WO2014063492A1 - 一种金属间化合物超细颗粒增强金属基复合材料及其制备方法 - Google Patents

一种金属间化合物超细颗粒增强金属基复合材料及其制备方法 Download PDF

Info

Publication number
WO2014063492A1
WO2014063492A1 PCT/CN2013/076529 CN2013076529W WO2014063492A1 WO 2014063492 A1 WO2014063492 A1 WO 2014063492A1 CN 2013076529 W CN2013076529 W CN 2013076529W WO 2014063492 A1 WO2014063492 A1 WO 2014063492A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermetallic compound
alloy
metal
composite material
composite
Prior art date
Application number
PCT/CN2013/076529
Other languages
English (en)
French (fr)
Inventor
吴国清
张清清
李志燕
黄正
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to US14/375,034 priority Critical patent/US9869006B2/en
Publication of WO2014063492A1 publication Critical patent/WO2014063492A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal

Definitions

  • Intermetallic compound ultrafine particle reinforced metal matrix composite material and preparation method thereof
  • the invention belongs to the technical field of composite materials and preparation thereof, and relates to a preparation method of intermetallic compound particle reinforced metal matrix composite materials, in particular to an intermetallic compound ultrafine particle reinforced metal matrix composite modified by composite ball milling surface modification. material.
  • Magnesium-lithium-based alloys are non-toxic due to their ultra-low density (1.30 g/cm 3 ⁇ 1.60 g/cm 3 ) > high specific strength and specific stiffness, excellent shock absorption and resistance to high-energy particles.
  • the lightest structural metal material among metal materials has broad application prospects in the fields of aerospace, transportation and other fields.
  • the alloy structure occurs ⁇ ! ! - ⁇ ⁇ transformation shown in Figure ,), the alloy's plastic deformation ability is significantly improved, its elongation can reach more than 40%, but due to the low alloy strength, creep resistance is poor, limiting magnesium lithium Base alloy application range.
  • Composite strengthening provides an effective book path for further improving the mechanical properties of magnesium-lithium-based alloys. Compared with magnesium-lithium-based alloys, composites not only retain the conductivity, thermal conductivity and excellent cold and hot processing properties of the matrix alloy, but also combine low density, high specific stiffness, high specific strength, good wear resistance and high temperature resistance. , shock absorption performance, good damping performance and electromagnetic shielding performance in one, has become one of the hot spots of material research.
  • the magnesium-lithium composites are mainly strengthened by fiber reinforcement, particle reinforcement and whisker reinforcement.
  • the reinforcement components are mainly SiC, B 4 C, A1 2 3 3 , TiC, B and so on.
  • These reinforcements can be added separately in the form of granules, fibers or whiskers, or they can be added in a mixed form (for example, SiC particles / A1 2 0 3 whisker blending), and the magnesium-lithium groups are increased to varying degrees.
  • Mechanical properties of the alloy can be added separately in the form of granules, fibers or whiskers, or they can be added in a mixed form (for example, SiC particles / A1 2 0 3 whisker blending), and the magnesium-lithium groups are increased to varying degrees.
  • Mechanical properties of the alloy the composite strengthening of ceramic materials also brings about the problem of severe damage to the plasticity and toughness of the material.
  • the magnesium-lithium-based alloy and the ceramic reinforcing material have good wettability and chemical compatibility, which can form an ideal composite phase interface. Therefore, the plasticity and toughness of the material are greatly reduced and the ceramic reinforcing phase is Brittleness is closely related. Therefore, it is important to select a material that has both reinforcing
  • the intermetallic compound has metal characteristics, such as metallic luster, metal conductivity, and thermal conductivity
  • the intermetallic compound particles are selected as the reinforcing phase of the magnesium-lithium composite material, and it is easier to obtain a good moisturization with the magnesium lithium matrix.
  • Adapted interface such as wetness, chemical compatibility, etc.
  • the higher specific strength and specific stiffness of the intermetallic compound, as well as the high use temperature between the alloy and the ceramic make it an effective reinforcing phase for the alloy.
  • the intermetallic compound has relative plasticity, so that it increases the strength of the base alloy while the plastic damage to the alloy matrix is less than that. Damage caused by ceramic reinforcement. The above provides a basis for forming an intermetallic compound particle reinforced magnesium-lithium composite material with good overall performance.
  • an ultrafine particle reinforced metal matrix composite material containing a rare earth element intermetallic compound is proposed, and the composite material is reinforced with an intermetallic compound particle of 0.1 to 3 ⁇ m, and the plasticity thereof is obtained.
  • the strength increase value is 20% ⁇ 40%.
  • the comprehensive mechanical properties of the material are improved to some extent, the reinforcement is more likely to agglomerate due to the smaller particle size, and the interface combination still cannot meet the demand for strength. There is still a certain gap between the ultra-light and high-strength targets.
  • the comprehensive mechanical properties of magnesium-lithium composites have yet to be further improved.
  • the invention provides an intermetallic compound ultrafine particle reinforced metal matrix composite material and a preparation method thereof, and the preparation method comprises the steps of composite ball milling, powder pre-compression and smelting, and solves the preparation of the nano particle reinforced metal matrix composite material.
  • the agglomeration problem generated in the process is beneficial to the improvement and stability of the mechanical properties of the composite.
  • the reinforcing body particles and the metal additive are subjected to composite ball milling to realize surface modification of the reinforcing body particles; the composite powder obtained by the composite ball milling is pre-compacted to form a composite powder pre-compacting block. Then, using the reinforcing body particle mass fraction as the parameter of 1% ⁇ 30% of the metal matrix composite, the surface modified intermetallic compound particle reinforcement is introduced into the matrix alloy melt by means of the composite powder pre-compacting, in the mechanical
  • the metal-based composite material reinforced by the ultrafine particles of the intermetallic compound is prepared by stirring and assisted by ultrasonic stirring.
  • the preparation method of the intermetallic compound ultrafine particle reinforced metal matrix composite material provided by the invention adopts the intermetallic compound ultrafine particle as the reinforcement body, and the particle size of the reinforcement body is selected to be 0.01 ⁇ 5 ⁇ , and the mass fraction is 1% ⁇ 30. %, preferably, the reinforcing body particles have an average particle diameter of 0.01 to 0.5 ⁇ m and a mass fraction of 1% to 20%.
  • the specific preparation method steps are as follows:
  • the reinforcing body particles and the metal additive are mixed as a mixed powder, and the mixed powder is subjected to composite ball milling on a planetary ball mill to form a composite powder.
