WO2021136160A1 - 不溶性硫磺生产系统和生产方法 - Google Patents

不溶性硫磺生产系统和生产方法 Download PDF

Info

Publication number
WO2021136160A1
WO2021136160A1 PCT/CN2020/140097 CN2020140097W WO2021136160A1 WO 2021136160 A1 WO2021136160 A1 WO 2021136160A1 CN 2020140097 W CN2020140097 W CN 2020140097W WO 2021136160 A1 WO2021136160 A1 WO 2021136160A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating
quenching
insoluble sulfur
production system
section
Prior art date
Application number
PCT/CN2020/140097
Other languages
English (en)
French (fr)
Inventor
周勇
廖昌建
孟凡飞
刘志禹
王海波
金平
戴金玲
刘平
朴勇
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司大连石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司大连石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to EP20908980.4A priority Critical patent/EP4071109A4/en
Priority to US17/758,287 priority patent/US20230035805A1/en
Publication of WO2021136160A1 publication Critical patent/WO2021136160A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/06Solidifying liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/12Insoluble sulfur (mu-sulfur)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/0216Solidification or cooling of liquid sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/0232Purification, e.g. degassing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/0237Converting into particles, e.g. by granulation, milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to the field of petrochemical technology and relates to an insoluble sulfur production system and production method.
  • Insoluble sulfur is a highly effective rubber vulcanizing agent. It has the advantages of good distribution stability in the rubber compound and uniform vulcanization cross-linking points of the product. It can overcome the surface blooming of the rubber compound and improve the bonding performance of rubber and steel wire or chemical fiber cord.
  • Patent application CN102070127A discloses a method for producing insoluble sulfur, the steps of which include: (1) melt polymerization; (2) atomized cold extraction; (3) solidification; (4) centrifugal separation; (5) continuous drying; (6) Crushing, sieving and oil-filling, and finally the finished product is obtained; this method is a continuous production method, but the sulfur polymerization operating temperature and pressure of this method are relatively high, the operating temperature is 580-690 °C, and the operating pressure is 0.8-1.2 MPa. Higher requirements for reaction equipment.
  • Patent application CN107337184A discloses a heat-resistant stable insoluble sulfur and its production method, including (1) pre-melting: putting raw industrial sulfur into a 130-150°C molten sulfur pool for pre-melting until the raw sulfur becomes liquid sulfur; (2) ) Reaction: Introduce liquid sulfur into the reaction kettle, adjust the temperature to 240°C under the protection of N 2 and mechanical stirring, add 0.6% KI, and react for a period of time; (3) Quenching: Change the step ( 2) The product obtained is placed in a gasification chamber containing N 2 for gasification to form superheated steam, and the superheated steam is sprayed into the quenching water for quenching; (4) Extraction: the sulfur in the quenching water is extracted with an organic solvent; (5) ) Crushing: Dry the extracted sulfur in a dryer at 45-50°C until the moisture is reduced to 2%-4% before drying, then place it in a tube mill to grind it and crush it for 300- A 400-mesh sieve is used to obtain heat-resistant and stable insoluble
  • the performance of the product obtained through the processes of extruding quenching, gas drying and curing, and mechanical pulverization is not high.
  • the extruding method is usually used to discharge the material into the quenching tower for quenching.
  • the quenched material is in the shape of a block, because it is easy to block pipelines and equipment and is difficult to transport. It can only be used in different devices. Or intermittent transfer processing between equipment, resulting in complicated system operation process.
  • the purpose of the present invention is to overcome the problems of complicated intermittent operation process and low product performance in the low-temperature melting method for producing insoluble sulfur in the prior art, and to provide an insoluble sulfur production system and method, which solves solid materials Problems such as difficult transportation and low product performance, resulting in high purity, thermal stability and yield of the insoluble sulfur product obtained.
  • an insoluble sulfur production system wherein the insoluble sulfur production system includes a polymerization vessel having a first discharge port and a quench tower having a feed port, and the first discharge port is connected to The feed port is in communication, the quench tower includes a cylindrical shell, a granulator, and a shear pump.
  • the shell includes a feed quenching section and a discharge section arranged from top to bottom.
  • the shell The side wall of the body is provided with a solvent inlet and a quenching agent inlet for supplying solvent and quenching agent, wherein:
  • the feed inlet is arranged on the feed quenching section, and the pelletizer is arranged in the feed quenching section close to the feed inlet;
  • the discharging section is provided with a second discharging port and a filter screen located above the second discharging port. Above the filter screen, the side wall of the discharging section is provided with the shears respectively communicating with each other.
  • the circulation outlet and circulation inlet of the inlet and outlet of the pump and the circulation pump are provided with a second discharging port and a filter screen located above the second discharging port. Above the filter screen, the side wall of the discharging section is provided with the shears respectively communicating with each other.
  • the insoluble sulfur production system of the present invention can complete granulation, quenching, maturation extraction and crushing extraction processing in the quench tower and output slurry-like materials.
  • by granulating by a granulator after feeding it can ensure that the material is in a granular state in the subsequent quenching and maturation extraction process so as to fully contact the solvent and quenching agent and facilitate the formation of a circulating flow with the liquid; shearing
  • the pump and filter screen can ensure that the slurry material is output from the second discharge port, avoiding the blockage of the subsequent conveying pipeline; the granulator, circulating pump, shear pump, circulating inner cylinder and liquid distribution head, etc., can realize material quenching
  • the temperature field is uniformly distributed, matured extraction and crushed extraction are integrated.
  • Fig. 1 is a schematic structural diagram of an embodiment of an insoluble sulfur production system according to the present invention
  • FIG. 2 is a schematic diagram of the structure of the quench tower in Figure 1;
  • Figure 3 is a top view of a granulator and a quenching agent distributor according to an embodiment of the present invention
  • Fig. 4 is a cross-sectional view of a pair of first distribution pipes and second distribution pipes corresponding to Fig. 3.
  • an insoluble sulfur production system wherein the insoluble sulfur production system includes a polymerization vessel 100 with a first discharge port and a quench tower 200 with a feed port.
  • the quenching tower 200 includes a cylindrical shell 210, a granulator 220, and a shear pump 230.
  • the shell 210 includes a feed quenching section 211 arranged from top to bottom.
  • the discharge section 213, the side wall of the shell 210 is provided with a solvent inlet 214 and a quenching agent inlet 215 for providing solvent and quenching, respectively, wherein:
  • the feed inlet is arranged on the feed quenching section 211, and the pelletizer 220 is arranged in the feed quenching section 211 close to the feed inlet;
  • the discharging section 213 is provided with a second discharging port and a filter screen 260 located above the second discharging port. Above the filter screen 260, the side walls of the discharging section 213 are respectively provided with The circulation outlet and circulation inlet that communicate the inlet and outlet of the shear pump 230.
  • the insoluble sulfur production system of the present invention can complete granulation, quenching, maturation extraction and crushing extraction treatments in the quench tower and output slurry-like materials.
  • by granulating by the granulator 220 after feeding it can ensure that the material is in a granular state in the subsequent quenching and maturation extraction process so as to fully contact the solvent and quenching agent and facilitate the formation of a circulating flow with the liquid;
  • the cutting pump 230 and the filter screen 260 can ensure that the slurry-like material is output from the second discharge port, and avoid the blockage of the circulating inner cylinder of the subsequent conveying pipeline.
  • the liquid sulfur is preheated to 110-120° C. and enters the polymerization vessel 100.
  • an initiator is added to the polymerization vessel 100.
  • the initiator is added in an amount of 0.05 wt% to 0.3 wt% of the liquid sulfur added amount.
  • the temperature is raised to 200-270°C for polymerization reaction, and the temperature is kept constant for 30-60 minutes.
  • the liquid sulfur After the liquid sulfur is polymerized, it enters the quench tower 200 through the feed inlet, and is first granulated by the granulator 200, and then the granular material (that is, the high temperature sulfur particles in the outer solid and the inner liquid formed by the droplet material below) and the quench tower 200 Contact with the quenching agent (the quenching agent is introduced into the quenching tower 200 from the quenching agent inlet 215, and soft water can be used as the quenching agent); the high-temperature sulfur particles are quenched and solidified in the feed quenching section 211 and, for example, in the circulating inner cylinder 240 Soak inside the quenching agent; the quenching temperature is 50 ⁇ 70°C, after 5 ⁇ 30 minutes of quenching, the quenching agent is discharged from the quenching tower 200 through the second discharge port, and the solid particles formed after quenching are passed through the filter screen 260 Keep in the quench tower 240.
