, which is not preferable.
  • the film thickness of the gold plating film 14 is preferably 0.01 ⁇ m or more. When the film thickness of the gold plating film 14 is less than 0.01 ⁇ m, nickel in the nickel plating film diffuses into the gold plating film, which is not preferable.
  • the nickel plating film 13 contains boron.
  • the boron content in the nickel plating film 13 is preferably 0.01% by mass or more and 0.1% by mass or less.
  • the boron content is less than 0.01% by mass, it is not possible to sufficiently suppress the copper of the copper wiring 12 from diffusing toward the gold plating film 14 side.
  • the solder wettability, the solder ball mounting characteristics, and the wire bonding characteristics deteriorate. If the boron content exceeds 0.1% by mass, abnormal precipitation of nickel and decomposition of the nickel plating solution will occur in the plating solution, making it difficult to produce a plating film.
  • the two-layer plating film of the present embodiment suppresses the diffusion of copper into the gold plating film by containing boron in the nickel plating film 13, and has solder wettability without increasing the thickness of the gold plating film. , All of the solder ball mounting characteristics and the wire bonding characteristics are excellent.
  • a nickel plating film and a gold plating film were formed on the surface of the copper material in order by performing each of the steps S1 to S5 shown in FIG. 1 in order.
  • the degreasing step (S1), the etching step (S2), and the smut removing step (S3) described above were performed in this order, and then the reduction electroless nickel strike plating step (S4) was performed.
  • the copper material was immersed in a reduction electroless nickel strike plating solution having the following composition to form a nickel plating film on the surface of the copper material.
  • the reduced electrolytic non-electrolytic nickel strike plating solution is prepared by mixing nickel sulfate hexahydrate, DL-apple acid and water to prepare an aqueous solution containing a nickel complex, and then adding dimethylamine borane and stirring. Prepared. While the copper material was immersed in the electroless nickel strike plating solution, the electroless nickel strike plating solution was agitated by aeration.
  • a reduction type electroless gold plating step (S5) was performed.
  • the copper material on which the nickel plating film was formed was immersed in a reduced electroless gold plating solution having the following composition, and the gold plating film was formed on the surface of the nickel plating film.
  • a two-layer plating film composed of a nickel plating film containing boron and a gold plating film was formed on the surface of the copper material.
  • Comparative Example 1 The electroless plating process of Comparative Example 1 was carried out in the same manner as the electroless plating process of Example except that the electroless nickel strike plating step (S4) was not performed, so that a gold plating film was formed on the surface of the copper material. A film was formed.
  • the copper material from which the smut had been removed was immersed in a palladium catalyst solution containing a palladium compound of 30 mg / L in terms of palladium and sulfate ions, and a palladium catalyst was applied to the surface of the copper material.
  • the copper material on which the nickel plating film was formed was immersed in the substitution gold plating solution having the following composition, and the substitution gold plating film was formed on the surface of the nickel plating film.
  • Potassium gold cyanide 0.01 mol / L Ethylenediaminetetraacetic acid 0.03 mol / L Citric acid 0.15 mol / L Thallous acetate 50 mg / L pH 4.5 Bath temperature 80 °C
  • Comparative Example 4 The electroless plating process of Comparative Example 4 was carried out in the same manner as in Comparative Examples 2 and 3 except that the reduction mold plating was not performed.
  • Table 1 shows the film thickness of each plating film formed in Examples and Comparative Examples 1 to 4.
  • FIG. 3 shows an image of a cross section of an interface between a nickel plating film and a gold plating film in Example and Comparative Example 2 taken with a scanning electron microscope (SEM) at a magnification of 30,000.
  • FIG. 3A shows a cross-sectional image of an example. A nickel plating film (0.01 ⁇ m) that is so thin that it is difficult to see from FIG. 3A is provided between the copper material and the gold plating film. From this image, it was confirmed that the nickel plating film was a good plating film without local corrosion.
  • FIG. 3B shows a cross-sectional image of Comparative Example 2.
  • the nickel plating film had local corrosion that could be confirmed as a black streak image. From the above, it was confirmed that the electroless plating process of this example is a plating process capable of forming a high-quality plating film in which local corrosion of the nickel plating film is suppressed.
  • solder ball share strength Soldering was performed on the surfaces of the plating films of Example, Comparative Example 1 and Comparative Example 2, and then the solder ball share strength was measured.
  • the solder ball share strength was measured using a solder ball share tester manufactured by Daige Co., Ltd. (series 4000) at a share height of 20 ⁇ m and a share speed of 500 ⁇ m / sec, and the maximum value, minimum value, and average value were obtained. .. The results are shown in FIG.
  • the two-layer plating film formed by the electroless plating process of this example has excellent solder ball shear strength. This is because, as described above, the occurrence of local corrosion of the nickel plating film is suppressed, and the diffusion of copper into the gold plating film is suppressed by containing boron in the nickel plating film, so that the gold plating film is thickened. It was achieved without any problems. Subsequently, it was confirmed that the plating film in which only the reduction gold plating film was formed on the surface of the copper material in Comparative Example 1 also had the same solder ball share strength as in the examples. On the other hand, in Comparative Example 2, it was confirmed that the solder ball share strength was inferior due to the occurrence of local corrosion of the nickel plating film.
  • FIG. 5 shows the confirmation result of the solder ball breaking mode when the solder ball shear strength was measured. “100%” means that 100% of the solder remains on the plated surface of the copper wiring. “50% or more” means that 50% or more of the solder remains on the plated surface of the copper wiring. “Less than 50%” means that less than 50% of the solder remains on the plated surface of the copper wiring. “Interfacial fracture” is a state in which no solder remains on the plated surface of copper wiring. In Examples and Comparative Example 1 in which the solder ball share strength was good, fracture occurred in the solder portion, and 100% of the solder remained on the plated surface. That is, it was confirmed that the plating film was not destroyed and the plating film was strong.
  • the two-layer plating film formed by the electroless plating process of this embodiment is excellent in various types of solder. It was confirmed that it has mounting characteristics and wire bonding characteristics.
  • the electroless plating process according to the present invention it is possible to form a nickel plating film directly on the surface of the copper material without applying a palladium catalyst, so that it is possible to plate a fine wiring pattern. be. Furthermore, by the reduction electroless gold plating method, a gold plating film can be formed on the surface of the nickel plating film without providing a palladium plating film, so that the plating film can be manufactured at low cost. be.
  • the two-layer plating film according to the present invention is a two-layer plating film composed of a nickel plating film containing boron and a gold plating film, and by containing boron in the nickel plating film, the gold plating film of copper can be obtained. It has various excellent solder mounting characteristics and wire bonding characteristics without suppressing diffusion and increasing the thickness of the gold plating film.
  • the electroless plating process according to the present invention is a two-layer composed of a nickel plating film and a gold plating film, which can be plated on a fine wiring pattern and have excellent solder wettability, solder ball mounting characteristics, and wire bonding characteristics. Since it is possible to provide a plating film, it is suitable for a printed wiring board that requires high-density mounting due to miniaturization of electronic components to be mounted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