  • the metal additive may be magnesium powder or aluminum powder, may be magnesium-based metal shavings or metal powder, or may be aluminum-based metal shavings or metal powder. Since the Mg-Li alloy is easily oxidized, its powder is not suitable as an additive powder, so when a Mg-Li alloy is used as a matrix, Mg powder is used as a metal additive.
  • the sum of the mass of the metal additive and the mass of the smelting matrix alloy in the third step constitutes the total mass of the matrix of the composite.
  • the mass ratio of the metal additive to the reinforcement particles is from 1:3 to 3:1.
  • the composite powder obtained by the composite ball milling is pre-compacted to obtain a composite powder pre-compacted block.
  • the pre-compaction conditions are pressure 1 MPa ⁇ 20 MPa, time 10 min.
  • the proportion of the elements occupied by the metal additive is subtracted, and the remaining The element is proportioned and then smelted, and then the composite powder pre-compact is added to the base alloy melt to continue the smelting, and finally an intermetallic compound ultrafine particle reinforced metal matrix composite is obtained, and the intermetallic compound is ultrafine.
  • the mass fraction of the reinforcement particles in the particle reinforced metal matrix composite is 1% to 30%. The smelting process is assisted by mechanical agitation and ultrasonic agitation.
  • the reinforcement may be a transition group or a rare earth intermetallic compound such as a ruthenium 2 or CeAl 2 intermetallic compound ultrafine particle.
  • the base alloy is a magnesium-based alloy or an aluminum-based alloy
  • the magnesium-based alloy may be a lithium-containing magnesium alloy, such as a magnesium-lithium-based alloy, having a lithium content of 0.1 wt% ⁇ 40 wt%. 1 wt°/ ⁇
  • the aluminum-based alloy may be a lithium-containing aluminum alloy, such as lithium aluminum alloy, having a lithium content of 0.1 wt ° /. ⁇ 15wt° / 0 .
  • the invention utilizes the characteristics of high specific strength, specific stiffness and size effect of the ultrafine particles of the intermetallic compound to prepare a novel ultrafine particle reinforcement for strengthening the alloy matrix, and at the same time utilizing the intermetallic compound
  • the characteristics of the metal bond and the covalent bond, through the composite ball mill with the metal additive (the state of the powder or the chip), with the aid of mechanical stirring and ultrasonic agitation, the dispersibility, interfacial bonding and interfacial properties of the reinforcement are achieved. Improvement, finally, a rare earth element-containing intermetallic compound ultrafine particle reinforced metal matrix composite material with uniform microstructure and good interface state was prepared. Due to the improvement of the uniformity of the composite material and the change of the strengthening mechanism, the intermetallic compound ultrafine particle reinforced metal matrix composite material is greatly improved in strength, much higher than the ordinary particle reinforced metal matrix composite material, and its plasticity is well maintained.
  • the submicron and nanoparticle reinforcements differ from the conventional size enhancement particles in the strengthening mechanism.
  • the size effect of the ultrafine reinforcement particles leads to a more significant improvement in the properties of the composite.
  • the composite ball milled powder is pre-compressed into a composite powder pre-compacting block, and the intermetallic compound particles are introduced into the metal matrix by pre-compacting in the matrix melting process, and then the metal additive is first melted, thereby
  • the reinforcing body particles are preferably dispersed, and the reliability and safety of the melting process are preferably improved.
  • the tensile strength of the composite prepared by the preparation method provided by the present invention is 50% to 250% higher than that of the base alloy, and the elongation is reduced to 7% to 20%, and the plasticity is well maintained.
  • Figure 1 is a phase diagram of a conventional binary Mg-Li alloy
  • FIG. 2 is a flow chart of a method for preparing an intermetallic compound ultrafine particle reinforced metal matrix composite material provided by the present invention
  • FIG. 3 is a picture of a composite material interface prepared by the present invention
  • Figure 4 is a photomicrograph of a composite material prepared by the present invention
  • Figure 5 is a TEM image of the morphology of the YA1 2 /Mg composite ball after grinding in the preparation process of the present invention.
  • the invention provides a preparation method of an intermetallic compound ultrafine particle reinforced metal matrix composite material, and the preparation method process is shown in FIG. 2, and the details are as follows:
  • the reinforcing body particles and the metal additive are mixed to form a mixed powder, and the mixed powder is subjected to composite ball milling on a planetary ball mill to form a composite powder.
  • the reinforcing body particles are intermetallic compound reinforcing particles having a particle diameter of 0.01 ⁇ m to 5 ⁇ m, and the metal additive may be prepared from a matrix alloy, or may be a pure metal scrap or powder such as magnesium powder or aluminum powder. .
  • the reinforcement between the metal compound particles may be between 12 Ah eight or transition group CeAl 2 intermetallic compound or a rare earth metal compound.
  • the composite powder is pre-compacted under the condition of lMPa ⁇ 20MPa to obtain a composite powder pre-compacting block.
  • the pre-compaction can prevent excessive gas impurities and combustion from being introduced during the addition of the ultrafine powder.
  • the composite powder pre-compacting block is added to the base melt during the smelting process of the matrix component, and is mechanically stirred and ultrasonically stirred, and argon gas is used for protection during the smelting process to prepare a metal matrix composite material.
  • the proportion of the elements of the metal additive is subtracted, the remaining elements are proportioned and then smelted, and then the matrix is applied.
  • the pre-compacted block is added to the molten metal, and the mass percentage of the reinforcing body in the prepared metal matrix composite material is 1% to 30%.
  • the mechanical agitation and ultrasonic agitation can achieve effective dispersion of ultrafine particles, optimize interface bonding, and improve the overall mechanical properties of the composite.
  • the substrate is a magnesium-based alloy or an aluminum-based alloy.
  • the metal matrix composite material prepared by the above method has a particle size of 0.01 ⁇ 5 ⁇ , and a mass fraction of 1% to 30%.
  • the modified ultrafine particle reinforcement is pre-compressed with the composite powder.
  • the block mode is introduced into the base melt, and the metal additive in the composite powder pre-compacting block is preferentially melted during the smelting process, so that the reinforcing body particles are well dispersed.
  • the interface and performance analysis of the metal matrix composites prepared above show that the ultrafine reinforcement particles have a uniform dispersion distribution in the matrix alloy, and the interface between the reinforcement and the matrix has good interfacial bonding effect, and the tensile strength of the material is effective. Improve, while plasticity is better maintained.
  • Example 1 will be given below by way of examples.