  • the quenching agent is introduced into the quenching tower
  • the solvent is continuously fed into the quench tower 200 through the quenching agent inlet 215 to continuously achieve soluble sulfur extraction.
  • the maturation temperature is 55-75°C.
  • the shear pump 230 is started to cyclically shear the sulfur particles.
  • the grinding treatment temperature is 45-75°C, and the treatment time is 30-60 minutes.
  • the sulfur particles are less than 0.15 mm, the fine particles pass through the filter 260 and are discharged from the second discharge port.
  • the quenching, maturation extraction, and crushing extraction processing can be completed without transferring materials, and the slurry-like materials containing fine particles are finally discharged from the second discharge port. Reduce the possibility of blocking the output pipe network.
  • the processing time can be greatly shortened, the process equipment and procedures are simplified, and the production efficiency is improved.
  • the quenching agent and solvent can be continuously input, while keeping the second discharge port open, so as to maintain the required processing temperature.
  • the insoluble sulfur production system may include a cooler 300, and the housing 210 includes a material separation section 216 for solid-liquid separation between the feed quenching section 211 and the discharge section 213. And a material circulation section 212 for circulating materials.
  • the material circulation section 212 is provided with a circulating inner cylinder 240 and a liquid distribution head 250 for spraying quenching agent or solvent into the circulating inner cylinder 240.
  • the material The side wall of the separation section 216 is provided with a circulating liquid outlet 217 for discharging the separated liquid.
  • the liquid discharged from the circulating liquid outlet 217 is cooled by the cooler 300 and sent to the circulating pump 280
  • a circulation inlet, the circulation inlet is in communication with the liquid distribution head 250.
  • the quenching agent in the quenching tower 200 flows from the circulating liquid outlet 217 through the cooler 300 for cooling, the circulating pump 280 pressurizes and circulates into the circulating inlet, and is sprayed into the circulating inner cylinder 240 through the liquid distribution head 250 to be recycled. Quenching agent.
  • the solvent flows from the circulating liquid outlet 217 through the cooler 300 for cooling, the circulating pump 280 pressurizes and circulates into the circulating inlet, and is sprayed into the circulating inner cylinder 240 through the liquid distribution head 250, so that the solvent is recycled;
  • the solvent flows from the circulating liquid outlet 217 through the cooler 300 for cooling, the shear pump 230 shears and circulates into the circulating inlet and is sprayed into the circulating inner cylinder 240 through the liquid distribution head 250, so that the solvent is recycled.
  • the particulate material in the circulating inner cylinder 240 fully collides with the quenching agent or solvent to form a fluidized state, so that the quenching can be performed better and faster , Maturation, extraction treatment.
  • the material separation section 216 is used to separate the particulate material in the fluid carrying the particulate material from the liquid (for example, a quenching agent or a solvent), so that only the liquid is discharged from the circulating liquid outlet 217 for circulation.
  • the liquid for example, a quenching agent or a solvent
  • a downwardly expanding cone-shaped circulating baffle 241 is provided on the outer periphery of the top of the circulating inner cylinder 240, and the circulating baffle 241 is connected to the inner wall of the housing 210. There is a gap between.
  • the radius of the lower end of the circulating baffle 241 is 0.5-0.9 times the radius of the casing 210 to maintain a proper gap.
  • the lower end of the circulating baffle 241 is located below the circulating liquid outlet 217 to prevent particulate materials from entering the circulating liquid outlet 217 when the quenching agent or solvent is circulated.
  • the inner wall of the material separation section 216 may be provided with a cone-shaped material baffle 218 that tapers toward the circulating inner cylinder 240. In this way, the granulated material can be guided into the circulating inner cylinder 240 through the material deflector 218. In order to avoid interference with solid-liquid separation, the material baffle 218 is located above the circulating liquid outlet 217.
  • the material deflector 218 is arranged in at least one of the following forms:
  • the distance between the lower end of the material deflector 218 and the upper end of the circulating deflector 241 is the diameter of the circulating inner cylinder 240;
  • the radius of the lower end of the material deflector 218 is 0.5-0.9 times the radius of the circulating inner cylinder 240;
  • the height of the material deflector 218 is 0.7-1.4 times the radius of the upper end.
  • the corresponding component structures and parameters of the material circulation section 212 and the discharging section 213 can be set to make the material stay in the material circulation section 212 and the discharging section 213 for the required time.
  • the insoluble sulfur production system is set In at least one of the following forms:
  • the diameter of the circulating inner cylinder 240 is 0.4-0.8 times the diameter of the housing 210;
  • the distance from the lower end of the circulating inner cylinder 240 to the filter screen 260 is 0.1-0.5 meters;
  • the height of the circulating inner cylinder 240 is 2-6 times the diameter of the circulating inner cylinder 240;
  • the distance between the filter screen 260 and the bottom head of the housing 210 is 0.5-1 m;
  • the shape of the filter screen 260 is consistent with the shape of the bottom head of the housing 210.
  • the solvent inlet 214 and the quenching agent inlet 215 can be arranged in appropriate positions of the housing 210 and connected to corresponding external storage devices through corresponding pipelines.
  • the solvent inlet 214 and the quenching agent inlet 215 may be arranged on the side wall of the feed quenching section 211 so as not to interfere with the operation of other sections (for example, the material separation section 216).
  • the granulator 220 can take various suitable forms, as long as the material entering from the feed port can be formed into granular materials.
  • the material entering from the feed port is usually in a liquid state that is wire-drawn and difficult to granulate.
  • the granulator 220 can be configured to divide and granulate the material into droplet-shaped granular materials (also referred to as droplet materials).
  • the granulator 220 includes a first feed pipe 221 connected to the feed port and a first feed pipe 221 connected to the feed port.
  • the first distribution pipe 222 is connected, and the first distribution pipe 222 includes a first fixed pipe 2221 and a first rotation sleeved outside the first fixed pipe 2221 and capable of rotating relative to the first fixed pipe 2221.
  • Tube 2222 the wall of the first fixed tube 2221 is provided with a first discharging channel 2223 extending in the axial direction, and the tube wall of the first rotating tube 2222 is provided with a first discharging channel capable of communicating with the first discharging channel
  • the material entering from the feed port enters the first fixed pipe 2221 through the first feed pipe 221, and rotates through the first rotating pipe 2222 to the first discharge hole 2224 aligned with the first discharge channel 2223. Discharge.
  • the first rotating tube 2222 rotates relative to the first fixed tube 2221 to intermittently discharge materials through different first discharge holes 2224, so that the material can be cut by this relative rotation to form a first discharge hole 2224.
  • the droplet material corresponding to the shape can be granulated.
  • the shape and parameters of the first discharge hole 2224 can be set.
  • the size of the first discharge hole 2224 is 0.5-3 mm, and the adjacent ones in the same group The spacing between the first discharge holes 2224 is 3-15 mm.
  • the size of the first discharge hole 2224 refers to the maximum size of its shape and contour, and the size referred to is different according to the shape of the first discharge hole 2224.
  • the size is the diameter
  • the elliptical first discharge hole 2224 its size is the long diameter of the ellipse
  • the rectangular first discharge hole 2224 its size is the length of the long side.
  • a distributor for uniformly distributing the quenching agent may be provided in the feed quenching section 211.
  • a quenching agent distributor 270 is provided in the feed quenching section 221, and the quenching agent distributor 270 includes the quenching agent The second feed pipe 271 connected to the agent inlet 215 and the second distribution pipe 272 connected to the second feed pipe 271.
  • the second distribution pipe 272 is arranged parallel to the first distribution pipe 222 and the The installation height of the second distribution pipe 272 is lower than that of the first distribution pipe 222.
  • the second distribution pipe 272 includes a second fixed pipe 2721 and is sleeved outside the second fixed pipe 2721 and can be relatively
  • the second rotating tube 2722 rotates by the second fixed tube 2721, the wall of the second fixed tube 2721 is provided with a second discharge channel 2723 extending in the axial direction, and the tube wall of the second rotating tube 2722 is provided There are a plurality of second discharging holes 2724 corresponding to the second discharging channel 2723, and the plurality of second discharging holes 2724 are distributed along the circumferential direction of the second rotating tube 2722, and the second rotating
  • the outer wall of the tube 2722 is provided with a scraper 273 capable of contacting the outer wall of the first rotating tube 2222, the first discharge channel 2223 is disposed toward the second distribution tube 272, and the second discharge channel 2723 It is set away from the first distribution pipe 222.
