WO2021140612A1 - 鋼板の酸洗方法及び酸洗装置 - Google Patents

鋼板の酸洗方法及び酸洗装置 Download PDF

Info

Publication number
WO2021140612A1
WO2021140612A1 PCT/JP2020/000460 JP2020000460W WO2021140612A1 WO 2021140612 A1 WO2021140612 A1 WO 2021140612A1 JP 2020000460 W JP2020000460 W JP 2020000460W WO 2021140612 A1 WO2021140612 A1 WO 2021140612A1
Authority
WO
WIPO (PCT)
Prior art keywords
pickling
steel plate
plate portion
acid solution
steel sheet
Prior art date
Application number
PCT/JP2020/000460
Other languages
English (en)
French (fr)
Inventor
辻 孝誠
龍輔 中司
吉川 雅司
琢也 平田
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to EP20911916.3A priority Critical patent/EP3951014B1/en
Priority to US17/607,781 priority patent/US20220220619A1/en
Priority to PCT/JP2020/000460 priority patent/WO2021140612A1/ja
Priority to JP2021569663A priority patent/JP7176137B2/ja
Priority to CN202080040682.2A priority patent/CN113906162B/zh
Publication of WO2021140612A1 publication Critical patent/WO2021140612A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/083Iron or steel solutions containing H3PO4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/088Iron or steel solutions containing organic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/021Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously by dipping
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/025Details of the apparatus, e.g. linings or sealing means

