WO2021143247A1 - 一种高强韧高中子吸收铝基复合材料的制备方法和装置 - Google Patents

一种高强韧高中子吸收铝基复合材料的制备方法和装置 Download PDF

Info

Publication number
WO2021143247A1
WO2021143247A1 PCT/CN2020/122688 CN2020122688W WO2021143247A1 WO 2021143247 A1 WO2021143247 A1 WO 2021143247A1 CN 2020122688 W CN2020122688 W CN 2020122688W WO 2021143247 A1 WO2021143247 A1 WO 2021143247A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
aluminum
melt
situ
preparation
Prior art date
Application number
PCT/CN2020/122688
Other languages
English (en)
French (fr)
Inventor
怯喜周
武林
彭艳杰
黄烁铭
陈锐崐
许晓静
陈刚
赵玉涛
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US17/630,169 priority Critical patent/US11643709B2/en
Publication of WO2021143247A1 publication Critical patent/WO2021143247A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • C22C1/1052Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1068Making hard metals based on borides, carbides, nitrides, oxides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C

Definitions

  • the invention relates to an aluminum-based composite material, in particular to a method and device for preparing a high-strength, high-neutron absorption aluminum-based composite material.
  • Particle-reinforced aluminum-based composites have excellent properties such as high thermal conductivity, low expansion, high specific strength, and high elastic modulus, and have a wide range of application prospects.
  • B 4 C reinforced aluminum-based composite materials have been widely used in nuclear energy-related industries due to their excellent neutron absorption properties. But like traditional particle-reinforced metal materials, with the enhancement of structural functions, the plastic toughness of the material will be greatly reduced.
  • In-situ synthesis process of aluminum-based composites is a new technology developed in recent years.
  • In-situ particle-reinforced aluminum-based composites have the advantages of small reinforcement size, good thermal stability, and high interface bonding strength. It has a wide range of applications in industrial fields such as machinery.
  • Some studies in recent years have shown that when the size of the reinforcement particles is reduced to the nanometer level, the surface area of the nanoparticles per unit volume increases sharply, and the composite strengthening effect is greatly improved, so that the nanoparticle-reinforced aluminum-based composite material has a higher Specific strength, specific modulus and high temperature resistance, and the in-situ nano-reinforced body containing B, Cd and Hf elements has good neutron absorption performance. Therefore, it has important research significance to study the preparation of micron B 4 C reinforcement and in-situ nano-reinforced aluminum-based composites containing B, Cd, and Hf elements.
  • B 4 C and in-situ nano-reinforced aluminum-based composites have some serious problems (1) B 4 C reinforcement particles are difficult to infiltrate with the matrix, and interface reactions are prone to occur. (2) Due to the huge interface energy of the nanoparticles, the nanoparticles generated in situ tend to agglomerate, leading to problems such as low strength and toughness of the composite material.
  • the purpose of the present invention is to address the shortcomings of the prior art, such as the difficulty of infiltration of B 4 C reinforcement particles with the matrix and prone to interfacial reaction; the in-situ nanoparticle reinforced aluminum-based composite material tends to agglomerate the nanoparticles; the as-cast crystal grain size Relatively coarse; nanoparticles only play the reinforcing role of the reinforcement, and the strength improvement is limited.
  • a method and device for preparing a high-strength, high-neutron absorption aluminum-based composite material is proposed.
  • the present invention combines the high neutron absorption and high stability micron-level B 4 C external reinforcement with the high neutron capture ability in-situ nano-reinforcement containing B, Cd, and Hf elements, and uses the large cross-sectional area of the micro-enhancement to realize the alignment
  • the efficient absorption of neutrons, the use of highly dispersed in-situ nano-reinforcers to achieve effective capture of rays penetrating through the micro-reinforcement gaps, and the high-dispersion and toughening effect of nano-reinforcers significantly improve the strength and toughness of composite materials, and obtain high strength A particle-reinforced aluminum matrix composite material with tough and high neutron absorption.
  • the invention adopts the self-designed radial magnetic field and ultrasonic field coupling integrated composite preparation device.
  • the ultrasonic field is mixed with the radial magnetic field to make the composition more uniform, and promote the infiltration of B 4 C reinforcement particles with the matrix and the in-situ nanometer