  • the quenching agent When in use, the quenching agent enters the second fixed pipe 2721 through the second feed pipe 271, and is discharged through the second discharge hole 2724 aligned with the second discharge channel 2723 through the second rotating pipe 2722.
  • each of the second discharge holes 2724 includes a plurality of slits extending sequentially along the axial direction, and each of the slits has a width of 5-20 mm, and/ Or, the second discharge hole 2724 is configured to provide quenching agent along the tangential direction of the second rotating tube 2722.
  • the first distributing tube 222 can be arranged so that the spray The quenching agent will not immediately come into contact with the droplet material discharged from the first discharge hole 2224, causing the droplet material to block the first discharge hole 2224 due to rapid cooling.
  • the first discharging channel 2223 that is, the first discharging channel 2223 is located between the first rotating tube 2222 and the second rotating tube 2722, preferably the first discharging channel 2223 is located between the first rotating tube 2222 and the second rotating tube 2722).
  • the second distribution tube 272 is set, and the second rotating tube 2722 can contact the outer wall of the first rotating tube 2222 through the scraper 273 when rotating, so that it can completely Cut the drawing material into droplets to better achieve granulation.
  • it can scrape off the material that may hang on the outer port of the first discharge hole 2224 to prevent the drawing material from sticking to the first discharge hole.
  • the discharge hole of 2224 prevents the material from being exposed to a low temperature environment to cool and then block the first discharge hole 2224, so as to solve the problem of difficult granulation of high-viscosity wire drawing materials. More specifically, as shown in FIG. 4, the first discharge channel 2223 opens diagonally downward toward the second distribution tube 272, and the second discharge channel 2723 opens diagonally downward toward the side where the first distribution tube 222 is located.
  • the scraper 273 is preferably arranged to pass through the outer port of the first discharge hole 2224 in a tangential manner.
  • the scraper 273 It is an elastic scraper.
  • the size of the scraper 273 can be set to extend beyond the minimum gap between the first rotating tube 2222 and the second rotating tube 2722, so that elasticity occurs when the scraper 273 contacts the first rotating tube 2222. It is deformed to have a portion substantially along the tangential direction of the first rotating tube 2222, and then the material is scraped through the portion.
  • a material that is not easy to stick to the sulfur material can be selected.
  • the scraper 273 is a stainless steel scraper to meet the requirements of elasticity and non-stickiness.
  • the droplet material discharged from the first discharge hole 2224 begins to be cooled when it leaves the first discharge hole 2224 to form high-temperature sulfur particles with a solid surface and a liquid core, which are then quenched in the process of falling in the quenching tower.
  • the agent is in full contact, and finally falls into the circulating inner cylinder 240, soaked in the quenching agent and cooled into solid particles.
  • the granular material and the quenching agent are uniformly distributed.
  • the first distribution pipe 222 and the second distribution pipe 272 are correspondingly multiple and arranged alternately, and multiple first distribution pipes are arranged alternately.
  • the pipes 222 are arranged side by side, a plurality of the second distribution pipes 272 are arranged side by side, and the line of the center line of the corresponding first distribution pipe 222 and the second distribution pipe 272 along the same plane is relative to the
  • the arrangement plane of the first distribution pipe 222 is 40-50 degrees.
  • first distribution pipe 222 and the second distribution pipe 272 can form a rake-type distribution pipe, and they are both arranged along the transverse direction of the feed quenching section 211, so as to evenly distribute materials and materials on the entire cross section of the feed quenching section 211. Quenching agent.
  • the rotation axes of the first rotating tube 2222 and the second rotating tube 2722 can be made parallel, which facilitates the realization of the first rotating tube 2222 and the second rotating tube by the same driving device. 2722's rotation.
  • the first rotating tube 2222 and the second rotating tube 2722 may be connected to a driving device through a transmission device, respectively.
  • the first rotating tube 2222 and the second rotating tube 2722 preferably rotate in the same direction, so that the scraping effect of the scraper 273 is better.
  • the insoluble sulfur production system may include a washing filter 500 and a dryer 600.
  • the inlet and the outlet of the washing filter 500 are respectively connected to the second discharge port and the dryer 600.
  • the washing filter 500 and the second discharge port may be connected by a pipeline, and the discharge pump 700 may provide a delivery pressure in the pipeline.
  • the slurry material discharged from the discharge port can be conveniently sent to the washing filter 500 through the discharge pump 700 for further washing, extraction and filtration.
  • the washing and filtering solvents can be recycled through separate pipelines.
  • the washing and filtering treatment temperature The temperature is 65 ⁇ 95°C, and the washing and filtering are operated continuously for 2 to 4 times.
  • the filtered insoluble sulfur enters the dryer 600 for vacuum drying, the drying temperature is 65-95°C, the drying treatment time is 1-5 hours, and the drying vacuum degree is 100-1000 Pa. After drying, insoluble sulfur products can be obtained.
  • the granulator 220, the circulation pump 280, the shear pump 230, the circulation inner cylinder 240 and the liquid distribution head 250, etc. can realize the uniform distribution of the temperature field when the material is quenched, the maturation extraction, and the integration of crushing extraction. ⁇ Operation.
  • the insoluble sulfur production method of the present invention can sequentially complete the granulation, quenching, maturation extraction and crushing extraction processes after the materials are introduced into the quenching tower and output the slurry-like materials. Among them, by granulating after feeding, it can be ensured that the material is in a granular state in the subsequent quenching and maturation extraction process so that it can fully contact with the solvent and quenching agent and is convenient to form a circulating flow with the liquid; the liquid phase circulation can be crushed.
  • the liquid phase can be circulated and pulverized in an appropriate manner, for example, using a shear pump. It can be filtered when outputting slurry materials.
  • the method includes: S5, outputting the slurry after circulating and pulverizing the liquid phase from the quench tower for washing and filtering; S6: drying the washed and filtered solid product to obtain an insoluble sulfur product.
  • the slurry material discharged from the quenching tower can be conveniently sent to, for example, the washing filter 500 for further washing, extraction, and filtering.
  • the washing and filtering solvents can be recycled through separate pipelines.
  • the washing and filtering temperature is 65 ⁇ At 95°C, the washing and filtering shall be operated continuously for 2 to 4 times.
  • the insoluble sulfur obtained by filtration enters into a dryer 600 for vacuum drying, for example, at a drying temperature of 65 to 95°C, a drying treatment time of 1 to 5 hours, and a drying vacuum of 100 to 1000 Pa. After drying, an insoluble sulfur product can be obtained.
  • the polymerization temperature may be 200-270°C, preferably 250-260°C; and the polymerization time may be 30-60 minutes, preferably 30-45 minutes.
  • the initiator can be one or more of potassium persulfate, dimethyl sulfoxide and the like.
  • the added amount of the initiator is 0.05 wt% to 0.3 wt% of the added amount of liquid sulfur, preferably 0.1 wt% to 0.2 wt%.
  • the quenching temperature may be 50-70°C, preferably 55-65°C, and the quenching time may be 5-30 minutes, preferably 10-20 minutes.
  • the quenching agent used may be soft water.
  • the solvent used in the process of maturation, washing and filtration may be one or more of cyclohexane, benzene, p-xylene, etc., preferably p-xylene.
  • the aging treatment temperature may be 55-75°C, preferably 60-65°C, and the treatment time may be 3-10 hours, preferably 5-9 hours.
  • the extractant can be used as the curing solvent, and the sulfur particle curing and extraction process can be realized at the same time. Compared with the conventional low-temperature melting method, the curing time is shortened, the quenching agent drying process is avoided, the process is greatly shortened, and the process is simplified. , Improve production efficiency.
  • the treatment temperature of liquid phase circulation pulverization can be 45-75°C, preferably 50-60°C, the treatment time is 30-60 minutes, preferably 35-50 minutes, and the particle size after pulverization is 100- 250 mesh, preferably 120-200 mesh.
  • the extractant can be used as the solvent for the liquid phase circulation pulverization, and the sulfur particle pulverization and extraction process is realized at the same time. Compared with the conventional dry mechanical pulverization, the influence of the temperature of the material on the product quality during the pulverization can be avoided.
  • the washing and filtering treatment temperature may be 65-95°C, preferably 70-85°C, and the washing and filtering may be operated continuously for 2 to 4 times, preferably 2 to 3 times.
  • the drying treatment can be vacuum drying, the drying temperature is 65-95°C, preferably 70-85°C, the drying treatment time is 1-5 hours, preferably 35-50 minutes, and the drying vacuum degree is 100- 1000Pa, preferably 200-500Pa.
  • the insoluble sulfur production system of the present invention can be used to implement the method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