Definitions

  • This disclosure relates to a pickling method and a pickling device for a steel sheet.
  • the rate-determining dissolution of the gas oxidant in the acid solution is the rate-determining reaction of the iron ions (Fe 2+ ⁇ Fe 3+). And is relatively gradual. Therefore, when the steel sheet to be pickled is switched to a poor pickling material (a steel sheet that takes a long time for pickling), it is necessary to reduce the line speed as compared with before. Further, even if the Fe 3+ concentration in the acid solution is increased by adjusting the supply amount of the gas oxidant or the like, it takes a long time to increase the Fe 3+ concentration. , The line speed cannot be increased so much until the Fe 3+ concentration in the acid solution increases. Therefore, the productivity of the steel sheet may decrease.
  • a gas oxidant air, oxygen, etc.
  • At least one embodiment of the present invention aims to provide a method for pickling a steel sheet that can improve the productivity of the steel sheet.
  • the pickling method for a steel sheet according to at least one embodiment of the present invention
  • a steel plate including a first steel plate portion and a second steel plate portion which is connected to the tail end of the first steel plate portion and requires a longer time for pickling than the first steel plate portion when pickling under the same conditions. It is a pickling method of A step of immersing the steel sheet in an acid solution in at least one pickling tank while transporting the steel sheet to pickle the steel sheet. A step of circulating the acid solution between the oxidizing apparatus provided on the circulation line and the pickling tank via a circulation line connected to any one of the at least one pickling tanks.
  • a step of oxidizing Fe 2+ in the acid solution to Fe 3+ using a gas oxidizing agent With the switch from pickling of the first steel plate portion to pickling of the second steel plate portion, in the at least one pickling tank of the liquid oxidizing agent for oxidizing Fe 2+ in the acid solution to Fe 3+.
  • a method for pickling a steel sheet that can improve the productivity of the steel sheet.
  • FIGS. 1A to 4 are schematic views of a pickling facility to which the pickling methods according to some embodiments are applied, respectively.
  • the pickling device 1 shown in FIGS. 1A to 4 is a pickling device for pickling the steel plate 2 using the acid solution 3.
  • the pickling apparatus 1 shown in FIGS. 1A to 1C has a pickling tank 12 for storing the acid solution 3 and a transport roll 16 for continuously transporting the strip-shaped steel plate 2 immersed in the acid solution 3 ( It is provided with a transport unit 10).
  • the acid solution 3 is a pickling solution for dissolving and removing the scale (oxide film) formed on the surface of the steel plate 2, and is a liquid containing an acid such as hydrochloric acid, sulfuric acid, nitric acid, or hydrofluoric acid, for example.
  • the transport roll 16 is configured to apply tension to the steel plate 2 and immerse the steel plate 2 in the acid solution of the pickling tank to transport the steel plate 2.
  • the plurality of transport rolls 16 may be configured to be driven by a motor 17 (see FIG. 10).
  • the pickling device 1 shown in FIGS. 2 to 4 is a pickling device 1 having a plurality of pickling tanks 12 (12A to 12C) arranged in series in the transport direction of the steel plate 2.
  • the plurality of pickling tanks 12 (12A to 12C) are separated by a partition wall.
  • Each of the plurality of pickling tanks 12 (12A to 12C) is provided with a transport roll 16 (transport section 10), and the transport rolls 16 are immersed in the acid solutions 3 in the plurality of pickling tanks 12.
  • the steel plate 2 is conveyed in this state.
  • the acid solution 3 for pickling the steel plate 2 is supplied to the most downstream pickling tank 12C via the acid solution supply unit 18. .. Further, the acid solution 3 overflowing from the pickling tanks 12 (12A to 12C) is transferred to the pickling tank on the upstream side beyond the partition wall between the pickling tanks 12.
  • the pickling tank 12A on the most upstream side is provided with an acid solution discharge unit 19 for discharging the acid solution 3.
  • the pickling device 1 includes a circulation line 21 connected to the pickling tank 12 for circulating the acid solution 3 in the pickling tank 12, and an oxidizing device 20 provided on the circulation line 21.
  • the circulation line 21 includes an extraction line 22 for extracting the acid solution 3 from the pickling tank 12 and guiding the acid solution 3 to the oxidizing device 20, and a return line 24 for returning the acid solution 3 from the oxidizing device 20 to the pickling tank 12. ,including.
  • the oxidizing device 20 is configured to oxidize Fe 2+ in the acid solution 3 to Fe 3+ using a gas oxidizing agent.
  • the oxidizing device 20 may include a closed tank and a gas supply unit for supplying a gas oxidizing agent to the closed tank. By adjusting the partial pressure of the gas oxidant inside the oxidizing device 20, the Fe 3+ concentration of the acid solution inside the oxidizing device 20 may be adjusted.
  • the pickling rate is increased by adjusting the concentration of ferric ions (Fe 3+ ) contained in the acid solution. That is, it is known that the concentration ratio of iron ions (Fe 2+ , Fe 3+ ) in the acid solution and the pickling time have a predetermined relationship, and by increasing the concentration of Fe 3+ in the acid solution to some extent, the acid Increased washing speed (ie, shorter pickling time). Therefore, the pickling of the steel sheet can be efficiently performed by appropriately adjusting the Fe 3+ concentration in the acid solution with the oxidizing apparatus 20.
  • the gas oxidizing agent used in the oxidizing apparatus 20 may contain, for example, air, oxygen, ozone, or the like.
  • a circulation line 21 connected to any one of the plurality of pickling tanks 12 is provided, and the circulation line 21 is provided.
  • An oxidizing device 20 may be provided on the top.
  • the circulation line 21 extraction line 22 and return
  • the pickling tank 12C located on the most downstream side of the plurality of pickling tanks 12 (12A to 12C).
  • a line 24 is provided, and an oxidizing device 20 is provided on the circulation line 21.
  • the return line 24 includes return lines 24A-24C connected to a plurality of pickling tanks 12A-12C, respectively.
  • circulation lines 21 connected to two or more pickling tanks 12 among the plurality of pickling tanks 12 are provided, and each circulation is provided.
  • Oxidizing devices 20 may be provided on the line 21 respectively.
  • circulation lines 21A to 21C (including extraction lines 22A to 22C and return lines 24A to 24C) correspond to each of the plurality of pickling tanks 12 (12A to 12C).
  • oxidizing devices 20A to 20C are provided on the circulation lines 21A to 21C, respectively.
  • the acid solution 3 from the oxidizing apparatus 20 is supplied to the pickling tank 12C on the most downstream side.
  • a treatment for melting the surface of the base material of the steel sheet 2 may be performed.
  • Fe 3+ in the acid solution is consumed. Therefore, by supplying the acid solution 3 having an increased Fe 3+ concentration in the oxidizing apparatus 20 to the pickling tank on the downstream side of the plurality of pickling tanks 12 (for example, the most downstream pickling tank 12C). , The steel plate 2 can be effectively pickled.
  • the pickling apparatus 1 further inputs a liquid oxidant capable of charging a liquid oxidant for oxidizing Fe 2+ in the acid solution 3 to Fe 3+ into any one of at least one pickling tank 12 or the circulation line 21.
  • the part 30 is provided.
  • the liquid oxidant charging unit 30 includes a liquid oxidant tank 32 for storing the liquid oxidant, a liquid oxidant charging line 34 for charging the liquid oxidant from the liquid oxidant tank 32, and a liquid oxidant charging unit 30.
  • a liquid oxidant pump 33 provided on the line 34 for boosting the liquid oxidant is included.
  • the liquid oxidizing agent can be used without particular limitation as long as it is a liquid having an ability to oxidize iron ions (Fe 2+).
  • the liquid oxidant may contain, for example, at least one of hydrogen peroxide solution, hypochlorous acid, ammonium peroxodisulfate (ammonium persulfate), and potassium permanganate solution.
  • the liquid oxidant charging line 34 is connected to the pickling tank 12 or the circulation line 21 (including the oxidizing device 20 provided on the circulation line 21), and the liquid oxidant from the liquid oxidant tank 32 is pickled in the pickling tank 12. Alternatively, it is configured to be charged into the circulation line 21 (including the oxidizing device 20 provided on the circulation line 21).
  • the liquid oxidant charging line 34 is connected to the pickling tank 12 and is configured to charge the liquid oxidant into the pickling tank 12.
  • the first input line 36 is included.
  • the first charging line 36 is provided with a valve 37 for adjusting the supply amount of the liquid oxidizing agent to the pickling tank 12 via the first charging line 36.
  • the liquid oxidant charging line 34 is connected to each of the pickling tanks 12A to 12C, and the liquid oxidant is charged into the pickling tanks 12A to 12C, respectively.
  • Includes first input lines 36A-36C configured to do so.
  • the first charging lines 36A to 36C are provided with valves 37A to 37C for adjusting the supply amount of the liquid oxidizing agent to the pickling tanks 12A to 12C via the first charging lines 36A to 36C, respectively.
  • the liquid oxidant charging line 34 is connected to a return line 24 (circulation line 21) between the oxidizing apparatus 20 and the pickling tank 12, and the return line 34 is connected to the return line 24 (circulation line 21).
  • a second charging line 38 configured to charge the liquid oxidant to the line 24 is included.
  • the second input line 38 is provided with a valve 39 for adjusting the supply amount of the liquid oxidant to the return line 24 via the second input line 38.
  • the liquid oxidant charging line 34 is connected to each of the return lines 24A to 24C, and the liquid oxidant is charged into the return lines 24A to 24C, respectively.
  • the second input lines 38A to 38C are configured in.
  • the second input lines 38A to 38C are provided with valves 39A to 39C for adjusting the supply amount of the liquid oxidant to the return lines 24A to 24C via the second input lines 38A to 38C, respectively.
  • the liquid oxidant charging line 34 is connected to an oxidizer 20 (circulation line 21) on the circulation line 21 and the liquid oxidizer 20 is connected to the oxidizer 20.
  • a third input line 40 configured to input.
  • the third input line 40 is provided with a valve 41 for adjusting the supply amount of the liquid oxidizing agent to the oxidizing apparatus 20 via the third input line 40.
  • the liquid oxidant charging line 34 is connected to each of the oxidizing devices 20A to 20C, and the liquid oxidant is charged into the oxidizing devices 20A to 20C, respectively.
  • the third input line 40A to 40C is included.
  • the third input lines 40A to 40C are provided with valves 41A to 41C for adjusting the supply amount of the liquid oxidizing agent to the oxidizing devices 20A to 20C via the third input lines 40A to 40C, respectively.
  • the pickling apparatus 1 may include a controller 100 for adjusting the Fe 3+ concentration in the acid solution in the pickling tank 12 (12A to 12C) and the transport speed (line speed) of the steel plate 2. The specific configuration of the controller 100 will be described later.
  • the controller 100 may include a processor, a memory (RAM), an auxiliary storage unit, an interface, and the like.
  • the controller 100 receives a signal from the above-mentioned seed measuring instrument via an interface.
  • the processor is configured to process the signal thus received.
  • the processor is also configured to process programs that are expanded into memory.
  • the processing content of the controller 100 may be implemented as a program executed by the processor and stored in the auxiliary storage unit. When the programs are executed, these programs are expanded in memory.
  • the processor reads the program from the memory and executes the instructions contained in the program.
  • the pickling treatment of the steel plate 2 including the first steel plate portion 2a and the second steel plate portion 2b is performed (see FIGS. 1A to 1C).
  • the second steel plate portion 2b is connected to the tail end of the first steel plate portion 2a via a first connecting portion 4 formed by welding or the like.
  • the second steel plate portion 2b is a steel plate of a steel type in which the time required for pickling is longer than that of the first steel plate portion 2a when pickling under the same conditions.
  • the steel plate 2 may include a third steel plate portion 2c in addition to the first steel plate portion 2a and the second steel plate portion 2b (see FIGS. 1A to 1C).
  • the third steel plate portion 2c is connected to the tail end of the second steel plate portion 2b via a second connecting portion 5 formed by welding or the like.
  • the third steel plate portion 2c is a steel plate of a steel type in which the time required for pickling is shorter than that of the second steel plate portion 2b when pickling under the same conditions.
  • the second steel plate portion 2b may be a steel having a relatively high Si content (for example, a high-strength steel material).
  • FIG. 5 is a graph showing changes over time such as Fe 3+ concentration in the acid solution 3 and the transport speed (line speed) of the steel plate 2 in the pickling method according to the embodiment.
  • time changes reference numerals 202, 203, 212, 213
  • Fe 3+ concentration in the acid solution and the transport speed of the steel sheet by the conventional typical pickling method are also shown.
  • the steel plate 2 is pickled by immersing the steel plate 2 in the acid solution 3 in the pickling tank 12 while transporting the steel plate 2 by the transport unit 10.
  • the steel sheet 2 is pickled from the time point before the time t0 to the time point after the time t1, and the first steel plate portion 2a of the steel sheet 2 is acidified until the time t0. It continues to be transported into the washing tub 12.
  • the first connecting portion 4 (the tip portion of the second steel plate portion 2b) between the first steel plate portion 2a and the second steel plate portion 2b reaches the pickling tank 12, and from the pickling of the first steel plate portion 2a. It switches to pickling the second steel plate portion 2b.
  • the second steel plate portion 2b of the steel plate 2 is conveyed into the pickling tank 12. Even after the first connecting portion 4 reaches the pickling tank 12 at time t0 and is switched to pickling the second steel plate portion 2b, the first connecting portion 4 (tail end portion of the first steel plate portion 2a). Is discharged from the pickling tank 12, and a part of the first steel plate portion 2a is continuously pickled in the pickling tank 12.
  • the oxidizing device 20 provided on the circulation line 21 and the pickling are pickled via the circulation line 21 connected to the pickling tank 12.
  • the acid solution 3 is circulated with the tank 12.
  • Fe 2+ in the acid solution 3 is oxidized to Fe 3+ using a gas oxidizing agent. In this way, the Fe 3+ concentration of the acid solution 3 in the pickling tank 12 is maintained at a concentration suitable for pickling the first steel plate portion 2a.
  • the transfer speed 211 (see FIG. 5) of the steel plate 2 is reduced as the pickling of the first steel plate portion 2a is switched to the pickling of the second steel plate portion 2b. You may.
  • the iron ion oxidation reaction (Fe 2+ ⁇ Fe 3+ ) is the acid solution of the gas oxidant. Dissolution into is rate-determining and relatively gradual. Therefore, when the steel plate to be pickled is switched from the first steel plate portion 2a to the second steel plate portion 2b which takes a long time for pickling at the time t0 shown in FIG. 5, the line speed is higher than that before that. (Transfer rate of steel plate 2) needs to be reduced ( see Fe 3+ concentration 202 and line speed 212 in FIG. 5).
  • the pickling tank 12 or the circulation line 21 is used as the pickling of the first steel plate portion 2a is switched to the pickling of the second steel plate portion 2b (time t0 in FIG. 5). Since the liquid oxidant is supplied, the pickling solution in the pickling tank 12 is switched to the pickling of the second steel plate portion 2b (difficult pickling material), which requires a relatively long pickling time under the same conditions. Fe 3+ in 3 can be rapidly increased. Therefore, even if the steel type to be pickled is switched, the transport speed (line speed) of the steel plate 2 can be maintained high, and the productivity of the steel plate 2 can be improved.
  • FIG. 6 and 7 are graphs showing changes over time such as the Fe 3+ concentration in the acid solution 3 and the transport speed (line speed) of the steel plate 2 in the pickling method in one embodiment.
  • FIG. 6 includes a time point at which the pickling of the first steel plate portion 2a is switched to the pickling of the second steel plate portion 2b in the pickling of the steel plate 2 by the pickling method according to the embodiment, as in the case of FIG.
  • FIG. 7 is a graph including a time point at which the pickling of the second steel plate portion 2b is switched to the pickling of the third steel plate portion 2c in the pickling of the steel plate 2 by the pickling method according to the embodiment. ..