  • a 2 kg-weight intermetallic compound ultrafine particle reinforced metal matrix composite is prepared.
  • a composite powder was obtained by ball milling of 33.3% of magnesium turnings with 66.7% of YA1 2 (YAl 2 600 g, 300 g of Mg crumb).
  • the composite powder after ball milling is pre-compacted under the pressure of 20 MPa as a composite powder pre-compacting block.
  • YA1 2 ultrafine particles are added into the Mg-Li-Al alloy melt.
  • the ratio of alloy melt is 890g
  • Li is 224g
  • A1 is 16g, and is stirred and cast. , obtained a mass fraction of 30% YA1 2 reinforced Mg-14L1-A1 based composite.
  • the mechanical properties of the composites show that the tensile strength at room temperature is increased from 122 MPa to 420 MPa, the strength value is increased by more than 200%, and the elongation is not less than 7%.
  • the plasticity is better maintained than that of the base alloy.
  • a composite material having a weight of 2 kg is prepared.
  • Pre-compacting pre-compacting for 10 min under the condition of pressure of 2 MPa, the composite powder pre-compacting block is obtained.
  • the mechanical properties of the composites show that the tensile strength at room temperature of the matrix-based composites is increased from 122 MPa to 320 MPa, the tensile strength is increased by more than 160%, and the elongation is reduced from 20% to 18% of the matrix alloy.
  • the plasticity is better maintained.
  • Fig. 3 and Fig. 4 in the microstructure of the composite, YA1 2 particles are more evenly distributed in the crystal and at the grain boundary, and no agglomeration occurs.
  • the interface of the composite material is a perfect direct bonding interface, and no interfacial reaction. Debonding with the interface.
  • the transmission morphology of the composite powder after ball milling shows that the YA1 2 particles are well coated with Mg, and there is a good interface between the two.
  • a composite material having a weight of 2 kg is prepared.
  • the mechanical properties of the composites show that the tensile strength at room temperature of the matrix-based composites is increased from 122 MPa to 270 MPa, the tensile strength is increased by more than 120%, and the elongation is reduced from 20% to 17% of the matrix alloy. The plasticity is better maintained.
  • a 2 kg-weight intermetallic compound ultrafine particle reinforced metal matrix composite is prepared.
  • a composite powder was obtained by ball milling of Al 3 Mg iMf 33.3% YAl 2 with a mass fraction of 66.7% for 2 h (YA1 2 was 20 g, and ⁇ 1 ⁇ 2 powder was 40 g).
  • the composite powder after ball milling is pre-compacted under a pressure of 20 MPa to obtain a composite powder pre-compact.
  • the Mg-Li-Al alloy composition is added, and the composite powder pre-compact is added to the Mg-Li-Al alloy melt.
  • the ratio of the alloy melt is 1630. 1g, Li is 277.2g, Al is 32.7g, and it is assisted by mechanical stirring and ultrasonic stirring to obtain a mass fraction of 1% YA1 2 reinforced Mg-14Li-3Al matrix composite.
  • the mechanical properties of the composites show that the tensile strength at room temperature is increased from 122 MPa to 180 MPa, the strength value is increased by 50%, and the elongation is not less than 16%.
  • the plasticity is better maintained than the base alloy.
  • the CeAl 2 intermetallic compound ultrafine particle reinforced Mg-40Li-based composite material is prepared as follows:
  • the balance is Ce ratio CeAl 2 alloy raw material, casting at 1500 ⁇ temperature
  • the CeAl 2 intermetallic compound bulk material is subjected to mechanical pulverization to prepare ultrafine particles of intermetallic compound by high energy ball milling, wherein the ultrafine particles have an average particle diameter of 1 ⁇ m.
  • Mass fraction of 25% of magnesium turnings and 75% CeAl 2 bonded ball 2h (.6 to eight 12 300 ⁇ , Mg is 100g), to give composite powder after milling.
  • Pre-compacting The composite powder after ball milling is pre-compacted under the pressure of IMPa to obtain a composite powder pre-compact.
  • CeAl 2 ultrafine particles are added into the Mg-Li alloy melt.
  • the ratio of alloy melt is 920g, Li is 680g, and the quality is obtained by stirring and casting.
  • the mechanical properties test results of the composites show that the tensile strength at room temperature is increased from 70 MPa to 180 MPa, the strength value is increased by more than 150%, and the elongation is not less than 20%.
  • a composite powder was obtained by ball-milling of Al 2 Cu powder with a mass fraction of 66.7% and 33.3% ⁇ 12 for 40 h (20 g of YA1 2 and 40 g of Al 2 Cu powder).
  • Pre-compacting The composite powder is pre-compacted under the pressure of 20 MPa to obtain a composite powder pre-compacting block.
  • the mechanical properties of the prepared composites were tested.
  • the test results show that the tensile strength at room temperature is increased from 206 MPa to 460 MPa, the strength value is increased by more than 120%, and the elongation is reduced from 17% of the base alloy to 15%. The plasticity is well maintained.
  • the intermetallic compound has high specific strength and specific stiffness, and can be used as a reinforcing material to effectively enhance the magnesium-lithium-based alloy, the lithium-containing aluminum alloy and the aluminum alloy; compared with the ceramic, the intermetallic compound is metal from the viewpoint of bonding.
  • the bond is dominant, and the ceramic is dominated by covalent bonds, so the intermetallic compound particles and the matrix alloy may have better wettability.
  • the diffusion of elements such as Y, Ce and A1 in the intermetallic compound will help to improve the wettability of the particle reinforcement and the alloy matrix; the diffusion of the A1 element will further increase the strength of the alloy, and the diffusion of rare earth elements such as Y and Ce.
  • the intermetallic compound has better plasticity than the ceramic material, and the intermetallic compound particles are used to strengthen the metal.
  • the matrix composite material is beneficial to improve the coordination of the interfacial deformation between the reinforcing particles and the matrix under the deformation condition, so as to improve the crack initiation and expansion retardation of the material, and thus has obvious advantages in improving the comprehensive performance of the material toughness.
  • the strengthening mechanism has undergone a large change, thereby greatly improving the mechanical properties of the material represented by the tensile strength.
  • the strengthening mechanism of ordinary particle reinforced composites is mainly load transfer, while the ultrafine particle reinforced metal matrix composites greatly enhance the dispersion strengthening effect.
  • the surface activity increases, so the interface with the matrix
  • the combination is strong, which will allow the particles themselves to perform higher load carrying capacity. Therefore, the combination of the matrix and the particle interface, the dispersion of the particles, and the uniform macroscopic structure are the main reasons for the high strength and high plasticity of the ultrafine particle reinforced metal matrix composite.
  • the strong body may also be a Sc-Al-based intermetallic compound, a La-Al-based intermetallic compound, or the like, and the composite material prepared by using the above-mentioned rare earth intermetallic compound ultrafine particles for reinforcement preparation has excellent mechanical properties and can be used in aerospace, Transportation and other fields are widely used.