一种不溶性硫磺生产系统和方法。生产系统包括具有第一出料口的聚合釜(100)和具有进料口的急冷塔(200),第一出料口与进料口连通,急冷塔(200)包括筒状的壳体(210)、造粒器(220)、剪切泵(230),壳体(210)的侧壁上设置有分别用于提供溶剂和淬冷剂的溶剂入口(214)和淬冷剂入口(215)。生产方法包括:使液硫在引发剂和氮气保护下升温进行聚合反应;将聚合后的物料引入急冷塔并依次进行造粒、淬冷处理;在急冷塔内对淬冷产物进行溶剂熟化、萃取一体化处理;在急冷塔内将熟化萃取后的产物进行液相循环粉碎、萃取一体化处理。

Description

不溶性硫磺生产系统和生产方法
相关申请的交叉引用
本申请要求提交的中国专利申请201911418296.8的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明属于石油化工技术领域,涉及一种不溶性硫磺生产系统和生产方法。
背景技术
随着石油消费急剧增加,全球石油资源日益紧缺,炼厂原料的重质化与劣质化日益严重;同时各国环保法规日趋严格,对石油产品及天然气的总硫含量控制愈加严格。所以,各大炼厂与天然气净化厂的硫磺回收装置的产能快速增加。这种普通硫磺的国内外市场已趋于饱和,因而价格低廉。如何提供市场紧缺的高附加值硫磺制品成为相关企业关注的重点。
不溶性硫磺是一种高效橡胶硫化剂,具有在胶料中分布稳定性好,制品硫化交联点均匀等优点,能克服胶料表面喷霜,增进橡胶与钢丝或化纤帘子线粘结性能。
专利申请CN102070127A公开了一种不溶性硫磺生产方法,其步骤包括:(1)熔融聚合;(2)雾化冷萃;(3)固化;(4)离心分离;(5)连续干燥;(6)粉碎、筛分和充油,最后得到成品;该方法为一种连续化的生产方法,但该方法硫磺聚合操作温度和压力均较高,操作温度580~690℃,操作压力0.8~1.2MPa,对反应设备要求较高。
专利申请CN107337184A公开了一种耐热稳定不溶性硫磺及其生产方法,包括(1)预熔:将原料工业硫磺投入130-150℃的熔硫池内进行预熔至原料硫磺变为液态硫磺;(2)反应:将液态硫磺导入反应釜内,在N 2的保护作用和机械搅拌的条件下,将温度调为240℃,加入0.6%的KI,反应一段时间;(3)淬冷:将步骤(2)所得产物 置于含有N 2的气化室内进行气化,形成过热蒸气,将过热蒸汽喷入淬冷水中进行淬冷;(4)萃取:采用有机溶剂萃取淬冷水中的硫磺;(5)粉碎:将萃取过的硫磺置于45-50℃的烘干机中烘干,至水分减少为烘干前的2%-4%为止,随后置于管磨机中研磨,粉碎过300-400目筛,得耐热稳定不溶性硫磺。
现有的低温熔融法生产不溶性硫磺方法中通过挤条淬冷、气体干燥熟化及机械粉碎等过程,得到的产品性能不高。在聚合硫磺出料淬冷时,通常采用挤条的方式出料进入急冷塔中淬冷,淬冷后的物料为条块状,因其容易堵塞管道和设备而不易输送,只能在不同装置或设备之间间歇转运处理,导致系统操作过程复杂。
发明内容
本发明的目的是为了克服现有技术存在的低温熔融法生产不溶性硫磺间歇操作过程复杂、产品性能低等问题,提供一种不溶性硫磺生产系统和方法,该不溶性硫磺生产系统和方法解决了固体物料输送难、产品性能低等问题,得到的不溶性硫磺产品纯度、热稳定性和收率高。
根据本发明的一个方面,提供一种不溶性硫磺生产系统,其中,所述不溶性硫磺生产系统包括具有第一出料口的聚合釜和具有进料口的急冷塔,所述第一出料口与所述进料口连通,所述急冷塔包括筒状的壳体、造粒器、剪切泵,所述壳体包括从上向下设置的进料淬冷段和出料段,所述壳体的侧壁上设置有用于提供溶剂和淬冷剂的溶剂入口和淬冷剂入口,其中:
所述进料口设置在所述进料淬冷段上,所述造粒器靠近所述进料口设置在所述进料淬冷段内;
所述出料段设置有第二出料口和位于所述第二出料口上方的过滤网,在所述过滤网上方,所述出料段的侧壁上设置有分别连通所述剪切泵和循环泵的入口和出口的循环出口和循环入口。
根据本发明的另一方面,提供一种不溶性硫磺生产方法,其中,所述方法包括:
S1、使液硫在引发剂和氮气保护下升温进行聚合反应;
S2、将聚合后的物料引入急冷塔并依次进行造粒、淬冷处理;
S3、在所述急冷塔内对淬冷产物进行溶剂熟化、萃取一体化处理;
S4、在所述急冷塔内将熟化萃取后的产物进行液相循环粉碎、萃取一体化处理。
通过上述技术方案,本发明的不溶性硫磺生产系统可以在急冷塔内完成造粒、淬冷、熟化萃取及粉碎萃取处理并输出浆体状物料。其中,通过在进料后由造粒器进行造粒,可以确保在后续的淬冷、熟化萃取过程中物料呈颗粒状态以便与溶剂、淬冷剂充分接触且便于随液体形成循环流;剪切泵和过滤网可以确保从第二出料口输出浆体状物料,避免后续输送管道的堵塞;造粒器、循环泵、剪切泵、循环内筒和液体分布头等,可以实现物料淬冷时温度场均匀分布、熟化萃取及粉碎萃取一体化操作。
附图说明
图1是根据本发明的不溶性硫磺生产系统的一种实施方式的结构示意图;
图2是图1中急冷塔的结构示意图;
图3是本发明的一种实施方式的造粒器和淬冷剂分布器的俯视图;
图4是图3中对应的一对第一分布管和第二分布管的截面图。
100-聚合釜,200-急冷塔,210-壳体,211-进料淬冷段,212-物料循环段,213-出料段,214-溶剂入口,215-淬冷剂入口,216-物料分离段,217-循环液出口,218-物料导流板,220-造粒器,221-第一进料管,222-第一分布管,2221-第一固定管,2222-第一旋转管,2223-第一出料通道,2224-第一出料孔,230-剪切泵,240-循环内筒,241-循环导流板,250-液体分布头,260-过滤网,270-淬冷剂分布器,271-第二进料管,272-第二分布管,2721-第二固定管,2722-第二旋转管,2723-第二出料通道,2724-第二出料孔,280-循环泵,300-冷却器,500-过滤器,600-干燥器,700-出料泵。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解 的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、左、右”通常是指参考附图所示的上、下、左、右;“内、外”是指相对于各部件本身的轮廓的内、外。下面将参考附图并结合实施方式来详细说明本发明。
根据本发明的一个方面,提供一种不溶性硫磺生产系统,其中,所述不溶性硫磺生产系统包括具有第一出料口的聚合釜100和具有进料口的急冷塔200,所述第一出料口与所述进料口连通,所述急冷塔200包括筒状的壳体210、造粒器220、剪切泵230,所述壳体210包括从上向下设置的进料淬冷段211和出料段213,所述壳体210的侧壁上设置有分别用于提供溶剂和淬冷及的溶剂入口214和淬冷剂入口215,其中:
所述进料口设置在所述进料淬冷段211上,所述造粒器220靠近所述进料口设置在所述进料淬冷段211内;
所述出料段213设置有第二出料口和位于所述第二出料口上方的过滤网260,在所过述滤网260上方,所述出料段213的侧壁上设置有分别连通所述剪切泵230的入口和出口的循环出口和循环入口。
本发明的不溶性硫磺生产系统可以在急冷塔内完成造粒、淬冷、熟化萃取及粉碎萃取处理并输出浆体状物料。其中,通过在进料后由造粒器220进行造粒,可以确保在后续的淬冷、熟化萃取过程中物料呈颗粒状态以便与溶剂、淬冷剂充分接触且便于随液体形成循环流;剪切泵230和过滤网260可以确保从第二出料口输出浆体状物料,避免后续输送管道的堵塞循环内筒。
具体的,如图1和图2所示:
液硫经预热到110~120℃进入聚合釜100,同时向聚合釜100中加入引发剂,引发剂加入量为液硫加入量的0.05wt%~0.3wt%。在氮气保护下,升温到200~270℃进行聚合反应,并恒温30~60分钟。
液硫聚合后通过进料口进入急冷塔200中,首先通过造粒器200造粒,随后颗粒状物料(即下文的液滴物料形成的外固内液的高温硫 磺颗粒)与急冷塔200内的淬冷剂接触(淬冷剂由淬冷剂入口215引入急冷塔200中,可以采用软水为淬冷剂);高温硫磺颗粒在进料淬冷段211淬冷固化并例如在循环内筒240内浸泡在淬冷剂中;淬冷温度为50~70℃,淬冷5~30分钟后,淬冷剂经第二出料口排出急冷塔200,淬冷后形成的固体颗粒由过滤网260保持在急冷塔240内。