  • the steel plate 2 is pickled in the same manner as in the case shown in FIG. 5, and the first connecting portion 4 (second) between the first steel plate portion 2a and the second steel plate portion 2b is performed at time t10.
  • the tip portion of the steel plate portion 2b) reaches the pickling tank 12, and the pickling of the first steel plate portion 2a is switched to the pickling of the second steel plate portion 2b.
  • the circulation line 21 is passed through the circulation line 21 connected to the pickling tank 12.
  • the acid solution 3 is circulated between the oxidizing device 20 provided above and the pickling tank 12.
  • Fe 2+ in the acid solution 3 is oxidized to Fe 3+ using a gas oxidizing agent. In this way, the Fe 3+ concentration of the acid solution 3 in the pickling tank 12 is maintained at a concentration (C t10 ) suitable for pickling the first steel plate portion 2a.
  • the liquid oxidant is charged by the liquid oxidizer charging unit 30.
  • the charging to at least one of the pickling tank 12 and the circulation line 21 is started.
  • the Fe 3+ concentration in the pickling tank 12 rapidly and significantly increases from C t10 to C t11 between the times t10 and t11, as shown in FIG.
  • the first connection between the first steel plate portion 2a and the second steel plate portion 2b is within the period in which the first connection portion 4 is present in the pickling tank 12, for example, as shown in FIG.
  • the pickling tank 12 time t10
  • the addition of the liquid oxidant is started.
  • the amount of the liquid oxidant added is increased from zero to q t10 at time t10.
  • the Fe 3+ concentration in the acid solution 3 of the pickling tank 12 can be increased immediately after the pickling of the second steel plate portion 2b is started. Therefore, it is easy to maintain a high transport speed of the steel plate 2 after the pickling of the second steel plate portion 2b, which is a poor acid washing material, is started, and the productivity of the steel plate 2 can be effectively improved.
  • the transport speed (line speed) of the steel plate 2 is set at time t10 as the pickling of the first steel plate portion 2a is switched to the pickling of the second steel plate portion 2b. It is reduced from V 0 to V t 10.
  • the Fe 3+ concentration in the acid solution 3 in the pickling tank 12 can be increased relatively quickly, but the pickling tank 12 It takes a certain amount of time (in the case of FIG. 6, the time from time t10 to t11) for the Fe 3+ concentration in the acid solution 3 to reach the target value Ct.
  • the transfer speed of the steel plate 2 is reduced at time t10 as the pickling of the first steel plate portion 2a is switched to the pickling of the second steel plate portion 2b. Therefore, the transport speed of the steel sheet 2 is reduced after the pickling of the second steel sheet portion 2b, which is a poor pickling material, is started and before the Fe 3+ concentration in the acid solution 3 in the pickling tank 12 becomes sufficiently high. As a result, the second steel plate portion 2b, which is a poor pickling material, can be pickled appropriately. Therefore, deterioration of product quality can be suppressed.
  • the line speed is reduced to V t10 at time t10 and then increased to V t11 at time t11.
  • the liquid oxidant is started to be added to the acid solution at time t10 and the transport speed of the steel plate 2 is decelerated. After that, the transfer speed of the steel sheet is increased at time t11.
  • the transport speed of the steel sheet 2 can be increased according to the increase in Fe 3+ during pickling, whereby the transport speed of the steel plate 2 during pickling of the second steel plate portion 2b (difficult-to-pickle material) can be increased. Can be kept high. Therefore, the productivity of the steel sheet can be improved.
  • gas oxidation in the oxidizing apparatus 20 is performed from time t10 to time t11 as the pickling of the first steel plate portion 2a is switched to the pickling of the second steel plate portion 2b.
  • agent to increase the Fe 3+ from the oxidation reaction (Fe 3+ from oxidizer) using, increases the Fe 3+ concentration of the acid solution 3 in San'araiso 12. More specifically, the supply amount of the gas oxidant to the acid solution 3 in the oxidizing device 20 is increased to increase the Fe 3+ concentration in the acid solution 3 in the oxidizing device 20 from et10 to et11 , and the circulation is performed. the circulation flow rate of the acid solution 3 between the oxidation apparatus 20 and the pickling tank 12 via the line 21 to increase from r 0 to r t10, the Fe 3+ concentration of the acid solution 3 in San'araiso 12 increase.
  • the liquid oxidant to the pickling tank 12 or the circulation line 21 is charged. Stop supply. More specifically, the concentration of Fe 3+ in the acid solution 3 in the pickling tank 12 is increased by increasing Fe 3+ derived from the oxidizing device from time t10, and the supply of Fe 3+ from the oxidizing device 20 causes the acid. At time t11 when the concentration of Fe 3+ in the acid solution 3 in the washing tank 12 can be maintained, the supply of the liquid oxidant to the pickling tank 12 or the circulation line 21 is stopped.
  • the circulation amount of the acid solution 3 between the oxidizing apparatus 20 and the pickling tank 12 may be reduced to such an extent that the concentration of Fe 3+ of the acid solution 3 in the pickling tank 12 can be maintained ( In FIG. 6, the circulating flow rate is reduced to rt11).
  • the Fe 3+ concentration of the acid solution 3 in the pickling tank 12 reaches the target value Ct. Then you may stop.
  • the above-mentioned supply of the liquid oxidizing agent may be stopped before the tail end of the second steel plate portion 2b is discharged from the pickling tank 12.
  • the steel plate 2 including the second steel plate portion 2b and the third steel plate portion 2c connected to the second steel plate portion 2b via the second connecting portion 5 is pickled. Will be. Until time t21, the second steel plate portion 2b of the steel plate 2 is pickled in the pickling tank 12. At time t21, the second connecting portion 5 (the tip portion of the third steel plate portion 2c) between the second steel plate portion 2b and the third steel plate portion 2c reaches the pickling tank 12, and from the pickling of the second steel plate portion 2b. It switches to pickling the third steel plate portion 2c. After time t21, the third steel plate portion 2c of the steel plate 2 is conveyed into the pickling tank 12 and pickled.
  • the second connecting portion 5 Even after the second connecting portion 5 reaches the pickling tank 12 at time t21 and is switched to pickling the third steel plate portion 2c, the second connecting portion 5 (tail end portion of the second steel plate portion 2b). Continues to be pickled in the pickling tank 12 until a part of the second steel plate portion 2b is discharged from the pickling tank 12. In the time range shown in the graph of FIG. 7, the amount of the liquid oxidant supplied by the liquid oxidant charging unit 30 is zero.
  • the gas oxidant to the acid solution 3 in the oxidizing apparatus 20 is charged.
  • the supply amount or at least one of the circulating flow rate of the acid solution 3 between the oxidizing apparatus 20 and the pickling tank 12 is reduced to reduce the Fe 3+ concentration in the acid solution 3 in the pickling tank 12.
  • the second connecting portion 5 reaches the pickling tank 12 at time t21 as the second steel plate portion 2b is switched from pickling to the third steel plate portion 2c.
  • the supply amount of the gas oxidant to the acid solution 3 in the oxidizing device 20 is reduced to reduce the Fe 3+ concentration of the acid solution 3 in the oxidizing device 20 from et 20 to et 21 and the acid.
  • the Fe 3+ concentration in the acid liquid 3 in the pickling tank 12 is reduced from C t20 to C t21.
  • the transfer speed of the steel plate 2 is increased with the switching from the pickling of the second steel plate portion 2b to the pickling of the third steel plate portion 2c.
  • the line speed is reduced from V t20 to V t21a from time t20 to time t21 before the time t21 when the second connection part 5 reaches the pickling tank 12, and the second connection part 5 At the time t21 when the pickling tank 12 is reached, the transport speed of the steel plate 2 is increased to V t21b.
  • the transport speed of the steel plate 2 is increased as the third steel plate portion 2c is switched to pickling.
  • the third steel plate portion 2c can be sufficiently pickled.
  • the transfer speed of the steel plate 2 is increased as the second steel plate portion 2b is switched to the third steel plate portion 2c, so that the third steel plate portion 2c is pickled. It is possible to maintain a high transfer speed of the steel sheet 2 while sufficiently performing the above. Therefore, the productivity of the steel plate 2 can be improved.
  • FIG. 8 is a graph showing changes over time such as Fe 3+ concentration in the acid solution 3 and the transport speed (line speed) of the steel plate 2 in the pickling method in one embodiment.
  • FIG. 8 includes a plurality of pickling tanks 12A to 12C as shown in FIG. 3 or FIG. 4, and the acid solution 3 is supplied from the oxidizing device 20 to each of the pickling tanks 12A to 12C. It is a graph relating to the pickling method in the pickling apparatus 1 configured to supply the liquid oxidant from the liquid oxidant charging unit 30.
  • the steel plate 2 is pickled, and at time t40, the first connecting portion 4 (the tip end portion of the second steel plate portion 2b) between the first steel plate portion 2a and the second steel plate portion 2b is formed.
  • the pickling tank 12A pickling tank # 1 located on the most upstream side of the plurality of pickling tanks 12 is reached, and the pickling of the first steel plate portion 2a is switched to the pickling of the second steel plate portion 2b.
  • the first connection portion 4 proceeds to the downstream side, and pickling tank 12B (pickling tank # 2) at time t41 and pickling tank 12C (pickling tank # 3; most downstream side pickling) at time t42. It reaches the tank 12) in sequence.
  • the charging of the liquid oxidizing agent to the lines 21 (21A to 21C) is sequentially started. This situation is shown by a graph of the liquid oxidant supply flow rate in FIG. As a result, the Fe 3+ concentration of the acid solution 3 in each pickling tank 12A to 12C is rapidly increased.
  • the transport speed (line speed) of the steel plate 2 can be maintained high even if the steel type to be pickled is switched, and the steel plate 2 can be maintained high. Productivity can be improved.
  • the circulation flow rate of the acid solution 3 between the acid solution 3 and the acid solution 3) is increased.
  • the Fe 3+ concentration of the acid solution 3 in each pickling tank 12A to 12C can be appropriately maintained. Further, for this reason, it is possible to stop the charging of the liquid oxidizing agent into each pickling tank 12 (12A to 12C) or the circulation line 21 (21A to 21C) connected to the pickling tank 12.
  • the time when the first connection portion 4 is inserted into the pickling tank 12A time t40
  • the time when the liquid oxidant is started to be charged into the pickling tank 12B time t41
  • the Fe 3+ concentration of the acid solution 3 in the pickling tank 12B reaches the specified value (time t43)
  • the Fe 3+ concentration of the acid solution 3 in the pickling tank 12C reaches the specified value (time).
  • the line speed is changed at each timing of t44). For example, by appropriately changing the line speed at such a timing, the line speed can be maintained high even if the steel type to be pickled is switched, and the productivity of the steel sheet 2 can be improved.
  • the controller 100 is configured to control the line speed and the timing of changing the line speed.
  • FIG. 9 is a block diagram of line speed control by the controller 100 according to the embodiment.
  • the controller 100 includes a pickling speed evaluation unit 102, a target line speed calculation unit 104, and a line speed control unit 106.
  • the pickling speed evaluation unit 102 includes operation information, the position of the welded portion (first connection portion 4 or second connection portion 5) in the transport direction, and the Fe ion concentration (Fe 2+) of the acid solution 3 in the pickling tank 12. It is configured to receive a signal indicating sensing information such as concentration and / or Fe 3+ concentration) and components of the acid solution 3 in the pickling tank 12.
  • the operation information includes the steel type of the steel sheet 2 to be pickled and the operating conditions (temperature, pressure, etc.) of the pickling device 1.
  • the pickling speed evaluation unit 102 evaluates the pickling speed of the steel sheet 2 based on the received signal.
  • the target line speed calculation unit 104 calculates the target line speed by the transport unit 10 based on the evaluation result of the pickling speed by the pickling speed evaluation unit 102.
  • the line speed control unit 106 controls the transport unit 10 so as to reach the calculated target line speed. For example, the current command value of the motor 17 (the motor that drives the transport roll 16) for achieving the calculated target line speed is calculated and output to the motor.
  • the controller 100 may be configured to acquire information about the position of the first connection 4 in the transport direction and, based on this information, determine when to reduce the line speed. ..
  • the timing for reducing the transport speed of the steel plate 2 is determined based on the information on the position of the first connection portion 4 in the transport direction. Therefore, for example, the pickling start timing of the second steel plate portion 2b (that is, , The timing at which the second steel plate portion 2b reaches the pickling tank 12), the transport speed of the steel plate 2 can be reduced at an appropriate timing. Therefore, the second steel plate portion 2b can be appropriately pickled, and deterioration of product quality can be suppressed.
  • the timing of starting the supply of the liquid oxidant may be determined based on the information on the position of the first connection portion 4 in the transport direction.
  • the timing of starting the supply of the liquid oxidizing agent may be determined in association with the timing of reducing the transport speed of the steel sheet 2.
  • the liquid oxidant supply start timing is determined based on the information on the position of the first connection portion 4 in the transport direction. Therefore, for example, the pickling start timing of the second steel plate portion 2b ( That is, the liquid oxidant can be started to be added at an appropriate timing according to the timing when the second steel plate portion 2b reaches the pickling tank 12). Therefore, when switching to pickling of the second steel plate portion 12b, Fe 3+ in the acid solution 3 in the pickling tank 12 can be increased in a timely manner, and the transport speed of the steel plate 2 can be easily maintained high. Therefore, the productivity of the steel plate 2 can be improved.
  • the controller 100 may be configured to adjust the Fe ion concentration of the acid solution 3 in the pickling tank 12.
  • the Fe ion concentration of the acid solution 3 in the pickling tank 12 may be adjusted according to the procedure shown in the flowchart of FIG. 10, for example.
  • FIG. 10 is a flowchart for controlling the Fe ion concentration according to the embodiment.
  • pickling is performed based on the target Fe ion concentration (target concentration of Fe 2+ ion and Fe 3+ ion) in the pickling tank 12 and the oxidizing device 20 and the operating conditions of the oxidizing device 20.
  • the mass balance in the tank 12 and the oxidizing apparatus 20 is calculated (step S1).
  • the operating conditions of the oxidizing device 20 are, for example, the supply amount of the gas oxidizing agent (oxygen and the like) in the oxidizing device 20, the gas oxidizing agent concentration, the bubbling gas flow rate, the temperature, the pressure, and the like.
  • step S4 based on the mass balance calculated in step S1, the flow rate of the new acid solution (such as hydrochloric acid) charged into the pickling tank 12 and the circulating flow rate of the acid solution 3 between the oxidizing apparatus 20 and the pickling tank 12. , And the supply amount flow rate and supply time of the liquid oxidant by the liquid oxidant input unit 30 are set (step S4).
  • the new acid solution such as hydrochloric acid
  • step S6 the Fe 3+ concentration and the Fe 2+ concentration of the acid solution 3 in the pickling tank 12 are measured (detected) (step S6), and it is determined whether or not they match the target values (step S8).
  • the flow rate of the new acid solution (hydrochloric acid, etc.) added to the pickling tank 12, the oxidizing device 20 and the pickling tank 12 The set values of the circulation flow rate of the acid solution 3 and the supply amount flow rate and the supply time of the liquid oxidant are changed (step S10), and the process returns to step S6.
  • step S8 when the measured value of the Fe ion concentration and the target value match in step S8 (Yes in step S8), the flow rate of the new acid solution (hydrochloric acid or the like) added to the pickling tank 12, the oxidizing device 20 and the pickling tank The control flow is terminated while maintaining the set values of the circulation flow rate of the acid solution 3 with and from 12 and the supply amount flow rate and supply time of the liquid oxidant.