  • the composite material can realize the uniform distribution of the composition, and the composite material with the B 4 C particles and the aluminum matrix combined well, and finally obtain the particle-reinforced aluminum composite material with high strength and excellent neutron absorption performance.
  • the radial magnetic field and ultrasonic field coupling integrated composite preparation device designed in the present invention is an integrated composite device composed of an electromagnetic induction heating device, a radial magnetic field device, and an ultrasonic field device.
  • the radial magnetic field and ultrasonic field coupling integrated composite preparation device includes an electromagnetic induction heating device, a radial magnetic field device, and an ultrasonic device.
  • the crucible is arranged in the electromagnetic induction heating device, and the electromagnetic induction heating device is provided with a radial magnetic field device on the periphery of the electromagnetic induction heating device. ;
  • the ultrasonic device is located at the bottom of the integrated composite preparation device.
  • the top of the composite preparation device is provided with two air outlets and a feeding pipe.
  • An argon gas ventilation pipe is respectively provided at the upper part of the outer sides of the composite preparation device.
  • the bottom of the composite preparation device is provided with a smelting furnace protective layer, the ultrasonic device except the main part of the horn is wrapped by the smelting furnace protective layer, the horn extends into the crucible, and the bottom side of the crucible is provided with a discharge port for discharging The mouth is led out from the protective layer of the smelting furnace.
  • a preparation method of high-strength, high-neutron absorption particle-reinforced aluminum-based composite material which is characterized in that: a radial magnetic and ultrasonic field coupling integrated composite preparation device based on a design, a siphon channel at the center of the melt liquid level generated by the radial magnetic field , Micron B 4 C plus ceramic reinforcement and intermediate alloys or compounds containing B, Cd, Hf, Ti, Zr elements are introduced into the melt, and at the same time, the cavitation and acoustic flow generated by high-energy ultrasound located below the liquid level of the siphon channel
  • the high temperature and high pressure brought about realizes the infiltration and dispersion of micron B 4 C, and promotes the in-situ generation and uniform dispersion of nano-reinforcers containing B, Cd, Hf, Ti, Zr elements or their compounds, and prepares additional micro-reinforcers and in-situ Nano-reinforcement is a cross-scale hybrid reinforced aluminum-based composite material
  • the preparation method is carried out through the following specific steps:
  • reaction time is 20-30 minutes
  • melt temperature is reduced to 780 ⁇ 800°C, and micron B 4 C particles are added through the feeding device, and the strong radial magnetic field and ultrasonic field are used to promote the infiltration of B 4 C particles in the composite melt. Disperse, stir for 10 to 30 minutes, and finally cool to 720 to 750°C for casting.
  • Said radial magnetic field and ultrasonic field coupling integrated composite preparation device is composed of three parts: electromagnetic induction heating device, ultrasonic device, and radial magnetic field device.
  • the electromagnetic induction heating device is used to heat the aluminum alloy and the radial magnetic field device is used.
  • the ultrasonic device promotes the in-situ nanoparticle synthesis and the infiltration and dispersion of B 4 C particles.
  • the siphon channel at the center of the melt liquid level generated by the radial magnetic field refers to the use of the radial magnetic field to generate flow inside the melt.
  • the radial magnetic field is a magnetic field with a power of 80-160kw and a current of 10-100A, and the resulting siphon channel is 5-15cm deep.
  • the high-energy ultrasonic field is generated by an ultrasonic device located at the bottom of the composite device, the ultrasonic power is 5-20kw, the horn is 10cm long, and the distance between the top of the horn and the bottom of the siphon channel is 8-15cm.
  • the high neutron absorption, high stability micron plus B 4 C B 4 C ceramic reinforcing micron powder refers B 4 C content is less than 98.8wt%, an average particle size of 10 ⁇ 300 ⁇ m micron B 4 C particles, The volume fraction of B 4 C particles in the aluminum-based composite material is 5-30 vol%.
  • the said in-situ nano-reinforcement containing B, Cd, Hf, Ti and Zr elements is ZrB 2 , TiB 2 , CdB, and B 2 Hf which are produced by the in-situ reaction of different intermediate alloys or reactants introduced in the melt.
  • the size of the reinforcement particles is 2-100 nm, and the volume fraction of the in-situ nano-particles in the aluminum-based composite material is 0.2-25 vol%.
  • the aluminum base alloy in the step (1) selects pure aluminum, 2 series, 5 series, 6 series, 7 series different aluminum bases according to the different uses of heat conduction, electrical conductivity, high strength, low expansion, and wear resistance.
  • the typical representative is : Pure aluminum, 2024, 6061, 6063, 6082, 6016, 6111, 7055, A356, A380, AlSi9Cu3, etc.
  • the feeding tube controls the feeding speed through a mechanical device, and the feeding speed is 5-50 g/min.
  • the melting to 850-950°C in the step (2) is adjusted according to the specific reaction system.
  • the in-situ reaction is to introduce nano-reinforcement particles into the melt to form elemental compounds.
  • the reaction time is 20-30 minutes.
  • the process should be accompanied by radial circulation stirring, and finally the nano-ceramic reinforcements are synthesized in situ in the melt; the nano-reinforcement particles form intermediate alloys or elemental compounds: Al-Zr, Al-Ti, Al-B, Al -One or more of Cd, Al-Hf, K 2 ZrF 6 , K 2 TiF 6 , KBF 4 , Na 2 B 4 O 7 , ZrO 2 , B 2 O 3 , K 2 ZrF 6 and the like.
  • the crucible is made of heat-resistant die steel with surface passivation treatment, such as H13 steel, high-speed steel, high-Gr steel, etc., and the horn material is made of high-temperature and corrosion-resistant niobium alloy.
  • the present invention combines the high neutron absorption and high stability micron-level B 4 C external reinforcement with the high neutron capture ability in-situ nano-reinforcement containing B, Cd, and Hf elements, and uses the large cross-sectional area of the micro-enhancement to realize the alignment
  • the efficient absorption of neutrons, the use of highly dispersed in-situ nano-reinforcers to achieve effective capture of rays penetrating through the micro-reinforcement gaps, and the high-dispersion and toughening effect of nano-reinforcers significantly improve the strength and toughness of composite materials, and obtain high strength Aluminum-based composite material with tough and high neutron absorption particle reinforcement.
  • Figure 1 is a schematic diagram of the structure of the integrated composite preparation device for coupling of radial magnetic field and ultrasonic field of the present invention.
  • Feeder 2. Air outlet, 3. Argon ventilation pipe, 4.
  • Electromagnetic induction heating device 5.
  • Siphon channel 6.
  • .Radial magnetic field device 7.
  • Ultrasonic device 8.
  • Melting furnace protective layer 9.
  • Discharge port
  • Figure 2 is a SEM image of (5vol% B 4 C + 1 vol% ZrB 2 )/Al composite prepared by the device designed in the present invention
  • Figure 2 is an SEM image of a (5vol% B 4 C + 1 vol% ZrB 2 )/Al composite material prepared by the device designed in the present invention. It is found from the picture that B 4 C particles enter the matrix and are evenly dispersed.
  • the chemical proportioning is based on the production of 0.5vol% nano-HfB 2 particles; the 6016 aluminum is placed in a crucible and heated and melted by an induction coil until the temperature reaches 870 At °C, add Al-Hf and Al-B alloy; turn on the radial magnetic field device and the ultrasonic field device, the radial magnetic field power is 110kw, the current is 45A, the ultrasonic field power is 13kw, the reaction is 30min, and the melt temperature is reduced to 780 ⁇ 800°C, then add B 4 C particles with an average particle size of 15 ⁇ m at a speed of 20 g/min.
  • Al-Ti alloy and B 2 O 3 are used as reactants, 6082 is used as the substrate, and the chemical proportioning is carried out according to the generated 0.3vol% nano-TiB 2 particles; 6082 aluminum is placed in a crucible, heated and melted by an induction coil, and the temperature reaches At 870°C, add Al-Ti alloy and B 2 O 3 ; turn on the radial magnetic field device and the ultrasonic field device, the radial magnetic field power is 110kw, the current is 45A, the ultrasonic field power is 13kw, the reaction is 30min, and the melt temperature is reduced. After the temperature reaches 780 ⁇ 800°C, B 4 C particles with an average particle size of 10 ⁇ m are added at a speed of 20 g/min.
  • A356 as the matrix, chemically proportioning according to the 0.5vol% nano-CdB particles generated; placing A356 aluminum in a crucible, using induction coils for heating and melting, until the temperature reaches 870°C
  • the radial magnetic field power is 110kw
  • the current is 45A
  • the ultrasonic field power is 13kw
  • the reaction is 30min
  • the melt temperature is reduced to 780 ⁇ 800°C, then add B 4 C particles with an average particle size of 15 ⁇ m at a speed of 20 g/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明涉及铝基复合材料,特指一种高强韧高中子吸收铝基复合材料的制备方法和装置。本发明将高中子吸收、高稳定的微米级B 4C外加增强体与高中子捕获能力的含B、Cd、Hf元素的原位纳米增强体相结合,利用微米增强体的大截面积实现对中子的高效吸收、借助高度弥散的原位纳米增强体实现对透过微米增强体间隙射线的有效捕获,并通过纳米增强体的高弥散强韧化作用、显著提高复合材料强韧性,获得高强韧高中子吸收的颗粒增强体铝基复合材料。

Description

一种高强韧高中子吸收铝基复合材料的制备方法和装置 技术领域
本发明涉及铝基复合材料,特指一种高强韧高中子吸收铝基复合材料的制备方法和装置。
技术背景
颗粒增强铝基复合材料具有高导热,低膨胀,高比强度,高弹性模量等优异的性能,具有广泛的应用前景。其中B 4C增强铝基复合材料因其优异的中子吸收性能在核能源相关工业中得到了广泛的应用。但是和传统颗粒增强金属材料一样,随着结构功能的增强,材料的塑韧性会大幅度下降。
铝基复合材料的原位合成工艺是近些年发展的新技术,原位颗粒增强铝基复合材料具有增强体尺寸小、热稳定性好、界面结合强度高等优点,在航空、航天、汽车、机械等工业领域有广泛的应用。近些年的一些研究表明,当增强体颗粒尺寸减小至纳米级时,单位体积内纳米颗粒的表面积急剧增大、复合强化效果大幅提高,从而使纳米颗粒增强铝基复合材料具有更高的比强度、比模量和耐高温性能,同时含B、Cd、Hf元素的原位纳米增强体具备良好的中子吸收性能。因此研究制备微米B 4C增强体和含B、Cd、Hf元素的原位纳米增强体铝基复合材料有重要的研究意义。
但是目前B 4C和原位纳米增强铝基复合材料存在一些严重的问题(1)B 4C增强体颗粒与基体浸润困难,容易发生界面反应。(2)由于纳米颗粒巨大的界面能使得原位生成的纳米颗粒趋于团聚,导致复合材料的强韧性较低等问题。
发明内容
本发明的目的就是针对现有技术的不足,如B 4C增强体颗粒与基体浸润困难,容易发生界面反应;原位纳米颗粒增强铝基复合材料中纳米颗粒趋于团聚;铸态晶粒尺寸较为粗大;纳米颗粒仅发挥增强体的强化作用,强度提升有限等,提出的一种实现高强韧高中子吸收铝基复合材料的制备方法及其制备装置,一方面促进B 4C增强体颗粒与基体浸润,另一方面充分改善纳米颗粒的团聚问题,使其分布均匀,并极大地细化铝基复合材料的晶粒,大幅度提高复合材料的强韧性。
本发明将高中子吸收、高稳定的微米级B 4C外加增强体与高中子捕获能力的含B、Cd、Hf元素的原位纳米增强体相结合,利用微米增强体的大截面积实现对中子的高效吸收、借助高度弥散的原位纳米增强体实现对透过微米增强体间隙射线的有效捕获,并通过纳米增强体的高弥散强韧化作用、显著提高复合材料强韧性,获得高强韧高中子吸收的颗粒增强体铝基复合材料。
本发明采用自主设计径向磁场与超声场耦合一体化复合制备装置,一方面通过径向磁场的拌加超声场的作用使成分更加均匀,促进B 4C增强体颗粒与基体浸润以及原位纳米复合,实现成分均匀分布,B 4C颗粒与铝基体结合良好的复合材料,最终获得高强韧和优异的中子吸收性能的颗粒增强铝基复合材料。
本发明设计的径向磁场与超声场耦合一体化复合制备装置,是由电磁感应加热装置,径向磁场装置,超声场装置组成的一体化复合装置。
所述的径向磁场与超声场耦合一体化复合制备装置,包括电磁感应加热装置,径向磁场装置,超声装置,坩埚设在电磁感应加热装置内,电磁感应加热装置外围设有径向磁场装置;超声装置位于一体化复合制备装置底部。
所述复合制备装置顶部设有两个出气口和一个加料管。
所述复合制备装置两边外侧的上部分别设有一个氩气通风管道。
所述复合制备装置底部设有熔炼炉保护层,超声装置除变幅杆的主体部分被熔炼炉保护层包裹,变幅杆伸入到坩埚内部,坩埚底部一侧设有出料口,出料口从熔炼炉保护层内引出。
一种高强韧高中子吸收颗粒增强铝基复合材料的制备方法,其特征在于:基于设计的径向磁场与超声场耦合一体化复合制备装置,通过径向磁场产生的熔体液面中心虹吸通道、将微米B 4C外加陶瓷增强体与含B、Cd、Hf、Ti、Zr元素的中间合金或化合物引入熔体内部,同时借助位于虹吸通道液面下方的高能超声产生的空化与声流带来的高温、高压,实现微米B 4C浸润和分散、并促进含B、Cd、Hf、Ti、Zr元素或其化合物原位生成纳米增强体并均匀分散,制备外加微米增强体与原位纳米增强体跨尺度混杂增强的铝基复合材料。
基于设计的径向磁场与超声场耦合一体化复合制备装置,制备方法通过以下的具体步骤进行:
(1)首先将基体铝合金放入一体化复合装置的坩埚中熔化至850~950℃;
(2)开启复合装置的径向磁场装置与超声装置,通过加料管加入按比例混合的反应物,生成原位纳米颗粒,反应时间为20~30min;
(3)然后将熔体温度降至780~800℃,通过加料装置加入微米B 4C颗粒,利用强力的径向磁场与超声场的作用,促进B 4C颗粒在复合熔体中的浸润、分散,搅拌时间10~30min,最后冷却至720~750℃浇注成型。
所述的径向磁场与超声场耦合一体化复合制备装置,是由电磁感应加热装置、超声装置、径向磁场装置三部分构成,利用电磁感应加热装置对铝合金进行加热,利用径向磁场装置和超声装置促进原位纳米颗粒合成与B 4C颗粒的浸润和分散。
所述的通过径向磁场产生的熔体液面中心虹吸通道是指利用径向磁场使熔体内部产生流动产生的。其中,径向磁场为功率80~160kw,电流为10~100A的磁场,产生的虹吸通道深5~15cm。
所述的高能超声场是位于复合装置底部的超声装置产生的,超声功率为5~20kw,变幅杆长10cm,变幅杆顶端和虹吸通道底部距离为8~15cm。
所述的高中子吸收、高稳定的微米级B 4C外加陶瓷增强体的微米B 4C粉末是指B 4C含量为98.8wt%以上,颗粒平均尺寸10~300μm的微米B 4C颗粒,B 4C颗粒占铝基复合材料的体积分数为5~30vol%。