然后经淬冷剂入口215向急冷塔200中连续进溶剂,不断实现可溶性硫磺萃取,熟化处理温度55~75℃,熟化3~10小时后启动剪切泵230,循环剪切硫磺颗粒,剪切粉碎处理温度为45~75℃,处理时间为30~60分钟,当硫磺颗粒小于0.15毫米时,细小颗粒透过过滤网260排出第二出料口。
如上所述,本发明的不溶性硫磺生产系统中,无需转运物料即可完成淬冷、熟化萃取及粉碎萃取处理,且最终从第二出料口排出的是含有细小颗粒的浆体状物料,大大降低了堵塞输出管网的可能性。另外,通过在急冷塔200内连续进行淬冷、熟化萃取及粉碎萃取,可以大大缩短处理时间,简化了工艺设备和流程,提高了生成效率。
本发明中,在淬冷、熟化萃取及粉碎萃取处理时,可以连续输入淬冷剂和溶剂,同时保持第二出料口打开,以便维持所需的处理温度。
为节约成本和提高效率,也可以使淬冷剂和溶剂循环使用。优选地,所述不溶性硫磺生产系统可以包括冷却器300,所述壳体210包括位于所述进料淬冷段211和所述出料段213之间的用于固液分离的物料分离段216和用于循环物料的物料循环段212,所述物料循环段212内设置有循环内筒240和用于向所述循环内筒240中喷洒淬冷剂或溶剂的液体分布头250,所述物料分离段216的侧壁上设置有用于使分离后的液体排出的循环液出口217,从所述循环液出口217排出的液体经所述冷却器300冷却并通过所述循环泵280送至所述循环入口,所述循环入口与所述液体分布头250连通。
在淬冷时,急冷塔200中淬冷剂从循环液出口217流经冷却器300冷却、循环泵280增压循环进入循环入口并通过液体分布头250喷洒在循环内筒240中,从而循环使用淬冷剂。同样,熟化萃取时,溶剂从循环液出口217流经冷却器300冷却、循环泵280增压循环进入循环入口并通过液体分布头250喷洒在循环内筒240中,从而循环使用溶剂;粉碎萃取时,溶剂从循环液出口217流经冷却器300冷却、 剪切泵230剪切循环进入循环入口并通过液体分布头250喷洒在循环内筒240中,从而循环使用溶剂。
在通过循环泵280或剪切泵230循环输送的作用下,循环内筒240内的颗粒物料与淬冷剂或溶剂充分碰撞接触,形成流化状态,从而能够更好、更快地进行淬冷、熟化、萃取处理。
其中,物料分离段216用于将携带颗粒物料的流体中的颗粒物料与液体(例如淬冷剂或溶剂)分离,以便仅从循环液出口217排出液体进行循环。在流体通过循环泵280从循环内筒240上端涌出时,由于流动截面突然从循环内筒240增大为壳体210,流体流速下降,使得颗粒物料在重力作用下沉降而与液体分离,分离后的颗粒物料在循环内筒240中或沿循环内筒240的外壁下落。为便于引导颗粒物料的下落,所述循环内筒240的顶部外周上设置有向下渐扩的锥筒形的循环导流板241,所述循环导流板241与所述壳体210的内壁之间具有间隙。优选地,所述循环导流板241的下端半径为所述壳体210半径的0.5-0.9倍,以保持适当的间隙。其中,循环导流板241的下端位于所述循环液出口217下方,以避免淬冷剂或溶剂在循环时颗粒物料进入循环液出口217。
另外,优选地,所述物料分离段216的内壁上可以设置有朝向所述循环内筒240渐缩的锥筒形的物料导流板218。由此,造粒后的颗粒物料可以通过物料导流板218导向到循环内筒240内。为避免与固液分离的干涉,所述物料导流板218位于所述循环液出口217上方。
优选地,为使得物料在物料导流板218的引导下以适当速度导入循环内筒240,所述物料导流板218设置为以下至少一种形式:
所述物料导流板218下端与所述循环导流板241上端的距离为所述循环内筒240的直径;
所述物料导流板218的下端半径为所述循环内筒240的半径的0.5-0.9倍;
所述物料导流板218的高度为其上端半径的0.7-1.4倍。
另外,可以通过设置物料循环段212和出料段213的相应部件结构和参数来使得物料在物料循环段212和出料段213内停留所需的时间,优选地,所述不溶性硫磺生产系统设置为以下至少一种形式:
所述循环内筒240的直径为所述壳体210的直径的0.4-0.8倍;
所述循环内筒240的下端到所述过滤网260的距离为0.1-0.5米;
所述循环内筒240的高度为所述循环内筒240的直径的2-6倍;
所述过滤网260到所述壳体210的底封头的距离为0.5-1米;
所述过滤网260的形状与所述壳体210的底封头的形状一致。
本发明中,所述溶剂进口214和所述淬冷剂进口215可以设置在壳体210的适当位置,并通过相应的管线连接到相应的外部存储装置。优选地,所述溶剂进口214和所述淬冷剂进口215可以设置在所述进料淬冷段211的侧壁上,以免干涉其他段(例如物料分离段216)的操作。
本发明中,造粒器220可以采用各种适当形式,只要能够将从进料口进入的物料形成颗粒物料即可。从进料口进入的物料通常为拉丝、难以造粒的液态,造粒器220可以设置为能够将物料分割、造粒为液滴状的颗粒物料(也可以称为液滴物料)。
根据本发明的一种优选实施方式,如图3和图4所示,所述造粒器220包括与所述进料口连通的第一进料管221和与所述第一进料管221连通的的第一分布管222,所述第一分布管222包括第一固定管2221和套设在所述第一固定管2221外并能够相对于所述第一固定管2221转动的第一旋转管2222,所述第一固定管2221的管壁上设置有沿轴向延伸的第一出料通道2223,所述第一旋转管2222的管壁上设置有能够与所述第一出料通道2223对应的多组第一出料孔2224,每组所述第一出料孔2224沿轴向设置,多组所述第一出料孔2224沿所述第一旋转管2222的周向分布。
使用时,从进料口进入的物料通过第一进料管221进入第一固定管2221,并通过第一旋转管2222上旋转到与第一出料通道2223对准的第一出料孔2224出料。其中,第一旋转管2222相对于第一固定管2221旋转,以间歇地通过不同的第一出料孔2224出料,因而可以通过这种相对旋转将物料切割,形成与第一出料孔2224形状对应的液滴物料,实现造粒。其中,为获得适当尺寸的液滴物料,可以设置第一出料孔2224的形状和参数,优选地,所述第一出料孔2224的大小为0.5-3mm,同组中相邻的所述第一出料孔2224之间的间距为3-15mm。其中,第一出料孔2224的大小指其形状轮廓的最大尺寸,根据第一出料孔2224的形状,所指尺寸不同。例如,对于圆形的第 一出料孔2224来说,其大小即为直径;对于椭圆形的第一出料孔2224来说,其大小即为椭圆的长径;对于长方形的第一出料孔2224来说,其大小即为长边的长度。
另外,为便于淬冷剂在进料淬冷段211内即与物料充分接触,可以在进料淬冷段211内设置用于均匀分布淬冷剂的分布器。在本发明的优选实施方式中,如图3和图4所示,所述进料淬冷段221内设置有淬冷剂分布器270,所述淬冷剂分布器270包括与所述淬冷剂进口215连通的第二进料管271和与所述第二进料管271连通的第二分布管272,所述第二分布管272平行于所述第一分布管222设置且所述所述第二分布管272的设置高度低于所述第一分布管222,所述第二分布管272包括第二固定管2721和套设在所述第二固定管2721外并能够相对于所述第二固定管2721转动的第二旋转管2722,所述第二固定管2721的管壁上设置有沿轴向延伸的第二出料通道2723,所述第二旋转管2722的管壁上设置有能够与所述第二出料通道2723对应的多个第二出料孔2724,多个所述第二出料孔2724沿所述第二旋转管2722的周向分布,所述第二旋转管2722的外壁上设置有能够与所述第一旋转管2222的外壁接触的刮片273,所述第一出料通道2223朝向所述第二分布管272设置,所述第二出料通道2723偏离所述第一分布管222设置。
使用时,淬冷剂通过第二进料管271进入第二固定管2721,并通过第二旋转管2722上旋转到与第二出料通道2723对准的第二出料孔2724排出。
