WO2021135516A1 - 有机化合物、电子元件和电子装置 - Google Patents

有机化合物、电子元件和电子装置 Download PDF

Info

Publication number
WO2021135516A1
WO2021135516A1 PCT/CN2020/121974 CN2020121974W WO2021135516A1 WO 2021135516 A1 WO2021135516 A1 WO 2021135516A1 CN 2020121974 W CN2020121974 W CN 2020121974W WO 2021135516 A1 WO2021135516 A1 WO 2021135516A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
groups
same
different
Prior art date
Application number
PCT/CN2020/121974
Other languages
English (en)
French (fr)
Inventor
张孔燕
马天天
曹佳梅
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Priority to US17/622,372 priority Critical patent/US11434208B2/en
Priority to KR1020217043278A priority patent/KR102422363B1/ko
Publication of WO2021135516A1 publication Critical patent/WO2021135516A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/57Nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention claims the priority of the Chinese patent application filed on December 30, 2019 with the application number CN201911404312.8, and the full content of the above-mentioned Chinese patent application is cited here as a part of this application.
  • the present invention claims the priority of the Chinese patent application filed on July 3, 2020 with the application number CN202010635712.6, and the full content of the Chinese patent application disclosed above is cited here as a part of this application.
  • This application relates to the technical field of organic materials, in particular to an organic compound, an electronic component and an electronic device.
  • OLED Organic electroluminescent materials
  • Organic light-emitting devices generally include an anode, a cathode, and an organic material layer in between.
  • the organic material layer is usually formed in a multi-layer structure composed of different materials to improve the brightness, efficiency and life of the organic electroluminescent device.
  • the organic material layer may be a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and Electron injection layer and other components.
  • holes and electrons are injected into the organic material layer from the anode and the cathode respectively, and excitons are formed when the injected holes and electrons meet, and when these excitons return Glows in the ground state.
  • the purpose of this application is to provide an organic compound, electronic component and electronic device to improve the performance of the organic electroluminescent device.
  • an organic compound is provided, and the structural formula of the organic compound is shown in Chemical Formula 1:
  • any one of R 1 , R 2 , R 3 , and R 4 is Any other of R 1 , R 2 , R 3 , R 4 is The remaining two of R 1 , R 2 , R 3 , and R 4 are the same or different, and are each independently selected from hydrogen, deuterium, fluorine, chlorine, alkyl groups with 1 to 12 carbon atoms, and 1 to carbon atoms 12 halogenated alkyl groups, alkoxy groups having 1 to 12 carbon atoms, cycloalkyl groups having 3 to 10 carbon atoms, aryl groups having 6 to 20 carbon atoms, heteroaryl groups having 3 to 20 carbon atoms base, Represents a chemical bond;
  • X 1 , X 2 , X 3 are the same or different, X 1 is C (R X1 ) or N, X 2 is C (R X2 ) or N, X 3 is C (R X3 ) or N, and X 1 , X At least one of 2 and X 3 is N;
  • R X1 , R X2 , and R X3 are the same or different, and are each independently selected from hydrogen, deuterium, halogen group, cyano group, alkyl group having 1 to 12 carbon atoms, and haloalkyl group having 1 to 12 carbon atoms , C1-C12 alkoxy group, C3-C10 cycloalkyl group, C6-C20 aryl group, C3-C20 heteroaryl group;
  • L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heterogeneous group having 3 to 30 carbon atoms
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, A substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms; a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms , A substituted or unsubstituted heteroaralkyl group with 2-30 carbon atoms;
  • the substituents in L 1 , L 2 , Ar 1 , Ar 2 and Ar 3 are the same or different from each other, and are each independently selected from deuterium, halogen group, cyano group, alkyl group having 1 to 10 carbon atoms, A halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and the number of carbon atoms is The group consisting of 6-20 arylthio groups, 3-12 alkylsilyl groups, 1-10 alkylamino groups, and 3-10 cycloalkyl groups, and At least one substituent is cyano.
  • the compound of the application is a structure composed of an adamantyl group as the core, and an electron-deficient nitrogen-containing heteroaryl group and a cyano group are connected to the adamantane; the structure composed of the adamantyl group and the cyano group has a structure with a strong dipole moment , So that the polarity of the material has been improved.
  • the highly polar, electrically attracting cyano group can deepen the LUMO energy level, thereby further improving the electron mobility. Therefore, the ability of the cyano group to attract electrons after combining with the electron-deficient nitrogen-containing heteroaryl group Significantly improved, organic materials with high electron mobility can be obtained, and the electron transport efficiency can be improved.
  • the luminous efficiency and life of the device can be improved, and the operating voltage can be reduced.
  • the large volume and rigidity of the adamantyl group also improves the film-forming properties and thermal stability of the material, making it easier for mass production and use.
  • an electronic component including an anode and a cathode disposed opposite to each other, and a functional layer provided between the anode and the cathode; the functional layer includes the above-mentioned organic compound.
  • an electronic device including the above-mentioned electronic component.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a photoelectric conversion device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the structure of an electronic device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device according to another embodiment of the present application.
  • Electron injection layer a hole injection layer; 321. Hole transport layer; 322.
  • Electron blocking layer 330. Organic light-emitting layer; 340. Hole blocking layer; 350.
  • any one of R 1 , R 2 , R 3 , and R 4 is Any other of R 1 , R 2 , R 3 , R 4 is The remaining two of R 1 , R 2 , R 3 , and R 4 are the same or different, and are each independently selected from hydrogen, deuterium, fluorine, chlorine, alkyl groups with 1 to 12 carbon atoms, and 1 to carbon atoms 12 halogenated alkyl groups, alkoxy groups having 1 to 12 carbon atoms, cycloalkyl groups having 3 to 10 carbon atoms, aryl groups having 6 to 20 carbon atoms, heteroaryl groups having 3 to 20 carbon atoms base, Represents a chemical bond;
  • X 1 , X 2 , X 3 are the same or different, X 1 is C (R X1 ) or N, X 2 is C (R X2 ) or N, X 3 is C (R X3 ) or N, and X 1 , X At least one of 2 and X 3 is N;
  • R X1 , R X2 and R X3 are the same or different, and are each independently selected from hydrogen, deuterium, halogen groups, cyano groups, alkyl groups having 1 to 12 carbon atoms, and haloalkyl groups having 1 to 12 carbon atoms , C1-C12 alkoxy group, C3-C10 cycloalkyl group, C6-C20 aryl group, C3-C20 heteroaryl group;
  • L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heterogeneous group having 3 to 30 carbon atoms
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, A substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms; a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms , A substituted or unsubstituted heteroaralkyl group with 2-30 carbon atoms;
  • the substituents in L 1 , L 2 , Ar 1 , Ar 2 and Ar 3 are the same or different from each other, and are each independently selected from deuterium, halogen group, cyano group, alkyl group having 1 to 10 carbon atoms, A halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and the number of carbon atoms is The group consisting of 6-20 arylthio groups, 3-12 alkylsilyl groups, 1-10 alkylamino groups, and 3-10 cycloalkyl groups, and At least one substituent is cyano.
  • This application is based on a structure composed of an adamantyl group as the core, and an electron-deficient nitrogen-containing heteroaryl group and a cyano group are connected to the adamantane; the structure composed of the adamantyl group and the cyano group has a structure with a strong dipole moment,
  • the polarity of the material is improved.
  • the highly polar, electrically attracting cyano group can deepen the LUMO energy level, thereby further improving the electron mobility. Therefore, the ability of the cyano group to attract electrons after combining with the electron-deficient nitrogen-containing heteroaryl group Significantly improved, organic materials with high electron mobility can be obtained, and the electron transport efficiency can be improved.
  • the luminous efficiency and life of the device can be improved, and the operating voltage can be reduced.
  • the large volume and rigidity of the adamantyl group also improves the film-forming properties and thermal stability of the material, making it easier for mass production and use.
  • substituted in “substituted or unsubstituted” means that the substituents of the group can be selected from deuterium, cyano, halogen, nitro, and those with 1-12 carbon atoms.
  • the number of carbon atoms of L 1 , L 2 , Ar 1 , Ar 2 , Ar 3 , R X1 , R X2 , and R X3 refers to the number of all carbon atoms in the group.
  • L 1 is selected from substituted arylene groups having 10 carbon atoms
  • all carbon atoms of the arylene group and the substituents thereon are 10.
  • Ar 1 is 4-tert-butyl-1-phenyl, it belongs to a substituted aryl group having 10 carbon atoms.
  • substituted or unsubstituted aryl group with 6-30 carbon atoms and “substituted or unsubstituted aryl group with 6-30 carbon atoms” have the same meaning, and both refer to aryl groups.
  • the total number of carbon atoms of the substituents on it is 6-30.
  • each q is independently 0, 1, 2 or 3, and each R" is independently selected from hydrogen, fluorine, and chlorine", and its meaning is: formula Q-1 represents q substituents R" on the benzene ring, each R" can be the same or different, and the options of each R" do not affect each other; formula Q-2 means that each benzene ring of biphenyl has q substituents R", and R" on two benzene rings is substituted The number q of the bases can be the same or different, each R" can be the same or different, and the options of each R" do not affect each other.
  • hetero means that a functional group includes at least one heteroatom such as B, N, O, S, Se, Si, or P, and the remaining atoms are carbon and hydrogen.
  • the unsubstituted alkyl group may be a "saturated alkyl group" without any double or triple bonds.
  • alkyl may include linear or branched alkyl.
  • Alkyl groups can have 1 to 20 carbon atoms.
  • a numerical range such as “1 to 20” refers to each integer in the given range; for example, “1 to 20 carbon atoms” means that it can contain 1 Carbon atoms, 2 carbon atoms, 3 carbon atoms, 4 carbon atoms, 5 carbon atoms, 6 carbon atoms, 7 carbon atoms, 8 carbon atoms, 9 carbon atoms, 10 carbon atoms, 11 Carbon atoms, 12 carbon atoms, 13 carbon atoms, 14 carbon atoms, 15 carbon atoms, 16 carbon atoms, 17 carbon atoms, 18 carbon atoms, 19 carbon atoms, or 20 carbon atoms base.
  • the alkyl group may also be a medium-sized alkyl group having 1 to 10 carbon atoms.
  • the alkyl group may also be a lower alkyl group having 1 to 6 carbon atoms.
  • the alkyl group contains 1-4 carbon atoms; in still other embodiments, the alkyl group contains 1-3 carbon atoms.
  • the alkyl group may be optionally substituted with one or more substituents described in the present invention.
  • alkyl groups include, but are not limited to, methyl (Me, -CH 3 ), ethyl (Et, -CH 2 CH 3 ), n-propyl (n-Pr, -CH 2 CH 2 CH 3 ), isopropyl (i-Pr, -CH(CH 3 ) 2 ), n-butyl (n-Bu, -CH 2 CH 2 CH 2 CH 3 ), isobutyl (i-Bu, -CH 2 CH (CH 3 ) 2 ), sec-butyl (s-Bu, -CH(CH 3 )CH 2 CH 3 ), tert-butyl (t-Bu, -C(CH 3 ) 3 ), etc.
  • the alkyl group may be substituted or unsubstituted.
  • haloalkyl or “haloalkoxy” means that an alkyl group or an alkoxy group is substituted by one or more halogen atoms, wherein the alkyl group and the alkoxy group have the meanings as described in the present invention
  • alkyl group and the alkoxy group have the meanings as described in the present invention
  • Such examples include, but are not limited to, trifluoromethyl, trifluoromethoxy, and the like.
  • the C 1 -C 6 haloalkyl group comprises a fluorine-substituted C 1 -C 6 alkyl group; in another embodiment, the C 1 -C 4 haloalkyl group comprises a fluorine-substituted C 1 -C 4 alkyl group ; In yet another embodiment, the C 1 -C 2 haloalkyl group comprises a fluorine-substituted C 1 -C 2 alkyl group.
  • cycloalkyl refers to cyclic saturated hydrocarbons, including monocyclic and polycyclic structures.
  • Cycloalkyl groups can have 3-20 carbon atoms, and a numerical range such as “3 to 20" refers to each integer in the given range; for example, "3 to 20 carbon atoms” means that it can contain 3 carbon atoms, 4 carbon atoms, 5 carbon atoms, 6 carbon atoms, 7 carbon atoms, 8 carbon atoms, 9 carbon atoms, 10 carbon atoms, 11 carbon atoms, 12 carbon atoms, 13 carbon atoms, A cycloalkyl group of 14 carbon atoms, 15 carbon atoms, 16 carbon atoms, 17 carbon atoms, 18 carbon atoms, 19 carbon atoms, or 20 carbon atoms.
  • the cycloalkyl group may be a small ring, an ordinary ring, or a large ring having 3 to 20 carbon atoms. Cycloalkyl groups can also be classified as monocyclic-only one ring, bicyclic-two rings-or polycyclic-three or more rings. Cycloalkyl groups can also be divided into two rings sharing one carbon atom-a spiro ring, two rings sharing two carbon atoms-a fused ring, and two rings sharing two or more carbon atoms-a bridged ring. In addition, cycloalkyl groups may be substituted or unsubstituted. In some embodiments, the cycloalkyl group is a 5- to 10-membered cycloalkyl group.
  • the cycloalkyl group is a 5- to 8-membered cycloalkyl group.
  • examples of the cycloalkyl group may be, but are not limited to : Five-membered cycloalkyl, namely cyclopentyl, six-membered cycloalkyl, cyclohexyl, 10-membered polycyclic alkyl such as adamantyl, etc.
  • R G1 , R G2 , and R G3 are each independently an alkyl group.
  • Specific examples of the alkylsilyl group include, but are not limited to, trimethylsilyl group, triethylsilyl group, and tert-butyldimethylsilyl group. , Propyldimethylsilyl.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group can be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group can be a monocyclic aryl group, a condensed ring aryl group, two or more monocyclic aryl groups conjugated by a carbon-carbon bond, through A monocyclic aryl group and a fused ring aryl group conjugated by carbon-carbon bonds, and two or more fused ring aryl groups conjugated by a carbon-carbon bond. That is, two or more aromatic groups conjugated through carbon-carbon bonds can also be regarded as aryl groups in the present application.
  • the aryl group does not contain heteroatoms such as B, N, O, S, Se, Si, or P.
  • biphenyl, terphenyl, etc. are aryl groups.
  • aryl groups may include phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, hexaphenyl, benzo[9,10 ]Phenanthryl, pyrenyl, perylene, benzofluoranthene, Group, spirobifluorenyl, indenyl, etc., but not limited thereto.
  • a substituted aryl group means that one or more hydrogen atoms in the aryl group are replaced by other groups.
  • at least one hydrogen atom is replaced by a deuterium atom, F, Cl, I, CN, hydroxyl, amino, branched alkyl, linear alkyl, cycloalkyl, alkoxy, alkylamino, alkylthio, heterocyclic group , Haloalkyl, aryl, heteroaryl, alkylsilyl, arylsilyl, or other group substitutions.
  • the number of carbon atoms of the substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • the substituted aryl group with 18 carbon atoms means that the total number of carbon atoms of the aryl group and the substituent on the aryl group is 18.
  • 9,9-dimethylfluorenyl is a substituted aryl group having 15 carbon atoms.
  • the fluorenyl group as an aryl group can be substituted, and two substituent groups can be combined with each other to form a spiro structure.
  • Specific examples include but are not limited to the following structures:
  • the number of carbon atoms of the aryl group as a substituent is 6-20, and the number of carbon atoms may be 6, 10, 12, 14, 18, etc., for example.
  • Specific examples of the aryl group as the substituent include, but are not limited to, phenyl, naphthyl, biphenyl, anthracenyl, phenanthryl, fluorenyl, dimethylfluorenyl, and the like.
  • the heteroaryl group may be a heteroaryl group including at least one of B, O, N, P, Si, Se, and S as a heteroatom.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated by carbon-carbon bonds, any aromatic ring
  • the system is an aromatic monocyclic ring or an aromatic condensed ring, and any aromatic ring system contains the heteroatom.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazine Azinyl, isoquinolinyl, indolyl, carbazolyl, N-arylcarbazolyl, N-heteroarylcarbazolyl, N-alkylcarbazolyl, benzoxazolyl, benzimidazole Group, benzothiazolyl, benzo, be
  • thienyl, furyl, phenanthrolinyl, etc. are heteroaryl groups of a single aromatic ring system, N-arylcarbazolyl, N-heteroarylcarbazolyl, phenyl substituted dibenzofuranyl, etc. It is a heteroaryl group of multiple aromatic ring systems conjugated through carbon-carbon bonds.
  • a substituted heteroaryl group means that one or more hydrogen atoms in the heteroaryl group are replaced by other groups.
  • at least one hydrogen atom is replaced by a deuterium atom, F, Cl, I, CN, hydroxyl, amino, branched alkyl, linear alkyl, cycloalkyl, alkoxy, alkylamino, alkylthio, heterocyclic group , Haloalkyl, aryl, heteroaryl, alkylsilyl, arylsilyl, or other group substitutions.
  • the number of carbon atoms of the substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on it.
  • aryl can be applied to arylene
  • heteroaryl can be applied to heteroarylene
  • alkyl can be applied to alkylene
  • cycloalkyl can be Applied to cycloalkylene
  • the number of carbon atoms of the heteroaryl group as a substituent is 3-20, and the number of carbon atoms may be 3, 4, 5, 7, 8, 9, 12, 18, etc., for example.
  • Specific examples of heteroaryl groups as substituents include, but are not limited to, pyridyl, pyrimidinyl, quinolinyl, isoquinolinyl, dibenzofuranyl, dibenzothienyl, carbazolyl, N-phenyl Carbazolyl and so on.
  • the ring system formed by n atoms is an n-membered ring.
  • phenyl is a 6-membered aryl group.
  • 6-10 membered aromatic rings include benzene ring, indene ring and naphthalene ring.
  • the "ring” in this application includes saturated rings and unsaturated rings; saturated rings are cycloalkyl, heterocycloalkyl, and unsaturated rings, namely cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl.
  • heterocyclic group optionally substituted by an alkyl group means an alkane
  • R v2 and R v3 connected to the same atom are connected to each other to form a saturated or unsaturated ring
  • the scheme includes scenarios where R v2 and R v3 are connected to form a ring, and also includes scenarios where R v2 and R v3 exist independently of each other.
  • the non-positioned link in this application refers to the single bond extending from the ring system It means that one end of the link can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positional linkages that penetrate the bicyclic ring, and the meaning represented by the formula (f) -1) Any possible connection mode shown in formula (f-10).
  • the phenanthryl group represented by the formula (X') is connected to other positions of the molecule through a non-localized bond extending from the middle of the benzene ring on one side, which means The meaning of includes any possible connection mode as shown in formula (X'-1) ⁇ formula (X'-4).
  • the non-positional substituent in this application refers to a substituent connected by a single bond extending from the center of the ring system, which means that the substituent can be attached to any possible position in the ring system.
  • the substituent R group represented by the formula (Y) is connected to the quinoline ring through a non-localized linkage, and its meaning includes the following formula (Y-1) to Any possible connection mode shown in formula (Y-7).
  • the above compound has the following structure:
  • Ar 3 contains at least one cyano substituent.
  • Chemical formula 2 shows that R 1 in chemical formula 1 is R 4 is R 2 and R 3 are hydrogen.
  • Chemical formula 3 shows that R 2 in chemical formula 1 is R 3 is R 1 and R 4 are hydrogen.
  • the compound of the present application has the structure shown in (Chemical Formula 2) or (Chemical Formula 3):
  • L 2 and Ar 3 optionally contain 1, 2, or 3 cyano substituents, and the substituents of Ar 1 , Ar 2 and L 1 do not include cyano groups. Its meaning is that the substituents in L 2 and Ar 3 are independent of each other, and the cyano substituent can be only on one of them, or can exist in both L 2 and Ar 3 ; Ar 1 , Ar 2 and L 1 may be optionally substituted, but their substituents must not contain a cyano group.
  • the compound of the present application has the structure shown in (Chemical Formula 2) or (Chemical Formula 3):
  • the substituents in L 2 and Ar 3 do not include a cyano group, and the substituents in Ar 1 , Ar 2 , and L 1 include at least one cyano group. Its meaning is that the substituents in L 1 , Ar 1 , and Ar 2 are independent of each other, and the cyano substituent can be on only one of them, or it can exist on L 1 and Ar 1 at the same time. , Ar 2 in any two, or cyano group exists in all three; L 2 and Ar 3 can be optionally substituted, but their substituents must not contain cyano group.
  • the compound of the present application has the structure shown in (Chemical Formula 2) or (Chemical Formula 3):
  • the substituents in L 2 and Ar 3 include at least one cyano group
  • the substituents in Ar 1 , Ar 2 , and L 1 include at least one cyano group. Its meaning is that the substituents in L 2 and Ar 3 are independent of each other, and the cyano substituent can be on only one of them, or can exist in both L 2 and Ar 3 ;
  • the substituents in L 1 , Ar 1 , and Ar 2 are also independent of each other.
  • the cyano substituent can be on only one of them, or can be present on any of L 1 , Ar 1 , and Ar 2 at the same time. In both, or cyano groups exist in all three.
  • R X1 , R X2 , and R X3 are all hydrogen. That is, any one of R 1 , R 2 , R 3 , and R 4 can be
  • R X1 , R X2 , and R X3 are the same or different from each other, and are each independently selected from hydrogen, deuterium, fluorine, chlorine, and cyano.
  • L 1 and L 2 are the same or different, and are selected from single bonds, substituted or unsubstituted arylene groups having 6 to 25 ring carbon atoms, and substituted or unsubstituted ring carbon atoms of 3 to 18 of the heteroarylene group.
  • L 1 or L 2 is selected from a single bond or a group consisting of a group represented by chemical formula j-1 to a group represented by chemical formula j-14:
  • M 2 is selected from a single bond or
  • Q 1 to Q 5 are each independently selected from N or C(F 1 ), and at least one of Q 1 to Q 5 is selected from N; when two or more of Q 1 to Q 5 are selected from C(F 1 ) When any two F 1 are the same or different;
  • Q 6 to Q 13 are each independently selected from N or C(F 2 ), and at least one of Q 6 to Q 13 is selected from N; when two or more of Q 6 to Q 13 are selected from C(F 2 ) When any two F 2 are the same or different;
  • Q 14 to Q 23 are each independently selected from N or C(F 3 ), and at least one of Q 14 to Q 23 is selected from N; when two or more of Q 14 to Q 23 are selected from C(F 3 ) When any two F 3 are the same or different;
  • Q 24 to Q 33 are each independently selected from N or C(F 4 ), and at least one of Q 24 to Q 33 is selected from N; when two or more of Q 24 to Q 33 are selected from C(F 4 ) When any two F 4 are the same or different;
  • E 1 to E 16 , E 23 to E 25 , and F 1 to F 4 are each independently selected from: hydrogen, deuterium, fluorine, chlorine, bromine, cyano, heteroaryl with 3 to 18 carbon atoms, carbon atom
  • e r is the number of the substituent Er , r is any integer from 1 to 16; when r is selected from 1, 2, 3, 4, 5, 6, 9, 15, 16 or 23-25, e r is selected from 1, 2, 3 or 4; when r is selected from 7, 11 or 14, e r is selected from 1, 2, 3, 4, 5 or 6; when r is 12, e r is selected from 1, 2, 3 , 4, 5, 6 or 7; when r is selected from 8, 10 or 13, e r is selected from 1, 2, 3 , 4, 5, 6, 7 or 8; when e r is greater than 1, any two E r is the same or not the same;
  • K 3 is selected from O, S, Se, N (E 17 ), C (E 18 E 19 ), Si (E 18 E 19 ); wherein, E 17 , E 18 , and E 19 are each independently selected from: carbon atoms An aryl group having 6 to 18, a heteroaryl group having 3 to 18 carbon atoms, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or E 18 and E 19 The atoms connected to each other to form a saturated or unsaturated 5- to 13-membered ring.
  • E 18 and E 19 may be connected to each other to The atoms to which they are connected together form a saturated or unsaturated ring, or they may exist independently of each other.
  • E 18 and E 19 form a ring, the ring formed by E 18 and E 19 is spiro-connected with other parts of the molecule.
  • the number of carbon atoms of the ring can be a 5-membered ring, that is to say It can also be a 6-membered ring, which forms It can also be a 13-membered ring, that is Of course, the number of carbon atoms on the ring formed by the interconnection of E 18 and E 19 can also be other values, which will not be listed here.
  • K 4 is selected from a single bond, O, S, Se, N (E 20 ), C (E 21 E 22 ), Si (E 21 E 22 ); wherein, E 20 , E 21 , and E 22 are each independently selected from : C6-C18 aryl group, C3-C18 heteroaryl group, C1-C10 alkyl group, C3-C10 cycloalkyl group, or E 21 E 22 and E 22 are connected to each other to form a saturated or unsaturated 5- to 10-membered aliphatic ring with the atoms they are commonly connected to.
  • E 21 and E 22 optionally forming a ring is consistent with the understanding in other technical solutions of this application (when E 18 and E 19 are connected to each other to form a ring).
  • L 1 or L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted group W 1 , and the group W 1 is selected from the group consisting of the following groups:
  • the substituent of W 1 is selected from deuterium, fluorine, chlorine, cyano, alkyl with 1 to 6 carbon atoms, haloalkyl with 1 to 4 carbon atoms, and number of carbon atoms It is an alkylsilyl group of 3-9, a cycloalkyl group of 3-10 carbon atoms, an aryl group of 6-13 carbon atoms, a heteroaryl group of 3-12 carbon atoms; a substituent of W 1 When there are multiple, multiple substituents are the same or different. In addition, the number of substituents of W 1 may be multiple, such as 1, 2, 3, 4, 5 or more, which is not specifically limited in this application.
  • the L 1 or L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted group W 2 , and the group W 2 is selected from the following groups
  • the substituent of W 2 is selected from deuterium, fluorine, chlorine, cyano, alkyl having 1 to 6 carbon atoms, haloalkyl having 1 to 4 carbon atoms, and carbon atoms
  • the multiple substituents are the same or different.
  • substituents of W 1 and W 2 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trifluoromethyl, phenyl, naphthyl, carbazole Group or trimethylsilyl group.
  • each of L 1 and L 2 is independently selected from: single bond, substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted Terphenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted quinolinylene, substituted Or unsubstituted carbazolyl, substituted or unsubstituted naphthylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted anthrylene, substituted or unsubstituted phenanthrylene, substituted or unsubstituted N-phenylcarbazolylidene, substituted or unsubstituted pyridinylene, substituted or unsubstituted spir
  • L 1 or L 2 are the same or different, and are each independently selected from the group consisting of single bonds or the following groups:
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from substituted or unsubstituted aryl groups having 6 to 25 ring carbon atoms, and substituted or unsubstituted ring carbon atoms 3-18 heteroaryl.
  • Ar 1 , Ar 2 , and Ar 3 are each independently selected from substitutions with 6, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25 ring carbon atoms Or unsubstituted aryl, or selected from substituted or unsubstituted heteroaryl groups with 5, 8, 9, 12, 16, 18 carbon atoms in the ring.
  • the substituents in Ar 1 , Ar 2 and Ar 3 are the same or different from each other, and are each independently selected from deuterium, halogen groups, cyano groups, alkyl groups having 1 to 10 carbon atoms, and 1-10 halogenated alkyl groups, 6-20 aryl groups, 3-20 heteroaryl groups, 6-20 aryloxy groups, 6-20 carbon atoms
  • the substituents in Ar 1 , Ar 2 and Ar 3 are the same or different from each other, and are each independently selected from deuterium, fluorine, chlorine, cyano, alkyl with 1 to 4 carbon atoms, and Haloalkyl groups of 1 to 4, alkylsilyl groups of 3 to 9 carbon atoms, cycloalkyl groups of 5 to 10 carbon atoms, aryl groups of 6 to 12 carbon atoms, 3 to 12 carbon atoms The group consisting of heteroaryl groups.
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of the following groups:
  • n a and n c are each independently 1, 2, 3 or 4; n b is 1, 2, 3, 4 or 5;
  • V 1 to V 10 are each independently selected from C(R v ) and N.
  • any two R v are the same or different;
  • Each V is independently selected from the group consisting of O, S, Se, N (R v1 ), C (R v2 R v3 ) and Si (R v2 R v3 );
  • T is selected from O, S or N (R v1 );
  • T 1 to T 10 are each independently selected from C(R t ) and N.
  • any two R t are the same or different;
  • Each R a, R b, R c , R t, R v, R v2, R v3 each independently hydrogen, deuterium, fluorine, chlorine, bromine, cyano, C1 ⁇ C6 alkyl group, C1 ⁇ C6 haloalkyl, C3-C12 alkylsilyl group, C6-C12 aryl group, C3-C12 heteroaryl group and C3-C10 cycloalkyl group;
  • R v2 and R v3 connected to the same atom are connected to each other to form a saturated or unsaturated 5- to 13-membered ring.
  • V is C (R v2 R v3)
  • R v2 and R v3 each other to form a ring where means are R v2 and R v3 can be connected to each other to form a ring may be Exist independently of each other; when they form a ring, the number of carbon atoms of the ring can be a 5-membered ring, for example It can also be a 6-membered ring, for example It can also be a 13-membered ring, for example Of course, the number of carbon atoms on the ring formed by the interconnection of R v2 and R v3 can also be other values, which will not be listed here.
  • Each R v1 is selected from the group consisting of hydrogen, deuterium, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a heteroaryl group having 3 to 12 carbon atoms, and
  • the number of carbon atoms is a group consisting of 3-10 cycloalkyl groups, and when there are two R v1 in the same group, each R v1 is the same or different.
  • the Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of the following groups:
  • n d is selected from 1, 2, 3, 4, 5, 6, 7 or 8 and n e is selected from 1, 2, 3 or 4;
  • T 11 and T 12 are each independently selected from C(R t0 ) and N.
  • any two R t0 are the same or different;
  • Each of R d, R e, R f , R t0 are each independently hydrogen, deuterium, fluorine, chlorine, bromine, cyano, carbon atoms, alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon
  • the number of atoms is 3 to 12 alkylsilyl groups, the number of carbon atoms is 6 to 12 aryl groups, the number of carbon atoms is 3 to 12 heteroaryl groups, and the number of carbon atoms is 3 to 10 cycloalkyl groups.
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted group Y 1 , and the group Y 1 is selected from the following groups:
  • the substituent of Y 1 is selected from the group consisting of deuterium, fluorine, chlorine, cyano, alkyl with 1 to 4 carbon atoms, alkoxy with 1 to 4 carbon atoms, and carbon atoms Haloalkyl groups having 1 to 4, alkylsilyl groups having 3 to 9 carbon atoms, cycloalkyl groups having 3 to 10 carbon atoms, aryl groups having 6 to 12 carbon atoms, and 3 carbon atoms ⁇ 12 heteroaryl groups; when there are multiple substituents for Y 1 , the multiple substituents are the same or different.
  • the number of substituents of Y 1 may be multiple, for example, 1, 2, 3, 4, 5 or more, which is not specifically limited in this application.
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from the following groups:
  • the Ar 1 and Ar 2 are the same or different, and are each independently selected from the following groups:
  • Ar 3 is selected from substituted or unsubstituted group Z 1
  • group Z 1 is selected from the following groups:
  • the substituent of Z 1 is selected from the group consisting of deuterium, fluorine, chlorine, cyano, alkyl with 1 to 4 carbon atoms, haloalkyl with 1 to 4 carbon atoms, and the number of carbon atoms Is an alkylsilyl group having 3 to 9 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a heteroaryl group having 3 to 12 carbon atoms; when the Z 1 When the substituent of contains a plurality of substituents, the plurality of substituents are the same or different.
  • the number of substituents of Z 1 may be multiple, such as 1, 2, 3, 4, 5 or more, which is not specifically limited in this application.
  • Ar 3 is selected from the following groups:
  • the Ar 3 is selected from the following groups:
  • organic compound of the present application is selected from the group consisting of the following compounds:
  • the organic compounds of this application can be prepared by the methods described in this application, and those skilled in the art will recognize that the chemical reactions described in this application can be used to appropriately prepare many other compounds in this application, and use Other methods for preparing the organic compounds of this application are considered to be within the scope of this application.
  • those skilled in the art can synthesize other organic compounds in this application by referring to or appropriately modifying the preparation methods provided in this application.
  • they can use appropriate protecting groups to utilize other known organic compounds other than those described in this application. Reagents, modification of reaction conditions, etc.
  • Some reagents are purchased from commodity suppliers such as Aldrich Chemical Company, Arco Chemical Company and Alfa Chemical Company, etc. Unless otherwise stated, these reagents are used without further purification.
  • Some conventional reagents were purchased from Shantou Xilong Chemical Factory, Guangdong Guanghua Chemical Reagent Factory, Guangzhou Chemical Reagent Factory, Tianjin Haoyuyu Chemical Co., Ltd., Tianjin Fuchen Chemical Reagent Factory, Wuhan Xinhuayuan Technology Development Co., Ltd., Qingdao Tenglong Chemical Reagent Co., Ltd. and Qingdao Ocean Chemical Plant.
  • anhydrous tetrahydrofuran, dioxane, toluene and ether are obtained by refluxing and drying of sodium metal.
  • Anhydrous dichloromethane and chloroform are obtained by refluxing and drying with calcium hydride.
  • Ethyl acetate, petroleum ether, n-hexane, N,N-dimethylacetamide and N,N-dimethylformamide are dried in advance with anhydrous sodium sulfate.
  • reaction flasks are all plugged with suitable rubber stoppers, and the substrate is injected into the reaction flask through a syringe.
  • the glassware is all dried.
  • silica gel column is used as the chromatographic column.
  • Silica gel (100-200 mesh) was purchased from Qingdao Ocean Chemical Plant.
  • the measurement conditions for low-resolution mass spectrometry (MS) data are: Agilent 6120 quadrupole HPLC-M (column model: Zorbax SB-C18, 2.1 ⁇ 30mm, 3.5 microns, 6min, flow rate 0.6mL/min.
  • Mobile phase 5 %-95% (acetonitrile containing 0.1% formic acid) in (H2O containing 0.1% formic acid)), using electrospray ionization (ESI), and detecting with UV at 210nm/254nm.
  • 1 H NMR spectra were recorded using a Bruker 400MHz or 600MHz nuclear magnetic resonance spectrometer.
  • 1 H NMR spectrum uses CDCl 3 , CD 2 Cl 2, D 2 O, DMSO-d 6 , CD 3 OD or acetone-d 6 as the solvent (in ppm), and uses TMS (0 ppm) or chloroform (7.26 ppm) As a reference standard. When multiple peaks appear, the following abbreviations will be used: s (singlet, singlet), d (doublet, doublet), t (triplet, triplet), m (multiplet, multiplet), br (broadened, wide Peak), dd (doublet ofdoublets, doublet of doublet)
  • a part of the compound (Final Product) of the present application is represented by the following chemical formula 1', and is prepared by the reaction of intermediates sub1 and sub2, but is not limited thereto.
  • Part of the compound (Final Product) of the present application is represented by the following chemical formula 2', and is prepared by reacting intermediates sub 1'and sub 2', but is not limited thereto.
  • the sub1 of the compound of the above chemical formula 1'and compound 2' can be synthesized by the following ⁇ Reaction Process 3> chemical reaction route, but is not limited thereto.
  • Ar 1 , Ar 2 , X 1 , X 2 , X 3 and L 1 have the same meanings as in other parts of the specification, and Rs3 is selected from deuterium and halogen groups , Cyano group, alkyl group having 1 to 10 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, aryl group having 6 to 20 carbon atoms, heteroaryl group having 3 to 20 carbon atoms, carbon An aryloxy group having 6 to 20 atoms, an arylthio group having 6 to 20 carbon atoms, a silyl group having 3 to 12 carbon atoms, an alkylamino group having 1 to 10 carbon atoms, and the number of carbon atoms are The group consisting of 3-10 cycloalkyl groups; L 2 ', L 3 ', L 4 , L 1 "are substituted or unsubstituted arylene groups having 6 to 30 carbon
  • the intermediate sub 1-III-C2 (87.0g, 102.4mmol), pinacol diborate (62.2g, 244.9mmol) and potassium acetate (101.9g, 1.084mmol) were mixed and added to 600mL In dioxane, the resultant was heated to 100°C and stirred. Add bis(dibenzylideneacetone)palladium (3.5g, 6.1mmol) and tricyclohexylphosphine (3.4g, 12.24mmol) while heating to reflux, stirring for 10 hours, the reaction is complete, the resultant is cooled to room temperature and then filter.
  • Sub 1-III-B3-2 to Sub 1-III-B3-3 are prepared in the same way as Sub 1-III-B3, except that raw material 2 is used instead of preparing Sub 1-III-B3 in the synthesis example
  • Sub 1-II-B2 (10.00g, 22.97mmol), sub 1-III-B3 (10.45g, 22.97mmol), tetrakistriphenylphosphine palladium (0.53g, 0.46mmol), potassium carbonate (6.98g, 50.53 mmol), tetrabutylammonium chloride (1.27g, 4.59mmol), toluene (80mL), ethanol (40mL) and deionized water (20mL) were added to a three-necked flask, heated to 78°C under nitrogen protection, and stirred at reflux for 8h.
  • the intermediates Sub 1-B2 to Sub 1-B10 were prepared by the same process in Sub 1-B1, except that raw material 4 was used to replace the p-chlorophenylboronic acid in the synthesis example of Sub 1-I-B1 in Preparation Example 1. React with 2-chloro-4,6-diphenyl-1,3,5-triazine (raw material 3), and then react with Sub1-III-B3 to obtain Sub1-B series intermediates Sub1-B2 ⁇ Sub 1-B10.
  • Sub 1-B11 to Sub 1-B20 were prepared in the same manner as in Sub 1-B1, except that raw material 3-1 was used instead of 2-chloro-4,6-diphenyl-1 in Preparation Example 1. ,3,5-triazine, use raw material 4 to replace the p-chlorophenylboronic acid in the synthesis of Sub1-I-B1 in Preparation Example 1, and then react with Sub1-III-B3 to obtain Sub1-B series partial intermediate Sub1 -B11 ⁇ Sub 1-B21.
  • Sub 1-B22 to Sub 1-B24 were prepared in the same manner as in Sub 1-B1, except that Sub1-III-B3-x series compounds were used instead of Sub1-III-B3 in Preparation Example 1, and the use Raw material 3-1 replaces 2-chloro-4,6-diphenyl-1,3,5-triazine in Preparation Example 1.
  • Sub 1-C2 to Sub 1-C5 were prepared in the same manner as in Sub 1-C1, except that raw material 3 was used instead of 2-chloro-4,6-diphenyl-1,3 in Preparation Example 1. ,5-triazine, raw material 4 replaces the p-chlorophenylboronic acid in the synthesis of Sub1-I-B1 in Preparation Example 1, and then reacts with Sub1-III-B3, and then reacts with raw material 4-2 to convert the bromine into Borate esters obtain Sub 1-B series of partial intermediates Sub 1-C2 to Sub 1-C4.
  • Compound 2 was prepared in the same manner as in Experimental Example 1, except that sub 1-B2 was used instead of Sub 1-B1 in Preparation Example 1.
  • Compound 3 was prepared in the same manner as in Experimental Example 1, except that sub 1-B3 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 3 (7.86 g, 65%).
  • Compound 12 was prepared in the same manner as in Experimental Example 1, except that sub 1-B5 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 12 (7.20 g, 63%).
  • Compound 27 was prepared in the same manner as in Experimental Example 1, except that sub 1-B9 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 27 (7.06 g, 72%).
  • Compound 35 was prepared in the same manner as in Experimental Example 1, except that sub 1-B11 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 35 (7.45 g, 60%).
  • Compound 41 was prepared in the same manner as in Experimental Example 1, except that sub1-B14 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 41 (7.05 g, 61%).
  • Compound 40 was prepared in the same manner as in Experimental Example 1, except that sub 1-B16 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 40 (6.55 g, 69%).
  • Compound 60 was prepared in the same manner as in Experimental Example 1, except that sub 1-B17 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 60 (7.12 g, 63%).
  • Compound 61 was prepared in the same manner as in Experimental Example 1, except that sub 1-B18 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 61 (7.00 g, 61%).
  • Compound 63 was prepared in the same manner as in Experimental Example 1, except that sub 1-B19 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 63 (7.15 g, 72%).
  • Compound 64 was prepared in the same manner as in Experimental Example 1, except that sub 1-B20 was used instead of Sub 1-B1 in Preparation Example 1, to obtain solid compound 64 (8.30 g, 69%).
  • This application also provides an electronic component for realizing photoelectric conversion or electro-optical conversion.
  • the electronic component includes an anode and a cathode arranged oppositely, and a functional layer arranged between the anode and the cathode; the functional layer includes the organic compound of the present application.
  • the electronic component is an organic electroluminescent device.
  • the organic electroluminescent device includes an anode 100 and a cathode 200 arranged oppositely, and a functional layer 300 arranged between the anode 100 and the cathode 200; the functional layer 300 includes the organic compound provided in the present application.
  • the functional layer 300 includes an electron transport layer 350
  • the electron transport layer 350 includes an organic compound provided in the present application.
  • the electron transport layer 350 can be composed of the organic compound provided in this application, or can be composed of the organic compound provided in this application and other materials together.
  • the organic electroluminescent device may include an anode 100, a hole transport layer 321, an electron blocking layer 322, an organic electroluminescent layer 330 as an energy conversion layer, and an electron transport layer which are sequentially stacked. 350 and cathode 200.
  • the organic compound provided in the present application can be applied to the electron blocking layer 322 of an organic electroluminescent device, which can effectively improve the luminous efficiency and lifetime of the organic electroluminescent device, and reduce the driving voltage of the organic electroluminescent device.
  • the anode 100 includes the following anode materials, which may optionally be materials with a large work function (work function) that facilitate hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc, and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO2:Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole and polyaniline, but not limited thereto.
  • An alternative solution includes a transparent electrode containing indium tin oxide (ITO) as an anode.
  • the hole transport layer 321 may include one or more hole transport materials, and the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. This does not make special restrictions.
  • the hole transport layer 321 is composed of the compound TPD.
  • the electron blocking layer 322 includes one or more electron blocking materials, and the electron blocking materials may be selected from carbazole polymers or other types of compounds, which are not specifically limited in this application.
  • the electron blocking layer 322 is composed of the compound TCTA.
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, and may also include a host material and a guest material.
  • the organic light-emitting layer 330 is composed of a host material and a guest material. The holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy to The host material, the host material transfers energy to the guest material, so that the guest material can emit light.
  • the host material of the organic light-emitting layer 330 may be a metal chelate compound, a bisstyryl derivative, an aromatic amine derivative, a dibenzofuran derivative or other types of materials, which are not particularly limited in this application.
  • the host material of the organic light-emitting layer 330 may be CBP.
  • the guest material of the organic light-emitting layer 330 can be a compound with a condensed aryl ring or a derivative thereof, a compound with a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, and this application does not make any special considerations for this. limit.
  • the guest material of the organic light-emitting layer 330 may be Ir(piq) 2 (acac).
  • the cathode 200 includes the following cathode material, which is a material with a small work function that facilitates injection of electrons into the functional layer.
  • cathode materials include: metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or their alloys; or multilayer materials such as LiF/Al, Liq/ Al, LiO2/Al, LiF/Ca, LiF/Al and BaF2/Ca, but not limited thereto.
  • Alternatives include a metal electrode containing silver and magnesium as the cathode.
  • a hole injection layer 310 may be further provided between the anode 100 and the first hole transport layer 321 to enhance the ability of injecting holes into the first hole transport layer 321.
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the hole injection layer 310 may be composed of HAT-CN.
  • an electron injection layer 360 may be further provided between the cathode 200 and the electron transport layer 350 to enhance the ability to inject electrons into the electron transport layer 350.
  • the electron injection layer 360 may include inorganic materials such as alkali metal sulfides and alkali metal halides, or may include complexes of alkali metals and organic substances.
  • the electron injection layer 360 may include ytterbium (Yb).
  • a hole blocking layer 340 may also be provided between the organic electroluminescent layer 330 and the electron transport layer 350.
  • the electronic component may be a photoelectric conversion device.
  • the photoelectric conversion device may include an anode 100 and a cathode 200 disposed opposite to each other, and a functional layer 300 disposed between the anode 100 and the cathode 200.
  • the functional layer 300 contains the organic compound provided in the present application.
  • the functional layer 300 includes an electron transport layer 350
  • the electron transport layer 350 includes an organic compound provided in the present application.
  • the electron transport layer 350 can be composed of the organic compound provided in this application, or can be composed of the organic compound provided in this application and other materials together.
  • the photoelectric conversion device may include an anode 100, a hole transport layer 321, an electron blocking layer 322, a photoelectric conversion layer 370 as an energy conversion layer, an electron transport layer 350, and a cathode 200 that are sequentially stacked.
  • the organic compound provided in the present application can be applied to the electron transport layer 350 of a photoelectric conversion device, which can effectively improve the luminous efficiency and lifetime of the photoelectric conversion device, and increase the open circuit voltage of the photoelectric conversion device.
  • a hole injection layer 310 may also be provided between the anode 100 and the hole transport layer 321.
  • an electron injection layer 360 may also be provided between the cathode 200 and the electron transport layer 350.
  • a hole blocking layer 340 may also be provided between the photoelectric conversion layer 370 and the electron transport layer 350.
  • the photoelectric conversion device may be a solar cell, especially an organic thin film solar cell.
  • a solar cell includes an anode 100, a hole transport layer 321, an electron blocking layer 322, a photoelectric conversion layer 370, and an electron transport layer 350 which are sequentially stacked.
  • the embodiments of the present application also provide an electronic device, which includes any one of the electronic components described in the above-mentioned electronic component embodiments. Since the electronic device has any one of the electronic components described in the above-mentioned electronic component embodiments, it has the same beneficial effects, which will not be repeated here in this application.
  • the present application provides an electronic device 400, which includes any one of the organic electroluminescent devices described in the foregoing organic electroluminescent device embodiments.
  • the electronic device 400 may be a display device, a lighting device, an optical communication device or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, etc. Since the electronic device 400 has any one of the organic electroluminescent devices described in the foregoing organic electroluminescent device embodiments, it has the same beneficial effects, which will not be repeated here in this application.
  • the present application provides an electronic device 500, which includes any one of the photoelectric conversion devices described in the foregoing photoelectric conversion device embodiments.
  • the electronic device 500 may be a solar power generation device, a light detector, a fingerprint identification device, an optical module, a CCD camera, or other types of electronic devices. Since the electronic device 500 has any one of the photoelectric conversion devices described in the foregoing photoelectric conversion device embodiments, it has the same beneficial effects, which will not be repeated here in this application.
  • the anode is prepared by the following process: the thickness of ITO is The substrate (manufactured by Corning) was cut into a size of 40mm ⁇ 40mm ⁇ 0.7mm, and a photolithography process was used to prepare it into an experimental substrate with cathode, anode, and insulating layer patterns. The surface was surfaced with ultraviolet ozone and O 2 :N 2 plasma Treatment to increase the work function of the anode (experimental substrate) and remove dross.
  • HIL Hole injection layer
  • NPB hole transport layer
  • TCTA is vapor-deposited on the hole transport layer to form a thickness of The electron blocking layer (EBL).
  • EBL electron blocking layer
  • ⁇ -ADN as the main body and doped with BD-1 at the same time, the main body and the dopant are formed with a film thickness ratio of 30:3.
  • the compound 1 of the application was evaporated on the light-emitting layer to form a thickness of The electron transport layer (ETL), Yb is vapor-deposited on the electron transport layer to form a thickness of The electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at an evaporation rate of 1:9, and then vacuum-evaporated on the electron injection layer to form a thickness of The cathode.
  • ETL electron transport layer
  • Yb is vapor-deposited on the electron transport layer to form a thickness of
  • the electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at an evaporation rate of 1:9, and then vacuum-evaporated on the electron injection layer to form a thickness of The cathode.
  • the thickness of the vapor deposited on the above cathode is CP-1, forming a capping layer (CPL), thereby completing the manufacture of organic light-emitting devices.
  • HAT-CN HAT-CN
  • NPB NPB
  • TCTA
  • ⁇ -ADN BD-1
  • CP-1 CP-1
  • Example 1 Except that the compounds shown in Table 1 were each used when forming the electron transport layer (ETL), the same method as in Example 1 was used to fabricate an organic electroluminescent device.
  • ETL electron transport layer
  • Comparative Example 1 to Comparative Example 3 the organic electroluminescence device was manufactured by the same method as in Example 1, except that Compound A, Compound B, and Alq 3 were used as the electron transport layer instead of Compound 1.
  • the performance parameters of the prepared devices are shown in Table 1, where the IVL data compares the test results at 15 mA/cm 2 , and the lifetime is the test result at 15 mA/cm 2 current density.
  • organic compounds of this application can also be used in the electron transport layer of other color organic electroluminescent devices, such as red organic electroluminescent devices.
  • Devices and green organic electroluminescent devices can also bring the same technical effects.
  • the organic electroluminescent device prepared by using the compound of the present application in the electron transport layer (ETL) can achieve low driving voltage, high luminous efficiency and long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种有机化合物,属于有机材料技术领域。本申请的化合物将缺电子的含氮杂芳基基团以及氰基连接至金刚烷所组成的结构,使LUMO能级变深,从而进一步提高电子迁移率。本申请还提供包含所述有机化合物的电子元件和电子装置。该有机化合物能够改善电子元件的电子传输性能,将其作为有机发光电致器件的电子传输层时,可以提升器件的发光效率、寿命并降低工作电压。

Description

有机化合物、电子元件和电子装置
相关申请的交叉引用
本发明要求于2019年12月30日递交的、申请号为CN201911404312.8的中国专利申请的优先权,在此引用上述中国专利申请公开的内容全文以作为本申请的一部分。本发明要求于2020年7月3日递交的、申请号为CN202010635712.6的中国专利申请的优先权,在此引用上述中国专利申请公开的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机材料技术领域,尤其涉及一种有机化合物、电子元件和电子装置。
背景技术
有机电致发光材料(OLED)作为新一代显示技术,具有超薄、自发光、视角宽、响应快、发光效率高、温度适应性好、生产工艺简单、驱动电压低、能耗低等优点,已广泛应用于平板显示、柔性显示、固态照明和车载显示等行业。
有机发光器件通常包括阳极、阴极和其间的有机材料层。有机材料层通常以由不同材料构成的多层结构形成,以提高有机电致发光器件的亮度、效率和寿命,有机材料层可由空穴注入层、空穴传输层、发光层、电子传输层和电子注入层等构成。有机发光器件结构中,当在两个电极之间施加电压时,空穴和电子分别从阳极和阴极注入有机材料层,当注入的空穴与电子相遇时形成激子,并且当这些激子返回基态时发光。
现有的有机电致发光器件中,最主要的问题为寿命和效率,随着显示器的大面积化,驱动电压也随之提高,发光效率及电力效率也需要提高,因此,有必要继续研发新型的材料,以进一步提高有机电致发光器件的性能。
所述背景技术部分公开的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请的目的在于提供一种有机化合物、电子元件和电子装置,以改善有机电致发光器件的性能。
为实现上述发明目的,本申请采用如下技术方案:
根据本申请的第一个方面,提供一种有机化合物,所述有机化合物的结构式如化学式1所示:
Figure PCTCN2020121974-appb-000001
其中,R 1、R 2、R 3、R 4中任意一个为
Figure PCTCN2020121974-appb-000002
R 1、R 2、R 3、R 4中任意另一个为
Figure PCTCN2020121974-appb-000003
R 1、R 2、R 3、R 4中其余两个相同或不同,且各自独立地选自氢、氘、氟、氯、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,
Figure PCTCN2020121974-appb-000004
表示化学键;
X 1、X 2、X 3相同或不同,X 1为C(R X1)或N,X 2为C(R X2)或N,X 3为C(R X3)或N,且X 1、X 2和X 3中至少有一个为N;
R X1、R X2、R X3相同或不同,且各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~12 的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基;
L 1、L 2相同或不同,且分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基、碳原子数为3~10的取代或未取代的亚环烷基;
Ar 1、Ar 2和Ar 3相同或不同,且分别独立地选自碳原子数为1~20的取代或未取代的烷基、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基、碳原子数为3~20的取代或未取代的环烷基;碳原子数为7~30的取代或未取代的芳烷基、碳原子数为2~30的取代或未取代的杂芳烷基;
所述L 1、L 2、Ar 1、Ar 2和Ar 3中的取代基彼此相同或不同,各自独立地选自由氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的烷基硅烷基、碳原子数为1~10的烷胺基和碳原子数为3~10的环烷基所构成的组,且至少有一个取代基为氰基。
本申请化合物是以金刚烷基为核心,将缺电子的含氮杂芳基基团以及氰基连接至金刚烷所组成的结构;金刚烷基和氰基组成的结构具有强偶极矩的结构,使材料的极性得到提升。尤其是强极性的吸电性的氰基基团可以使LUMO能级变深,从而进一步提高电子迁移率,因此氰基与缺电子的含氮杂芳基基团结合后,吸引电子的能力大幅提升,可以得到高电子迁移率的有机材料,提高电子传输效率,将其作为有机发光电致器件的电子传输层时,可以提升器件的发光效率、寿命并降低工作电压。同时,金刚烷基本身的大体积以及刚性同时也提升了材料的成膜性以及热稳定性,使其更易于量产使用。
根据本申请的第二个方面,提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述有机化合物。
根据本申请的第三个方面,提供一种电子装置,所述电子装置包括有上述电子元件。
附图说明
通过参照附图详细描述其示例实施方式,本申请的上述和其它特征及优点将变得更加明显。
图1是本申请实施方式的有机电致发光器件的结构示意图。
图2是本申请实施方式的光电转化器件的结构示意图。
图3是本申请一实施方式的电子装置的结构示意图。
图4是本申请另一实施方式的电子装置的结构示意图。
图中主要元件附图标记说明如下:
100、阳极;200、阴极;310、空穴注入层;321、空穴传输层;322、电子阻挡层;330、有机发光层;340、空穴阻挡层;350、电子传输层;360、电子注入层;370、光电转化层;400、电子装置;500、第二种电子装置。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
本申请实施方式的有机化合物的结构式如化学式1所示:
Figure PCTCN2020121974-appb-000005
其中,R 1、R 2、R 3、R 4中任意一个为
Figure PCTCN2020121974-appb-000006
R 1、R 2、R 3、R 4中任意另一个为
Figure PCTCN2020121974-appb-000007
R 1、R 2、R 3、R 4中其余两个相同或不同,且各自独立地选自氢、氘、氟、氯、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,
Figure PCTCN2020121974-appb-000008
表示化学键;
X 1、X 2、X 3相同或不同,X 1为C(R X1)或N,X 2为C(R X2)或N,X 3为C(R X3)或N,且X 1、X 2和X 3中至少有一个为N;
R X1、R X2、R X3相同或不同,且各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基;
L 1、L 2相同或不同,且分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基、碳原子数为3~10的取代或未取代的亚环烷基;
Ar 1、Ar 2和Ar 3相同或不同,且分别独立地选自碳原子数为1~20的取代或未取代的烷基、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基、碳原子数为3~20的取代或未取代的环烷基;碳原子数为7~30的取代或未取代的芳烷基、碳原子数为2~30的取代或未取代的杂芳烷基;
所述L 1、L 2、Ar 1、Ar 2和Ar 3中的取代基彼此相同或不同,各自独立地选自由氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的烷基硅烷基、碳原子数为1~10的烷胺基和碳原子数为3~10的环烷基所构成的组,且至少有一个取代基为氰基。
本申请是以金刚烷基为核心,将缺电子的含氮杂芳基基团以及氰基连接至金刚烷所组成的结构;金刚烷基和氰基组成的结构具有强偶极矩的结构,使材料的极性得到提升。尤其是强极性的吸电性的氰基基团可以使LUMO能级变深,从而进一步提高电子迁移率,因此氰基与缺电子的含氮杂芳基基团结合后,吸引电子的能力大幅提升,可以得到高电子迁移率的有机材料,提高电子传输效率,将其作为有机发光电致器件的电子传输层时,可以提升器件的发光效率、寿命并降低工作电压。同时,金刚烷基本身的大体积以及刚性同时也提升了材料的成膜性以及热稳定性,使其更易于量产使用。
本说明书中,“取代的或未取代的”中的术语“取代的”表示所述基团的取代基可选自由氘、氰基、卤素基团、硝基、碳原子数为1-12的烷氧基、碳原子数为1-12的卤代烷基、碳原子数为1-12的烷基、碳原子数为3-12的环烷基、碳原子数为3-12的的杂环基、碳原子数为6-20的芳基、碳原子数为3-20的杂芳基、碳原子数为1-12的烷氧基、碳原子数为3-12的烷基甲硅烷基、碳原子数为6-18的芳基甲硅烷基构成的组。
在本申请中,L 1、L 2、Ar 1、Ar 2、Ar 3、R X1、R X2、R X3的碳原子数,指的是该基团中的所有碳原子数。举例而言,若L 1选自取代的碳原子数为10的亚芳基,则亚芳基及其上的取代基的所有碳 原子数为10。若Ar 1为4-叔丁基-1-苯基则其属于碳原子数为10的取代的芳基。
在本说明书中“碳原子数为6-30的取代或未取代的芳基”和“取代或未取代的碳原子数为6-30的芳基”两种表述含义相同,均是指芳基及其上的取代基的总碳原子数为6-30。
在本说明书中所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,
Figure PCTCN2020121974-appb-000009
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括至少1个B、N、O、S、Se、Si或P等杂原子且其余原子为碳和氢。未取代的烷基可以是没有任何双键或三键的“饱和烷基基团”。
在本申请中,“烷基”可以包括直链烷基或支链烷基。烷基可具有1至20个碳原子,在本申请中,诸如“1至20”的数值范围是指给定范围中的各个整数;例如,“1至20个碳原子”是指可包含1个碳原子、2个碳原子、3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子、11个碳原子、12个碳原子、13个碳原子、14个碳原子、15个碳原子、16个碳原子、17个碳原子、18个碳原子、19个碳原子或20个碳原子的烷基。烷基还可为具有1至10个碳原子的中等大小烷基。烷基还可为具有1至6个碳原子的低级烷基。在又一些实施方案中,烷基基团含有1-4个碳原子;还在一些实施方案中,烷基基团含有1-3个碳原子。所述烷基基团可以任选地被一个或多个本发明描述的取代基所取代。烷基基团的实例包含,但并不限于,甲基(Me、-CH 3),乙基(Et、-CH 2CH 3),正丙基(n-Pr、-CH 2CH 2CH 3),异丙基(i-Pr、-CH(CH 3) 2),正丁基(n-Bu、-CH 2CH 2CH 2CH 3),异丁基(i-Bu、-CH 2CH(CH 3) 2),仲丁基(s-Bu、-CH(CH 3)CH 2CH 3),叔丁基(t-Bu、-C(CH 3) 3)等。此外,烷基可为取代的或未取代的。
本说明书中,“卤代烷基”或“卤代烷氧基”表示烷基或烷氧基基团被一个或多个卤素原子所取代,其中烷基和烷氧基基团具有如本发明所述的含义,这样的实例包含,但并不限于,三氟甲基、三氟甲氧基等。在一实施方案中,C 1-C 6卤代烷基包含氟取代的C 1-C 6烷基;在另一实施方案中,C 1-C 4卤代烷基包含氟取代的C 1-C 4烷基;在又一实施方案中,C 1-C 2卤代烷基包含氟取代的C 1-C 2烷基。
在本申请中,环烷基指的是环状饱和烃,包含单环和多环结构。环烷基可具有3-20个碳原子,诸如“3至20”的数值范围是指给定范围中的各个整数;例如,“3至20个碳原子”是指可包含3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子、11个碳原子、12个碳原子、13个碳原子、14个碳原子、15个碳原子、16个碳原子、17个碳原子、18个碳原子、19个碳原子或20个碳原子的环烷基。环烷基可为具有3至20个碳原子的小环、普通环或大环。环烷基还可分为单环-只有一个环、双环-两个环-或多环-三个或以上环。环烷基还可分为两个环共用一个碳原子-螺环、两个环共用两个碳原子-稠环和两个环共用两个以上碳原子-桥环。此外,环烷基可为取代的或未取代的。在一些实施方式中环烷基为5至10元环烷基,在另一些实施方式中,环烷基为5至8元环烷基,举例而言,环烷基的示例可以是,但不限于:五元环烷基即环戊基、六元环烷基基环己烷基、10元多环烷基如金刚烷基等。
本说明书中,“硅烷基”和“烷基硅烷基”含义一样,均是指
Figure PCTCN2020121974-appb-000010
其中,R G1、R G2、R G3分别独立地为烷基,烷基硅烷基的具体实例,包括但不限于,三甲基硅烷基、三乙基硅烷基、叔丁基二甲基硅烷基、丙基二甲基硅烷基。
在本申请中,芳基指的是衍生自芳香烃环的任选官能团或取代基。芳基可以是单环芳基或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,芳基中不含有B、N、O、S、Se、Si或P等杂原子。举例而言,在本申请中,联苯基、三联苯基等为芳基。芳基的示例可以包括苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、六联苯基、苯并[9,10]菲基、芘基、苝基、苯并荧蒽基、
Figure PCTCN2020121974-appb-000011
基、螺二芴基、茚基等,而不限于此。
在本申请中,取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、F、Cl、I、CN、羟基、氨基、支链烷基、直链烷基、环烷基、烷氧基、烷胺基、烷硫基、杂环基、卤代烷基、芳基、杂芳基、烷基甲硅烷基、芳基甲硅烷基或者其他基团取代。可以理解的是,取代的芳基的碳原子数,指的是芳基及其芳基上的取代基的总碳原子数。例如,取代的碳原子数为18的芳基,指的是芳基和芳基上的取代基的碳原子总数为18个。举例而言,9,9-二甲基芴基为碳原子数为15的取代的芳基。
在本申请中,作为芳基的芴基可以被取代,两个取代基可以彼此结合形成螺结构,具体施例包括但不限于以下结构:
Figure PCTCN2020121974-appb-000012
本申请中,作为取代基的芳基的碳原子数为6-20,碳原子数例如可以为6、10、12、14、18等。作为取代基的芳基的具体实例包括但不限于,苯基、萘基、联苯基、蒽基、菲基、芴基、二甲基芴基等。
在本申请中,杂芳基可以是包括B、O、N、P、Si、Se和S中的至少一个作为杂原子的杂芳基。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,任一芳香环体系为一个芳香单环或者一个芳香稠环,且任一芳香环体系中含有所述杂原子。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、N-芳基咔唑基、N-杂芳基咔唑基、N-烷基咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、二苯并甲硅烷基、二苯并呋喃基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系的杂芳基,N-芳基咔唑基、N-杂芳基咔唑基、苯基取代的二苯并呋喃基等为通过碳碳键共轭连接的多个芳香环体系的杂芳基。
在本申请中,取代的杂芳基,指的是杂芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、F、Cl、I、CN、羟基、氨基、支链烷基、直链烷基、环烷基、烷氧基、烷胺基、烷硫基、杂环基、卤代烷基、芳基、杂芳基、烷基甲硅烷基、芳基甲硅烷基或者其他基团取代。可以理解的是,取代的杂芳基的碳原子数,指的是杂芳基及其上的取代基 的总碳原子数。
在本申请中,对芳基的解释可应用于亚芳基,对杂芳基的解释同样应用于亚杂芳基,对烷基的解释可应用于亚烷基,对环烷基的解释可应用于亚环烷基。
本申请中,作为取代基的杂芳基的碳原子数为3-20,碳原子数例如可以为3、4、5、7、8、9、12、18等。作为取代基的杂芳基的具体实例包括但不限于,吡啶基、嘧啶基、喹啉基、异喹啉基、二苯并呋喃基、二苯并噻吩基、咔唑基、N-苯基咔唑基等。
在本发明中,n个原子形成的环体系,即为n元环。例如,苯基为6元芳基。6-10元芳环包括苯环、茚环和萘环等。
本申请中的“环”包含饱和环、不饱和环;饱和环即环烷基、杂环烷基,不饱和环,即环烯基、杂环烯基、芳基和杂芳基。
术语“任选”或者“任选地”意味着随后所描述的事件或者环境可以但不必发生,该说明包括该事情或者环境发生或者不发生的场合。例如,“任选被烷基取代的杂环基团”意味着烷“任选地,连接于同一个原子上的R v2和R v3相互连接形成饱和或不饱和的环”,意味着连接于同一个原子上的R v2和R v3可以成环但不必须成环,该方案包括R v2和R v3相互连接形成成环的情景,也包括R v2和R v3相互独立地存在的情景。
本申请中的不定位连接键,是指从环体系中伸出的单键
Figure PCTCN2020121974-appb-000013
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,下式(f)中所示的,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2020121974-appb-000014
再举例而言,下式(X')中所示的,式(X')所表示的菲基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式。
Figure PCTCN2020121974-appb-000015
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,下式(Y)中所示的,式(Y)所表示的取代基R基通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2020121974-appb-000016
Figure PCTCN2020121974-appb-000017
下文中对于不定位连接或不定位取代的含义与此处相同,后续将不再进行赘述。
可选的,上述化合物具有如下结构:
Figure PCTCN2020121974-appb-000018
其中,Ar 3中至少含有一个氰基取代基。
化学式2表明化学式1中的R 1
Figure PCTCN2020121974-appb-000019
R 4
Figure PCTCN2020121974-appb-000020
R 2、R 3为氢。化学式3表明化学式1中的R 2
Figure PCTCN2020121974-appb-000021
R 3
Figure PCTCN2020121974-appb-000022
R 1、R 4为氢。
可选地,在一些实施方案中,本申请化合物具有如下(化学式2)或(化学式3)所示的结构:
Figure PCTCN2020121974-appb-000023
其中,L 2和Ar 3中任选含有1、2或3个氰基取代基,且Ar 1、Ar 2和L 1的取代基不包括氰基。其含义是,所述的L 2和Ar 3中的取代基是彼此独立的,氰基取代基既可以仅在其中之一的基团上,也可以同时存在于L 2和Ar 3中;Ar 1、Ar 2和L 1可以任选地被取代,但是它们的取代基中一定不包含氰基。
可选地,在一些实施方案中,本申请化合物具有如下(化学式2)或(化学式3)所示的结构:
Figure PCTCN2020121974-appb-000024
其中,L 2、Ar 3中的取代基不包括氰基,且Ar 1、Ar 2、L 1的取代基中至少包括一个氰基。其含义是,所述的L 1、Ar 1、Ar 2中的取代基是彼此独立的,氰基取代基既可以仅在其中之一的基团上,也可以同时存在于L 1、Ar 1、Ar 2的任意两者中,又或者氰基在三者中都存在;L 2、Ar 3可以任选地被取代,但是它们的取代基中一定不包含氰基。
可选地,在一些实施方案中,本申请化合物具有如下(化学式2)或(化学式3)所示的结构:
Figure PCTCN2020121974-appb-000025
其中,L 2、Ar 3中的取代基至少包括一个氰基,且Ar 1、Ar 2、L 1的取代基中至少包括一个氰基。其含义是,所述的L 2和Ar 3中的取代基是彼此独立的,氰基取代基既可以仅在其中之一的基团上,也可以同时存在于L 2和Ar 3中;所述的L 1、Ar 1、Ar 2中的取代基也是彼此独立的,氰基取代基既可以仅在其中之一的基团上,也可以同时存在于L 1、Ar 1、Ar 2的任意两者中,又或者氰基在三者中都存在。
可选地,R X1、R X2、R X3均为氢。即R 1、R 2、R 3、R 4中任意一个可以为
Figure PCTCN2020121974-appb-000026
Figure PCTCN2020121974-appb-000027
可选地,R X1、R X2、R X3彼此相同或不同,且各自独立地选自氢、氘、氟、氯、氰基。
可选地,L 1、L 2相同或不同,选自单键、取代或未取代的成环碳原子数为6~25的亚芳基、取代或未取代的成环碳原子数为3~18的亚杂芳基。
可选地,L 1或L 2选自单键或者选自化学式j-1所示的基团至化学式j-14所示的基团所组成的组:
Figure PCTCN2020121974-appb-000028
Figure PCTCN2020121974-appb-000029
其中,M 2选自单键或者
Figure PCTCN2020121974-appb-000030
Q 1~Q 5各自独立地选自N或者C(F 1),且Q 1~Q 5中至少一个选自N;当Q 1~Q 5中的两个或者两个以上选自C(F 1)时,任意两个F 1相同或者不相同;
Q 6~Q 13各自独立地选自N或者C(F 2),且Q 6~Q 13中至少一个选自N;当Q 6~Q 13中的两个或者两个以上选自C(F 2)时,任意两个F 2相同或者不相同;
Q 14~Q 23各自独立地选自N或者C(F 3),且Q 14~Q 23中至少一个选自N;当Q 14~Q 23中的两个或者两个以上选自C(F 3)时,任意两个F 3相同或者不相同;
Q 24~Q 33各自独立地选自N或者C(F 4),且Q 24~Q 33中至少一个选自N;当Q 24~Q 33中的两个或者两个以上选自C(F 4)时,任意两个F 4相同或者不相同;
E 1~E 16、E 23~E 25、F 1~F 4各自独立地选自:氢、氘、氟、氯、溴、氰基、碳原子数为3~18的杂芳基、碳原子数为6~18的芳基、碳原子数为3~12的三烷基硅烷基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷胺基、碳原子数为6~18的芳氧基、碳原子数为6~18的芳硫基;
e r为取代基E r的数量,r为1~16的任意整数;当r选自1、2、3、4、5、6、9、15、16或23~25时,e r选自1、2、3或者4;当r选自7、11或14时,e r选自1、2、3、4、5或者6;当r为12时,e r选自1、2、3、4、5、6或者7;当r选自8、10或13时,e r选自1、2、3、4、5、6、7或者8;当e r大于1时,任意两个E r相同或者不相同;
K 3选自O、S、Se、N(E 17)、C(E 18E 19)、Si(E 18E 19);其中,E 17、E 18、E 19各自独立地选自:碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为1~10的烷基、碳原子数为3~10的环烷基,或者E 18和E 19相互连接以与它们共同连接的原子形成饱和或不饱和的5至13元环。举例而言,在化学式j-8中,当K 4为单键、M 2为单键时,K 3为C(E 18E 19)的情况下,E 18和E 19可以是相互连接以与它们共同连接的原子形成饱和或不饱和的环的形式存在,也可以是相互独立地存在。E 18和E 19成环的情况下,E 18和E 19所形成的环与分子其他部分就是螺合连接。需要说明的是,当E 18和E 19相互连接以与它们共同连接的原子形成饱和或不饱和的环时,该环的碳原子数可以是5元环,即形成
Figure PCTCN2020121974-appb-000031
也可以是6元环,即形成
Figure PCTCN2020121974-appb-000032
还可以是13元环,即
Figure PCTCN2020121974-appb-000033
当然,E 18和E 19相互连接形成的环上的碳原子数还可以为其他数值,此处不再一一列举。
K 4选自单键、O、S、Se、N(E 20)、C(E 21E 22)、Si(E 21E 22);其中,E 20、E 21、E 22各自独立地选自:碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为1~10的烷基、碳原子数为3~10的环烷基,或者E 21和E 22相互连接以与它们共同连接的原子形成饱和或不饱和的5至10元脂肪族环。此处对于E 21和E 22任选地成环的理解,与本申请其他技术方案(当E 18和E 19相互连接以成环)中的理解一致。
可选的,L 1或L 2相同或不同,各自独立地选自单键、选自取代或未取代的基团W 1,基团W 1选自如下基团组成的组:
Figure PCTCN2020121974-appb-000034
上述W 1基团被取代时,W 1的取代基选自氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6~13的芳基、碳原子数为3~12的杂芳基;W 1的取代基有多个时,多个取代基相同或不同。另外,W 1的取代基的数量可以为多个,例如1、2、3、4、5个或更多,本申请不对此进行特殊限定。
或者,在另一些实施方案中,所述L 1或L 2相同或不同,各自独立地选自单键、选自取代或未取代的基团W 2,所述基团W 2选自如下基团组成的组:
Figure PCTCN2020121974-appb-000035
所述W 2基团被取代时,W 2的取代基选自氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6~13的芳基、碳原子数为3~12的杂芳基;所述W 2的取代基有多个时,多个取代基相同或不同。
进一步地,W 1和W 2的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氟甲基、苯基、萘基、咔唑基或三甲基硅烷基。
在本申请的一些更具体的实施方式中,各L 1和L 2分别独立地选自:单键、取代或未取代的亚苯基、取代或未取代的亚联苯基、取代或未取代的亚三联苯基、取代或未取代的亚萘基、取代或未取代的二苯并呋喃亚基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚喹啉基、取代或未取代的亚咔唑基、取代或未取代的亚萘基、取代或未取代的亚芴基、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的N-苯基咔唑亚基、取代或者未取代的亚吡啶基、取代或者未取代的螺二芴亚基、取代或者未取代的亚喹啉基、取代或者未取代的亚异喹啉基、取代或者未取代的亚喹唑啉基,或者为它们中两者或三者通过单键连接形成的亚基基团;所述各L 1和L 2中的取代是指分别独立地被1、2、3或4个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、三氟甲基、苯基、咔唑基、萘基、三甲基硅烷基的取代基所取代。
可选地,L 1或L 2相同或不同,各自独立地选自单键、或如下基团组成的组:
Figure PCTCN2020121974-appb-000036
Figure PCTCN2020121974-appb-000037
或者选自如下基团所组成的组:
Figure PCTCN2020121974-appb-000038
Figure PCTCN2020121974-appb-000039
其中,*表示用于与金刚烷基相连,**表示用于与
Figure PCTCN2020121974-appb-000040
或Ar 3相连;本申请化合物中的L 1和L 2的选择并不限于上述基团。
可选地,Ar 1、Ar 2和Ar 3相同或不同,各自独立地选自取代或未取代的成环碳原子数为6~25的芳基、取代或未取代的成环碳原子数为3~18的杂芳基。例如,Ar 1、Ar 2、Ar 3各自独立地选自成环碳原子数为6、10、12、13、14、15、16、17、18、19、20、21、24、25的取代或未取代的芳基,或者选自成环碳原子数为5、8、9、12、16、18的取代或未取代的杂芳基。
可选地,Ar 1、Ar 2和Ar 3中的取代基彼此相同或不同,各自独立地选自由氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的烷基硅烷基、碳原子数为1~10的烷胺基和碳原子数为3~10的环烷基所构成的组,且Ar 3至少被一个氰基所取代。
可选地,Ar 1、Ar 2和Ar 3中的取代基彼此相同或不同,各自独立地选自由氘、氟、氯、氰基、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为5~10的环烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基构成的组。
可选地,Ar 1、Ar 2和Ar 3相同或不同,各自独立地选自如下基团组成的组:
Figure PCTCN2020121974-appb-000041
上述基团中,n a和n c各自独立地为1、2、3或4;n b为1、2、3、4或5;
V 1~V 10各自独立地选自C(R v)和N,当一个基团中包含两个或多个R v时,任意两个R v相同或者不相同;
各V分别独立地选自O、S、Se、N(R v1)、C(R v2R v3)和Si(R v2R v3)所构成的组;
T选自O、S或N(R v1);
T 1~T 10各自独立地选自C(R t)和N,当一个基团中包含两个或多个R t时,任意两个R t相同或者不相同;
各R a、R b、R c、R t、R v、R v2、R v3分别独立地为氢、氘、氟、氯、溴、氰基、C1~C6烷基、C1~C6卤代烷基、C3~C12烷基硅烷基、C6~C12芳基、C3~C12杂芳基和C3~C10环烷基;
任选地,连接于同一个原子上的R v2和R v3相互连接形成饱和或不饱和的5至13元环。举例而言,
Figure PCTCN2020121974-appb-000042
中,当T 1~T 8均为CH,V为C(R v2R v3)时,R v2和R v3相互连接形成环的情况意思是R v2和R v3可以相互连接形成一个环,也可以相互独立存在;当它们形成环时,该环的碳原子数可以是5元环,例如
Figure PCTCN2020121974-appb-000043
也可以是6元环,例如
Figure PCTCN2020121974-appb-000044
还可以是13元环,例如
Figure PCTCN2020121974-appb-000045
当然,R v2和R v3相互连接形成的环上的碳原子数还可以为其他数值,此处不再一一列举。
各R v1选自氢、氘、碳原子数为1~6烷基、碳原子数为1~6卤代烷基、碳原子数为6~12芳基、碳原子数为3~12杂芳基和碳原子数为3~10环烷基所构成的组,且当同一个基团中存在2个R v1时,每个R v1相同或不同。
或者,在另一些实施方案中,所述Ar 1、Ar 2和Ar 3相同或不同,各自独立地选自如下基团组成的组:
Figure PCTCN2020121974-appb-000046
上述基团中,n d选自1、2、3、4、5、6、7或8,n e选自1、2、3或4;
T 11、T 12各自独立地选自C(R t0)和N,当一个基团中包含两个或多个R t0时,任意两个R t0相同或者不相同;
各R d、R e、R f、R t0分别独立地为氢、氘、氟、氯、溴、氰基、碳原子数为1~6烷基、碳原子数为1~6卤代烷基、碳原子数为3~12烷基硅烷基、碳原子数为6~12芳基、碳原子数为3~12杂芳基和碳原子数为3~10环烷基。
作为可选方案,Ar 1和Ar 2相同或不同,各自独立地选自单键、选自取代或未取代的基团Y 1,基团Y 1选自如下基团:
Figure PCTCN2020121974-appb-000047
Figure PCTCN2020121974-appb-000048
上述基团Y 1被取代时,Y 1的取代基选自氘、氟、氯、氰基、碳原子数为1~4的烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;当Y 1的取代基为多个时,多个取代基相同或不同。另外,Y 1的取代基的数量可以为多个,例如1、2、3、4、5个或更多,本申请不对此进行特殊限定。
作为进一步的可选方案,Ar 1和Ar 2相同或不同,各自独立地选自如下基团:
Figure PCTCN2020121974-appb-000049
或者,在另一些实施方案中,所述Ar 1和Ar 2相同或不同,各自独立地选自如下基团:
Figure PCTCN2020121974-appb-000050
Figure PCTCN2020121974-appb-000051
本申请化合物中的Ar 1和Ar 2的选择并不限于上述基团。
可选的,Ar 3选自取代或未取代的基团Z 1,基团Z 1选自如下基团:
Figure PCTCN2020121974-appb-000052
上述基团Z 1被取代时,Z 1的取代基选自氘、氟、氯、氰基、碳原子数为1~4的烷基、碳原 子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;当所述Z 1的取代基包含多个时,多个所述取代基相同或不同。另外,Z 1的取代基的数量可以为多个,例如1、2、3、4、5个或更多,本申请不对此进行特殊限定。
作为进一步的可选方案,Ar 3选自如下基团:
Figure PCTCN2020121974-appb-000053
Figure PCTCN2020121974-appb-000054
或者,在另一些实施方案中,所述Ar 3选自如下基团:
Figure PCTCN2020121974-appb-000055
本申请化合物中的Ar 3的选择并不限于上述基团。
可选地,本申请的有机化合物选自如下化合物所组成的组:
Figure PCTCN2020121974-appb-000056
Figure PCTCN2020121974-appb-000057
Figure PCTCN2020121974-appb-000058
Figure PCTCN2020121974-appb-000059
Figure PCTCN2020121974-appb-000060
Figure PCTCN2020121974-appb-000061
Figure PCTCN2020121974-appb-000062
Figure PCTCN2020121974-appb-000063
Figure PCTCN2020121974-appb-000064
Figure PCTCN2020121974-appb-000065
Figure PCTCN2020121974-appb-000066
Figure PCTCN2020121974-appb-000067
Figure PCTCN2020121974-appb-000068
下面的合成例和实施例用于进一步举例说明和解释本申请的内容。
一般地,本申请的有机化合物可以通过本申请所描述的方法制备得到,所属领域的专业人员将认识到:本申请所描述的化学反应可以用来合适地制备许多本申请的其他化合物,且用于制备本申请的有机化合物的其它方法都被认为是在本申请的范围之内。举例而言,本领域技术人员可以通过参考或适当地修改本申请提供的制备方法而合成出本申请的其他有机化合物,例如可以借助适当的保护基团、利用本申请描述之外的其他已知试剂、修改反应条件等。
下面所描述的合成例中,除非另有声明,否则温度均为摄氏度。
部分试剂购买于商品供应商如Aldrich Chemical Company,Arco Chemical Company and Alfa ChemicalCompany等,除非另有声明,这些试剂使用时都没有经过进一步纯化。部分常规试剂购买自汕头西陇化工厂、广东光华化学试剂厂、广州化学试剂厂、天津好寓宇化学品有限公司、天津市福晨化学试剂厂、武汉鑫华远科技发展有限公司、青岛腾龙化学试剂有限公司和青岛海洋化工厂。
其中,无水四氢呋喃、二氧六环、甲苯和乙醚是经过金属钠回流干燥得到。无水二氯甲烷和氯仿是经过氢化钙回流干燥得到。乙酸乙酯、石油醚、正己烷、N,N-二甲基乙酰胺和N,N-二甲基甲酰胺是经无水硫酸钠事先干燥使用。
除非另有声明,以下反应一般是在氮气或氩气正压下进行的,或者在无水溶剂上套一干燥管;反应瓶都塞上合适的橡皮塞,底物通过注射器注入反应瓶中。玻璃器皿都是干燥过的。
色谱柱使用硅胶柱。硅胶(100-200目)购于青岛海洋化工厂。
低分辨率质谱(MS)数据的测定条件是:Agilent 6120四级杆HPLC-M(柱子型号:Zorbax SB-C18,2.1×30mm,3.5微米,6min,流速为0.6mL/min。流动相:5%-95%(含0.1%甲酸的乙腈)在(含0.1%甲酸的H2O)中的比例),采用电喷雾电离(ESI),在210nm/254nm下,用UV检测。
1H NMR谱使用Bruker 400MHz或600MHz核磁共振谱仪记录。 1H NMR谱以CDCl 3、CD 2Cl 2、D 2O、DMSO-d 6、CD 3OD或丙酮-d 6为溶剂(以ppm为单位),用TMS(0ppm)或氯仿(7.26ppm)作为参照标准。当出现多重峰的时候,将使用下面的缩写:s(singlet,单峰)、d(doublet,双峰)、t(triplet,三重峰)、m(multiplet,多重峰)、br(broadened,宽峰)、dd(doublet ofdoublets,双二重峰)
纯的化合物的使用Agilent 1260pre-HPLC或Calesep pump 250pre-HPLC(柱子型号:NOVASEP 50/80mmDAC),在210nm/254nm用UV检测。
一般合成方案:
本申请的化合物(Final Product)中的一部分,如以下化学式1’进行表示,通过中间体sub 1和sub 2反应进行制备,但不受此限定。本申请的化合物(Final Product)中的一部分,如以下化学式2’进行表示,通过中间体sub 1’和sub 2’反应进行制备,但不受此限定。
<反应过程1>
Figure PCTCN2020121974-appb-000069
<反应过程2>
Figure PCTCN2020121974-appb-000070
一、中间体的制备
(1)中间体sub 1和sub 1’的一般合成过程
上述化学式1’和化合物2’的化合物的sub1可借助以下<反应过程3>化学反应途径来合成,但不受此限定。
<反应过程3>
Figure PCTCN2020121974-appb-000071
在上述<反应过程1>~<反应过程3>中,Ar 1、Ar 2、X 1、X 2、X 3和L 1具有如说明书其他部分所具有的含义,Rs3选自由氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的硅烷基、碳原子数为1~10的烷胺基和碳原子数为3~10的环烷基所构成的组;L 2’、L 3’、L 4、L 1”为取代或未取代的碳原子数为6~30的亚芳基、取代或未取代的碳原子数为3~30的亚杂芳基;X和X’为卤素基团。
(2)制备例1:中间体化合物Sub 1和sub 1’的具体合成例如下。
Sub 1-B1、Sub 1-C1的合成路线
Figure PCTCN2020121974-appb-000072
Figure PCTCN2020121974-appb-000073
1)Sub 1-I-B1合成
将2-氯-4,6-二苯基-1,3,5-三嗪(20.00g,74.70mmol)、对氯苯硼酸(14.01g,89.64mmol)、四三苯基膦钯(1.72g,1.49mmol)、碳酸钾(22.71g,164.35mmol)、四丁基氯化铵(4.15g,14.94mmol)、甲苯(160mL)、乙醇(80mL)和去离子水(40mL)加入三口烧瓶中,氮气保护下升温至78℃,加热回流搅拌8h。反应结束后,溶液冷却至室温,加入甲苯(200mL)萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱进行提纯,得到固体中间体sub 1-I-B1(20.59g,80%)。
2)Sub 1-II-B2合成
将Sub 1-I-B1(20.00g,58.17mmol),联硼酸频哪醇酯(16.24g,63.98mmol)、Pd(dppf)Cl 2(0.42g,0.58mmol)、KOAc(14.37g,145.43mmol),加入1,4-二氧六环(200mL)在100℃温度条件下回流反应12h。当反应结束时,使用CH 2Cl 2和水进行提取。分出有机层利用MgSO 4来干燥,浓缩有机层,对所得粗品用正庚烷打浆1h,过滤获得产物Sub 1-II-B2(16.45g,收率:65%)。
3)Sub 1-III-B3合成
Figure PCTCN2020121974-appb-000074
将1-金刚烷醇(50.00g,328.45mmol)、溴苯(113.45g,722.59mmol)、二氯甲烷(500mL)加入圆底烧瓶中,氮气保护下降温至-5℃下滴加三氟甲磺酸(123.23g,821.12mmol),保温搅拌3h;向反应液中加入去离子水(300mL),水洗至pH=7,加入二氯甲烷(100mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,有机相减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,得到白色固体中间体sub 1-III-B3(58.62g,40.00%)。
4)Sub 1-III-C3合成
Figure PCTCN2020121974-appb-000075
2,2-ADM的合成:
将2-金刚烷酮(25.0g,166.4mmol),苯酚(125.2g,1331.5mmol),1-己硫醇(1.2g,10.65mmol)溶解在三口烧瓶中。完全溶解后,滴加盐酸溶液(6.1mL,166.4mol)并使混合物在氮气流中反应24h,温度保持70℃。反应完成后,将反应混合物冷却至50℃,倒入150mL水中,用200mL二氯甲烷萃取三次。萃取的有机层合并,用H 2O洗涤三次后,加入无水MgSO 4,搅拌干燥以除去水,过滤留有机层将其在减压下浓缩,并用乙醇重结晶,得到白色固体中间体2,2-(4-羟基苯基)金刚烷(2,2-ADM),产率:69%,m=36.6g,熔点为318℃。
Sub1-III-C2的合成:
在氮气气氛下,将中间体2,2-ADM(36.6g,114.2mmol)溶解在400mL乙腈中,接着向其中添加溶解在100ml水中的碳酸钾(47.4g,342.6mmol)溶液,然后向其中缓慢地逐滴添加1,1,2,2,3,3,4,4,4-九氟丁烷-1-磺酰氟(FX-4,86.30g,285.6mmol),并搅拌4h反应结束。除去水层,然后有机层用无水硫酸镁干燥,减压浓缩得到中间体sub 1-III-C2(87.6g,产率90%)。
Sub1-III-C3的合成:
在氮气气氛下,将中间体sub 1-III-C2(87.0g,102.4mmol)、联硼酸频哪醇酯(62.2g,244.9mmol)和醋酸钾(101.9g,1.084mmol)混合并添加到600mL二噁烷中,并将所得物加热到100℃并搅拌。向其中添加双(二亚苄基丙酮)钯(3.5g,6.1mmol)和三环己基膦(3.4g,12.24mmol)同时升温至回流,搅拌10小时,反应完成,将所得物冷却至室温然后过滤。将滤液倒入水中,用二氯甲烷萃取,分出有机层用无水硫酸镁干燥后减压浓缩,将所得浓缩物用乙醇重结晶以制备中间体sub 1-III-C3(34.1g,产率:62%)。
以与Sub 1-III-B3相同的方式制备中间体Sub 1-III-B3-2到Sub 1-III-B3-3,不同之处在于使用原料2替代制备Sub 1-III-B3合成例中的原料溴苯,分别与原料1(1-金刚烷醇)反应。
Figure PCTCN2020121974-appb-000076
5)Sub 1-B1和Sub 1-C1合成
Sub 1-B1的合成:
将Sub 1-II-B2(10.00g,22.97mmol)、sub 1-III-B3(10.45g,22.97mmol)、四三苯基膦钯(0.53g,0.46mmol)、碳酸钾(6.98g,50.53mmol)、四丁基氯化铵(1.27g,4.59mmol)、甲苯(80mL)、乙醇(40mL)和去离子水(20mL)加入三口烧瓶中,氮气保护下升温至78℃,回流搅拌8h。
反应结束后,溶液冷却至室温,加入甲苯(100mL)萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,滤液进行浓缩;粗品利用硅胶柱色谱进行提纯(二氯甲烷/正庚烷体系洗脱),得到固体中间体sub 1-B1(9.33g,67%)。
Sub 1-C1的合成:
将sub 1-I-B1(5.00g,14.54mmol)、sub 1-III-B3’(8.25g,15.27mmol)、三(二亚苄基丙酮)二钯(0.13g,0.15mmol)、2-二环己基磷-2,4,6-三异丙基联苯(0.14g,0.29mmol)、叔丁醇钠(2.09g,21.81mmol)、1,4-二氧六环(50mL)、加入三口烧瓶中,氮气保护下升温至100℃,加热回流搅拌4h。反应结束后,溶液冷却至室温,加入甲苯(200mL)萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行减压浓缩;所得粗品利用乙醇重结晶,得到固体中间体sub 1-C1(7.34g,70%)。
以Sub 1-B1中相同的过程制备中间体Sub 1-B2到Sub 1-B10,不同之处在于使用原料4替代制备例1里Sub 1-I-B1合成例中的对氯苯硼酸,分别与2-氯-4,6-二苯基-1,3,5-三嗪(原料3)反应,然后再与Sub1-III-B3反应得到Sub 1-B系列中间体Sub 1-B2~Sub 1-B10。
Figure PCTCN2020121974-appb-000077
Figure PCTCN2020121974-appb-000078
其中部分原料4-9、4-10的制备方法
Figure PCTCN2020121974-appb-000079
将2-溴-7-氯-9’9-二甲基芴(8.00g,26.00mmol)加入圆底烧瓶中,120mL的无水四氢呋喃(THF)加入到烧瓶中,体系用液氮降温至-80℃~-90℃,开始滴加正丁基锂(四氢呋喃溶液,33.80mmol),滴毕,保温1h。滴加硼酸三甲酯(4.05g,39.01mmol),温度保持-80℃~-90℃,滴毕,保温1h后,自然升至室温,反应结束,加入盐酸的水溶液(20mL,40mmol),搅拌0.5h。加入二氯甲烷和水进行分液萃取,合并的有机相水洗至中性pH=7,无水MgSO 4干燥10min后,过滤,滤液旋干,用正庚烷打浆2次得到原料4-9(4.67g,收率66%)。其他原料4-3~4-8的制备方法与4-9制备方法一致。
以Sub 1-B1中相同的方式制备中间体Sub 1-B11到Sub 1-B20,不同之处在于使用原料3-1代替制备例1中的2-氯-4,6-二苯基-1,3,5-三嗪,用原料4替代制备例1中Sub 1-I-B1合成中的对氯苯硼酸,然后再与Sub1-III-B3反应得到Sub 1-B系列部分中间体Sub 1-B11~Sub 1-B21。
Figure PCTCN2020121974-appb-000080
Figure PCTCN2020121974-appb-000081
Figure PCTCN2020121974-appb-000082
以Sub 1-B1中相同的方式制备中间体Sub 1-B22到Sub 1-B24,不同之处在于使用Sub1-III-B3-x系列化合物代替制备例1中的Sub1-III-B3,和使用原料3-1代替制备例1中的2-氯-4,6-二苯基-1,3,5-三嗪。
Figure PCTCN2020121974-appb-000083
以Sub 1-C1中相同的方式制备中间体Sub 1-C2到Sub 1-C5,不同之处在于使用原料3代替 制备例1中的2-氯-4,6-二苯基-1,3,5-三嗪,原料4替代制备例1里Sub 1-I-B1合成中的对氯苯硼酸,然后再与Sub1-III-B3反应,再与原料4-2反应,将溴代物转化为硼酸酯得到Sub 1-B系列部分中间体Sub 1-C2~Sub 1-C4。
Figure PCTCN2020121974-appb-000084
上述中间体3-1和3-2的制备方法
Figure PCTCN2020121974-appb-000085
在氮气气氛中将镁6.68g(275mmol)和碘1.39g(5.5mmol)加入在55mL无水四氢呋喃中,升温至50℃,向其中缓慢滴加4-溴苯腈(50g,275mmol)的四氢呋喃溶液(50mL),滴加过程控制温度维持在50℃,滴加完毕,在50℃温度条件下继续搅拌2h,得到混合溶液。。将混合物冷却至室温,得到格式试剂溶液。将18.7g(101mmol)的1,3,5-三氯三嗪溶解于100mL无水氢呋喃中,所得溶液缓慢地滴加至格氏试剂溶液中,滴毕,将混合物升温至回流并搅拌约7小时。反应完成后,加水淬灭反应,将混合物用二氯甲烷和蒸馏水萃取,分出的有机层在减压下浓缩,然后所得残留物硅胶柱层析纯化(二氯甲烷/正庚烷体系洗脱),得到22.4g化合物3-1(收率:70%)。
Figure PCTCN2020121974-appb-000086
将1,3,5-三氯三嗪(10.00g,54.22mmol)、4-氰基苯硼酸(12.42g,54.22mmol)、四三苯基膦钯(1.25g,1.08mmol)、碳酸钾(14.99g,108.45mmol)、四丁基氯化铵(0.35g,1.08mmol)、甲苯(80mL)、乙醇(40mL)和去离子水(20mL)加入三口烧瓶中,氮气保护下升温至78℃,加热回流搅拌8h。反应结束后,溶液冷却至室温,加入甲苯(100mL)萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,滤液进行浓缩;粗品利用硅胶柱色谱进行提纯(二氯甲烷/正庚烷体系洗脱),得到固体化合物3-2-1#(8.84g,65%)。
将3-2-1#(8.00g,31.86mmol)、9-菲硼酸频那醇酯(9.78g,32.18mmol)、四三苯基膦钯(0.73g,0.63mmol)、碳酸钾(8.81g,63.72mmol)、四丁基氯化铵(0.20g,0.63mmol)、甲苯(64mL)、乙醇(32mL)和去离子水(16mL)加入三口烧瓶中,氮气保护下升温至78℃,加热回流搅拌8h。反应结束后,溶液冷却至室温,加入甲苯(200mL)萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,滤液进行浓缩;粗品利用硅胶柱色谱进行提纯(二氯甲烷/正庚烷体系洗脱),得到固体化合物3-2(7.75g,62%)。
二、化合物的合成
化合物1的合成
Figure PCTCN2020121974-appb-000087
将sub 1-B1(9.00g,15.03mmol)、4-氰基苯硼酸(2.65g,18.04mmol)、四三苯基膦钯(0.34g,0.30mmol)、碳酸钾(4.57g,33.07mmol)、四丁基氯化铵(0.83g,3.00mmol)、甲苯(72mL)、乙醇(36mL)和去离子水(18mL)加入三口烧瓶中,氮气保护下升温至75-80℃,加热回流搅拌8h。反应结束后,溶液冷却至室温,加入甲苯(100mL)萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,滤液进行浓缩;粗品利用硅胶柱色谱进行提纯(二氯甲烷/正庚烷体系洗脱),得到固体化合物1(7.22g,69%)。
LC-MS(ESI,pos.ion)m/z:697.3[M+H] +
1HNMR(400MHz,CD 2Cl 2)δ(ppm):8.87(d,4H),8.62(d,2H),7.92-7.86(d,4H),7.66-7.56(m,6H),7.47(d,2H),7.37(d,2H),7.32(d,2H),7.25(d,4H),2.30(s,2H),1.92(s,6H),1.80-1.77(m,6H).
化合物2的合成
以与实验例1中相同的方式制备化合物2,不同之处在于使用sub 1-B2替代制备例1中Sub 1-B1。LC-MS(ESI,pos.ion)m/z:621.29[M+H] +
Figure PCTCN2020121974-appb-000088
1HNMR(400MHz,CD 2Cl 2)δ(ppm):8.81(d,4H),8.24(d,2H),7.93(d,2H),7.66-7.57(m,6H),7.47(d,2H),7.41(d,2H),7.37(d,2H),7.25(d,2H),2.15(s,2H),1.93(s,6H),1.81-1.75(m,6H).
化合物3的合成
以与实验例1中相同的方式制备化合物3,不同之处在于使用sub 1-B3替代制备例1中Sub 1-B1,得到固体化合物3(7.86g,65%)。
LC-MS(ESI,pos.ion)m/z:697.33[M+H] +
Figure PCTCN2020121974-appb-000089
化合物10的合成
以与实验例1中相同的方式制备化合物10,不同之处在于使用sub 1-B4替代制备例1中Sub 1-B1,,得到固体化合物10(7.55g,63%)。LC-MS(ESI,pos.ion)m/z:747.34[M+H] +
Figure PCTCN2020121974-appb-000090
化合物12的合成
以与实验例1中相同的方式制备化合物12,不同之处在于使用sub 1-B5替代制备例1中Sub 1-B1,得到固体化合物12(7.20g,63%)。LC-MS(ESI,pos.ion)m/z:747.34[M+H] +
Figure PCTCN2020121974-appb-000091
化合物6的合成
以与实验例1中相同的方式制备化合物6,不同之处在于使用sub 1-B6替代制备例1中Sub 1-B1,得到固体化合物6(7.16g,75%)。LC-MS(ESI,pos.ion)m/z:711.34[M+H] +
Figure PCTCN2020121974-appb-000092
化合物18的合成
以与实验例1中相同的方式制备化合物18,不同之处在于使用sub 1-B7替代制备例1中Sub 1-B1,得到固体化合物18(6.86g,64%)。LC-MS(ESI,pos.ion)m/z:773.36[M+H] +
Figure PCTCN2020121974-appb-000093
化合物19的合成
以与实验例1中相同的方式制备化合物19,不同之处在于使用sub 1-B8替代制备例1中Sub 1-B1,得到固体化合物19(5.86g,65%)。LC-MS(ESI,pos.ion)m/z:773.36[M+H] +
Figure PCTCN2020121974-appb-000094
化合物27的合成
以与实验例1中相同的方式制备化合物27,不同之处在于使用sub 1-B9替代制备例1中Sub 1-B1,得到固体化合物27(7.06g,72%)。LC-MS(ESI,pos.ion)m/z:813.39[M+H] +
Figure PCTCN2020121974-appb-000095
化合物33的合成
以与实验例1中相同的方式制备化合物33,不同之处在于使用sub 1-B10替代制备例1中Sub 1-B1,得到固体化合物33(8.54g,63%)。LC-MS(ESI,pos.ion)m/z:797.36[M+H] +
Figure PCTCN2020121974-appb-000096
化合物35的合成
以与实验例1中相同的方式制备化合物35,不同之处在于使用sub 1-B11替代制备例1中Sub 1-B1,得到固体化合物35(7.45g,60%)。LC-MS(ESI,pos.ion)m/z:671.31[M+H] +
Figure PCTCN2020121974-appb-000097
1HNMR(400MHz,CD 2Cl 2)δ(ppm):8.94(d,1H),8.84(d,2H),8.79(d,2H),8.53(d,1H),8.24(d,2H),7.92(d,2H),7.68-7.52(m,6H),7.47(d,2H),7.41(d,2H),7.37(d,2H),7.25(d,2H),2.12(s,2H),1.93(s,6H), 1.82-1.77(m,6H).
化合物43的合成
以与实验例1中相同的方式制备化合物43,不同之处在于使用sub 1-B12替代制备例1中Sub 1-B1,,得到固体化合物43(5.94g,59%)。LC-MS(ESI,pos.ion)m/z:697.33[M+H] +
Figure PCTCN2020121974-appb-000098
化合物44的合成
以与实验例1中相同的方式制备化合物44,不同之处在于使用sub 1-B13替代制备例1中Sub 1-B1,得到固体化合物44(7.12g,79%)。LC-MS(ESI,pos.ion)m/z:697.33[M+H] +
Figure PCTCN2020121974-appb-000099
化合物41的合成
以与实验例1中相同的方式制备化合物41,不同之处在于使用sub1-B14替代制备例1中Sub 1-B1,得到固体化合物41(7.05g,61%)。LC-MS(ESI,pos.ion)m/z:622.29[M+H] +
Figure PCTCN2020121974-appb-000100
化合物59的合成
以与实验例1中相同的方式制备化合物59,不同之处在于使用sub 1-B15替代制备例1中Sub 1-B1,得到固体化合物59(9.06g,67%)。LC-MS(ESI,pos.ion)m/z:620.30[M+H] +
Figure PCTCN2020121974-appb-000101
化合物40的合成
以与实验例1中相同的方式制备化合物40,不同之处在于使用sub 1-B16替代制备例1中 Sub 1-B1,得到固体化合物40(6.55g,69%)。LC-MS(ESI,pos.ion)m/z:721.33[M+H] +
Figure PCTCN2020121974-appb-000102
化合物60的合成
以与实验例1中相同的方式制备化合物60,不同之处在于使用sub 1-B17替代制备例1中Sub 1-B1,得到固体化合物60(7.12g,63%)。LC-MS(ESI,pos.ion)m/z:732.42[M+H] +
Figure PCTCN2020121974-appb-000103
化合物61的合成
以与实验例1中相同的方式制备化合物61,不同之处在于使用sub 1-B18替代制备例1中Sub 1-B1,得到固体化合物61(7.00g,61%)。LC-MS(ESI,pos.ion)m/z:695.33[M+H] +
Figure PCTCN2020121974-appb-000104
化合物63的合成
以与实验例1中相同的方式制备化合物63,不同之处在于使用sub 1-B19替代制备例1中Sub 1-B1,得到固体化合物63(7.15g,72%)。LC-MS(ESI,pos.ion)m/z:899.40[M+H ]+
Figure PCTCN2020121974-appb-000105
化合物64的合成
以与实验例1中相同的方式制备化合物64,不同之处在于使用sub 1-B20替代制备例1中Sub 1-B1,得到固体化合物64(8.30g,69%)。LC-MS(ESI,pos.ion)m/z:873.39[M+H]+。
Figure PCTCN2020121974-appb-000106
化合物194的合成
以与实验例1中相同的方式制备化合物194,不同之处在于使用sub 1-B21替代制备例1中Sub 1-B1,得到固体化合物194(5.37g,69%)。LC-MS(ESI,pos.ion)m/z:773.36[M+H] +
Figure PCTCN2020121974-appb-000107
化合物65、66、76、77、103、85、86、104、105、211、247、258、259的合成
以实验例1相同的方式制备化合物65、66、76、77、103、85、86、104、105、211、247、258、259,不同之处在于使用原料5代替实验例1中的对氰基苯硼酸,与对应的Sub1-B反应。
Figure PCTCN2020121974-appb-000108
Figure PCTCN2020121974-appb-000109
Figure PCTCN2020121974-appb-000110
化合物266、267、268、269、270的合成
以实验例1相同的方式制备化合物266、267、268、269、270,不同之处在于使用原料sub2原料5代替实验例1中的对氰基苯硼酸,与Sub1-C反应。
Figure PCTCN2020121974-appb-000111
Figure PCTCN2020121974-appb-000112
本申请还提供一种电子元件,用于实现光电转换或者电光转化。所述电子元件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请的有机化合物。
举例而言,电子元件为一种有机电致发光器件。如图1所示,有机电致发光器件包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的有机化合物。
可选地,功能层300包括电子传输层350,电子传输层350包含本申请所提供的有机化合物。其中,电子传输层350既可以为本申请所提供的有机化合物组成,也可以由本申请所提供的有机化合物和其他材料共同组成。
在本申请的一种实施方式中,有机电致发光器件可以包括依次层叠设置的阳极100、空穴传输层321、电子阻挡层322、作为能量转化层的有机电致发光层330、电子传输层350和阴极200。本申请提供的有机化合物可以应用于有机电致发光器件的电子阻挡层322,可以有效改善有机电致发光器件的发光效率和寿命,降低有机电致发光器件的驱动电压。
可选地,阳极100包括以下阳极材料,其可选方案地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。可选方案包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,空穴传输层321可以包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,空穴传输层321由化合物TPD组成。
可选地,电子阻挡层322包括一种或多种电子阻挡材料,电子阻挡材料可以选自咔唑多聚体或者其他类型化合物,本申请对此不特殊的限定。举例而言,在本申请的一些实施方式中,电子阻挡层322由化合物TCTA组成。
可选地,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料可以为金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实 施方式中,有机发光层330的主体材料可以为CBP。
有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的客体材料可以为Ir(piq) 2(acac)。
可选地,阴极200包括以下阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括:金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO2/Al、LiF/Ca、LiF/Al和BaF2/Ca,但不限于此。可选方案包括包含银和镁的金属电极作为阴极。
可选地,如图1所示,在阳极100和第一空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,空穴注入层310可以由HAT-CN组成。
可选地,如图1所示,在阴极200和电子传输层350之间还可以设置有电子注入层360,以增强向电子传输层350注入电子的能力。电子注入层360可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层360可以包括镱(Yb)。
可选地,在有机电致发光层330和电子传输层350之间还可以设置有空穴阻挡层340。
再举例而言,电子元件可以为一种光电转化器件,如图2所示,该光电转化器件可以包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的有机化合物。
可选地,功能层300包括电子传输层350,电子传输层350包含本申请所提供的有机化合物。其中,电子传输层350既可以为本申请所提供的有机化合物组成,也可以由本申请所提供的有机化合物和其他材料共同组成。
可选地,如图2所示,光电转化器件可包括依次层叠设置的阳极100、空穴传输层321、电子阻挡层322、作为能量转化层的光电转化层370、电子传输层350和阴极200。本申请提供的有机化合物可以应用于光电转化器件的电子传输层350,可以有效改善光电转化器件的发光效率和寿命,提高光电转化器件的开路电压。
可选地,在阳极100和空穴传输层321之间还可以设置有空穴注入层310。
可选地,在阴极200和电子传输层350之间还可以设置有电子注入层360。
可选地,在光电转化层370和电子传输层350之间还可以设置有空穴阻挡层340。
可选地,光电转化器件可以为太阳能电池,尤其是可以为有机薄膜太阳能电池。举例而言,如图2所示,在本申请的一种实施方式中,太阳能电池包括依次层叠设置的阳极100、空穴传输层321、电子阻挡层322、光电转化层370、电子传输层350和阴极200,其中,电子传输层350包含有本申请的有机化合物。
本申请实施方式还提供一种电子装置,该电子装置包括上述电子元件实施方式所描述的任意一种电子元件。由于该电子装置具有上述电子元件实施方式所描述的任意一种电子元件,因此具有相同的有益效果,本申请在此不再赘述。
举例而言,如图3所示,本申请提供一种电子装置400,该电子装置200包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该电子装置400可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。由于该电子装置400具有上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件,因此具有相同的有益效果,本申请在此不再赘述。
再举例而言,如图4所示,本申请提供一种电子装置500,该电子装置500包括上述光电转化器件实施方式所描述的任意一种光电转化器件。该电子装置500可以为太阳能发电设备、 光检测器、指纹识别设备、光模块、CCD相机或则其他类型的电子装置。由于该电子装置500具有上述光电转化器件实施方式所描述的任意一种光电转化器件,因此具有相同的有益效果,本申请在此不再赘述。
有机电致发光器件的制备和性能评估
实施例1:绿色有机电致发光器件
通过以下过程制备阳极:将ITO厚度为
Figure PCTCN2020121974-appb-000113
的基板(康宁制造)切割成40mm×40mm×0.7mm的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极(实验基板)的功函数的和清除浮渣。
在实验基板(阳极)上真空蒸镀HAT-CN以形成厚度为
Figure PCTCN2020121974-appb-000114
的空穴注入层(HIL),并且在空穴注入层上真空蒸镀NPB,以形成厚度为
Figure PCTCN2020121974-appb-000115
的空穴传输层(HTL)。
在空穴传输层上蒸镀TCTA,形成厚度为
Figure PCTCN2020121974-appb-000116
的电子阻挡层(EBL)。
以α,β-ADN作为主体,同时掺杂BD-1,主体和掺杂剂按以30:3的膜厚比形成了厚度为
Figure PCTCN2020121974-appb-000117
的有机电致发光层(EML)。
在发光层上蒸镀本申请化合物1形成厚度为
Figure PCTCN2020121974-appb-000118
的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2020121974-appb-000119
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2020121974-appb-000120
的阴极。
此外,在上述阴极上作为蒸镀了厚度为
Figure PCTCN2020121974-appb-000121
的CP-1,形成覆盖层(CPL),从而完成有机发光器件的制造。
其中,HAT-CN、NPB、TCTA、α,β-ADN、BD-1以及CP-1的结构式如下:
Figure PCTCN2020121974-appb-000122
实施例2-34
除了在形成电子传输层(ETL)时各自使用表1中所示的化合物以外,采用与实施例1相同的方法制作有机电致发光器件。
比较例1-比较例3
在所述比较例1-比较例3中,除了使用了化合物A、化合物B、Alq 3作为电子传输层替代化合物1之外,采用与实施例1相同的方法制造有机电致发光器件。
Figure PCTCN2020121974-appb-000123
Figure PCTCN2020121974-appb-000124
制备的各器件的性能参数详见表1,其中,IVL数据对比的是在15mA/cm 2下的测试结果,寿命是15mA/cm 2电流密度下的测试结果。
表1 实施例1~39和比较例1~6的器件性能
Figure PCTCN2020121974-appb-000125
Figure PCTCN2020121974-appb-000126
根据上述[表1]的结果可知,使用本申请的化合物制备的实施例1~39,与比较例1~6相比,在15mA/cm 2电流密度下器件驱动电压相当,但是实施例的器件效率至少提升了9.1%,大部分化合物制备得到的器件电流效率提升近20%;寿命至少提升了9%,大部分化合物制备得到的器件寿命提升20%以上。本申请化合物1~39与化合物E相比,可以看出,将氰基连接至该类含金刚烷和缺电子杂芳基的化合物中,可以提高分子的偶极矩,使材料的极性得到提升,LOMO能级变深,提高电子迁移率,因此带有氰基的化合物具有更高的发光效率和更长的寿命。
需要注意的是,以上仅给出了蓝色有机电致发光器件的一种制备方法,本申请的有机化合物还可以用于其他颜色有机电致发光器件的电子传输层,例如红色有机电致发光器件、绿色有机电致发光器件,也能带来同样的技术效果。
总而言之,在电子传输层(ETL)中使用本申请化合物制备的有机电致发光器件可实现低驱动电压、高发光效率及长寿命。

Claims (22)

  1. 一种有机化合物,其特征在于,所述有机化合物的结构式如化学式1所示:
    Figure PCTCN2020121974-appb-100001
    其中,R 1、R 2、R 3、R 4中任意一个为
    Figure PCTCN2020121974-appb-100002
    R 1、R 2、R 3、R 4中任意另一个为
    Figure PCTCN2020121974-appb-100003
    R 1、R 2、R 3、R 4中其余两个相同或不同,且各自独立地选自氢、氘、氟、氯、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,
    Figure PCTCN2020121974-appb-100004
    表示化学键;
    X 1、X 2、X 3相同或不同,X 1为C(R X1)或N,X 2为C(R X2)或N,X 3为C(R X3)或N,且X 1、X 2和X 3中至少有一个为N;
    R X1、R X2、R X3相同或不同,且各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基;
    L 1、L 2相同或不同,且分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基、碳原子数为3~10的取代或未取代的亚环烷基;
    Ar 1、Ar 2和Ar 3相同或不同,且分别独立地选自碳原子数为1~20的取代或未取代的烷基、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的的杂芳基、碳原子数为3~20的取代或未取代的环烷基、碳原子数为7~30的取代或未取代的芳烷基、碳原子数为2~30的取代或未取代的杂芳烷基;
    所述L 1、L 2、Ar 1、Ar 2和Ar 3中的取代基彼此相同或不同,各自独立地选自由氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的烷基硅烷基、碳原子数为1~10的烷胺基和碳原子数为3~10的环烷基所构成的组,且至少有一个取代基为氰基。
  2. 根据权利要求1所述的有机化合物,其特征在于,所述化合物具有如下结构:
    Figure PCTCN2020121974-appb-100005
    Ar 3中至少含有一个氰基取代基。
  3. 根据权利要求1或2所述的有机化合物,其特征在于,所述R X1、R X2、R X3彼此相同或不同,且各自独立地选自氢、氘、氟、氯、氰基。
  4. 根据权利要求1~3中任意一项所述的有机化合物,其特征在于,所述L 1、L 2相同或不同,选自单键、取代或未取代的成环碳原子数为6~25的亚芳基、取代或未取代的成环碳原子数为3~18的亚杂芳基。
  5. 根据权利要求1~4中任意一项所述的有机化合物,其特征在于,所述L 1和L 2选自单键或者选自化学式j-1所示的基团至化学式j-14所示的基团所组成的组:
    Figure PCTCN2020121974-appb-100006
    其中,M 2选自单键或者
    Figure PCTCN2020121974-appb-100007
    Q 1~Q 5各自独立地选自N或者C(F 1),且Q 1~Q 5中至少一个选自N;当Q 1~Q 5中的两个或者两个以上选自C(F 1)时,任意两个F 1相同或者不相同;
    Q 6~Q 13各自独立地选自N或者C(F 2),且Q 6~Q 13中至少一个选自N;当Q 6~Q 13中的两个或者两个以上选自C(F 2)时,任意两个F 2相同或者不相同;
    Q 14~Q 23各自独立地选自N或者C(F 3),且Q 14~Q 23中至少一个选自N;当Q 14~Q 23中的两个或者两个以上选自C(F 3)时,任意两个F 3相同或者不相同;
    Q 24~Q 33各自独立地选自N或者C(F 4),且Q 24~Q 33中至少一个选自N;当Q 24~Q 33中的两个或者两个以上选自C(F 4)时,任意两个F 4相同或者不相同;
    E 1~E 16、E 23~E 25、F 1~F 4各自独立地选自:氢、氘、氟、氯、溴、氰基、碳原子数为3~18的杂芳基、碳原子数为6~18的芳基、碳原子数为3~12的三烷基硅烷基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷胺基、碳原子数为6~18的芳氧基、碳原子数为6~18的芳硫基;
    e r为取代基E r的数量,r为1~16的任意整数;当r选自1、2、3、4、5、6、9、15、16或23~25时,e r选自1、2、3或者4;当r选自7、11或14时,e r选自1、2、3、4、5或者6;当r为12时,e r选自1、2、3、4、5、6或者7;当r选自8、10或13时,e r选自1、2、3、4、5、6、7或者8;当e r大于1时,任意两个E r相同或者不相同;
    K 3选自O、S、Se、N(E 17)、C(E 18E 19)、Si((E 18E 19);其中,E 17、E 18、E 19各自独立地选自:碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为1~10的烷基、碳原子数为3~10的环烷基、或者E 18和E 19相互连接以与它们共同连接的原子形成饱和或不饱和的的5至13元环;
    K 4选自单键、O、S、Se、N(E 20)、C(E 21E 22)、Si(E 21E 22);其中,E 20、E 21、E 22各自独立地选自:碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为1~10的烷基、碳原子数为3~10的环烷基,或者E 21和E 22相互连接以与它们共同连接的原子形成饱和或不饱和的5至13元环。
  6. 根据权利要求1~5中任意一项所述的有机化合物,其特征在于,所述L 1或L 2相同或不同,各自独立地选自单键、选自取代或未取代的基团W 1,所述基团W 1选自如下基团组成的组:
    Figure PCTCN2020121974-appb-100008
    Figure PCTCN2020121974-appb-100009
    所述W 1基团被取代时,W 1的取代基选自氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6~13的芳基、碳原子数为3~12的杂芳基;所述W 1的取代基有多个时,多个取代基相同或不同。
  7. 根据权利要求1~6中任意一项所述的有机化合物,其特征在于,所述L 1或L 2相同或不同,各自独立地选自单键、选自取代或未取代的基团W 2,所述基团W 2选自如下基团组成的组:
    Figure PCTCN2020121974-appb-100010
    所述W 2基团被取代时,W 2的取代基选自氘、氟、氯、氰基、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6~13的芳基、碳原子数为3~12的杂芳基;所述W 2的取代基有多个时,多个取代基相同或不同。
  8. 根据权利要求1~7中任意一项所述的有机化合物,其特征在于,所述L 1或L 2相同或不同,各自独立地选自单键、或如下基团组成的组:
    Figure PCTCN2020121974-appb-100011
    Figure PCTCN2020121974-appb-100012
    其中,*表示用于与金刚烷基相连,**表示用于与
    Figure PCTCN2020121974-appb-100013
    或Ar 3相连。
  9. 根据权利要求1~8中任意一项所述的有机化合物,其特征在于,所述L 1或L 2相同或不同,各自独立地选自单键、或如下基团组成的组:
    Figure PCTCN2020121974-appb-100014
    Figure PCTCN2020121974-appb-100015
    其中,*表示用于与金刚烷基相连,**表示用于与
    Figure PCTCN2020121974-appb-100016
    或Ar 3相连。
  10. 根据权利要求1~9中任意一项所述的有机化合物,其特征在于,Ar 1、Ar 2和Ar 3相同或不同,各自独立地选自取代或未取代的成环碳原子数为6~25的芳基、取代或未取代的成环碳原子数为3~18的杂芳基;
    所述Ar 1、Ar 2和Ar 3中的取代基彼此相同或不同,各自独立地选自由氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的烷基硅烷基、碳原子数为1~10的烷胺基和碳原子数为3~10的环烷基所构成的组,且所述Ar 3至少被一个氰基所取代。
  11. 根据权利要求1~10中任意一项所述的有机化合物,其特征在于,所述Ar 1、Ar 2和Ar 3相同或不同,各自独立地选自如下基团组成的组:
    Figure PCTCN2020121974-appb-100017
    上述基团中,n a和n c各自独立地为1、2、3或4;n b为1、2、3、4或5;
    V 1~V 10各自独立地选自C(R v)和N,当一个基团中包含两个或多个R v时,任意两个R v相同或者不相同;
    各V分别独立地选自O、S、Se、N(R v1)、C(R v2R v3)和Si(R v2R v3)所构成的组;
    T选自O、S或N(R v1);
    T 1~T 10各自独立地选自C(R t)和N,当一个基团中包含两个或多个R t时,任意两个R t相同或者不相同;
    各R a、R b、R c、R t、R v、R v2、R v3分别独立地为氢、氘、氟、氯、溴、氰基、碳原子数为1~6烷基、碳原子数为1~6卤代烷基、碳原子数为3~12烷基硅烷基、碳原子数为6~12芳基、碳原子数为3~12杂芳基和碳原子数为3~10环烷基;或者,任选地,连接于同一个原子上的R v2和R v3相互连接形成饱和或不饱和的5至13元环;
    各R v1选自氢、氘、碳原子数为1~6烷基、碳原子数为1~6卤代烷基、碳原子数为6~12芳基、碳原子数为3~12杂芳基和碳原子数为3~10环烷基所构成的组,且当同一个基团中存在2个R v1时,每个R v1相同或不同。
  12. 根据权利要求1~11中任意一项所述的有机化合物,其特征在于,所述Ar 1、Ar 2和Ar 3相同或不同,各自独立地选自如下基团组成的组:
    Figure PCTCN2020121974-appb-100018
    上述基团中,n d选自1、2、3、4、5、6、7或8,n e选自1、2、3或4;
    T 11、T 12各自独立地选自C(R t0)和N,当一个基团中包含两个或多个R t0时,任意两个R t0相同或者不相同;
    各R d、R e、R f、R t0分别独立地为氢、氘、氟、氯、溴、氰基、碳原子数为1~6烷基、碳原子数为1~6卤代烷基、碳原子数为3~12烷基硅烷基、碳原子数为6~12芳基、碳原子数为3~12杂芳基和碳原子数为3~10环烷基。
  13. 根据权利要求1~12中任意一项所述的有机化合物,其特征在于,所述Ar 1和Ar 2相同或不同,各自独立地选自取代或未取代的基团Y 1,所述基团Y 1选自如下基团:
    Figure PCTCN2020121974-appb-100019
    Figure PCTCN2020121974-appb-100020
    所述基团Y 1被取代时,Y 1的取代基选自氘、氟、氯、氰基、碳原子数为1~4的烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;当所述Y 1的取代基为多个时,多个所述取代基相同或不同。
  14. 根据权利要求1~13中任意一项所述的有机化合物,其特征在于,所述Ar 1和Ar 2相同或不同,各自独立地选自如下基团:
    Figure PCTCN2020121974-appb-100021
    Figure PCTCN2020121974-appb-100022
  15. 根据权利要求1~14中任意一项所述的有机化合物,其特征在于,所述Ar 1和Ar 2相同或不同,各自独立地选自如下基团:
    Figure PCTCN2020121974-appb-100023
  16. 根据权利要求1~15中任意一项所述的有机化合物,其特征在于,所述Ar 3选自取代或未取代的基团Z 1,所述基团Z 1选自如下基团:
    Figure PCTCN2020121974-appb-100024
    Figure PCTCN2020121974-appb-100025
    所述基团Z 1被取代时,Z 1的取代基选自氘、氟、氯、氰基、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;当所述Z 1的取代基包含多个时,多个所述取代基相同或不同。
  17. 根据权利要求1~16中任意一项所述的有机化合物,其特征在于,所述Ar 3选自如下基团:
    Figure PCTCN2020121974-appb-100026
    Figure PCTCN2020121974-appb-100027
  18. 根据权利要求1~17中任意一项所述的有机化合物,其特征在于,所述Ar 3选自如下基团:
    Figure PCTCN2020121974-appb-100028
  19. 根据权利要求1~18中任意一项所述的有机化合物,其特征在于,所述有机化合物选自如下化合物所组成的组:
    Figure PCTCN2020121974-appb-100029
    Figure PCTCN2020121974-appb-100030
    Figure PCTCN2020121974-appb-100031
    Figure PCTCN2020121974-appb-100032
    Figure PCTCN2020121974-appb-100033
    Figure PCTCN2020121974-appb-100034
    Figure PCTCN2020121974-appb-100035
    Figure PCTCN2020121974-appb-100036
    Figure PCTCN2020121974-appb-100037
    Figure PCTCN2020121974-appb-100038
    Figure PCTCN2020121974-appb-100039
    Figure PCTCN2020121974-appb-100040
    Figure PCTCN2020121974-appb-100041
  20. 一种电子元件,其特征在于,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;
    所述功能层包含权利要求1~19任一项所述的有机化合物。
  21. 根据权利要求20所述的电子元件,其特征在于,所述功能层包括电子传输层,所述电子传输层包括权利要求1~19中任一项所述的有机化合物。
  22. 一种电子装置,其特征在于,包括权利要求20~21中任一项所述的电子元件。
PCT/CN2020/121974 2019-12-30 2020-10-19 有机化合物、电子元件和电子装置 WO2021135516A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/622,372 US11434208B2 (en) 2019-12-30 2020-10-19 Organic compound, electronic component and electronic apparatus
KR1020217043278A KR102422363B1 (ko) 2019-12-30 2020-10-19 유기 화합물, 전자 소자 및 전자 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911404312 2019-12-30
CN201911404312.8 2019-12-30
CN202010635712.6A CN111662241B (zh) 2019-12-30 2020-07-03 有机化合物、电子元件和电子装置
CN202010635712.6 2020-07-03

Publications (1)

Publication Number Publication Date
WO2021135516A1 true WO2021135516A1 (zh) 2021-07-08

Family

ID=72391240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121974 WO2021135516A1 (zh) 2019-12-30 2020-10-19 有机化合物、电子元件和电子装置

Country Status (4)

Country Link
US (1) US11434208B2 (zh)
KR (1) KR102422363B1 (zh)
CN (1) CN111662241B (zh)
WO (1) WO2021135516A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662241B (zh) * 2019-12-30 2021-09-03 陕西莱特光电材料股份有限公司 有机化合物、电子元件和电子装置
CN111646951B (zh) * 2019-12-30 2022-01-28 陕西莱特光电材料股份有限公司 有机化合物、电子元件和电子装置
CN112661709B (zh) * 2020-12-18 2021-11-19 陕西莱特光电材料股份有限公司 一种含氮有机化合物及使用其的电子元件和电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183333A (zh) * 2019-06-19 2019-08-30 陕西莱特光电材料股份有限公司 一种有机电致发光材料及包含该材料的有机电致发光器件
CN110240546A (zh) * 2019-06-24 2019-09-17 陕西莱特光电材料股份有限公司 一种含金刚烷基的三苯胺类衍生物的制备方法
CN110289361A (zh) * 2019-06-24 2019-09-27 陕西莱特光电材料股份有限公司 一种有机电致发光器件
CN110467536A (zh) * 2019-06-14 2019-11-19 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和光电转化器件
CN110615759A (zh) * 2019-09-25 2019-12-27 陕西莱特光电材料股份有限公司 化合物、光电转化器件及电子装置
CN111039882A (zh) * 2019-12-25 2020-04-21 武汉天马微电子有限公司 一种化合物、有机光电装置和电子设备
CN111646951A (zh) * 2019-12-30 2020-09-11 陕西莱特光电材料股份有限公司 有机化合物、电子元件和电子装置
CN111662241A (zh) * 2019-12-30 2020-09-15 陕西莱特光电材料股份有限公司 有机化合物、电子元件和电子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812652B2 (en) * 2013-07-09 2017-11-07 Tosoh Corporation Cyclic azine compound having adamantyl group, production method, and organic electroluminescent device containing it as constituent component
CN110028459B (zh) * 2019-05-24 2023-04-18 武汉天马微电子有限公司 化合物、显示面板以及显示装置
CN110156756A (zh) * 2019-05-27 2019-08-23 上海天马有机发光显示技术有限公司 化合物、显示面板以及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467536A (zh) * 2019-06-14 2019-11-19 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和光电转化器件
CN110183333A (zh) * 2019-06-19 2019-08-30 陕西莱特光电材料股份有限公司 一种有机电致发光材料及包含该材料的有机电致发光器件
CN110240546A (zh) * 2019-06-24 2019-09-17 陕西莱特光电材料股份有限公司 一种含金刚烷基的三苯胺类衍生物的制备方法
CN110289361A (zh) * 2019-06-24 2019-09-27 陕西莱特光电材料股份有限公司 一种有机电致发光器件
CN110615759A (zh) * 2019-09-25 2019-12-27 陕西莱特光电材料股份有限公司 化合物、光电转化器件及电子装置
CN111039882A (zh) * 2019-12-25 2020-04-21 武汉天马微电子有限公司 一种化合物、有机光电装置和电子设备
CN111646951A (zh) * 2019-12-30 2020-09-11 陕西莱特光电材料股份有限公司 有机化合物、电子元件和电子装置
CN111662241A (zh) * 2019-12-30 2020-09-15 陕西莱特光电材料股份有限公司 有机化合物、电子元件和电子装置

Also Published As

Publication number Publication date
CN111662241A (zh) 2020-09-15
US11434208B2 (en) 2022-09-06
KR102422363B1 (ko) 2022-07-19
CN111662241B (zh) 2021-09-03
KR20220007897A (ko) 2022-01-19
US20220220084A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2021135207A1 (zh) 含氮化合物、电子元件和电子装置
CN111454197B (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021213109A1 (zh) 一种芳胺化合物、使用其的电子元件及电子装置
CN111777517B (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021135516A1 (zh) 有机化合物、电子元件和电子装置
WO2022188514A1 (zh) 一种有机化合物及包含其的电子元件和电子装置
WO2021223688A1 (zh) 一种有机化合物和应用以及使用其的有机电致发光器件和电子装置
JP7105388B1 (ja) 窒素含有化合物、電子部品及び電子装置
CN113004287B (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022170831A1 (zh) 有机电致发光材料、电子元件和电子装置
WO2021135517A1 (zh) 有机化合物、电子元件和电子装置
CN113200992B (zh) 含氮化合物、有机电致发光器件和电子装置
CN112341343A (zh) 一种有机化合物及包含其的电子元件和电子装置
CN111004226A (zh) 有机电致发光材料及其中间体、电子器件、电子装置
CN113121408A (zh) 含氮化合物、电子元件和电子装置
CN113735861B (zh) 有机化合物及使用其的电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN113105462B (zh) 一种有机化合物以及使用其的电子元件和电子装置
CN114133351B (zh) 含氮化合物及包含其的电子元件和电子装置
CN115557937A (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
WO2022199256A1 (zh) 化合物、有机电致发光器件及电子装置
WO2022267901A1 (zh) 有机化合物、电子元件和电子装置
CN115490693A (zh) 有机化合物以及包含其的电子元件和电子装置
CN117603220A (zh) 有机化合物、有机电致发光器件及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217043278

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910454

Country of ref document: EP

Kind code of ref document: A1