Abstract

一种金属间化合物超细颗粒增强金属基复合材料的制备方法,包括如下步骤:金属间化合物增强体颗粒粒径为0.01μm~5μm,增强体颗粒先与金属添加物混合球磨,得到复合粉末进行预压实得到预压块,将预压块加入基体合金的熔体中进行共同熔炼,在搅拌熔炼系统下制备超细金属间化合物颗粒增强的金属基复合材料,其中增强体颗粒质量分数1%~30%。该方法实现了对增强体颗粒分散性、界面结合和界面性质的明显改善。以及一种金属间化合物超细颗粒增强金属基复合材料,该复合材料较普通颗粒增强复合材料,在强度上有大幅提高,并且其塑性得到良好保持。

Description

一种金属间化合物超细颗粒增强金属基复合材料及其制备方法 技 术 领 域
本发明属于复合材料及其制备技术领域,涉及一种金属间化合物颗粒增强金属基复合材 料的制备方法, 尤其涉及一说种经复合球磨表面改性的金属间化合物超细颗粒增强的金属基复 合材料。
背 景 技 术
镁锂基合金因具有超低的密度 (1.30 g/cm3~ 1.60g/cm3) > 较高的比强度和比刚度、 优良的减震性能以及抗高能粒子的穿透能力, 作为无毒金属材料中最轻的结构金属材料, 在 航空航天、 交通运输等领域有着广阔的应用前景。 在二元镁锂合金中, 随着含 Li量的增加, 合金组织发生^!! —^^^ ^^转变洳图丄所示), 合金的塑性变形能力得到显著提高, 其延伸率可达到 40%以上,但由于合金强度偏低, 抗蠕变性能较差, 限制了镁锂基合金应用 范围。
复合强化则为进一步提高镁锂基合金的力学性能提供了有效书途径。 与镁锂基合金相比, 复合材料不仅保留了基体合金的导电、 导热及优良的冷、 热加工性能, 而且集低密度、 高比 刚度、 高比强度、 良好的耐磨性、 耐高温性能、 减震性能以及良好的阻尼性能和电磁屏蔽性 能于一身, 成为材料研究的热点之一。 如同其它复合材料, 镁锂基复合材料的增强方式也主 要有纤维增强、 颗粒增强和晶须增强三种方式, 增强体成分主要有 SiC、 B4C、 A1203、 TiC、 B等。 这些增强体既可以釆用以颗粒、 纤维或晶须形式单独加入强化, 也可以釆用混合形式 (例如 SiC颗粒 / A1203晶须混合) 加入强化, 并不同程度地提高了镁锂基合金的力学性能。 但陶瓷材料复合强化也带来了材料的塑性和韧性严重损伤的问题。 从研究结果来看, 镁锂基 合金与陶瓷增强材料具有良好的润湿性和化学相容性能可形成较为理想的复合相界面,所以, 材料的塑性及韧性的大幅度下降与陶瓷增强相的脆性密切相关。 因此, 选取既具有增强作用 又具备一定的微应变协调作用的材料作为镁锂基复合材料增强材料, 对改善材料的综合性能 有着重要的意义。
金属间化合物因具有金属的特性, 如表现出金属光泽、 金属导电性及导热性等, 因而选 择金属间化合物颗粒作为镁锂基复合材料的增强相, 更容易获取与镁锂基体具有良好的润湿 性、 化学相容性等适配的界面。 而金属间化合物所具有的较高比强度和比刚度, 以及介于合 金和陶瓷之间的高使用温度, 使其成为合金有效的增强相。 另外, 与陶瓷颗粒相比, 金属间 化合物具有相对塑性, 因而其在提高基体合金强度的同时, 对合金基体的塑性损伤小于釆用 陶瓷增强相造成的损伤。 以上所述为形成金属间化合物颗粒增强镁锂基复合材料具有良好的 综合性能提供了基础。
申请号为 200910082581.7的专利文献中提出了一种含稀土元素金属间化合物超细颗 粒增强金属基复合材料, 该复合材料釆用 0. 1~3μπι的金属间化合物颗粒强化镁锂合金, 其 塑性得到较好的保持, 其强度提高值在 20%~40%。虽然在一定程度上提高了材料的综合力 学性能, 由于颗粒尺寸较小, 增强体较易发生团聚, 同时界面结合依然不能满足对强度的需 求, 距离超轻、 高强的目标还有一定的差距, 镁锂基复合材料的综合力学性能还有待于进一 步提高。
发 明 内 容
本发明提供了一种金属间化合物超细颗粒增强金属基复合材料及其制备方法,所述的制 备方法包括复合球磨、 粉末预压和熔炼的步骤, 解决了纳米颗粒增强金属基复合材料在制备 过程中产生的团聚问题, 有利于复合材料力学性能的提高和保持稳定。
所述的制备方法中将增强体颗粒和金属添加物进行复合球磨,实现增强体颗粒的表面改 性; 将复合球磨后得到的复合粉末进行预压块处理, 形成复合粉末预压块。 然后以增强体颗 粒质量分数为金属基复合材料的 1%~30%为参数,通过复合粉末预压块的方式在基体合金熔 液中引入表面改性后的金属间化合物颗粒增强体, 在机械搅拌和超声搅拌辅助下熔炼, 制备 得到金属间化合物超细颗粒增强的金属基复合材料。
本发明提供的金属间化合物超细颗粒增强金属基复合材料的制备方法,以金属间化合物 超细颗粒为增强体,选取增强体的颗粒粒径为 0.01μπι~5μιη,质量分数为 1%〜30%,优选 地, 增强体颗粒的平均粒径为 0.01~0.5μπι, 质量分数为 1 %~20%。 具体制备方法步骤如 下:
第一步, 将增强体颗粒和金属添加物混合, 作为混合粉末, 将混合粉末在行星球磨机上 进行复合球磨形成复合粉末。
所述金属添加物可以为镁粉或铝粉, 可以为镁基的金属屑或金属粉末, 也可以为铝基的 金属屑或金属粉末。 由于 Mg-Li合金较易被氧化, 因此其粉末不适宜作为添加粉末, 因此当 选用 Mg-Li合金作为基体时, 釆用 Mg粉末作为金属添加物。金属添加物的质量与第三步中 熔炼基体合金的质量之和构成了复合材料的基体总质量。 金属添加物与增强体颗粒的质量比 为 1 :3到 3: 1。
第二步, 经过复合球磨得到的复合粉末进行预压实, 得到复合粉末预压块。 这样可以防 止超细粉末增强体在加入基体合金的过程中引入过多的气体杂质及燃烧。 预压实的条件为压 力 1 MPa ~20MPa, 时间 10min。
第三步, 按照复合材料中基体合金的成分要求, 扣除金属添加物所占元素比例, 对剩余 元素进行配比然后进行熔炼,然后向基体合金熔液中加入所述的复合粉末预压块,继续熔炼, 最后得到金属间化合物超细颗粒增强金属基复合材料, 所述的金属间化合物超细颗粒增强金 属基复合材料中增强体颗粒质量分数为 1%~30%。熔炼过程中釆用机械搅拌和超声搅拌的辅 助。
所述的增强体可以为过渡族或稀土金属间化合物, 如丫^2或 CeAl2金属间化合物超细颗 粒。
所述的基体合金釆用镁基合金或铝基合金, 镁基合金可以为含锂的镁合金如镁锂基合 金, 其锂含量为 0. 1 wt%~40wt%。 所述的铝基合金可以为含锂的铝合金如锂铝合金, 其锂 含量为 0. 1 wt°/。~ 15wt°/0