所述的含B、Cd、Hf、Ti、Zr元素的原位纳米增强体是由引入的不同中间合金或反应物在熔体中原位反应生成的ZrB 2,TiB 2,CdB,B 2Hf中的一至多种,增强体颗粒尺寸为2~100nm,原位纳米颗粒占铝基复合材料的体积分数为0.2~25vol%。
所述步骤(1)中的铝基体合金根据导热、导电、高强、低膨胀、耐磨用途不同,选择纯铝、2系、5系、6系、7系不同的铝基体,典型性代表为:纯铝、2024、6061、6063、6082、6016、6111、7055,A356,A380,AlSi9Cu3等。
所述的步骤(2)中,加料管通过机械装置控制加料速度,其加料速度为5~50g/min。
所述的步骤(2)中的熔化至850-950℃是根据具体的反应体系做调整,原位反应是为了在熔体中引入纳米增强体颗粒形成元素化合物,反应时间为20~30min,反应过程中应伴有径向循环搅拌,最终在熔体中原位合成纳米陶瓷增 强体;所述的纳米增强体颗粒形成中间合金或元素化合物为:Al-Zr,Al-Ti,Al-B,Al-Cd,Al-Hf,K 2ZrF 6,K 2TiF 6,KBF 4,Na 2B 4O 7,ZrO 2,B 2O 3,K 2ZrF 6等中的一至多种。
所述的坩埚采用表面钝化处理的耐热模具钢,如H13钢、高速钢、高Gr钢等制成,所述的变幅杆材用耐高温、耐腐蚀的铌合金制作。
本发明将高中子吸收、高稳定的微米级B 4C外加增强体与高中子捕获能力的含B、Cd、Hf元素的原位纳米增强体相结合,利用微米增强体的大截面积实现对中子的高效吸收、借助高度弥散的原位纳米增强体实现对透过微米增强体间隙射线的有效捕获,并通过纳米增强体的高弥散强韧化作用、显著提高复合材料强韧性,获得高强韧高中子吸收的颗粒增强体铝基复合材料。
附图说明
图1为本发明的径向磁场与超声场耦合一体化复合制备装置结构示意图1.加料器,2.出气口,3.氩气通风管道,4.电磁感应加热装置,5.虹吸通道,6.径向磁场装置,7.超声装置,8.熔炼炉保护层,9.出料口
图2为通过本发明设计的装置制备的(5vol%B 4C+1vol%ZrB 2)/Al复合材料的SEM图
具体实施方式
本发明根据以下示例实施,但是不限于以下实例;这些实例只是为了举例说明本发明,而非以任何方式限制本发明的范围;在以下的实施例中,未详细描述的各种过程和方法是本领域中公知的常规方法
实施实例1
以K 2ZrF 6和KBF 4作为反应物,按照生成1vol%纳米ZrB 2颗粒进行化学配比,将混合研磨后的反应物粉末于200℃烘干2h备用;将纯铝置于坩埚中,利用感应线圈进行加热熔化,待温度达到870℃时,将混合研磨后的反应物粉末加入;开启径向磁场装置和超声场装置,径向磁场功率为120kw,电流为50A,超声场功率为15kw,反应30min,将熔体温度降至780~800℃,之后加入平均粒径为20μm的B 4C颗粒,速度为20g/min,待复合完成后,静置、除气、除渣,待温度降至720℃后浇注成型。最终获得(5vol%B 4C+1vol%ZrB 2)/Al复合材料。复合材料的抗拉强度为210MPa,屈服强度为120MPa,延伸率为23.5%。
图2为通过本发明设计的装置制备的(5vol%B 4C+1vol%ZrB 2)/Al复合材料的SEM图,通过图片发现B 4C颗粒进入基体,并均匀分散。
实施实例2
以Al-Hf和Al-B合金作为反应物,6016作为基体,按照生成0.5vol%纳米HfB 2颗粒进行化学配比;将6016铝置于坩埚中,利用感应线圈进行加热熔化,待温度达到870℃时,加入Al-Hf和Al-B合金;开启径向磁场装置和超声场装置,径向磁场功率为110kw,电流为45A,超声场功率为13kw,反应30min,将熔体温度降至780~800℃,之后加入平均粒径为15μm的B 4C颗粒,速度为20g/min,待复合完成后,静置、除气、除渣,待温度降至720℃后浇注成型。最终获得(10vol%B 4C+0.5vol%HfB 2)/6016Al复合材料。复合材料的抗拉强度为380MPa,屈服强度为260MPa,延伸率为16.5%。
实施实例3
以Al-Ti合金和B 2O 3作为反应物,6082作为基体,按照生成0.3vol%纳米TiB 2颗粒进行化学配比;将6082铝置于坩埚中,利用感应线圈进行加热熔化,待温度达到870℃时,加入Al-Ti合金和B 2O 3;开启径向磁场装置和超声场装置,径向磁场功率为110kw,电流为45A,超声场功率为13kw,反应30min,将熔体温度降至780~800℃,之后加入平均粒径为10μm的B 4C颗粒,速度为20g/min,待复合完成后,静置、除气、除渣,待温度降至720℃后浇注成型。最终获得(15vol%B 4C+0.3vol%TiB 2)/6082Al复合材料。复合材料的抗拉强度为396MPa,屈服强度为273MPa,延伸率为12.3%。
实施实例4
以Al-Cd和Al-B合金作为反应物,A356作为基体,按照生成0.5vol%纳米CdB颗粒进行化学配比;将A356铝置于坩埚中,利用感应线圈进行加热熔化,待温度达到870℃时,加入Al-Cd和Al-B合金;开启径向磁场装置和超声场装置,径向磁场功率为110kw,电流为45A,超声场功率为13kw,反应30min,将熔体温度降至780~800℃,之后加入平均粒径为15μm的B 4C颗粒,速度为20g/min,待复合完成后,静置、除气、除渣,待温度降至720℃后浇注成型。最终获得(10vol%B 4C+0.5vol%CdB)/A356复合材料。复合材料的抗拉强度为310MPa,屈服强度为220MPa,延伸率为7.5%。

Claims (10)

  1. 一种高强韧高中子吸收铝基复合材料的制备装置,其特征在于,所述装置包括电磁感应加热装置,径向磁场装置,超声装置,坩埚设在电磁感应加热装置内,电磁感应加热装置外围设有径向磁场装置;超声装置位于一体化复合制备装置底部。
  2. 如权利要求1所述的制备装置,其特征在于,所述制备装置顶部设有两个出气口和一个加料管;所述制备装置两边外侧的上部分别设有一个氩气通风管道;所述制备装置底部设有熔炼炉保护层,超声装置除变幅杆的主体部分被熔炼炉保护层包裹,变幅杆伸入到坩埚内部,坩埚底部一侧设有出料口,出料口从熔炼炉保护层内引出。
  3. 采用如权利要求1所述制备装置制备高强韧高中子吸收铝基复合材料的方法,其特征在于,通过径向磁场产生的熔体液面中心虹吸通道,将微米B 4C外加陶瓷增强体与含B、Cd、Hf、Ti、Zr元素的中间合金或化合物引入熔体内部,同时借助位于虹吸通道液面下方的高能超声场产生的空化与声流带来的高温、高压,实现微米B 4C浸润和分散,并促进含B、Cd、Hf、Ti、Zr元素或其化合物原位生成纳米增强体并均匀分散,制备外加微米增强体与原位纳米增强体跨尺度混杂增强的铝基复合材料,具体步骤如下:
    (1)首先将基体铝合金放入一体化复合装置的坩埚中熔化至850~950℃;
    (2)开启复合装置的径向磁场装置与超声装置,通过加料管加入按比例混合的反应物,生成原位纳米颗粒,反应时间为20~30min;
    (3)然后将熔体温度降至780~800℃,通过加料装置加入微米B 4C颗粒,利用强力的径向磁场与超声场的作用,促进B 4C颗粒在复合熔体中的浸润、分散,搅拌时间10~30min,最后冷却至720~750℃浇注成型。
  4. 如权利要求3所述的制备方法,其特征在于,利用电磁感应加热装置对铝合金进行加热,利用径向磁场装置和超声装置促进原位纳米颗粒合成与B 4C颗粒的浸润和分散。
  5. 如权利要求3所述的制备方法,其特征在于,所述的通过径向磁场产生的的熔体液面中心虹吸通道是指利用径向磁场使熔体内部产生流动产生的;其中,径向磁场为功率80~160kw,电流为10~100A的磁场,产生的虹吸通道深5~15cm。
  6. 如权利要求3所述的制备方法,其特征在于,所述的高能超声场是位于复合装置底部的超声装置产生的,超声功率为5~20kw,变幅杆长10cm,变幅杆顶 端和虹吸通道底部距离为8~15cm。
  7. 如权利要求3所述的制备方法,其特征在于,所述的微米级B 4C外加陶瓷增强体的微米B 4C粉末是指B 4C含量为98.8wt%以上,颗粒平均尺寸10~300μm的微米B 4C颗粒,B 4C颗粒占铝基复合材料的体积分数为5~30vol%。
  8. 如权利要求3所述的制备方法,其特征在于,所述的含B、Cd、Hf、Ti、Zr元素的原位纳米增强体是由引入的不同中间合金或反应物在熔体中原位反应生成的ZrB 2,TiB 2,CdB,B 2Hf中的一至多种,增强体颗粒尺寸为2~100nm,原位纳米颗粒占铝基复合材料的体积分数为0.2~25vol%。
  9. 如权利要求3所述的制备方法,其特征在于,所述步骤(1)中的铝基体合金根据导热、导电、高强、低膨胀、耐磨用途不同,选择纯铝、2系、5系、6系、7系不同的铝基体;所述的步骤(2)中,加料管通过机械装置控制加料速度,其加料速度为5~50g/min。
  10. 如权利要求3所述的制备方法,其特征在于,所述的步骤(2)中的熔化至850-950℃是根据具体的反应体系做调整,原位反应是为了在熔体中引入纳米增强体颗粒形成元素化合物,反应时间为20~30min,反应过程中应伴有径向循环搅拌,最终在熔体中原位合成纳米陶瓷增强体;所述的纳米增强体颗粒形成中间合金或元素化合物为:Al-Zr,Al-Ti,Al-B,Al-Cd,Al-Hf,K 2ZrF 6,K 2TiF 6,KBF 4,Na 2B 4O 7,ZrO 2,B 2O 3,K 2ZrF 6中的一至多种;所述的坩埚采用表面钝化处理的耐热模具钢;所述的变幅杆材用耐高温、耐腐蚀的铌合金制作。
PCT/CN2020/122688 2020-01-19 2020-10-22 一种高强韧高中子吸收铝基复合材料的制备方法和装置 WO2021143247A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/630,169 US11643709B2 (en) 2020-01-19 2020-10-22 Method and apparatus for preparing aluminum matrix composite with high strength, high toughness, and high neutron absorption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010060933.5 2020-01-19
CN202010060933.5A CN111118329B (zh) 2020-01-19 2020-01-19 一种高强韧高中子吸收铝基复合材料的制备方法和装置

Publications (1)

Publication Number Publication Date
WO2021143247A1 true WO2021143247A1 (zh) 2021-07-22

Family

ID=70491159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122688 WO2021143247A1 (zh) 2020-01-19 2020-10-22 一种高强韧高中子吸收铝基复合材料的制备方法和装置

Country Status (3)

Country Link
US (1) US11643709B2 (zh)
CN (1) CN111118329B (zh)
WO (1) WO2021143247A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155010A1 (en) * 2021-09-27 2023-03-29 Xerox Corporation Alloying of metal jetting compositions and methods thereof
CN116024452A (zh) * 2023-01-10 2023-04-28 中国航发北京航空材料研究院 一种原位合成纳米颗粒增强铝基复合材料的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118329B (zh) 2020-01-19 2021-11-23 江苏大学 一种高强韧高中子吸收铝基复合材料的制备方法和装置
CN112647010A (zh) * 2020-11-09 2021-04-13 江苏大学 一种高强韧高中子吸收泡沫铝基复合材料及其制备方法
CN112095031B (zh) * 2020-11-17 2021-02-09 捷安特轻合金科技(昆山)股份有限公司 轮毂用高强高韧a356.2铝基复合材料的制备方法
CN112680622A (zh) * 2020-12-18 2021-04-20 深圳优越科技新材料有限公司 轻质高强的碳化硼颗粒增强铝基复合材料及其制备方法
CN113737044B (zh) * 2021-08-27 2022-02-11 西安交通大学 一种易变形钆/碳化硼/铝中子吸收材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288133B1 (en) * 2004-02-06 2007-10-30 Dwa Technologies, Inc. Three-phase nanocomposite
CN101391290A (zh) * 2008-11-05 2009-03-25 江苏大学 一种磁场与超声场耦合作用下熔体反应合成金属基复合材料的方法
CN103789599A (zh) * 2014-01-28 2014-05-14 中广核工程有限公司 连续铸轧制备B4C/Al中子吸收材料板材的方法
CN109797309A (zh) * 2019-01-30 2019-05-24 中广核工程有限公司 一种结构功能一体化中子吸收材料高温强化方法
CN110016582A (zh) * 2019-03-25 2019-07-16 江苏大学 一种原位纳米颗粒增强铝基复合材料的制备方法
CN111118329A (zh) * 2020-01-19 2020-05-08 江苏大学 一种高强韧高中子吸收铝基复合材料的制备方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732779A (en) * 1985-05-21 1988-03-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Fibrous material for composite materials, fiber-reinforced metal produced therefrom, and process for producing same
DE102005009326B4 (de) * 2005-02-21 2007-01-04 Technische Universität Bergakademie Freiberg Verfahren und Gießeinrichtung zur Herstellung von Mikrogussteilen
JP2006343203A (ja) * 2005-06-08 2006-12-21 Kobe Steel Ltd 超音波測定方法及び超音波測定装置
CN101775518A (zh) * 2010-04-02 2010-07-14 哈尔滨工业大学 利用超声波制备颗粒增强梯度复合材料的装置及方法
CN104122330B (zh) * 2014-07-22 2016-08-17 华中科技大学 基于电磁超声纵向导波的管道缺陷检测方法与装置
CN104928542B (zh) * 2015-05-19 2017-05-03 江苏大学 一种汽车控制臂用6x82基复合材料的制备方法
CN105671373A (zh) * 2016-03-11 2016-06-15 江苏海龙核科技股份有限公司 一种具有高b4c含量中子吸收板的制备方法
CN106978563B (zh) * 2017-04-11 2018-10-02 中国工程物理研究院材料研究所 一种Al-B4C-B中子吸收材料及其制备方法
CN109825737A (zh) * 2019-02-14 2019-05-31 四川聚能核技术工程有限公司 一种铝基碳化硼复合材料的熔铸制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288133B1 (en) * 2004-02-06 2007-10-30 Dwa Technologies, Inc. Three-phase nanocomposite
CN101391290A (zh) * 2008-11-05 2009-03-25 江苏大学 一种磁场与超声场耦合作用下熔体反应合成金属基复合材料的方法
CN103789599A (zh) * 2014-01-28 2014-05-14 中广核工程有限公司 连续铸轧制备B4C/Al中子吸收材料板材的方法
CN109797309A (zh) * 2019-01-30 2019-05-24 中广核工程有限公司 一种结构功能一体化中子吸收材料高温强化方法
CN110016582A (zh) * 2019-03-25 2019-07-16 江苏大学 一种原位纳米颗粒增强铝基复合材料的制备方法
CN111118329A (zh) * 2020-01-19 2020-05-08 江苏大学 一种高强韧高中子吸收铝基复合材料的制备方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155010A1 (en) * 2021-09-27 2023-03-29 Xerox Corporation Alloying of metal jetting compositions and methods thereof
CN116024452A (zh) * 2023-01-10 2023-04-28 中国航发北京航空材料研究院 一种原位合成纳米颗粒增强铝基复合材料的方法