製造コストを抑制した無電解めっきプロセス、及びこのプロセスによって得られる二層めっき皮膜を提供することを目的とする。この目的を達成するため、銅材の表面に、無電解めっき法によってニッケルめっき皮膜と金めっき皮膜とを順に成膜する無電解めっきプロセスであって、還元型無電解ニッケルストライクめっき法によってホウ素を含有するニッケルめっき皮膜を成膜する工程と、還元型無電解金めっき法によって金めっき皮膜を成膜する工程とを備える無電解めっきプロセスを採用する。そして、本件発明にいう二層めっき皮膜は、このプロセスによって形成したものである。

Description

無電解めっきプロセス及び二層めっき皮膜
 本件発明は、無電解めっき法によって銅材の表面に金めっき皮膜を成膜する無電解めっきプロセス、及び二層めっき皮膜に関する。
 電子機器の高機能化や多機能化への要求に対応するため、実装する電子部品の小型化が進んでいる。そして、これらの電子部品を実装するための樹脂基板、セラミック基板等のプリント配線基板は、さらなる高密度実装が求められている。そのため、プリント配線基板上の配線パターンは微細化が進んでおり、配線パターンの微細化に伴って電子部品の高度な実装技術が要求されている。一般に、電子部品や端子部品をプリント配線基板へ実装する技術として、はんだやワイヤボンディングを用いた実装技術が確立している。
 ここで、部品とプリント配線基板上の配線パターンとの、実装時の実装信頼性を確保する目的で、プリント配線基板上の配線パターンの部品実装部分である配線パッドには、表面処理としてめっき処理が施されている。めっき処理としては、電気抵抗の低い銅により形成された配線パターン上に、パラジウム触媒を付した後、ニッケルめっきと置換型金めっきとを順次行う技術がある。また、パラジウム触媒を付した後、ニッケルめっきと、パラジウムめっきと、金めっきとを順次行う技術もある。このニッケルめっき皮膜は、はんだによる銅配線の浸食を防止するものである。そしてパラジウムめっき皮膜は、ニッケルめっき皮膜を構成するニッケルが金めっき皮膜へ拡散することを防止するためのものである。なお、金めっき皮膜は、低い電気抵抗を実現しつつ、良好なはんだの濡れ特性を得るために設けるものである。
 このようなめっき技術の一例として、例えば特許文献1には、脱脂、エッチング、パラジウム触媒付与、無電解ニッケルめっき、無電解パラジウムめっき、及び無電解金めっきを行う工程によるめっき方法が開示されている。
日本国公開特許公報「特開2008-174774号公報」
 しかしながら、特許文献1に開示のめっき方法では、無電解ニッケルめっき皮膜の形成の前にパラジウム触媒の付与を行っている。パラジウム触媒の付与は、一般的に銅材の表面に無電解ニッケルめっき皮膜の形成を行うために必要な工程である。一方で、パラジウム触媒は銅材の表面においてニッケルの析出に作用するだけでなく、配線パターン間の絶縁領域に残留しやすいパラジウム触媒によって、配線パターンの回路間ギャップにもニッケルが析出してしまうという問題がある。このような現象が起こると、微細な配線パターンへの良好なめっきができない問題が発生する傾向がある。
 また、特許文献1に開示のめっき方法では、パラジウムめっき皮膜を用いて、金めっきの際のニッケル局部腐食を抑えることによって、ワイヤボンディング性を確保していると考えられる。ところがこのような方法では、製造コストの高騰を招くという問題がある。
 そこで、本件発明に係る無電解めっきプロセスは、微細配線パターンへのめっきが可能であり、かつ、優れた各種はんだ実装特性及びワイヤボンディング特性を有するめっき皮膜を得るにあたって、製造コストを抑えることが可能な無電解めっきプロセスを提供することを目的とする。
 本件発明に係る無電解めっきプロセスは、銅材の表面に、無電解めっき法によってニッケルめっき皮膜と金めっき皮膜とを順に成膜する無電解めっきプロセスであって、還元型無電解ニッケルストライクめっき法によってホウ素を含有するニッケルめっき皮膜を成膜する工程と、還元型無電解金めっき法によって金めっき皮膜を成膜する工程とを備えることを特徴としている。
 また、本件発明に係る二層めっき皮膜は、上述の無電解めっきプロセスで成膜する二層めっき皮膜であって、ホウ素を含有するニッケルめっき皮膜と、金めっき皮膜とからなることを特徴としている。
 本件発明に係る無電解めっきプロセスは、銅材の表面に、無電解めっき法によってニッケルめっき皮膜と金めっき皮膜とを順に成膜する無電解めっきプロセスであって、還元型無電解ニッケルストライクめっき法によってホウ素を含有するニッケルめっき皮膜を成膜する工程と、還元型無電解金めっき法によって金めっき皮膜を成膜する工程とを備えている。すなわち、パラジウム触媒の付与を行うことなく、銅材の表面に直接ニッケルめっき皮膜を成膜することが可能であるため、微細配線パターンへのめっきが可能である。さらに、還元型無電解金めっき法によって、パラジウムめっき皮膜を設けることなくニッケルの局部腐食を抑えてニッケルめっき皮膜の表面に金めっき皮膜を成膜することができることから、めっき皮膜をコストを抑えて製造することが可能である。
 また、本件発明に係る二層めっき皮膜は、ホウ素を含むニッケルめっき皮膜と、金めっき皮膜とからなる二層めっき皮膜であり、ニッケルめっき皮膜にホウ素を含むことによって、銅の金めっき皮膜への拡散を抑え、金めっき皮膜の膜厚を厚くすることなく優れた各種はんだ実装特性及びワイヤボンディング特性を有するものである。
本実施の形態の無電解めっきプロセスを示すフローチャートである。 本実施の形態の二層めっき皮膜の略断面図である。 実施例と比較例2とにおけるニッケルめっき皮膜と金めっき皮膜との界面部分の断面像である。 実施例と比較例1、2とにおけるはんだボールシェア強度の測定結果である。 実施例と比較例1、2とにおけるはんだボールシェア強度測定時のはんだボール破断モードの確認結果である。 実施例と比較例2~比較例4におけるボンディングワイヤのプル強度の測定結果である。
1.本件発明に係る無電解めっきプロセスの実施形態
 以下、本件発明に係る無電解めっきプロセスの実施の形態を説明する。本実施形態の無電解めっきプロセスは、図2に示す基板11の表面に設けられた銅配線12の表面に無電解めっき法によってニッケルめっき皮膜13と金めっき皮膜14とを順に成膜する無電解めっきプロセスである。
 具体的には、本件発明に係る二層めっき皮膜を形成するための無電解めっきプロセスであって、銅材の表面に、パラジウム触媒を用いることなく、還元型無電解ニッケルストライクめっき法によってニッケルめっき皮膜を成膜する工程と、還元型無電解金めっき法によって金めっき皮膜を成膜する工程と、を備える無電解めっきプロセスである。本実施形態では、銅材の表面にニッケルめっき皮膜13と金めっき皮膜14とを順に成膜することにより、本件発明に係る二層めっき皮膜を形成するプロセスについて説明する。
 本実施形態の無電解めっきプロセスのフローチャートを図1に示す。図1に示すように、まず、ニッケルめっき皮膜を成膜する前の前処理として脱脂工程(S1)とエッチング工程(S2)とスマット除去工程(S3)とを行う。その後、還元型無電解ニッケルストライクめっき工程(S4)によって銅材の表面にニッケルめっき皮膜13を成膜する。続いて、還元型無電解金めっき工程(S5)によって金めっき皮膜14を成膜する。各工程の後には水洗処理を行う。水洗処理は3回行うことが好ましい。
1-1.脱脂工程(S1)の実施形態
 脱脂工程(S1)では、銅材を酸性溶液に浸漬することにより、銅材の表面に付着する汚染物質、油脂分等を除去する。
1-2.エッチング工程(S2)の実施形態
 エッチング工程(S2)では、脱脂工程(S1)が施された銅材を過硫酸系、過酸化水素系、チオール系等のエッチング液に浸漬することにより、銅材の表面に形成されている余分な銅酸化膜を除去する。
1-3.スマット除去工程(S3)の実施形態
 スマット除去工程(S3)では、エッチング工程(S2)が施された銅材を例えば10%硫酸に浸漬することにより、銅材の表面に付着しているスマット(エッチング工程で表面に残留付着した成分)を除去する。
1-4.還元型無電解ニッケルストライクめっき工程(S4)の実施形態