本发明利用了金属间化合物所具有的高比强度、 比刚度和超细颗粒的尺寸效应等特性, 制备出新型超细颗粒增强体, 用于强化合金基体, 同时利用了金属间化合物兼具有的金属键 和共价键的特性, 通过与金属添加物 (粉末或屑的状态) 的复合球磨, 在机械搅拌和超声搅 拌的辅助下, 实现对增强体颗粒分散性、 界面结合和界面性质的改善, 最终制备出了组织均 匀, 具有良好界面状态的含稀土元素金属间化合物超细颗粒增强金属基复合材料。 由于复合 材料均匀性的提高和强化机制的改变, 金属间化合物超细颗粒增强金属基复合材料在强度上 得到大幅提高, 远高于普通颗粒增强金属基复合材料, 并且其塑性得到良好保持。
本发明的优点在于:
1、 通过复合球磨工艺对金属间化合物颗粒进行表面改性, 既提高增强体颗粒的表面活 性, 促进增强体颗粒与基体间的润湿, 又以包覆的方式改善了增强体颗粒的分散性。
2、 亚微米及纳米颗粒增强体与常规尺寸增强体颗粒所带来的强化机制不同, 超细增强 体颗粒的尺寸效应使得复合材料的性能得到更为显著的提高。
3、 将复合球磨后的粉末预压成复合粉末预压块, 在基体熔炼过程中以预压块的方式, 将金属间化合物颗粒引入到金属基体中, 随后金属添加物率先被熔化, 从而使得增强体颗粒 被较好的分散开, 同时较好地提高了熔炼过程的可靠性和安全性。
4、 相比于已有的制备技术, 经过表面改性和预压, 机械搅拌及超声辅助的新熔炼工艺 制备的复合材料的强度和塑性都同时得到了有效提高。
5、 釆用本发明提供的制备方法制备得到的复合材料的拉伸强度相比于基体合金提高 50%~250%, 而延伸率降至 7%~20%, 塑性得到较好保持。
附 图 说 明
图 1是现有的二元 Mg-Li合金相图;
图 2是本发明提供的金属间化合物超细颗粒增强金属基复合材料制备方法流程图; 图 3是本发明制备的复合材料界面特征图片; 图 4是本发明制备的复合材料显微组织形貌图片;
图 5是本发明制备过程中 YA12/Mg复合球磨后颗粒形貌 TEM图。
具 体 实 施 方 式
下面结合附图和实施例对本发明进行详细说明。
本发明提供一种金属间化合物超细颗粒增强的金属基复合材料的制备方法, 制备方法流 程如图 2所示, 具体如下:
( 1 )将增强体颗粒和金属添加物混合形成混合粉末,将混合粉末在行星球磨机上进行复合球 磨, 形成复合粉末。 所述的增强体颗粒为金属间化合物增强体颗粒, 粒径为 0.01μπι~5μιη, 所述的金属添加物可以由基体合金制备而成, 也可以为镁粉、 铝粉等纯金属屑或粉末。 所述 的金属间化合物增强体颗粒可以是丫八12或 CeAl2金属间化合物等过渡族或稀土金属间化合 物。
(2) 复合粉末在 lMPa~20MPa条件下被预压实, 得到复合粉末预压块。 所述的预压实可 以防止超细粉末加入过程中引入过多的气体杂质及燃烧。
(3)复合粉末预压块在基体组分熔炼过程中加入到基体熔液里,并借助机械搅拌和超声搅拌, 熔炼过程中釆用氩气保护, 制备得到金属基复合材料。 基体元素配比过程中考虑到金属添加 物中已经存在的金属元素, 按照复合材料中基体合金的成分要求, 扣除金属添加物所占元素 比例, 对剩余元素进行配比然后进行熔炼, 然后向基体熔液中加入预压块, 制备得到的金属 基复合材料中增强体的质量百分比为 1%~30%。所述的机械搅拌和超声搅拌可以实现对超细 颗粒的有效分散, 同时优化界面结合, 提高复合材料的综合力学性能。
所述的基体为镁基合金或铝基合金。
通过上述方法制备得到的金属基复合材料, 增强体颗粒粒径为 0.01μπι~5μιη, 质量分 数为 1%〜30%, 制备过程中, 将改性后的超细颗粒增强体以复合粉末预压块的方式引入到 基体熔液中, 并且在熔炼过程中复合粉末预压块中的金属添加物会优先熔化, 使得增强体颗 粒得到很好的分散效果。 对上述制备的金属基复合材料进行界面和性能分析可知, 超细增强 体颗粒在基体合金中呈均匀弥散的分布, 同时增强体和基体间具有良好的界面结合效果, 材 料的抗拉强度得到有效提高, 同时塑性得到较好的维持。 下面通过实施例进行具体的说明。 实 施 例 1 :
以制备重量 2Kg的金属间化合物超细颗粒增强金属基复合材料为例。
YA12金属间化合物超细颗粒增强 Mg- 14Li-Al基复合材料, 制备工艺如下:
1、按照 A1含量 37.76wt%,剩余为 Y配比 YA12合金原料,在 1530Ό温度下熔铸 YA12 金属间化合物块体材料, 机械粉碎后通过高能球磨法制备金属间化合物超细颗粒, 其中超细 颗粒平均粒径为 5μπι。 以质量分数的 33.3%镁屑与 66.7%YA12 合球磨 2h (YAl2 600g, Mg屑为 300g), 得到复合粉末。
2、 球磨后的复合粉末在压力为 20MPa条件下进行预压实, 作为复合粉末预压块。
3、 以复合粉末预压块的形式, 在 Mg-Li-Al合金熔液中加入 YA12超细颗粒, 合金熔液 的配比中 Mg为 890g, Li为 224g, A1为 16g, 经过搅拌铸造, 得到质量分数为 30%YA12 增强 Mg- 14L1-A1基复合材料。
复合材料力学性能測试结果表明,与基体合金相比,室温拉伸强度由基体合金的 122MPa 提高至 420MPa, 强度值提高 200%以上, 而延伸率不低于 7%, 塑性得到较好保持。
实 施 例 2 :
以制备重量 2Kg的复合材料为例。
YA12金属间化合物超细颗粒增强 Mg- 14Li-Al基复合材料, 制备工艺如下:
1、按照 A1含量 37.76wt%,剩余为 Y配比 YA12合金原料,在 1530Ό温度下熔铸 YA12 金属间化合物块体材料, 机械粉碎后通过高能球磨法制备金属间化合物超细颗粒, 其中超细 颗粒平均粒径为 0.01μπι。 以质量分数 66.7%的镁屑与 33.3%¥八12粉末复合球磨 2h (YA12 为 20g, Mg为 40g), 得到复合粉末。
2、 预压实: 在压力为 2MPa条件下进行预压实 10min, 得到复合粉末预压块。
3、 在 Mg-Li-Al合金熔液中加入复合粉末预压块, 合金熔液的配比中 Mg为 1643g, Li为 277.2g, A1为 19.8g, 经过搅拌铸造, 得到质量分数为 1%YA12增强 Mg- 14Li-Al基 复合材料。
复合材料力学性能測试结果表明, 金属基复合材料的室温拉伸强度由基体合金的 122MPa提高至 320MPa, 拉伸强度值提高 160%以上, 而延伸率由基体合金的 20%降至 18%, 塑性得到较好保持。如图 3和图 4所示, 复合材料的显微组织中, YA12颗粒较均匀的 分布于晶内和晶界处, 没有发生团聚, 复合材料界面特征为完美的直接结合界面, 没有界面 反应和界面脱粘现象。 如图 5所示, 球磨后的复合粉末透射形貌图片表明, YA12颗粒被 Mg 包覆良好, 两者之间具有良好的界面结合。
