WO2021136148A1 - 气体扩散层、其制备方法膜电极组件以及燃料电池 - Google Patents

气体扩散层、其制备方法膜电极组件以及燃料电池 Download PDF

Info

Publication number
WO2021136148A1
WO2021136148A1 PCT/CN2020/139969 CN2020139969W WO2021136148A1 WO 2021136148 A1 WO2021136148 A1 WO 2021136148A1 CN 2020139969 W CN2020139969 W CN 2020139969W WO 2021136148 A1 WO2021136148 A1 WO 2021136148A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
diffusion layer
layer
microporous
slurry
Prior art date
Application number
PCT/CN2020/139969
Other languages
English (en)
French (fr)
Inventor
沈星汉
Original Assignee
上海嘉资新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海嘉资新材料有限公司 filed Critical 上海嘉资新材料有限公司
Priority to US17/789,759 priority Critical patent/US11888166B2/en
Priority to JP2022541015A priority patent/JP7387905B2/ja
Publication of WO2021136148A1 publication Critical patent/WO2021136148A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • H01M8/1006Corrugated, curved or wave-shaped MEA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • H01M4/8821Wet proofing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8835Screen printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the technical field of fuel cells, and more specifically, to a gas diffusion layer, a preparation method, a membrane electrode assembly and a fuel cell.
  • fuel cell As an alternative energy technology, fuel cell has attracted wide attention and continued research and development due to its features of easy start-up, high energy density, zero emission, and high energy conversion efficiency. It has also been used as an automobile, communication base station, and portable power tool.
  • the power supply is widely used.
  • As a commercial power supply system its outstanding advantage is to have a long enough operating life and high energy density, such as standby power supply, passenger cars, material transport vehicles, submarines, etc.
  • the gas diffusion layer has five main functions in the membrane electrode of the proton exchange membrane fuel cell: first, it supports the proton exchange membrane and the catalytic layer; second, the cathode and anode reaction gases in the flow channel are transported through molecular diffusion and Knudsen To the surface of the catalyst; third, the electrons generated by the catalytic layer are transferred to the electrode plate. Fourth, the water produced by the catalyst layer is transported to the flow channel through the capillary effect and concentration diffusion in the gas diffusion layer to be removed in time to avoid mass transfer polarization. Fifth: Sometimes, the gas diffusion layer assumes the function of catalytic layer adhesion, and the catalytic layer is directly coated on the surface of the gas diffusion layer.
  • the commonly used gas diffusion layer uses carbon fiber as the raw material, and the base paper is prepared by wet papermaking or non-woven non-woven dry method, and then the gas diffusion layer base paper is prepared through carbonization and graphitization processes. Because the surface of the carbon fiber is hydrophilic or not highly hydrophobic, it will cause the water generated in the fuel cell or the input water to accumulate in the gas diffusion layer and be difficult to discharge, resulting in the reaction gas cannot be transported to the catalyst surface in time, causing serious problems. The mass transfer polarization causes the battery performance to decrease.
  • the technical solution of the present invention provides a gas diffusion layer, a preparation method, a membrane electrode assembly, and a fuel cell, which can ensure the balance of gas transmission in the fuel cell.
  • the present invention provides the following technical solutions:
  • a gas diffusion layer is used in a fuel cell, wherein the gas diffusion layer is added with catechol or an additive containing a catechol structure compound in the slurry used in the process of processing the microporous layer, in particular, it may be dopamine hydrochloride.
  • the gas diffusion layer is added with dopamine hydrochloride to the slurry used in the process of processing the microporous layer.
  • the slurry used in the process of making the gas diffusion layer into the microporous layer is composed of conductive materials, pore formers, hydrophobic agents, dispersions, and the like.
  • the slurry used in the process of making the gas diffusion layer into the microporous layer includes a conductive material, a pore former, a hydrophobic agent and a dispersion liquid.
  • the conductive material in the slurry used in the process of making the microporous layer of the gas diffusion layer is carbon black; in, the hydrophobic agent is an aqueous dispersion of polytetrafluoroethylene, added with catechol or containing
  • the additive of the catechol structure compound in particular, may be dopamine hydrochloride.
  • the dispersion is alcohols.
  • the thickness of the gas diffusion layer is 10 um to 500 um.
  • the present invention also discloses a preparation method for preparing the gas diffusion layer.
  • the preparation method includes: configuring a microporous layer slurry, the microporous layer slurry including a conductive material, a pore former, a hydrophobic agent and The dispersion liquid is mixed and dispersed uniformly; the microporous layer slurry is coated on the surface of the gas diffusion layer substrate after the hydrophobic treatment by direct coating or screen printing; and the microporous layer is coated The gas diffusion layer of the layer slurry is baked.
  • the gas diffusion layer is added with dopamine hydrochloride to the slurry used in the process of processing the microporous layer.
  • the slurry used in the process of making the gas diffusion layer into the microporous layer includes a conductive material, a pore former, a hydrophobic agent and a dispersion liquid.
  • the conductive material in the slurry used for the gas diffusion layer in the process of making the microporous layer is carbon black
  • the pore-forming agent includes one or two of ammonium carbonate, ammonium oxalate, and lithium carbonate; in some embodiments, the hydrophobizing agent is an aqueous dispersion of polytetrafluoroethylene, and catechin is added. Phenol or additives containing catechol structure compounds (especially dopamine hydrochloride).
  • the dispersion is alcohols.
  • the thickness of the gas diffusion layer is 10 um to 500 um.
  • the present invention also includes a membrane electrode assembly, characterized in that the membrane electrode assembly includes: a cathode-side gas diffusion layer, a cathode-side catalyst layer, a proton exchange membrane, an anode-side catalyst layer, and an anode-side gas diffusion layer stacked in sequence
  • the cathode side gas diffusion layer is prepared by the gas diffusion layer microporous layer treatment process of the present invention
  • the anode side gas diffusion layer is prepared by the gas diffusion layer microporous layer treatment process of the present invention
  • the present invention also discloses a fuel cell, characterized in that the fuel cell includes: the fuel cell stack composed of the above-mentioned membrane electrode assembly, electrode plate, current collecting plate, insulating plate, sealing structure, end plate, etc. .
  • Fig. 1 is a schematic flow chart of a preparation method provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a membrane electrode assembly provided by an embodiment of the present invention.
  • FIG. 3 is a comparison curve of the test performance results of the single battery prepared in the embodiment of the present invention and the single battery prepared in the traditional scheme.
  • the basic components of a proton exchange membrane fuel cell include: electrode plate, gas diffusion layer, catalyst layer and proton exchange membrane.
  • the pole plates can be divided into unipolar plates and bipolar plates. Its function is to isolate each single cell in the stack and transport fuel and oxygen to the gas diffusion layer through the channels on it. At the same time, it also has a relatively high High electrical conductivity, which can lead current to the outside world.
  • the gas diffusion layer, the catalyst layer and the proton exchange membrane constitute the membrane electrode assembly.
  • the gas diffusion layer is located between the catalyst layer and the electrode plate. It is one of the key materials in the proton exchange membrane fuel cell. It is the outermost layer of the membrane electrode assembly, which provides contact between the membrane electrode assembly and the electrode plate, and distributes the reactants to the catalyst. Layer and let the reaction product water leave the electrode surface, allowing water to pass between the electrode and the flow channel.
  • the currently mature gas diffusion layer materials used in fuel cells are porous carbon materials, such as carbon paper (such as carbon fiber paper) or carbon cloth (such as carbon fiber cloth), and one side of which is coated with micro ⁇ Hole layer.
  • carbon paper or carbon cloth is usually hydrophobized to construct a hydrophobic gas phase channel.
  • a carbon powder layer is usually made on the surface of the gas diffusion layer in order to improve the pore structure of the gas diffusion layer. Its function is to reduce the contact resistance between the catalyst layer and the gas diffusion layer, provide better pore structure and hydrophobicity, and make gas and water Redistribution occurs to prevent "water flooding" of the electrode catalyst layer.
  • the hydrophobic agent in the microporous layer and the capillary action of the micropores make the microporous layer have good hydrophobic and drainage properties, thereby providing stable gas and water channels for the fuel cell reaction, while the conductive carbon black in the microporous layer is Make the microporous layer have excellent electron channels. Its addition realizes the redistribution of reaction gas and reaction product water between the flow field and the catalyst layer, and plays an important role in enhancing conductivity, improving electrode performance, enhancing battery operation stability and extending operating life.
  • a microporous layer structure of a conventional fuel cell includes a microporous layer with high water vapor permeability and a microporous layer with low water vapor permeability that are stacked in sequence; the stacking direction is perpendicular to the direction of the air flow path.
  • the thickness of the microporous layer with high water vapor permeability increases, the thickness of the microporous layer with low water vapor permeability decreases, and the total thickness of the microporous layer structure remains the same.
  • the surface of carbon fiber itself is hydrophilic, and it is not easy to combine with the hydrophobic polytetrafluoroethylene (PTFE) emulsion.
  • the conventional slurry configuration method can solve the hydrophobic problem of the gas diffusion layer material, the polytetrafluoroethylene is not easy to combine with the hydrophobic polytetrafluoroethylene (PTFE) emulsion.
  • the carbon fiber surface is unevenly distributed and tends to aggregate into clusters. Especially in the process of long-term operation of fuel cell stacks, especially the operating conditions of fuel cell stacks for vehicles are very complicated and harsh, and they have to experience tens of thousands of hours of operating life and tens of thousands of wet and dry cycles and thermal shocks.
  • the microporous layer in the gas diffusion layer is separated from the base layer, resulting in a larger interstitial space, causing liquid water to accumulate here, causing local flooding.
  • Blocking the diffusion of reactive gas to the surface of the catalyst causes mass transfer polarization to cause local reverse polarity, which ultimately results in a decrease in membrane electrode voltage or effective perforation. It is generally believed that when the fuel cell stack is below the freezing temperature, the remaining liquid water in the gas diffusion layer freezes and expands in volume. When the temperature rises, the ice melts again. After such reciprocation many times, the gap space becomes larger and larger. .
  • the contact part of the microporous layer and the base layer due to the different materials of the two, it is easier to accumulate liquid water, which is more likely to fail first.
  • additives containing catechol or catechol structure compounds, especially dopamine hydrochloride are added.
  • the aromatic ring functional group in this type of substance is a unit with a conjugated structure, which is similar to the carbon-carbon chemical bond structure on the surface of carbon fiber after high-temperature graphitization. It can be well contacted and dispersed.
  • the ortho-dihydroxyl structure on the aromatic ring itself It has good electrical conductivity, helps to improve the electrical conductivity of the microporous layer, and can be in good contact with the polytetrafluoroethylene molecular chain, and it is also miscible with the alcohol solvent in the polytetrafluoroethylene solution.
  • dopamine hydrochloride containing a catechol structure and an amino acid structure functional group can further increase the bond with the polytetrafluoroethylene solution and carbon fiber.
  • the functional group of the amino acid structure will naturally decompose to produce gas after high temperature treatment in the later process, and it is also a pore former, which can increase the porosity of the gas diffusion layer material.
  • the understanding of the attachment ability of catechol groups comes from the substances secreted on the tentacles of shellfish marine organisms.
  • the tentacles of shellfish organisms can be attached to various surfaces because catechol groups exist in the tentacles. Secreted adhesion protein.
  • Compounds containing catechol groups can imitate the magical adhesion ability of shellfish, so that PTFE can be closely attached to the surface of the carbon fiber of the gas diffusion layer.
  • Fig. 1 is a schematic flow chart of a method for preparing a gas diffusion layer of a fuel cell according to an embodiment of the present invention, and the preparation method includes:
  • Step S11 configure the microporous layer slurry, which is composed of conductive material, pore former, hydrophobic agent and dispersion, mixed and dispersed uniformly.
  • the conductive material is carbon black, preferably Vulcan XC-72(R) or Acetylene Black.
  • the pore former includes one or two of ammonium carbonate, ammonium oxalate and lithium carbonate, preferably ammonium oxalate.
  • the hydrophobizing agent is a polytetrafluoroethylene aqueous dispersion, and an additive containing catechol or a catechol structure compound is added, especially dopamine hydrochloride.
  • the dispersion liquid is alcohols, and the alcohols include one or two of ethanol, isopropanol, and ethylene glycol, preferably isopropanol.
  • Step S12 coating the slurry on the surface of the gas diffusion layer substrate after the hydrophobic treatment by direct coating or screen printing, wherein the substrate may be carbon paper or carbon cloth.
  • Step S13 Put the gas diffusion layer coated with the microporous layer into a drying box for baking treatment.
  • the microporous layer slurry used in step S11 includes a conductive material, a pore-forming agent, a hydrophobic agent, and a dispersion liquid, which are uniformly mixed and dispersed.
  • FIG. 2 is a fuel cell membrane electrode assembled from a gas diffusion layer prepared by the present invention.
  • 1 is the proton exchange membrane
  • 21 is the anode catalytic layer
  • 31 is the microporous layer of the anode gas diffusion layer
  • 41 is the base material of the anode gas diffusion layer
  • 22 is the anode catalyst layer
  • 32 is the anode gas diffusion layer
  • the microporous layer, 42 is the base material part of the anode gas diffusion layer.
  • another embodiment of the present invention also provides a fuel cell, which includes the membrane electrode assembly described in the foregoing embodiment.
  • Sample 1 Preparation of microporous layer structure according to the technical scheme of the embodiment of the present invention
  • the porosity of the gas diffusion layer prepared in this example was determined to be 53.1% and the thickness to be 223 pm.
  • the porosity in the sample was determined to be 48.2%, and the thickness was 219 pm.
  • the dipping method is used to measure the porosity of the microporous layer.
  • the area is a and the thickness of the base layer of the gas diffusion layer that has been hydrophobically treated is weighed as ⁇ 1 and soaked in decane until the weight is constant (decane is used as a wetting fluid, because of its low surface energy, it can be immersed and diffused In all the holes of the base layer, use the weighing method to determine the mass of the diffusion layer ⁇ 2 before and after soaking.
  • the area of the diffusion layer (including the base layer and the microporous layer) prepared with the same area as a and thickness b2 is weighed as ⁇ 3. Soak in decane until the weight is constant.
  • Use the weighing method to determine that the diffusion layer (including the base layer and the microporous layer) before and after the soaking is weighed as ⁇ 4 , and the porosity of the microporous layer can be calculated by the following formula:
  • the above two samples were assembled into a proton exchange membrane fuel cell with an active area of 200 cm2.
  • the gas diffusion layer assembly method and cathode and anode gas flow directions prepared in sample 1 are the same as those shown in Figure 3.
  • the test and comparison results The electrochemical performance of the battery.
  • the detection environment of the data in Figure 34 is: the cathode inlet pressure is the same as the anode inlet pressure, the anode inlet gas humidity is 50%, the cathode inlet gas humidity is 50%, and other operating conditions are the same.
  • the results showed that the voltage of the battery prepared in sample 1 remained stable when the density was above 1.OA/cm2, while the voltage of the battery prepared in sample 2 dropped significantly, causing mass transfer polarization.
  • the horizontal axis is the current density
  • the vertical axis is the voltage. It can be seen that the fuel cell prepared by adopting the technical scheme of the present application has a good self-humidification effect, and the battery performance is relatively good.
  • the process conditions can be adjusted as needed to form gas diffusion layers of different thicknesses, for example, the thickness of the gas diffusion layer obtained is between 10 pm and 500 pm.
  • the present invention can be realized through the following examples:
  • a gas diffusion layer used in a fuel cell characterized in that the gas diffusion layer comprises a gas diffusion layer substrate and a microporous layer slurry coated on the gas diffusion layer substrate, wherein the Additives containing catechol or catechol structure compounds are added to the microporous layer slurry.
  • gas diffusion layer according to example 1 characterized in that the gas diffusion layer is added with dopamine hydrochloride to the slurry used in the process of processing the microporous layer.
  • gas diffusion layer structure according to example 1 characterized in that the gas diffusion layer includes a conductive material in the slurry used in the process of making the microporous layer, and the conductive material is carbon black.
  • the slurry used in the process of making the microporous layer of the gas diffusion layer includes a hydrophobic agent, and the hydrophobic agent is an aqueous dispersion of polytetrafluoroethylene, which is added Tea phenols or additives containing catechol structure compounds.
  • gas diffusion layer structure according to example 1 characterized in that the gas diffusion layer includes a dispersion liquid in the slurry used in the process of making the microporous layer, and the dispersion liquid is an alcohol.
  • a method for preparing a gas diffusion layer for preparing the gas diffusion layer includes: configuring a microporous layer slurry, the microporous layer
  • the slurry includes a conductive material, a pore former, a hydrophobic agent, and a dispersion liquid.
  • the microporous layer slurry is evenly mixed and dispersed.
  • the microporous layer slurry is coated on the surface of the gas diffusion layer substrate after the hydrophobic treatment by direct coating or screen printing. And calcining the gas diffusion layer coated with the microporous layer slurry.
  • Example 10 The method for preparing a gas diffusion layer according to Example 9, characterized in that the substrate may be carbon paper or carbon cloth.
  • microporous layer slurry used in the gas diffusion layer includes a conductive material, a pore former, a hydrophobic agent and a dispersion liquid.
  • Example 13 The method for preparing a gas diffusion layer according to Example 9, characterized in that the conductive material in the slurry used in the process of making the gas diffusion layer into the microporous layer is carbon black.
  • Example 14 The method for preparing a gas diffusion layer according to Example 9, wherein the pore former includes one or two of ammonium carbonate, ammonium oxalate, and lithium carbonate.
  • Example 15 The method for preparing a gas diffusion layer according to Example 9, characterized in that the hydrophobic agent is an aqueous dispersion of polytetrafluoroethylene, and catechol or an additive containing a catechol structure compound is added.
  • the hydrophobic agent is an aqueous dispersion of polytetrafluoroethylene, and catechol or an additive containing a catechol structure compound is added.
  • a membrane electrode assembly characterized in that the membrane electrode assembly comprises: a cathode-side gas diffusion layer, a cathode-side catalyst layer, a proton exchange membrane, an anode-side catalyst layer, and an anode-side gas diffusion layer which are sequentially stacked; wherein ,
  • the cathode side gas diffusion layer includes the gas diffusion layer microporous layer as described in any one of Examples 1 to 18;
  • the anode side gas diffusion layer includes the gas diffusion layer as described in any one of Examples 1 to 18 Floor.
  • a fuel cell characterized in that the fuel cell comprises: a fuel cell stack composed of the membrane electrode assembly as described in Example 19, an electrode plate, a current collecting plate, an insulating plate, a sealing structure, and an end plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

一种气体扩散层、其制备方法、膜电极组件以及燃料电池,气体扩散层包括气体扩散层基材(41、42)以及涂于气体扩散层基材(41、42)上的微孔层浆料,微孔层浆料中特别添加了含有儿茶酚或含有邻苯二酚结构化合物的添加剂,特别是盐酸多巴胺。

Description

气体扩散层、其制备方法膜电极组件以及燃料电池
技术领域
本发明涉及燃料电池技术领域,更具体的说,涉及一种气体扩散层、制备方法、膜电极组件以及燃料电池。
背景技术
燃料电池作为可替代能源技术,以启动方便、高能量密度、零排放、能量转化效率高的特点引起广泛的关注并持续进行了研究开发,并且已经作为自动车、通信基站、便携式电动工具等的电源而广泛应用。作为商业化运用的电源系统,其突出的优点就是要有足够长的运行寿命和高的能量密度,比如应于备用电源、乘用车、物料运输车、潜艇等。
质子交换膜燃料电池是发展最成熟,最接近于商业应用的燃料电池。气体扩散层在质子交换膜燃料电池膜电极中主要要五个作用:第一、支撑起质子交换膜和催化层;第二,将流场流道内的阴阳极反应气体通过分子扩散和努森传输到催化剂表面;第三,将催化层产生的电子传输到极板。第四,催化剂层生产的水在气体扩散层通过毛细效应和浓差扩散等传输到流道及时排除,避免出现传质极化。第五:有时,气体扩散层承担起催化层附着的功能,将催化层直接涂覆在气体扩散层表面。常用的气体扩散层以碳纤维为原料,经过湿法抄纸或非织无纺干法制备出原纸,然后经过碳化和石墨化工程制备出气体扩散层原纸。由于碳纤维表面是亲水的或者是疏水性不强的,会造成燃料电池中产生的水或输入的水囤积在气体扩散层内部难以排出,从而导致反应气体不能及时传输到催化剂表面,产生严重的传质极化,导致电池性能下降。
通过上述描述可知,如何保证燃料电池中气体传输平衡,以保证燃料电池具有较好的性能,是燃料电池领域一个亟待解决的问题。
发明内容
为了解决上述问题,本发明技术方案提供了一种气体扩散层、制备方法、膜电极组件以及燃料电池,可以保证燃料电池中气体传输平衡。
为了实现上述问题,本发明提供如下技术方案:
种气体扩散层,用于燃料电池,其中,所述气体扩散层在做微孔层处理过程使用的浆料中添加儿茶酚或含有邻苯二酚结构化合物的添加剂,特别可以是盐酸多巴胺。
在一些实施例中,所述气体扩散层在做微孔层处理过程使用的浆料中添加盐酸多巴胺。
在一些实施例中,所述气体扩散层在做微孔层过程使用的浆料由导电材料、造孔剂、疏水剂和分散液等组成。
在一些实施例中,所述气体扩散层在做微孔层过程使用的浆料包括导电材料、造孔剂、疏水剂和分散液。
在一些实施例中,气体扩散层在做微孔层过程使用的浆料中所述导电材料为炭黑;在中,所述疏水剂为聚四氟乙烯水分散液,添加儿茶酚或含有邻苯二酚结构化合物的添加剂,特别可以是盐酸多巴胺。
在一些实施例中,所述分散液为醇类。
在一些实施例中,所述气体扩散层的厚度为10um~500um。
本发明还公开一种用于制备所述的气体扩散层的制备方法,所述制备方法包括:配置微孔层浆料,所述微孔层浆料包括导电材料、造孔剂、疏水剂和分散液,混合分散均匀;将所述微孔层浆料通过直接涂覆或丝网印刷的方式涂在经过疏水处理后的气体扩散层基材表面;以及对所述涂覆过所述微孔层浆料的气体扩散层进行焙烧处理。
在一些实施例中,所述气体扩散层在做微孔层处理过程使用的浆料中添加盐酸多巴胺。
在一些实施例中,所述气体扩散层在做微孔层过程使用的浆料包括导电材料、造孔剂、疏水剂和分散液。
在一些实施例中,气体扩散层在做微孔层过程使用的浆料中所述导电材料为炭黑
在一些实施例中,所述造孔剂包括碳酸铵、草酸铵、碳酸锂中的一种或两种;在一些实施例中,所述疏水剂为聚四氟乙烯水分散液,添加儿茶酚或含有邻苯二酚结构化合物的添加剂(特别是盐酸多巴胺)。
在一些实施例中,所述分散液为醇类。
在一些实施例中,所述气体扩散层的厚度为10um~500um。
本发明还包含一种膜电极组件,其特征在于,所述膜电极组件包括:依次层叠设置的阴极侧气体扩散层、阴极侧催化剂层、质子交换膜、阳极侧催化剂层以及阳极侧气体扩散层;其中,所述阴极侧气体扩散层由本发明所述的气体扩散层微孔层处理工艺制备而成;其中,所述阳极侧气体扩散层由本发明所述的气体扩散层微孔层处理工艺制备而成;本发明还公开一种燃料电池,其特征在于,所述燃料电池包括:采用上述膜电极组件、极板、集流板、绝缘板、密封结构、端板等组成的燃料电池电堆。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种制备方法的流程示意图;
图2为本发明实施例提供的一种膜电极组件的结构示意图;
图3为本发明实施例制备出的单电池与传统方案制备出的单电池的测试性能结果对比曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一般的,质子交换膜燃料电池的基本构件包括:极板、气体扩散层、催化剂层和质子交换膜。
极板可以分为单极板和双极板,其作用是在电池堆中隔离每个单节电池,并通过其上的通道向气体扩散层输送燃料和氧气,与此同时,还要具有较高的导电性能,从而能够向外界导出电流。
气体扩散层、催化剂层和质子交换膜构成了膜电极组件。气体扩散层位于催化剂层和极板之间,是质子交换膜燃料电池中的关键材料之一,是膜电极组件的最外层,为膜电极组件和极板提供接触,将反应物分配到催化剂层,并让反应生成物水离开电极表面,允许水在电极和流道间通过。
基于上述要求,目前成熟应用于燃料电池上的气体扩散层用材料为多孔的碳材料,如碳纸(如碳纤维纸)或碳布(如碳纤维布),并在其一侧表面涂覆有微孔层。为改善反应气体和液态水在气体扩散层中的传输,通常对碳纸或碳布进行疏水化处理,构建疏水的气相通道。
通常为了改善气体扩散层的孔隙结构而在其表面制作的一层碳粉层,作用是降低催化剂层和气体扩散层之间的接触电阻,提供较好的孔结构和憎水性,使气体和水发生再分配,防止电极催化层“水淹”。微孔层中的疏水剂和微孔的毛细作用使微孔层具有很好的疏水和排水性能,从而为燃料电池反应提供稳定的气体通道和水通道,而微孔层中的导电碳黑则使微孔层具有优良的电子通道。它的加入实现了反应气体和反应产物水在流场和催化剂层之间的再分配,对于增强导电性、提高电极性能、增强电池运行稳定性和延长运行寿命具有重要作用。
一种常规燃料电池的微孔层结构包括依次层叠设置的高水气透过性微孔层与低水气透过性微孔层;层叠方向与空气流路方向垂直。沿空气流路方向上,高水气透过性微孔层的厚度递增,低水气透过性微孔层的厚度递减,微孔层结构的总厚度保持一致。
然而碳纤维表面本身是亲水的特性,与疏水的聚四氟乙烯(PTFE)乳液不容易结合到起,常规的浆料配置方法虽然能解决气体扩散层材料疏水的问题,但聚四氟乙烯在碳纤维表面的分布不均匀,容易聚集成团。特别是在燃料电池电堆长期运行过程中,尤其是车用燃料电池电堆运行工况非常复杂和苛刻,要经历上万小时的运行寿命和数万次的干湿循环和冷热冲击。在做燃料电池电堆核心部件膜电极的失效分析时,气体扩散层中微孔层与基底层之间分离,产生较大的间隙空间,从而造成液态水囤积在此处,造成局部水淹,阻隔反应气体扩散到催化剂表面引起传质极化造成局部反极,最终造成膜电极电压降低或穿孔实效。通常认为燃料电池电堆在冰点温度以下时,气体扩散层内残余的液态水结冰,体积膨胀,当温度升高时,冰又融化,如此往复多次以后,间隙空间变的越来越大。尤其是微孔层与基底层接触的部位,由于二者材料异性,更容易囤积液体水,从而更容易最先失效。
本发明中所选用的微孔层浆料中特别添加了含有儿茶酚或含有邻苯二酚结构化合物的添加剂,特别是盐酸多巴胺。该类物质中的芳环类官能团是具有共辄结构的单元,与经过高温石墨化处理的碳纤维表面碳碳化学键结构类似,能够很好的接触和分散,同时芳环上的邻二羟基结构本身具有良好的导电能力,有助于提高微孔层的导电性,又能够与聚四氟乙烯分子链良好接触,也与聚四氟乙烯溶液中的醇类溶剂良好互溶。特别是含有儿茶酚结构的盐酸多巴胺,同时具有氨基酸结构官能团,能够进一步增加与聚四氟乙烯溶液与碳纤维的结合。氨基酸结构的官能团在后期工艺中经过高温处理时会自然分解生产气体排出,同时也是一种造孔剂,能够增加气体扩散层材料的孔隙率。实际上对儿茶酚基团的附着能力的认识源于贝类海洋生物触角上分泌的物质,贝类生物的触角可以贴附在各种不同的表面,是因为儿茶酚基团存在于触角分泌的黏附蛋白质中。含儿茶酚基团的化合物可模仿贝类的神奇黏附能力,从而使聚四氟乙烯可以紧密贴附于气体扩散层碳纤维的表面。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,图1为本发明实施例提供燃料电池气体扩散层的一种制备方法的流程示意图,该制备方法包括:
步骤S11:配置微孔层浆料,由导电材料、造孔剂、疏水剂和分散液组成,混合分散均勾。所述导电材料为炭黑,优选Vulcan XC-72(R)或Acetylene Black。所述造孔剂包括碳酸铵、草酸铵、碳酸锂中的一种或两种,优选草酸铵。所述疏水剂为聚四氟乙烯水分散液,添加了含有儿茶酚或含有邻苯二酚结构化合物的添加剂,特别是盐酸多巴胺。所述分散液为醇类,所述醇类包括乙醇、异丙醇、乙二醇中的一种或两种,优选异丙醇。
步骤S12:将浆料通过直接涂覆或丝网印刷的方式涂在经过疏水处理后的气体扩散层基材表面,其中基材可以是碳纸或碳布。
步骤S13:对所述涂覆过微孔层的气体扩散层放入干燥箱进行焙烧处理。
在一些实施例中,步骤S11中使用的微孔层浆料包括导电材料、造孔剂、疏水剂和分散液,混合分散均匀。
为基于上述实施例,本发明另一实施例还提供了一种膜电极组件,所述膜电极组件如图2所示,图2为本发明制备得到的气体扩散层组装成的燃料电池膜电极各组成部分的说明:1为质子交换膜,21为阳极催化层,31为阳极气体扩散层微孔层,41为阳极气体扩散层基材部分,22为阳极催化层,32为阳极气体扩散层微孔层,42为阳极气体扩散层基材部分。
基于上述实施例,本发明另一实施例还提供了一种燃料电池,该燃料电池包括上述实施例所述的膜电极组件。
下面结合具体设计参数,将采用本申请技术方案所述的微孔层结构的燃料电池(样品),与传统技术制备的燃料电池(样品二)的性能进行对比说明。
样品一:本发明实施例所述技术方案制备微孔层结构
1)称取3.2gVulcanXC-72(R)^含有2.5g草酸铵的60ml水溶液、20%的PTFE稀释液8g,0.08g盐酸多巴胺倒入一定量异丙醇中,搅拌均匀制成粘度在300cp的浆料;
2)将上述浆料涂覆在经疏水处理过的碳纸(选用TorayH060碳纸);
3)将上述涂覆了浆料的气体扩散层放入马弗炉中以5°C/min的升温速率升温,最终于340°C焙烧60min,待炉温降温至室温后取出气体扩散层,完成微孔层的制备。
按照下述微孔层孔隙率测试方法,测定该实施例制备出的气体扩散层孔隙率为53.1%,厚度为223pm。
(2)对比例:传统技术方案制备微孔层结构
1)称取3.2gVulcanXC-72(R)^含有2.5g草酸铵的60ml水溶液、20%的PTFE稀释液8g倒入一定量异丙醇中,搅拌均勾制成粘度在300cp的浆料;
2)将上述浆料涂覆在经疏水处理过的碳纸(选用TorayH060碳纸);
3)将上述涂覆了浆料的气体扩散层放入马弗炉中以5°C/min的升温速率升温,最终于340°C焙烧60min,待炉温降温至室温后取出气体扩散层,完成微孔层的制备。
按照下述微孔层孔隙率测试方法,测定该样品中孔隙率为48.2%,厚度为219pm。
本发明实施例中采用浸渍法测量微孔层的孔隙率。首先将面积为a,厚度为做过疏水处理的气体扩散层基底层称重为ε1置于癸烷中浸泡至重量恒定(采用癸烷为润湿液,由于其低表面能,能浸入扩散层基底层的全部孔中,利用称重法确定浸泡前后扩散层的质量ε2。再将面积同样为a,厚度为b2制备好的扩散层(包括基底层和微孔层)称重为ε3,置于癸烷中浸泡至重量恒定,利用称重法确定浸泡前后扩散层(包括基底层和微孔层)称重为ε4,通过以下公式可以计算微孔层孔隙率φ:
Figure WO-DOC-FIGURE-
将上述两个样品分别组装成活性区域面积为200cm2的质子交换膜燃料电池,其中,样品一制备出的气体扩散层组装方式和阴极、阳极气体流动方向与附图3所示相同,检测对比得到的电池电化学性能。图34数据的检测环境为:阴极入口压力与阳极入口压力相同,阳极入口气体湿度为50%,阴极入口气体湿度为50%,其他操作条件相同。结果显示,在l.OA/cm2电密以上,样品一制备的电池电压仍然保持稳定,而样品二制备的电池电压则发生明显下降,出现传质极化的现象。图3中,横轴为电流密度,纵轴为电压。可见,采用本申请技术方案制备的燃料电池具有较好的自增湿效果,电池性能较为优良。
可以根据需要调整工艺条件以形成不同厚度的气体扩散层,例如,得到气体扩散层的厚度为10pm至500pm之间。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
本发明可以通过以下示例实现:
1、一种气体扩散层,用于燃料电池,其特征在于,所述气体扩散层包括气体扩散层基材以及涂于所述气体扩散层基材上的微孔层浆料,其中,所述微孔层浆料中添加含有儿茶酚或含有邻苯二酚结构化合物的添加剂。
2、根据示例1所述的气体扩散层,其特征在于,所述气体扩散层在做微孔层处理过程使用的浆料中添加盐酸多巴胺。
3、根据示例1所述的气体扩散层结构,其特征在于,所述气体扩散层在做微孔层过程使用的浆料包括导电材料、造孔剂、疏水剂和分散液。
4、根据示例1所述的气体扩散层结构,其特征在于,气体扩散层在做微孔层过程使用的浆料中包括导电材料,所述导电材料为炭黑。
5、根据示例1所述的气体扩散层结构,其特征在于,气体扩散层在做微孔层过程使用的浆料中包括造孔剂,所述造孔剂包括碳酸铵、草酸铵、碳酸锂中的一种或两种。
6、根据示例1所述的气体扩散层结构,其特征在于,气体扩散层在做微孔层过程使用的浆料中包括疏水剂,所述疏水剂为聚四氟乙烯水分散液,添加儿茶酚或含有邻苯二酚结构化合物的添加剂。
7、根据示例1所述的气体扩散层结构,其特征在于,气体扩散层在做微孔层过程使用的浆料中包括分散液,所述分散液为醇类。
8、根据示例1所述的气体扩散层结构,其特征在于,所述气体扩散层的厚度为10um〜500um
9、根据示例1所述的气体扩散层结构,其特征在于,
9、一种气体扩散层的制备方法,用于制备如示例1〜8中任一项所述的气体扩散层,其特征在于,所方法包括:配置微孔层浆料,所述微孔层浆料包括导电材料、造孔剂、疏水剂和分散液,混合分散均匀将所述微孔层浆料通过直接涂覆或丝网印刷的方式涂在经过疏水处理后的气体扩散层基材表面;以及对所述涂覆过所述微孔层浆料的气体扩散层进行焙烧处理。
10、根据示例9的气体扩散层的制备方法,其特征在于:其中基材可以是碳纸或碳布。
11、根据示例9的气体扩散层的制备方法,其特征在于,所述气体扩散层所使用的微孔层浆料中添加有盐酸多巴胺。
12、根据示例9的气体扩散层的制备方法,其特征在于,所述气体扩散层使用的所述微孔层浆料包括导电材料、造孔剂、疏水剂和分散液。
13、根据示例9的气体扩散层的制备方法,其特征在于,气体扩散层在做微孔层过程使用的浆料中所述导电材料为炭黑。
14、根据示例9的气体扩散层的制备方法,其特征在于,所述造孔剂包括碳酸铵、草酸铵、碳酸锂中的一种或两种.
15、根据示例9的气体扩散层的制备方法,其特征在于,所述疏水剂为聚四氟乙烯水分散液,添加儿茶酚或含有邻苯二酚结构化合物的添加剂。
16、根据示例9的气体扩散层的制备方法,其特征在于,所述分散液为醇类。
17、根据示例15的气体扩散层的制备方法,其特征在于,所述含有邻苯二酚结构化合物的添加剂是盐酸多巴胺。
18、根据示例9的气体扩散层的制备方法,其特征在于,所述气体扩散层的厚度为10um〜500um
19、一种膜电极组件,其特征在于,所述膜电极组件包括:依次层叠设置的阴极侧气体扩散层、阴极侧催化剂层、质子交换膜、阳极侧催化剂层以及阳极侧气体扩散层;其中,所述阴极侧气体扩散层包括如示例1至18中任一项所述的气体扩散层微孔层;所述阳极侧气体扩散层包括如示例1至18中任一项所述的气体扩散层。
20、一种燃料电池,其特征在于,所述燃料电池包括:如示例19所述的膜电极组件、极板、集流板、绝缘板、密封结构、端板组成的燃料电池电堆。

Claims (21)

  1. 一种气体扩散层,用于燃料电池,其特征在于,所述气体扩散层包括气体扩散层基材以及涂于所述气体扩散层基材上的微孔层浆料,其中,所述微孔层浆料中添加含有儿茶酚或含有邻苯二酚结构化合物的添加剂。
  2. 根据权利要求1所述的气体扩散层,其特征在于,所述气体扩散层在做微孔层处理过程使用的浆料中添加盐酸多巴胺。
  3. 根据权利要求1所述的气体扩散层结构,其特征在于,所述气体扩散层在做微孔层过程使用的浆料包括导电材料、造孔剂、疏水剂和分散液。
  4. 根据权利要求1所述的气体扩散层结构,其特征在于,气体扩散层在做微孔层过程使用的浆料中包括导电材料,所述导电材料为炭黑。
  5. 根据权利要求1所述的气体扩散层结构,其特征在于,气体扩散层在做微孔层过程使用的浆料中包括造孔剂,所述造孔剂包括碳酸铵、草酸铵、碳酸锂中的一种或两种。
  6. 根据权利要求1所述的气体扩散层结构,其特征在于,气体扩散层在做微孔层过程使用的浆料中包括疏水剂,所述疏水剂为聚四氟乙烯水分散液,添加儿茶酚或含有邻苯二酚结构化合物的添加剂。
  7. 根据权利要求1所述的气体扩散层结构,其特征在于,气体扩散层在做微孔层过程使用的浆料中包括分散液,所述分散液为醇类。
  8. 根据权利要求1所述的气体扩散层结构,其特征在于,所述气体扩散层的厚度为10μm~500μm。
  9. 根据权利要求1所述的气体扩散层结构,其特征在于,
  10. 一种气体扩散层的制备方法,用于制备如权利要求1~8中任一项所述的气体扩散层,其特征在于,所方法包括:
    配置微孔层浆料,所述微孔层浆料包括导电材料、造孔剂、疏水剂和分散液,混合分散均匀;
    将所述微孔层浆料通过直接涂覆或丝网印刷的方式涂在经过疏水处理后的气体扩散层基材表面;以及
    对所述涂覆过所述微孔层浆料的气体扩散层进行焙烧处理。
  11. 根据权利要求9的气体扩散层的制备方法,其特征在于:其中基材可以是碳纸或碳布。
  12. 根据权利要求9的气体扩散层的制备方法,其特征在于,所述气体扩散层所使用的微孔层浆料中添加有盐酸多巴胺。
  13. 根据权利要求9的气体扩散层的制备方法,其特征在于,所述气体扩散层使用的所述微孔层浆料包括导电材料、造孔剂、疏水剂和分散液。
  14. 根据权利要求9的气体扩散层的制备方法,其特征在于,气体扩散层在做微孔层过程使用的浆料中所述导电材料为炭黑。
  15. 根据权利要求9的气体扩散层的制备方法,其特征在于,所述造孔剂包括碳酸铵、草酸铵、碳酸锂中的一种或两种.
  16. 根据权利要求9的气体扩散层的制备方法,其特征在于,所述疏水剂为聚四氟乙烯水分散液,添加儿茶酚或含有邻苯二酚结构化合物的添加剂。
  17. 根据权利要求9的气体扩散层的制备方法,其特征在于,所述分散液为醇类。
  18. 根据权利要求15的气体扩散层的制备方法,其特征在于,所述含有邻苯二酚结构化合物的添加剂是盐酸多巴胺。
  19. 根据权利要求9的气体扩散层的制备方法,其特征在于,所述气体扩散层的厚度为10μm~500μm。
  20. 一种膜电极组件,其特征在于,所述膜电极组件包括:
    依次层叠设置的阴极侧气体扩散层、阴极侧催化剂层、质子交换膜、阳极侧催化剂层以及阳极侧气体扩散层;
    其中,所述阴极侧气体扩散层包括如权利要求1至18中任一项所述的气体扩散层微孔层;所述阳极侧气体扩散层包括如权利要求1至18中任一项所述的气体扩散层。
  21. 一种燃料电池,其特征在于,所述燃料电池包括:
    如权利要求19所述的膜电极组件、极板、集流板、绝缘板、密封结构、端板组成的燃料电池电堆。
PCT/CN2020/139969 2019-12-31 2020-12-28 气体扩散层、其制备方法膜电极组件以及燃料电池 WO2021136148A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/789,759 US11888166B2 (en) 2019-12-31 2020-12-28 Gas diffusion layer, a preparation method therefor, a membrane electrode assembly and a fuel cell
JP2022541015A JP7387905B2 (ja) 2019-12-31 2020-12-28 ガス拡散層、その製造方法、膜電極アセンブリ及び燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911414606.9A CN111584909B (zh) 2019-12-31 2019-12-31 气体扩散层、其制备方法,对应的膜电极组件以及燃料电池
CN201911414606.9 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021136148A1 true WO2021136148A1 (zh) 2021-07-08

Family

ID=72122352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139969 WO2021136148A1 (zh) 2019-12-31 2020-12-28 气体扩散层、其制备方法膜电极组件以及燃料电池

Country Status (4)

Country Link
US (1) US11888166B2 (zh)
JP (1) JP7387905B2 (zh)
CN (1) CN111584909B (zh)
WO (1) WO2021136148A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256469A (zh) * 2021-12-10 2022-03-29 国家电投集团氢能科技发展有限公司 燃料电池用气体扩散层及其制备方法、燃料电池
CN114551920A (zh) * 2022-02-21 2022-05-27 一汽解放汽车有限公司 一种气体扩散层浆液及其制备方法与应用
CN114725420A (zh) * 2022-04-28 2022-07-08 一汽解放汽车有限公司 气体扩散层及其制备方法、及膜电极组件和燃料电池
CN115084541A (zh) * 2022-06-20 2022-09-20 东风汽车集团股份有限公司 改性基底层及制备方法、气体扩散层、膜电极和燃料电池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584909B (zh) * 2019-12-31 2022-04-05 上海嘉资新材料科技有限公司 气体扩散层、其制备方法,对应的膜电极组件以及燃料电池
CN113140737B (zh) * 2021-01-08 2023-09-22 上海嘉资新材料科技有限公司 一种气体扩散层、其制备方法,对应的膜电极组件以及燃料电池
CN113140738B (zh) * 2021-01-08 2023-09-22 上海嘉资新材料科技有限公司 一种气体扩散层、其制备方法,对应的膜电极组件以及燃料电池
CN114267845B (zh) * 2021-11-26 2023-11-14 武汉氢能与燃料电池产业技术研究院有限公司 一种燃料电池气体扩散层及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066231A (zh) * 2012-12-31 2013-04-24 中科院广州化学有限公司 一种锂离子电池用耐高温复合隔膜的制备方法
CN107851803A (zh) * 2015-07-16 2018-03-27 卢森堡科学技术研究院 电催化活性纳米复合材料及其生产方法
CN109742411A (zh) * 2018-12-06 2019-05-10 东南大学 一种多巴胺修饰石墨烯微生物燃料电池阳极的制备方法
CN110148759A (zh) * 2019-05-07 2019-08-20 武汉理工大学 面向高电流密度的质子交换膜燃料电池气体扩散层的制备方法
JP2019160444A (ja) * 2018-03-08 2019-09-19 国立大学法人九州大学 電極触媒層/ガス拡散層一体型の電極構造体及びその製造方法、並びに膜電極接合体及び固体高分子形燃料電池
CN111584879A (zh) * 2019-12-31 2020-08-25 上海嘉资新材料有限公司 气体扩散层、其制备方法、以及相应的膜电极组件以及燃料电池
CN111584909A (zh) * 2019-12-31 2020-08-25 上海嘉资新材料有限公司 气体扩散层、其制备方法,对应的膜电极组件以及燃料电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171087A (ja) * 2003-12-11 2005-06-30 Samsung Sdi Co Ltd プロトン伝導性電解質及び燃料電池
CN101573816A (zh) * 2007-01-05 2009-11-04 埃克民公司 生物阳极和生物阴极堆叠组件
JP2008277094A (ja) 2007-04-27 2008-11-13 Equos Research Co Ltd 燃料電池用拡散層及びその製造方法、膜−電極接合体並びに燃料電池
US11289721B2 (en) * 2016-09-27 2022-03-29 Guardnec Co., Ltd. Gas diffusion layer comprising porous carbonaceous film layer for fuel cell
CN106299398B (zh) * 2016-09-30 2019-03-29 新源动力股份有限公司 一种提高燃料电池性能的双层微孔层制备方法
CN106803561B (zh) * 2017-03-10 2020-09-29 厦门益舟新能源科技有限公司 一种功能化改性隔膜及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066231A (zh) * 2012-12-31 2013-04-24 中科院广州化学有限公司 一种锂离子电池用耐高温复合隔膜的制备方法
CN107851803A (zh) * 2015-07-16 2018-03-27 卢森堡科学技术研究院 电催化活性纳米复合材料及其生产方法
JP2019160444A (ja) * 2018-03-08 2019-09-19 国立大学法人九州大学 電極触媒層/ガス拡散層一体型の電極構造体及びその製造方法、並びに膜電極接合体及び固体高分子形燃料電池
CN109742411A (zh) * 2018-12-06 2019-05-10 东南大学 一种多巴胺修饰石墨烯微生物燃料电池阳极的制备方法
CN110148759A (zh) * 2019-05-07 2019-08-20 武汉理工大学 面向高电流密度的质子交换膜燃料电池气体扩散层的制备方法
CN111584879A (zh) * 2019-12-31 2020-08-25 上海嘉资新材料有限公司 气体扩散层、其制备方法、以及相应的膜电极组件以及燃料电池
CN111584909A (zh) * 2019-12-31 2020-08-25 上海嘉资新材料有限公司 气体扩散层、其制备方法,对应的膜电极组件以及燃料电池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256469A (zh) * 2021-12-10 2022-03-29 国家电投集团氢能科技发展有限公司 燃料电池用气体扩散层及其制备方法、燃料电池
CN114551920A (zh) * 2022-02-21 2022-05-27 一汽解放汽车有限公司 一种气体扩散层浆液及其制备方法与应用
CN114725420A (zh) * 2022-04-28 2022-07-08 一汽解放汽车有限公司 气体扩散层及其制备方法、及膜电极组件和燃料电池
CN115084541A (zh) * 2022-06-20 2022-09-20 东风汽车集团股份有限公司 改性基底层及制备方法、气体扩散层、膜电极和燃料电池
CN115084541B (zh) * 2022-06-20 2024-01-16 东风汽车集团股份有限公司 改性基底层及制备方法、气体扩散层、膜电极和燃料电池

Also Published As

Publication number Publication date
JP2022553451A (ja) 2022-12-22
CN111584909A (zh) 2020-08-25
US20230045638A1 (en) 2023-02-09
JP7387905B2 (ja) 2023-11-28
US11888166B2 (en) 2024-01-30
CN111584909B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2021136148A1 (zh) 气体扩散层、其制备方法膜电极组件以及燃料电池
CN110148759B (zh) 面向高电流密度的质子交换膜燃料电池气体扩散层的制备方法
US3899354A (en) Gas electrodes and a process for producing them
JP5488254B2 (ja) 燃料電池用親水性多孔質層、ガス拡散電極およびその製造方法、ならびに膜電極接合体
CN106229533B (zh) 亲水/疏水复合型多层膜电极及其制备方法
CN107681165B (zh) 一种燃料电池的微孔层结构、其制备方法与燃料电池阴极组件
CN110380063A (zh) 一种质子交换膜燃料电池用气体扩散层及其制备方法和质子交换膜燃料电池
CN111193040A (zh) 一种燃料电池气体扩散层及其制备方法、燃料电池
CN109742409A (zh) 一种氢质子交换膜燃料电池用气体扩散层及其制备方法
CA3080007C (en) Microporous layer structure of fuel cell and preparation method therefor, and fuel cell cathode assembly
US11302947B2 (en) Membrane electrode assembly of fuel cell and preparation method therefor
CN111584880A (zh) 一种低铂质子交换膜燃料电池膜电极及其制备方法
CN103855408A (zh) 一种改善质子交换膜燃料电池阳极水管理的膜电极
KR20180058571A (ko) 그래핀폼을 포함하는 가스유로/가스확산층 복합 기능 연료전지용 부재
CN111584879B (zh) 气体扩散层、其制备方法、以及相应的膜电极组件以及燃料电池
KR101881139B1 (ko) 연료전지용 미세다공층, 이를 포함하는 기체확산층 및 이를 포함하는 연료전지
US20240072263A1 (en) Cathode catalyst layer and preparation method and use thereof, and fuel cell
CN105762368A (zh) 一种复合电极及其制备方法和应用
WO2015009233A1 (en) Diffusion medium for use in fuel cell, fuel cell and method of making the diffusion medium
KR100689105B1 (ko) 캐필러리 공정을 이용한 연료전지의 촉매층 제조 방법
CN114023977B (zh) 一种离子树脂呈连续梯度分布的膜电极及其制备方法
CN115425239A (zh) 一种具有疏水性和透气性双梯度的微孔层的制备方法
KR101544189B1 (ko) 연료 전지 전극 촉매층 형성용 잉크, 이를 이용한 연료 전지 전극 촉매층의 제조 방법, 이에 의하여 제조된 연료 전지 전극 촉매층 및 이를 포함하는 막전극 접합체, 연료 전지
CN217588991U (zh) 一种可改善气体传输和水管理能力的气体扩散层
JP2003282069A (ja) 燃料電池用膜電極接合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911042

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20911042

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.06.2023).

122 Ep: pct application non-entry in european phase

Ref document number: 20911042

Country of ref document: EP

Kind code of ref document: A1