由于淬冷剂以一定压力供应到淬冷剂进口215,因而会以喷射形式从第二出料孔2724排出。为沿第二分布管272均匀提供淬冷剂,每个所述第二出料孔2724包括沿轴向依次延伸的多个条缝,每个所述条缝的宽度为5-20mm,和/或,所述第二出料孔2724设置为提供沿所述第二旋转管2722的切向提供淬冷剂。
其中,通过使所述第二出料通道2723偏离(即第二出料通道2723不位于第一旋转管2222和第二旋转管2722之间)所述第一分布管222设置,可以使喷出的淬冷剂不会与从第一出料孔2224排出的液滴物料马上接触而导致液滴物料因急剧冷却而堵塞第一出料孔2224。通过使所述第一出料通道2223朝向(即第一出料通道2223位于第一 旋转管2222和第二旋转管2722之间,优选使第一出料通道2223位于第一旋转管2222和第二旋转管2722的同一截面上的圆心的连线上)所述第二分布管272设置,第二旋转管2722转动时能够通过刮片273接触第一旋转管2222的外壁,从而一方面能够彻底将拉丝物料切割为液滴状,以更好地实现造粒,另一方面能够刮除可能挂在第一出料孔2224的外端口上的物料,以免拉丝物料粘结在第一出料孔2224的出料孔上,防止物料因暴露于低温环境冷却继而堵塞第一出料孔2224,以解决高粘度拉丝物料造粒难的问题。更具体的,如图4所示,第一出料通道2223斜向下朝向第二分布管272开放,第二出料通道2723朝向第一分布管222所在的侧斜向下开放。
刮片273优选设置为以相切的方式经过第一出料孔2224的外端口,为达到此效果并避免刮片273与第一旋转管2222的相对运动产生的硬性碰撞,所述刮片273为具有弹性刮片。在这种情况下,可以将刮片273的尺寸设置为延伸超出第一旋转管2222和第二旋转管2722之间的最小间隙,从而在刮片273接触第一旋转管2222的情况下发生弹性变形而具有基本上沿第一旋转管2222的切向的部分,继而通过该部分刮除物料。另外,为避免刮片粘粘硫磺物料,可以选用不易粘粘硫磺物料的材质。优选地,刮片273为不锈钢刮片,以兼顾弹性和不粘粘的要求。
本发明中,从第一出料孔2224排出的液滴物料在离开第一出料孔2224即开始冷却,形成外表固化内芯液态的高温硫磺颗粒,继而在急冷塔中下落过程中与淬冷剂充分接触,最终落入循环内筒240中浸泡在淬冷剂中冷却为固体颗粒。
优选地,为均匀分布颗粒物料和淬冷剂,如图3所示,所述第一分布管222和所述第二分布管272为对应的多个并交替排列,多个所述第一分布管222并排设置,多个所述第二分布管272并排设置,对应的所述第一分布管222和所述第二分布管272的沿同一平面的截面上中心线的连线相对于所述第一分布管222的排列平面成40-50度。其中,第一分布管222和第二分布管272可以形成耙式分布管,并均沿进料淬冷段211的横向设置,以在进料淬冷段211的整个横截面上均匀分布物料和淬冷剂。
通过使第一分布管222和第二分布管272平行设置,可以使第一 旋转管2222和第二旋转管2722的旋转轴线平行,便于通过同一驱动装置实现第一旋转管2222和第二旋转管2722的旋转。具体的,所述第一旋转管2222和所述第二旋转管2722可以分别通过传动装置与驱动装置连接。另外,所述第一旋转管2222和所述第二旋转管2722优选同向旋转,以使刮片273的刮除效果更佳。
另外,如图1所示,所述不溶性硫磺生产系统可以包括洗涤过滤器500和干燥器600,所述洗涤过滤器500的入口和出口分别与所述第二出料口和所述干燥器600连通。具体的,洗涤过滤器500、第二出料口之间可以通过管线连接,并可以通过出料泵700在管线中提供输送压力。从出料口排出的浆体状物料可以方便地通过出料泵700送至洗涤过滤器500中进行进一步洗涤萃取、过滤处理,洗涤、过滤溶剂可以通过单独的管道循环回收利用,洗涤过滤处理温度为65~95℃,洗涤过滤连续操作2~4次。过滤得到的不溶性硫磺进入干燥器600中真空干燥,干燥温度65~95℃,干燥处理时间为1~5小时,干燥真空度为100~1000Pa,干燥后即可得到不溶性硫磺产品。
本申请的优选实施方式中,造粒器220、循环泵280、剪切泵230、循环内筒240和液体分布头250等,可以实现物料淬冷时温度场均匀分布、熟化萃取及粉碎萃取一体化操作。
根据本发明的另一方面,提供一种不溶性硫磺生产方法,其中,所述方法包括:
S1、使液硫在引发剂和氮气保护下升温进行聚合反应;
S2、将聚合后的物料引入急冷塔并依次进行造粒、淬冷处理;
S3、在所述急冷塔内对淬冷产物进行溶剂熟化、萃取一体化处理;
S4、在所述急冷塔内将熟化萃取后的产物进行液相循环粉碎、萃取一体化处理。
本发明的不溶性硫磺生产方法可以在物料引入急冷塔后依次完成造粒、淬冷、熟化萃取及粉碎萃取处理并输出浆体状物料。其中,通过在进料后进行造粒,可以确保在后续的淬冷、熟化萃取过程中物料呈颗粒状态以便与溶剂、淬冷剂充分接触且便于随液体形成循环流;通过液相循环粉碎可以获得浆体状物料,避免后续输送管道的堵塞;造粒器、循环泵、剪切泵、循环内筒和液体分布头等,可以实现物料淬冷时温度场均匀分布、熟化萃取及粉碎萃取一体化操作。
其中,可以通过适当的方式进行液相循环粉碎,例如使用剪切泵。输出浆体状物料时可以进行过滤。
优选地,所述方法包括:S5、将液相循环粉碎后的浆料从所述急冷塔输出,以进行洗涤过滤;S6、将洗涤过滤后的固体产物进行干燥,以得到不溶性硫磺产品。其中,从急冷塔排出的浆体状物料可以方便地送至例如洗涤过滤器500中进行进一步洗涤萃取、过滤处理,洗涤、过滤溶剂可以通过单独的管道循环回收利用,洗涤过滤处理温度为65~95℃,洗涤过滤连续操作2~4次。过滤得到的不溶性硫磺进入例如干燥器600中真空干燥,干燥温度65~95℃,干燥处理时间为1~5小时,干燥真空度为100~1000Pa,干燥后即可得到不溶性硫磺产品。
本发明的不溶性硫磺生产方法中,聚合温度可以为200~270℃,优选250~260℃;聚合时间为30~60分钟,优选30~45分钟。
本发明的不溶性硫磺生产方法中,所述引发剂可以采用过硫酸钾、二甲基亚砜等中的一种或几种。所述引发剂加入量为液硫加入量的0.05wt%~0.3wt%,优选为0.1wt~0.2wt%。
本发明的不溶性硫磺生产方法中,淬冷温度可以为50~70℃,优选55~65℃,淬冷时间5~30分钟,优选10~20分钟。
本发明的不溶性硫磺生产方法中,使用的淬冷剂可以为软水。
本发明的不溶性硫磺生产方法中,熟化、洗涤、过滤过程中所使用的溶剂可以是环己烷、苯、对二甲苯等中的一种或几种,优选为对二甲苯。
本发明的不溶性硫磺生产方法中,熟化处理温度可以为55~75℃,优选60~65℃,处理时间为3~10小时,优选5~9小时。其中,可以采用萃取剂作为熟化溶剂,同时实现了硫磺颗粒熟化与萃取过程,与常规低温熔融法相比,缩短了熟化时间、避免了淬冷剂干燥过程,大大缩短了工艺过程,简化了工艺流程,提高了生产效率。
本发明的不溶性硫磺生产方法中,液相循环粉碎的处理温度可以为45~75℃,优选50~60℃,处理时间为30~60分钟,优选35~50分钟,粉碎后颗粒粒度为100~250目,优选120~200目。其中,可以采用萃取剂作为液相循环粉碎的溶剂,同时实现了硫磺颗粒粉碎与萃取过程,与常规的干式机械粉碎相比,可避免粉碎时物料升温对产品质量的影响。
本发明的不溶性硫磺生产方法中,洗涤过滤处理温度可以为65~95℃,优选70~85℃,洗涤过滤连续操作2~4次,优选2~3次。
本发明的不溶性硫磺生产方法中,干燥处理可以采用真空干燥,干燥温度65~95℃,优选70~85℃,干燥处理时间为1~5小时,优选35~50分钟,干燥真空度为100~1000Pa,优选200~500Pa。
优选地,可以使用本发明的不溶性硫磺生产系统实施本发明的方法。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型。本发明包括各个具体技术特征以任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。但这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (16)

  1. 一种不溶性硫磺生产系统,其特征在于,所述不溶性硫磺生产系统包括具有第一出料口的聚合釜(100)和具有进料口的急冷塔(200),所述第一出料口与所述进料口连通,所述急冷塔(200)包括筒状的壳体(210)、造粒器(220)、剪切泵(230),所述壳体(210)包括从上向下设置的进料淬冷段(211)和出料段(213),所述壳体(210)的侧壁上设置有用于提供溶剂和淬冷剂的溶剂入口(214)和淬冷剂入口(215),其中:
    所述进料口设置在所述进料淬冷段(211)上,所述造粒器(220)靠近所述进料口设置在所述进料淬冷段(211)内;
    所述出料段(213)设置有第二出料口和位于所述第二出料口上方的过滤网(260),在所过述滤网(260)上方,所述出料段(213)的侧壁上设置有分别连通所述剪切泵(230)的入口和出口的循环出口和循环入口。
  2. 根据权利要求1所述的不溶性硫磺生产系统,其特征在于,所述不溶性硫磺生产系统包括冷却器(300),所述壳体(210)包括位于所述进料淬冷段(211)和所述出料段(213)之间的用于固液分离的物料分离段(216)和用于循环物料的物料循环段(212),所述物料循环段(212)内设置有循环内筒(240)和用于向所述循环内筒(240)中喷洒淬冷剂或溶剂的液体分布头(250),所述物料分离段(216)的侧壁上设置有用于使分离后的液体排出的循环液出口(217),从 所述循环液出口(217)排出的液体经所述冷却器(300)冷却并通过所述循环泵(280)送至所述循环入口,所述循环入口与所述液体分布头(250)连通。
  3. 根据权利要求2所述的不溶性硫磺生产系统,其特征在于,所述循环内筒(240)的顶部外周上设置有向下渐扩的锥筒形的循环导流板(241),所述循环导流板(241)与所述壳体(210)的内壁之间具有间隙,优选地,所述循环导流板(241)的下端半径为所述壳体(210)半径的0.5-0.9倍。
  4. 根据权利要求3所述的不溶性硫磺生产系统,其特征在于,所述物料分离段(216)的内壁上设置有朝向所述循环内筒(240)渐缩的锥筒形的物料导流板(218),所述物料导流板(218)位于所述循环液出口(217)上方;优选地,所述物料导流板(218)设置为以下至少一种形式:
    a、所述物料导流板(218)下端与所述循环导流板(241)上端的距离为所述循环内筒(240)的直径;
    b、所述物料导流板(218)的下端半径为所述循环内筒(240)的半径的0.5-0.9倍;
    c、所述物料导流板(218)的高度为其上端半径的0.7-1.4倍。
  5. 根据权利要求2所述的不溶性硫磺生产系统,其特征在于,所 述不溶性硫磺生产系统设置为以下至少一种形式:
    a、所述循环内筒(240)的直径为所述壳体(210)的直径的0.4-0.8倍;
    b、所述循环内筒(240)的下端到所述过滤网(260)的距离为0.1-0.5米;
    c、所述循环内筒(240)的高度为所述循环内筒(240)的直径的2-6倍;
    d、所述过滤网(260)到所述壳体(210)的底封头的距离为0.5-1米;
    e、所述过滤网(260)的形状与所述壳体(210)的底封头的形状一致。
  6. 根据权利要求1所述的不溶性硫磺生产系统,其特征在于,所述溶剂进口(214)和所述淬冷剂进口(215)设置在所述进料淬冷段(211)的侧壁上。
  7. 根据权利要求1-6中任意一项所述的不溶性硫磺生产系统,其特征在于,所述造粒器(220)包括与所述进料口连通的第一进料管(221)和与所述第一进料管(221)连通的的第一分布管(222),所述第一分布管(222)包括第一固定管(2221)和套设在所述第一固定管(2221)外并能够相对于所述第一固定管(2221)转动的第一旋转管(2222),所述第一固定管(2221)的管壁上设置有沿轴向延 伸的第一出料通道(2223),所述第一旋转管(2222)的管壁上设置有能够与所述第一出料通道(2223)对应的多组第一出料孔(2224),每组所述第一出料孔(2224)沿轴向设置,多组所述第一出料孔(2224)沿所述第一旋转管(2222)的周向分布。
  8. 根据权利要求7所述的不溶性硫磺生产系统,其特征在于,所述进料淬冷段(221)内设置有淬冷剂分布器(270),所述淬冷剂分布器(270)包括与所述淬冷剂进口(215)连通的第二进料管(271)和与所述第二进料管(271)连通的第二分布管(272),所述第二分布管(272)平行于所述第一分布管(222)设置且所述所述第二分布管(272)的设置高度低于所述第一分布管(222),所述第二分布管(272)包括第二固定管(2721)和套设在所述第二固定管(2721)外并能够相对于所述第二固定管(2721)转动的第二旋转管(2722),所述第二固定管(2721)的管壁上设置有沿轴向延伸的第二出料通道(2723),所述第二旋转管(2722)的管壁上设置有能够与所述第二出料通道(2723)对应的多个第二出料孔(2724),多个所述第二出料孔(2724)沿所述第二旋转管(2722)的周向分布,所述第二旋转管(2722)的外壁上设置有能够与所述第一旋转管(2222)的外壁接触的刮片(273),所述第一出料通道(2223)朝向所述第二分布管(272)设置,所述第二出料通道(2723)偏离所述第一分布管(222)设置。
  9. 根据权利要求8所述的不溶性硫磺生产系统,其特征在于,所述刮片(273)为不锈钢刮片,和/或,所述第一分布管(222)和所述第二分布管(272)为对应的多个并交替排列,多个所述第一分布管(222)并排设置,多个所述第二分布管(272)并排设置,对应的所述第一分布管(222)和所述第二分布管(272)的沿同一平面的截面上中心线的连线相对于所述第一分布管(222)的排列平面成40-50度。
  10. 根据权利要求8所述的不溶性硫磺生产系统,其特征在于:
    所述第一出料孔(2224)的大小为O.5-3mm,同组中相邻的所述第一出料孔(2224)之间的间距为3-15mm;
    和/或,每个所述第二出料孔(2724)包括沿轴向依次延伸的多个条缝,每个所述条缝的宽度为5-20mm,和/或,所述第二出料孔(2724)设置为提供沿所述第二旋转管(2722)的切向提供淬冷剂。
  11. 根据权利要求8所述的不溶性硫磺生产系统,其特征在于,所述第一旋转管(2222)和所述第二旋转管(2722)分别通过传动装置与驱动装置连接;和/或,所述第一旋转管(2222)和所述第二旋转管(2722)同向旋转。
  12. 根据权利要求1所述的不溶性硫磺生产系统,其特征在于,所述不溶性硫磺生产系统包括洗涤过滤器(500)和干燥器(600), 所述洗涤过滤器(500)的入口和出口分别与所述第二出料口和所述干燥器(600)连通。
  13. 一种低温熔融法生产不溶性硫磺的方法,其特征在于,所述方法包括:
    S1、使液硫在引发剂和氮气保护下升温进行聚合反应;
    S2、将聚合后的物料引入急冷塔并依次进行造粒、淬冷处理;
    S3、在所述急冷塔内对淬冷产物进行溶剂熟化、萃取一体化处理;
    S4、在所述急冷塔内将熟化萃取后的产物进行液相循环粉碎、萃取一体化处理。
  14. 根据权利要求13所述的低温熔融法生产不溶性硫磺的方法,其特征在于,所述方法包括:
    S5、将液相循环粉碎后的浆料从所述急冷塔输出,以进行洗涤过滤;
    S6、将洗涤过滤后的固体产物进行干燥,以得到不溶性硫磺产品。
  15. 根据权利要求13所述的低温熔融法生产不溶性硫磺的方法,其特征在于,步骤S1中,将物料造粒为尺寸在O.5-3mm;和/或,在步骤S4中将熟化后的产物粉碎为O.15mm以下的颗粒。
  16. 根据权利要求13-15中任意一项所述的低温熔融法生产不溶 性硫磺的方法,其特征在于,使用权利要求1-12中任意一项所述的不溶性硫磺生产系统。
PCT/CN2020/140097 2019-12-31 2020-12-28 不溶性硫磺生产系统和生产方法 WO2021136160A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20908980.4A EP4071109A4 (en) 2019-12-31 2020-12-28 SYSTEM AND METHOD FOR PRODUCTION OF INSOLUBLE SULFUR
US17/758,287 US20230035805A1 (en) 2019-12-31 2020-12-28 Production System and Method for Insoluble Sulfur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911418296.8 2019-12-31
CN201911418296.8A CN113120869B (zh) 2019-12-31 2019-12-31 一种不溶性硫磺生产方法和生产系统

Publications (1)

Publication Number Publication Date
WO2021136160A1 true WO2021136160A1 (zh) 2021-07-08

Family

ID=76687535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140097 WO2021136160A1 (zh) 2019-12-31 2020-12-28 不溶性硫磺生产系统和生产方法

Country Status (4)

Country Link
US (1) US20230035805A1 (zh)
EP (1) EP4071109A4 (zh)
CN (1) CN113120869B (zh)
WO (1) WO2021136160A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477581A (zh) * 2022-01-15 2023-07-25 中国石油化工股份有限公司 一种不溶性硫磺一体化生产设备和方法
CN116534804A (zh) * 2023-05-31 2023-08-04 湖南化工设计院有限公司 一种高纯度硫磺的提取系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860268A (zh) * 2021-11-18 2021-12-31 常州工学院 一种不溶性硫磺连续生产筛分罐及其加工方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552619A (zh) * 2003-06-04 2004-12-08 中国科学院大连化学物理研究所 一种制备不溶性硫磺的方法
CN2672030Y (zh) * 2003-12-31 2005-01-19 王桃仙 用于液相或汽相法生产不溶性硫磺的萃取釜
CN1986388A (zh) * 2005-12-22 2007-06-27 南化集团研究院 中品位不溶性硫磺的制备方法及其生产设备
CN101066753A (zh) * 2007-05-29 2007-11-07 谭建中 连续一步法制造不溶性硫磺的方法
CN102070127A (zh) 2011-02-17 2011-05-25 四川晨辉化工有限公司 一种不溶性硫磺的生产方法
CN105694096A (zh) * 2016-01-29 2016-06-22 常州达奥新材料科技有限公司 一种高分散不溶性硫磺的环保制备方法
CN206172977U (zh) * 2016-11-14 2017-05-17 中国石油化工股份有限公司 一种不溶性硫磺的生产系统
CN106946230A (zh) * 2017-04-25 2017-07-14 中国石油大学(华东) 一种不溶性硫磺的连续生产方法
CN107337184A (zh) 2017-09-01 2017-11-10 上海京海(安徽)化工有限公司 一种耐热稳定不溶性硫磺及其生产方法
CN206799166U (zh) * 2016-11-14 2017-12-26 中国石油化工股份有限公司 一种不溶性硫磺的生产系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333374A1 (de) * 2003-07-23 2005-02-10 Bayer Aktiengesellschaft Verfahren zur Herstellung von polymerem Schwefel
CN102951615B (zh) * 2011-08-29 2016-08-17 江苏圣奥化学科技有限公司 生产不溶性硫磺的处理罐
CN102976281A (zh) * 2011-09-02 2013-03-20 台州学院 一种不溶性硫磺的制备方法
CN104843651A (zh) * 2014-02-18 2015-08-19 中国石油化工股份有限公司 一种低温法制备不溶性硫磺的生产工艺
CN204295905U (zh) * 2014-12-04 2015-04-29 倪平 一种自动化开炼机
CN105502303A (zh) * 2016-01-22 2016-04-20 上海京海(安徽)化工有限公司 一种制备高热稳定性高含量不溶性硫磺的生产工艺
CN106892410B (zh) * 2017-04-25 2022-12-30 中国石油大学(华东) 一种不溶性硫磺的生产方法
CN208071319U (zh) * 2018-03-20 2018-11-09 朝阳明宇化工有限公司 一种不溶性硫磺安全生产的气化淬冷设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552619A (zh) * 2003-06-04 2004-12-08 中国科学院大连化学物理研究所 一种制备不溶性硫磺的方法
CN2672030Y (zh) * 2003-12-31 2005-01-19 王桃仙 用于液相或汽相法生产不溶性硫磺的萃取釜
CN1986388A (zh) * 2005-12-22 2007-06-27 南化集团研究院 中品位不溶性硫磺的制备方法及其生产设备
CN101066753A (zh) * 2007-05-29 2007-11-07 谭建中 连续一步法制造不溶性硫磺的方法
CN102070127A (zh) 2011-02-17 2011-05-25 四川晨辉化工有限公司 一种不溶性硫磺的生产方法
CN105694096A (zh) * 2016-01-29 2016-06-22 常州达奥新材料科技有限公司 一种高分散不溶性硫磺的环保制备方法
CN206172977U (zh) * 2016-11-14 2017-05-17 中国石油化工股份有限公司 一种不溶性硫磺的生产系统
CN206799166U (zh) * 2016-11-14 2017-12-26 中国石油化工股份有限公司 一种不溶性硫磺的生产系统
CN106946230A (zh) * 2017-04-25 2017-07-14 中国石油大学(华东) 一种不溶性硫磺的连续生产方法
CN107337184A (zh) 2017-09-01 2017-11-10 上海京海(安徽)化工有限公司 一种耐热稳定不溶性硫磺及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071109A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477581A (zh) * 2022-01-15 2023-07-25 中国石油化工股份有限公司 一种不溶性硫磺一体化生产设备和方法
CN116534804A (zh) * 2023-05-31 2023-08-04 湖南化工设计院有限公司 一种高纯度硫磺的提取系统
CN116534804B (zh) * 2023-05-31 2024-05-24 湖南化工设计院有限公司 一种高纯度硫磺的提取系统

Also Published As

Publication number Publication date
EP4071109A1 (en) 2022-10-12
US20230035805A1 (en) 2023-02-02
CN113120869A (zh) 2021-07-16
CN113120869B (zh) 2023-01-10
EP4071109A4 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
WO2021136160A1 (zh) 不溶性硫磺生产系统和生产方法
JP5591111B2 (ja) 高粘度ポリエステル溶融物でできた低加水分解性ポリエステル顆粒の製造方法、および該ポリエステル顆粒の製造装置
CN102794830B (zh) 一种尼龙聚合物喷雾冷却造粒方法及其设备
CN113120870B (zh) 高性能不溶性硫磺生产系统和方法
TWI411671B (zh) 石蠟及石蠟類似物的成粒之裝置與方法
KR101961809B1 (ko) 고체 형태의 l-멘톨의 제조 방법 및 장치
CN113120868B (zh) 一种不溶性硫磺生产方法和系统
CN111377411B (zh) 一种不溶性硫磺生产方法和生产系统
CN111377412B (zh) 一种不溶性硫磺连续淬冷装置
CN109126633B (zh) 高成品率的尿素造粒塔
CN104816401A (zh) 石蜡的造粒设备及方法
CN212237171U (zh) 具有冷却流道的转筒硫磺造粒成套设备
CN113120867B (zh) 一种不溶性硫磺加工方法和加工系统
CN216987564U (zh) 硫化钠生产用制片机冷却结构
CN111377413B (zh) 一种不溶性硫磺制备方法和制备系统
CN207574487U (zh) 饲料高效辊压式造粒机
CN114436220B (zh) 一种低温熔融法生产不溶性硫磺淬冷系统和方法
CN210079446U (zh) 一种制备全水溶速度快的肥料颗粒的设备
US20160279829A1 (en) Apparatus and process for granulating molten material
CN110065763B (zh) 一种分段式溜槽装置
CN114163642A (zh) 一种节能环保型聚砜类树脂的提纯工艺及提纯设备
CN216799730U (zh) 一种带风淋的颗粒剂装置
CN114436219B (zh) 一种不溶性硫磺连续淬冷粉碎系统和方法
CN110721636A (zh) 微囊包被颗粒类药物的热熔法制粒系统
CN214725526U (zh) 一种用于涤纶生产的聚酯切片加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020908980

Country of ref document: EP

Effective date: 20220705

NENP Non-entry into the national phase

Ref country code: DE