  • the new acid solution hydrochloric acid or the like
  • the Fe 3+ concentration of the acid solution 3 in the pickling tank 12 is detected, and the detected Fe 3+ concentration and the acid of the second steel plate portion 2b are detected.
  • the supply amount of the liquid oxidant may be determined based on the difference from the target concentration of Fe 3+ of the acid solution 3 in the pickling tank 12 in washing.
  • the supply amount of the liquid oxidant is determined based on the difference between the measured value of Fe 3+ of the acid solution in the pickling tank 12 and the target concentration.
  • Fe 3+ of the acid liquid in the pickling tank 12 The amount of the gas oxidant supplied or the oxidizer 20 so as to maintain the concentration within a specified range including the target concentration of Fe 3+ of the acid liquid 3 in the pickling tank 12 in the pickling of the second steel plate portion 2b. At least one of the circulating flow rates of the acid solution 3 between the pickling tank 12 and the pickling tank 12 may be adjusted.
  • the amount of the gas oxidant supplied by the oxidizer 20 or the acid liquid between the oxidizer 20 and the pickling tank 12 By adjusting the circulation flow rate of No. 3, the Fe 3+ concentration of the acid solution 3 in the pickling tank 12 is maintained within the above-mentioned specified range. Therefore, after the supply of the liquid oxidant is stopped, Fe 3+ in the acid solution 3 in the pickling tank 12 can be appropriately maintained, the transport speed of the steel sheet 2 can be maintained high, and the productivity of the steel sheet 2 is improved. Can be made to. Further, since a relatively inexpensive gas oxidant is used for adjusting the Fe 3+ concentration of the acid solution 3 in the pickling tank 12, the cost increase can be suppressed.
  • the pickling method for a steel sheet is A steel plate including a first steel plate portion and a second steel plate portion which is connected to the tail end of the first steel plate portion and requires a longer time for pickling than the first steel plate portion when pickling under the same conditions. It is a pickling method of A step of immersing the steel sheet in an acid solution in at least one pickling tank while transporting the steel sheet to pickle the steel sheet. A step of circulating the acid solution between the oxidizing apparatus provided on the circulation line and the pickling tank via a circulation line connected to any one of the at least one pickling tanks.
  • a step of oxidizing Fe 2+ in the acid solution to Fe 3+ using a gas oxidizing agent With the switch from pickling of the first steel plate portion to pickling of the second steel plate portion, in the at least one pickling tank of the liquid oxidizing agent for oxidizing Fe 2+ in the acid solution to Fe 3+.
  • the liquid oxidant is supplied to the pickling tank or the circulation line as the pickling of the first steel plate portion is switched to the pickling of the second steel plate portion.
  • Fe 3+ in the acid solution in the pickling tank can be rapidly increased. Therefore, even if the steel type to be pickled is switched, the transport speed (line speed) of the steel sheet can be maintained high, and the productivity of the steel sheet can be improved.
  • the liquid oxidant is started to be added within the period in which the first connecting portion, which is the connecting portion between the first steel plate portion and the second steel plate portion, exists in the pickling tank. Therefore, the Fe 3+ concentration in the acid solution can be increased immediately after the start of pickling of the second steel plate portion. Therefore, it is easy to maintain a high transfer speed of the steel sheet after the pickling of the second steel sheet portion, which is a poor acid-washing material, is started, and the productivity of the steel sheet can be effectively improved.
  • the pickling method is With the switching from pickling the first steel plate portion to pickling the second steel plate portion, a deceleration step for reducing the transport speed of the steel sheet is further provided.
  • the Fe 3+ concentration in the acid solution can be increased relatively quickly, but by the time the Fe 3+ concentration in the acid solution in the pickling tank reaches the target value. Takes some time.
  • the transfer speed of the steel sheet is reduced as the pickling of the first steel plate portion is switched to the pickling of the second steel plate portion. 2
  • the second steel sheet should be pickled appropriately by reducing the transfer speed of the steel sheet. Can be done. Therefore, deterioration of product quality can be suppressed.
  • the pickling method is A step of acquiring information on the position of the first connecting portion, which is a connecting portion between the first steel plate portion and the second steel plate portion, in the transport direction, and Based on the above information, a step of determining the timing for reducing the transport speed of the steel sheet and Further prepare.
  • the timing for reducing the transport speed of the steel sheet is determined based on the information on the position of the first connection portion in the transport direction. Therefore, for example, pickling of the second steel plate portion.
  • the transfer speed of the steel sheet can be reduced at an appropriate timing according to the start timing (that is, the timing when the second steel plate portion reaches the pickling tank). Therefore, the second steel plate portion can be appropriately pickled, and deterioration of product quality can be suppressed.
  • the pickling method is After the charging start step and the deceleration step, a step of increasing the transport speed of the steel sheet is further provided.
  • the liquid oxidant was started to be added to the acid solution to reduce the transfer speed of the steel sheet.
  • the transfer speed of the steel sheet is increased. That is, for example, the transport speed of the steel sheet can be increased according to the increase in Fe 3+ during pickling, whereby the transport speed of the steel sheet during pickling of the second steel plate portion (difficult-to-pickle material) is maintained high. can do. Therefore, the productivity of the steel sheet can be improved.
  • the pickling method is With the switch from pickling the first steel plate portion to pickling the second steel plate portion, the amount of the gas oxidizing agent supplied to the acid solution in the oxidizing device, or the oxidizing device and at least one of the above.
  • the step further comprises increasing at least one of the circulating flow rates of the acid solution to and from the pickling tank to increase the Fe 3+ concentration in the acid solution in the pickling tank.
  • Fe 3+ oxidizing apparatus derived from the oxidation reaction using a gas oxidizing agent in the oxidizing apparatus Since the derived Fe 3+ ) was increased to increase the Fe 3+ concentration in the acid solution in the pickling tank, when the Fe 3+ concentration in the acid solution in the pickling tank became sufficiently high, a comparison was made. It is possible to stop the input of an expensive liquid oxidizer. Therefore, it is possible to maintain a high transfer speed of the steel sheet and improve the productivity of the steel sheet while suppressing an increase in the cost of pickling the steel sheet.
  • the pickling method is The step of stopping the supply of the liquid oxidant to the at least one pickling tank or the circulation line is further included during the pickling of the steel sheet in the at least one pickling tank.
  • the supply of the liquid oxidant is stopped during the pickling of the steel sheet, so that the supply of the liquid oxidant to the pickling tank or the circulation line is relatively short. .. Therefore, by suppressing the amount of the relatively expensive liquid oxidant used, it is possible to maintain a high transfer speed of the steel sheet and improve the productivity of the steel sheet while suppressing an increase in the cost of pickling the steel sheet. ..
  • the steel plate is connected to the tail end of the second steel plate portion, and further includes a third steel plate portion in which the time required for pickling is shorter than that of the second steel plate portion when pickling under the same conditions.
  • the pickling method is With the switch from the pickling of the second steel plate portion to the pickling of the third steel plate portion, the amount of the gas oxidant supplied to the acid solution in the oxidizer, or the oxidizer and at least one of them. Further comprising a step of reducing at least one of the circulating flow rates of the acid solution to and from the pickling tank to reduce the Fe 3+ concentration in the acid solution in the pickling tank.
  • the pickling of the second steel plate portion is switched to the pickling of the third steel plate portion, Fe 3+ derived from the oxidizing device is reduced in the acid solution in the pickling tank. Since the Fe 3+ concentration of the above is reduced, it is possible to suppress over-pickling of the third steel sheet portion, which requires a relatively short pickling time under the same conditions. Therefore, the pickling loss of the steel sheet can be reduced and the yield can be improved, thereby improving the productivity of the steel sheet.
  • the pickling method is A step of increasing the transport speed of the steel sheet is further provided as the pickling of the second steel plate portion is switched to the pickling of the third steel plate portion.
  • the third steel plate portion Since the pickling time of the third steel plate portion is shorter than that of the second steel plate portion under the same conditions, even if the transfer speed of the steel plate is increased due to the switch to the third steel plate portion, the third steel plate portion is the first 3 Sufficient pickling of the steel plate is possible.
  • the transfer speed of the steel sheet is increased with the switch from the second steel plate portion to the third steel plate portion, so that the pickling of the third steel plate portion is sufficient. It is possible to maintain a high transfer speed of the steel sheet while performing the above. Therefore, the productivity of the steel sheet can be improved.
  • the at least one pickling tank includes a plurality of pickling tanks arranged along the transport direction of the steel sheet.
  • the pickling method is A step is provided in which the acid solution in the pickling tank located on the downstream side in the transport direction is transferred to the pickling tank located on the upstream side in the transport direction.
  • the liquid oxidizing agent is charged into at least one of the plurality of pickling tanks or a circulation line connected to the pickling tank.
  • any pickling tank or any of them is accompanied by a switch from pickling the first steel plate portion to pickling the second steel plate portion. Since the liquid oxidizing agent was supplied to the circulation line connected to the pickling tank, it was switched to pickling the second steel plate part (difficult pickling material), which requires a relatively long pickling time under the same conditions. At that time, the Fe 3+ concentration in the acid solution in the pickling tank can be rapidly increased. Therefore, even if the steel type to be pickled is switched, the transport speed of the steel sheet can be maintained high, and the productivity of the steel sheet can be improved.
  • liquid oxidizing agent is added to the plurality of pickling tanks or circulation lines connected to the pickling tanks in the order in which the first connecting portion, which is the connecting portion between the first steel plate portion and the second steel plate portion, passes. Input is started in sequence.
  • a plurality of pickling tanks or circulation lines connected to the pickling tanks are connected in the order in which the first connecting portion, which is the connecting portion between the first steel plate portion and the second steel plate portion, passes through.
  • the charging of the liquid oxidizing agent into the liquid oxidizing agent is sequentially started. Therefore, the Fe 3+ concentration in each acid solution of the plurality of pickling tanks can be rapidly increased, and after switching to pickling of the second steel sheet portion, it becomes easy to maintain a high transfer speed of the steel sheet. Therefore, the productivity of the steel sheet can be effectively improved.
  • the pickling method is A step of acquiring information on the position of the first connection portion in the transport direction, and A step of determining the supply start timing of the liquid oxidizing agent based on the information is provided.
  • the timing for starting the supply of the liquid oxidant is determined based on the information on the position of the first connection portion in the transport direction. Therefore, for example, the pickling start of the second steel plate portion is started.
  • the charging of the liquid oxidant can be started at an appropriate timing according to the timing (that is, the timing when the second steel plate portion reaches the pickling tank). Therefore, when switching to pickling of the second steel sheet portion, the Fe 3+ concentration in the acid solution in the pickling tank can be increased in a timely manner, and the transfer speed of the steel sheet can be easily maintained high. Therefore, the productivity of the steel sheet can be improved.
  • the pickling method is The step of detecting the Fe 3+ concentration of the acid solution in the pickling tank, and A step of determining the supply amount of the liquid oxidant based on the difference between the detected Fe 3+ concentration and the target concentration of Fe 3+ of the acid solution in the pickling tank in the pickling of the second steel plate portion. , To be equipped.
  • the Fe 3+ concentration in the pickling tank is detected, and the detected Fe 3+ concentration and the target concentration of Fe 3+ of the acid solution in the pickling tank in the pickling of the second steel plate portion.
  • the supply amount of the liquid oxidant is determined based on the difference between. Therefore, by supplying the liquid oxidant based on the supply amount determined in this way, the Fe 3+ concentration in the acid solution in the pickling tank can be appropriately increased, and the transfer speed of the steel sheet can be maintained high. It will be easier. Therefore, the productivity of the steel sheet can be improved.
  • the pickling method is During the pickling of the second steel plate portion, and after the supply of the liquid oxidizing agent to the at least one pickling tank or the circulation line is stopped, the Fe 3+ concentration of the acid liquid in the pickling tank is adjusted to the first. 2 The supply amount of the gas oxidant or at least one of the oxidizer and the oxidizer so as to maintain within the specified range including the target concentration of Fe 3+ of the acid liquid in the pickling tank in the pickling of the steel plate portion. A step of adjusting at least one of the circulating flow rate of the acid solution to and from the pickling tank is provided.
  • the amount of the gas oxidant supplied in the oxidizer or the oxidizer and the pickling tank is maintained within the above-mentioned specified range. Therefore, after the supply of the liquid oxidant is stopped, the Fe 3+ concentration in the acid solution in the pickling tank can be appropriately maintained, the transfer speed of the steel sheet can be maintained high, and the productivity of the steel sheet can be improved. it can. Further, since a relatively inexpensive gas oxidant is used for adjusting the Fe 3+ concentration of the acid solution in the pickling tank, an increase in cost can be suppressed.
  • the pickling apparatus is A steel plate including a first steel plate portion and a second steel plate portion which is connected to the tail end of the first steel plate portion and requires a longer time for pickling than the first steel plate portion when pickling under the same conditions.
  • a pickling device for pickling At least one pickling tank in which the acid solution is stored, and A transport unit configured to transport the steel sheet while immersing the steel sheet in the acid solution in at least one pickling tank.
  • a circulation line connected to the at least one pickling tank and for circulating an acid solution inside any one of the at least one pickling tank.
  • An oxidizing device provided on the circulation line and configured to oxidize Fe 2+ in the acid solution to Fe 3+ using a gas oxidizing agent.
  • a liquid oxidant charging section capable of charging a liquid oxidant for oxidizing Fe 2+ in the acid solution to Fe 3+ into any one of the at least one pickling tank or the circulation line. To be equipped.
  • the liquid oxidant is supplied to the pickling tank or the circulation line as the pickling of the first steel plate portion is switched to the pickling of the second steel plate portion, so that the same conditions are met.
  • the Fe 3+ concentration in the acid solution in the pickling tank can be rapidly increased. Therefore, even if the steel type to be pickled is switched, the transport speed (line speed) of the steel sheet can be maintained high, and the productivity of the steel sheet can be improved.
  • the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained.
  • the shape including the uneven portion, the chamfered portion, etc. shall also be represented.
  • the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