Also Published As

Publication number Publication date
CN111118329B (zh) 2021-11-23
CN111118329A (zh) 2020-05-08
US11643709B2 (en) 2023-05-09
US20220282356A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2021143247A1 (zh) 一种高强韧高中子吸收铝基复合材料的制备方法和装置
CN108559864B (zh) 一种新能源汽车用原位纳米强化铝合金轮毂及制造方法
WO2019090963A1 (zh) 一种车身用原位纳米强化铝合金挤压材及制备方法
WO2016184237A1 (zh) 一种汽车控制臂用6x82基复合材料的制备方法
WO2021114967A1 (zh) 一种原位三元纳米颗粒增强铝基复合材料的制备方法
CN103773997B (zh) 一种航空用仪表级碳化硅增强铝基复合材料及其制备方法
CN106086530B (zh) 一种原位铝基复合材料的制备方法及其装置
CN110629061B (zh) 一种原位纳米氧化铝含量可控的铝基复合材料的制备方法
CN110016582B (zh) 一种原位纳米颗粒增强铝基复合材料的制备方法
WO2014063492A1 (zh) 一种金属间化合物超细颗粒增强金属基复合材料及其制备方法
CN105132733B (zh) 一种制备纳米颗粒增强铝基复合材料的方法
CN109852834B (zh) 一种纳米陶瓷颗粒增强金属基分级构型复合材料的制备方法
CN109108298A (zh) 一种高强韧分级结构金属基复合材料的制备方法
CN105695781B (zh) 一种高性能原位纳米颗粒增强镁基复合材料的制备方法
Zhao et al. Fabrication of magnesium-coated graphene and its effect on the microstructure of reinforced AZ91 magnesium-matrix composites
CN109234562B (zh) 一种调控制备原位二元纳米颗粒增强铝基复合材料的方法
CN104451236A (zh) 一种纳米ZrB2颗粒增强铝基复合材料的原位制备方法
Pramanik et al. Fabrication of nano-particle reinforced metal matrix composites
CN110144478B (zh) 一种高强韧纳米颗粒增强铝基复合材料的制备装置和方法
CN103695673B (zh) 一种金属间化合物颗粒Al3-M增强铝基复合材料的制备方法
WO2022246888A1 (zh) 5g基站用高强韧高导热易焊接铝基复合材料及制备方法
CN114411031A (zh) 一种微米钛颗粒增强镁稀土基复合材料
WO2024001374A1 (zh) 一种原位Al2O3颗粒增强铝基复合材料的制备方法
CN100376700C (zh) 合成高性能铝基原位复合材料的Al-Zr-B-O反应体系及其合成的新材料
CN114000015B (zh) 原位多相颗粒耦合增强铝基复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913565

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20913565

Country of ref document: EP

Kind code of ref document: A1