 還元型無電解ニッケルストライクめっき工程(S4)では、ニッケル換算で0.002g/L以上1g/L以下の水溶性ニッケル塩と、カルボン酸又はその塩と、「ジメチルアミンボラン、トリメチルアミンボラン、水素化ホウ素ナトリウムの群より選択される1種以上の還元剤」とを含み、pH6.0以上pH10.0以下、浴温が20℃以上55℃以下に調整した還元型無電解ニッケルストライクめっき液を用いる。本件出願における還元型無電解ニッケルストライクめっき法では、この還元型無電解ニッケルストライクめっき液に、スマット除去工程(S3)が施された銅材を浸漬することにより、銅材の表面にニッケルめっき皮膜13の成膜を行うものである。
1-4-1.還元型無電解ニッケルストライクめっき液
 還元型無電解ニッケルストライクめっき液は、水溶性ニッケル塩とカルボン酸又はその塩と水とを混合し撹拌することによりニッケル錯体を含む水溶液を調製した後に、この水溶液に還元剤を混合し撹拌することにより調製されたものを用いるものである。そして、その還元剤は、ジメチルアミンボラン、トリメチルアミンボラン、水素化ホウ素ナトリウムの群より選択される1種以上を含む。還元剤に、ジメチルアミンボラン、トリメチルアミンボラン、水素化ホウ素ナトリウムの群より選択される1種以上を含むことによって、成膜されるニッケルめっき皮膜にホウ素を含有するものである。
水溶性ニッケル塩:
 還元型無電解ニッケルストライクめっき液に用いる水溶性ニッケル塩として、例えば、硫酸ニッケル、塩化ニッケル、炭酸ニッケルや、酢酸ニッケル、次亜リン酸ニッケル、スルファミン酸ニッケル、クエン酸ニッケル等の有機酸ニッケルを挙げることができる。これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。本件発明では、水溶性ニッケル塩として、硫酸ニッケル6水和物を用いることが最も好ましい。
 還元型無電解ニッケルストライクめっき液の含有する水溶性ニッケル塩は、ニッケル換算で、0.002g/L以上1g/L以下であることが好ましい。還元型無電解ニッケルストライクめっき液は、水溶性ニッケル塩(ニッケル換算)の含有量が上記範囲にあると、無電解ニッケルストライクめっき法を実現し、パラジウム触媒が付与されていない銅材の表面にニッケルめっき皮膜を直接成膜することができる。
 水溶性ニッケル塩(ニッケル換算)の含有量が0.002g/L未満であると、析出速度が過度に遅くなるため、所望の膜厚のニッケルめっき皮膜を得るには浸漬時間を長くする必要があり、工業的生産性を満足することができないため好ましくない。一方、水溶性ニッケル塩(ニッケル換算)の含有量が1g/Lを超えると、析出速度が過度に速くなり、表面が均一なニッケルめっき皮膜13を得られないことがあり好ましくない。水溶性ニッケル塩(ニッケル換算)の含有量は、ニッケルの析出速度を考慮すれば0.01g/L以上0.5g/L以下がより好ましく、ニッケル析出速度と均一な析出面を安定的に得るという観点から0.03g/L以上0.1g/L以下が最も好ましい。
カルボン酸又はその塩:
 還元型無電解ニッケルストライクめっき液は、カルボン酸又はその塩を含む。これらは、錯化剤であり、pH調整剤としても作用する。カルボン酸として、例えば、モノカルボン酸(ギ酸、酢酸、プロピオン酸、酪酸等)、ジカルボン酸(シュウ酸、マロン酸、コハク酸、グルコン酸、アジピン酸、フマル酸、マレイン酸、コハク酸等)、トリカルボン酸(アコニット酸等)、ヒドロキシカルボン酸(クエン酸、乳酸、リンゴ酸)、芳香族カルボン酸(安息香酸、フタル酸、サリチル酸等)、オキソカルボン酸(ピルビン酸等)、及び、アミノ酸(アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン酸、グリシン等)から選択される1種以上を用いることができる。
 カルボン酸又はその塩は、その合計含有量が0.5g/L以上5g/L以下で用いることが好ましく、溶液安定性の観点からみれば0.8g/L以上2g/L以下がより好ましい。本実施形態の還元型無電解ニッケルストライクめっき液は、カルボン酸又はその塩の含有量を低く設定している。カルボン酸又はその塩は、その種類にもよるが、含有量が0.5g/L未満であると錯化剤として十分に作用せずに還元型無電解ニッケルストライクめっき液中のニッケルイオンが錯体として安定せずに沈殿が生じることがあり好ましくない。一方、カルボン酸又はその塩の含有量が5g/Lを超えても、特段の効果を得られないばかりか、資源の無駄遣いとなり好ましくない。
還元剤:
 還元型無電解ニッケルストライクめっき液は、ジメチルアミンボラン、トリメチルアミンボラン、水素化ホウ素ナトリウムの群より選択される1種以上の還元剤を含む。本件出願に係る還元型無電解ニッケルストライクめっき液は、還元剤としてこれらの物質を用いることにより、パラジウム触媒が付与されていない銅材の表面へのニッケル析出を実現することができる。
 還元剤は、2g/L以上10g/L以下で用いることが好ましく、4g/L以上8g/L以下がより好ましい。上記還元剤の含有量が2g/L未満であると、十分な還元作用が得られず、銅表面へのニッケル析出が進行しないことがあり好ましくない。上記還元剤の含有量が10g/Lを超えると、絶縁基材等の銅以外の表面にニッケルが析出したり(回路上への選択析出性が劣化する)、還元型無電解ニッケルストライクめっき液の分解が生じ、濃度安定性が損なわれることがあり好ましくない。
 還元型無電解ニッケルストライクめっき液は、上述した成分を水に混合し撹拌させて溶解させることにより調製されるが、前記水溶性ニッケル塩と前記カルボン酸又はその塩と水とを混合し撹拌することによりニッケル錯体を含む水溶液を調製した後に、当該水溶液に前記還元剤を混合し撹拌することにより調製されたものであることがより好ましい。このようにして調製された還元型無電解ニッケルストライクめっき液は、ニッケル錯体が長期間安定して存在することができ、優れた溶液安定性を得ることができる。
 還元型無電解ニッケルストライクめっき液は、上述した成分以外に、硫酸塩、ホウ酸、塩化物塩等の成分を含んでもよい。
pH:
 還元型無電解ニッケルストライクめっき液は、pH6.0以上pH10.0以下の中性領域に調整することが好ましい。pHが6未満であると、ニッケル析出速度が低下してニッケルめっき皮膜13の成膜性が低下し、ニッケルめっき皮膜の表面に孔部や凹部(穴)等の析出欠陥が生じることがあり好ましくない。一方、pHが10を超えると、ニッケル析出速度が過度に速くなってニッケルめっき皮膜13の膜厚制御が困難になったり、析出するニッケルの結晶状態を緻密化できないことがあり好ましくない。
浴温:
 還元型無電解ニッケルストライクめっき液は、浴温が20℃以上55℃以下に調整されることが好ましい。浴温が20℃未満であると、ニッケル析出速度が低下してニッケルめっき皮膜13の成膜性が低下し、ニッケルめっき皮膜13の表面に孔部や凹部(穴)が生じたり、ニッケル未析出が生じることがあり好ましくない。一方、浴温が55℃を超えると、無電解ニッケルストライクめっき液の溶液安定性が低下し、溶液寿命が短くなるため好ましくない。
1-4-2.還元型無電解ニッケルストライクめっき工程(S4)の特性
 本実施形態の還元型無電解ニッケルストライクめっき工程(S4)では、還元型無電解ニッケルストライクめっき液に含まれるジメチルアミンボラン、トリメチルアミンボラン、水素化ホウ素ナトリウムの群より選択される1種以上の物質が還元剤として作用し、パラジウム触媒が付与されていない銅材の表面にホウ素を含むニッケルを析出させることができる。この方法であれば、パラジウム触媒の付与を行うことがないため、配線パターン間の絶縁領域に残留するパラジウム残滓による不要なニッケル析出が無く、微細配線パターンへのニッケルめっきが可能となる。
 そして、還元型無電解ニッケルストライクめっき液のニッケル含有量が低い上に、pH6.0以上pH10.0以下、浴温が20℃以上55℃以下に調整されているため、ニッケルの析出速度を適正にして、還元型無電解ニッケルストライクめっき法による、銅材の表面へのニッケルめっき皮膜13の直接成膜が可能になる。このとき、ニッケルの析出速度が適正であるために、銅材の表面において均一にニッケルを析出させることができる。その結果、膜厚が均一であるため、膜厚が薄くても銅材の表面を確実に被覆するニッケルめっき皮膜13を成膜することができる。得られたニッケルめっき皮膜13は、従来の無電解めっきプロセスで得られたニッケルめっき皮膜と比較して、銅の拡散を防ぐというバリア特性に優れている。
 また、還元型無電解ニッケルストライクめっき工程(S4)では、上記還元型無電解ニッケルストライクめっき液における水溶性ニッケル塩(ニッケル換算)の含有量が0.002g/L以上1g/L以下と低いので、還元型無電解ニッケルストライクめっき液の分解が生じることを防ぐことができる。また、上記還元型無電解ニッケルストライクめっき液は、鉛塩、ビスマス塩等の安定剤を含まないため、鉛やビスマス等の重金属を含まないニッケルめっき皮膜を得ることができる。