实 施 例 3 :
以制备重量 2Kg的复合材料为例。
YA12金属间化合物超细颗粒增强 Mg- 14Li-Al基复合材料, 制备工艺如下:
1、按照 A1含量 37.76wt%,剩余为 Y配比 YA12合金原料,在 1530Ό温度下熔铸 YA12 金属间化合物块体材料, 机械粉碎后通过高能球磨法制备金属间化合物超细颗粒, 其中超细 颗粒平均粒径为 0. 1μπι。 以质量分数 66.7%的镁屑与 33.3%¥八12粉末复合球磨21 (ΥΑ12 为 20g, Mg为 40g), 得到复合粉末。 2、 预压实: 在压力为 2MPa条件下进行预压实 10min, 得到复合粉末预压块。
3、 在 Mg-Li-Al合金熔液中加入复合粉末预压块, 合金熔液的配比中 Mg为 1643g, Li为 277.2g, Al为 19.8g, 经过搅拌铸造, 得到质量分数为 1%YA12增强 Mg- 14Li-Al基 复合材料。
复合材料力学性能測试结果表明, 金属基复合材料的室温拉伸强度由基体合金的 122MPa提高至 270MPa, 拉伸强度值提高 120%以上, 而延伸率由基体合金的 20%降至 17%, 塑性得到较好保持。
实 施 例 4 :
以制备重量 2Kg的金属间化合物超细颗粒增强金属基复合材料为例。
YA12金属间化合物超细颗粒增强 Mg- 14L1-3A1基复合材料, 制备工艺如下:
1、按照 A1含量 37.76wt%,剩余为 Y配比 YA12合金原料,在 1530Ό温度下熔铸 YA12 金属间化合物块体材料, 机械粉碎后通过高能球磨法制备金属间化合物超细颗粒, 其中超细 颗粒平均粒径为 3μπι。
以质量分数 66.7%的 Al3Mg iMf 33.3%YAl2 合球磨 2h (YA12为 20g,八13 §2粉为 40g) , 得到复合粉末。
2、 球磨后的复合粉末在压力为 20MPa下进行预压实, 得到复合粉末预压块。
3、 扣除 Al3Mg2 ¾ 素的量后配比 Mg-Li-Al合金组分, 在 Mg-Li-Al合金熔液中加入 复合粉末预压块, 合金熔液的配比中 Mg为 1630. 1g, Li为 277.2g, Al为 32.7g, 经过机 械搅拌和超声搅拌辅助熔炼, 得到质量分数为 1%YA12增强 Mg- 14Li-3Al基复合材料。
复合材料力学性能測试结果表明,与基体合金相比,室温拉伸强度由基体合金的 122MPa 提高至 180MPa, 强度值提高 50%, 而延伸率不低于 16%, 塑性得到较好保持。
实 施 例 5 :
CeAl2金属间化合物超细颗粒增强 Mg-40Li基复合材料, 制备工艺如下:
1、 按照 A1含量 27.78wt%, 剩余为 Ce配比 CeAl2合金原料, 在 1500 Ό温度下熔铸
CeAl2金属间化合物块体材料, 机械粉碎后通过高能球磨法制备金属间化合物超细颗粒, 其 中超细颗粒平均粒径为 1μπι。
以质量分数 25%的镁屑与 75%CeAl2 合球磨 2h (。6八12为300§, Mg为 100g), 球 磨后得到复合粉末。
2、 预压实: 球磨后的复合粉末在压力为 IMPa条件下进行预压实, 得到复合粉末预压 块。
3、 以预压实复合粉末预压块的形式, 在 Mg-Li合金熔液中加入 CeAl2超细颗粒, 合金 熔液的配比中 Mg为 920g, Li为 680g, 经过搅拌铸造, 得到质量分数为 15%CeAl2增强 Mg-40Li基复合材料。
复合材料力学性能測试结果表明,室温拉伸强度由基体合金的 70MPa提高至 180MPa, 强度值提高 150%以上, 而延伸率不低于 20%。
实 施 例 6 :
YA12金属间化合物超细颗粒增强 Al-Cu-Li基复合材料, 制备工艺如下:
1、按照 A1含量 37.76wt%,剩余为 Y配比 YA12合金原料,在 1530Ό温度下熔铸 YA12 金属间化合物块体材料, 机械粉碎后通过高能球磨法制备金属间化合物超细颗粒, 其中超细 颗粒平均粒径为 0.5μπι。
以质量分数 66.7%的 Al2Cu粉与 33.3%ΥΑ12复合球磨 40h (YA12为 20g, Al2Cu粉为 40g) , 得到复合粉末。
2、 预压实: 在压力为 20MPa条件下对复合粉末进行预压实, 得到复合粉末预压块。
3、 以预压实复合粉末预压块的形式, 在 ^-^!- - ^ !!合金熔液中加入丫八^超细 颗粒, 合金熔液的配比中 A1为 1873.3g, Li为 27.9g, Cu为 33. 1g, Zr为 2.4g, Mn为 3.3g, 经过搅拌铸造, 得到质量分数为 1%YA12增强 A1-2. 68 Cu- 1. 41 Li-0. 12 Zr-0. 17
Mn基复合材料。
对制备得到的复合材料进行力学性能測试, 測试结果表明, 室温拉伸强度由基体合金的 206MPa提高至 460MPa, 强度值提高 120%以上, 延伸率由基体合金的 17%降至 15%, 塑性得到良好保持。
金属间化合物具有较高的比强度和比刚度, 可以作为增强材料有效增强镁锂基合金、 含 锂铝合金和铝合金; 与陶瓷相比, 从键合作用的角度来看金属间化合物以金属键为主, 而陶 瓷以共价键为主, 因此金属间化合物颗粒与基体合金将可能具有更好的润湿性。 同时, 金属 间化合物中的 Y、 Ce、 A1等元素的扩散将有利于改善颗粒增强体与合金基体的润湿性; A1 元素的扩散将进一步提高合金的强度, Y、 Ce等稀土元素的扩散将有助于细化和变质组织, 提高合金的力学性能和合金抗氧化和蠕变性能; 更重要的是, 金属间化合物较陶瓷材料有较 好的塑性, 将金属间化合物颗粒用于增强金属基复合材料, 有利于改善变形条件下增强颗粒 与基体界面形变的协调性, 以提高材料裂紋起裂及扩展的阻滞作用, 从而在材料强韧性综合 性能提高上有较明显的优势。 釆用超细颗粒作为增强体后, 其增强机制发生了较大变化, 从 而大幅度提高了以抗拉强度为代表的材料的力学性能。 普通颗粒增强复合材料的强化机制主 要以载荷传递为主, 而超细颗粒增强金属基复合材料大大增强了其弥散强化作用, 同时, 由 于颗粒变细, 表面活性增大, 因此其与基体的界面结合牢固, 这将使颗粒自身发挥更高的承 载能力。 因此, 基体与颗粒界面结合良好, 颗粒弥散强化, 宏观组织均匀等因素是超细颗粒 增强金属基复合材料高强度和高塑性的主要原因。 根据稀土元素性质上的相似性, 所述的增 强体还可以是 Sc-Al系金属间化合物、 La-Al系金属间化合物等, 应用上述的稀土金属间化 合物超细颗粒进行增强制备的复合材料, 具有优异的力学性能, 可以在航空航天、 交通运输 等领域得到广泛应用。