鋼板の酸洗方法は、第1鋼板部と、前記第1鋼板部の尾端に接続され、同一条件で酸洗をした場合に酸洗に要する時間が前記第1鋼板部よりも長い第2鋼板部と、を含む鋼板の酸洗方法であって、前記鋼板を搬送しながら、少なくとも1つの酸洗槽内の酸液に前記鋼板を浸漬させて前記鋼板を酸洗するステップと、前記少なくとも1つの酸洗槽の何れかに接続された循環ラインを介して、前記循環ライン上に設けられた酸化装置と前記酸洗槽との間で前記酸液を循環させるステップと、前記酸化装置で、気体酸化剤を用いて前記酸液中のFe2+をFe3+に酸化するステップと、前記第1鋼板部の酸洗から前記第2鋼板部の酸洗への切り替えに伴い、前記酸液中のFe2+をFe3+に酸化するための液体酸化剤の前記少なくとも1つの酸洗槽の何れか又は前記循環ラインへの投入を開始する投入開始ステップと、を備える。

Description

鋼板の酸洗方法及び酸洗装置
 本開示は、鋼板の酸洗方法及び酸洗装置に関する。
 鋼板の酸洗において、酸液に含まれる第二鉄イオン(Fe3+)の濃度を調節することで、酸洗速度が大きくなることが知られており、酸液中のFe3+濃度を調節するための方法が提案されている。
 例えば、特許文献1には、酸液中に含まれるFe3+の濃度を所定範囲内の値に維持するために、酸液のエアレーション(曝気)を行い、酸洗時に酸液中に生じる第一鉄イオン(Fe2+)を酸化して、酸液中のFe3+濃度を増加させることが記載されている。
特許第4186131号公報
 ところで、酸液中の鉄イオンの濃度調節において気体酸化剤(空気や酸素等)を用いる場合、鉄イオンの酸化反応(Fe2+→Fe3+)は、気体酸化剤の酸液への溶解が律速となり、比較的緩やかである。このため、酸洗対象の鋼板が難酸洗材(酸洗に要する時間が長い鋼板)に切り替わったときに、それ以前に比べてライン速度を低下させる必要がある。また、仮に、気体酸化剤の供給量等の調節により酸液中のFe3+濃度を増大させるとしても、Fe3+濃度の増加に時間が長くかかるため、上述のようにライン速度を低下させた後、酸液中のFe3+濃度が増加するまでの間はライン速度をあまり上げられない。このため、鋼板の生産性が低下する場合がある。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、鋼板の生産性を向上可能な鋼板の酸洗方法を提供することを目的とする。
 本発明の少なくとも一実施形態に係る鋼板の酸洗方法は、
 第1鋼板部と、前記第1鋼板部の尾端に接続され、同一条件で酸洗をした場合に酸洗に要する時間が前記第1鋼板部よりも長い第2鋼板部と、を含む鋼板の酸洗方法であって、
 前記鋼板を搬送しながら、少なくとも1つの酸洗槽内の酸液に前記鋼板を浸漬させて前記鋼板を酸洗するステップと、
 前記少なくとも1つの酸洗槽の何れかに接続された循環ラインを介して、前記循環ライン上に設けられた酸化装置と前記酸洗槽との間で前記酸液を循環させるステップと、
 前記酸化装置で、気体酸化剤を用いて前記酸液中のFe2+をFe3+に酸化するステップと、
 前記第1鋼板部の酸洗から前記第2鋼板部の酸洗への切り替えに伴い、前記酸液中のFe2+をFe3+に酸化するための液体酸化剤の前記少なくとも1つの酸洗槽の何れか又は前記循環ラインへの投入を開始する投入開始ステップと、
を備える。
 本発明の少なくとも一実施形態によれば、鋼板の生産性を向上可能な鋼板の酸洗方法が提供される。
一実施形態に係る酸洗設備の概略図である。 一実施形態に係る酸洗設備の概略図である。 一実施形態に係る酸洗設備の概略図である。 一実施形態に係る酸洗設備の概略図である。 一実施形態に係る酸洗設備の概略図である。 一実施形態に係る酸洗設備の概略図である。 一実施形態に係る酸洗方法におけるFe3+濃度及びライン速度等の時間変化を示すグラフである。 一実施形態に係る酸洗方法におけるFe3+濃度及びライン速度等の時間変化を示すグラフである。 一実施形態に係る酸洗方法におけるFe3+濃度及びライン速度等の時間変化を示すグラフである。 一実施形態に係る酸洗方法におけるFe3+濃度及びライン速度等の時間変化を示すグラフである。 一実施形態に係るライン速度制御のブロック図である。 一実施形態に係るFeイオン濃度の制御のフローチャートである。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
(酸洗装置の構成)
 図1A~図4は、それぞれ、幾つかの実施形態に係る酸洗方法が適用される酸洗設備の概略図である。図1A~図4に示す酸洗装置1は、酸液3を用いて鋼板2の酸洗をするための酸洗装置である。
 図1A~図1Cに示す酸洗装置1は、酸液3を貯留するための酸洗槽12と、酸液3に浸漬された帯状の鋼板2を連続的に搬送するための搬送ロール16(搬送部10)と、を備えている。酸液3は、鋼板2の表面に生成したスケール(酸化被膜)を溶解して除去するための酸洗液であり、例えば、塩酸、硫酸、硝酸又はフッ酸等の酸を含む液体である。搬送ロール16は、鋼板2に張力を与えて、該鋼板2を酸洗槽の酸液中に浸漬させて搬送するように構成されている。複数の搬送ロール16は、モータ17(図10参照)によって駆動されるように構成されていてもよい。
 図2~図4に示す酸洗装置1は、鋼板2の搬送方向において直列に配置された複数の酸洗槽12(12A~12C)を有する酸洗装置1である。複数の酸洗槽12(12A~12C)は、隔壁によって隔てられている。
 複数の酸洗槽12(12A~12C)の各々に搬送ロール16(搬送部10)が設けられており、これらの搬送ロール16によって、複数の酸洗槽12内の酸液3に浸漬された状態で鋼板2が搬送されるようになっている。
 図2~図4に示す酸洗装置1では、鋼板2を酸洗するための酸液3が酸液供給部18を介して最下流側の酸洗槽12Cに供給されるようになっている。また、酸洗槽12(12A~12C)から溢れた酸液3が、酸洗槽12間の隔壁を超えて上流側の酸洗槽へと移送されるようになっている。最上流側の酸洗槽12Aには、酸液3を排出するための酸液排出部19が設けられている。
 酸洗装置1は、酸洗槽12に接続され、該酸洗槽12内の酸液3を循環させるための循環ライン21と、循環ライン21上に設けられた酸化装置20と、を含む。循環ライン21は、酸洗槽12から酸液3を抜き出して酸化装置20に導くための抜出しライン22と、酸化装置20からの酸液3を酸洗槽12に返送するための返送ライン24と、を含む。
 酸化装置20は、気体酸化剤を用いて酸液3中のFe2+をFe3+に酸化するように構成されている。特に図示しないが、酸化装置20は、密閉タンクと、密閉タンクに気体酸化剤を供給するためのガス供給部を含んでいてもよい。酸化装置20の内部における気体酸化剤の分圧の調節をすることで、酸化装置20内部の酸液のFe3+濃度を調節可能になっていてもよい。
 鋼板の酸洗において、酸液に含まれる第二鉄イオン(Fe3+)の濃度を調節することで、酸洗速度が大きくなることが知られている。すなわち、酸液中の鉄イオン(Fe2+、Fe3+)の濃度比と酸洗時間とは所定の関係を有することが知られており、酸液中Fe3+濃度をある程度大きくすることで、酸洗速度が増大する(すなわち、酸洗時間が短くなる)。したがって、酸化装置20にて酸液中のFe3+濃度を適切に調節することで、鋼板の酸洗を効率的に行うことができる。
 酸化装置20で用いる気体酸化剤は、例えば空気、酸素又はオゾン等を含んでいてもよい。
 複数の酸洗槽12(12A~12C)を含む酸洗装置では、複数の酸洗槽12のうち、何れか1つの酸洗槽12に接続される循環ライン21が設けられ、該循環ライン21上に酸化装置20が設けられていてもよい。図2及び図4に示す例示的な実施形態では、複数の酸洗槽12(12A~12C)のうち最下流側に位置する酸洗槽12Cに接続される循環ライン21(抜出しライン22及び返送ライン24を含む)が設けられ、該循環ライン21上に酸化装置20が設けられている。図4に示す例示的な実施形態では、返送ライン24は、複数の酸洗槽12A~12Cにそれぞれ接続される返送ライン24A~24Cを含んでいる。
 あるいは、複数の酸洗槽12(12A~12C)を含む酸洗装置では、複数の酸洗槽12のうち、2以上の酸洗槽12にそれぞれ接続される循環ライン21が設けられ、各循環ライン21上に酸化装置20がそれぞれ設けられていてもよい。図3に示す例示的な実施形態では、複数の酸洗槽12(12A~12C)の各々に対応するように、循環ライン21A~21C(抜出しライン22A~22C及び返送ライン24A~24Cを含む)が設けられ、該循環ライン21A~21C上にそれぞれ酸化装置20A~20Cが設けられている。
 なお、図2~図4に示す例示的な実施形態では、酸化装置20からの酸液3は、最下流側の酸洗槽12Cに供給されるようになっている。
 下流側の酸洗槽12では、鋼板2表面のスケールの溶解に加えて、鋼板2の母材表面を溶解させる処理を行うことがある。このように鋼板2の母材を酸液で溶解させる場合に、酸液中のFe3+が消費される。よって、複数の酸洗槽12のうちの下流側の酸洗槽(例えば最下流の酸洗槽12C)に対して、酸化装置20においてFe3+濃度を高められた酸液3を供給することで、効果的に鋼板2の酸洗を行うことができる。
 酸洗装置1は、さらに、少なくとも1つの酸洗槽12の何れか又は循環ライン21に、酸液3中のFe2+をFe3+に酸化するための液体酸化剤を投入可能な液体酸化剤投入部30を備えている。液体酸化剤投入部30は、液体酸化剤を貯留するための液体酸化剤タンク32と、液体酸化剤タンク32からの液体酸化剤を投入するための液体酸化剤投入ライン34と、液体酸化剤投入ライン34に設けられ、液体酸化剤を昇圧するための液体酸化剤ポンプ33と、を含む。
 液体酸化剤は、鉄イオン(Fe2+)を酸化する能力を有する液体であれば特に限定することなく使用できる。液体酸化剤は、例えば、過酸化水素水、次亜塩素酸、ペルオキソ二硫酸アンモニウム(過硫酸アンモニウム)、過マンガン酸カリウム溶液の少なくとも1つを含んでいてもよい。
 液体酸化剤投入ライン34は、酸洗槽12又は循環ライン21(循環ライン21上に設けられた酸化装置20を含む)に接続され、液体酸化剤タンク32からの液体酸化剤を酸洗槽12又は循環ライン21(循環ライン21上に設けられた酸化装置20を含む)に投入するように構成されている。
 図1A及び図2~図4に示す例示的な実施形態では、液体酸化剤投入ライン34は、酸洗槽12に接続され、該酸洗槽12に液体酸化剤を投入するように構成された第1投入ライン36を含む。第1投入ライン36には、第1投入ライン36を介した酸洗槽12への液体酸化剤の供給量を調節するためのバルブ37が設けられている。なお、図3及び図4に示す例示的な実施形態では、液体酸化剤投入ライン34は、酸洗槽12A~12Cの各々に接続され、該酸洗槽12A~12Cにそれぞれ液体酸化剤を投入するように構成された第1投入ライン36A~36Cを含む。第1投入ライン36A~36Cには、第1投入ライン36A~36Cを介した酸洗槽12A~12Cへの液体酸化剤の供給量をそれぞれ調節するためのバルブ37A~37Cが設けられている。
 図1B、図3及び図4に示す例示的な実施形態では、液体酸化剤投入ライン34は、酸化装置20と酸洗槽12の間の返送ライン24(循環ライン21)に接続され、該返送ライン24に液体酸化剤を投入するように構成された第2投入ライン38を含む。第2投入ライン38には、第2投入ライン38を介した返送ライン24への液体酸化剤の供給量を調節するためのバルブ39が設けられている。なお、図3及び図4に示す例示的な実施形態では、液体酸化剤投入ライン34は、返送ライン24A~24Cの各々に接続され、該返送ライン24A~24Cにそれぞれ液体酸化剤を投入するように構成された第2投入ライン38A~38Cを含む。第2投入ライン38A~38Cには、第2投入ライン38A~38Cを介した返送ライン24A~24Cへの液体酸化剤の供給量をそれぞれ調節するためのバルブ39A~39Cが設けられている。
 図1C、図3及び図4に示す例示的な実施形態では、液体酸化剤投入ライン34は、循環ライン21上の酸化装置20(循環ライン21)に接続され、該酸化装置20に液体酸化剤を投入するように構成された第3投入ライン40を含む。第3投入ライン40には、第3投入ライン40を介した酸化装置20への液体酸化剤の供給量を調節するためのバルブ41が設けられている。なお、図3に示す例示的な実施形態では、液体酸化剤投入ライン34は、酸化装置20A~20Cの各々に接続され、該酸化装置20A~20Cにそれぞれ液体酸化剤を投入するように構成された第3投入ライン40A~40Cを含む。第3投入ライン40A~40Cには、第3投入ライン40A~40Cを介した酸化装置20A~20Cへの液体酸化剤の供給量をそれぞれ調節するためのバルブ41A~41Cが設けられている。
 酸洗装置1は、酸洗槽12(12A~12C)内の酸液中のFe3+濃度や、鋼板2の搬送速度(ライン速度)を調節するためのコントローラ100を含んでいてもよい。コントローラ100の具体的な構成については後述する。
 コントローラ100は、プロセッサ、メモリ(RAM)、補助記憶部及びインターフェース等を含んでいてもよい。コントローラ100は、インターフェースを介して、上述の種計測器からの信号を受け取るようになっている。プロセッサは、このようにして受け取った信号を処理するように構成される。また、プロセッサは、メモリに展開されるプログラムを処理するように構成される。
 コントローラ100での処理内容は、プロセッサにより実行されるプログラムとして実装され、補助記憶部に記憶されていてもよい。プログラム実行時には、これらのプログラムはメモリに展開される。プロセッサは、メモリからプログラムを読み出し、プログラムに含まれる命令を実行するようになっている。
(酸洗対象の鋼板)
 幾つかの実施形態に係る酸洗装置1では、第1鋼板部2aと、第2鋼板部2bと、を含む鋼板2の酸洗処理を行う(図1A~図1C参照)。第2鋼板部2bは、溶接等により形成される第1接続部4を介して第1鋼板部2aの尾端に接続されている。第2鋼板部2bは、同一条件で酸洗をした場合に酸洗に要する時間が第1鋼板部2aよりも長い鋼種の鋼板である。
 鋼板2は、第1鋼板部2a及び第2鋼板部2bに加え、第3鋼板部2cを含んでいてもよい(図1A~図1C参照)。第3鋼板部2cは、溶接等により形成される第2接続部5を介して第2鋼板部2bの尾端に接続されている。第3鋼板部2cは、同一条件で酸洗をした場合に酸洗に要する時間が第2鋼板部2bよりも短い鋼種の鋼板である。
 なお、Si含有量が比較的高い鋼は、酸洗に要する時間が比較的長い。第2鋼板部2bは、Si含有量が比較的高い鋼(例えば高強度鋼材)であってもよい。
(酸洗方法)
 次に、幾つかの実施形態に係る鋼板2の酸洗方法について説明する。
 まず、図5を参照して、幾つかの実施形態に係る酸洗方法の概略について説明する。図5は、一実施形態に係る酸洗方法における酸液3中のFe3+濃度及び鋼板2の搬送速度(ライン速度)等の時間変化を示すグラフである。なお、図5においては、従来の典型的な酸洗方法による酸液中のFe3+濃度及び鋼板の搬送速度等の時間変化(符号202,203,212,213)も併せて図示されている。
 幾つかの実施形態では、鋼板2を搬送部10で搬送しながら、酸洗槽12内の酸液3に鋼板2を浸漬させて鋼板2を酸洗する。図5に示す例では、時刻t0よりも前の時点から時刻t1よりも後の時点に至るまで鋼板2の酸洗が行われており、時刻t0までは鋼板2の第1鋼板部2aが酸洗槽12の中へと搬送され続ける。時刻t0にて第1鋼板部2aと第2鋼板部2bとの第1接続部4(第2鋼板部2bの先端部)が酸洗槽12に到達し、第1鋼板部2aの酸洗から第2鋼板部2bの酸洗に切り替わる。時刻t0以降は、鋼板2の第2鋼板部2bが酸洗槽12の中へと搬送される。なお、時刻t0で、第1接続部4が酸洗槽12に到達し、第2鋼板部2bの酸洗に切り替わった後も、第1接続部4(第1鋼板部2aの尾端部)が酸洗槽12から排出されるまでは、第1鋼板部2aの一部は酸洗槽12内で酸洗され続ける。
 第1鋼板部2aの酸洗槽12での酸洗中(時刻t0まで)、酸洗槽12に接続された循環ライン21を介して、循環ライン21上に設けられた酸化装置20と酸洗槽12との間で酸液3を循環させる。また、酸化装置20において、気体酸化剤を用いて酸液3中のFe2+をFe3+に酸化させる。このようにして、酸洗槽12内の酸液3のFe3+濃度を、第1鋼板部2aの酸洗に適した濃度に維持する。
 第1鋼板部2aの酸洗から第2鋼板部2bの酸洗への切り替えに伴い、時刻t0にて、液体酸化剤投入部30による液体酸化剤の酸洗槽12又は循環ライン21の少なくとも一方への投入を開始する。液体酸化剤投入ライン34に設けられたバルブ(バルブ37,39又は41)を開いて、液体酸化剤タンク32に貯留された液体酸化剤を、液体酸化剤投入ライン34を介して、酸洗槽12又は循環ライン21に投入する。これにより、酸洗槽12内のFe3+濃度201(図5参照)は、時刻t0経過後、速やかに、かつ、大幅に上昇する。
 図5に示すように、時刻t0では、第1鋼板部2aの酸洗から第2鋼板部2bの酸洗への切り替えに伴い、鋼板2の搬送速度211(図5参照)を減少させるようにしてもよい。