1-5.還元型無電解金めっき工程(S5)の実施形態
 本実施形態の還元型無電解金めっき工程(S5)は、水溶性金化合物と、クエン酸又はクエン酸塩と、エチレンジアミン四酢酸又はエチレンジアミン四酢酸塩と、ヘキサメチレンテトラミンと、「炭素数3以上のアルキル基と3つ以上のアミノ基とを含む鎖状ポリアミン」とを含み、pH7.0以上pH9.0以下、浴温が40℃以上90℃以下に調整された還元型無電解金めっき液を用いて、還元型無電解金めっき液に無電解ニッケルストライクめっき法によってニッケルめっき皮膜13を成膜した銅材を浸漬することにより、金めっき皮膜14の成膜を行う、還元型無電解金めっき法を用いる。ここで、置換型無電解めっき法を用いた場合、ニッケルが溶出してニッケルめっき皮膜に貫通孔が生じることがあるため、置換型無電解めっき法は採用しない。
1-5-1.還元型無電解金めっき液
 本実施形態の還元型無電解金めっき液は、被めっき物表面への金めっき皮膜14の形成に用いるものであって、水溶性金化合物と、クエン酸又はクエン酸塩と、エチレンジアミン四酢酸又はエチレンジアミン四酢酸塩と、ヘキサメチレンテトラミンと、炭素数3以上のアルキル基と3つ以上のアミノ基を含む鎖状ポリアミンと、を含む。
水溶性金化合物:
 本実施形態の還元型無電解金めっき液に用いる水溶性金化合物は、めっき液に可溶であって、所定の濃度が得られるものであれば、シアン系金塩、非シアン系金塩のいずれの水溶性金化合物を用いることができる。具体的なシアン系金塩の水溶性金化合物としては、シアン化金カリウム、シアン化金ナトリウム、シアン化金アンモニウム等を例示することができる。また、具体的な非シアン系金塩の水溶性金化合物としては、塩化金酸塩、亜硫酸金塩、チオ硫酸金塩等を例示することができる。これらの中でも、シアン化金カリウムが特に好ましい。また、水溶性金化合物は、1種単独、又は、2種以上を組み合わせて用いてもよい。なお、水溶性金化合物は、ここに例示した金化合物に限定されるものではない。
 本実施形態の還元型無電解金めっき液中の水溶性金化合物の濃度は、0.0025mol/L以上0.0075mol/L以下であることが好ましい。水溶性金化合物の濃度が0.0025mol/L未満では、金の析出速度が遅く、所望の膜厚の金めっき皮膜14が得られにくいからである。水溶性金化合物の濃度が0.0075mol/Lを超えると、めっき液の安定性が低下するおそれがあり、また経済的にも不利だからである。
クエン酸又はクエン酸塩:
 本実施形態の還元型無電解金めっき液は、クエン酸又はクエン酸塩を含有する。これらクエン酸又はクエン酸塩は、金イオンと錯体形成可能な錯化剤として用いられるものである。本発明に係る還元型無電解金めっき液中のクエン酸又はクエン酸塩の濃度は、0.05mol/L以上0.15mol/L以下であることが好ましい。錯化剤として用いられるこれらクエン酸又はクエン酸塩の濃度が0.05mol/L未満では、めっき液中に金が析出して、溶液安定性に劣るからであり、0.15mol/Lを超える場合には、錯体形成が過剰に進み、金の析出速度が低下して、所望の膜厚の金めっき皮膜14が得られにくいからである。
エチレンジアミン四酢酸(EDTA)又はエチレンジアミン四酢酸塩:
 本実施形態の還元型無電解金めっき液は、エチレンジアミン四酢酸(EDTA)又はエチレンジアミン四酢酸塩とを含有する。このエチレンジアミン四酢酸又はエチレンジアミン四酢酸塩は、上述したクエン酸又はクエン酸塩と組み合わせて用いられる錯化剤である。還元型無電解金めっき液中のエチレンジアミン四酢酸又はエチレンジアミン四酢酸塩の濃度は、0.03mol/L以上0.1mol/L以下であることが好ましい。錯化剤として用いられるエチレンジアミン四酢酸又はエチレンジアミン四酢酸塩の濃度が0.03mol/L未満では、めっき液中に金が析出して、溶液安定性に劣るからであり、0.1mol/Lを超える場合には、錯体形成が過剰に進み、金の析出速度が低下して、所望の膜厚の金めっき皮膜14が得られにくいからである。
ヘキサメチレンテトラミン:
 本実施形態の還元型無電解金めっき液は、ヘキサメチレンテトラミンを含有する。当該ヘキサメチレンテトラミンは、めっき液中の金イオンを還元して、被めっき物表面に金を析出させる還元剤として用いられるものである。
 本実施形態の還元型無電解金めっき液中のヘキサメチレンテトラミンの濃度は、0.003mol/L以上0.009mol/L以下であることが好ましい。ヘキサメチレンテトラミンの濃度が0.003mol/L未満では、金の析出速度が遅く、所望の膜厚の金めっき皮膜14が得られにくく、0.009mol/Lを超えると、還元反応が急速に進行し、めっき液中の金塩が異常析出してしまう場合があり、溶液安定性に劣り、経済的にも不利だからである。
鎖状ポリアミン:
 また、本実施形態の還元型無電解金めっき液は、炭素数3以上のアルキル基と3つ以上のアミノ基を含む鎖状ポリアミンを含有する。当該鎖状ポリアミンは、めっき液中の金イオンの還元を補助する還元補助剤として作用するアミン化合物である。当該鎖状ポリアミンとして、具体的には、3,3’-ジアミノ-N-メチルジプロピルアミン、又は、N,N’-ビス(3-アミノプロピル)エチレンジアミンが好ましい。得られるめっき皮膜性能や、経済性から特に好ましいからである。
 本実施形態の還元型無電解金めっき液中の当該鎖状ポリアミンの濃度は、0.02mol/L以上0.06mol/L以下であることが好ましい。鎖状ポリアミンの濃度が0.02mol/L以上0.06mol/L以下の範囲とすることにより、下地金属皮膜の膜厚に影響することなく、高い析出速度を維持することが可能となる。また、金めっき皮膜14の付き回り性を向上させることができ、金めっき皮膜14を0.2μm以上の厚付けが可能となる。更に、溶液安定性を著しく高めることが可能となる。
その他の成分:
 本実施形態の還元型無電解金めっき液には、上述した水溶性金化合物と、クエン酸又はクエン酸塩と、エチレンジアミン四酢酸又はエチレンジアミン四酢酸塩と、ヘキサメチレンテトラミンと、炭素数3以上のアルキル基と3つ以上のアミノ基とを含む鎖状ポリアミンとに加えて、析出促進剤を含有させてもよい。ここに用いられる析出促進剤としては、タリウム化合物や鉛化合物が挙げられる。得られる金めっき皮膜の厚膜化の観点からタリウム化合物を用いることが好ましい。
 本実施形態の還元型無電解金めっき液中の析出促進剤としてのタリウム化合物の濃度は、1mg/L以上10mg/L以下であることが好ましい。析出促進剤としてのタリウム化合物の濃度が1mg/L未満では、金めっき皮膜14の厚膜化が困難となる。また、析出促進剤としてのタリウム化合物の濃度が10mg/Lを超えると、それ以上の厚膜化が図れず、経済的に不利である。
 本実施形態の還元型無電解金めっき液は、上述した必須成分に加えて、pH調整剤、酸化防止剤、界面活性剤、光沢剤等の添加剤を含有することができる。
 pH調整剤としては、特に制限はないが、水酸化カリウム、水酸化ナトリウム、アンモニア水溶液、硫酸、リン酸等が挙げられる。本実施形態の還元型無電解金めっき液は、pH調整剤を用いることにより、pH7.0以上pH9.0以下に維持することが好ましい。還元型無電解金めっき液のpHが7.0を下回ると、めっき液が分解しやすくなり、pHが9.0を上回るとめっき液が安定しすぎてしまって、めっきの析出速度が遅くなり、金めっき皮膜の厚膜化に多大な時間を要してしまうからである。さらに、pH条件を7.0以上9.0以下に調整することによって、アルカリに弱い材料で構成された被めっき物のめっき処理も可能となる。また、酸化防止剤、界面活性剤、光沢剤等の添加剤としては公知のものが使用することができる。
1-5-2.めっき条件
 本実施形態の還元型無電解金めっき液を用いた金めっき条件は特に限定されないが、液温が40℃以上90℃以下が好ましく、金の析出速度や溶液安定性の観点からみて75℃以上85℃以下であることが特に好ましい。めっき時間も特に限定されないが、1分以上2時間以下が好ましく、2分以上1時間以下が特に好ましい。
1-5-3.還元型無電解金めっき法
 次に、本実施形態の還元型無電解金めっき法について説明する。本実施形態の還元型無電解金めっき法では、上述したいずれかの還元型無電解金めっき液を用い、被めっき物表面に無電解金めっき処理を行って金めっき皮膜14を形成する。当該還元型無電解金めっき法では、通常の還元型無電解めっきの処理方法と同様に、被めっき物を無電解金めっき液中に浸漬する方法によりめっき処理を行う。
 本発明に係る無電解金めっき法において処理の対象となる被めっき物表面は銅、金、ニッケルの何れかが存在することが好ましい。被めっき物表面に、銅、金、ニッケルの何れかが存在するものであれば、その存在形態は、何れの場合であっても良い。特に、被めっき物自体が銅により構成されるものや、被めっき物表面に銅、金、ニッケル、又は、これらの金属を含有する合金からなる皮膜の何れかを有するものを用いることがより好ましい。例えば、これらの金属を含有する合金としては、金コバルトを挙げることができる。金、ニッケル、銅、又は、これらの金属を含有する合金は、本発明における無電解金めっきの下地金属となり、これらの金属又は合金は、上述した還元型無電解金めっき液に含まれた還元剤としてのヘキサメチレンテトラミンに対して触媒活性作用を発揮する。
1-5-4.還元型無電解金めっき工程(S5)の特性
 本実施形態の還元型無電解金めっき工程(S5)では、還元型無電解金めっき法を採用することにより、パラジウムめっき皮膜を設けることなく、金めっき皮膜14を成膜するときにニッケルめっき皮膜13からのニッケルの溶出を防ぐことができる。また、本実施形態の還元型無電解金めっき液は、金の析出反応が、触媒核となりうる金、ニッケル、銅等の表面においてのみ生じ、触媒核のない部分には生じないため、選択析出性が良好である。よって、金の析出が必要のない部分への金めっき皮膜の形成を回避できる。
1-6.本実施形態の無電解めっきプロセスの特性
 本実施形態の無電解めっきプロセスでは、還元型無電解ニッケルストライクめっき工程(S4)により、パラジウム触媒が付与されていない銅材表面にニッケルめっき皮膜を直接成膜することができる。そして、膜厚が薄くても銅材の表面を確実に被覆することができ、且つ、ニッケルにホウ素を含むことによって、銅材に対するバリア特性に優れたニッケルめっき皮膜13を成膜することができる。従って、ニッケルめっき皮膜の薄膜化を実現することができる。したがって、パラジウム触媒を付与せず、 微細配線上であっても選択析出性に優れた二層めっき皮膜の形成ができる。
 また、ニッケルめっき皮膜13の膜厚を薄くできるため、全体膜厚が薄い二層めっき皮膜を得ることができる。また、還元型無電解ニッケルストライクめっき工程(S4)により、膜厚が均一であって平滑性に優れたニッケルめっき皮膜13を得ることができるため、その上に成膜される金めっき皮膜14もまた均一な膜厚に成膜することができ、膜厚のバラツキの小さい二層めっき皮膜することができる。さらに、無電解ストライクめっき法によって成膜されたニッケルめっき皮膜は、銅材との密着性に優れる上に、銅の拡散を防ぐというバリア特性に優れるため、優れた実装特性を備える二層めっき皮膜を成膜することができる。以上の特性を有することから、はんだ濡れ性、はんだボール実装特性およびワイヤボンディング特性のすべてが優れるプリント配線基板上の配線パターンを得ることができる。
 さらに、還元型無電解金めっき工程(S5)における還元型無電解金めっき法により、パラジウムめっき皮膜を設けることなく、ニッケルめっき皮膜13表面に金めっき皮膜14を成膜するため、ニッケルめっき皮膜13の膜厚が0.1μm以下の場合であっても、ニッケル局部腐食現象が発生しない。
1-7.本実施形態の無電解めっきプロセスの終了処理
 上述の還元型無電解金めっき工程(S5)の終了後、水洗処理を行い、乾燥させる。以上のとおり、図2に示す無電解めっきプロセスを行うことにより、銅材の表面に二層めっき皮膜を成膜することができる。
2.本件発明に係る二層めっき皮膜の実施形態
 本件発明に係る二層めっき皮膜は、上述した無電解めっきプロセスで成膜する二層めっき皮膜であって、ホウ素を含有するニッケルめっき皮膜と、金めっき皮膜とからなる二層めっき皮膜であることが好ましい。以下、本実施の形態の二層めっき皮膜の実施の形態を説明する。
2-1.二層めっき皮膜の構造
 本実施の形態の二層めっき皮膜の略断面図を図2に示す。基板11は、電子部品実装用で配線パターンの形成が可能なものであれば特に限定されず、リジッド基板では、紙フェノール基板、紙エポキシ基板、ガラスコンポジット基板、ガラスエポキシ基板、フッ素樹脂基板、セラミックス基板などがあげられる。また、フレキシブル基板では、薄いポリイミドやポリエステルなどのフィルムが使用可能である。
 配線パターンの形成には、全面に銅箔を貼った基板から不要な銅箔部分を取り除いて配線パターンを残す方法や、基板上に配線パターンを後から付け加える方法など、様々な方法があり、本実施形態の銅配線12を形成するための手段は問わない。代表的な例としてはフォトリソグラフィーによるものがあり、以下のように形成される。基板11上の銅箔の表面に全面塗布したレジスト材に対して露光フィルムを介して紫外線を照射し、紫外線が未照射部分のレジストを溶剤を用いて除去する等して、配線パターンとして残す銅箔上にレジストパターンを形成する。そして、レジストパターンが形成されていない部分の銅箔をエッチングにて除去することによって銅配線12が形成される。
 本実施の形態の二層めっき皮膜は、上述のようにして形成された銅配線12が、はんだによる実装やボンディングなどによって接続する電子部品や端子部品等の実装部パターンである場合において、銅配線12の表面上に、ニッケルめっき皮膜13と金めっき皮膜14とを順に備えたものである。
 ここで、ニッケルめっき皮膜13の膜厚は、0.005μm以上0.05μm以下であることが好ましい。ニッケルめっき皮膜13の膜厚が0.005μm未満である場合、はんだ実装性やワイヤボンディング特性が低下してしまうため好ましくない。ニッケルめっき皮膜13の膜厚が0.05μmを越える場合、銅配線間にニッケル析出が生じるために好ましくない。
 また、金めっき皮膜14の膜厚は、0.01μm以上であることが好ましい。金めっき皮膜14の膜厚が0.01μm未満である場合、ニッケルめっき皮膜のニッケルが金めっき皮膜へ拡散するため好ましくない。
2-2.二層めっき皮膜の特性
 本実施の形態の二層めっき皮膜において、ニッケルめっき皮膜13は、ホウ素を含んでいる。ニッケルめっき皮膜13にホウ素を含むことによって、銅配線12の銅が、金めっき皮膜14側に拡散することを抑制する。そして、ニッケルめっき皮膜13におけるホウ素の含有率は、0.01質量%以上0.1質量%以下であることが好ましい。ホウ素の含有率が0.01質量%未満である場合、銅配線12の銅が、金めっき皮膜14側に拡散することを十分に抑制することができない。銅が金めっき皮膜14側に拡散すると、はんだ濡れ性やはんだボール実装特性及びワイヤボンディング特性が低下してしまう。ホウ素の含有量が0.1質量%を越える場合、めっき液においてニッケルの異常析出や、ニッケルめっき液の分解が発生してしまい、めっき皮膜の製造が困難となる。
 本実施の形態の二層めっき皮膜は、上述のとおりニッケルめっき皮膜13にホウ素を含むことによって銅の金めっき皮膜への拡散を抑え、金めっき皮膜の膜厚を厚くすることなく、はんだ濡れ性、はんだボール実装特性及びワイヤボンディング特性の全てが優れたものとなる。
 以上説明した本件発明に係る実施の形態は、本件発明の一態様であり、本件発明の趣旨を逸脱しない範囲で適宜変更可能である。また、以下実施例を挙げて本件発明をより具体的に説明するが、本件発明は、以下の実施例に限定されるものではない。
 本実施例の無電解めっきプロセスでは、図1に示す各工程S1~S5を順に行うことにより、銅材の表面にニッケルめっき皮膜、金めっき皮膜を順に成膜した。まず、上述した脱脂工程(S1)、エッチング工程(S2)及びスマット除去工程(S3)を順に行った後、還元型無電解ニッケルストライクめっき工程(S4)を行った。
 還元型無電解ニッケルストライクめっき工程(S4)では、銅材を以下の組成の還元型無電解ニッケルストライクめっき液に浸漬し、銅材の表面にニッケルめっき皮膜を成膜した。還元型無電解ニッケルストライクめっき液は、硫酸ニッケル6水和物とDL-リンゴ酸と水とを混合し撹拌することによりニッケル錯体を含む水溶液を調製した後にジメチルアミンボランを添加し撹拌することにより調製した。無電解ニッケルストライクめっき液に銅材を浸漬している間、当該無電解ニッケルストライクめっき液をエアレーションによって撹拌した。
 硫酸ニッケル6水和物 0.2g/L(ニッケル換算0.045g/L)
 DL-リンゴ酸    1.0g/L