Claims

权 禾 iJ 要 求 书
1、一种金属间化合物超细颗粒增强金属基复合材料的制备方法,其特征在于,包括如下步骤: 第一步, 将增强体颗粒和金属添加物混合后, 在球磨机上进行复合球磨, 形成复合粉末; 增 强体颗粒的尺寸为 0.01μπι~5μιη;
第二步, 对经过混合球磨得到的复合粉末进行预压实, 得到复合粉末预压块;
第三步, 按照复合材料中基体合金的成分要求, 扣除金属添加物所占元素比例, 对剩余元素 进行配比然后进行熔炼, 然后向基体合金熔液中加入所述的复合粉末预压块, 继续熔炼, 最 后得到金属间化合物超细颗粒增强金属基复合材料, 所述的金属间化合物超细颗粒增强金属 基复合材料中增强体颗粒质量分数为 1%~30%。
2、 根据权利要求 1所述的制备方法, 其特征在于: 所述的增强体为 ¥^2或。6^2金属间化 合物。
3、 根据权利要求 1所述的制备方法, 其特征在于: 所述的基体为镁基合金或铝基合金。
4、 根据权利要求 3所述的制备方法, 其特征在于: 所述的镁基合金为含锂的镁合金, 其中 锂含量为 0. 1 wt%~40wt% ; 所述的铝基合金为含锂的铝合金, 其中锂含量为 0. 1 wt% ~ 15wt%。
5、 根据权利要求 1 所述的制备方法, 其特征在于: 所述金属添加物为镁基的金属屑或金属 粉末、 铝基的金属屑或金属粉末。
6、 根据权利要求 1 所述的制备方法, 其特征在于: 第一步中金属添加物与增强体颗粒的质 量比为 1 :3到 3: 1。
7、 根据权利要求 1 所述的制备方法, 其特征在于: 第二步中进行预压实的压力为 1 MPa ~20MPa。
8、 一种金属间化合物超细颗粒增强金属基复合材料,其特征在于:所述的复合材料中基体为 镁基合金或铝基合金, 增强体为 ¥^2或 。6^2金属间化合物, 增强体颗粒质量分数为 1%~30%, 增强体颗粒的尺寸为 Ο.Ο Ιμπι ~5μπι。
9、 根据权利要求 8所述的金属间化合物超细颗粒增强金属基复合材料, 其特征在于: 所述 的增强体平均粒径为 0.01~0.5μπι, 质量分数为 1 %~20°/0
PCT/CN2013/076529 2012-10-25 2013-05-31 一种金属间化合物超细颗粒增强金属基复合材料及其制备方法 WO2014063492A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/375,034 US9869006B2 (en) 2012-10-25 2013-05-31 Intermetallic compound ultrafine particle reinforced metal-based composite material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210414648.4A CN102912159B (zh) 2012-10-25 2012-10-25 一种金属间化合物超细颗粒增强金属基复合材料及其制备方法
CN201210414648.4 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014063492A1 true WO2014063492A1 (zh) 2014-05-01

Family

ID=47610732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076529 WO2014063492A1 (zh) 2012-10-25 2013-05-31 一种金属间化合物超细颗粒增强金属基复合材料及其制备方法

Country Status (3)

Country Link
US (1) US9869006B2 (zh)
CN (1) CN102912159B (zh)
WO (1) WO2014063492A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877558A (zh) * 2020-12-28 2021-06-01 湖南文昌新材科技股份有限公司 加压均匀分散陶瓷颗粒制备复合材料的装置及方法
CN114011900A (zh) * 2021-10-29 2022-02-08 武汉理工大学 一种铝合金-铝基复合材料复合板材及其制备方法
CN114836646A (zh) * 2022-05-05 2022-08-02 湖南江滨机器(集团)有限责任公司 一种含二硼化铌和铌化铝增强相的铝基复合材料及其制备方法和发动机活塞

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912159B (zh) * 2012-10-25 2015-01-28 北京航空航天大学 一种金属间化合物超细颗粒增强金属基复合材料及其制备方法
CN104120317A (zh) * 2013-04-24 2014-10-29 中国石油化工股份有限公司 一种镁合金、其制备方法及其应用
CN103898343B (zh) * 2013-12-26 2016-05-04 中北大学 一种富铝金属间化合物增强铝基复合材料制备方法
CN103695673B (zh) * 2013-12-26 2015-09-09 中北大学 一种金属间化合物颗粒Al3-M增强铝基复合材料的制备方法
CN104046825B (zh) * 2014-07-04 2016-05-25 江苏大学 一种原位颗粒增强铝基复合材料制备方法
CN104532099A (zh) * 2015-01-09 2015-04-22 北京航空航天大学 一种轻质金属间化合物颗粒增强金属基复合材料
CN104789841B (zh) * 2015-04-16 2017-01-25 临沂高新区双航材料科技有限公司 一种Mg‑Li基复合材料及其制备方法
CN104846229B (zh) * 2015-04-21 2016-08-17 太原理工大学 一种颗粒增强型铝合金基耐磨材料的制备方法
CN105385901B (zh) * 2015-11-11 2017-06-16 苏州阿罗米科技有限公司 改性剂及其制备方法和铝基复合材料及其制备方法
CN106636708A (zh) * 2016-09-21 2017-05-10 中北大学 一种制备纳米金属间化合物颗粒的方法及其应用
JP2020510754A (ja) * 2017-02-24 2020-04-09 イノマック 21 ソシエダ リミターダ 軽量コンポーネントの経済的製造法
CN109093113B (zh) * 2018-09-11 2020-03-10 燕山大学 一种稀土金属间化合物增强铜基复合材料及其制备方法
CN111730059B (zh) * 2020-05-19 2023-04-18 山东源航超轻材料研究院有限公司 一种高体积分数超细颗粒增强Mg-Li基复合材料及其制备方法
CN111719060B (zh) * 2020-05-19 2021-08-27 山东源航超轻材料研究院有限公司 一种Mg-Li基复合材料用增强体表面改性及其预制体制备方法
CN111967110A (zh) * 2020-08-31 2020-11-20 合肥工业大学 三维二级金属基复合材料复合结构及其设计方法、块材
CN114737086B (zh) * 2021-01-07 2022-09-06 湖南工业大学 一种NbCr2增强的铝基复合材料
CN112921225B (zh) * 2021-02-16 2022-06-21 河南工学院 一种用于Mg-Al系合金的铝包覆纳米Al4C3颗粒状晶粒细化剂及其制备方法
CN114807660B (zh) * 2022-05-18 2023-04-07 合肥工业大学 一种通过含铜金属间化合物制备铜基复合材料的方法
CN115505798B (zh) * 2022-06-22 2023-07-28 安徽工程大学 一种球形金属间化合物颗粒增强铝基复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281053A (zh) * 2000-07-27 2001-01-24 钢铁研究总院 陶瓷相弥散强化合金及颗粒增强金属基复合材料制备方法
JP3417666B2 (ja) * 1994-06-15 2003-06-16 スズキ株式会社 Al基金属間化合物強化複合部をもつ部材と、その製造方法
US20090041609A1 (en) * 2007-08-07 2009-02-12 Duz Volodymyr A High-strength discontinuously-reinforced titanium matrix composites and method for manufacturing the same
CN101538672A (zh) * 2009-04-27 2009-09-23 北京航空航天大学 一种金属间化合物超细颗粒增强金属基复合材料
CN102912159A (zh) * 2012-10-25 2013-02-06 北京航空航天大学 一种金属间化合物超细颗粒增强金属基复合材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093148A (en) * 1984-10-19 1992-03-03 Martin Marietta Corporation Arc-melting process for forming metallic-second phase composites
US5422066A (en) * 1989-03-24 1995-06-06 Comalco Aluminium Limited Aluminum-lithium, aluminum-magnesium and magnesium-lithium alloys of high toughness
JPH0483660A (ja) * 1990-07-27 1992-03-17 Canon Inc 光変調装置および画像記録装置
JP4083660B2 (ja) * 2003-10-14 2008-04-30 株式会社日立製作所 記憶システムおよびその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417666B2 (ja) * 1994-06-15 2003-06-16 スズキ株式会社 Al基金属間化合物強化複合部をもつ部材と、その製造方法
CN1281053A (zh) * 2000-07-27 2001-01-24 钢铁研究总院 陶瓷相弥散强化合金及颗粒增强金属基复合材料制备方法
US20090041609A1 (en) * 2007-08-07 2009-02-12 Duz Volodymyr A High-strength discontinuously-reinforced titanium matrix composites and method for manufacturing the same
CN101538672A (zh) * 2009-04-27 2009-09-23 北京航空航天大学 一种金属间化合物超细颗粒增强金属基复合材料
CN102912159A (zh) * 2012-10-25 2013-02-06 北京航空航天大学 一种金属间化合物超细颗粒增强金属基复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LOU, G. X. ET AL.: "Effects of YAI2 Particulates on Microstructure and Mechanical Properties of p-Mg-Li Alloy.", JOURNAL OF MATERIALS SCIENCE., vol. 41, no. 17, September 2006 (2006-09-01), pages 5556 - 5558 *
WU, GUOQING ET AL.: "Research of YA12 Intermetallics Particles Reinforced Mg-Li Matrix Composite materials.", TANSUO CHUANGXIN JIAOLIU (DI 4 JI)-DISIJIE ZHONGGUO HANGKONG XUEHUI QINGNIAN KEJI LUNTAN WENJI., 2010, pages 568 - 574 *
ZHANG, X. ET AL.: "A Novel Method to Control Agglomeration of Ultrafine YAI2 Particles in YAI2P/MgLiAl Composite.", MATERIALS LETTERS., vol. 65, no. 1, January 2011 (2011-01-01), pages 104 - 106 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877558A (zh) * 2020-12-28 2021-06-01 湖南文昌新材科技股份有限公司 加压均匀分散陶瓷颗粒制备复合材料的装置及方法
CN114011900A (zh) * 2021-10-29 2022-02-08 武汉理工大学 一种铝合金-铝基复合材料复合板材及其制备方法
CN114011900B (zh) * 2021-10-29 2022-09-16 武汉理工大学 一种铝合金-铝基复合材料复合板材及其制备方法
CN114836646A (zh) * 2022-05-05 2022-08-02 湖南江滨机器(集团)有限责任公司 一种含二硼化铌和铌化铝增强相的铝基复合材料及其制备方法和发动机活塞
CN114836646B (zh) * 2022-05-05 2023-09-26 湖南江滨机器(集团)有限责任公司 一种含二硼化铌和铌化铝增强相的铝基复合材料及其制备方法和发动机活塞

Also Published As

Publication number Publication date
CN102912159A (zh) 2013-02-06
CN102912159B (zh) 2015-01-28
US20150225814A1 (en) 2015-08-13
US9869006B2 (en) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2014063492A1 (zh) 一种金属间化合物超细颗粒增强金属基复合材料及其制备方法
WO2021114967A1 (zh) 一种原位三元纳米颗粒增强铝基复合材料的制备方法
CN107779712B (zh) 一种超高强高模量Mg-Gd-Y-Zn-Si-Ti-B镁合金及其制备方法
CN104131186B (zh) 增强粒子-铜合金界面相容处理的铝基复合材料的制备方法
CN102925737B (zh) 一种纳米TiB2颗粒增强金属基复合材料及其制备方法
Rashad et al. Effect of MWCNTs content on the characteristics of A356 nanocomposite
CN101538672B (zh) 一种金属间化合物超细颗粒增强金属基复合材料
CN108998699B (zh) 一种铝锂基复合材料粉末及其制备方法和应用
CN109234561B (zh) 一种原位双相纳米颗粒增强铝基复合材料的制备方法
Xie et al. Nanoparticulate dispersion, microstructure refinement and strengthening mechanisms in Ni-coated SiCp/Al-Cu nanocomposites
CN114411031A (zh) 一种微米钛颗粒增强镁稀土基复合材料
CN100491566C (zh) 原位自生氮化铝和镁二硅增强镁基复合材料及其制备方法
WO2010026793A1 (ja) Ti粒子分散マグネシウム基複合材料およびその製造方法
CN109321794B (zh) Al2Ca颗粒和碳纳米管混杂增强超轻镁锂基复合材料及制备方法
CN110079710B (zh) 一种原位纳米TiC颗粒增强Al-Si基复合材料及其制备方法
CN111304506A (zh) 一种微纳米级TiB2颗粒增强镁锂基复合材料的制备方法
CN100999796A (zh) 原位颗粒增强耐热铝基复合材料
CN114855035B (zh) 耐热高强度汽车轮毂铝合金材料
Kumar et al. A review on properties of Al-B4C composite of different routes
CN114000015B (zh) 原位多相颗粒耦合增强铝基复合材料及其制备方法
CN116397141A (zh) 一种颗粒增强铝基复合材料及其制备方法
CN112481516B (zh) 一种Al-Ti-SiC中间合金及其制备方法和应用
CN114892045A (zh) 原位自组装核壳结构增强铝基复合材料及其制备方法
CN114635053A (zh) 内生ZrB2和Cr0.4NbTiVZr双相颗粒增强铝基复合材料及制备方法
CN109321793B (zh) Al2Y颗粒和碳纳米管混杂增强超轻镁锂基复合材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849225

Country of ref document: EP

Kind code of ref document: A1