 酸液中の鉄イオンの濃度調節において、液体酸化剤でなく、気体酸化剤(空気や酸素等)を用いる場合、鉄イオンの酸化反応(Fe2+→Fe3+)は、気体酸化剤の酸液への溶解が律速となり、比較的緩やかである。このため、図5に示す時刻t0にて酸洗対象の鋼板が、第1鋼板部2aから、酸洗に要する時間が長い第2鋼板部2bに切り替わったときに、それ以前に比べてライン速度(鋼板2の搬送速度)を低下させる必要がある(図5のFe3+濃度202及びライン速度212参照)。また、仮に、気体酸化剤の供給量等の調節により酸液3中のFe3+濃度を図5のFe3+濃度203のように増大させるとしても、Fe3+濃度の増加に時間が長くかかるため、上述のようにライン速度を低下させた後、酸液3中のFe3+濃度が増加するまでの間は、ライン速度をあまり上げられない(図5のライン速度213参照)。このため、鋼板2の生産性が低下する場合がある。
 これに対し、液体酸化剤では酸化剤が液体に溶解しているため、気体酸化剤を用いる場合に比べて、酸液3中の鉄イオンの酸化反応が進みやすく、このため、酸液3中のFe3+濃度を迅速に増加させやすい。この点、上述の実施形態によれば、第1鋼板部2aの酸洗から第2鋼板部2bの酸洗への切り替えに伴い(図5における時刻t0)、酸洗槽12又は循環ライン21に液体酸化剤を供給するようにしたので、同一条件での酸洗所要時間が比較的長い第2鋼板部2b(難酸洗材)の酸洗に切り替わったときに酸洗槽12内の酸液3中のFe3+を迅速に高めることができる。よって、酸洗対象の鋼種が切り替わっても鋼板2の搬送速度(ライン速度)を高く維持することができ、鋼板2の生産性を向上させることができる。
 次に図6~図8を参照して、幾つかの実施形態に係る酸洗方法のより具体的な例について説明する。
 図6及び図7は、一実施形態における酸洗方法における酸液3中のFe3+濃度及び鋼板2の搬送速度(ライン速度)等の時間変化を示すグラフである。図6は、図5の場合と同様、一実施形態に係る酸洗方法による鋼板2の酸洗において、第1鋼板部2aの酸洗から第2鋼板部2bの酸洗への切り替え時点を含むグラフであり、図7は、一実施形態に係る酸洗方法による鋼板2の酸洗において、第2鋼板部2bの酸洗から第3鋼板部2cの酸洗への切り替え時点を含むグラフである。
 図6に示す実施形態では、図5に示す場合と同様に鋼板2の酸洗が行われ、時刻t10にて第1鋼板部2aと第2鋼板部2bとの第1接続部4(第2鋼板部2bの先端部)が酸洗槽12に到達し、第1鋼板部2aの酸洗から第2鋼板部2bの酸洗に切り替わる。
 また、図5に示す場合と同様に、第1鋼板部2aの酸洗槽12での酸洗中(時刻t10まで)、酸洗槽12に接続された循環ライン21を介して、循環ライン21上に設けられた酸化装置20と酸洗槽12との間で酸液3を循環させる。また、酸化装置20において、気体酸化剤を用いて酸液3中のFe2+をFe3+に酸化させる。このようにして、酸洗槽12内の酸液3のFe3+濃度を、第1鋼板部2aの酸洗に適した濃度(Ct10)に維持する。
 また、図5に示す場合と同様に、第1鋼板部2aの酸洗から第2鋼板部2bの酸洗への切り替えに伴い、時刻t10にて、液体酸化剤投入部30による液体酸化剤の酸洗槽12又は循環ライン21の少なくとも一方への投入を開始する。これにより、酸洗槽12内のFe3+濃度は、図6に示すように、時刻t10からt11までの間に、Ct10からCt11まで、速やかに、かつ、大幅に上昇する。
 幾つかの実施形態では、第1鋼板部2aと第2鋼板部2bとの第1接続部4が酸洗槽12の中に存在する期間内、例えば、図6に示すように、第1接続部4が酸洗槽12に到達した時点(時刻t10)で液体酸化剤の投入を開始する。
 図6に示す例では、時刻t10にて、液体酸化剤の投入量をゼロからqt10まで増加させている。これにより、第2鋼板部2bの酸洗開始後、速やかに酸洗槽12の酸液3中Fe3+濃度を高めることができる。よって、難酸洗材である第2鋼板部2bの酸洗が開始された後に鋼板2の搬送速度を高く維持しやすく、鋼板2の生産性を効果的に向上させることができる。
 図6に示す例示的な実施形態では、第1鋼板部2aの酸洗から第2鋼板部2bへの酸洗への切り替えに伴い、時刻t10にて、鋼板2の搬送速度(ライン速度)をVからVt10まで減少させている。
 図6の時刻t10にて液体酸化剤を酸液3に投入することで、酸洗槽12内の酸液3中のFe3+濃度を比較的迅速に上昇させることができるが、酸洗槽12内の酸液3中のFe3+濃度が目標値Ctに達するまでにはある程度の時間(図6に示す場合、時刻t10からt11までの時間)がかかる。この点、上述の実施形態に係る方法では、第1鋼板部2aの酸洗から第2鋼板部2bの酸洗への切り替えに伴い、時刻t10にて鋼板2の搬送速度を減少させるようにしたので、難酸洗材である第2鋼板部2bの酸洗開始後、酸洗槽12内の酸液3中のFe3+濃度が十分高くなる前の段階で、鋼板2の搬送速度を減少させることで難酸洗材である第2鋼板部2bを適切に酸洗することができる。よって、製品の品質低下を抑制することができる。
 図6に示す例示的な実施形態では、時刻t10でライン速度をVt10まで減少させた後、時刻t11でライン速度をVt11まで増加させる。
 すなわち、第1鋼板部2aの酸洗から第2鋼板部2bへの酸洗への切り替えに伴い、時刻t10にて液体酸化剤の酸液への投入を開始するとともに鋼板2の搬送速度を減速させた後、時刻t11にて鋼板の搬送速度を増加させる。これにより、酸洗中のFe3+の増加に応じて鋼板2の搬送速度を増加させることができ、これにより、第2鋼板部2b(難酸洗材)の酸洗中における鋼板2の搬送速度を高く維持することができる。よって、鋼板の生産性を向上させることができる。
 図6に示す例示的な実施形態では、第1鋼板部2aの酸洗から第2鋼板部2bの酸洗への切り替えに伴い、時刻t10から時刻t11までの間、酸化装置20での気体酸化剤を用いた酸化反応由来のFe3+(酸化装置由来のFe3+)を増加させて、酸洗槽12内の酸液3中のFe3+濃度を増加させる。より具体的には、酸化装置20における酸液3への気体酸化剤の供給量を増加させて酸化装置20内の酸液3中のFe3+濃度をet10からet11まで高め、かつ、循環ライン21を介した酸化装置20と酸洗槽12との間の酸液3の循環流量をrからrt10に増加させることで、酸洗槽12内の酸液3中のFe3+濃度を増加させる。
 また、図6に示す例示的な実施形態では、時刻t11にて(すなわち、酸洗槽12内での鋼板2の酸洗中に)、酸洗槽12又は循環ライン21への液体酸化剤の供給を停止する。より具体的には、時刻t10から酸化装置由来のFe3+を増加させることにより酸洗槽12内の酸液3中のFe3+濃度を増加させ、酸化装置20からのFe3+の供給により、酸洗槽12内の酸液3のFe3+の濃度を維持できるようになった時刻t11にて、酸洗槽12又は循環ライン21への液体酸化剤の供給を停止する。なお、この時、酸化装置20と酸洗槽12との間の酸液3の循環量は、酸洗槽12内の酸液3のFe3+の濃度を維持できる程度まで減少させてもよい(図6においては、該循環流量をrt11まで減少させている)。
 このように、第1鋼板部2aの酸洗から第2鋼板部の酸洗への切り替えに伴い、酸化装置20での気体酸化剤を用いた酸化反応由来のFe3+を増加させて(時刻t10~t11)、酸洗槽12内の酸液3中のFe3+濃度を増大させ、酸洗槽12内の酸液3中のFe3+濃度を十分に高くして、比較的高価な液体酸化剤の投入を停止することができる(時刻t11)。よって、鋼板2の酸洗にかかるコスト増大を抑制しながら、鋼板2の搬送速度を高く維持して、鋼板2の生産性を向上させることができる。
 幾つかの実施形態では、液体酸化剤投入部30による酸洗槽12又は循環ライン21への液体酸化剤の供給は、酸洗槽12内の酸液3のFe3+濃度が目標値Ctに到達したら停止してもよい。あるいは、上述の液体酸化剤の供給は、第2鋼板部2bの尾端が酸洗槽12から排出される前に停止してもよい。このように、鋼板2の酸洗中に、液体酸化剤の供給を停止することにより、液体酸化剤の酸洗槽12又は循環ライン21への供給は比較的短時間である。よって、比較的高価な液体酸化剤の使用量を抑制することで鋼板2の酸洗にかかるコスト増大を抑制しながら、鋼板2の搬送速度を高く維持して、鋼板2の生産性を向上させることができる。
 図7に示す例示的な実施形態では、第2鋼板部2b、及び、第2接続部5を介して第2鋼板部2bに接続される第3鋼板部2cを含む鋼板2の酸洗が行われる。時刻t21までは鋼板2の第2鋼板部2bが酸洗槽12内で酸洗される。時刻t21にて第2鋼板部2bと第3鋼板部2cとの第2接続部5(第3鋼板部2cの先端部)が酸洗槽12に到達し、第2鋼板部2bの酸洗から第3鋼板部2cの酸洗に切り替わる。時刻t21以降は、鋼板2の第3鋼板部2cが酸洗槽12の中へと搬送され、酸洗される。なお、時刻t21で、第2接続部5が酸洗槽12に到達し、第3鋼板部2cの酸洗に切り替わった後も、第2接続部5(第2鋼板部2bの尾端部)が酸洗槽12から排出されるまでは、第2鋼板部2bの一部は酸洗槽12内で酸洗され続ける。図7のグラフに示す時間範囲において、液体酸化剤投入部30による液体酸化剤の供給量はゼロである。
 幾つかの実施形態では、図7に示すように、第2鋼板部2bの酸洗から第3鋼板部2cの酸洗への切り替えに伴い、酸化装置20における酸液3への気体酸化剤の供給量、又は、酸化装置20と酸洗槽12との間の酸液3の循環流量の少なくとも一方を減少させて、酸洗槽12内の酸液3中のFe3+濃度を減少させる。図7に示す例示的な実施例では、第2鋼板部2bの酸洗から第3鋼板部2cの酸洗への切り替えに伴い、第2接続部5が時刻t21にて酸洗槽12に到達する前の時刻t20から、酸化装置20における酸液3への気体酸化剤の供給量を減少させて酸化装置20内の酸液3のFe3+濃度をet20からet21まで減少させるとともに、酸液3の循環流量をrt20aからrt20bまで減少させることにより、酸洗槽12内の酸液3中のFe3+濃度をCt20からCt21まで減少させている。
 このように、第2鋼板部2bの酸洗から第3鋼板部2cの酸洗への切り替えに伴い、酸化装置20由来のFe3+を減少させて、酸洗槽12内の酸液3中のFe3+濃度を減少させるようにしたので、同一条件での酸洗所要時間が比較的短い第3鋼板部2cの過酸洗を抑制することができる。よって、鋼板2の酸洗ロスを低減して歩留まりを改善することができ、これにより鋼板2の生産性を向上させることができる。
 幾つかの実施形態では、例えば図7に示すように、第2鋼板部2bの酸洗から第3鋼板部2cの酸洗への切り替えに伴い、鋼板2の搬送速度を増加させる。図7に示す例では、第2接続部5が酸洗槽12に到達する時刻t21よりも前の時刻t20から時刻t21までライン速度をVt20からVt21aまで減少させ、第2接続部5が酸洗槽12に到達する時刻t21にて、鋼板2の搬送速度をVt21bに増加させている。
 第3鋼板部2cは、第2鋼板部2bに比べて同一条件での酸洗所要時間が短いため、第3鋼板部2cへの酸洗への切り替えに伴い、鋼板2の搬送速度を増加させても、第3鋼板部2cの十分な酸洗が可能である。上述の実施形態によれば、第2鋼板部2bから第3鋼板部2cへの酸洗への切り替えに伴い、鋼板2の搬送速度を増加させるようにしたので、第3鋼板部2cの酸洗を十分に行いながら、鋼板2の搬送速度を高く維持することができる。よって、鋼板2の生産性を向上させることができる。
 図8は、一実施形態における酸洗方法における酸液3中のFe3+濃度及び鋼板2の搬送速度(ライン速度)等の時間変化を示すグラフである。図8は、たとえば図3又は図4に示すような、複数の酸洗槽12A~12Cを含み、酸洗槽12A~12Cの各々に対し、酸化装置20から酸液3の供給がされるように構成されるとともに、液体酸化剤投入部30から液体酸化剤が供給されるように構成された酸洗装置1における酸洗方法に係るグラフである。
 図8に示す実施形態では、鋼板2の酸洗が行われ、時刻t40にて第1鋼板部2aと第2鋼板部2bとの第1接続部4(第2鋼板部2bの先端部)が、複数の酸洗槽12のうち最上流側に位置する酸洗槽12A(酸洗槽#1)に到達し、第1鋼板部2aの酸洗から第2鋼板部2bの酸洗に切り替わる。その後、第1接続部4は下流側に進行し、時刻t41に酸洗槽12B(酸洗槽#2)に,時刻t42に酸洗槽12C(酸洗槽#3;最下流側の酸洗槽12)に順次到達する。
 第1接続部4が各酸洗槽12(12A~12C)到達したタイミング(時刻t40,t41、t42)で、各酸洗槽12(12A~12C)又は該酸洗槽12に接続された循環ライン21(21A~21C)への液体酸化剤の投入が順次開始される。この様子は、図8において、液体酸化剤供給流量のグラフによって示される。これにより、各酸洗槽12A~12C内の酸液3のFe3+濃度が速やかに増加される。よって、複数の酸洗槽12(12A~12C)を含む酸洗装置1において、酸洗対象の鋼種が切り替わっても鋼板2の搬送速度(ライン速度)を高く維持することができ、鋼板2の生産性を向上させることができる。
 図8に示すように、第1接続部4が各酸洗槽12(12A~12C)到達したタイミング(時刻t40,t41、t42)で、各酸洗槽12A~12Cと、酸化装置20(20A~20C)との間の酸液3の循環流量を増加させている。これにより、各酸洗槽12A~12C内の酸液3のFe3+濃度を適切に維持することができる。また、このため、各酸洗槽12(12A~12C)又は該酸洗槽12に接続された循環ライン21(21A~21C)への液体酸化剤の投入を停止することができる。
 なお、図8に示す例示的な実施形態では、酸洗槽12Aに第1接続部4が入った時点(時刻t40)、酸洗槽12Bに液体酸化剤の投入を開始した時点(時刻t41)、酸洗槽12B内の酸液3のFe3+濃度が規定値に達した時点(時刻t43)、及び、酸洗槽12C内の酸液3のFe3+濃度が規定値に達した時点(時刻t44)の各タイミングでライン速度を変更している。例えばこのようなタイミングで、ライン速度を適切に変更することで、酸洗対象の鋼種が切り替わってもライン速度を高く維持することができ、鋼板2の生産性を向上させることができる。
 幾つかの実施形態では、コントローラ100は、ライン速度やライン速度の変更タイミングの制御をするように構成される。
 ここで、図9は、一実施形態に係るコントローラ100によるライン速度制御のブロック図である。図9に示すように、コントローラ100は、酸洗速度評価部102と、目標ライン速度算出部104と、ライン速度制御部106と、を含む。
 酸洗速度評価部102は、操業情報、溶接部(第1接続部4や第2接続部5)の搬送方向における位置、及び、酸洗槽12内の酸液3のFeイオン濃度(Fe2+濃度及び/又はFe3+濃度)、及び、酸洗槽12内の酸液3の成分等のセンシング情報を示す信号を受け取るように構成される。操業情報とは、酸洗対象の鋼板2の鋼種や、酸洗装置1の運転条件(温度、圧力等)を含む。酸洗速度評価部102は、受け取った信号に基づいて、鋼板2の酸洗速度を評価する。
 目標ライン速度算出部104は、酸洗速度評価部102による酸洗速度の評価結果に基づいて、搬送部10による目標ライン速度を算出する。ライン速度制御部106は、算出された目標ライン速度となるように、搬送部10の制御を行う。例えば、算出された目標ライン速度を実現するためのモータ17(搬送ロール16を駆動するモータ)の電流指令値を算出し、モータに出力する。
 幾つかの実施形態では、コントローラ100は、第1接続部4の搬送方向における位置の情報を取得し、この情報に基づいて、ライン速度を減少させるタイミングを決定するように構成されていてもよい。
 この場合、第1接続部4の搬送方向における位置の情報に基づいて、鋼板2の搬送速度を減少させるタイミングを決定するようにしたので、例えば、第2鋼板部2bの酸洗開始タイミング(すなわち、第2鋼板部2bが酸洗槽12に到達するタイミング)に応じて、適切なタイミングで鋼板2の搬送速度を減少させることができる。よって、第2鋼板部2bを適切に酸洗することができ、製品の品質低下を抑制することができる。
 幾つかの実施形態では、搬送方向における第1接続部4の位置の情報に基づいて、液体酸化剤の供給開始タイミングを決定するようにしてもよい。液体酸化剤の供給開始タイミングは、鋼板2の搬送速度を減少させるタイミングに関連付けて決定するようにしてもよい。
 上述の実施形態では、第1接続部4の搬送方向における位置の情報に基づいて、液体酸化剤の供給開始タイミングを決定するようにしたので、例えば、第2鋼板部2bの酸洗開始タイミング(すなわち、第2鋼板部2bが酸洗槽12に到達するタイミング)に応じて、適切なタイミングで液体酸化剤の投入を開始することができる。よって、第2鋼板部12bの酸洗に切り替わるときに、酸洗槽12内の酸液3中のFe3+を適時に高めることができ、鋼板2の搬送速度を高く維持しやすくなる。よって、鋼板2の生産性を向上させることができる。
 幾つかの実施形態では、コントローラ100は、酸洗槽12内の酸液3のFeイオン濃度の調節をするように、構成されていてもよい。
 酸洗槽12内の酸液3のFeイオン濃度の調節は、例えば図10のフローチャートに示す手順に従って行ってもよい。ここで、図10は、一実施形態に係るFeイオン濃度の制御のフローチャートである。
 図10のフローチャートに示すように、まず、酸洗槽12及び酸化装置20における目標Feイオン濃度(Fe2+イオン及びFe3+イオンの目標濃度)、及び、酸化装置20の運転条件に基づき、酸洗槽12及び酸化装置20におけるマスバランスを計算する(ステップS1)。酸化装置20の運転条件とは、例えば、酸化装置20における気体酸化剤(酸素等)の供給量、気体酸化剤濃度、バブリングガス流量、温度、圧力、等である。
 次に、ステップS1で計算したマスバランスに基づいて、酸洗槽12への新酸液(塩酸等)の投入流量、酸化装置20と酸洗槽12との間での酸液3の循環流量、及び、液体酸化剤投入部30による液体酸化剤の供給量流量及び供給時間を設定する(ステップS4)。