 ジメチルアミンボラン 4.0g/L
 pH         9.0
 浴温         50℃
 その後、還元型無電解金めっき工程(S5)を行った。ニッケルめっき皮膜が成膜された銅材を以下の組成の還元型無電解金めっき液に浸漬し、ニッケルめっき皮膜の表面に金めっき皮膜を成膜した。以上により、銅材の表面にホウ素を含有するニッケルめっき皮膜と、金めっき皮膜とからなる二層めっき皮膜が成膜された。
 シアン化金カリウム               5ミリmol/L
 エチレンジアミン四酢酸2カリウム        0.03mol/L
 クエン酸                    0.15mol/L
 ヘキサメチレンテトラミン            3ミリmol/L
 3,3’-ジアミノ-N-メチルジプロピルアミン 0.02mol/L
 酢酸タリウム                  5mg/L
 pH                      8.5
 浴温                      80℃
比較例
〔比較例1〕
 比較例1の無電解めっきプロセスは、無電解ニッケルストライクめっき工程(S4)を行わなかったこと以外は、実施例の無電解めっきプロセスと同様に行うことにより、銅材の表面に金めっき皮膜を成膜した。
〔比較例2、3〕
 比較例2、3の無電解めっきプロセスは、無電解ニッケルストライクめっき工程(S4)に代えて、従来技術の無電解めっきプロセスで行われているパラジウム触媒付与処理と無電解ニッケルめっきとを行った。続いて、置換型金めっき皮膜と還元型金めっき皮膜とを順に成膜した。
 パラジウム触媒付与処理では、スマットを除去した銅材を、パラジウム換算で30mg/Lのパラジウム化合物と硫酸イオンとを含むパラジウム触媒溶液に浸漬し、銅材の表面にパラジウム触媒を付与した。
 無電解ニッケルめっきでは、パラジウム触媒が付与された銅材を以下の組成の無電解ニッケルめっき液に浸漬した。
 硫酸ニッケル6水和物   22.4g/L(ニッケル換算5g/L)
 DL-リンゴ酸      15g/L
 乳酸           18g/L
 次亜リン酸ナトリウム   30g/L
 pH           4.5
 浴温           80℃
 続く置換型金めっきでは、ニッケルめっき皮膜が成膜された銅材を以下の組成の置換型金めっき液に浸漬し、ニッケルめっき皮膜の表面に置換型金めっき皮膜を成膜した。
 シアン化金カリウム    0.01mol/L
 エチレンジアミン四酢酸  0.03mol/L
 クエン酸         0.15mol/L
 酢酸タリウム       50mg/L
 pH           4.5
 浴温           80℃
 続く還元型金めっきは、実施例に記載と同様にして行った。
〔比較例4〕
 比較例4の無電解めっきプロセスは、還元型金めっきを行わなかった以外は、比較例2、3と同様にして行った。
 実施例、及び比較例1~比較例4で成膜した各めっき皮膜の膜厚を表1に示す。
Figure JPOXMLDOC01-appb-T000001
〔評価〕
1.ニッケルめっき皮膜の局部腐食
 実施例と比較例2とにおけるニッケルめっき皮膜と金めっき皮膜との界面部分の断面を、走査電子顕微鏡(SEM)によって倍率30000倍で撮影した画像を図3に示す。図3(a)は実施例における断面画像を示す。銅材と金めっき皮膜との間に、図3(a)からは視認が困難なほど薄い(0.01μm)ニッケルめっき皮膜が設けられている。この画像から、ニッケルめっき皮膜の局部腐食がない良好なめっき皮膜であることが確認できた。一方、図3(b)は比較例2における断面画像を示す。これから、ニッケルめっき皮膜に黒い筋状の画像として確認できる局部腐食が発生していることが確認できた。以上のことから、本実施例の無電解めっきプロセスは、ニッケルめっき皮膜の局部腐食発生を抑えた良質なめっき皮膜を成膜できるめっきプロセスであることが確認できた。
2.はんだボールシェア強度
 実施例および比較例1、比較例2のめっき皮膜の表面にはんだ付けを行い、その後、はんだボールシェア強度を測定した。はんだボ-ルシェア強度は、デイジ社製(シリ-ズ4000)はんだボ-ルシェアテスタ-を用い、シェア高さ20μm、シェア速度500μm/秒で測定し、その最大値、最小値及び平均値を求めた。結果を図4に示す。
 図4から、本実施例の無電解めっきプロセスで成膜した二層めっき皮膜は、優れたはんだボールシェア強度を有していることが確認できた。これは、上述のとおり、ニッケルめっき皮膜の局部腐食発生が抑えられることと、ニッケルめっき皮膜にホウ素を含むことによって、銅の金めっき皮膜への拡散が抑えられることから、金めっき皮膜を厚くすることなく達成されたものである。続いて、比較例1にて銅材の表面に還元型金めっき皮膜のみ成膜しためっき皮膜も、実施例と同様のはんだボールシェア強度を有することが確認できた。一方、比較例2では、ニッケルめっき皮膜の局部腐食が発生することによって、はんだボールシェア強度が劣ることが確認できた。
3.はんだボール破断モード
 はんだボールシェア強度を測定したときの、はんだボール破断モードの確認結果を図5に示す。「100%」とあるのは、銅配線のめっき面において、はんだが100%残っている状態である。「50%以上」とあるのは、銅配線のめっき面において、はんだが50%以上残っている状態である。「50%未満」とあるのは、銅配線のめっき面において、はんだが50%未満残っている状態である。「界面破壊」とあるのは、銅配線のめっき面において、はんだが残っていない状態である。はんだボールシェア強度が良好だった実施例及び比較例1は、破壊がはんだ部で起こり、めっき面にはんだが100%残った状態である。すなわち、めっき皮膜には破壊が及んでおらず、めっき皮膜が強固であることが確認できた。
 はんだボールシェア強度が劣っていた比較例2では、はんだ残り50%以上の割合が20%、はんだ残り50%未満の割合が5%、界面破壊の割合が45%あり、ニッケルめっき皮膜の局部腐食が発生することによって、金めっき皮膜に銅やニッケルが拡散し、拡散した銅やニッケルが酸化することによってはんだ濡れ性が悪化したことが確認できた。
4.ボンディングワイヤのプル強度
 実施例、及び比較例2~比較例4において、各めっき皮膜の表面に線径25μmの金ワイヤーを接合した後に、プルテスターにて金ワイヤーを引っ張ったときの接合強度、すなわちワイヤーボンディング強度を測定した。そして、その最大値、最小値及び平均値を求めた。測定結果を図6に示す。実施例のボンディングワイヤのプル強度は、従来の無電解めっきプロセスである比較例2、3と同等であることが確認できた。また、比較例4のボンディングワイヤのプル強度は平均値が低く、ばらつきも大きいことが確認できた。これは、置換型金めっき皮膜だけでは、ニッケルめっき皮膜の局部腐食による金めっき皮膜への銅やニッケルの拡散が影響し、ワイヤボンディング特性が悪化するためである。
 以上の、はんだボールシェア強度、ボンディングワイヤのプル強度の測定結果、及びはんだボール破断モードの確認結果から、本実施例の無電解めっきプロセスによって成膜された二層めっき皮膜は、優れた各種はんだ実装特性及びワイヤボンディング特性を有することが確認できた。
 すなわち、本件発明に係る無電解めっきプロセスは、パラジウム触媒の付与を行うことなく、銅材の表面に直接ニッケルめっき皮膜を成膜することが可能であるため、微細配線パターンへのめっきが可能である。さらに、還元型無電解金めっき法によって、パラジウムめっき皮膜を設けることなく、ニッケルめっき皮膜の表面に金めっき皮膜を成膜することができることから、めっき皮膜をコストを抑えて製造することが可能である。
 また、本件発明に係る二層めっき皮膜は、ホウ素を含むニッケルめっき皮膜と、金めっき皮膜とからなる二層めっき皮膜であり、ニッケルめっき皮膜にホウ素を含むことによって、銅の金めっき皮膜への拡散を抑え、金めっき皮膜の膜厚を厚くすることなく優れた各種はんだ実装特性及びワイヤボンディング特性を有するものである。
 本件発明に係る無電解めっきプロセスは、微細配線パターンにめっき可能であり、かつ、はんだ濡れ性、はんだボール実装特性及びワイヤボンディング特性の全てが優れたニッケルめっき皮膜と金めっき皮膜とからなる二層めっき皮膜を提供することができることから、実装する電子部品の小型化によって高密度実装が求められるプリント配線基板に好適である。
 11 基板
 12 銅配線
 13 ニッケルめっき皮膜
 14 金めっき皮膜

Claims (7)

  1.  銅材の表面に、無電解めっき法によってニッケルめっき皮膜と金めっき皮膜とを順に成膜する無電解めっきプロセスであって、
     還元型無電解ニッケルストライクめっき法によってホウ素を含有するニッケルめっき皮膜を成膜する工程と、
     還元型無電解金めっき法によって金めっき皮膜を成膜する工程とを備えることを特徴とする無電解めっきプロセス。
  2.  前記還元型無電解ニッケルストライクめっき法は、ジメチルアミンボラン、トリメチルアミンボラン、水素化ホウ素ナトリウムの群より選択される1種以上の還元剤を含み、当該還元剤の含有量が2g/L以上10g/L以下である還元型無電解ニッケルストライクめっき液を用いる請求項1に記載の無電解めっきプロセス。
  3.  前記還元型無電解金めっき法は、水溶性金化合物と、クエン酸又はクエン酸塩と、エチレンジアミン四酢酸又はエチレンジアミン四酢酸塩と、ヘキサメチレンテトラミンと、炭素数3以上のアルキル基と3つ以上のアミノ基とを含む鎖状ポリアミンと、を含む還元型無電解金めっき液を用いる請求項1又は請求項2に記載の無電解めっきプロセス。
  4.  請求項1から請求項3のいずれか一項に記載の無電解めっきプロセスで成膜する二層めっき皮膜であって、
     ホウ素を含有するニッケルめっき皮膜と、金めっき皮膜とからなる二層めっき皮膜。
  5.  前記ニッケルめっき皮膜中の前記ホウ素の含有率は、0.01質量%以上0.1質量%以下である請求項4に記載の二層めっき皮膜。
  6.  前記ニッケルめっき皮膜の膜厚は、0.005μm以上0.05μm以下である請求項4又は請求項5に記載の二層めっき皮膜。
  7.  前記金めっき皮膜の膜厚は、0.01μm以上である請求項4から請求項6のいずれか一項に記載の二層めっき皮膜。
PCT/JP2021/000623 2020-01-14 2021-01-12 無電解めっきプロセス及び二層めっき皮膜 WO2021145300A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/792,643 US20230050310A1 (en) 2020-01-14 2021-01-12 Electroless Plating Process and Two-Layer Plating Film
EP21740992.9A EP4092157A4 (en) 2020-01-14 2021-01-12 ELECTROLESS PLATING METHOD AND TWO-LAYER PLATING FILM
KR1020227023880A KR20220114034A (ko) 2020-01-14 2021-01-12 무전해 도금 프로세스 및 2층 도금 피막
CN202180007857.4A CN114901867A (zh) 2020-01-14 2021-01-12 无电解镀敷工艺及双层镀膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020003416A JP2021110009A (ja) 2020-01-14 2020-01-14 無電解めっきプロセス及び二層めっき皮膜
JP2020-003416 2020-01-14

Publications (1)

Publication Number Publication Date
WO2021145300A1 true WO2021145300A1 (ja) 2021-07-22

Family

ID=76863768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000623 WO2021145300A1 (ja) 2020-01-14 2021-01-12 無電解めっきプロセス及び二層めっき皮膜

Country Status (7)

Country Link
US (1) US20230050310A1 (ja)
EP (1) EP4092157A4 (ja)
JP (1) JP2021110009A (ja)
KR (1) KR20220114034A (ja)
CN (1) CN114901867A (ja)
TW (1) TWI820379B (ja)
WO (1) WO2021145300A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174774A (ja) 2007-01-17 2008-07-31 Okuno Chem Ind Co Ltd パラジウム皮膜用還元析出型無電解金めっき液
JP2019007067A (ja) * 2017-06-28 2019-01-17 小島化学薬品株式会社 無電解めっきプロセス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941650B2 (ja) * 2007-01-11 2012-05-30 上村工業株式会社 無電解金めっき浴のめっき能維持管理方法
KR101310256B1 (ko) * 2011-06-28 2013-09-23 삼성전기주식회사 인쇄회로기판의 무전해 표면처리 도금층 및 이의 제조방법
JP2016160504A (ja) * 2015-03-03 2016-09-05 学校法人関東学院 無電解Ni/Auめっき皮膜の形成方法及びその形成方法で得られた無電解Ni/Auめっき皮膜
CN205603672U (zh) * 2016-05-06 2016-09-28 西安靖安特环境科技有限公司 一种化学镀镍装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174774A (ja) 2007-01-17 2008-07-31 Okuno Chem Ind Co Ltd パラジウム皮膜用還元析出型無電解金めっき液
JP2019007067A (ja) * 2017-06-28 2019-01-17 小島化学薬品株式会社 無電解めっきプロセス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATO, MASARU; SATO, JUN; OKINAKA, YUTAKA; OSAKA, TETSUYA: "Substrate-Catalyzed Electroless Gold Plating", JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. 52, no. 9, 30 November 2000 (2000-11-30), JP , pages 600 (14) - 606 (20), XP009537643, ISSN: 0915-1869, DOI: 10.4139/sfj.52.600 *
See also references of EP4092157A4

Also Published As

Publication number Publication date
CN114901867A (zh) 2022-08-12
KR20220114034A (ko) 2022-08-17
TWI820379B (zh) 2023-11-01
JP2021110009A (ja) 2021-08-02
EP4092157A4 (en) 2024-01-03
EP4092157A1 (en) 2022-11-23
TW202134476A (zh) 2021-09-16
US20230050310A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
KR102084905B1 (ko) 무전해 도금 프로세스
WO2016031723A1 (ja) 還元型無電解金めっき液及び当該めっき液を用いた無電解金めっき方法
JP2016160504A (ja) 無電解Ni/Auめっき皮膜の形成方法及びその形成方法で得られた無電解Ni/Auめっき皮膜
KR102116055B1 (ko) 무전해 니켈 스트라이크 도금액
JP3482402B2 (ja) 置換金メッキ液
JP4831710B1 (ja) 無電解金めっき液及び無電解金めっき方法
JP5978587B2 (ja) 半導体パッケージ及びその製造方法
WO2021145300A1 (ja) 無電解めっきプロセス及び二層めっき皮膜
Watanabe et al. Gold wire bondability of electroless gold plating using disulfiteaurate complex
JP7441263B2 (ja) 無電解Co-Wめっき皮膜、および無電解Co-Wめっき液
WO2021166641A1 (ja) めっき積層体
JP3426817B2 (ja) 無電解金めっき液
JP2002256444A (ja) 配線基板
JP2022189712A (ja) 電子部品の製造方法
CN115404469A (zh) 化学镀Co-W镀膜和化学镀Co-W镀液
JP2006002177A (ja) 無電解銅めっき浴組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227023880

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021740992

Country of ref document: EP

Effective date: 20220816