 次に、酸洗槽12内の酸液3のFe3+濃度及びFe2+濃度を計測(検出)し(ステップS6)、目標値と一致するか否かを判定する(ステップS8)。ステップS8にてFeイオン濃度の計測値と目標値が一致しない場合(ステップS8のNo)、酸洗槽12への新酸液(塩酸等)の投入流量、酸化装置20と酸洗槽12との間での酸液3の循環流量、及び、液体酸化剤の供給量流量及び供給時間の設定値を変更し(ステップS10)、ステップS6に戻る。一方、ステップS8にてFeイオン濃度の計測値と目標値が一致する場合(ステップS8のYes)、酸洗槽12への新酸液(塩酸等)の投入流量、酸化装置20と酸洗槽12との間での酸液3の循環流量、及び、液体酸化剤の供給量流量及び供給時間の設定値を維持して、制御フローを終了する。
 幾つかの実施形態では、例えば図10を参照して説明したように、酸洗槽12内の酸液3のFe3+濃度を検出し、検出したFe3+濃度と、第2鋼板部2bの酸洗における酸洗槽12内の酸液3のFe3+の目標濃度との差分に基づいて、液体酸化剤の供給量を決定するようにしてもよい。
 この場合、酸洗槽12内の酸液のFe3+の計測値と目標濃度との差分に基づいて、液体酸化剤の供給量を決定するようにしたので、このように決定された供給量に基づいて液体酸化剤を供給することにより、酸洗槽12内の酸液3中のFe3+を適切に高めることができ、鋼板2の搬送速度を高く維持しやすくなる。よって、鋼板2の生産性を向上させることができる。
 また、幾つかの実施形態では、第2鋼板部2bの酸洗中、かつ、液体酸化剤の酸洗槽12又は循環ライン21への供給停止後、酸洗槽12内の酸液のFe3+濃度を、第2鋼板部2bの酸洗における酸洗槽12内の酸液3のFe3+の目標濃度を含む規定範囲内に維持するように、気体酸化剤の供給量、又は、酸化装置20と酸洗槽12との間の酸液3の循環流量の少なくとも一方を調節するようにしてもよい。
 この場合、第2鋼板部2bの酸洗中、かつ、液体酸化剤の供給停止後、酸化装置20における気体酸化剤の供給量、又は、酸化装置20と酸洗槽12との間の酸液3の循環流量を調節することにより、酸洗槽12内の酸液3のFe3+濃度を上述の規定範囲内に維持する。したがって、液体酸化剤の供給停止後に、酸洗槽12内の酸液3中のFe3+を適切に維持して、鋼板2の搬送速度を高く維持することができ、鋼板2の生産性を向上させることができる。また、酸洗槽12内の酸液3のFe3+濃度の調整に比較的安価な気体酸化剤を用いるので、コスト増大を抑制できる。
 以下、幾つかの実施形態に係る鋼板の酸洗方法及び酸洗設備について概要を記載する。
(1)本発明の少なくとも一実施形態に係る鋼板の酸洗方法は、
 第1鋼板部と、前記第1鋼板部の尾端に接続され、同一条件で酸洗をした場合に酸洗に要する時間が前記第1鋼板部よりも長い第2鋼板部と、を含む鋼板の酸洗方法であって、
 前記鋼板を搬送しながら、少なくとも1つの酸洗槽内の酸液に前記鋼板を浸漬させて前記鋼板を酸洗するステップと、
 前記少なくとも1つの酸洗槽の何れかに接続された循環ラインを介して、前記循環ライン上に設けられた酸化装置と前記酸洗槽との間で前記酸液を循環させるステップと、
 前記酸化装置で、気体酸化剤を用いて前記酸液中のFe2+をFe3+に酸化するステップと、
 前記第1鋼板部の酸洗から前記第2鋼板部の酸洗への切り替えに伴い、前記酸液中のFe2+をFe3+に酸化するための液体酸化剤の前記少なくとも1つの酸洗槽の何れか又は前記循環ラインへの投入を開始する投入開始ステップと、
を備える。
 液体酸化剤では酸化剤が液体に溶解しているため、気体酸化剤を用いる場合に比べて、酸洗中の鉄イオンの酸化反応が進みやすく、このため、酸液中のFe3+濃度を迅速に増加させやすい。この点、上記(1)の方法によれば、第1鋼板部の酸洗から第2鋼板部の酸洗への切り替えに伴い酸洗槽又は循環ラインに液体酸化剤を供給するようにしたので、同一条件での酸洗所要時間が比較的長い第2鋼板部(難酸洗材)の酸洗に切り替わったときに酸洗槽内の酸液中のFe3+を迅速に高めることができる。よって、酸洗対象の鋼種が切り替わっても鋼板の搬送速度(ライン速度)を高く維持することができ、鋼板の生産性を向上させることができる。
(2)幾つかの実施形態では、上記(1)の方法において、
 前記第1鋼板部と前記第2鋼板部との接続部である第1接続部が前記少なくとも1つの酸洗槽の中に存在する期間内に、前記少なくとも1つの酸洗槽又は前記循環ラインへの前記液体酸化剤の投入を開始する。
 上記(2)の方法によれば、第1鋼板部と第2鋼板部の接続部である第1接続部が酸洗槽の中に存在する期間内に液体酸化剤の投入を開始するようにしたので、第2鋼板部の酸洗開始後、速やかに酸液中Fe3+濃度を高めることができる。よって、難酸洗材である第2鋼板部の酸洗が開始された後に鋼板の搬送速度を高く維持しやすく、鋼板の生産性を効果的に向上させることができる。
(3)幾つかの実施形態では、上記(1)又は(2)の方法において、
 前記酸洗方法は、
 前記第1鋼板部の酸洗から前記第2鋼板部の酸洗への切り替えに伴い、前記鋼板の搬送速度を減少させる減速ステップをさらに備える。
 液体酸化剤を酸液に投入することで、酸液中のFe3+濃度を比較的迅速に上昇させることができるが、酸洗槽内の酸液中のFe3+濃度が目標値に達するまでにはある程度の時間がかかる。この点、上記(3)の方法では、第1鋼板部の酸洗から第2鋼板部の酸洗への切り替えに伴い鋼板の搬送速度を減少させるようにしたので、難酸洗材である第2鋼板部の酸洗開始後、酸洗槽内の酸液中のFe3+濃度が十分高くなる前の段階で、鋼板の搬送速度を減少させることで第2鋼板部を適切に酸洗することができる。よって、製品の品質低下を抑制することができる。
(4)幾つかの実施形態では、上記(3)の方法において、
 前記酸洗方法は、
 前記第1鋼板部と前記第2鋼板部との接続部である第1接続部の前記搬送方向における位置の情報を取得するステップと、
 前記情報に基づいて、前記鋼板の搬送速度を減少させるタイミングを決定するステップと、
をさらに備える。
 上記(4)の方法によれば、第1接続部の搬送方向における位置の情報に基づいて、鋼板の搬送速度を減少させるタイミングを決定するようにしたので、例えば、第2鋼板部の酸洗開始タイミング(すなわち、第2鋼板部が酸洗槽に到達するタイミング)に応じて、適切なタイミングで鋼板の搬送速度を減少させることができる。よって、第2鋼板部を適切に酸洗することができ、製品の品質低下を抑制することができる。
(5)幾つかの実施形態では、上記(3)又は(4)の方法において、
 前記酸洗方法は、
 前記投入開始ステップ及び前記減速ステップの後、前記鋼板の搬送速度を増加させるステップをさらに備える。
 上記(5)の方法によれば、第1鋼板部から第2鋼板部への酸洗への切り替えに伴い、液体酸化剤の酸液への投入を開始し、鋼板の搬送速度を減速させた後、鋼板の搬送速度を増加させる。すなわち、例えば酸洗中のFe3+の増加に応じて鋼板の搬送速度を増加させることができ、これにより、第2鋼板部(難酸洗材)の酸洗中における鋼板の搬送速度を高く維持することができる。よって、鋼板の生産性を向上させることができる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの方法において、
 前記酸洗方法は、
 前記第1鋼板部の酸洗から前記第2鋼板部の酸洗への切り替えに伴い、前記酸化装置における前記酸液への前記気体酸化剤の供給量、又は、前記酸化装置と前記少なくとも1つの酸洗槽との間の前記酸液の循環流量の少なくとも一方を増加させて前記酸洗槽内の前記酸液中のFe3+濃度を増加させるステップをさらに備える。
 上記(6)の方法によれば、第1鋼板部の酸洗から第2鋼板部の酸洗への切り替えに伴い、酸化装置での気体酸化剤を用いた酸化反応由来のFe3+(酸化装置由来のFe3+)を増加させて、酸洗槽内の酸液中のFe3+濃度を増大させるようにしたので、酸洗槽内の酸液中のFe3+濃度が十分に高くなったら、比較的高価な液体酸化剤の投入を停止することができる。よって、鋼板の酸洗にかかるコスト増大を抑制しながら、鋼板の搬送速度を高く維持して、鋼板の生産性を向上させることができる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの方法において、
 前記酸洗方法は、
 前記少なくとも1つの酸洗槽内での前記鋼板の酸洗中に、前記少なくとも1つの酸洗槽又は前記循環ラインへの前記液体酸化剤の供給を停止するステップをさらに含む。
 上記(7)の方法によれば、鋼板の酸洗中に、液体酸化剤の供給を停止するようにしたので、液体酸化剤の酸洗槽又は循環ラインへの供給は比較的短時間である。よって、比較的高価な液体酸化剤の使用量を抑制することで鋼板の酸洗にかかるコスト増大を抑制しながら、鋼板の搬送速度を高く維持して、鋼板の生産性を向上させることができる。
(8)幾つかの実施形態では、上記(7)の方法において、
 前記鋼板は、前記第2鋼板部の尾端に接続され、同一条件で酸洗をした場合に酸洗に要する時間が前記第2鋼板部よりも短い第3鋼板部をさらに含み、
 前記酸洗方法は、
 前記第2鋼板部の酸洗から前記第3鋼板部の酸洗への切り替えに伴い、前記酸化装置における前記酸液への前記気体酸化剤の供給量、又は、前記酸化装置と前記少なくとも1つの酸洗槽との間の前記酸液の循環流量の少なくとも一方を減少させて前記酸洗槽内の前記酸液中のFe3+濃度を減少させるステップをさらに備える。
 上記(8)の方法によれば、第2鋼板部の酸洗から第3鋼板部の酸洗への切り替えに伴い、酸化装置由来のFe3+を減少させて、酸洗槽内の酸液中のFe3+濃度を減少させるようにしたので、同一条件での酸洗所要時間が比較的短い第3鋼板部の過酸洗を抑制することができる。よって、鋼板の酸洗ロスを低減して歩留まりを改善することができ、これにより鋼板の生産性を向上させることができる。
(9)幾つかの実施形態では、上記(8)の方法において、
 前記酸洗方法は、
 前記第2鋼板部の酸洗から前記第3鋼板部の酸洗への切り替えに伴い、前記鋼板の搬送速度を増加させるステップをさらに備える。
 第3鋼板部は、第2鋼板部に比べて同一条件での酸洗所要時間が短いため、第3鋼板部への酸洗への切り替えに伴い、鋼板の搬送速度を増加させても、第3鋼板部の十分な酸洗が可能である。上記(9)の方法によれば、第2鋼板部から第3鋼板部への酸洗への切り替えに伴い、鋼板の搬送速度を増加させるようにしたので、第3鋼板部の酸洗を十分に行いながら、鋼板の搬送速度を高く維持することができる。よって、鋼板の生産性を向上させることができる。
(10)幾つかの実施形態では、上記(1)乃至(9)の何れかの方法において、
 前記少なくとも1つの酸洗槽は、前記鋼板の搬送方向に沿って配列される複数の酸洗槽を含み、
 前記酸洗方法は、
 前記搬送方向における下流側に位置する酸洗槽内の前記酸液が、前記搬送方向における上流側に位置する酸洗槽に移送されるステップを備え、
 前記投入開始ステップでは、前記複数の酸洗槽のうちの少なくとも1つ又は該酸洗槽に接続された循環ラインに前記液体酸化剤を投入する。
 上記(10)の方法によれば、複数の酸洗槽を含む酸洗装置において、第1鋼板部の酸洗から第2鋼板部の酸洗への切り替えに伴い何れかの酸洗槽又は何れかの酸洗槽に接続された循環ラインに液体酸化剤を供給するようにしたので、同一条件での酸洗所要時間が比較的長い第2鋼板部(難酸洗材)の酸洗に切り替わったときに酸洗槽内の酸液中のFe3+濃度を迅速に高めることができる。よって、酸洗対象の鋼種が切り替わっても鋼板の搬送速度を高く維持することができ、鋼板の生産性を向上させることができる。
(11)幾つかの実施形態では、上記(10)の方法において、
 前記第1鋼板部と前記第2鋼板部との接続部である第1接続部が通過する順に、前記複数の酸洗槽又は該酸洗槽に接続された循環ラインへの前記液体酸化剤の投入を順次開始する。
 上記(11)の方法によれば、第1鋼板部と第2鋼板部との接続部である第1接続部が通過する順に、複数の酸洗槽又は該酸洗槽に接続された循環ラインへの前記液体酸化剤の投入を順次開始する。よって、複数の酸洗槽の各々の酸液中のFe3+濃度を迅速に高めることができ、第2鋼板部の酸洗への切り替え後、鋼板の搬送速度を高く維持しやすくなる。よって、鋼板の生産性を効果的に向上させることができる。
(12)幾つかの実施形態では、上記(1)乃至(11)の何れかの方法において、
 前記酸洗方法は、
 前記搬送方向における前記第1接続部の位置の情報を取得するステップと、
 前記情報に基づいて、前記液体酸化剤の供給開始タイミングを決定するステップと、を備える。
 上記(12)の方法によれば、第1接続部の搬送方向における位置の情報に基づいて、液体酸化剤の供給開始タイミングを決定するようにしたので、例えば、第2鋼板部の酸洗開始タイミング(すなわち、第2鋼板部が酸洗槽に到達するタイミング)に応じて、適切なタイミングで液体酸化剤の投入を開始することができる。よって、第2鋼板部の酸洗に切り替わるときに、酸洗槽内の酸液中のFe3+濃度を適時に高めることができ、鋼板の搬送速度を高く維持しやすくなる。よって、鋼板の生産性を向上させることができる。
(13)幾つかの実施形態では、上記(1)乃至(12)の何れかの方法において、
 前記酸洗方法は、
 前記酸洗槽内の酸液のFe3+濃度を検出するステップと、
 検出した前記Fe3+濃度と、前記第2鋼板部の酸洗における前記酸洗槽内の酸液のFe3+の目標濃度との差分に基づいて、前記液体酸化剤の供給量を決定するステップと、
を備える。
 上記(13)の方法によれば、酸洗槽内のFe3+濃度を検出し、検出したFe3+濃度と、第2鋼板部の酸洗における酸洗槽内の酸液のFe3+の目標濃度との差分に基づいて、液体酸化剤の供給量を決定する。したがって、このように決定された供給量に基づいて液体酸化剤を供給することにより、酸洗槽内の酸液中のFe3+濃度を適切に高めることができ、鋼板の搬送速度を高く維持しやすくなる。よって、鋼板の生産性を向上させることができる。
(14)幾つかの実施形態では、上記(1)乃至(13)の何れかの方法において、
 前記酸洗方法は、
 前記第2鋼板部の酸洗中、かつ、前記液体酸化剤の前記少なくとも1つの酸洗槽又は前記循環ラインへの供給停止後、前記酸洗槽内の酸液のFe3+濃度を、前記第2鋼板部の酸洗における前記酸洗槽内の酸液のFe3+の目標濃度を含む規定範囲内に維持するように、前記気体酸化剤の供給量、又は、前記酸化装置と前記少なくとも1つの酸洗槽との間の前記酸液の循環流量の少なくとも一方を調節するステップを備える。
 上記(14)の方法によれば、前記第2鋼板部の酸洗中、かつ、液体酸化剤の供給停止後、酸化装置における気体酸化剤の供給量、又は、酸化装置と酸洗槽との間の酸液の循環流量の少なくとも一方を調節することにより、酸洗槽内の酸液のFe3+濃度を上述の規定範囲内に維持する。したがって、液体酸化剤の供給停止後に、酸洗槽内の酸液中のFe3+濃度を適切に維持して、鋼板の搬送速度を高く維持することができ、鋼板の生産性を向上させることができる。また、酸洗槽内の酸液のFe3+濃度の調整に比較的安価な気体酸化剤を用いるので、コスト増大を抑制できる。
(15)本発明の少なくとも一実施形態に係る酸洗装置は、
 第1鋼板部と、前記第1鋼板部の尾端に接続され、同一条件で酸洗をした場合に酸洗に要する時間が前記第1鋼板部よりも長い第2鋼板部と、を含む鋼板を酸洗するための酸洗装置であって、
 酸液が貯留される少なくとも1つの酸洗槽と、
 前記少なくとも1つの酸洗槽内の酸液に前記鋼板を浸漬させながら前記鋼板を搬送するように構成された搬送部と、
 前記少なくとも1つの酸洗槽に接続され、前記少なくとも1つの酸洗槽の何れかの内部の酸液を循環させるための循環ラインと、
 前記循環ライン上に設けられ、気体酸化剤を用いて前記酸液中のFe2+をFe3+に酸化するように構成された酸化装置と、
 前記少なくとも1つの酸洗槽の何れか又は前記循環ラインに、前記酸液中のFe2+をFe3+に酸化するための液体酸化剤を投入可能な液体酸化剤投入部と、
を備える。
 上記(15)の構成によれば、第1鋼板部の酸洗から第2鋼板部の酸洗への切り替えに伴い酸洗槽又は循環ラインに液体酸化剤を供給するようにしたので、同一条件での酸洗所要時間が比較的長い第2鋼板部(難酸洗材)の酸洗に切り替わったときに酸洗槽内の酸液中のFe3+濃度を迅速に高めることができる。よって、酸洗対象の鋼種が切り替わっても鋼板の搬送速度(ライン速度)を高く維持することができ、鋼板の生産性を向上させることができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1   酸洗装置
2   鋼板
2a  第1鋼板部
2b  第2鋼板部
2c  第3鋼板部
3   酸液
4   第1接続部
5   第2接続部
10  搬送部
12,12A~12C  酸洗槽
16  搬送ロール
17  モータ
18  酸液供給部
19  酸液排出部
20,20A~20C  酸化装置
21,21A~21C  循環ライン
22,22A~22C  抜出しライン
24,24A~24C  返送ライン
30  液体酸化剤投入部
32  液体酸化剤タンク
33  液体酸化剤ポンプ
34  液体酸化剤投入ライン
36,36A~36C  第1投入ライン
37,37A~37C  バルブ
38,38A~38C  第2投入ライン
39,39A~39C  バルブ
40,40A~40C  第3投入ライン
41,41A~41C  バルブ
100 コントローラ
102 酸洗速度評価部
104 目標ライン速度算出部
106 ライン速度制御部

Claims (15)

  1.  第1鋼板部と、前記第1鋼板部の尾端に接続され、同一条件で酸洗をした場合に酸洗に要する時間が前記第1鋼板部よりも長い第2鋼板部と、を含む鋼板の酸洗方法であって、
     前記鋼板を搬送しながら、少なくとも1つの酸洗槽内の酸液に前記鋼板を浸漬させて前記鋼板を酸洗するステップと、
     前記少なくとも1つの酸洗槽の何れかに接続された循環ラインを介して、前記循環ライン上に設けられた酸化装置と前記酸洗槽との間で前記酸液を循環させるステップと、
     前記酸化装置で、気体酸化剤を用いて前記酸液中のFe2+をFe3+に酸化するステップと、
     前記第1鋼板部の酸洗から前記第2鋼板部の酸洗への切り替えに伴い、前記酸液中のFe2+をFe3+に酸化するための液体酸化剤の前記少なくとも1つの酸洗槽の何れか又は前記循環ラインへの投入を開始する投入開始ステップと、
    を備える鋼板の酸洗方法。
  2.  前記第1鋼板部と前記第2鋼板部との接続部である第1接続部が前記少なくとも1つの酸洗槽の中に存在する期間内に、前記少なくとも1つの酸洗槽又は前記循環ラインへの前記液体酸化剤の投入を開始する
    請求項1に記載の鋼板の酸洗方法。
  3.  前記第1鋼板部の酸洗から前記第2鋼板部の酸洗への切り替えに伴い、前記鋼板の搬送速度を減少させる減速ステップをさらに備える
    請求項1又は2に記載の鋼板の酸洗方法。
  4.  前記第1鋼板部と前記第2鋼板部との接続部である第1接続部の搬送方向における位置の情報を取得するステップと、
     前記情報に基づいて、前記鋼板の搬送速度を減少させるタイミングを決定するステップと、
    をさらに備える
    請求項3に記載の鋼板の酸洗方法。
  5.  前記投入開始ステップ及び前記減速ステップの後、前記鋼板の搬送速度を増加させるステップをさらに備える
    請求項3又は4に記載の鋼板の酸洗方法。
  6.  前記第1鋼板部の酸洗から前記第2鋼板部の酸洗への切り替えに伴い、前記酸化装置における前記酸液への前記気体酸化剤の供給量、又は、前記酸化装置と前記少なくとも1つの酸洗槽との間の前記酸液の循環流量の少なくとも一方を増加させて前記酸洗槽内の前記酸液中のFe3+濃度を増加させるステップをさらに備える
    請求項1乃至5の何れか一項に記載の鋼板の酸洗方法。
  7.  前記少なくとも1つの酸洗槽内での前記鋼板の酸洗中に、前記少なくとも1つの酸洗槽又は前記循環ラインへの前記液体酸化剤の供給を停止するステップをさらに含む
    請求項1乃至6の何れか一項に記載の鋼板の酸洗方法。
  8.  前記鋼板は、前記第2鋼板部の尾端に接続され、同一条件で酸洗をした場合に酸洗に要する時間が前記第2鋼板部よりも短い第3鋼板部をさらに含み、
     前記第2鋼板部の酸洗から前記第3鋼板部の酸洗への切り替えに伴い、前記酸化装置における前記酸液への前記気体酸化剤の供給量、又は、前記酸化装置と前記少なくとも1つの酸洗槽との間の前記酸液の循環流量の少なくとも一方を減少させて前記酸洗槽内の前記酸液中のFe3+濃度を減少させるステップをさらに備える
    請求項7に記載の鋼板の酸洗方法。
  9.  前記第2鋼板部の酸洗から前記第3鋼板部の酸洗への切り替えに伴い、前記鋼板の搬送速度を増加させるステップをさらに備える
    請求項8に記載の鋼板の酸洗方法。
  10.  前記少なくとも1つの酸洗槽は、前記鋼板の搬送方向に沿って配列される複数の酸洗槽を含み、
     前記搬送方向における下流側に位置する酸洗槽内の前記酸液を、前記搬送方向における上流側に位置する酸洗槽に移送するステップを備え、
     前記投入開始ステップでは、前記複数の酸洗槽のうちの少なくとも1つ又は該酸洗槽に接続された循環ラインに前記液体酸化剤を投入する
    請求項1乃至9の何れか一項に記載の鋼板の酸洗方法。
  11.  前記第1鋼板部と前記第2鋼板部との接続部である第1接続部が通過する順に、前記複数の酸洗槽又は該酸洗槽に接続された循環ラインへの前記液体酸化剤の投入を順次開始する
    請求項10に記載の鋼板の酸洗方法。
  12.  前記搬送方向における前記第1接続部の位置の情報を取得するステップと、
     前記情報に基づいて、前記液体酸化剤の供給開始タイミングを決定するステップと、を備える
    請求項1乃至11の何れか一項に記載の鋼板の酸洗方法。
  13.  前記酸洗槽内の酸液のFe3+濃度を検出するステップと、
     検出した前記Fe3+濃度と、前記第2鋼板部の酸洗における前記酸洗槽内の酸液のFe3+の目標濃度との差分に基づいて、前記液体酸化剤の供給量を決定するステップと、
    を備える
    請求項1乃至12の何れか一項に記載の鋼板の酸洗方法。
  14.  前記第2鋼板部の酸洗中、かつ、前記液体酸化剤の前記少なくとも1つの酸洗槽又は前記循環ラインへの供給停止後、前記酸洗槽内の酸液のFe3+濃度を、前記第2鋼板部の酸洗における前記酸洗槽内の酸液のFe3+の目標濃度を含む規定範囲内に維持するように、前記気体酸化剤の供給量、又は、前記酸化装置と前記少なくとも1つの酸洗槽との間の前記酸液の循環流量の少なくとも一方を調節するステップを備える
    請求項1乃至13の何れか一項に記載の鋼板の酸洗方法。
  15.  第1鋼板部と、前記第1鋼板部の尾端に接続され、同一条件で酸洗をした場合に酸洗に要する時間が前記第1鋼板部よりも長い第2鋼板部と、を含む鋼板を酸洗するための酸洗装置であって、
     酸液が貯留される少なくとも1つの酸洗槽と、
     前記少なくとも1つの酸洗槽内の酸液に前記鋼板を浸漬させながら前記鋼板を搬送するように構成された搬送部と、
     前記少なくとも1つの酸洗槽に接続され、前記少なくとも1つの酸洗槽の何れかの内部の酸液を循環させるための循環ラインと、
     前記循環ライン上に設けられ、気体酸化剤を用いて前記酸液中のFe2+をFe3+に酸化するように構成された酸化装置と、
     前記少なくとも1つの酸洗槽の何れか又は前記循環ラインに、前記酸液中のFe2+をFe3+に酸化するための液体酸化剤を投入可能な液体酸化剤投入部と、
    を備える酸洗装置。
PCT/JP2020/000460 2020-01-09 2020-01-09 鋼板の酸洗方法及び酸洗装置 WO2021140612A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20911916.3A EP3951014B1 (en) 2020-01-09 2020-01-09 Method for pickling steel plate and pickling apparatus
US17/607,781 US20220220619A1 (en) 2020-01-09 2020-01-09 Method for pickling steel plate and pickling apparatus
PCT/JP2020/000460 WO2021140612A1 (ja) 2020-01-09 2020-01-09 鋼板の酸洗方法及び酸洗装置
JP2021569663A JP7176137B2 (ja) 2020-01-09 2020-01-09 鋼板の酸洗方法及び酸洗装置
CN202080040682.2A CN113906162B (zh) 2020-01-09 2020-01-09 钢板的酸洗方法及酸洗装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000460 WO2021140612A1 (ja) 2020-01-09 2020-01-09 鋼板の酸洗方法及び酸洗装置

Publications (1)

Publication Number Publication Date
WO2021140612A1 true WO2021140612A1 (ja) 2021-07-15

Family

ID=76787779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000460 WO2021140612A1 (ja) 2020-01-09 2020-01-09 鋼板の酸洗方法及び酸洗装置

Country Status (5)

Country Link
US (1) US20220220619A1 (ja)
EP (1) EP3951014B1 (ja)
JP (1) JP7176137B2 (ja)
CN (1) CN113906162B (ja)
WO (1) WO2021140612A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114481149B (zh) * 2021-12-16 2023-01-03 联钢精密科技(中国)有限公司 一种具有脱色絮凝和破络沉淀功能的酸洗槽
CN115058719A (zh) * 2022-05-09 2022-09-16 包头钢铁(集团)有限责任公司 一种酸洗速度控制方法与系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501981A (ja) * 1985-09-19 1987-08-06 ユジンヌ・グ−ニヨン・エス・ア− ステンレス鋼製品の酸洗い方法
JPH01165783A (ja) * 1987-12-23 1989-06-29 Kawasaki Steel Corp ステンレス鋼帯用酸洗浴の更新方法
JPH09170090A (ja) * 1995-11-28 1997-06-30 Eka Chem Ab 金属の処理方法
JP4186131B2 (ja) 1996-02-27 2008-11-26 ユジヌ・ソシエテ・アノニム 鋼製品、特にステンレス鋼板ストリップの酸洗方法
JP2012508820A (ja) * 2008-11-14 2012-04-12 エイケイ・スチール・プロパティーズ・インコーポレイテッド 第二鉄イオンを含有する酸性酸洗溶液でケイ素鋼を酸洗いするプロセス

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154774A (en) * 1985-09-19 1992-10-13 Ugine Aciers De Chatillon Et Gueugnon Process for acid pickling of stainless steel products
FR2673200A1 (fr) * 1991-02-25 1992-08-28 Ugine Aciers Procede de surdecapage de materiaux en acier tels que les aciers inoxydables et les aciers allies.
IT1245594B (it) * 1991-03-29 1994-09-29 Itb Srl Processo di decapaggio e di passivazione di acciaio inossidabile senza acido nitrico
FR2721328B1 (fr) * 1994-06-15 1996-09-06 Ugine Sa Procédé de décapage de matériaux métalliques, notamment en acier allié, en acier inoxydable ou en alliage de titane, par une solution du type contenant des ions ferriques en milieu acide.
DE69612957T2 (de) * 1996-03-14 2001-09-06 Condoroil Impianti S R L Beizen von rostfreien Stahlen mit kontinuierliche katalytische Oxidation der Beizlösung
US5958147A (en) * 1997-05-05 1999-09-28 Akzo Nobel N.V. Method of treating a metal
IT1297076B1 (it) * 1997-11-24 1999-08-03 Acciai Speciali Terni Spa Metodo per il decapaggio di prodotti in acciaio
GB9807286D0 (en) * 1998-04-06 1998-06-03 Solvay Interox Ltd Pickling process
AT407755B (de) * 1998-07-15 2001-06-25 Andritz Patentverwaltung Verfahren zum beizen von edelstahl
JP3726770B2 (ja) * 2001-04-27 2005-12-14 住友金属工業株式会社 連続酸洗方法および連続酸洗装置
AU2002333772A1 (en) * 2002-08-30 2004-03-19 Henkel Kommanditgesellschaft Auf Aktien An economic method for restoring the oxidation potential of a pickling solution
DE102012004907A1 (de) * 2012-03-02 2013-09-05 Sms Siemag Ag Verfahren zum Beizen von Standard Stählen
US8871166B2 (en) * 2013-01-16 2014-10-28 Linde Aktiengesellschaft Method for removing contaminants from exhaust gases
JP6586391B2 (ja) * 2016-04-27 2019-10-02 Primetals Technologies Japan株式会社 酸洗装置およびその酸洗一時停止時運転方法
CN109234746A (zh) * 2018-11-12 2019-01-18 江阴祥瑞不锈钢精线有限公司 一种不锈钢丝的酸洗工艺方法
CN209669361U (zh) * 2018-12-18 2019-11-22 湖北再洪标准件有限公司 一种螺丝线材酸洗装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501981A (ja) * 1985-09-19 1987-08-06 ユジンヌ・グ−ニヨン・エス・ア− ステンレス鋼製品の酸洗い方法
JPH01165783A (ja) * 1987-12-23 1989-06-29 Kawasaki Steel Corp ステンレス鋼帯用酸洗浴の更新方法
JPH09170090A (ja) * 1995-11-28 1997-06-30 Eka Chem Ab 金属の処理方法
JP4186131B2 (ja) 1996-02-27 2008-11-26 ユジヌ・ソシエテ・アノニム 鋼製品、特にステンレス鋼板ストリップの酸洗方法
JP2012508820A (ja) * 2008-11-14 2012-04-12 エイケイ・スチール・プロパティーズ・インコーポレイテッド 第二鉄イオンを含有する酸性酸洗溶液でケイ素鋼を酸洗いするプロセス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951014A4

Also Published As

Publication number Publication date
US20220220619A1 (en) 2022-07-14
EP3951014A1 (en) 2022-02-09
JPWO2021140612A1 (ja) 2021-07-15
CN113906162A (zh) 2022-01-07
EP3951014A4 (en) 2022-08-31
CN113906162B (zh) 2023-06-23
JP7176137B2 (ja) 2022-11-21
EP3951014B1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2021140612A1 (ja) 鋼板の酸洗方法及び酸洗装置
CZ161893A3 (en) Process of non-corroding steel picking
JP2003013268A (ja) 連続酸洗方法および連続酸洗装置
US3880685A (en) Process and apparatus for etching copper and copper alloys
JPH101791A (ja) 鋼製品、特にステンレス鋼板ストリップの酸洗方法
US3066084A (en) Ultrasonic pickling
JP3287204B2 (ja) Rh真空脱ガス装置における終点炭素濃度制御方法及び炭素濃度制御装置
JPWO2021140612A5 (ja)
WO2004111292A1 (ja) ガス浸炭方法
KR102178741B1 (ko) 산세 장치 및 이 장치의 제어 방법
JP2022018589A (ja) 酸洗装置の監視装置及び酸洗設備並びに酸洗装置の監視方法
CN110383429B (zh) 基板处理方法和基板处理装置
JPH0224916B2 (ja)
JPH06280054A (ja) エッチング装置
JP2985643B2 (ja) Rh型真空槽による溶鋼中炭素濃度の推定方法
JP4213851B2 (ja) 鋼板のループ深さ制御方法
JPH02205692A (ja) ステンレス鋼の酸洗方法およびその設備
JP2528048B2 (ja) 厚板圧延における温度制御方法
US20060124210A1 (en) Annealing process of a stainless steel band
JP3235405B2 (ja) 溶銑の予備処理方法
JP2006063354A (ja) 鋼帯のスケール除去方法
JPH11172475A (ja) ステンレス鋼の酸洗処理方法
JP3819668B2 (ja) 基板処理方法および基板処理装置
KR20190071466A (ko) 산세 장치 및 이 장치의 제어 방법
JP3710676B2 (ja) 基板処理方法および基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020911916

Country of ref document: EP

Effective date: 20211028

ENP Entry into the national phase

Ref document number: 2021569663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE